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Abstract

This thesis presents an experimental and theoretical investigation of GPS er-
rors. Data from stationary GPS units were gathered from several locations and an
analysis of the noise present was undertaken. Several noise models were proposed
and their relative performance compared using the Akaike Information Criterion. A
vehicle navigation system was implemented using a dynamical vehicle model which
combined GPS, accelerometer and gyroscope measurements via a nonlinear Kalman
filter to enable superior position and velocity estimation, especially during short-
term losses of GPS signal.
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Chapter 1

Introduction

The Global Positioning System (GPS) and other global navigation satellite sys-
tems (e.g., GLONASS and Galileo) have become ubiquitous in everyday life. This
thesis investigates how we can optimally use the data obtained from GPS devices.
We investigate this question through two separate, but related cases, described in
Sections 1.1 and 1.2 below.

1.1 GPS Noise Models

A commonly made assumption is that the noise from GPS devices is independent,
identically distributed Gaussian noise [1,2]. This thesis challenges this assumption,
finds that it isn’t valid, which agrees with some of the literature [3,4]. We then pro-
pose improved noise models that fit observations better, and discusses how existing
sensor fusion techniques can be extended to these new noise models. In addition, this
thesis describes how dynamical vehicle models can be used to infer better position
and velocity information for vehicle navigation.

Understanding the nature of the noise present in measurements helps in the
extraction of signals from noisy data. In Chapter 2 we show that the independence
assumption of GPS noise is fundamentally flawed and we present several alternative
noise models that provide a better fit to the data and allow for time dependent noise.
Figure 1.1 shows the autocorrelation function, a measure of the signal correlation
after a given time delay, of empirical GPS data (a), and for one of the proposed
time dependent noise models, the Ornstein-Uhlenbeck model (b).

A common reason to make the independence assumption is that filtering with
independent noise is mathematically more tractable than filtering with time depen-
dent noise. However, we demonstrate that filtering with a time dependent noise
model is practical by implementing one of the proposed time dependent models,
the Ornstein-Uhlenbeck noise model, in a Kalman filter. We believe that Kalman
filtering single-frequency GPS data with an Ornstein-Uhlenbeck noise model is new
to the literature, and could lead to improved devices from satellite position mea-
surement [5].

3



4 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: The autocorrelation of (a) empirical GPS position errors (latitude),
and (b) a simulated Ornstein-Uhlenbeck process, with parameters estimated from
the data. The GPS errors in position estimates are correlated for more than 30
minutes, i.e. if a position measurement is incorrect, then 30 minutes late it is still
likely to be incorrect in the same direction.

1.2 Inference of Driver Behaviour using Vehicle
Models, and GPS and Inertial Measurements

In this thesis we also describe a dynamical vehicle model that allows inference
of driver behaviour, specifically acceleration and braking. By placing constraints on
the vehicle dynamics of the model we are able to limit the degrees of freedom in the
system and so extract more accurate state estimates from the available measure-
ments.

The model is used by a sensor fusion algorithm to combine GPS, accelerometer,
and gyroscope measurements. GPS measurements represent a cheap, accurate tool
for determining position with an accuracy as low as 3 m for a standalone unit [6,7].
GPS units also output velocity measurements which typically have an accuracy of
less than 1ms-1 [8]. However, the sampling frequency of GPS devices is quite low
compared to many other digital sensors.1 Additionally, the noise for a standalone
GPS unit is significant and GPS signals can be subject to obstruction [7, 9].

By contrast, inertial sensors typically have a much higher sampling frequency, in
the order of hundreds of Hz [7, 10], and noise that is independent of GPS measure-
ments. By combining these separate measurements of a vehicle using a nonlinear
Kalman filter we can infer any change in the speed, heading, and driver inputs.

The system developed in this thesis can be deployed on a vehicle without any

1Most GPS devices only receive data at a rate of 1 Hz, although with reconfiguration devices
can sample at a rate of 5 Hz or (with some difficulty) 10 Hz [2].
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modification of hardware or interaction with the software of the vehicle and provides
superior performance than either a standalone GPS unit, or a GPS and inertial
navigation system that makes no assumptions on the possible vehicle dynamics.
The system can also successfully bridge short-term GPS outages.

1.3 Satellite Navigation

There are several global navigation satellite systems (GNSSs) in varying degrees
of operational capability. As of March 9, 2016 the only systems with global cover-
age are the American Global Positioning System (GPS) and the Russian GLObal
NAvigation Satellite System (GLONASS), which have 31 and 29 satellites in orbit,
respectively [11,12]. The Chinese BeiDou Navigation Satellite System currently has
21 satellites in orbit and is in a state of partial operation as it can provide posi-
tioning information between longitudes of 55oE and 180oE and between latitudes of
55oS and 55oN [13,14]. At its current stage the European Galileo system is half-way
operational with 12 satellites in orbit [15].

1.3.1 GPS

GPS is still the most commonly used system and all GNSS measurements made
in this thesis use the GPS constellation. The first GPS satellite was launched in
1978 and the constellation was declared fully operational in 1995 [16]. As of March
9, 2016 the GPS constellation has more satellites in orbit than any other system
and the Federal Aviation Administration (FAA) has shown single frequency GPS to
have a horizontal accuracy of less than 3.5 m across North America [11,17].

There are many sources that contribute to GPS errors. The dominant source of
GPS error is ionospheric effects due to the dispersion of the microwave signal in the
ionised upper atmosphere. Dual frequency GPS units are able to largely eliminate
the errors from ionospheric effects by calculating the atmospheric dispersion from
the different time delays on the L1 (1575.42 MHz) and L2 (1227.60 MHz) signals
[7]. However, single frequency GPS units cannot make these corrections and dual
frequency GPS receivers are considerably more expensive (∼$2000+) than single
frequency receivers (∼$10+).

There are also errors due to the propagation through the troposphere, these
are typically smaller than the ionospheric errors, however, the troposphere is non-
dispersive and so cannot be corrected for by using the different time delay of dual
frequency signals. Around 90% of the tropospheric error is due to dry gases, which
have a relatively stable concentration and may be largely corrected for by models
that do not require any extra information. The remaining 10% of the tropospheric
error is due to water vapor and so is difficult to correct for without real-time weather
data being taken into account [7].
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Table 1.1: The User Equivalent Range Error budget for the Standard Positioning
Service, with the contributions being within a 95% confidence interval.

Source UERE Contribution (95%) metres [6]

Group Delay Stability 3.1
Other Space Segment Errors 1.0
Clock/Ephemeris Estimation 2.0
Clock/Ephemeris Curve Fit 0.8
Ionospheric Delay Terms 9.8–19.6
Group Delay Time Corrections 4.5
Other Control Segment Errors 1.0
Tropospheric Delay 3.9
Receiver Noise and Resolution 2.0
Mulitpath 0.2
Other User Segment Errors 1.0

The local geography may also affect the GPS error by reflected signals con-
tributing to mulitpath effects. The reflections have a longer pathlength between the
receiver and the satellite, this longer pathlength then affects the position reported
by the device. Because of the longer pathlength and some attenuation by the re-
flecting surface, the reflected signals are necessarily delayed with respect to the true
pathlength and of smaller amplitude. However, in the case where the true signal
is also attenuated, e.g., by foliage or local geography, the reflected signal may be
mistaken for the true signal, which can then result in a significant position error [11].

Table 1.1 shows the stated User Equivalent Range Error (UERE) budget for the
Standard Positioning Service (SPS) provided by the US Department of Defense and
GPS NAVSTAR groups. All errors provided are 95th percentile error bounds [6]. It
is worth noting that the errors shown in Table 1.1 cover the stated tolerances for
the performance of the GPS satellites and receivers. However frequency standards
on board the satellites have consistently exceeded their specifications, and with the
steady improvements to satellite software and receiver hardware, measured errors
are often considerably smaller than what would be expected from the stated error
budget [18].

If high-precision measurements are required then the user may be able to use a
dual frequency GPS which can correct for the majority of the ionospheric effects.
Also accurate weather data can be used to estimate the amount of moisture in
the air and the effect of that on the tropospheric errors. While dual frequency
measurements and real-time weather models can substantially reduce the errors in
GPS measurements these methods are outside the means of everyday users of GPS.
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For the purposes of this thesis we take an agnostic position to the source of the
noise observed in the GPS signal. We treat the GPS unit as a ‘black box’, and
investigate statistical models of the observed noise. Using this approach we filter
GPS measurements in a way that does not require any extra information and that
would be generally applicable to the large number of uses of satellite navigation.

1.4 The Kalman Filter

The Kalman filter is a recursive algorithm for sequential inference and sensor
fusion pioneered by Rudolf E. Kalman and Richard S. Bucy [19]. The Kalman
filter propagates both an estimate of the state of the system and an estimate of the
uncertainty of that state. The Kalman filter can operate on systems with arbitrary
additive noise models. However, in the specific case of Gaussian noise the Kalman
filter yields the exact posterior probability density function [20, 21]. Consequently
the Kalman filter provides optimal estimates for the current state and covariance for
any linear system with Gaussian noise [22]. This, in combination with the central
limit theorem, makes the Kalman filter a very powerful algorithm.

The Kalman filter assumes that the next state of the system, x(k + 1), is a
linear combination of the current state, x(k), and some additive noise, w(k). The
measurement model of the Kalman filter then assumes that some measurement,
z(k), is made on the system which is a linear projection of the current state onto
the measurement space. The measurement process is also assumed to have some
inherent noise, v(k). The entire process can be expressed mathematically as,

x(k + 1) = F (k)x(k) + w(k),

z(k) = H(k)x(k) + v(k).
(1.1)

Where the state transition matrix F (k) is used to propagate the current state for-
wards in time and is derived from the dynamics of the system. The measurement
matrix H(k) projects the current state onto the measurement space.

The Kalman filter consists of two steps, prediction and measurement. Equation
1.2 begins with the (k − 1)th state estimate given (k − 1) measurements, and it
is denoted by x̂(k − 1|k − 1). The covariance of this state estimate is denoted by
P (k − 1|k − 1). The current state estimate is then propagated forward in time
by the state propagation matrix to give a prediction of the next state. The next
measurement of the state z(k) is then made and the prediction and measurement
are combined, weighted by the Kalman gain K(k), a factor calculated from the
state covariance, measurement covariance, and measurement matrices, as shown in
Equation 1.3.
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Prediction

x̂(k|k − 1) = F (k)x̂(k − 1|k − 1),

P (k|k − 1) = F (k)P (k − 1|k − 1)F (k)T +Q(k),
(1.2)

Measurement

K(k) = P (k|k − 1)H(k)T
(
H(k)P (k|k − 1)H(k)T +R(k)

)−1
,

x̂(k|k) = x̂(k − 1|k − 1) +K(k)
(
z(k)−H(k)x̂(k|k − 1)

)
,

P (k|k) = (I −K(k)H(k))P (k|k − 1),

(1.3)

The reader will note that the system and measurement noise, w(k) and v(k),
respectively, are both missing in the above algorithm, since the expectation value of
zero-mean noise is zero. Therefore this term is not included in the expectation of
the state. However, the covariance matrices of the noise terms are included as the
Q(k) and R(k) matrices for the system and measurement noise, respectively.

The Kalman gain of the system depends on the predicted state covariance,
P (k|k − 1), as well as the covariance of the system noise, Q(k), and the covari-
ance of the measurement noise, R(k). This automatically determines the weighting
given to the predictions and measurements. If the measurement covariance is larger
than the system covariance then the Kalman gain places a stronger emphasis on the
predictions than the measurements and vice versa [19].

1.5 Nonlinear Extensions to the Kalman Filter

While the Kalman filter is an extremely useful algorithm, it assumes that the
aforementioned measurement and propagation equations are linear. However, many
real-world problems are nonlinear, for example, the problem of combining GPS
and inertial measurements for navigation. Therefore we must look into the set of
nonlinear state estimators.

1.5.1 Extended Kalman Filter (EKF)

The extended Kalman filter was the first attempt at using a Kalman filter-based
algorithm to estimate a system with nonlinear state dynamics, and was developed
soon after the Kalman filter. The EKF handles the nonlinear state dynamics by
taking a first order Taylor series expansion of the state propagation and measurement
equations around the current state estimate. In the following equations we denote
the true state of the system at time k∆t as x(k) and the state estimate, given
measurements z(1) . . . z(k), as x̂(k|k).
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x(k + 1) = f(x(k)) + w(k),

z(k + 1) = h(x(k)) + v(k),
(1.4)

f(x(k)) = f(x̂(k|k)) + Jf (x̂(k|k)− x(k)) + . . . ,

≈ f(x̂(k|k)) + Jf (x̂(k|k)− x(k)),
(1.5)

h(x(k)) = h(x̂(k|k)) + Jh(x̂(k|k)− x(k)) + . . . ,

≈ h(x̂(k|k)) + Jh(x̂(k|k)− x(k)),
(1.6)

Jf =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 , Jh =


∂h1
∂x1

∂h1
∂x2

. . . ∂h1
∂xn

...
. . .

...
∂hn
∂x1

∂hn
∂x2

. . . ∂hn
∂xn

 . (1.7)

Equation 1.5 shows that the extended Kalman filter takes the nonlinear function
f(x(k)) and truncates the Taylor series at the first order, effectively linearising the
state dynamics at every prediction step. This means that propagating a Gaussian
probability density function (pdf) through the linearised system dynamics will allow
the pdf to stay as a Gaussian, which enables the state estimate and state covariance
matrix to uniquely characterise the uncertainty.

However, for highly nonlinear systems a first order expansion of the Taylor series
may not be sufficient. In this case another nonlinear filter must be applied. A good
candidate would be the unscented Kalman filter (UKF) which can be shown to be
equivalent to a second order Taylor series expansion for any type of noise, or a third
order expansion if the system and measurement noise are Gaussian [23].

1.5.2 Unscented Kalman Filter (UKF)

The extended Kalman filter deals with nonlinear dynamics by linearising the
dynamics at each step and then propagating the pdf through the linearised dynamics.
Rather than approximating the system dynamics as linear in order to be able to
use a Gaussian pdf, the unscented Kalman filter retains the full nonlinear system
dynamics and then approximates the resulting pdf as a Gaussian [24].

The UKF works by selecting a deterministic group of points, called sigma points.
These sigma points are chosen to have the same mean and covariance as the current
state estimate. Once the points have been chosen they are propagated through the
nonlinear system dynamics f(x(k)) directly [25],

x(k + 1) = f(x(k)) + w(k),

z(k + 1) = h(x(k)) + v(k).
(1.8)
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After the sigma points have been propagated the mean and covariance is taken
from the propagated points and that is taken to be the predicted mean and predicted
covariance of the state.

Because the UKF does not truncate the higher order nonlinearities of the system,
we expect that it has superior performance to the EKF in highly nonlinear systems
[23]. For systems that are not dominated by nonlinear terms the UKF and EKF
have often been found to have comparable performances, both in terms of predictive
power and computational cost [26,27].

Figure 1.2: Some probability density function is propagated through the nonlin-
ear function f(x), with the propagated pdf shown, along with the mean and co-
variance of the pdf. In the centre we see the pdf propagated through the lin-
earised dynamics of the EKF. On the right we see the unscented transform (UT)
of the UKF, first generating the sigma points, then propagating them and fi-
nally transforming them back to the mean and covariance. Image taken from
http://www.cslu.ogi.edu/nsel/ukf/img84.gif [24].

Particle Filter

Particle filters, also known as sequential Monte Carlo methods, are a set of filters
that represent the probability density function of a state by a series of particles, such
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that the distribution of particles approximates the pdf of the state. These particles
are then propagated directly through the nonlinear dynamics of the system. The
numerical representation of the pdf means that particle filters can, in principle, han-
dle any pdf. By increasing the numbers of particles one may increase the accuracy
of the particle filter, allowing the user to scale the accuracy to the specific applica-
tion of the filter [28]. The cost of being able to handle arbitrary pdfs and nonlinear
dynamics is the extra computational complexity of the particle filter [29].

While the UKF only requires (2n+1) sigma points given an n-dimensional state
space, the particle filter typically requires an order of magnitude more points [30].
This is because the UKF utilizes the unscented transform to deterministically choose
the sigma points while the particle filter usually chooses the particles at random [28].

Because the particle filter scales so poorly with increasing dimensions we only
looked at the EKF and UKF for real time navigation. With the explosion of com-
puting power soon it may be practical to implement a particle filter in a multi-
dimensional system such as integrated GPS and inertial navigation. A useful future
work would be to use a particle filter off-line to evaluate the performance of both
the EKF and UKF.

1.6 Sensor fusion with GPS data

Given the low cost and size of digital sensors, devices with many integrated
sensors are now commonplace. The reader probably has, in his or her pocket,
a computer with a GPS, accelerometer, gyroscope and magnetometer, capable of
performing the kind of nonlinear state estimation used in Chapter 7. Such sensors
are becoming smaller, faster, and less power-intensive. With this sudden boom
in potential data sources comes the necessity of filtering and processing this data
quickly and effectively.

Problems, such as losing satellite visibility due to geographic or man-made fea-
tures, are common in GPS navigation [9]. By combining an inertial navigation unit
(INU) with GPS data the problem of short-term losses of signal can be significantly
reduced. We demonstrate this in Figure 1.3 by simulating a loss of GPS signal by
removing fifteen seconds of GPS data from the data set. We can then see the results
of this fifteen second loss of GPS signal on a combined GPS and inertial navigation
system. The red path in Figure 1.3 shows the GPS measurements with a fifteen
second loss of signal. The blue path shows the estimated position by relying on the
inertial measurements and the algorithm developed for this thesis.
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Figure 1.3: The red waypoints are the GPS signal that the combined navigation
system was using. We simulated a loss of GPS signal by removing fifteen seconds of
GPS data to see how the system would cope. The blue waypoints are the estimated
position from the combined system.

1.7 Chapter Outlines

The chapters in this thesis are placed depending on their relation to the two
separate, but related, aims of this thesis. Chapters 2-4 relate to the analysis, char-
acterisation, and filtering of single-frequency GPS noise. Whereas, Chapters 5-7
relate to the design, implementation, and experimentation of a system for tracking
road-based vehicles by combining GPS and inertial measurements using a dynamical
vehicle model. The individual chapter outlines are given below.

• Chapter 2. A background to GPS noise is presented, as well as some problems
with using an independent noise model, as demonstrated by empirical GPS
errors with long-term autocorrelation functions. Different noise models are
presented, as is the Akaike Information Criterion (AIC), by which the models
will be compared.
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• Chapter 3. Single-frequency GPS data was collected by two different types of
single-frequency GPS units from four separate locations. The data gathered is
then analysed and the relative performance of the models, proposed in Chapter
2, is presented.

• Chapter 4. A background to Kalman filtering with GPS measurements is
presented. A derivation of how to filter GPS measurements with an Ornstein-
Uhlenbeck (O-U) noise model is given, as well as a demonstration of such
filtering.

• Chapter 5. An introduction of inertial navigation is presented, using a one-
dimensional acceleration example. The benefits of using inertial navigation
and sensor fusion is then demonstrated, using this example. The reference
frames that will be used for the vehicle tracking system are also presented.

• Chapter 6. A dynamical vehicle model for road-based vehicles is presented.
The system of implementing the model in a nonlinear Kalman filter is shown
and the measurement and propagation equations given. A simulated two-
dimensional test is also given, as proof of concept for the model.

• Chapter 7. The dynamical vehicle model from Chapter 6 is implemented and
tested with real-world data. The hardware used and results of the vehicle
tracking system are presented and analysed.
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Chapter 2

Modelling GPS Noise

This chapter presents experimental data illustrating some of the characteristics of
GPS noise. Different noise models are proposed as candidates for the noise observed
in GPS measurements. Each of these models are fit to experimental data, and
their relative performance analysed in Chapter 3. The selection criteria used for
model comparison was the Akaike Information Criterion (AIC), which is explained
in Section 2.3.

In Section 2.1 we present the autocorrelation function of empirical GPS data.
The presence of a long-term autocorrelation function presents significant problems
for the commonly used independent, identically distributed (i.i.d.) Gaussian model
as a noise model for GPS noise [1, 31].

Candidate models are proposed in Section 2.4. For each model we derive the
log likelihood functions that are used by the Akaike Information Criterion for the
model selection performed in Chapter 3. Example autocorrelation functions of each
noise model are also presented.

In this chapter and chapter 3 GPS position data from known positions are anal-
ysed. We then characterise the error signal Nt, and propose noise models that fit
the data better than the independent, i.i.d. Gaussian model in common use. We
expect that better noise models will lead to superior performance.

2.1 GPS Noise Background

Accurate uncertainty estimation is a crucial part of any filtering process. Po-
sition estimation, of course, is no exception. Any GPS measurement of position
contain uncertainties in that measurement. Typically the measurement is modeled
by assuming that the GPS device reports the true position X0 with some additive
Gaussian noise [1] i.e,

Xt = X0 +Nt, (2.1)

where Nt is usually taken to be independent and normally distributed with zero
mean and variance of σ2.

Previous research has identified the problems with fitting an i.i.d. Gaussian
noise model to GPS measurements [5, 32]. Two models have been proposed to fit

15
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the measurement noise in GPS measurements more accurately. One is a moving-
average (MA) process, the other is an autoregressive (AR) process [32, 33]. In this,
and the following Chapter we will analyse both to determine which model fits the
GPS errors best. We also propose the Ornstein-Uhlenbeck as a simple, continuous
time analogue to the autoregressive process that will be tested alongside the AR
and MA processes.

2.2 Autocorrelation of GPS Noise

The autocorrelation (or autocovariance) between Xt and Xs for some process
{Xt} is given by [34]

cov(Xt, Xs) = E[(Xt − E[Xt]) (Xs − E[Xs])] (2.2)

where E[X] is the expectation operator. One of the advantages of i.i.d. Gaussian
noise is that the theoretical autocorrelation function is zero after lag of dt, where dt
is the sampling period.

However, Figure 2.1 clearly shows that the autocorrelation function of empirical
GPS data does not reach zeros after the one second sampling period. Indeed, it
takes approximately an hour for the autocorrelation to reach zero. This data was
taken from a GlobalSat BU-353S4 GPS unit operating on the L1 frequency (1575.42
MHz) with sampling period of 1 second over a total time of around 100 hours, or
360,000 individual measurements.

The Kalman filter is an optimal linear state estimator and is described in Section
1.4. In order for a Kalman filter to function, the covariance matrices of the process
and measurement noises needs to be known.

In the case of i.i.d. Gaussian noise the covariance matrix does not need to be
updated for as long as the filter is running. Therefore a commonly made assumption
in many Kalman filter-based systems is that the measurement noise term is inde-
pendent from the previous noise terms [1, 7]. However the empirical data that we
obtained implies that in the case of GPS measurements this assumption is flawed.

A common method of determining the independence of one measurement to the
next is to look at the autocorrelation function of the measurements [22, 35]. The
autocorrelation function (R(τ)) of a signal indicates of how strongly correlated a
signal is with itself after a time delay of τ seconds. If the autocorrelation function
is well defined then it should be bounded by [1,-1], with 1 representing prefect
correlation and -1 representing perfect anticorrelation. The autocorrelation function
of discrete data can be estimated with the following equation [34].

R(τ) =

∑n
t=τ+1(Xt − µ)(Xt−τ − µ)∑n

t=1(Xt − µ)2
. (2.3)
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Figure 2.1: Autocorrelation of latitude errors taken from a GlobalSat BU-353S4
GPS unit with excellent sky view. The sampling period of the device is 1 second.
This data is taken from a data set of ∼ 100 hours but the time axis has been cut
off at 5.5 hours for readability.

In Equation 2.3 the correlation between measurement Xt and Xt+τ is given by R(τ)
and the µ term represents the mean of the set of data {Xi}. As mentioned above the
autocorrelation function of i.i.d. Gaussian noise is zero after a lag of dt. To illustrate
the difference between this and the autocorrelation of GPS data, we generated some
i.i.d. Gaussian noise with the same length, mean and variance as the GPS data seen
in Figure 2.1. The autocorrelation function of the generated i.i.d. Gaussian noise is
shown in Figure 2.2(b). It is clear that the autocorrelation function is, indeed, close
to zero after a lag of one sampling period. For comparison the autocorrelation of
the GPS data is shown in Figure 2.2(b), along with the autocorrelation function of
a simulated Ornstein-Uhlenbeck process Figure 2.2(c).

However it is equally clear from Figure 2.1 that the autocorrelation function for
the measured latitude error does not quickly decay (keeping in mind that the data
has a sampling period of 1 second and the time scale shown is in hours). This
time dependence implies that if a GPS position measurement is offset from the true
position then it is statistically likely to be offset in that same direction for up to an
hour.
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(a)

(b)

(c)

Figure 2.2: The autocorrelation of empirical GPS data, (b) independent Gaussian
noise with the same mean and variance as the observed data, and (c) a simulated
Ornstein-Uhlenbeck process. For readability only the first 5.5 hrs of the autocorre-
lation function were shown.
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We chose to treat the GPS measurements as a black box and simply attempt
to model the noise observed and modify our filtering algorithms accordingly. This
approach has some appeal as it allows us to remain vendor neutral. Also we wanted
to propose ways of modeling GPS noise that are generally applicable across all GPS
devices, rather than simply modeling the noise present in one specific device.

2.3 Model Comparison

In order to determine which model is the best out of a candidate set we require
some selection criteria to order them. Ideally the criteria would reward models that
fit the data well and penalise overly complex models. This balance between com-
plexity and goodness of fit is sometimes called parsimony after William of Ockham’s
law of parsimony (commonly referred to as Ockham’s razor). The law of parsimony
states that “Plurality must not be posited without necessity.” This notion is often
restated as “Among competing ideas, favour the simplest one.” [36].

In essence, model selection is about determining how likely a given model is
relative to the other models in the candidate set. Before we attempt to do so it
would be worth defining our terms. Below we have Bayes’ Rule [37].

P (x|θ) =
P (θ|x)P (x)

P (θ)
, (2.4)

Where P (x|θ) is the probability of the data (x) given some model parameter (θ).
This is proportional to the probability of the model parameter given the data
(P (θ|x)), multiplied by the probability of the data (P (x)). The probability of the
model parameter given the data (P (θ|x)), is known as the ‘likelihood’ of the model
parameter given the data.

The right hand side of the equation is then normalized by dividing through by
the probability of the model parameter (P (θ)).

2.3.1 Log likelihood

Let {xi} be the set of measurements x1, x2, ...xN , which are distributed according
to some probability density function f(x|θ), where θ is the set of independently ad-
justable parameters that describe the probability density function (pdf). To obtain
the joint pdf of the measurements {xi}, we get.

f({xi}|θ) = f(x1|θ) · f(x2|θ) · ... · f(xN |θ),

=
N∏
i=1

f(xi|θ),
(2.5)
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Often when working with large data sets the likelihood functions are very small,
even for relatively orderly predictions (imagine a system where each measurement
has a likelihood of 0.9 and you have a million measurements, 0.91000000 is a still very
small number). Because of this it is common to work with the log of the likelihood
functions, i.e.

ln(L) = ln

(
N∏
i=1

f(xi|θ)

)
,

=
N∑
i=1

ln(f(xi|θ)),

(2.6)

It is also worth noting that implicit in Equation (2.6) is that the measure-
ment probabilities are independent of each other. This is not necessary, for non-
independent probabilities we simply add in the conditional pdfs as required. For
example if each measurement was dependent on the previous measurement then
(2.6) would become.

ln(L) = ln

(
f(x1|θ) ·

N∏
i=2

f(xi|θ, xi−1)

)
,

= ln(f(x1|θ)) +
N∑
i=2

ln(f(xi|θ, xi−1)),

(2.7)

Because the logarithm is a monotonically increasing function the logarithm of a
function will be maximised when the function itself is maximised.

2.3.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is firmly based in the Bayesian framework
of statistics and so it is worth defining Bayes’ rule for the set of measurements {xi}.

P (θ|{xi}) =
f({xi}|θ)P (θ)

P ({xi})
, (2.8)

Where P (θ|{xi}) is the probability of the parameters given the data, P (θ) is the
probability of the parameters and P ({xi}) is the probability of the data. Obviously
for model comparison we want to choose the most likely model parameters given the
data, therefore we want to maximise P (θ|{xi}). Note that on the right hand side of
Bayes’ rule the denominator is independent of θ. So if we assume a uniform prior
distribution across the parameter space (i.e. choose P (θ) to be constant) then by
maximising f({xi}|θ) we will maximise P (θ|{xi}).
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Note that the constant terms from (2.8) are left out of the log likelihood equation,
this is standard for both the likelihood and the log likelihood as, in general, we are
not interested in the constant terms and only seek to maximise the joint pdf of the
data given the parameters of the model.

To obtain the maximum likelihood we can maximise the log likelihood as this will
return the maximum likelihood parameters [38]. To obtain the maximum likelihood
we simply take the partial derivative of the log likelihood with respect to each of
the parameters and select each maximal parameter accordingly, i.e.

∂ ln(L)

∂θ1
= ∂ln(f(x1|θ)) +

N∑
i=2

ln(f(xi|θ, xi−1))∂θ1 = 0,

∂2 ln(L)

∂θ21
≤ 0,

(2.9)

If the equations cannot be solved analytically then there are many, well-known
numerical ways of obtaining accurate approximations [39]. Once the maximum
likelihood estimators of the parameters have been calculated obtaining the maximum
likelihood is a simple matter of inputting the parameters into your likelihood function
along with {xi}.

We used Maximum Likelihood Estimation to determine the optimal parameters
for each of the noise models discussed in Section 2.4.

2.3.3 Akaike Information Criterion

There are many ways to try and characterize the fit of a particular model to the
data. For our noise model comparisons we will use the Akaike Information Criterion
(AIC) [38]. The definition for the AIC is given below.

AIC = 2k − 2 ln(L), (2.10)

Where k refers to the number of independently adjustable parameters within the
model and L refers to the maximum likelihood of the parameters given the data [38].
The model which minimises the AIC value for the given data is said to be the
preferred model [40]. However, it is important to note that the AIC value of a
particular model for some given set of data says nothing about the absolute likelihood
of that model’s fit to the data. The AIC value of a model only provides relative
information for comparison between models, i.e. if all of the candidate models fit
the data poorly the AIC values won’t reflect the poor fit.

A common application of the AIC is to use the AIC number of a model to deter-
mine how likely one model is relative to another. The process of obtaining relative
likelihoods from AIC values is reasonably simple. LetM be the set of candidate mod-
els M1,M2, . . . ,Mn, each model has its associated AIC value AIC1, AIC2, . . . , AICn.
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Of the set of AIC values suppose model j has the lowest AIC value, which we de-
note AICmin. One of the useful aspects of the AIC is that we can quantitatively
determine the probability that model Mi is the best among the candidate set M .
This is done by calculating the model’s Akaike weight wi [40].

wi =
exp

[
(AICmin−AICi)

2

]
∑n

m=1 exp
[
(AICmin−AICm)

2

] (2.11)

For example, imagine that model Mi’s Akaike weight is 0.25. In that case there is
a 25% chance that of the candidate models, Mi is the best. The Akaike weights also
provide a convenient way of comparing two models and calculating quantitatively
which is better. This is achieved by dividing the Akaike weights, which gives us
the evidence ratio of the two models. For example let us compare model j against
model i.

Evidence ratio =
wj
wi
, (2.12)

Let’s say the wj is 0.35 and wi is 0.25, this gives an evidence ratio of 1.4. This
means that model Mj is 1.4 times more likely than model Mi. For ease of interpre-
tation when we compare the performance of different models we will include both
the AIC value of each model and its associated Akaike weight.

Now that we are versed in the AIC and MLE framework we can begin to use
both to try and characterize the noise distributions that we observe in GPS errors.

2.4 Candidate Models for GPS noise

As mentioned above the Akaike Information Criterion is only useful for compar-
ing candidate models against each other. The AIC gives no information as to the
absolute fit of the model to the data. Therefore, it is important to consider models
that have a reasonable basis for use as GPS noise models. We have selected models
that are commonly used or have been proposed as GPS noise models. We took
into consideration not only the model’s fit to the data, but also the complexity in-
volved in parameter estimation and filtering. The models chosen for comparison are
the independent, identically distributed Gaussian model, the Ornstein-Uhlenbeck
process, the autoregressive processes, the moving average process and the mixed
autoregressive, moving average model.

2.4.1 Independent Identically Distributed Gaussian

The independent identically distributed Gaussian (i.i.d. Gaussian) noise model
is familiar as a standard model in filtering and signal processing. It is defined below.
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Xt = µ+ nt, (2.13)

Where Xt is the measured variable with true value µ and noise term (nt) has a Gaus-
sian distribution with zero mean and standard deviation of σ, i.e. nt ∼ N (0, σ2).
The current measurement is independent of all previous measurements and nt ∼
N (0, σ2) ∀ t [35].

The i.i.d. Gaussian model has many aspects which make it extremely useful
for filtering. The central limit theorem tells us that the sum of N independent
random variables, each with well-defined expected values and variance, will tend to
a Gaussian distribution [41].

Also i.i.d. Gaussian models are extremely easy to filter with. A Gaussian distri-
bution is uniquely defined by its mean and covariance [41]. Therefore a system with
M variables can be completely described as an array of means with length M and
an M ×M covariance matrix.

The Kalman filter, for example, uses an array of means and a covariance matrix
for describing the current state and uncertainty. This means that for a linear sys-
tem with i.i.d. Gaussian noise the Kalman filter propagates the exact conditional
probability estimates [20].

However, as noted previously the i.i.d. Gaussian model has no long-term auto-
correlation function, unlike what is observed in the empirical data. Therefore we
expect that other models will fit the data better and allow improved filtering of the
data.

Maximum Likelihood Estimation of i.i.d Gaussian noise

The log likelihood of i.i.d Gaussian noise is,

ln(L) = −N
2

ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

[Xi − µ]2, (2.14)

where µ and σ2 are the mean and variance, respectively [34]. Therefore by taking the
derivatives with respect to µ and σ2 we see that the maximum likelihood estimates
for an i.i.d Gaussian process are simply the sample mean, i.e.

µ̂ =
1

N

N∑
i=1

xi, σ̂2 =
1

N

N∑
i=1

[Xi − µ̂]2, (2.15)

2.4.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a mean-reverting stochastic process, orig-
inally developed to describe the velocities of particles undergoing Brownian mo-
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Figure 2.3: Autocorrelation of simulated independent, identically distributed Gaus-
sian noise.

tion [42]. The Ornstein-Uhlenbeck process was originally proposed as a candidate
noise model as it has a long-term autocorrelation function, similar to what we ob-
served in the empirical data. Also, its mean-reverting behaviour is qualitatively to
some of the behaviour that we observed.

An Ornstein-Uhlenbeck (O-U) process is defined by the stochastic differential
equation

dxt = θ(µ− xt)dt+ σdWt, (2.16)

where θ, µ and σ are parameters of the process and Wt is the Wiener process [42].

Wt = Wt −W0 ∼ N (0, t) (2.17)

Therefore, is we transfer from the continuous case above, to the discrete case
then Equation 2.16 becomes the following [42].

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0

eθ(s−t)dWs. (2.18)

The maximum likelihood estimates for the Ornstein-Uhlenbeck process provides
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useful descriptions of the noise and its behaviour. The µ is the ‘true’ position of
the device which we seek to find and which the process mean-reverts towards, the θ
determines the autocorrelation function with the autocorrelation time proportional
to e−θdt where dt is the sampling period of the GPS device. The σ parameter then
determines the noise present between measurements.

As a candidate noise model for GPS noise the Ornstein-Uhlenbeck process has
several desirable properties; it is mean-reverting, it can have a long term autocorre-
lation time and periodic structure in the autocorrelation function and its parameters
are not determined by the sampling rate of the device.

We simulated an Ornstein-Uhlenbeck process with the Euler-Maruyama method
[43] and then plotted its autocorrelation function, as seen in Figure 2.4. The sim-
ilarities between autocorrelation functions of GPS data and a simulated Ornstein-
Uhlenbeck process are easily identifiable in Figure 2.2.

Figure 2.4: Autocorrelation of an Ornstein-Uhlenbeck process showing similar long-
term structure to the GPS position errors.

Maximum Likelihood Estimation of O-U Process

The log likelihood function of an Ornstein-Uhlenbeck process is given below,
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ln (L) = ln(p(X0))−
(N − 1)

2
ln(2π)− (N − 1)

2
ln(σ̃2)−

N∑
i=2

[xi − µ̃]2

2σ̃2
, (2.19)

where σ̃2 and µ̃ are defined as,

σ̃2 =
σ2(1− e−2θdt)

2θ
and µ̃ = Xi−1e

−θdt + µ(1− e−θdt) (2.20)

Ignoring the first component, which is only dependent on the probability of the
first measurement, the parameters that maximize the log likelihood can be obtained
explicitly by,

θ̂ = −dt−1 log(β1), µ̂ = β2 and σ̂2 = 2 θ̂β3
1−β2

1
. where

β1 =

∑n
i=1XiXi−1 − n−1

∑n
i=1Xi

∑n
i=1Xi−1∑n

i=1X
2
i−1 − n−1 (

∑n
i=1Xi−1)

2 (2.21)

β2 =
n−1

∑n
i=1 (Xi − β1Xi−1)

1− β1
(2.22)

β3 = n−1
n∑
i=1

[Xi − β1Xi−1 − β2(1− β1)]2 (2.23)

The O-U process is a continuous-time analogue of an autoregressive process of
order 1 [44, 45]. We will now investigate the more general group of autoregressive
processes.

2.4.3 Autoregressive processes

A Gaussian autoregressive process of order p (AR(p)) is defined as,

Xi = φ1Xi−1 + φ2Xi−2 + · · ·+ φpXi−p + εi, (2.24)

where εi ∼ N (0, σ2), and the set {φn} are independent parameters. The process
therefore has p+2 parameters. Due to the dependence on the previous measurement
the process has an autocorrelation function that exhibits exponential decay and, like
the O-U process, can exhibit periodic behaviour [34].

Because the autoregressive process is linear and only dependent on the previous p
measurements, a system of linear equations with the measurements and parameters
can be described and easily expressed as a matrix. The matrix may then be inverted
to give the parameters of the AR processes. This process, known as solving the Yule-
Walker equations, is a computationally efficient method of parameter estimation.
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Figure 2.5: Autocorrelation of a simulated autoregressive process of order 9. The
parameters used in this model were obtained by maximum likelihood estimation fit
to empirical GPS data.

Maximum likelihood for autoregressive processes

The exact maximum likelihood function for the autoregressive process has some
slight complications. However, if the maximum likelihood function is conditioned
on the first p measurements the conditional likelihood is much easier to calculate.

The conditional likelihood of Xt given measurements Xt−1, . . . , Xt−p is given by,

f(Xt|Xt−1, . . . , Xt−p, φ
′s, σ2) =

1√
2πσ2

exp

[
−(Xt − µ−

∑t−1
i=t−p φiXi)

2

2σ2

]
.

Therefore the conditional log likelihood of the set of data, ignoring measurements
1, 2, . . . , p is given by:

ln(L(θ)) =
−(N − p)

2
ln(2πσ2) −

1

2σ2

N∑
i=p

(
Xt − µ−

t−1∑
i=t−p

φiXi

)2

.
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2.4.4 Moving-average processes

A Gaussian moving-average process of order q (MA(q)) is defined as,

Xi = µ+ εi + θ1εi−1 + . . .+ θqεi−q,

where εn ∼ N (0, σ2) and the set {θn} are independent parameters. Thus the
process has q+ 2 parameters, and so a moving-average process of order zero reduces
to a Gaussian process. Unfortunately because the lagged terms are not observable,
maximum likelihood estimation for moving-average processes tends to be consid-
erably more difficult than for autoregressive processes of comparable order, and
analytical expressions for the MLE of MA parameters are not readily calculated
and are usually performed by numerical optimization [34]. The simplest technique
for parameter estimation of an MA(q) process is the Kalman filter [22]. While an
impressive use of the Kalman filter, this approach is computationally slow relative
to the solution of the Yule-Walker equations, seen in the autoregressive process.

It should be noted that unlike an O-U or AR process a moving-average process
does not have a long term autocorrelation function. For a moving-average process
of order q the autocorrelation function is zero after a lag of time qdt, where dt is the
sampling period.

Therefore a pure moving-average process would require a cumbersomely large
order to reproduce the autocorrelation functions that were observed in the data.
However a combined autoregressive moving-average process would deal with this
problem much more elegantly.

2.4.5 Mixed Autoregressive moving-average process

The mixed autoregressive moving-average (ARMA(p,q)) process is, as its name
suggests, a linear combination of an autoregressive process of order p with a moving-
average process of order q, shown below.

Xt = µ+ φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt + θ1εt−1 + . . .+ θqεq.

The ARMA process, predictably, has characteristics of both autoregressive and
moving-average processes. Due to the autoregressive terms an ARMA process is
able to have a non-zero autocorrelation time after lag pdt or qdt.

However, as it has the unobservable terms from the moving-average process, the
MLE for the parameters must be done numerically. Therefore, we also need to run
a Kalman filter through the data in order to maximise the likelihood function and
so the estimation time is considerably longer than the autoregressive process alone.
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Figure 2.6: Autocorrelation of a simulated moving-average process of order 1. The
parameters used in this model were obtained by maximum likelihood estimation fit
to empirical GPS data.
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Figure 2.7: Autocorrelation of a simulated autoregressive, moving-average process
of order (1,1). Due to the presence of the autoregressive terms the ARMA processes
can display long term autocorrelation functions similar to those observed in the
empirical data.



Chapter 3

Experimental Characterisation of Noise
in GPS Positions

This chapter describes the collection of single frequency GPS data from several
devices, at several different locations. The data gathered from the field was then
analysed in the context of the noise models presented in Chapter 2. The candidate
models were then ranked using the Akaike Information Criterion (AIC), a model
selection criterion that provides a quantitative measure of the relative goodness of
fit of a set of given statistical models.

3.1 Aims

We sought to investigate the relative performance of several statistical noise
models by modelling the noise observed in single frequency GPS data. The most
appropriate model was chosen from the set of proposed modes by its AIC value, as
well as it general applicability towards GPS noise modelling.

To determine the most appropriate model for GPS noise, data was collected from
GPS units positioned at a number of stationary points for an extended period of
time. A commercial GlobalSat BU-353S4 GPS unit was used along with four tag-
style GPS units to ensure that it was the errors in the GPS signal and not errors
related to the device. The tag-style GPS units were developed by the Electronics
Research Group at the University of Otago and have a different antenna to the
commercially available GPS unit, which resulted in a significantly larger variance
than the commercial device [46,47].

3.2 Methods

One of the factors that causes degradation of GPS accuracy is the geometric
distribution of satellites. For GPS to function effectively the satellites in the sky
should be widely distributed rather than all satellites arranged in one section of the
sky. This is why the altitude errors in GPS measurements are typically much larger
than the errors in either the latitude or longitude directions [31]. Because GPS
works on line of sight the satellites being used are all above the unit. Whereas for

31
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longitude there could be a broad arrangement of satellites to the east and west of the
unit. However, the GPS constellation operates at an inclination of approximately
55o, i.e. at a latitude of more than 55o (north or south) there are only satellites in
the direction of the Equator from your position.

Figure 3.1: The locations where GPS measurements were made. The University
of Otago, Dunedin (45.518oS, 170.308oE) (1). North Stradbroke Island (27.253oS,
153.308oE) (2). Port Douglas (16.297oS, 145.277oE) (3). Thursday Island (10.348oS,
142.133oE) (4).

Our initial measurements were made from the University of Otago, which is at
a latitude of approximately 45.52o South. To ensure that our noise model was not
biased by an imperfect satellite arrangement, separate measurements were made at
latitudes of 27.25oS (North Stradbroke Island), 16.30oS (Port Douglas) and 10.35oS
(Thursday Island).

In Figure 3.2 we can see the GPS devices used for this experiment. The tag style
GPS device is shown in Figure 3.2 (a) prior to having the antenna attached, with a
New Zealand 10 cent coin used for scale. The commercial GlobalSat GPS device is
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also shown in Figure 3.2 (b).

(a) (b)

Figure 3.2: Figure (a) shows one of the 4 tag style GPS units developed by the
Electronics Research Group at the University of Otago, prior to having the antenna
attached [46]. Figure (b) shows the GlobalSat BU-353S4 GPS unit with the USB
that was used to communicate with the Raspberry Pi. Image taken from [48].

Each measurement period was for approximately 48 hours. Measurements were
made with one GlobalSat BU-353S4 GPS unit on the L1 frequency, sampling once
a second and with four tag-style GPS units with lower-quality aerials, also using
the L1 frequency, sampling at an average of 18 seconds per fix. However the tag-
style GPS units take fixes from a warm start instead of a hot start and so while
the average sampling period is around 18 seconds it can be considerably longer, as
shown in Figure 3.5.

The O-U process and i.i.d. Gaussian processes can easily handle differing sam-
pling periods. The O-U parameters are independent of the sampling period, as are
the i.i.d. Gaussian parameters. However, the AR, MA, and ARMA process param-
eters have an implicit dependence on the sampling period. Given this, the tag-style
devices were downsampled to a 5 minute sampling period so that any deviation in
sampling period would be small in comparison to the sampling period. The down-
sampling was achieved by choosing the nth data point to be the closest to 5 minutes
from the (n− 1)th data point, results demonstrating this downsampling can be seen
in Figure 3.5.

In Dunedin the GPS units were mounted on the roof of the Physics Department
of the University of Otago. The GlobalSat BU-353S4 GPS unit has a magnetised
base which allowed easy mounting on the metal plate shown in Figure 3.6. This
position allowed excellent sky view while ensuring that the equipment was protected
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(a) (b)

Figure 3.3: Figure (a) shows the stand for the GlobalSat BU-353S4 GPS unit with
the higher-quality aerial. The base is magnetised and a steel bolt threaded in the
stand allows it to stay securely mounted. The case seen at the bottom of the stand
contains a Raspberry Pi for data collection and storage. The aerial seen on the case
is from a board attached to the Pi to receive telemetry signals from the tag style
units. Figure (b) shows the set of 4 tag style GPS units developed by the Electronics
Research Group at the University of Otago.
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Figure 3.4: For the Australian locations two-man tent was used to protect the GPS
equipment from the elements. This photograph was taken from the site of the North
Stradbroke Island test.

(a) (b)

Figure 3.5: Sampling periods from one of the tag-style GPS units. Data was down-
sampled to reduce the relative error in sampling periods present within data sets.
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from the mercurial Dunedin weather. Every data set taken by the GlobalSat unit
in Dunedin was taken from the plate shown in Figure 3.6 and so the positions for
all are the same ±5 cm.

Figure 3.6: All GPS measurements from the GlobalSat BU-353S4 GPS unit were
taken from this mount beneath a large skylight on top of the Physics Building at
the University of Otago. The GPS unit pictured is not the GlobalSat BU-353S4 but
another GPS unit for a separate experiment.

On North Stradbroke Island and in Port Douglas measurements were made from
local campsites. On Thursday Island the local primary school principal kindly let
us set up our equipment on their basketball court, as this was during the school
holidays. In Figure 3.4 we see the setup for the field experiments carried out at all
three Australian test sites.

The experimental setup for the GPS devices is shown in Figure 3.3. A Raspberry
Pi B+ was used for data collection and storage. The GlobalSat BU-353S4 GPS unit
communicated directly with the Raspberry Pi via USB, the code for which was
written by both the author and supervisor, Tim Molteno. The tag-style GPS units
communicated via radio to a telemetry board that was mounted on the Raspberry
Pi. The stands were based around simple PVC piping and 3D printed brackets
which allowed for a lightweight and easily transportable experimental setup.

Unfortunately the base bracket for the tag-style GPS units broke while being
assembled on North Stradbroke Island and so an improvised setup had to be con-
structed. This was achieved by hanging the top of the tag-stand from the ceiling of
the tent, as shown in Figure 3.7.
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Figure 3.7: Unfortunately the stand for the four tag-style GPS units broke while on
North Stradbroke Island. In order to be able to store the equipment required and
not risk accidental damage to the tags it was decided to suspend them as shown.
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3.3 Results

In Figure 3.8 we see the horizontal position errors reported by the GlobalSat
commercial GPS unit, from Dunedin (a), North Stradbroke Island (b), Port Douglas
(c), and Thursday Island (d). Then in Figure 3.9 we see the horizontal position errors
reported by one of the tag style GPS units from Dunedin (a), North Stradbroke
Island (b), Port Douglas (c), and Thursday Island (d).

(a) (b)

(c) (d)

Figure 3.8: Horizontal positions from Dundedin (a), North Stradbroke Island (b),
Port Douglas (c) and Thursday Island (d). Note how the position outliers tend to
go on ‘walks’, where the current position estimate does not immediately go back
towards the mean, but instead stays considerably removed from the ‘true’ position.

In Figure 3.9 we see the horizontal errors measured by one of the tag style GPS
units from all four locations. As you can see the errors reported by the tag style GPS
units is considerably larger than that reported by the commercial GlobalSat device.
The tag style GPS devices were developed by the Electronics Research Group to be
used on birds. Therefore weight was prioritised over accuracy, sacrificing a better
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quality aerial for weight savings.

(a) (b)

(c) (d)

Figure 3.9: Horizontal position errors reported by the same tag style GPS unit
from Dundedin (a), North Stradbroke Island (b), Port Douglas (c) and Thursday
Island (d). A similar error behaviour is observed, as measurements that are far
removed from the long term mean often stay outside the central point for several
measurements in a row.

3.4 Analysis

The following tables are laid out with the AIC values for the respective positions
(latitude, longitude, altitude) for the data taken from the various sites. The data
taken from the GlobalSat BU-S353 GPS unit with the higher quality aerial is titled
with ‘GlobalSat’ while the data gathered from the tag-style GPS units with lower
quality aerials is title ‘Tags’ for simplicity. The top acronyms denote the noise model
being dealt with, i.e. i.i.d. Gaussian (Gauss), Ornstein-Uhlenbeck process (O-U),
autoregressive process of order p (AR(p)), moving-average process of order q (MA(q))
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(a) (b)

(c) (d)

Figure 3.10: Autocorrelations for latitude data from Dundedin (a), North Stradbroke
Island (b), Port Douglas (c) and Thursday Island (d).
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and mixed autoregressive moving-average process of order p, q (ARMA(p, q)). Due
to the often large differences in AIC values instead of the Akaike weights wi the
difference between the minimum AIC value and model AIC value is given as ∆AIC.

∆AICi = AICi − AICmin, (3.1)

We made use of the statsmodels module in Python to calculate the parameters
for the AR, MA, and ARMA models. Occasionally the statistics package was unable
to model either the moving-average (MA) or mixed autoregressive moving-average
(ARMA) processes due to the moving-average parameters not being invertible. In
these cases we have given the highest order processes available and denoted non-
invertible processes as DNC.

For the sake of brevity the AIC values of the tag-style GPS units have been
averaged over all of the tags for that location. See Appendix A.5 for the individual
tag-style AIC values. For readability the GlobalSat AIC values have been rounded
to the nearest integer.

Dunedin (45.52oS) data set

GlobalSat Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)

Lat AIC 1275060 -1697123 -1718883 789357 DNC -1724844
Lat ∆AIC 2999904 27721 5961 2514201 DNC 0

Lon AIC 1099902 -1879884 -1895003 614421 DNC -1902929
Lon ∆AIC 3002832 23045 7926 2517350 DNC 0

Alt AIC 1901656 -1462782 -1535844 1412690 DNC -1542135
Alt ∆AIC 3443791 79353 6290 2954825 DNC 0

Tags Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)

Lat AIC 11189.73 11003.24 10912.11 11052.71 10981.89 10969.12
Lat ∆AIC 277.62 91.13 0 140.60 69.78 57.01

Lon AIC 11003.80 10827.14 10724.15 10882.31 10798.22 10793.47 (2,2)
Lon ∆AIC 279.65 102.99 0 158.16 74.07 69.32

Alt AIC 12219.62 11998.43 11901.11 12066.52 11990.96 11821.81
Alt ∆AIC 397.81 176.62 79.3 244.71 169.15 0
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North Stradbroke Island (27.25oS) data set

GlobalSat Gauss O-U AR(9) MA(1) MA(3) ARMA(2,2)

Lat AIC 616991 4099 -846881 417772 160425 -54584
Lat ∆AIC 1463872 850980 0 1264653 1007306 792297

Lon AIC 552469 5140 -847589 358963 138410 -96669
Lon ∆AIC 1400058 852730 0 1206552 985999 750920

Alt AIC 991469 401359 -638245 783784 549365 (3,3) 272511
Alt ∆AIC 1629714 1039604 0 1422030 1187610 (3,3) 910756

Below is the North Stradbroke Island data set from GPS units with lower quality
aerials. Recall that the model with the lowest AIC values is the best fit to the data
from the candidate set. Due to fewer data points and consequently smaller AIC
values the tag-style data is kept as a decimal.

Tags Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)

Lat AIC 4524.70 4454.52 4343.39 4487.33 4426.08 4342.60
Lat ∆AIC 182.10 111.92 0.80 144.74 83.48 0

Lon AIC 4337.74 4295.58 4225.97 4312.76 4292.28 4271.81
Lon ∆AIC 111.77 69.61 0 86.79 66.31 45.83

Alt AIC 5085.63 5045.22 4961.13 5062.49 5045.76 5025.82
Alt ∆AIC 124.50 84.10 0 101.36 84.63 64.69

Port Douglas (16.30oS) data set

Note that the higher order MA and ARMA models were not invertible for the
GlobalSat GPS unit and so the highest terms were 1 and 1,1, respectively.

GlobalSat Gauss O-U AR(9) MA(1) MA(3) ARMA(1,1)

Lat AIC 1080721 -1031940 -1104629 749275 DNC -1048908
Lat ∆AIC 2185349 72688 0 1853903 DNC 55721

Lon AIC 1254838 -1016929 (8) -1112235 927860 352311 -924883
Lon ∆AIC 2367073 95307 0 2040095 1464547 187352

Alt AIC 1445244 -659902 -844480 1112076 DNC -722318
Alt ∆AIC 2289725 184578 0 1956556 DNC 122162
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Tags Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)

Lat AIC 6322.39 6138.42 6016.16 6199.74 6116.34 6305.13
Lat ∆AIC 306.23 122.26 0 183.58 100.18 288.97

Lon AIC 6196.31 6085.74 6010.90 6120.54 6090.74 5952.81
Lon ∆AIC 243.50 132.93 58.09 167.73 137.93 0

Alt AIC 6998.93 6949.83 6864.24 6969.55 6953.60 6928.78
Alt ∆AIC 134.69 85.60 0 105.31 89.37 64.55

Thursday Island (10.35oS) data set

Unfortunately power was lost for around three minutes on Thursday Island and
so the data set for the GlobalSat GPS unit from Thursday Island has been split into
two separate data sets. The tag-style GPS units appear to have retained enough
charge in their capacitors to be unaffected by this short loss of power. This is the
first data set for the GlobalSat GPS unit.

GlobalSat Gauss O-U AR(9) MA(1) ARMA(2,2)

Lat AIC 292988 -436143 -436616 184240 -436768
Lat ∆AIC 729757 625 152 621008 0

Lon AIC 284169 -414991 -415461 175645 (3,3) -415917
Lon ∆AIC 700085 925 456 591561 (3,3) 0

Alt AIC 471291 -329711 -332829 362145 -333476
Alt ∆AIC 804767 3765 647 695621 0

And the second data set from Thursday Island. As in the data set from Port Dou-
glas the parameters for higher order MA and ARMA processes were not invertible
and so the highest order terms obtained were 1 and 1,1, respectively.

GlobalSat Gauss O-U AR(9) MA(1) ARMA(1,1)

Lat AIC 368278 -390082 -419119 240593 -391015
Lat ∆AIC 787397 29037 0 659712 28104

Lon AIC 490408 -212528 -358983 369403 -201441
Lon ∆AIC 849391 146455 0 728386 157541

Alt AIC 616549 -107027 -151204 488436 -106982
Alt ∆AIC 767753 44177 0 639640 44222

Data set from low-quality aerial GPS units. One of the tags was damaged in
transport and so the data set from Thursday Island is averaged over three GPS
units, not four as is the case for the other data sets.
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Tags Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)

Lat AIC 3730.57 3559.66 3489.74 3616.87 3562.08 3610.96
Lat ∆AIC 240.84 69.92 0 127.12 72.34 121.21

Lon AIC 3729.26 3579.87 3495.36 3640.82 3573.10 3296.72
Lon ∆AIC 432.53 283.15 198.64 344.10 276.38 0

Alt AIC 4782.49 4630.38 4522.52 4690.94 4631.02 4586.51
Alt ∆AIC 259.96 107.86 0 168.42 108.49 63.99

3.5 Conclusions of GPS noise experiment

It is clear from Figure 3.10 that the long-term autocorrelation times observed in
Dunedin are not a result of the poor satellite arrangement at higher latitudes. Of
these the autocorrelation time of the data gathered at Thursday Island has a slightly
different pattern to those observed at the other locations. This could be because of
a temporary loss of power experienced at Thursday Island which essentially forced
the data to be split into two sets of data of around 24 hours each. Or, alternatively
it could be an affect of the local geometry that led to reflected signals which would
affect the GPS data.

What we see in the data is that there is a general trend that appears across the
regions where the noise model with the highest AIC (and so the worst fit to the
data) is the i.i.d. Gaussian. After that typically is the lower-order moving-average
processes, followed by the Ornstein-Uhlenbeck model and then either the higher
order autoregressive models or the mixed autoregressive moving-average model.

It is worth noting that getting the parameters that maximise the likelihoods for
the Ornstein-Uhlenbeck and autoregressive models is a trivial matter where either
the analytical solution is known or it is simply a case of inverting a matrix which
can be done numerically and very quickly. Conversely estimating the parameters for
the moving-average and mixed autoregressive moving-average models is considerably
more involved and typically requires running a Kalman filter over the data set with
a given set of parameters, calculating the log likelihood of that particular case and
then doing the same thing again with a slightly different set of parameters until the
log likelihood is maximised. This approach is much more computationally expensive.
Also if the process is non-stationary then the moving-average parameters are not
invertible and further measures must be taken to solve for the MLE parameters.
This is why the autoregressive models are taken up to ninth order whereas, at most
the MA and ARMA models are only taken up to third order and even then we
experienced invertibility problems.
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3.6 Proposed Noise Models

In this experiment we looked at data from two different types of GPS devices.
The data gathered from these two devices was qualitatively similar. Across both
GPS types and all locations the i.i.d. Gaussian model was the worst fit to the
data. The moving average models tended to be the next worst fit, followed by either
the autoregressive processes (including the discretized O-U process) or the mixed
autoregressive moving average processes.

If we just look at the data from the commercial GlobalSat GPS device we see
that the autoregressive processes are a much better fit to the data than the moving
average processes. Parameter estimation for the autoregressive processes is also
considerably more computationally efficient than for the moving-average processes.

The higher order AR processes have lower AIC values, indicating that, from the
point of view of modeling the data precisely it is better to have a higher order AR
process as the likelihood maximization outweighs the increased complexity due to
the extra terms.

However, for the less accurate tag-style GPS units, the higher order AR processes
are only slightly more likely than the AR(1) process. If one is considering using the
AR(1) process we would advise using the discretized form of the Ornstein-Uhlenbeck
process rather than a generalized AR(1) process. This has several advantages over
simply estimating the autoregressive parameter φ. For one, the sampling period of
the device is explicit in the formulation of the Ornstein-Uhlenbeck process and so for
cases when there is a non-constant sampling period this is clearly more useful. Also
the other parameters of the O-U process give clear insight into the characteristics
of the model. The θ parameter describes the rate at which random measurements
will revert towards the mean µ while the σ parameter indicates the amount of noise
present between each measurement.
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Chapter 4

GPS Filtering

In the previous chapter we analysed GPS data and compared the performance
of several different noise models. From the data we determined that the worst
model in the candidate set was the independent, identically distributed Gaussian
(i.i.d. Gaussian) noise model. The higher order autoregressive and mixed autore-
gressive, moving-average processes tended to provide the best fit to the data. Of the
autoregressive and mixed autoregressive, moving-average processes the solely au-
toregressive processes provide a much simple parameter estimation problem, and so
for this chapter we will only focus on filtering with i.i.d. Gaussian and autoregressive
noise models.

However one of the benefits of using the i.i.d. Gaussian noise model is that it is
easily integrated into filtering algorithms such as the Kalman filter. In this chapter
we derive the equations required to integrate a discretized Ornstein-Uhlenbeck noise
model into the Kalman filter algorithm. We demonstrate the filtering with the O-U
noise model and demonstrate its advantages over simply using a generalized AR(1)
noise model.

4.1 Filtering with independent Gaussian noise

While the i.i.d. Gaussian noise model has been shown to fit the data less well
than other noise models it is a very simple model to filter with. Importantly, if
using a linear model with i.i.d. Gaussian noise then the standard Kalman filter will
provide the exact posterior to the distribution, i.e. it will filter as well as possible
given the amount of noise present.

We will begin by defining exactly what we mean when we say an i.i.d. Gaussian
noise model.

xt = µ+ σ

∫ t

0

dWs. (4.1)

Equation (4.1) gives the continuous version of the i.i.d. Gaussian noise model
where xt is the measurement at time t, µ is the true value of the variable, Wt is the
Wiener process and σ is the standard deviation of the noise. This simplifies to the
commonly given form,

47
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xt ∼ N
(
µ, σ2

)
, (4.2)

Indicating that the measurement xt is normally distributed with mean µ and
variance σ2.

As discussed in Chapter 1 the Kalman filter is a very computationally efficient,
recursive algorithm and so real time state estimation with a linear model and i.i.d.
Gaussian noise is trivial to implement.

All that is required for a Kalman filter is a linear system model, measurement
model, and expressions for the noise and uncertainty in the initial estimate. In the
case of a three-dimensional i.i.d. Gaussian model this is simply,

F (k) =

1 0 0
0 1 0
0 0 1

 , H(k) =

1 0 0
0 1 0
0 0 1

 , (4.3)

Q(k) =

σ2
v1

0 0
0 σ2

v2
0

0 0 σ2
v3

 , R(k) =

σ2
w1

0 0
0 σ2

w2
0

0 0 σ2
w3

 , (4.4)

where F (k) is the state transition matrix, H(k) is the measurement matrix, and
Q(k) and R(k) are the system and measurement noise covariances, respectively. In
Figure 4.1 we see the results of filtering GPS data with an i.i.d. Gaussian noise
model.
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Figure 4.1: Above shows the results of filtering latitude measurements with an i.i.d.
Gaussian noise model. The estimate is plotted in green and shown within a 95%
confidence interval.

4.2 Filtering with Ornstein-Uhlenbeck noise

As mentioned previously an Ornstein-Uhlenbeck process is defined by the stochas-
tic differential equation,

dxt = θ(µ− xt)dt+ σdWt, (4.5)

where µ is the long-term average of xt, θ is a parameter of the model, and Wt is the
Wiener process.

This then implies that σ from above is the standard deviation of the normally
distributed noise in the O-U process.

The solution of the Ornstein-Uhlenbeck process is as follows [42],

xt = x0e
−θt + µ

(
1− e−θt

)
+ σ

∫ t

0

eθ(s−t)dWs, (4.6)

where x0 is the previous state, xt is the state at time t, and s is the time index for
the integral (t having already been used to represent the final time. From Equation
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4.6 we see that the process is normally distributed with expected value and variance
as given below.

E[xt] = x0e
−θt + µ

(
1− e−θt

)
, var[xt] =

σ2

2θ

(
1− e−2θt

)
, (4.7)

i.e.

xt ∼ N
(
x0e
−θt + µ(1− e−θt), σ

2

2θ
(1− e−2θt)

)
, (4.8)

We can then easily move from the continuous case to the discrete case. If we let
dt be the sampling period of the discrete case, then we get the following,

E[xi] = xi−1e
−θdt + µ

(
1− e−θdt

)
, var[xi] =

σ2

2θ

(
1− e−2θdt

)
, (4.9)

In the case of modeling GPS noise as an Ornstein-Uhlenbeck process µ, the long-
term mean is obviously the most important property. If we assume that the device
is stationary i.e. µ does not change in time then we can re-write our measurement
in terms of ‘true’ position, µ, and a noise term nt which has O-U noise, i.e.

xi = µ+ ni, (4.10)

where,

ni ∼ N
(
e−θdt(xi−1 − µ),

σ2

2θ

(
1− e−2θdt

))
, (4.11)

If we substitute (xi−1−µ) for ni−1, then we get the following pleasant expression
for the distribution of the ith noise variable term.

ni ∼ N
(
ni−1e

−θdt,
σ2

2θ

(
1− e−2θdt

))
, (4.12)

The Kalman filter is a versatile algorithm that combines sequential measure-
ments and provides asymptotically optimal estimates of the state while minimizing
the state covariance. One of the convenient aspects of the Kalman filter is that it
is a recursive algorithm and so all of the information from the previous measure-
ments is contained in the current state estimate, therefore significantly easing the
computational load over each iteration.

While filtering with the O-U model will require expanding the state vector for
Kalman filtering we need only include a single extra noise variable for each O-U
filtered variable. We also have a measurement model and propagation model ready
from Equation 4.12. The state propagation matrix (F (k)) to filter an O-U variable
is given below, along with the measurement matrix (H(k)).
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F (k) =

[
1 0
0 exp(−θdt)

]
, H(k) =

[
1 1

]
, (4.13)

To implement a standard Kalman filter we now only need a state vector (x̂(k))
and covariance matrices for the measurement (R(k)) and process noises(Q(k)). The
only slight complication is that for a system where the measurement device is station-
ary there is virtually no process noise present in the system. However to construct
a functioning Kalman filter there exists some computational reasons against having
the matrix Q(k) set to exactly zero. Fortunately setting Q(k) to some small value,
e.g. 10−6, deals with these satisfactorily. This then gives us the state vector and
covariance matrices as follows.

x̂(k) =

[
µ̂

n(k)

]
, R(k) =

[
σ2

2θ

(
1− e−2θdt

)]
, Q(k) ≈ [0] , (4.14)

Note that the dependence on the sampling period is explicit in the descriptions
of the state propagation and measurement matrices (F (k) and R(k), respectively).
Therefore the sampling period need not be constant. As we saw in the tag-style GPS
units some GPS devices have difficulty with constant sampling periods when taking
data from a warm start. This would present difficulties with some noise models as
the parameters involved can have an implicit time dependence, as is the case for
the autoregressive and moving average models [34]. By having an explicitly defined
time dependence the Ornstein-Uhlenbeck allows this to take into account the effect
of longer or shorter time periods and allows the filter to adjust automatically.
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Figure 4.2: Above shows the results of filtering latitude measurements with an
Ornstein-Uhlenbeck noise model. As in Figure 4.1 the estimate is plotted in green
and shown within a 95% confidence interval.

4.3 Time-varying mean

Our derivation for a stationary mean is useful when looking at long time series
of stationary GPS data. Inconveniently most devices that use GPS do so precisely
because the position of those devices is not stationary. Fortunately we can extend
our derivation from Section 4.2 to a system with a time-varying mean.

Let µi be the long-term mean of position i. Substituting this back into Equation
4.10 we then get the following.

xi = µi + ni. (4.15)

To make things easier on ourselves we’ll assume that the µi term is constant over
the sampling period so we still have the same solution as seen in Equation 4.6, just
with µ replaced by µi, i.e.

xi = xi−1e
−θdt + µi

(
1− e−θdt

)
+ σ

∫ dt

0

eθ(s−t)dWs, (4.16)
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just as with the stationary case our ni is the noise variable which is normally dis-
tributed as shown below.

ni ∼ N
(

(xi−1 − µi) e−θdt,
σ2

2θ

(
1− e−2θdt

))
. (4.17)

Substituting in xi−1 = µi−1 + ni−1 we then get the following.

ni ∼ N
(

(ni−1 − (µi − µi−1)) e−θdt,
σ2

2θ

(
1− e−2θdt

))
. (4.18)

Most GPS devices are able to report velocity and heading data as well as position
data. Therefore if we assume that the velocity vi is approximately constant between
data points then we have,

vidt ≈ µi+1 − µi, (4.19)

which we can then substitute back into Equation 4.18 to get an expression for the
distribution of the noise term which does not depend on any unknown information.

ni ∼ N
(

(ni−1 − vi−1dt) e−θdt,
σ2

2θ

(
1− e−2θdt

))
. (4.20)

Therefore our noise term distribution is only dependent on the previous state, so
our state vector need not grow any larger (i.e. augment it further with other noise
terms). So we would have the following state propagation (F (k)) and measurement
(H(k)) matrices.

F (k) =

1 0 0
0 exp(−θdt) −dt exp(−θdt)
0 0 1

 , H(k) =

[
1 1 0
0 0 1

]
, (4.21)

Which then, correspond to the state vector (x̂(k)), and the process (Q(k)) and
measurement (R(k)) covariance matrices.

x̂(k) =

 µ̂
n(k)
v

 , R(k) =

[
σ2

2θ

(
1− e−2θdt

)
0

0 σ2
v

]
, Q(k) ≈

[
0 0
0 σ2

adt

]
, (4.22)

Where v is the velocity, σ2
v is the variance in the velocity measurements, and σ2

a

is the variance in the acceleration of the object.
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Chapter 5

Inertial Navigation

This chapter describes the process of inertial navigation and how it is related to
this project. A one-dimensional example is introduced in Section 5.1, wherein we
demonstrate the general properties of inertial navigation and perform a one dimen-
sional example of sensor fusion using position and accelerometer measurements. In
Section 5.2 we introduce the reference frames to be used in subsequent chapters.
We also address the rotation formalisms for transforming between those reference
frames in Section 5.3.

Firstly we explain what we mean by inertial navigation. The term incorporates
many different techniques and sensors, however, the fundamental principle is ob-
taining a state estimate by integrating the output of a sensor, often referred to as
an inertial measurement unit (IMU) [49]. An example could be estimating the dis-
tance travelled by integrating the speed. Another example could be estimating the
angle by integrating gyroscopic measurements. Fundamentally though, all of these
processes distill to,

x(t) = x0 +

∫ t

0

v(t′)dt′, (5.1)

where x(t) is the desired estimate, obtained by integrating some known variable
v(t). Below we assume that v(t) is a linear combination of the true value, vtrue(t),
and some error, ε(t).

v(t) = vtrue(t) + ε(t),

x(t) = x0 +

∫ t

0

vtrue(s)ds +

∫ t

0

ε(s)ds,

x(t) = xtrue(t) +

∫ t

0

ε(s)ds.

(5.2)

It is clear from the equations above that as the integration time (t) increases our
error in the desired variable (x(t)) necessarily accumulates due to the integrated error
term (ε(t)). Therefore any system that exclusively used inertial navigation would
require highly accurate data in order to accurately estimate the desired variable.
This is not to say that such a system is impossible, indeed the inertial measurement
units on commercial aircraft can be accurate to within 0.6 nautical miles/hour [50].

55
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5.1 One-dimensional Inertial Navigation

As an illustrative example of inertial navigation we consider the problem of
height estimation for an elevator given some accelerometer measurements. If we as-
sume that the accelerometer is fixed in the elevator’s frame of reference then we can
consider the problem of height estimation as a simple, one-dimensional inertial nav-
igation problem. If the distances between floors are known then an easily accessible
test-bench is available for testing the performance of different inertial navigation
algorithms.

While there may appear to be little practical use in this problem it serves as
a useful test-bench for inertial navigation systems, and clearly demonstrates some
of the fundamental concepts of inertial navigation. Such a system could be easily
implemented into a standard undergraduate course to provide a simple real-world
navigation problem with aspects of data gathering, processing and analysis.

We begin by defining the system. If we assume that the elevator goes directly
up and down (relative to local gravity), then our state vector need only incorporate
height (h), velocity (v), and acceleration (a). It is worth noting that an accelerometer
measures proper acceleration and so will measure the acceleration due to gravity (g)
as an acceleration upwards with magnitude |g| in addition to the net acceleration
of the device (anet), i.e.

ameas = R (anet + g) , (5.3)

where R is the rotation into the measurement frame. We assume that any acceler-
ation from the elevator is applied along the same line as local gravity and therefore
to obtain the net acceleration we need simply subtract |g| from our total measured
acceleration. For higher dimensional systems we will need a more mathematically
complete transformation, see subsection 5.3.

We begin with the following second order differential equation which relates the
height of the elevator with the net acceleration of the elevator.

d2h(t)

dt2
= a(t). (5.4)

Which can then be separated into the following two, first order differential equa-
tions,

v̇(t) = a(t), (5.5)

ḣ(t) = v(t). (5.6)

From the terms in the equations above we can form a state vector (x) like so,
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x =

hv
a

 , (5.7)

which gives us the state differential equation below.

x =

hv
a

 , ẋ =

va
ȧ

 . (5.8)

Now that we have a differential equation for the state vector, and we know
how the measurement of acceleration refers to our state, we can write the state
propagation matrix (F (k)) and state measurement matrix (H(k)), as defined in
Equation 1.1.

F (k) =

1 dt 1
2
dt2

0 1 dt
0 0 1

 ,w(k) =

 0
0

w(k)

 ,
H(k) =

[
0 0 1

]
,v(k) =

 0
0

v(k)

 .
(5.9)

The system noise from the elevator and the measurement noise from the ac-
celerometer are denoted by w(k) and v(k), respectively. We will assume that both
the system and measurement noises are zero mean and normally distributed.

In Figure 5.1 we see the measured accelerations in an elevator. Initially the
elevator is waiting, then around 15 seconds after the start of the measurements,
the elevator begins to accelerate upwards, reaching a peak upwards acceleration
of around 0.6 ms-2. Then at around 20 seconds the elevator begins to accelerate
downwards before stopping, two floors above its starting position. At around 37
second the elevator then goes back down to the original floor.

We can simply integrate the measured acceleration (subtracting |g| first) to es-
timate the velocity; integrating over the same time period as shown in Figure 5.1,
we obtain an estimate of the velocity, which is presented in Figure 5.2.

We can clearly see in the latter half of Figure 5.3 that the integrated errors in the
acceleration measurement accumulate in the velocity and position estimates, leading
to accurate short-term estimates but increasingly inaccurate long-term estimates.

A key part of state estimation is uncertainty estimation, without which a state
estimate is almost meaningless. As mentioned in Chapter 1 the Kalman filter si-
multaneously propagates the uncertainty of the state as well as the state estimate.
Therefore if we run the same data from Figures 5.1 - 5.3 through a Kalman filter
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Figure 5.1: Measured acceleration in an elevator going up and down two floors.

Figure 5.2: By integrating the acceleration over the same time period as shown in
Figure 5.1 we get an estimate of the velocity.



5.1. ONE-DIMENSIONAL INERTIAL NAVIGATION 59

Figure 5.3: By integrating the velocity shown in Figure 5.2 we obtain an estimate
of the change in position. However it is important to remember that the true final
position of the elevator is the same as the initial position. The difference seen above
is a result of the integrated errors of the measured acceleration.

we should be able to see the effect of these accumulated errors on the velocity and
position estimates.

As we can see in Figure 5.4 the uncertainty in the velocity estimate starts to
wander from the true values, this is clearly seen when the elevator is stationary but
the estimate is changing. These small errors in the velocity estimate integrate to
become increasing errors in the position estimate, seen in Figure 5.5.

This example demonstrates the main pitfalls of inertial navigation. An inertial
navigation system gives accurate and useful short-term estimates, however the in-
tegration of errors means that without extremely accurate navigational or tactical
grade IMUs, only using inertial navigation can lead to significant errors in the ve-
locity and position estimates. Early on in maritime navigation inertial navigation
was referred to as ‘dead reckoning’, possibly hinting at the macabre consequences
of solely relying on inertial navigation 1.

1Some have proposed that dead reckoning might be from nautical abbreviation ded. (“de-
duced) in log books. However, according to the Oxford English Dictionary this proposal has “no
justification” and the true etymology is probably from dead (adj.) in the sense of “unrelieved,
absolute.
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Figure 5.4: The Kalman filtered velocity estimate of the same time period as shown
in Fig 5.1. The confidence interval shown is 95%.

Figure 5.5: The Kalman filtered position estimate of the elevator height. The con-
fidence interval shown is 95%.
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5.1.1 One-dimensional Sensor Fusion

The purpose of this one-dimensional example of inertial navigation is to illus-
trate the general ideas that will be used in Chapter 7 to improve vehicle navigation
when combined with GPS measurements. We can further illustrate these ideas by
adding a position measurement once the elevator has stopped at a new floor. This
measurement is simply done through timing and a record of which floors the elevator
stopped at and when.

Observe in Figure 5.6 how the uncertainty of the position estimate shrinks and
then continues to grow as the inertial navigation errors propagate. This is a very
similar process to the combination of GPS and inertial measurements and is a simple
process when operating in the Kalman filter framework. In this model we can
illustrate the advantages of sensor fusion that will be implemented in the combined
GPS, inertial navigation model described in Chapter 6.

Figure 5.6: The Kalman filtered position estimate, with two position measurements
at ∼ 25 and 48 seconds. The acceleration data is the same as used previously and
the confidence interval shown is 95%.

Figure 5.6 clearly shows the two-fold effects of incorporating different measure-
ment units. Firstly the position estimate adjusts, this prevents the filter from diverg-
ing from the true state due to the integrated inertial errors. Secondly the confidence
interval shrinks markedly after the new measurement.

In Figure 5.7 we see the position, velocity, and acceleration estimates of a
position-only measurement system, an acceleration-only measurement system and a



62 CHAPTER 5. INERTIAL NAVIGATION

(a) (b)

(c)

Figure 5.7: Here we have systems with position only (a), acceleration only (b),
and combined measurement systems (c). It is clear that by combining different
measurement sources the overall state estimate is considerably improved over the
individual measurements alone.
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system that uses both measurement types.

(a) (b)

Figure 5.8: This shows the effect of losing the ability to make position measurements
on: a system that only uses position measurements (a), and a system that combines
measurement systems (b). In the absence of position measurements the position-only
system can’t know that the elevator has changed height without more measurements.
However, in that case the combined system simply navigates by inertial navigation.

Finally in Figure 5.8(b) we illustrate the effect of losing the ability to measure
position on the position estimate of a combined measurement system. As you can
see, without position measurements the system is navigating solely by inertial nav-
igation just as in Figure 5.3.

By comparison, Figure 5.8(a) illustrates what would happen if a position-only
measurement system loses the ability to measure position. The filter cannot update
its state estimate and so must wait until the system can make measurements again.

This loss of position measurements is obviously less than optimal. However,
such measurement outages are common when making GPS position measurements;
especially if the measurement device has an obstructed sky-view. For example when
the device is in a steep valley or an ‘urban canyon’, an artificial valley formed by
tall buildings on either side.

In the absence of a GPS signal a GPS-only system cannot tell if a vehicle has
turned, stopped, or accelerated without first regaining the signal. In Chapter 7 we
will demonstrate this idea again and simulate GPS signal losses in empirical data.
In the absence of GPS measurements the combined system will simply navigate by
inertial navigation. We will then compare these results against the original data and
against a system that only uses GPS measurements to navigate.
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5.2 Multi-Dimensional Inertial Navigation

By only considering a one-dimensional system in the previous section we were
able to investigate the general ideas of inertial navigation without worrying about
the specific details. The former example was only ever designed as a stepping stone
towards implementing an inertial navigation system for terrestrial vehicle navigation.
Consequently we must now be much more explicit in our terminology, especially
regarding reference frames and measured forces.

5.2.1 Reference Frames

For the purposes of vehicle tracking we are primarily interested in three, related
reference frames. The Earth frame, the local navigation frame and the body frame.

• For the Earth frame we will be using an Earth Centered Earth Fixed (ECEF)
reference frame, which is stationary with respect to the surface of the Earth; it
is rotating around its axis with a period of one sidereal day. The coordinates
that we use to describe navigation in the ECEF reference frame are given by
the World Geodetic System WGS84 ellipsoid. WGS84 approximates the Earth
as an ellipsoid centered at the Earth’s center of mass and has an Equatorial
semi-major axis of 6 378 137.0 m and a semi-minor axis of approximately 6
356 752.314 m [51]. WGS84 is the standard model used by GPS and so the
natural model to use when navigating by GPS.

For the local navigation frame we used the East, North, Up (ENU) convention.
The origin of the ENU reference frame is defined to be the vehicle’s center of
mass. The axes of the ENU frame point, predictably, in the East, North, and
Upwards directions. This does mean that as the vehicle travels across the
surface of the Earth the ENU frame will rotate, albeit quite slowly for most
terrestrial navigation purposes, we will go into further detail on this point in
Section 5.5.
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Figure 5.9: The relation between the Earth frame (ECEF) and the local naviga-
tion frame. The prime meridian is clearly shown and latitude and longitude are
represented by φ and λ, respectively. Image from Wikipedia [52].

• The origin of the body frame is coincident with the origin of the local navi-
gation frame at the vehicle’s center of mass. The axes of the body frame are
rightwards, forwards, and upwards with respect to the centre of mass of the
vehicle.

Figure 5.10: The three axes of the body frame of a vehicle.

Each of these reference frames are suited to different descriptions of the navi-
gation of the vehicle. It is in the Earth frame that the position of the vehicle is
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defined, and the estimation of this is the most fundamental purpose of any naviga-
tional system.

However, when discussing the direction and speed that a vehicle is travelling, it
is often more convenient to discuss directions such as North-South, East-West or
Up-Down. This also allows us to use familiar units such as metres per second or
kilometers per hour, as opposed to the rates of change of latitude and longitude.

Finally it is in the body frame that the attitude and acceleration of the vehicle
is calculated before being transformed into the local navigation frame. It is also
important to remember that any measurements made on the vehicle will, naturally,
be made in the body frame. Therefore if the vehicle is changing orientation or
accelerating, the associated non-inertial effects should be corrected for to ensure
the most accurate navigation solutions. These corrections will be discussed in more
depth in Section 5.5.

5.3 Transforming Between Reference Frames

An important part of any inertial navigation system is the rotation formalism
adopted in that system. Euler’s rotation theorem says that any rotation of a rigid
body can be described by a single rotation about a single axis [53]. Therefore the
minimum number of parameters to describe such a rotation is three, however most
rotation formalisms have extra, redundant parameters for various reasons.

For this project three different rotation formalisms were investigated: the rota-
tion matrices, quaternions and Euler angles. The rotation matrix will be familiar to
many readers. It simply a 3×3 matrix with a determinant of 1. The vector is rotated
by ordinary matrix multiplication with the rotation matrix. Successive rotations are
performed by simply multiplying the two rotation matrices together. The ease of use
and familiarity are strong reasons to adopt the rotation matrix formalism. However,
being a 3×3 matrix the rotation matrix has six redundant parameters.

Quaternions are a four dimensional hypercomplex number system introduced by
William Rowan Hamilton in 1843 [53]. It can be shown that the group of unit
quaternions can span the hypersphere of the 3D rotation group SO(3) [49]. Having
only four parameters the quaternions considerably reduce the number of redundant
parameters when compared to the rotation matrices.

Euler angles are a three dimensional parameterisation of the rotation space,
where each angle represents a rotation of that size around one of the axes of the
coordinate system. These angles are often colloquially known as pitch, roll, and yaw.
Being a three dimensional parameterisation the Euler angles have no redundant pa-
rameters, also the pitch, roll, yaw system is intuitive and the resulting equations are
simple to derive and simple to check. However the Euler angles system is suscep-
tible to a problem known as gimbal lock. Gimbal lock occurs when the navigation
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system approaches 90◦ pitch, at which point the differential equations that update
the system become indeterminate [49].

Initially this project intended to use the quaternion formalism to describe system
rotations. With only one redundant parameter the quaternion system requires a
smaller state vector than the rotation matrix formalism and still avoids the problem
of gimbal lock. A quaternion class for this purpose was written in Python and
underwent unit testing.

However, eventually we decided that the three dimensional Euler angles formal-
ism was sufficient for our purposes. The angles themselves are intuitive and under-
standable, and it is a simple task to assign different uncertainties to each angle, this
is useful as GPS units can report heading information with reasonable accuracy and
we wanted to be sure that the uncertainty in the other rotations of the system was
limited so that we could best make use of this information. Because our system
is intended for terrestrial, road-going vehicles only we need not concern ourselves
overly with the problem of gimbal lock which can occur at high pitch angles. Simply
put, if a road-going vehicle is approaching a pitch angle of 90◦ navigation may not
be the primary point of concern.

We have given a brief overview of the rotation formalisms analysed for this
project. A more in-depth description of the rotation formalisms discussed is available
in Appendix A.3.

5.3.1 Euler Angles

As mentioned above the Euler angles rotation formalism represents the rotation
as three separate rotations, about the three axes of the coordinate system. A positive
rotation follows the right-hand rule. A rotation around the upward or z axis is
denoted (γ), the forwards or y axis is denoted (φ) and around the rightwards or x
axis is denoted(θ).

We can write these rotations in the familiar form of the rotation matrices given
below.

Rx =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,
Ry =

cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 ,
Rz =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 .
(5.10)
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Since rotations are not commutative, we must specify the order or rotations. In
our case we adopt the common z-y-x order, (that is, first a rotation about the z axis,
then the y axis, then the x axis). This gives us the following composite rotation
matrix.

RB
E = RxRyRz. (5.11)

RB
E =

 cosφ cos γ cosφ sin γ − sinφ
− cos θ sin γ + sin θ sinφ cos γ cos θ cos γ + sin θ sinφ sin γ sin θ cosφ
sin θ sin γ + cos θ sinφ cos θ − sin θ cos γ + cos θ sinφ sin γ cos θ cosφ

 .
(5.12)

In Equation 5.12 the matrix rotates some vector from the E (ENU) frame to the B
(Body) frame. The inverse rotation of a rotation matrix is simply the transpose of
the original rotation matrix, i.e.

RE
B = (RxRyRz)

T = RT
z R

T
yR

T
x . (5.13)

RE
B =

cosφ cos γ − cos θ sin γ + sin θ sinφ cos γ sin θ sin γ + cos θ sinφ cos θ
cosφ sin γ cos θ cos γ + sin θ sinφ sin γ − sin θ cos γ + cos θ sinφ sin γ
− sinφ sin θ cosφ cos θ cosφ

 .
(5.14)

For our purposes the system of Euler angles is an intuitive and convenient de-
scription of the rotation of the body frame with respect to the the ENU frame. In
our situation where we have a highly constrained system, the pitch and roll angles
have much less freedom than the yaw angle.

5.3.2 Euler Angles and Rotation

An important part of any transformation formalism is the process of updating the
transformation given some frame rotation ω. We can calculate the rate of change of
each of the Euler angles by using the appropriate rotation matrices and the angular
velocity. The rates of change of the Euler angles given below will be denoted by dot
notation.

ω =

ωxωy
ωz

 =

θ̇0
0

+Rx

0

φ̇
0

+RxRy

0
0
γ̇

 . (5.15)

The equation given above can then be rearranged to give the following [49].
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θ̇ = (ωy sin θ + ωz cos θ) tanφ+ ωx,

φ̇ = ωy cos θ − ωz sin θ,

γ̇ = (ωy sin θ + ωz cos θ) secφ.

(5.16)

5.3.3 Conversion from ECEF(o) to ENU(m)

The ECEF reference frame (using coordinates from WGS84) is the global naviga-
tion frame and the most convenient for navigating over large distances. However we
must be able to transform to and from other reference frames. To transform to the
ENU frame we must know the semi-major (a) and semi-minor (b) axis lengths of the
ellipsoid and the inverse flattening (1/f) of the ellipsoid. In the case of the WGS84
ellipsoid these are 6,378,137.0 m (a), 6,356,752.3142 m (b), and 298.257223563 (1/f).

We will begin by calculating the distance between two points, specified by
WGS84 latitude and longitude. In this case the distance between the respective
latitudes is given by [54],

s(φ) = a(1− e2)
∫ φ2

φ1

(
1− e2 sin2 φ

)−3/2
dφ, (5.17)

where φ1 and φ2 are the two latitudes, a is the semi-major axis and e is the eccen-
tricity of the WGS84 ellipsoid. The eccentricity e and flattening f of an ellipsoid
are related by the following.

e2 = 2f − f 2. (5.18)

In order to use Equation 5.17 the latitudes must be expressed in radians. If we
assume that the distance between the two points is “small” then we can use the
Euler approximation, i.e.

∆φ = φ2 − φ1,

s(φ) ≈ a(1− e2)
(
1− e2 sin2 φ

)−3/2
∆φ.

(5.19)

Whenever an assumption is made we should be aware of the range where that
assumption is valid, in this case it is the assumption of a “small” difference in
latitudes. Equation 5.17 is derived from the meridian radius of curvature of an
ellipsoid. To test the validity of the “small” assumption we calculated the distance
by numerically integrating the full distance expression and then compared it against
the simplification in Equation 5.19. For a difference of one degree in latitude (around
111 km) the simplification is correct to within 0.00015%.

The calculation of the difference between longitudes with the same latitude is
simpler than the same case for latitudes. This is because the polar flattening means
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that the Earth is non-circular along meridian arcs (lines of constant longitude).
However when using the ellipsoid model of the Earth lines of constant latitude
are circular, this allows us to easily calculate the distance between two points of
longitude:

s(λ) =
a cosφ∆λ√
1− e2 sin2 φ

. (5.20)

where ∆λ is the difference in longitude, just like with the latitude calculations the
longitude here is expressed in radians instead of degrees to avoid extra terms in the
expression.

5.4 Non-Inertial Reference Frames

Ideally, all measurements would be made in inertial reference frames. We would
then use Newton’s Laws to solve the equation in one reference frame and it would
be a trivial task to transform the solution to whatever reference frame was most
convenient using one of the methods mentioned in section 5.3. However even the
surface of the Earth is not an inertial reference frame, let alone a vehicle travelling on
the surface of the Earth. We, therefore are forced to work in non-inertial reference
frames.

Let us begin by considering two reference frames O and O′. Reference frame
O is an inertial reference frame while reference frame O′ is both accelerating and
rotating relative to O.
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Figure 5.11: Above are two reference frames, one (O) is an inertial frame, the other
(O′) is displaced by vector R and rotating with respect to O with angular velocity
Ω.

From Figure 5.11 it is clear that the position vectors are related as follows.

r = R + r′. (5.21)

We want to know how r′ changes over time. Let’s start by taking the time
derivative of r−R, i.e. the position vector (r′) as seen in the inertial frame O,

(
d(r−R)

dt

)
=

(
d(r1 −R1)

dt

)
x̂1 +

(
d(r2 −R2)

dt

)
x̂2 +

(
d(r3 −R3)

dt

)
x̂3,(

dr′

dt

)
=

3∑
j=1

(
d(rj −Rj)

dt

)
x̂j =

3∑
j=1

(
drj
dt
− dRj

dt

)
x̂j,

(5.22)

where x̂j is the unit vector of the jth axis of O and rj denotes the jth coefficient of
the vector as seen in O. In our case our measurements are made in the non-inertial
frame O′, therefore it is convenient to be able to expand the time derivatives of r′

so that the effects of making measurements in a non-inertial frame are explicit and
therefore more easily compensated for.
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As seen in the inertial frame (O) the axes of O′ are rotating with angular velocity
Ω. Therefore if we want to relate the time derivatives in the different terms we will
have to incorporate the product rule, and take into account the acceleration of R.(

dr′

dt

)
i

=

(
dr′1
dt

)
x̂′1 +

(
dr′2
dt

)
x̂′2 +

(
dr′3
dt

)
x̂′3

+ r′1

(
dx̂′1
dt

)
+ r′2

(
dx̂′2
dt

)
+ r′3

(
dx̂′3
dt

)
,

=
3∑
j=1

(
dr′j
dt

)
x̂′j +

3∑
j=1

r′j

(
dx̂′j
dt

)
,

=

(
dr′

dt

)
n

+ Ω× r′.

(5.23)

In an effort to avoid confusion the i subscript has been added when the differen-
tiation is performed with respect to the inertial frame (O) and an n subscript when
it is with respect to the non-inertial frame (O′).

Using the same process as seen in Equation 5.23 we can take the time derivative
again to get the following.

m

(
d2r′

dt2

)
i

=

(
d2r′

dt2

)
n

+ 2Ω×
(

dr′

dt

)
n

+

(
dΩ

dt

)
× r′ + Ω× (Ω× r′) . (5.24)

Substituting in Equation 5.22 and rearranging we may then get the acceleration
as seen in O′.

(
d2r′

dt2

)
n

=

(
d2r

dt2

)
i

−
(

d2R

dt2

)
i

−2Ω×
(

dr′

dt

)
n

−
(

dΩ

dt

)
×r′−Ω×(Ω× r′) . (5.25)

We can then multiply both sides by the mass of some object located at r′ to
obtain the familiar expressions for the so-called ‘fictitious forces’.

(
d2r′

dt2

)
n

= F−m
(

d2R

dt2

)
i

−2mΩ×
(

dr′

dt

)
n

−m
(

dΩ

dt

)
×r′−mΩ×(Ω× r′) . (5.26)

The first term on the RHS of Equation 5.26 is any external force F, the second
term is the translational force due to the linear acceleration of O′, the third term is
the Coriolis force, followed the Euler Force, and finally the centrifugal force. Because
all of our measurements are made in non-inertial reference frames the ‘fictitious
forces’ are measured just the same as true forces, e.g. gravity.
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5.5 Reference Frame Corrections and Approxi-
mations

As mentioned previously, none of our reference frames are inertial frames. In
this section we examine the magnitude of the non-inertial effects on our frames and
correct for them.

We will begin with the Earth Centered Earth Fixed reference frame. Since this
frame is stationary relative to the Earth, it is rotating around the polar axis at a
rate of one rotation per sidereal day. This equates to an angular rate ωe = 7.292115
×10−5 rad s-1 [51]. Transforming this rotation into the ENU reference frame we
have the following angular rate,

ωEe =

 0
ωe cos(λ)
ωe sin(λ)

 , (5.27)

where λ is the latitude of the vehicle. High accuracy inertial navigation systems
will therefore have to correct for this angular rate, and update these corrections
as the latitude changes. For our purposes an angular rate of 7.292115 ×10−5 rad
s-1 is negligibly small as the least significant bit for the FXAS21002c gyroscope
used in this project is 1.332 ×10−4 rad s-1, when operating over the lowest possible
range. Therefore, in order to simplify the calculations the rotation of the Earth
has been omitted from future navigation equations. This simplification allows us to
approximate the surface of the Earth as an inertial reference frame.

As a vehicle travels across the surface of the Earth the axes which point East,
North, and Upwards will rotate at an angular rate of v/r, where v is the speed of the
vehicle on the surface and r is the local radius of the Earth. For a vehicle travelling
north at the Equator at 100 km/hr this angular rate of rotation is 4.355×10−6 rad
s-1. While this is even smaller than the effect of the rotation of the Earth, it is
important to remember that this effect will accumulate as the vehicle travels away
from its initial position. So while this effect may be ignored for shorter trips, the
author advises that for longer trips e.g. traversing more than 50 km, the ENU frame
be rotated accordingly.

As seen in Equation 5.26 there are several fictitious forces that emerge as a
consequence of making measurements in a non-inertial reference frame. The first
assumption we will make is that the sensors are fixed within the body frame, thus
we can ignore the Coriolis force

5.5.1 Measurement Corrections in Non-inertial Frames

Now that we have an explicit description of the effects of non-inertial reference
frames we want to use these to obtain a better description of our system. For this it is



74 CHAPTER 5. INERTIAL NAVIGATION

useful to examine the effects of the non-inertial frame on the different measurement
types individually.

For the position element of the GPS we are unconcerned with the time derivatives
of the position and so we simply rotate the sensor position into the ENU frame. GPS
units also report velocity, which will be affected by the non-inertial frame, recalling
Equation 5.23. (

dr′

dt

)
i

=

(
dr′

dt

)
n

+ Ω× r′. (5.28)

Therefore if we approximate the ECEF frame as an inertial frame the speed of
the centre of mass of the vehicle is the reported speed from the GPS unit subtracted
by the cross product of the angular velocity (reported by the gyroscope) and the
position of the GPS unit with respect to the centre of mass of the vehicle. An
important question now is, ‘is this effect negligible?’ Imagine that the vehicle is
turning at a traffic light and takes 2 seconds to turn 90o, and that the GPS is 0.5m
horizontally from the vehicle’s centre of mass (assuming a flat road and no lean
on the vehicle any vertical distance from the centre of mass would not contribute
to a centripetal speed). This would provide a speed error of 0.39ms-1, well above
the quoted accuracy of 0.1ms-1 of the GlobalSat BU-353S4 GPS unit used in this
thesis [48].

Therefore to correct for the centripetal velocity to obtain the velocity of the
centre of mass we simply use the following equation,

vE = vB −Ω× r, (5.29)

where vB is the velocity reported from the GPS, vE is the velocity of the centre of
mass of the vehicle, and Ω × r is the cross product of the rate of rotation and the
position of the GPS in the body reference frame.

With the output from the GPS corrected for non-inertial effects we must also
correct the output of the accelerometer. Recall that by assuming that the sensor is
fixed in the body reference frame we are able to ignore the Coriolis force, and so we
are left with the following equations,

(
d2r′

dt2

)
n

≈
(

d2r

dt2

)
i

−
(

d2R

dt2

)
i

−
(

dΩ

dt

)
× r′ −Ω× (Ω× r′) ,(

d2r′

dt2

)
n

≈ Fi

m
−
(

d2R

dt2

)
i

−
(

dΩ

dt

)
× r′ −Ω× (Ω× r′) ,

(5.30)

where Fi/m is the external force divided by the mass of the vehicle, including the
normal force of the ground in response to gravity. Substituting gravity into the our
measured acceleration equation we obtain.
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(
d2r′

dt2

)
n

≈ gi −
(

d2R

dt2

)
i

−
(

dΩ

dt

)
× r′ −Ω× (Ω× r′) ,(

d2r′

dt2

)
n

≈ gi −
(

d2R

dt2

)
i

−
(

dΩ

dt

)
× r′ −Ω×

(
vE
)
.

(5.31)

In Equation 5.31, we replaced Ω × r′ with vE, because we have assumed that the
dominant term in the centrifugal acceleration will be due to rotation about the
upwards axis, i.e. the vehicle turning a corner. Preliminary data gathered from the
gyroscope and accelerometer appears to corroborate this assumption, the upwards
facing gyroscope reported rates of rotation far higher than those obtained from the
other two axes, as shown in Figure 5.12.

Figure 5.12: Gyroscope data obtained from driving a vehicle around Dunedin, along
the circuit shown in Chapter 7. The x, y, z gyroscope measurements correspond to
rotations about the rightwards, forwards, and upwards axes, respectively.

The substitution in Equation 5.31 takes into account the centrifugal acceleration
terms due to rotation about the upwards and rightwards axes. However, the sub-
stitution explicitly ignores the centrifugal acceleration due to a rotation about the
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forwards axis of the vehicle. This term is treated as noise in the signal in the im-
plementation in Chapters 6,7. This imperfect substitution is proposed because the
centrifugal force term depends on the rate of rotation and either the radius of cur-
vature of the path or the velocity. Without real-time access to the radii of curvature
the first term would have to be estimated only from the accelerometer measure-
ments, further increasing the degrees of freedom in the system. However the system
already measures and estimates the forwards speed of the vehicle. So rather than
estimate another unknown variable we could simply use the information already
measured and available to estimate the centrifugal acceleration term. We felt that
this simplification justified treating the last term of the centrifugal acceleration as
noise. This assumption will be further discussed in the following chapter.



Chapter 6

Sensor Fusion in Vehicle Navigation

Now that we are familiar with the problems of transforming between reference
frames and inertial navigation we are in a position to define a reasonable state
space for terrestrial vehicle navigation. Before we do so, we begin with a few simple
assumptions in order to simplify the equations later on in this chapter.

Firstly we assume that the tyres of the vehicle do not allow for lateral motion,
i.e. while the vehicle is able to turn it is unable to slide laterally. This allows us
to assume that all of the velocity of the vehicle is in the forwards direction of the
vehicle, thereby allowing us to eliminate the lateral velocity term from the state
vector.

Secondly we assume that the suspension of the vehicle is infinitely rigid, and so
any measured roll angle is assumed to be due to the road surface. If we were to take
into account the spring constants of the vehicle we could look up the spring constants
and enter those into the model, this would necessarily be vehicle dependent, which
goes counter to this project’s aim of developing a vehicle independent device that can
be easily transferred from one vehicle to another. Alternatively we could estimate
the spring constants on the fly as part of the larger vehicle state estimation problem.
This would be a valuable addition to the research herein however we believed that
the additional benefits of spring constant estimation would be outweighed by the
added complexity in the model. Also while in reality, the suspension of a vehicle
does affect the attitude of the vehicle, especially during cornering we believe that
these terms are small enough to safely ignore.

It was our goal to estimate the driver input into the vehicle. Is the driver
braking while driving down the hill or accelerating? Recall that accelerometers
measure proper acceleration, i.e. a stationary accelerometer on the Earth’s surface
would measure the acceleration due to gravity as a vector with magnitude |g| in the
upwards direction. Therefore a forwards facing accelerometer would measure the
net forwards acceleration (aF ) and the projection of a positive gravity vector onto
the forwards direction, which gives us the following expression,

ameas = aF + g sin θ cosφ = aT , (6.1)

where the term (aT ) is the forwards acceleration provided by the truck. That is, the
forwards acceleration (aF ) of the vehicle without the forwards acceleration due to

77
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gravity.

aF = aT − g sin θ cosφ. (6.2)

It is important to note that we do still measure the three dimensional accel-
eration of the vehicle. These measurements allow us, via the following nonlinear
measurement equation to make measurements of the pitch (θ) and roll (φ) angles
of the vehicle. This is very useful as it means that the system can directly mea-
sure these angles and so prevent the errors in the gyroscopic measurements from
causing the angle estimates to diverge from the true value. As well measuring the
pitch and roll angles, three dimensional acceleration measurements also allow us to
measure the centripetal acceleration of the vehicle and so provide us with redundant
measurements of the rate of rotation of the vehicle as it corners.

h(a) =

aRaF
aU

 =

 −g sinφ− ωzvF
aT

g cos θ cosφ+ ωxvF

+

vRvF
vU

 . (6.3)

Finally, as stated in Chapter 5 we chose to use the Euler angles method to rep-
resent the attitude of the vehicle. The Euler angles represent a computationally
efficient three state representation of the vehicle attitude, compared to the four
state quaternion representation or nine state rotation matrix representation. Also
the pitch, roll, and yaw angles allow for an intuitive and understandable descrip-
tion of the vehicle. The Euler angles representation is not commonly deployed in
navigational equations due to the singularity at a pitch angle of 90o. However given
the constraints for a terrestrial vehicle operating primarily on roads the singularity
problem is unlikely to provide much trouble, even Baldwin St only gets to 19o.

6.1 Euler Angles

As mentioned above we chose the Euler angles rotation formalism to represent
the attitude of the vehicle. Before we derive the state differential equations we
should familiarise ourselves with the Euler angles.
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Figure 6.1: Side-view of the vehicle with the directions shown. Note that the bottom
axis is the projection onto the horizontal X,Y plane. The F and U vectors show
the forwards and upwards directions used for the acceleration variables aT and aU ,
respectively.

The last terms in the state vector θ, φ, γ are, respectively, the pitch, roll and
heading angles as shown in Figures 6.1, 6.2 and 6.3 where the forwards, upwards
and rightwards direction for the positioning of the accelerometers are also defined.

Figure 6.2: Top-view of the vehicle with the directions shown. Note that the Y axis
points North and the X axis points East. We have the same F direction as seen in
Figure 6.1 as well as the R direction for the rightwards facing acceleration term aR.
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Figure 6.3: Rear-view of the vehicle with the directions shown. Note that as in
Figure 6.1 the bottom axis is the projection onto the horizontal X,Y plane.

6.2 State Space and Equations

We can now write out the state vector and system and measurement equations
of our system as they would be set out for use in a nonlinear state estimator.

Recall from Chapter 1 that our nonlinear state and measurement equations are
given as.

x(k + 1) = f(x(k)) + w(k),

z(k) = h(x(k)) + v(k).
(6.4)

Where f(. . . ) is the system propagation equation and h(. . . ) is the state measure-
ment equation. The state vector and differential equation of our system is given
below,

x(k) =



x
y
z
vF
aT
θ
φ
γ
ωx
ωy
ωz


, ẋ(k) =



ẋ
ẏ
ż
v̇F
ȧT
θ̇

φ̇
γ̇
ω̇x
ω̇y
ω̇z


=



(− cos θ sin γ + sin θ sinφ cos γ) vF
(cos θ cos γ + sin θ sinφ sin γ) vF

sin θ cosφvF
aT − g sin θ cosφ

waT
(ωy sin θ + ωz cos θ) tanφ+ ωx

ωy cos θ − ωz sin θ
(ωy sin θ + ωz cos θ) secφ

wωR
wωF
wωU


, (6.5)
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where x, y, z, vF are the ENU positions and the forwards velocity. The θ, φ, γ terms
are the Euler angles, and the ω terms are the angular velocities in the rightwards,
forwards, and upwards directions. Any terms with a w simply denotes the process
noise present for that variable.

There is only one acceleration term included in our state vector (aT ) rather
than a three-dimensional term which one might expect. We were able to use a one
dimensional acceleration model because of the constraints on our system. Recall
that our system is only intended for terrestrial navigation and we have made the
assumption of negligible lateral tyre slip. The assumptions that the vehicle cannot
accelerate upwards (in the vehicle’s body frame) or rightwards (without turning)
imply that the only remaining direction for linear acceleration of the vehicle is
forwards.

Rather than use a centripetal acceleration term that used the standard ω ×
(ω × r) we made use of the following simple expression.

ω × r = v. (6.6)

This allows us to relate the measured centripetal acceleration in terms of velocity,
which we already estimate, rather than including the radius of the curvature of the
road, a factor that would be difficult to estimate a priori.

To simplify the measurement equations we assume that the GPS measurements
have been converted into the ENU frame and so are in units of metres, metres per
second, and radians rather than degrees of latitude/longitude, knots, and heading
angle. Therefore the measurements from the GPS unit, in terms of the state mea-
surement equation are given as.

h(GPS) =


x
y
z
vF

−γ cos θ cosφ

 . (6.7)

These conversions from the ECEF to the ENU frame were made using the for-
mulas presented in Subsection 5.3.3. The last measurement type, gyroscopic mea-
surements, has the simplest measurement equation.

h(ω) =

ωxωy
ωz

 . (6.8)

Because the angular velocities are measured and estimated directly and so have
a simple linear measurement equation.
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We have now defined the nonlinear propagation (f(x(k))) and measurement
equations (h(x(k))). This is all that is required for the unscented Kalman filter,
however recall from Chapter 1 that the extended Kalman filter we must also de-
fine the state and measurement Jacobians that relate to their respective nonlinear
equations.

Jf =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 , Jh =


∂h1
∂x1

∂h1
∂x2

. . . ∂h1
∂xn

...
. . .

...
∂hn
∂x1

∂hn
∂x2

. . . ∂hn
∂xn

 . (6.9)

Due to the number of terms the full write-outs of the state and measurement
Jacobians have been left out of the main text and are available in Appendix A.4.

6.2.1 Vehicle Navigation Algorithm

Now that we have defined our state space, measurement and state equations, etc.,
we can write out a full description of the algorithm used for vehicle navigation in
this thesis. The algorithm itself follows a modular setup where the same underlying
model can be used by different filtering classes. We defined classes for the model,
measurement and filter being used so that we could easily compare the effects of
changing the model, adding measurement types, and using different filters.

The filters that we implemented for this algorithm were the unscented Kalman
filter (UKF) and the extended Kalman filter (EKF), which were introduced in Chap-
ter 1. However when we began testing with real-world data we had difficulty main-
taining positive definiteness in the state covariance when using the UKF, which
caused the UKF to fail in some instances of the algorithm. Therefore the algorithm
given below, and the algorithm used for the combined navigation algorithm shown
in Chapter 7 uses the EKF formulation rather than the UKF. This was obviously a
disappointment

Initialisation

We start with some initial state estimate (x0) and covariance (P0), sometimes
known as the prior. These are derived from our prior knowledge of the system.

x̂(0|0) = x0, P (0|0) = P0. (6.10)

Prediction

Now we propagate the state estimate and uncertainty ahead in time.



6.2. STATE SPACE AND EQUATIONS 83

x(1) = f (x(0)) + w(0),

x̂(1|0) = f (x̂(0|0)) ,

P (1|0) = P (0|0)Jf (1)P (0|0)T +Q(1),

ẑ(1|0) = h (x̂(1|0)) .

(6.11)

Here x(0) denotes the true state of the system at time t = 0, and w(0) denotes the
system noise, assumed to be zero mean Gaussian with covariance of Q(0). The x̂(1|0)
term denotes the predicted state estimate at time t = 0 given 0 measurements. The
Jf (1) term denotes the state Jacobian, which is calculated by passing the predicted
state x̂(1|0) to the get state jacobian method of the model class. The ẑ(1|0)
term denotes the predicted measurement obtained via the nonlinear measurement
equation h(. . . ) which is accessed in the measurement prediction method in the
measurement class.

The nonlinear state propagation equation f(. . . ) is stored in the state prediction
method of the model class given to the filter. If the model has a process covari-
ance that changes over time then this can be called at each iteration through the
get process covariance method in the model class, otherwise the process covari-
ance is obtained before the iteration begins and is simply multiplied through by the
dt for that iteration.

Measurement and Update Now we obtain the new measurement and update
the state estimate and uncertainty accordingly.

K(1) = P (1|0)JTh (1)
(
Jh(1)P (1|0)JTh (1) +R(1)

)−1
,

r(1) = z(1)− ẑ(1|0),

x̂(1|1) = x̂(1|0) +K(1)r(1),

P (1|1) = (I −K(1)Jh(1))P (1|0).

(6.12)

Here JTh (1) is the measurement Jacobian, which is calculated by passing the pre-
dicted state to the get measure jacobian method in the measurement class. The
only other foreign term above is the measurement covariance, denoted R(1). The
algorithm simply iterates through the data set until it is out of measurements. We
usually ran the algorithm on stored data, however the EKF algorithm can easily
be used as a real-time estimator, the only concern would be for processing power
available on whatever device is running the algorithm.

The computer used for design and testing of the algorithm has two AMD A4-
4020 CPUs, each with 1.61GB of RAM, and a clock speed of 2.6GHz, and is able to
run the algorithm on experimental data at around 12.5 times real-time, i.e. 100s of
data from GPS, accelerometer, and gyroscope data takes around 8s to filter. It is
possible that speed-ups could be made such that the algorithm runs faster, however
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for the purposes of testing this was not necessary. However making a meaningful
effort to streamline the algorithm would be a useful contribution to the project in
future.

6.3 Two Dimensional Test Model

During design we wanted to be able to test the theoretical benefits of combining
GPS and accelerometer data using a nonlinear Kalman filter. We built a model
where a simulated vehicle was driving along a hilly, straight road while the ‘driver’
applied positive or negative accelerations. In our model whenever the vehicle was
going up the hill the ‘driver’ would apply a positive acceleration, likewise whenever
the vehicle was going down a hill the ‘driver’ would apply a negative acceleration.

We felt that this was a realistic situation for road-going vehicles and it allowed
us to test our model in a situation where estimating the acceleration applied by
the vehicle was nontrivial to determine. As an example, let’s consider the case of
a vehicle coming to a hill, the driver applies more accelerator but not enough to
maintain speed and so begins to slow down.

Figure 6.4: A vehicle is travelling up a hill and is experiencing a negative acceleration
due to gravity (gpara), applying a positive acceleration (aT) and experiencing a net
negative acceleration (anet).

It is easy to see from Figure 6.4 that we have the following acceleration relation-
ship.

anet = aT − gpara. (6.13)
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Where gpara is the component of the gravitational acceleration that is parallel to the
surface of the road. From Equation 6.3 we know that the measured acceleration will
not be the net acceleration, instead it will be the following.

ameas = aT . (6.14)

Hence the need for a more comprehensive model rather than simply measuring the
acceleration and immediately using those measurements directly in the kinematic
equations. This demonstrates one of the benefits of the model-based inference ap-
proach.

Our main aim for this test case was to ensure that the accelerometer and GPS
measurements could be successfully combined in a way that made physical sense.
The extra step of adding gyroscopic measurements is considerably simpler as unlike
acceleration, there is no net angular velocity (excluding the small term due to the
rotation of the Earth) and there are no extra corrections required for the measured
angular velocity vector due to the presence of non-inertial reference frames. There-
fore for this test case we only simulated accelerometer and GPS measurements.

6.3.1 Results using simulated data

We generated Gaussian noise to be added to both position and accelerometer
measurements of the vehicle as it ‘drives’ along the road. In Figure 6.5 we see the
measured, estimated and true height of a vehicle after one such simulation.

We then compared the performance of the system when relying on either position
data, accelerometer data or a combination of both. The result of that test is in figure
6.7.

As you can see in Figure 6.7 the result of combining both position and ac-
celerometer measurements, predictably, gives better results than using either sys-
tem separately. The Figure is instructive, however, in illustrating the benefits of
accelerometer data. Note that the changes in position-only data are jagged and the
position estimate quickly leaps from one position to another. However by directly
measuring the second derivatives of position the change in position for an accelerom-
eter based inertial navigation system is much smoother and more realistic. Using
a solely accelerometer-based inertial navigation system of course means that any
errors may accumulate which is why the accelerometer-only position estimate tracks
further and further from the true position.

As another way of comparing the benefit of adding accelerometer data to GPS
measurements we compared the effect of increasing the standard deviation of the
position noise on three systems. One system using only position measurements, one
system using only accelerometer measurements, and one system using both position
and accelerometer measurements. In order to identify the overall trend we ran each
of the three systems one hundred times for each data point and took the average of
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Figure 6.5: The height of a simulated 3D vehicle with measured, estimated and true
values shown. The variance for the position measurements was taken from empirical
data collected via a commercial GPS positioned at the University of Otago and so
is consistent with the errors expected in real-world use.
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Figure 6.6: Using the same simulated position data as shown in Figure 6.5 but no
acceleration data.

the root mean squared (RMS) error. Each simulation had the same underlying true
data and standard deviation but uniquely generated additive noise.

As you can see in Figure 6.8, increasing the noise in position measurements, pre-
dictably increased the errors in systems using position and combined measurements
and did not change purely accelerometer-based predictions. What is interesting is
how the gradient of the combined system lessens compared to the purely position-
based system as the EKF places more emphasis on the accelerometer data rather
than the position data. This effect could be very useful for vehicles briefly losing
sight of satellites, for example in urban canyons.

It should be stated that incorporating a change in covariance matrix from sim-
ulated data is a trivial matter, quite unlike estimating and incorporating a change
in covariance matrix in real time from empirical data gathered from a vehicle that
is constantly moving through different local geographies.

Such a system could utilise the number of satellites in view of the device and
the horizontal and vertical dilution of precisions (HDOP and PDOP, respectively)
reported. For instance,
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Figure 6.7: The absolute error in position is shown for systems using just position
(GPS) measurements, just accelerometer measurements or combining both. The
same simulated measurements were used for the combined and separate systems.
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Figure 6.8: Standard deviation of position noise versus errors in position for systems
using position-only measurements, accelerometer-only measurements or both.

R(k) =
1

N

c1HDOP 0 0
0 c2HDOP 0
0 0 c3V DOP

 , (6.15)

where N is the number of satellites, and the constants c1, c2, c3 are determined by the
particular device. As the number of satellites decreases the covariance of the GPS
measurements would then increase and the EKF would place more emphasis on the
accelerometer data until the line of sight to the missing satellites is reestablished.
Therefore for short outages of GPS signals the EKF would allow for accelerometer
measurements to more accurately determine the position and heading of a vehicle
with obstructed GPS signal.

To develop such a system would be an immensely useful tool, however a compre-
hensive study would be required to prove its general applicability. Such a study is
beyond the scope of this project but would be a valuable contribution to the field.
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Chapter 7

Vehicle Navigation System Imple-
mentation

The previous chapters defined the system model and tested it under simulated
conditions. In this chapter we apply this system to real world data. We begin by
describing the hardware setup used in the testing. This entails the hardware used,
calibrations performed, and the vibration isolation system used. Once data has been
gathered we analyse the performance of the system when the vehicle is stationary.
Then the combined GPS and inertial navigation system is compared against the
GPS-only system. Of particular interest to this project is the performance of the
combined system when subjected to simulated GPS outages.

7.1 Hardware

The purpose of this experiment was to combine GPS, accelerometer, and gyro-
scope measurements to improve vehicle navigation. For our experiment we wanted
hardware that would be easy to modify and easy to use. A system diagram of the
communication between hardware components is shown in Figure 7.1.

We chose a Raspberry Pi B+ as the processor, combined with a single channel
GlobalSat BU-353S4 GPS unit operating on the L1 band (1575.42 MHz) which con-
nects to the Raspberry Pi via USB. The accelerometer was a Freescale FXOS8700CQ
3-axis linear accelerometer and the gyroscope was a Freescale FXAS21002C 3-axis
angular rate gyroscope, connected to the Raspberry Pi through an Arduino Alam-
ode, as shown in Figure 7.1.

7.1.1 Host Processor

The Raspberry Pi B+ model was used in this thesis to receive and store the
data from the various sensors. The Raspberry Pi used for this project is shown in
Figure 7.2 with the 3D printed frame and vibration damping used for testing. The
Raspberry Pi B+ has a Broadcom BCM2835 CPU with 512MB of SDRAM running
at 700 MHz. It is equipped with an Ethernet socket, HDMI port, microSD memory
card slot, four USB 2.0 connectors, and a 40 pin GPIO capable of handling SPI,
I2C and UART communication protocols [55]. During testing we added a USB wifi
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Figure 7.1: The Raspberry Pi communicates with the Alamode through the Pi’s
GPIO pins, using UART. The Raspberry Pi also communicates with the GPS device
using UART, however, via the USB connector instead of the GPIO pins. The
Alamode communicates with the accelerometer and gyroscope via I2C.
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dongle to the Raspberry Pi, which allowed the user to access the Pi via Secure Shell
(SSH) through the user’s smart phone and then manage software and data transfer
as necessary.

Figure 7.2: The Raspberry Pi B+ mounted on our ear plug vibration mounting
plate. Note that the hole on top of the plate is for mounting the Arduino Alamode,
which will be attached to the top.

Although, there exist boards that combine integrated processors and accelerome-
ters, the Raspberry Pi provided a complete framework for development and testing.
With an Ethernet connection we were able to pull the latest software directly from
GitHub and run the Python driver for data collection, either directly with, a screen
and keyboard, or via SSH. This proved very convenient for field testing, with a USB
WiFi dongle attached to the Raspberry Pi, we were able to SSH into the Pi from
a smartphone over the smartphone’s WiFi hotspot. Furthermore by connecting the
sensors via USB and GPIO the setup is modular, which would be easy to adapt to
include other sensors or compare the performance of different sensors.

Other versions of embedded Linux hosts, e.g. Raspberry Pi 3, exist which could
also be used to fulfill the same purpose. While it would be reasonably simple matter
to upgrade the Raspberry Pi B+ to another host processor in the future, for our
purposes the Raspberry Pi B+ was more than adequate.
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7.1.2 Alamode

The breakout board used for the accelerometer and gyroscope came with an Ar-
duino R3 connector [56]. The Alamode is an Arduino compatible microcontroller,
seen in Figure 7.3. The Alamode plugs directly into the GPIO header on the Rasp-
berry Pi, and comes with an Arduino R3 connector. The Alamode was programmed
directly from the Raspberry Pi via the GPIO connection using the standard Arduino
IDE. The Alamode comes with a Real-Time-Clock which the Raspberry Pi can use
for reference in the absence of an internet connection. In operation the Alamode
communicates with the accelerometer and gyroscope via I2C, if there are any new
measurements stored in the internal first in, first out (FIFO) buffers of either device
the Alamode reads all stored measurements and then sends the measurements to
the Raspberry Pi via UART. The UART was used instead of I2C because the code
developed to drive the GPS unit proved very effective at serial communication and
was easily adapted to the Alamode-Raspberry Pi communication.

Figure 7.3: The Alamode communicates directly with the accelerometer and gy-
roscope via I2C and then relays that information to the Raspberry Pi via UART.
Photo from http://www.makershed.com/products/alamode-for-raspberry-pi .

7.1.3 Accelerometer

The accelerometer used was an Freescale FXOS8700CQ sensor with 3-axis linear
accelerometer and 3-axis magnetometer. The FXOS8700CQ has 14-bit accelerome-
ter resolution, a full scale range (FSR) of ±2g ± 4g,±8g, and an output data rate
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(ODR) from 1.563 Hz to 800 Hz. The FXOS8700CQ is capable of communicating
via I2C or SPI. The FXOS8700CQ has a built-in FIFO buffer capable of storing 96
accelerometer measurements (32 measurements for each of the three axes) [10].

7.1.4 Gyroscope

The gyroscope used was a Freescale FXAS21002C 3-axis digital angular rate
gyroscope. The FXAS21002C has an adjustable FSR from ±250o/s to ±2000o/s
and an ODR from 12.5 Hz to 800 Hz. Like the FXOS8700CQ the FXAS21002C is
able to communicate via either I2C or SPI and has a built-in FIFO buffer that can
hold 32 measurements in each axis [57].

7.1.5 GPS Sensor

The GPS device used in this project was the GlobalSat BU-353S4 device, shown
in Figure 7.4. The GlobalSat BU-353S4 device is a single frequency GPS device,
operating on the L1 (1575.42 MHz) frequency and uses the SiRF STAR IV GSD4e
GPS chipset [48]. The device is capable of outputting the following NMEA sentences
GGA, GSA, GSV, RMC, VTG, and GLL v2.2. This device was connected to the
Raspberry Pi via USB 2.0. A Python driver for Linux was written by the author
and Tim Molteno (Electronics Research Group, University of Otago) for interfacing
with the GlobalSat BU-353S4 which has a simple protocol for collecting and storing
the desired NMEA sentences.

7.2 Calibration

Both the FXOS8700CQ accelerometer and FXAS21002C gyroscope sensors come
with standard factory calibration. The factory calibration is accurate for most
applications, however, for the most accurate results when using the sensors they
should be recalibrated [10, 57]. Recalibration is required for accurate results as
the factory calibration will change slightly due to the thermal stresses experienced
during the soldering of the chip to the board [10,57]. Here we detail the calibration
techniques used for both sensors and demonstrate the improvements found.

7.2.1 Allan Variance and Gyroscope Calibration

In order to calibrate the gyroscope we require the offset biases for each axis. It
is, of course, a trivial matter to determine the offset biases for the gyroscope axes.
Simply set the device running for an extended period of time while stationary and
average the resulting data to determine the offsets.
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Figure 7.4: A GlobalSat BU-353S4 GPS unit, which was used to make GPS mea-
surements for both the vehicle tracking system and the 1Hz stationary GPS data
referred to in chapter 2. Image taken from [48].

However, to understand the noise observed in the gyroscope we took the Allan
variance of the noise signal to determine the amount of different noise sources present
in the device.

The Allan variance was first developed in the 1960’s by David W. Allan to
characterise the noise present in precision crystal oscillators and atomic clocks. It
has subsequently been adapted to model the random-drift errors present in inertial
sensors [58].

Assume that you have a time series Ω(t) with N data points, each with sampling
period dt. Now suppose we choose a set of n consecutive data points within the
time series. The cluster will have an associated time period T which will be ndt.
The cluster average is defined as,

Ω̄i(T ) =
1

T

∫ ti+T

ti

Ω(t)dt, (7.1)

where Ω̄i(T ) denotes the cluster average of Ω(t), starting at the ith data point and
containing n data points. Given Equation 7.1 the Allan variance is simply defined
as,

σ2(T ) =
1

2(N − 2n)

N−2n∑
i=1

[
Ω̄i+n(T )− Ω̄i(T )

]2
. (7.2)



7.2. CALIBRATION 97

A convenient way to express the Allan variance for rate measurements, such as
gyroscopes, is by using the integrated variable, in the case of gyroscopes that would
be the angle θ.

θ(t) =

∫ t

0

Ω(t′)dt′. (7.3)

Discretising the equation above then gives as,

Ω̄i(T ) =
θi+n − θi

T
. (7.4)

Therefore with no loss of generality we can rewrite the Allan variance as follows,

σ2(T ) =
1

2(N − 2n)

N−2n∑
i=1

[θi+2n − 2θi+n + θi]
2 . (7.5)

Figure 7.5: The Allan deviation (
√
σ2(T )) of the three axes of the FXAS21002c

gyroscope is shown above. Observe that on the loglog graph the Allan deviation
of all gyroscope axes are approximately linear with a slope of approximately −0.5,
implying that angle random walk is the dominant term. [58]
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The most convincing reason to use the Allan variance to describe noise in inertial
sensors is the quantitative description of various noise types. The Allan variance
of a time series can be shown to provide quantitative descriptions of five common
types of noise terms, namely quantization noise, angle random walk, bias instability,
rate random walk, and rate ramp. Obtaining these is a trivial matter once the Allan
variance has been calculated.

To obtain descriptions of the noise terms it is possible to simply read them off
of a log-log graph like Figure 7.5. However a more objective approach is to apply a
least-squares fit for the following coefficients [59],

σ2(T ) =
3Q2

T 2
+
N2

T
+ (0.664B)2 +

K2T

3
+
R2T 2

2
, (7.6)

where Q is the quantization noise coefficient (arcsec), N is the angle random walk
coefficient (rad/

√
hr), B is the bias instability coefficient (rad/hr), K is the rate

random walk coefficient (rad
√

hr), and R is the rate ramp coefficient (radhr).

As the size of the cluster (n) increases there is necessarily fewer clusters in total
and so the error for Allan variances of longer time periods is larger than the error
for shorter time periods. The percentage error in the estimate of the Allan deviation
is simply given by the following [58],

δ (σ(T )) =
1√

2
(
N
n
− 1
) . (7.7)

Therefore the percentage error for the larger clusters is clearly much higher than
for the smaller clusters.
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Figure 7.6: The Allan deviation
(√

σ2(T )
)

of the x axis gyroscope with upper and

lower bounds shown. Note how the error increases for longer time periods.

A data set was gathered by running the gyroscope constantly for around 80
minutes, sampling at 250Hz. The results are given in the table below.

Coefficient Q N B K R
x gyro 3.101e-06 8.773e-04 1.504e-04 1.653e-10 9.544e-06
y gyro 3.183e-06 4.012e-04 5.842e-05 1.221e-09 4.838e-06
z gyro 9.666e-07 2.952e-04 1.421e-04 3.198e-06 2.196e-06

7.2.2 Accelerometer Calibration

We propose a quick, simple method for calibrating the accelerometer that does
not require any special experimental setup or extra equipment and could easily be
performed in the field if recalibration were required. We begin by assuming that
each accelerometer direction has a linear offset and some scaling constant, i.e.

xmeasured = ax0 + kxax,

ymeasured = ay0 + kyay,

zmeasured = az0 + kzaz,

(7.8)
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where xmeasured is the measured acceleration in the x direction, ax0 is the offset in
that direction, and kx is the linear scaling constant of the true acceleration in that
direction (ax), likewise for the other two directions. Then we slowly and smoothly
rotate the device through angles in all three directions. After doing this for a
reasonable period of time (starting at 30 seconds) we stop the device taking data.
If the rotations are sufficiently smooth and slow the vector magnitude of the three
accelerometers should be approximately g for the entire period, irrespective of the
angle of orientation.

|g| =
√
x2measured + y2measured + z2measured (7.9)

Using this relation and our assumption about the nature of the biases we will
use a minimization function to estimate the offsets and the scaling constants.

One of the potential problems in this method of estimating biases is that it relies
on the assumption of slow, smooth rotation. This is difficult without specialised
equipment and so our first test was to look at the vector magnitude of the three
accelerometer measurements while the device was being rotated. Figure 7.7 shows
the uncalibrated accelerations reported as the device is rotated through a large
range of angles. The total acceleration appears to be on average slightly larger than
10.0ms-2. However, it appears to slowly change as the device is rotated, which is
precisely the behaviour we would expect if the current calibration was imperfect.

To ensure that the calibration terms that we gained from our experiment were the
product of the most testing possible we performed six tests where we slowly rotated
the device. We then investigated the reported accelerations while the accelerometer
was sitting stationary on a desk and periodically rotated it to ensure that at any
orientation, the device reported a value as close as possible to the local gravity (|g|).

We found that the best calibration results were obtained by concatenating the
results of each individual test together and then using the calibration terms from
that total test.

Figure 7.8 shows the same data as seen in Figure 7.7 after the device has been
calibrated with the calculated terms. It is worth noting that the data shown in
Figures 7.7 and 7.8 was not used to calculate the calibration coefficients.

We see in Figure 7.8 that the small dip observed at around 50 seconds in Figure
7.7 has disappeared. Also we can see that the total measured acceleration is now
slightly less than 10.0m-2, as we would expect. In Figure 7.9 we plotted the reported
accelerations on a sphere of radius 9.80667 ms−2, the approximate theoretical accel-
eration due to gravity at the latitude of Dunedin, according to the 1984 Ellipsoidal
Gravity Formula [51],

g(φ) = 9.7803253359

[
1 + 0.00193185265241 sin2(φ)√
1− 0.00669437999013 sin2(φ)

]
, (7.10)
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Figure 7.7: The accelerations reported prior to the calibration. Note how the total
acceleration appears to smoothly increase and decrease as the device is rotated.

where g(φ) is the predicted acceleration due to gravity at latitude φ.

7.2.3 Vibration Damping and Analysis

A large part of the difficulty involved with using inertial navigation is dealing with
system vibrations. That is not to say that there are no processes for dealing with
vibration noise, quite the contrary there are many useful and efficient approaches to
dealing with vibration noise.

When dealing with some amount of vibration noise there are some simple filters
which may easily be integrated, e.g. the moving-average or the low-pass filter.
Indeed the Kalman filter itself has a rigorous framework for dealing with noise such
as this. However some degree of physical isolation of the system from such vibrations,
when used in conjunction with signal processing will yield superior results than either
used separately.

For our vibration damping mount the Raspberry Pi was bolted to a 3D printed
base. The base then had 4 holes, through which commercially available ear plugs
were squeezed. The whole stack was then supported by the ear plugs, as seen
in Figure 7.2. Ear plugs are ideal for our purposes as they are readily available,
extremely cheap, and designed to damp vibrations. While it’s true that their main
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Figure 7.8: The measured accelerations after the calibration. Observe that the total
acceleration is now reasonably constant. It is important to remember that the data
shown was not used to calculate the calibration coefficients.
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Figure 7.9: Here the calibrated accelerations are plotted in three-dimensional space
along with a sphere of radius 9.80667 ms−2.
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purpose is the damping of vibrations in air, the same principles still apply.

For an initial test of the efficacy of the vibration damping the device was placed
on top of a computer stack while the computer was working at around 100% capacity.
The undamped vibrations are shown in Figure 7.10 (a).

(a) (b)

Figure 7.10: Undamped (a) and damped (b) accelerations measured on top of com-
puter running at ∼ 100%.

While the graphs shown in Figure 7.10 seem to indicate a significant damping
we wanted to ensure this effect was statistically significant. Before each test began,
code was run on the computer that would occupy as much of the CPU as possible
(specifically it was 3D rendering in OpenSCAD). The code was run for several min-
utes before each test to ensure that the computer was at a high enough temperature
so that the fan was running, thus ensuring similar vibrational conditions for each
test.

Five data sets for both the damped and undamped case were taken. Each of
these data sets consisted of approximately 9000 acceleration measurements, taken
on the same day, on the same computer. The device was placed at the same position
for each test.

Firstly we wanted to make sure, using the undamped data, that the vibration
environments for each test were reasonably similar and the vibrations did not differ
by a significant amount from test to test. To do this we looked at the sample
variances of the data. Below is a table for the sample variances of both the damped
and undamped tests.
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Variance Sample Length
Undamped1 0.01845214 10111
Undamped2 0.01777448 9456
Undamped3 0.01818243 9346
Undamped4 0.01841536 18643
Undamped5 0.01656852 9133
Damped1 0.001833 9180
Damped2 0.00157797 7316
Damped3 0.00182781 6227
Damped4 0.00234142 12145
Damped5 0.00216810 8104

As you can see the variances of the total acceleration for the undamped case
were reasonably consistent across samples with the mean variance being 0.01788 ±
0.00131. There was less consistency present in the damped results, however there is
clearly considerably damping. The mean variance in the damped data was 0.001907
± 0.000434. In terms of variance reduction, then, using the mean of the values
above, this constitutes an 89% reduction in variance due to vibrations.

The power spectrum of some of the data, shown in Figure 7.11, indicates the
effect of the damping on our results.

(a) (b)

Figure 7.11: The power spectral density of undamped (a) and damped (b) acceler-
ations measured on top of computer running at ∼ 100%. Note the reduction in the
height of the main peaks at 12.6 and 23.5 Hz by almost a factor of ten.
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While this experimental setup was largely improvised with the materials at hand
it does strongly suggest that the ear plug vibration dampeners offered a significant
reduction in acceleration vibration noise. A more rigorous test would involve a vibra-
tion source capable of vibrating through a wide range of frequencies and comparing
the performance of the damped and undamped systems. However the priority for
this project was the larger task of implementing the sensor fusion algorithms in the
system. A useful contribution in future would be to more rigorously analyse the
possible benefits from an ear plug vibration damping mount.

7.3 Stationary Results

Angle estimation is a critical part of the inertial navigation system. Without
accurate angle estimation the acceleration vector can have an incorrect magnitude
and or direction. This could lead to a combined GPS/INS system that produces
worse navigation results than GPS alone.

A useful way of parameterising the minimum error in an inertial navigational
system is to look at a system where the position, velocity and acceleration are well
known and use these to tune the filter accordingly. The simplest situation with
a known acceleration, and velocity is, naturally, to have the net acceleration and
velocity equal to zero.

Stationary data were taken from the vehicle (2001 Subaru Legacy station wagon)
in a parking space. Data was taken for more than an hour to ensure that the position
was accurately known, and that plenty of inertial data was available for tuning.
During this time the vehicle was running, to provide a minimum process noise for
the inertial navigation. By comparing the variances in the inertial measurements
with the measurement noise of the devices, calculated during the calibration process
in Section 7.2, we were able to obtain a minimum estimate for the inertial process
noise due to the vibration of the vehicle.

In the next section we describe an experiment where the same circuit is driven
around Dunedin multiple times. The data gathered during these circuits is then
filtered using the algorithm outlined in Chapter 6. Before each circuit was driven
the vehicle was stationary for at least 30 seconds. Using the process noise estimated
from the hour long test, we filtered the data from this stationary period to ensure
that the output angles were sensible and reproducible.

In Figure 7.12 we see the initial pitch estimation from three separate data sets,
where each data set is taken from the same parking space. Each data set is plotted
within a 68% confidence interval. The effect of more measurements is easily seen as
the large prior uncertainty shrinks as more measurements are made.

The estimated pitch angles of the three data sets agree to within 0.003 radians,
or 0.17 degrees, of each other. The 68% uncertainty in pitch estimation after 30
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(a)

(b)

(c)

Figure 7.12: All three figures show the pitch (θ) estimation and 68% confidence
interval. The data was taken from the same parking space, on three different occa-
sions. Note how the confidence interval begins at the larger prior assumption and
then reduces as more measurements are made.
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seconds for these tests was approximately ±0.0015 radians. This means that the
confidence intervals overlap with each other. Given the slight variations in wheel
placement over a given park we believe these values to be in fair agreement with
one another.

We also looked at the roll estimation while stationary. In Figure 7.13 we see
the estimated roll angles, again, within 68% confidence intervals. After 30 seconds
of measurements the three roll angle estimations are within 0.006 radians, or 0.34
degrees, of each other. This is approximately twice the difference observed in the
pitch estimation. Given that the parking space is on relatively flat ground, with a
gutter, there is likely to be more variation in the roll angle for a given park within
the space, than there is pitch variation.

The 68% uncertainty in roll estimation was approximately ±0.0004 radians. This
is significantly smaller that the uncertainty of ±0.0015 radians for the pitch esti-
mation. The source of this larger uncertainty can be found in the measurement
equations used for the three axis accelerometer,

h(a) =

aRaF
aU

 =

 −g sinφ− ωzvF
aT

g cos θ cosφ+ ωxvF

+

vRvF
vU

 .
Note that the rightwards facing accelerometer measures aR = −g sinφ − ωzvF .

Both the forwards speed (vF ), and the upwards facing angular velocity (ωz) are
measured directly. This allows us to use the information from the rightwards facing
accelerometer to accurately estimate the roll (φ) term. However the only term in
our accelerometer measurement equation that is dependent on the pitch (θ) is the
measurements from the upwards facing accelerometer, which also relies on the roll
term. Therefore there is more information available about the roll term, and so the
uncertainty decreases more quickly than for the pitch estimation.

As mentioned in Equation 6.1 we could have expressed the measurements from
the forwards facing accelerometer as the following,

ameas = aF + g sin θ cosφ.

We then could have defined aF to be zero for this stationary test to obtain a superior
estimate of the pitch angle. However we chose to prioritise the estimation of driver
input while driving, over the estimation of pitch angle while parked.

The roll estimation is also aided by the small angle approximation, which says
the following for small angles,

sinx ≈ x, cosx ≈ 1− x2. (7.11)

Therefore, any acceleration due to a small roll angle will result in an accelerometer
measurement that is proportional to the roll angle. However, any acceleration due to
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(a)

(b)

(c)

Figure 7.13: Just as in Figure 7.12 all three figures show the angle estimation, in
this case roll (φ), within a 68% confidence interval. The data was taken from the
same parking space, on three different occasions.
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a small pitch angle will result in an accelerometer measurement that is proportional
to the square of the pitch angle, and so a much smaller signal to identify within
the noise. However we believe that angle estimation to within 0.4 degrees should be
sufficient for our purposes.

With the inertial noise floor estimated, and the angular estimation software
operational we are able to begin the combined GPS and inertial navigation discussed
in the following section.

7.4 Experiment

One of the main aims of this project was to improve vehicle navigation by com-
bining GPS, accelerometer, and gyroscope measurements. In order to accomplish
this we required real-world data to analyse.

To test our filtering algorithms against each other and against the raw data
we drove a circuit around Dunedin while collecting data. To ensure that the data
was repeatable the circuit was driven ten times. From this data, six circuits were
randomly chosen to be used to estimate the noise present in driving and tune the
filter. The filter was then tested with data from the remaining four data sets.

Figure 7.14 plots the circuit that was used for our experiment, with the raw GPS
data from our test rig, which was sampling at 1Hz.

From Figure 7.14 it is clear that just GPS data does a reasonable job of position
estimation. Indeed for the straight sections, particularly the long section on the left
hand side of the circuit, one can tell which lane the vehicle was in (for concerned
readers that street is a two lane, one-way street).

However there is room for improvement. In Figure 7.15 we see a zoomed-in view
of the circuit at the point of a hairpin bend. Plotted are three separate GPS tracks
around the corner, we can clearly see that the GPS data has trouble accurately
measuring position when the vehicle is undergoing large changes in direction.

Furthermore, as we have mentioned previously if a GPS unit does not have line
of sight to a minimum of four satellites, it cannot get any new data. In the following
section we demonstrate the effects of a simulated loss of signal by removing the GPS
data for short intervals and compare the performance of an integrated system versus
a system that solely relies on GPS data.

7.5 Simulated GPS outages

A large motivation for this project was to create a navigation system that could
bridge short GPS outages by using accelerometer and gyroscope based inertial nav-
igation. Therefore using the data from the experiment we simulated a total loss of
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Figure 7.14: The circuit began on the lower right-hand side of the map and was
driven anti-clockwise. After the 90o right hand turn near the center of the image
the map ascends a hill, before reaching the peak and beginning the descent at the
sharp left hand turn at the top right of the circuit. Note that this is a plot of the
raw GPS data, not the filtered data.
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Figure 7.15: The raw GPS data from three different circuits is shown here. In all
three cases one can clearly see that the unaugmented GPS data has trouble when
a vehicle changes directions quickly around sharp corners. Note that from this
perspective the vehicle enters from the left hand side, driving on the left hand side
of the road up to the top of the image.
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GPS signal for various intervals and compared the filters using just GPS and GPS
and IMU data to see the effect of the outage on position estimation.

In Figure 7.16 we see the results of a GPS based navigation system losing satellite
signal for fifteen seconds. As it has no redundancy system, in the event of total GPS
signal loss the only courses of action are either assuming no position change (i.e. stay
at the last estimated latitude and longitude until a new fix is available), or assuming
no state change (i.e. keep the same velocity and heading and update latitude and
longitude accordingly until a new fix is available).

Figure 7.16: A fifteen second loss of GPS signal was simulated. The blue track shows
the results from a solely GPS-based navigation system, operating on the assumption
of a constant speed and heading between samples. The red track is the GPS signal
with the fifteen seconds of data removed.

In Figure 7.17 we see the results of the same loss of GPS signal as used in Figure
7.16 when using a combined GPS and inertial navigation system.

As you can see in Figure 7.17, the combined GPS and inertial navigation system
compensates for the short term loss of GPS signal reasonably well. The system
shows the vehicle turning a corner, although running slightly wider than the true
corner. The points shown in Figure 7.17 for the combined system is the estimated
position shown every second. The GPS device used is able to take measurements
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Figure 7.17: The same fifteen second simulated GPS signal loss but with an inte-
grated GPS and IMU system. The combined system with the simulated signal loss
is the blue path while the red path is the original GPS signal.
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every second and these are plotted with the fifteen second gap removed from the
measured data.

To best compare the combined and solo GPS navigation systems we plotted
the performance of both in Figure 7.18. We see in Figure 7.18 that the combined
system clearly deals with the loss of GPS signal better. We naturally analysed the
performance of the filter for different test cases and different data sets to ensure that
the performance as seen in Figures 7.16 - 7.18 was not an isolated case of superior
performance. Another example of this is shown in Figure 7.19.

Figure 7.18: Both sets of data here had the same fifteen second period of GPS
measurements removed to simulate a loss of GPS signal. The track in blue shows
the results of such a loss of signal on a GPS-only navigational system while the
track in red shows the results of such a loss of signal on a combined GPS and IMU
navigational system.

The combined inertial navigation and GPS filter also performed well in the pres-
ence of linear accelerations in the absence of GPS signals. In Figure 7.20 we see
the results of a fifteen second simulated loss of GPS signal just before the vehicle
began braking for a traffic light. While the combined system (shown in blue) does
overshoot slightly in terms of the stopping position it far out-performs the filter
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Figure 7.19: The effects of losing signal at another corner. Again the GPS mea-
surements used by the filter are plotted in blue, while the filter output is plotted in
red.
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based solely on GPS measurements, shown in green in Figure 7.20.

Figure 7.20: The filter loses GPS signal for fifteen seconds just as the vehicle is
braking for a set of traffic lights. The path in blue is the combined GPS and inertial
navigation filter, the path in green is the results of a solely GPS-based system.

While we were pleased with how the system performed without GPS, it is clearly
not perfect. The filter appears to perform worse when accelerating quickly or cor-
nering sharply as shown in Figure 7.21 where the vehicle was travelling downhill
and navigating sharp corners.

While the results thus far have seemed reassuring a quantitative measure of
filter performance during GPS outages has been missing. We will endeavour to
show the quantitative benefit of using a combined GPS and IMU model by varying
the outage duration at various points and observing how far the filter was from the
first GPS measurement after the outage. We will compare the combined GPS and
IMU filter against a GPS only filter that assumes constant velocity and heading.
We will compare the filters across areas with sharp corners, shallow corners, and
no corners to determine the what benefits a combined system has across a range of
terrains. For brevity we simply look at the horizontal error rather than heading,
velocity or altitude errors, as the horizontal error is the most important for our
vehicle navigation problem.

In Figure 7.22 we see the horizontal error present in a combined GPS and inertial
navigation system and a solely GPS-based system that assumes constant heading
and speed between GPS measurements. The x axis in Figure 7.22(b) is the outage
time in seconds, and the total distance covered over that outage is shown in Figure
7.22 in red.
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Figure 7.21: When undergoing hard cornering or large accelerations the filter has
some difficulty correcting quickly enough. As seen during this 30 second interval.
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(a)

(b)

Figure 7.22: (a) The route cutout for the maximum output. Note the initial 90o

corner as well as the later corner. (b) The error in latitude and longitude (m) in
blue, the horizontal distance the outage covers in red and the horizontal error in a
system that only uses GPS and assumes constant heading and speed between GPS
measurements in green.
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The route shown in Figure 7.22 involves two sharp corners and one shallow
corner. As we can see from Figure 7.22(b) the error in the system based solely on
GPS measurements is, predictably, larger than that of the combined system. In fact,
it is also significantly larger than the distance covered over the blackout, i.e. in this
instance it would have been better to only rely on the GPS measurements and not
assume that the vehicle maintains speed and heading between measurements.

The route covered in the cutout in Figure 7.23 is dominated by one long, shallow
corner. Thus, so we would expect the system that only uses GPS measurements to
perform better in this cutout than in Figure 7.22, and indeed that is what we see in
Figure 7.23 (b). In this case there is approximately equal error in assuming constant
speed and heading during the outage versus assuming that the vehicle is simply at
the last measured data point. However, as in Figure 7.22, the combined GPS and
inertial navigation system has superior performance to that of a system that only
uses GPS measurements.

During the GPS outage shown in Figure 7.23 there were a series of three speed
bumps, which can be seen in the cutout distance as gradient changes as the vehicle
slowed down for the speed bump and then accelerated afterwards. These variations
in speed caused the GPS-only system some difficulties, however, as the changes in
speed were not very large and quite symmetric the performance of the GPS-only
system was still similar when compared to outage distance.

Finally Figure 7.24 shows the effect of a GPS cutout where there are no corners in
the outage period. Again we would expect that the GPS-only system would perform
better than previously, and again that is what we see. Indeed for outages of up to
25 seconds the assumption that the vehicle is maintaining speed and heading has
less error than assuming that the vehicle is stationary at the last measured position.
However, at this point in the route the vehicle stopped for a traffic light, and thus
the assumption of constant speed and heading still produced considerable errors.
We can see that the combined system again had superior performance against the
GPS-only system, even in a situation where the GPS-only system should perform
well.

So we can see that in the event of GPS outages the combined GPS and inertial
navigation system out-performs a solely GPS-based navigation system. Whether
that system assumes constant speed and heading between measurements or only
uses measured data and makes no assumptions. The bridging of short-term GPS
outages is especially useful for vehicles operating in urban areas that can be affected
by urban canyons and lose GPS signal for short periods of time [60,61].
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(a)

(b)

Figure 7.23: (a) The route cutout for the maximum output. Note the smooth,
shallow corner covered during the maximum outage. (b) The error in latitude and
longitude (m) in blue, the horizontal distance the outage covers in red and the
horizontal error in a system that only uses GPS and assumes constant heading and
speed between GPS measurements in green.
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(a)

(b)

Figure 7.24: (a) The route cutout for the maximum output. Note that for the entire
cutout there are no corners and during driving the vehicle did not change lane. (b)
The error in latitude and longitude (m) in blue, the horizontal distance the outage
covers in red and the horizontal error in a system that only uses GPS and assumes
constant heading and speed between GPS measurements in green.



Chapter 8

Conclusion

This project investigated the use of different models to extract better information
from single frequency GPS devices. The first approach to this was to investigate
the fit of different noise models to the noise in single-frequency GPS. The second
approach was to use sensor fusion techniques to combine GPS and inertial sensors
to provide better vehicle navigation solutions.

In Chapter 3 we analysed the noise observed in GPS signals from two different
types of devices, using data taken from four locations, at various latitudes. Using the
Akaike Information Criterion (AIC) we compared the goodness of fit of each of our
proposed noise models. We found that for both devices, and across every location,
that the independent, identically distributed Gaussian (i.i.d. Gaussian) noise model
was the worst fit to the data out of all of the candidate models. We found that the
higher order autoregressive or mixed autoregressive, moving average noise models
provided the best fit to the data. Following this, in Chapter 4 we demonstrated how
one might filter GPS data using the Ornstein-Uhlenbeck noise model, a model that
fit the empirical data better than the i.i.d. Gaussian noise model.

In Chapter 6 we defined a realistic vehicle model that was implement in Chapter
7. By placing constraints on the possible movements of the vehicle (no tyre slip,
and the vehicle was always in contact with, and perpendicular to, the road) we
were able to introduce redundant measurements in our system, and so decrease the
uncertainty in our state estimation. When implemented, our vehicle navigation
algorithm allowed a real-time estimation of driver input, and proved able to bridge
short-term losses of GPS signal by inertial navigation.

8.1 Noise models for GPS data

Previous work has mentioned the problem of time dependent noise in single
frequency GPS units [3–5]. We investigated the noise present in GPS measurements
and compared the fit of several time dependent noise models to the observed noise.
We compared the performance of noise models proposed by others, as well as the
Ornstein-Uhlenbeck model, which we believe is a novel addition to the literature.
Measurements were made at four locations using two different types of GPS device.
The results of these were used as data to compare the relative performance of the
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models within our candidate set.

The confirmation of the work of other authors, and of anecdotal evidence from
our own previous work with GPS data would have justified the experiment per-
formed in Chapter 2, without any further goals. However, during the process of
the experiment we realised that the autoregressive models provided a convenient
noise model that performed significantly better than the i.i.d. Gaussian model and
allowed for simple parameter estimation and filtering.

In Chapter 4 we showed how to incorporate an autoregressive process of arbitrary
order into a standard Kalman filter for further state estimation, however in order
to implement such a system a constant sampling period would be needed. Such
constant sampling GPS units are very common and cheaply available (the GlobalSat
BU-353 used in this thesis was less than $US30). However we also showed the results
of filtering using the Ornstein-Uhlenbeck noise model, which can easily filter GPS
data with non-constant sampling periods, for example, GPS units that sample from
a warm start rather than a hot start.

8.2 Added benefit of using inertial navigation

We saw in Chapter 7 that a modern GPS unit sampling at 1Hz can accurately
plot the path of a vehicle. However by combing a GPS and inertial measurement
unit (IMU) we demonstrated that we can bridge short-term outages in the GPS
signal by relying on inertial navigation. This is a very relevant problem to solve as
such outages are common when navigating through areas with imperfect skyview,
either because of local geography, foliage, or urban canyons. The addition of the
IMU requires a nonlinear filter and therefore more computational time, however
we believe that these costs are more than outweighed by the navigational benefits.
As inertial sensors and processors become cheaper and more readily available such
filtering will be easily implemented on various hardware platforms. The reader’s
smartphone almost certainly has the required sensors and processing power to run
the navigation algorithms used in Chapter 7 to improve their own navigation.

A substantial part of Chapter 7 was dedicated to using inertial navigation to
bridge short term outages in the GPS signal. This work is particularly applicable
for use in inner-city navigation where urban canyons can temporarily disrupt the
line-of-sight to the GPS satellites. As shown in Chapter 7 our system can cope
with sharp cornering, and linear accelerations during periods with no GPS signal.
Therefore if a vehicle loses GPS signal while driving in the city our system can
tell if it turns a corner, or accelerates. Given the prevalence of GPS navigation in
large cities we believe that such an application could be extremely useful for both
commercial and private applications.
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8.3 Future Work

There were several areas that we looked into that we feel merit further investi-
gation. In the context of fitting noise models to GPS noise we only had access to
limited amounts of data. While every effort was made to ensure the general appli-
cability of our results a valuable area of future work would be to gather significantly
larger data sets from across the globe and by applying the same selection criteria
and time series modeling as detailed in Chapter 2 one could demonstrate with strong
certainty which noise models fit the errors seen in GPS signals across the globe.

In Chapter 4 we proposed a way of filtering moving GPS data using an Ornstein-
Uhlenbeck noise model. Unfortunately we did not have time to investigate this idea,
however given the two main aims of this thesis, this would be a natural extension
to the work herein described.

Later in Chapter 5 we introduce the idea of inertial navigation with the example
of position estimation using accelerometer measurements in an elevator. We believe
that this example could easily be expanded to provide a useful lab experiment for an
undergraduate course. It combines data collection, filtering, and model creation in
a very intuitive and familiar way. Also the required materials are readily available
in most (multi-story) physics or engineering buildings.

We mentioned in Chapter 6 that GPS devices report the number of satellites
being used by the device and also the Dilution of Precision (DOP) values associated
with their current positions in the sky. Using this information to create a dynamic
covariance matrix, designed for moving vehicles that is capable of increasing and
decreasing the covariance depending on the satellites positions would be a useful
contribution to the literature. However such an experiment would require a moving
platform with a precisely known position, an experimental setup that we did not
have the time to implement.

Another valuable contribution to this project would be to integrate the vehicle
navigation algorithm with accurate street maps. By assuming that while the vehicle
was in motion it was on a road, a minimization algorithm could be used to place
it at the most likely road. The inclusion of accurate street maps with the algo-
rithm could, theoretically, further improve the accuracy of the algorithm, especially
when operating without GPS signal, where the uncertainty in the position can grow
quickly.

Our initial intention with the nonlinear filtering described in Chapter 6 was
to write the nonlinear model in such a way that it could be filtered by either an
Extended Kalman filter (EKF) or an Unscented Kalman filter (UKF). The results of
these two could then be compared against each other in terms of filter performance
and computational expense. However when filtering larger data sets we ran into
problems maintaining positive definite matrices when filtering with the UKF and
so the results presented in Chapter 7 are solely those obtained by the EKF. There
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is reason to suspect that the UKF would provide superior filter performance for
more nonlinear aspects of the filtering process [23, 26]. Given this implementing a
version of the UKF which maintained positive semi-definiteness would be a valuable
contribution to the work of this project.
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A.1 Papers and Conferences

During this project a large effort was made to present work and interact with the
larger academic and industrial communities. As such the author presented parts of
the thesis at three separate conferences and workshops, the IEEE Instrumentation
and Measurement Workshop (2014), ENZCon 2014, and The 6th International Con-
ference on Automation, Robotics and Applications (ICARA 2015), the conference
papers of which were peer reviewed and are available online at the databases for the
separate conferences.

During the course of this project the author was also involved in other events
for general collaboration with the various post graduate student communities. One
such event was the JENESYS 2.0 program, a cultural exchange where a group of
students from New Zealand received sponsorship from the Japanese government to
go to Japan to visit industrial sites, university laboratories and stay with local host
families.

Another such event, slightly closer to home, was the inaugural Electro-Hui be-
tween the Victoria University Engineering faculty and the University of Otago,
Electronics Research Group. This event was conceived as a slightly more infor-
mal conference for postgraduate students from each of the universities to present
their research to fellow students.

During the course of this project the author also helped write two papers, of
which the first has been submitted to the peer-reviewed “GPS Solutions” journal.
The second paper is still being worked on before submission.

A.2 Open source note

Throughout this project a concerted effort to only use open-source software was
undertaken. This was done in an effort to support the numerous open-source projects
that have sprung up in recent years.

While MatLab is an extremely popular tool in some areas of programming an
modeling a license can be expensive for institutions or individuals. By far the
majority of the programming in this project was done in Python, often using the
NumPy, SciPy and MatPlotLib packages which provide much of the functionality of
MatLab including ode and pde solvers, vector and matrix operations, various inbuilt
filters and the ability to easily make customisable figures and plots.

The electronic design automation (EDA) program EAGLE will be familiar to any
readers familiar with designing and building printed circuit boards (pcb’s). In recent
years the EDA program KiCad has become widespread enough that the software now
has a large, dedicated team which have provided a free program with functionality
that is comparable to EAGLE. KiCad offers many similar tools to EAGLE, including
a schematic editor, PCB layout program (with 3D view), footprint selector, etc.
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Furthermore the support structure for the eventual unit was designed in Open-
SCAD, an open-source application for creating 3D CAD objects. Unlike applications
like SolidWorks which are interactive modelers OpenSCAD is a textual description
language which is written in a very similar way to how one might write a piece of
code in C or Java. This makes models very easy to modify and adapt to different
requirements or parameters.

The hardware used in this project of an Arduino plate and Raspberry Pi base,
combined with accelerometer, gyroscopic and GPS sensors. The sensors constituted
the only major break with the open-source effort of this project as, given the low cost
of most common sensors and the high costs involved in developing and producing
them, an open-source alternative to the current commercially driven options is, at
the very least, a long way away. Alternatively the Arudino Alamode plate which
communicated between the Raspberry Pi and the accelerometer and gyroscope, like
all Arduino products the Alamode is open-source hardware and freely available on
the Arduino website. The Raspberry Pi was originally developed by a team based at
the University of Cambridge who were disappointed in the decline in numbers and
skill of the students applying to read Computer Science. While the current iteration
of the board is not open-source hardware, the schematics for previous editions of
the board are available on the Raspberry Pi website.
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A.3 Rotation formalisms

A.3.1 Rotation Matrices

When performing a rotation on a vector the most familiar method to the majority
of people is the rotation matrix. A rotation matrix is characterised as an orthogonal
matrix with real entries and a determinant of 1. Sometimes improper rotation ma-
trices with determinants of -1 are included, however these combine proper rotations
and reflections which are not possible with a rigid physical object and so will be
ignored for the rest of this thesis.

Being orthogonal matrices the transpose of a rotation matrix is the inverse of
that matrix and so represent the same rotation in the opposite direction.

RT = R−1. (A.1)

Combining subsequent rotations is a simple matter of multiplying the two rota-
tion matrices.

R3 = R2R1. (A.2)

However it is worth noting that rotations are not commutative, i.e. the order of
rotation matters. Therefore, in general,

R2R1 6= R1R2. (A.3)

When using rotation matrices to convert some vector x from reference frame B
to reference frame E we will adopt the following convention.

xE = RE
BxB. (A.4)

Where the reference frame that the vector x is in is denoted by its superscript.
The subscript of the matrix denotes the reference frame x is being transferred from
and the superscript of the matrix denotes the reference frame that x is being trans-
ferred to.

Rotation matrices are a familiar, easy-to-use method for transforming between
reference frames. However the 3D rotation group SO(3) only has three degrees
of freedom and so the rotation matrix has six redundant entries. Another way of
rotating three-dimensional vectors is by quaternion multiplication.

A.3.2 Quaternion Rotations

The quaternions are a hypercomplex number set which were first described by
William Rowan Hamilton in 1843. While standard complex numbers just have one
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imaginary index, usually denoted i, quaternions have three, denoted i, j, k. For
example, a general expression for a quaternion (q̄) is given below.

q̄ = a+ bi+ cj + dk. (A.5)

Just as you multiply complex numbers using the identity ii = −1, you multiply
quaternions with the following identities.

i2 = j2 = k2 = ijk = −1

ij = k, ji = −k,
jk = i, kj = −i,
ki = j, ik = −j.

(A.6)

From the identities above it is clear that quaternion multiplication, like the
multiplication of rotation matrices, is non-commutative.

Below is a worked example of quaternion multiplication, denoted by the ⊗ sym-
bol.

(a1 + b1i+ c1j + d1k)⊗ (a2 + b2i+ c2j + d2k) =

(a1a2 − b1b2 − c1c2 − d1d2)+
(a1b2 + b1a2 + c1d2 − d1c2)i+
(a1c2 − b1d2 + c1a2 + d1b2)j+

(a1d2 + b1c2 − c1b2 + d1a2)k.

(A.7)

Importantly for our purposes the group of unit quaternions can span the hyper-
sphere of the 3D rotation group SO(3). This can easily be seen when viewed in
the context of Euler’s formula and Euler’s rotation theorem. According to Euler’s
rotation theorem any rotation or series of rotations of a rigid body or coordinate
system about a fixed point is equivalent to a single rotation by an angle, known
as the Euler angle (θ) around a fixed axis, known as the Euler axis and typically
represented by a unit vector (û).

Euler’s formula allows us to express a complex number as a complex exponential.
Likewise we can also express a quaternion as a hypercomplex exponential as shown
below,

q̄ = e
θ
2
(uxi+uyj+uzk) = cos

(
θ

2

)
+ (uxi+ uyj + uzk) sin

(
θ

2

)
, (A.8)

= cos

(
θ

2

)
+ û sin

(
θ

2

)
, (A.9)
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Therefore by setting the Euler angle as θ and the Euler axis as the unit vector
û you can then represent the entire 3D rotation group.

Representing subsequent rotations is also simple in the quaternion framework,
if some rotation q̄1 is performed, followed by some rotation q̄2 then the effective
quaternion rotation is just q̄3 = q̄2q̄1, where the two rotations are multiplied using
quaternion multiplication. Then to take some 3D position vector (pB) and rotate
it with some quaternion (q̄EB) all that needs to be done is the following quaternion
multiplication,

pE = q̄EB ⊗ p⊗ q̄E−1B , (A.10)

where pE is the rotated vector, q̄EB is the rotation quaternion and q̄E−1B is the
conjugate quaternion of q̄EB. The only issue that remains is multiplying a vector of
length 3 and a quaternion of length 4. This is accomplished by setting the three
components of the position vector as the imaginary components of a quaternion and
setting the component of the quaternion to zero. With this done simply perform
standard quaternion multiplication on the new quaternion.

As a four dimensional vector the quaternion representation of a rotation is com-
putationally efficient. Also if renormalization is required due to numerical errors
this is more easily performed with a quaternion than a rotation matrix.

The manipulation of quaternions is not intuitive and so some text advocate
avoiding quaternions in order to make the navigation equations easier to follow,
therefore easier to spot mistakes [7]. We decided to instead define a quaternion class
in Python. This class included built-in methods for rotating a three-dimensional
vector, as well as quaternion multiplication, conjugation, normalization, etc. This
quaternion class then underwent thorough unit testing using hundreds of random
unit quaternions.

A.3.3 Quaternion Propagation over time

Just like any other rotation formalism the quaternion formalism must allow an
update to the transformation given some rotation. In the presence of some angular
velocity ω the quaternion q̄ is given below [49],

˙̄q = 0.5 q̄⊗ ω̄, (A.11)

where ω̄ denotes a quaternion with imaginary components ωx, ωy, ωz, and a real
component of zero.

For a slightly clearer description of Equation A.11 we can write out the quater-
nion multiplication as a matrix multiplication.
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˙̄q =


ȧ

ḃ
ċ

ḋ

 =


a −b −c −d
b a −d c
c d a −b
d −c b a




0
ωx
ωy
ωz

 . (A.12)

ȧ = −0.5 (bωx + cωy + dωz) ,

ḃ = 0.5 (aωx − dωy + cωz) ,

ċ = 0.5 (dωx + aωy − bωz) ,
ḋ = 0.5 (−cωx + bωy + aωz) .

(A.13)

A.3.4 Euler Angles

The Euler angles rotation formalism represents the rotation as three separate
rotations, about the three axes of the coordinate system. A positive rotation follows
the right-hand corkscrew rule. A rotation around the upward or z axis is called (γ),
the forwards or y axis is called (φ) and around the rightwards or x axis is called (θ).

We can write these rotations in the familiar form of the rotation matrices given
below.

Rx =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,
Ry =

cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 ,
Rz =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 .
(A.14)

Since rotations are not commutative we must specify the order or rotations. In
our case we adopt the common z-y-x order, (that is, first a rotation about the z axis,
then the y axis, then the x axis). This gives us the following composite rotation
matrix.

RB
E = RxRyRz. (A.15)

RB
E =

 cosφ cos γ cosφ sin γ − sinφ
− cos θ sin γ + sin θ sinφ cos γ cos θ cos γ + sin θ sinφ sin γ sin θ cosφ
sin θ sin γ + cos θ sinφ cos θ − sin θ cos γ + cos θ sinφ sin γ cos θ cosφ

 .
(A.16)
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In Equation A.16 the matrix rotates some vector from the E (East North Up) frame
to the B (Body) frame. The inverse rotation of a rotation matrix is simply the
transpose of the original rotation matrix, i.e.

RE
B = (RxRyRz)

T = RT
z R

T
yR

T
x , (A.17)

RE
B =

cosφ cos γ − cos θ sin γ + sin θ sinφ cos γ sin θ sin γ + cos θ sinφ cos θ
cosφ sin γ cos θ cos γ + sin θ sinφ sin γ − sin θ cos γ + cos θ sinφ sin γ
− sinφ sin θ cosφ cos θ cosφ

 .
(A.18)

For our purposes the system of Euler angle’s is an intuitive and convenient de-
scription of the rotation of the body frame with respect to the the ENU frame. These
angles may be familiar to the reader as pitch (θ), roll (φ), and yaw (γ). This does
allow a simple separation of the uncertainty in each rotation. So, in our situation
where we have a highly constrained system, the pitch and roll angles of our system
have much less freedom than the yaw angle.

Because our system is intended for terrestrial, road-going vehicles only we need
not concern ourselves with the problem of gimbal lock which can occur at high pitch
or roll angles. Simply put, if a road-going vehicle is approaching a pitch or roll angle
of 90o navigation may not be the primary point of concern.

A.3.5 Euler Angle propagation over time

An important part of any transformation formalism is the process of updating the
transformation given some frame rotation ω. We can calculate the rate of change of
each of the Euler angles by using the appropriate rotation matrices and the angular
velocity. The rates of change of the Euler angles given below will be denoted by dot
notation.

ω =

ωxωy
ωz

 =

θ̇0
0

+Rx

0

φ̇
0

+RxRy

0
0
γ̇

 . (A.19)

The equation given above can then be rearranged to give the following [49].

θ̇ = (ωy sin θ + ωz cos θ) tanφ+ ωx,

φ̇ = ωy cos θ − ωz sin θ,

γ̇ = (ωy sin θ + ωz cos θ) secφ.

(A.20)
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A.4 State Jacobian

T The following page shows the state Jacobian used in the filtering performed
in Chapter 7. Due to the size of the Jacobian the
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P
E
N
D
IC

E
S

dt



1
dt

0 0 (− cos θ sin γ + sin θ sinφ cos γ) 0 (sin θ sin γ + cos θ sinφ cos γ)vF sin θ cosφ cos γvF (− cos θ cos γ − sin θ sinφ sin γ)vF 0 0

0 1
dt

0 (cos θ cos γ + sin θ sinφ sin γ) 0 (− sin θ cos γ + cos θ sinφ sin γ)vF sin θ cosφ sin γvF (− cos θ sin γ + sin θ sinφ cos γ)vF 0 0 0

0 0 1
dt

sin θ cosφ 0 cos θ cosφvF − sin θ sinφvF 0 0 0 0

0 0 0 1
dt

1 −g cos θ cosφ g sin θ sinφ 0 0 0 0

0 0 0 0 1
dt

0 0 0 0 0 0

0 0 0 0 0 1
dt

+ (ωy cos θ − ωz sin θ) tanφ + ωx (ωy sin θ + ωz cos θ)

(
1.0

cosφ)2

)
0 1 sin θ tanφ cos θ tanφ

0 0 0 0 0 (−ωy sin θ − ωz cos θ) 1
dt

0 0 cos θ − sin θ

0 0 0 0 0 (ωy cos θ − ωz sin θ)
(

1.0
cosφ)

)
(ωy sin θ + ωz cos θ) tanφ

(
1.0

cosφ)

)
1
dt

sin θ(1.0/ cosφ) cos θ(1.0/ cosφ)

0 0 0 0 0 0 0 0 1
dt

0 0

0 0 0 0 0 0 0 0 0 1
dt

0

0 0 0 0 0 0 0 0 0 0 1
dt



.

(A.21)
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A.5 Individual Tag Results

Below are the AIC values for the individual tags used for the experiment de-
scribed in Chapter 3.

A.5.1 Dunedin (45.52oS) data set

Tag 3542326081 Data length: 1238

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 11092.71 10886.45 10779.6 10941.58 10855.54 10845.67
Lat∆AIC 313.11 106.85 0.0 161.98 75.94 66.07

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 11060.67 10912.88 10826.56 10954.82 10900.99 10888.11
Lon∆AIC 234.11 86.32 0.0 128.26 74.43 61.55

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 12341.17 12137.9 12057.95 12191.36 12147.34 12135.55
Alt∆AIC 283.22 79.95 0.0 133.41 89.39 77.6

Tag 3544164930 Data length: 1375

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 11286.75 11120.02 11044.63 11163.83 11108.23 11092.57
Lat∆AIC 242.12 75.39 0.0 119.2 63.6 47.94

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 10946.93 10741.41 10621.74 10809.81 10695.45 10693.64
Lon∆AIC 325.19 119.67 0.0 188.07 73.71 71.9

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 12098.08 11858.99 11744.27 11941.69 11834.57 11818.95
Alt∆AIC 353.81 114.72 0.0 197.42 90.3 74.68

Tag 3609997124 Data length: 1848

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(2,2)
Lat AIC 13623.2 13597.52 13542.65 13608.04 13599.53 13595.9
Lat∆AIC 80.55 54.87 0.0 65.39 56.88 53.25

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(2,2)
Lon AIC 13716.65 13703.76 13641.29 13711.86 13706.09 13696.22
Lon∆AIC 75.36 62.47 0.0 70.57 64.8 54.93
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Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(2,2)
Alt AIC 16255.52 16237.63 16117.98 16254.02 16247.41 16189.35
Alt∆AIC 137.54 119.65 0.0 136.04 129.43 71.37

A.5.2 North Stradbroke Island (27.25oS) data set

Tag 3609746981 Data length: 573

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 4679.77 4636.48 4545.11 4656.14 4619.19 4613.8
Lat ∆AIC 134.66 91.37 0.0 111.03 74.08 68.69

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 4544.51 4527.7 4475.35 4537.02 4533.26 4532.33
Lon∆AIC 69.16 52.35 0.0 61.67 57.91 56.98

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 5176.92 5158.1 5100.17 5167.88 5166.2 5161.5
Alt∆AIC 76.75 57.93 0.0 67.71 66.03 61.33

Tag 3610008640 Data length: 575

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 3965.18 3888.97 3828.13 3924.1 3897.52 3898.63
Lat∆AIC 137.05 60.84 0.0 95.97 69.39 70.5

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 4030.65 4003.54 3940.48 4015.31 3999.1 3994.98
Lon∆AIC 90.17 63.06 0.0 74.83 58.62 54.5

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 4757.7 4740.61 4684.76 4749.6 4746.36 4741.75
Alt∆AIC 72.94 55.85 0.0 64.84 61.6 56.99

Tag 3610192452 Data length: 575

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 5292.46 5481.42 5003.52 5249.71 5107.08 5084.17
Lat∆AIC 288.94 477.9 0.0 246.19 103.56 80.65

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 4500.34 4467.86 4379.18 4484.73 4440.82 4437.9
Lon∆AIC 121.16 88.68 0.0 105.55 61.64 58.72
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Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 5401.76 5316.29 5193.25 5350.29 5314.35 5265.21
Alt∆AIC 208.51 123.04 0.0 157.04 121.1 71.96

Tag 3610455108 Data length: 578

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 4148.89 4077.15 3984.51 4106.92 4068.04 4035.61
Lat∆AIC 164.38 92.64 0.0 122.41 83.53 51.1

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 4183.5 4109.81 4023.61 4138.92 4090.97 4079.44
Lon∆AIC 159.89 86.2 0.0 115.31 67.36 55.83

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 5006.14 4965.91 4866.34 4982.18 4956.12 4934.83
Alt∆AIC 139.8 99.57 0.0 115.84 89.78 68.49

A.5.3 Port Douglas (16.30oS) data set

Tag 3609746981 Data length: 811

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 6050.49 6032.31 5970.13 6041.24 6033.58 6028.26
Lat∆AIC 80.36 62.18 0.0 71.11 63.45 58.13

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(1,1)
Lon AIC 6150.6 6143.55 6079.36 6150.45 6143.35 DNC
Lon∆AIC 71.24 64.19 0.0 71.09 63.9920175622 DNC

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 6970.38 6961.18 6895.89 6968.89 6970.82 6968.16
Alt∆AIC 74.49 65.29 0.0 73.0 74.93 72.27

Tag 3610008640 Data length: 762

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 6612.04 6230.78 6112.03 6382.53 6243.2 6187.25
Lat∆AIC 500.01 118.75 0.0 270.5 131.17 75.22

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 6879.98 6618.51 6518.04 6668.21 6637.21 6599.62
Lon∆AIC 361.94 100.47 0.0 150.17 119.17 81.58
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Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 7018.38 6877.45 6792.35 6926.33 6879.25 6850.92
Alt∆AIC 226.03 85.1 0.0 133.98 86.9 58.57

Tag 3610192452 Data length: 804

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 5919.09 5799.67 5734.28 5833.93 5798.09 5791.57
Lat∆AIC 184.81 65.39 0.0 99.65 63.81 57.29

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 6189.34 6149.31 6059.82 6164.29 6141.26 6111.09
Lon∆AIC 129.52 89.49 0.0 104.47 81.44 51.27

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 6969.95 6945.8 6862.09 6955.77 6956.42 6953.33
Alt∆AIC 107.86 83.71 0.0 93.68 94.33 91.24

Tag 3610455108 Data length: 808

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 6682.24 6465.26 6222.8 6515.58 6364.8 6298.61
Lat∆AIC 459.44 242.46 0.0 292.78 142.0 75.81

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 5973.4 5951.56 5876.67 5961.67 5936.49 5927.27
Lon∆AIC 96.73 74.89 0.0 85.0 59.82 50.6

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 7037.01 7014.92 6906.62 7027.2 7007.93 6982.1
Alt∆AIC 130.39 108.3 0.0 120.58 101.31 75.48

A.5.4 Thursday Island (10.35oS) data set

Tag 3610008640 Data length: 574

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 3660.77 3485.05 3429.82 3540.87 3496.33 3477.35
Lat∆AIC 230.95 55.23 0.0 111.05 66.51 47.53

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 3498.08 3350.28 3282.48 3410.46 3338.71 3319.6
Lon∆AIC 215.6 67.8 0.0 127.98 56.23 37.12
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Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 4953.37 4755.87 4660.54 4834.73 4768.22 4728.39
Alt∆AIC 292.83 95.33 0.0 174.19 107.68 67.85

Tag 3610192452 Data length: 576

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(2,2)
Lat AIC 3538.82 3419.07 3339.12 3457.87 3403.31 3394.29
Lat∆AIC 199.7 79.95 0.0 118.75 64.19 55.17

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 3741.71 3649.24 3572.91 3684.28 3632.87 3616.19
Lon∆AIC 168.8 76.33 0.0 111.37 59.96 43.28

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 4649.21 4518.55 4419.77 4571.95 4510.57 4474.73
Alt∆AIC 229.44 98.78 0.0 152.18 90.8 54.96

Tag 3610455108 Data length: 570

Lat AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lat AIC 3976.65 3759.4 3685.04 3836.37 3771.12 3734.26
Lat∆AIC 291.61 74.36 0.0 151.33 86.08 49.22

Lon AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Lon AIC 4101.71 3822.61 3729.16 3942.0 3840.83 3789.45
Lon∆AIC 372.55 93.45 0.0 212.84 111.67 60.29

Alt AIC Gauss O-U AR(9) MA(1) MA(3) ARMA(3,3)
Alt AIC 4744.88 4616.79 4487.26 4666.16 4614.26 4556.42
Alt∆AIC 257.62 129.53 0.0 178.9 127.0 69.16


