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Abstract 
In southern New Zealand, many upland streams drain into large oligotrophic lakes 

surrounded by native grassland, low-intensity farming, and small urban centers.  Little 

work has been undertaken to determine the impact low-intensity development has on 

nutrient dynamics and microbial activity in these large lake systems.  Lake Wanaka, 

Central Otago, was chosen as a study site since the recent appearance of nuisance 

organic aggregates and changes in phytoplankton community structure suggest the lake 

is not in a steady state.  Research undertaken for this project included intensive 

sampling of tributaries to the lake during different seasons and hydrological conditions, 

following the path of two tributaries out into the lake, and laboratory-based 

experiments.  

In the Wanaka catchment, pasture cover correlated positively with stream dissolved 

organic carbon (DOC), total nitrogen (TN) and nitrate-nitrogen (NO3-N) concentrations.  

Nitrogen concentrations were not influenced by weather-related variables, but 

temperature and soil moisture mitigated the influence of pasture cover on surface water 

DOC concentration under very dry or wet conditions.  Neither land use nor weather-

related conditions correlated with total phosphorus (TP) or dissolved phosphorus (DRP) 

concentrations in streams, possibly reflecting good P-binding in soils, low-intensity 

agriculture in the catchment and/or lack of sampling during high flow events.  

Amending lake water with stream water in the laboratory did not influence the 

production of sticky polysaccharides (i.e. transparent exopolymer particles (TEP)), but 

enriching treatments with high concentrations of N and P increased TEP 1.7 to 9.3 times 

over unamended treatments.  Phytoplankton cell numbers, diatom abundance, and chl a 

also increased in response to nutrient-enrichment, and organic aggregates were visible 

in nutrient-enriched treatments within 6 days.    

In the field, the intermixing depth of a main river inflow varied under stratified and un-

stratified conditions, affecting where catchment-derived material was delivered in the 

Lake.  Nutrient and DOC concentrations in the Matukituki River were within range of 

the Lake, and the river plume was capable of stimulating phytoplankton growth in 

nearshore waters.  Despite similar bulk DOC concentrations, dissolved organic matter 

(DOM) character and lability differed between the River and the Lake.  DOM from 
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deep-sourced lake water contained more aromatic, refractory structures than shallower 

lake water or river water.  The river had almost double the number of organic sulphur 

compounds than the lake, including potential sulfonates.  The source of the S is 

unknown, but may be geologic in origin or reflect agricultural activity in the River 

catchment.   

In the laboratory, riverine bacterial communities could break down a diverse array of 

organic substances regardless of season, suggesting a consistent labile supply of DOM.  

In contrast, organic substrate use patterns in the lake were seasonal, and varied by 

depth.  Lake water amended with Matukituki River water stimulated bacterial 

respiration and uptake of DOC and P, but did not affect bacterial productivity, which 

may reflect limitations of the experimental design. 

My results indicate low intensity land use in grassland catchments affects nutrient flux 

and microbial processes in Lake Wanaka.  These data provide a foundation for future 

research on land development and microbial dynamics in similar large, oligotrophic 

lake systems. 
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1 Introduction 
Fresh water habitats provide a source of food, drinking water and energy.  Yet many 

anthropogenic activities that use freshwater sources also pollute waterways, impair 

water quality, degrade habitats and decrease biodiversity (Ongley 1996).  Over the 

past 40 years, gains have been made in controlling point-source discharges of 

pollutants into streams and lakes (US-EPA 2000, Davies-Colley 2013, Malaj et al. 

2014) but diffuse input of nutrients, contaminants, and sediments through runoff or 

subsurface flow remains a significant problem (Edmondson 1994, Carpenter et al. 

1998, Correll et al. 1999, Beeton 2002).  

Nitrogen (N) and phosphorus (P) are the most widely recognised nutrients in 

waterways, (Uchida 2000), and the dissolved inorganic components are the most 

bioavailable forms for plants (Reynolds and Davies 2001, Rabalais 2002).  In 

undisturbed systems, N and P are scarce and are tightly cycled (Gundersen and 

Bashkin 1994, Moss et al. 2013).  However, excessive inputs of N or P can disrupt the 

balance between nutrient inputs and nutrient cycling in aquatic systems (Lavelle et al. 

2005), leading to eutrophication of streams and downstream water bodies.  

Eutrophication prolongs and intensifies aquatic weed growth and can reduce habitat 

availability, cause volatility in dissolved oxygen levels, alter food webs and lower 

species diversity (Carpenter et al. 1998, Dauer et al. 2000).  Fertilizers and manure 

can facilitate eutrophication by creating a surplus of macronutrients in soils above 

what is necessary for plant growth (Carpenter et al. 1998).  This surplus is then 

available for input into water bodies via runoff, leaching, and infiltration to ground 

water.   

Like N and P, carbon is an essential nutrient present in all living organisms.  Both 

autotrophic and heterotrophic organisms require carbon (either as CO2 for autotrophs 

or in organic form for heterotrophs) for biosynthesis.  Organic carbon is frequently 

distinguished as either particulate (POC) or dissolved (DOC), where DOC is capable 

of passing through a 0.45- to 0.7-µm pore size filter.  The majority of organic carbon 

exported downstream is comprised of DOC, particularly in small, undisturbed 

catchments (Hope et al. 1994).  Dissolved organic carbon is derived from external 

(allochthonous) and internal (autochthonous) sources, yet the character of naturally 
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occurring DOC remains largely unknown, as its molecular composition is extremely 

complex (Kim et al. 2003, Gonsior et al. 2011, Mead et al. 2013).  In general, aquatic 

DOM sources, such as algal exudate, often contain high concentrations of freshly-

produced carbohydrates (Biddanda and Benner 1997), while terrestrially-derived 

DOM (tDOM) spans a continuum from relatively unaltered easily identifiable plant 

residues to strongly altered plant and animal material (Biddanda and Benner 1997).  

tDOM tends to contain a higher proportion of polymerised humic substances such as 

lignins and tannins (Benner 2004) or their soluble microbial degradation products.  

These humic substances are synthesised through decomposition and humification 

processes, and tend to be enriched in aromatic structures that are relatively recalcitrant 

(Johnson et al. 2009, Wagner et al. 2015).  In aquatic systems, allochthonous DOM 

can either be incorporated into the food web via the microbial loop (Pace et al. 2007, 

Solomon et al. 2011), or mineralised, resulting in the release of nutrients and CO2 into 

the water column, stimulating primary production (Solomon et al. 2015).   

1.1 Factors affecting the movement of nutrients and organic 
matter to downstream waterbodies 

1.1.1 Landscape characteristics 
Landscape characteristics such as soil conditions, vegetation cover and catchment 

slope influence the movement of nutrients and DOC into waterways (Farley et al. 

2004, Mark and Dickinson 2008, Wilson and Xenopoulos 2008).  Soil conditions such 

as drainage ability, mineral content, grain size, porosity, composition and compaction 

(Letey and Vaughan 2013), influence the ability of the soil to absorb water and adsorb 

nutrients and organic material.  High mineral content in soils leads to the formation of 

organo-mineral complexes that are resistant to microbial degradation, thereby 

reducing the amount of DOC available for export to waterways (Post and Kwon 2000, 

Bass et al. 2011).  Finely textured clay soils can strongly adsorb phosphate ions, while 

coarsely textured sandy soils are more inert and are less able to retain P (Busman et 

al. 2002).  Nitrogen leaching rates are also influenced by soil texture and soil moisture 

levels, with sandy soils particularly vulnerable to leaching due to large pore sizes and 

poor water retention (USDA 2001, Letey and Vaughan 2013).    

Overlying vegetation cover influences nutrient and organic matter concentrations in 

soils.  While soils beneath undisturbed grasslands and many forested systems 

(Davidson et al. 2004, Bond 2008) tend to be nutrient-poor, fertilizers, animal waste 
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and high plant productivity can increase the amount of N and P beneath pastures or 

crops.  Soils and subsoils can become C-enriched through increased plant productivity 

(Lambert et al. 2000, Hedley et al. 2009) or the build up of leaf litter (Beets et al. 

2002, Wilson and Xenopoulos 2008).  Poor soil management practices on farms, or 

root openings in forested systems, can improve flow paths, facilitating the movement 

of DOC into streams (Dalva and Moore 1991, Moore 2003, Wilson and Xenopoulos 

2008).    

Catchment slope also influences the movement of nutrients and DOC into waterways.  

Concentrations of DOC tend to increase on flat or gently sloping agricultural land 

where fecal and detrital material can be retained in the soil, while steeper slopes tend 

to have less soil organic matter (Lambert et al. 2000).  Steeper slopes also shorten the 

contact time between moving water and the upper soil horizons, reducing the 

movement of DOC into streams (Moore 1989, Lambert et al. 2000, Wilson and 

Xenopoulos 2008).  In contrast, in undisturbed catchments, nitrate (NO3) 

concentrations have been shown to increase in downstream water bodies with 

increasing slope (D'Arcy and Carignan 1997).  This is potentially because shallower 

slopes tend to have a higher potential for denitrification (Martin et al. 2004), which 

can reduce the amount of NO3 available for leaching into streams.  

1.1.2 Hydrological connectivity of the landscape 
Weather-related factors that affect the hydrological connectivity of the landscape also 

influence the movement of nutrients and DOM into streams.  The hydrological 

connectivity of the landscape is described as the water-mediated movement of 

material from terrestrial systems to downstream water bodies (Stieglitz et al. 2003, 

Freeman et al. 2007).  Nutrients and organic matter are transported to streams and 

lakes via runoff, subsurface flow and groundwater, and weather-related factors such 

as rainfall (Bass et al. 2011), soil moisture capacity (Wilson and Xenopoulos 2008) 

and snowmelt (Ågren et al. 2010) affect the movement of water through the 

catchment.  During dry periods, water may primarily move vertically from surface 

soils to subsoils, with lateral surface or subsurface flow occurring after significant 

rain events (Stieglitz et al. 2003).  The lateral flow of water through the catchment 

can increase NO3 and P concentrations in streams (Arheimer and Lidén 2000) as 

subsurface flow leaches N and soluble P from the soil, and surface runoff mobilises 

clay particles and metal hydroxides that can strongly adsorb P (Gustafsson et al. 
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2012).  High discharge events associated with rainfall can also increase DOC export 

significantly (Bass et al. 2011), although prolonged spells of high rainfall and runoff 

can result in hysteresis as water from the upper catchment dilutes downstream DOC 

concentrations (Meyer and Tate 1983).    

Small headwater streams play an important role in maintaining the hydrological 

connectivity of the landscape (Freeman et al. 2007, Wipfli et al. 2007).  In addition to 

controlling the quantity of water delivered downstream (Freeman et al. 2007, Mark 

and Dickinson 2008), these streams are small and shallow, resulting in a high benthic 

surface area to water volume ratio that allows for rapid in-stream uptake of nutrients 

(Dodds and Oakes 2008, Johnson 2008).  While nutrient concentrations tend to be 

very low in small streams draining undisturbed grassland catchments (Riley et al. 

2003, Niyogi et al. 2007), increasing in-stream nutrient concentrations related to 

anthropogenic activity can saturate the biota involved in nutrient uptake and 

processing (O'Brien et al. 2007) resulting in increased nutrient export downstream 

(Johnson 2008).  Anthropogenic development in headwater catchments can also 

influence the export of DOC to downstream water bodies (Quinn and Stroud 2002, 

Bass et al. 2011) by altering drainage patterns (Wilson and Xenopoulos 2008) and soil 

organic matter content (Lambert et al. 2000, Hedley et al. 2009). 

1.2 Nutrient enrichment in large lakes 
Downstream water bodies such as lakes act as sinks for incoming nutrients and 

organic matter from the catchment.  Over time, a lake naturally progresses from 

oligotrophic (low-productivity) to eutrophic (high productivity) as nutrients and other 

matter from the catchment are discharged into the lake.  Lake trophic status is 

determined by nutrient concentrations, primary productivity and water clarity (McColl 

1972).  Oligotrophic lakes are characterised by low nutrient concentrations, low rates 

of planktonic productivity and low sedimentation rates.  These lakes are clear and 

well-oxygenated, and exhibit ‘bottom-up’ control, with microbial nutrient-cycling 

playing a significant role in the flow of nutrients and organic material into the food 

web (Søndergaard et al. 1988).  Overall productivity and functioning in oligotrophic 

systems tend to be driven by benthic primary productivity (Vadeboncoeur et al. 

2002), the replenishment of carbon or nutrients from the hypolimnion back to the 

euphotic zone (Schallenberg and Kalff 1993) and terrestrial inputs (Bloesch 2004, 

McCallister et al. 2004).  
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Soil type (Arheimer and Lidén 2000), lithology (Rosen and Jones 1998), vegetation 

cover (Galbraith and Burns 2007), and human activity can influence lake trophic 

status and broader ecosystem functions (Abell et al. 2011a).  Even in large, deep lake 

systems where increased influx of external material from anthropogenic sources can 

initially be diluted by the lake (Abell et al. 2011a), the continual input of external 

energy can increase eutrophication and degrade water quality over time (Edmondson 

1994, Jassby et al. 2003, Scavia et al. 2014).  Well-known examples of rapid changes 

in lake trophic status include Lake Washington (Washington State, USA) and Lake 

Zurich (Switzerland).  In both Lake Washington and Lake Zurich, treated sewage was 

discharged directly into the lake, causing the lake to become P-enriched and 

stimulating blooms of the blue-green cyanobacterium, Oscillatoria rubescens 

(Edmondson 1994, Schanz 1994).  Diversion of treated sewage (Lake Washington) 

and construction of sewage treatment plants that included a phosphorus precipitation 

purification stage (Lake Zurich), resulted in a decrease in the density of Oscillatoria 

rubescens and an improvement in water clarity in both these lakes (Edmondson 1994, 

Schanz 1994).    

Shifts in lake water quality have also been recorded in large lakes such as Lake Tahoe 

and Lake Erie in the USA.  Lake Tahoe has experienced a significant loss of water 

clarity (a reduction of 6 m in 20 years) as a result of changes in algal species 

composition and abundance (Edgar 1999), with free-floating and benthic algal blooms 

occurring near highly developed areas along the shore.  These changes in Lake Tahoe 

are linked to increasing P inputs as a result of urbanisation along the shores of the lake 

(Schuster and Grismer 2004), as well as atmospheric deposition of N (Hatch et al. 

2001).  In Lake Erie, P enrichment increased phytoplankton biomass, particularly the 

presence of nuisance and eutrophic diatom species in the first half of the twentieth 

century.  As total phosphorus (TP) concentrations decreased between 1970 and 1983-

87, water quality in the lake improved from mesoeutrophic/eutrophic conditions to 

oligotrophic/mesotrophic conditions (Makarewicz 1993). 

1.3 New Zealand (NZ) lakes 
1.3.1 Characteristics and challenges 
New Zealand hosts a variety of lake types and sizes due to its active landscape, 

lithology, diversity of soil types and vegetation, and changeable maritime climate 

(Burns 1991).  Many New Zealand lakes do not follow classic patterns found in 
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comparable lakes from the northern hemisphere (White and Payne 1978, Vincent 

1983, Malthus and Mitchell 1989, Burns 1991).  For example, NZ lakes are generally 

warmer in winter and cooler in summer than northern hemisphere lakes, and tend to 

be poly- or monomictic, as opposed to dimictic (Malthus and Mitchell 1989).  New 

Zealand lakes also tend to exhibit deeper thermoclines in the summer than those in the 

northern hemisphere as high winds typical of New Zealand’s maritime climate help 

increase the depth of the mixing zone (Davies-Colley 1988).  

Some New Zealand lakes also differ from their northern hemisphere counterparts by 

exhibiting high algal biomass and phytoplankton productivity during winter mixing 

(White and Payne 1978, Vincent 1983, Bayer 2013, Bayer et al. 2015).  Usually, 

decreasing irradiance and water temperature during the winter months inhibit 

phytoplankton biomass and growth.  As irradiance increases in the spring, 

phytoplankton growth increases.  However, in several large New Zealand lakes such 

as Lake Taupo (Vincent 1983), Lake Wakatipu, Lake Wanaka (Bayer et al. 2015), 

and Lake Coleridge (James et al. 2001), algal biomass and algal production rise 

during winter mixing when light levels and temperatures in the mixed layer are 

lowest.  This increase in phytoplankton growth may stem from the replenishment of 

nutrients from deeper waters (Vincent 1983, Bayer 2013, Bayer et al. 2015), which 

may outweigh the inhibitory effects of cold temperatures and low light availability in 

these lakes. 

In general, New Zealand lakes have low overall total nitrogen (TN) concentrations.  

In lakes in the Taupo volcanic zone on the North Island, low nitrogen concentrations 

are problematic as weathering of rhyolitic pumice beds (Timperley 1983) contributes 

significant quantities of phosphorus to these lakes, resulting in low N:P ratios.  Low 

TN concentrations and N:P ratios can reduce the nutritional quality of phytoplankton 

(Checkley 1980) and promote cyanobacteria growth (Burns and Mitchell 1974, 

Malthus and Mitchell 1989, Edgar 1999).  Poor nutritional quality of phytoplankton 

has been linked to reduced egg production potential of copepods (Checkley 1980), 

and may help explain low zooplankton to phytoplankton biomass ratios found in 

many New Zealand lakes (Malthus and Mitchell 1989).  Low 

zooplankton:phytoplankton ratios mean more senescent phytoplankton cells are 

available to settle into the benthos, resulting in the increased sequestration of nutrients 

in the sediments. Thus, these New Zealand lake systems are highly susceptible to 
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“developing large internal loads of nutrients, which could result in increased 

sensitivity to accelerated eutrophication from any increase in external nutrient loads” 

(Malthus and Mitchell 1989). 

1.3.2 Water quality 
Compared with many other countries, New Zealand has good water quality, 

particularly in headwater areas adjacent to conservation land (Davies-Colley 2013).  

However, over the past 40 years, declines in water quality have been noted in New 

Zealand rivers and lakes as land development, particularly agricultural development, 

increases (Fish 1969, 1970, McColl 1972, White and Payne 1978, Vincent et al. 1984, 

Davies-Colley 2013).  Agriculture contributes significantly to New Zealand’s 

economy by generating jobs, creating export earnings and helping fuel rural and urban 

economies (Schilling et al. 2010).  As farming intensification and diversification into 

new crops increases, so do stocking densities, fertilizer usage, feed production and 

water usage, which can increase sediment and nutrient influx into streams and lakes 

via surface runoff and subsurface flow (Foote et al. 2015).  In 2010, 44% of 

monitored lakes in New Zealand were categorised as eutrophic to super-eutrophic, 

with trophic status increasing as pasture cover increased (Verburg et al. 2010). 

Long-term studies on several North Island lakes have highlighted the connection 

between land use, nutrient inputs and lake water quality.  A temporal comparison of 

changes in dissolved oxygen (DO) concentration in seven North Island lakes in New 

Zealand showed that DO decreased in at least six of the seven lakes from 1955 to 

1970 (McColl 1972).  The ratio of developed land to native forest or scrub in New 

Zealand lake catchments was closely related to the trophic status of these lakes, and 

the author predicted that if the percentage of exotic grassland, forest or residential 

development exceeded 45% of the total land area of a lake’s catchment, the lake could 

be in danger of becoming eutrophic (McColl 1972).  A later study by White et al. 

(1978) reported that one of the lakes in McColl’s (1972) study, Lake Rotorua, 

experienced anoxic conditions in its bottom waters for a period of 5 to 12 days during 

the summer months when conditions were calm.  As sediments in New Zealand lakes 

can support high internal nutrient loads, White et al. (1978) speculated that these 

anoxic bottom waters could result in significant nutrient releases (¼ to ½ of the total 

annual input from all other sources) from the sediments (White et al. 1978), although 

a separate study estimated lower release rates (3.6 mg m-2 d-' DRP and 11.4 mg m-2 d-' 
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instead of 250 mg m-2 d-' dissolved inorganic nitrogen (DIN)) (Fish and Andrew 

1980).  Anoxic hypolimnetic conditions were also reported for Lake Rotoiti (Vincent 

et al. 1984), with the hypolimnion remaining anoxic for 3-4 months of the year.  The 

authors also reported deteriorating water clarity and a shift in phytoplankton 

community structure since 1955, likely because of nutrient enrichment from upstream 

Lake Rotorua.  Prior to 1991, sewage from the city of Rotorua was discharged directly 

into the lake, and made up roughly 50% of total phosphorus (TP) and 25% of N 

loading to the lake (Caruso 2000, Rutherford 2003).   

Several large-scale studies have expanded on McColl’s 1972 study linking lake 

trophic status to land use, reporting a link between trophic status, the loss of native 

grasslands and the proportionate increase in pastureland in lake catchments (Burns 

and Galbraith 2007, Galbraith and Burns 2007, Abell et al. 2011b).  In a study of 101 

lakes sampled on the North and South Islands, the proportion of high producing 

grassland in the surrounding catchment was the best predictor variable of in-lake TN 

and TP concentrations (38.6% and 41%, respectively).  The proportion of exotic 

forest accounted for 18% of variance in TP concentrations in lakes, while urban 

development accounted for 3.7% of variance in TN (Abell et al. 2011b).  In a wide-

ranging study comparing 43 water bodies in Central Otago, New Zealand, Galbraith 

and Burns (2007) reported that lakes surrounded by pastureland had higher 

concentrations of N and P than those surrounded by native tussock, and that lake 

trophic status was associated with the proportion of the catchment modified by human 

activity (Burns and Galbraith 2007).  In their study, 31% of variation in the microbial 

biomass of a given lake could be explained by the water quality data, with higher 

concentrations of nutrients correlating with the proportion of the catchment developed 

for pasture. 

1.3.3 Lake Taupo: a case study 
Few large, deep lakes in New Zealand have undergone intensive monitoring of water 

quality.  However, Lake Taupo is one New Zealand Lake with well-documented 

changes in water quality.  Situated on the North Island, Lake Taupo is New Zealand’s 

largest oligotrophic lake (620 km2, 186 m deep), with low in-lake nitrogen availability 

limiting algal productivity (Petch et al. 2003).  The high water quality of the lake is an 

important amenity for regional tourism, which forms a substantial part of the local 

economy.  A decline in water clarity throughout the winter months since 1976 (Edgar 
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1999) and the occurrence of potentially toxic blooms of cyanobacteria (Anabaena 

spp.) in 2001 and 2003 raised concerns over the state of Lake Taupo.    

The decline in water quality in Lake Taupo is related to diffuse discharges of nutrients 

from agricultural run-off (Edgar 1999, Petch et al. 2003, Waikato 2007).  Historically, 

Lake Taupo’s catchment was covered in tussock grassland and native forest 

(Leathwick et al. 1995).  With the advent of European settlement, this native 

vegetation was replaced with pastureland and pine forests.  In the late 1990s, pastoral 

agriculture shifted from sheep and beef farming to dairying (Edgar 1999).  Over the 

past century, nitrogen loads exported to the lake are estimated to have increased from 

650 tonnes year-1 to 1200 tonnes year-1 (Waikato 2007), with inflowing stream N 

concentrations increasing between 50% and 300% since the 1970s (Petch et al. 2003).  

An increasing trend in chl a concentration (0.087 ± 0.029 mg chl a m -3 y-1) within the 

lake was also reported from 1994 – 2003 (Gibbs 2011). 

The difficulty in assessing land-water interactions in Lake Taupo stems from the long 

water residence time in the lake (11 years) and the lag time between increased nutrient 

inputs on the land and visible changes in the lake (Waikato 2007).  Over time, N and 

P applied to soils as a result of intensive agricultural activities (e.g. application of 

agro-chemicals and animal manures) would move either laterally via overland or 

subsurface flow to streams and rivers, or vertically through the surface soil horizons 

to the groundwater (Arheimer and Lidén 2000).  These nutrients can be stored within 

aquifers for decades before slowly moving into the lake.  Thus, the changes currently 

being detected in Lake Taupo likely reflect past, as well as present, land use patterns.  

This means that nitrogen concentrations will likely increase in the lake, even if 

nitrogen loading from the catchment were to be held at current levels (Waikato 2007). 

1.3.4 Central Otago lakes 
Over the past 600 years, vegetation on the South Island of New Zealand has shifted 

from native forests to tussock-dominated grasslands to increasing areas of agricultural 

and urban development (McGlone 2001).  Development in upland areas is relatively 

low intensity (Davies-Colley 2013), although studies on small lakes in the Central 

Otago region illustrate the impact even low-intensity development can have lake 

water quality (Burns and Mitchell 1974, Mitchell and Burns 1979, Bayer et al. 2008).  
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Lake Hayes and Lake Johnson are small (2.76 km2 and 0.2 km2, respectively) 

relatively shallow eutrophic lakes located in Central Otago.  In the 1950s, catchment 

land use around Lake Hayes was primarily pastoral farming (Burns and Mitchell 

1974).  Between 1952-53 and 1969-72, changes were noted in transparency (a 1.3 m 

reduction in mean Secchi depth) and dissolved oxygen (DO) concentrations in Lake 

Hayes (Burns and Mitchell 1974).  By the 1970s, bottom water was deoxygenated for 

more than 4 months of the year, which was a change from 1953-54 where these 

waters remained oxygenated throughout the summer (Burns and Mitchell 1974).  

Additionally, blooms of Anabaena flos-aquae were recorded in the lake between 1969 

and 1971(Burns and Mitchell 1974), which had not been reported during early work 

on the lake (Jolly 1952).  The changes suggested that Lake Hayes had become 

progressively more eutrophic since the 1950s.  A more recent study of Lake Hayes 

recorded low N:P ratios in the lake, with pronounced enrichment of P and TN in 

hypoxic hypolimnetic waters during summer stratification (Bayer et al. 2008) that 

mixed with epilimnetic waters when the thermocline broke down.  The authors 

speculated that P concentrations in Lake Hayes may reflect current and historical 

application of agro-chemicals, particularly superphosphate in the catchment, 

(Robertson 1988) as well as internal loading from anoxic sediments and the 

hypolimnion (Bayer et al. 2008).   

Although management practices have been put into place to reduce nutrient inputs 

into the lake, Lake Hayes continues to be classified as eutrophic (Otago Regional 

Council 2009).  This likely stems from continued inputs of nutrients via groundwater 

and the recycling of nutrients from the lake sediment as dissolved oxygen 

concentrations decline during summer stratification (Bayer et al. 2008).  Inputs of 

these nutrients to the lake have been associated with algal blooms and degraded water 

quality (Bayer et al. 2008) creating a positive feedback mechanism to stimulate 

productivity (Burns and Mitchell 1974).  A similar situation is apparent in Lake 

Johnson, where nutrients in the lake are recharged by groundwater seepage and 

temporary streams (Otago Regional Council 2009). 

1.4 Lake Wanaka catchment 
In the catchment surrounding Lake Wanaka (44° 42’ S, 169° 09’ E) (a large glacially-

formed sub-alpine oligotrophic lake located near the main divide of the Southern 

Alps), vegetation cover is predominantly grassland and forest (Table 1), with 
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approximately 11% of the catchment used for urban or agricultural development (Rae 

et al. 2001).  The catchment is mainly mountainous terrain, with more than 75% of 

the catchment considered moderately steep to steep (> 21° slope) (Livingston et al. 

1986).  Dominant soil types in the catchment include brown soils along steep 

hillsides, and pallic soils and recent fluvial deposits along valley floors (2016) (Figure 

1).  All three soil types in the region are formed from sedimentary greywacke schist, 

but drain differently, with brown soils and fluvial deposits draining reasonably well 

under moderate to high rainfall, and pallic soils draining poorly (Currie 2014).  

Nitrogen, P and OM concentrations in all of these soils are generally low (Leamy 

1966).  Brown soils have moderate P retention capabilities as the P binds with iron 

oxides in the soils, but these soils are likely to leach N as the soils drain freely (Leamy 

1966, Currie 2014).   

Table 1: Vegetation cover percentages for the catchment surrounding Lake Wanaka (based on 
2008 Landcover Database version 3). 

Vegetation Cover (%) 
Alpine grass/herb field 0.71 Exotic shrub land 0.16 

Broadleaved Indigenous hardwoods 0.68 Gravel and rock/landslide 8.35 
Urban 0.33 High producing exotic grassland 4.66 

Deciduous hardwoods 0.14 Lake and pond 7.67 
Exotic forest 0.09 Low producing exotic grassland 5.84 

Indigenous forest 9.99 Scrub/shrub land 12.03 
Fern land 5.18 Permanent snow/ice 2.02 

Cropland/Vineyard 0.04 Tall tussock grassland 41.36 
Depleted Grassland 0.01 Other 0.63 

 

Agricultural land uses in the catchment mainly consist of dry-stock farming, with 

herds of sheep, beef cattle and deer.  Farmers in the area use organic and conventional 

fertilizers to stimulate plant growth.  The type of fertilizer used and the rate of 

application vary depending on landscape, soil type, pasture use and pasture age 

(Aspinall, personal communication).  Conventional fertilizers used in the catchment 

tend to be nitrogen- and sulphur-rich.  In the Matukituki Valley catchment, one large 

farm (10,500 stocking units) applies approximately 180 kg ha-1 of predominantly 

sulphur- (Sulphurgain 20S, 30S, Durasul, Pasturezeal high S) and nitrogen-rich (Urea, 

Cropzeal 16N, NRich 15K) fertilizers every other year (Aspinall, personal 

communication).  Nitrogen- and sulphur-rich fertilizers are also applied in the 

Makarora River catchment, as well as fertilizers containing P (e.g. Sulphur Super 20, 

Sulphur Super 30, Cropmaster 15, Cropmaster DAP, 15% and 30% Potash S Super).  
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On one farm in the Makarora valley, 50 – 150 kg ha-1 of the N-rich fertilizers is 

applied annually, with application of urea and a 60:40 blend of ammonium sulphate 

and urea occurring at the end of winter to promote spring growth.  On the same farm, 

application rates of S-rich fertilizers range from 100 – 650 kg ha-1 (Wanklyn, personal 

communication).   

 

 

Figure 1: Soil map of the Lake Wanaka catchment. (Fundamental Soil Layers Map of the 
Wanaka catchment courtesy of Landcare Research) 
 
 
In addition to high country farming, other developments around the Wanaka 

catchment include a golf course, vineyard, orchards (Rosen and Jones 1998) and the 

urbanised areas of Wanaka Township (located at the southern end of the lake) and the 

village of Makarora located upstream from the lake.  In Wanaka Township, nitrogen- 

and sulphur-rich fertilizers are applied on sporting grounds and public spaces.  Here, 

fertilizer application rates are approximately 40 - 90 kg ha-1 applied three times of the 

year.  



 13 

1.4.1 The importance of determining land use influences on external 
energy inputs and microbial processes in Lake Wanaka 

The quality of water in Lake Wanaka is an important amenity for the region, which 

supports a growing tourism, retirement and outdoor industry.  Over ten years from 

1991 to 2001, the population of Wanaka grew 41% (Lucas 2011) and it has increased 

another 51.3% between 2001 and 2013 (Statistics New Zealand 2013).  While Lake 

Wanaka is currently classified as oligotrophic based on water clarity and nutrient and 

chl a concentrations (Otago Regional Council 2009), recent changes have been noted 

in the lake’s phytoplankton.  In 1975, surface water samples taken from the open 

water of Lake Wanaka indicated a diverse phytoplankton community dominated by 

Chlorophyte nanoplankton for much of the year (Clayton and Coleman 1976).  

Samples taken from the lake in 1994 (Naismith 1994) and 2002 (Galbraith, 

unpublished data) indicated algal biovolume was dominated by tiny 

picocyanobacteria.  However, sampling from 2008-2012 has indicated a shift from a 

picoplankton-dominated algal community to the diatom Lindavia intermedia 

(formerly Cyclotella bodanica) (Nakov et al. 2015) making up roughly 40 – 85% of 

the algal biovolume in the water column (Bayer 2013).   

Another recent change noted in the lake is the formation of organic aggregates, or 

‘lake snow’.  Since 2003, fishermen have reported nuisance algal aggregates fouling 

fishing lines, and filamentous algae have occasionally clogged water intake valves for 

the Township of Lake Wanaka (Bodger et al. 2011).  Organic aggregates in the water 

column are visible to the naked eye and are comprised of detrital material, 

phytoplankton, bacteria and other grazers (Bayer 2013).  In samples taken from the 

lake in 2008 – 2010, organic aggregates were associated with cells of the 

phytoplankter Lindavia intermedia during the summer months (Bayer 2013, Nakov et 

al. 2015).  While it is not clear whether the presence of lake snow is linked to the 

clogging water filters within the Wanaka Township water reticulation system, the 

shift in phytoplankton community appears to be related to the formation of organic 

aggregates.     

Along with this change in phytoplankton community structure, lake sampling 

undertaken by the Otago Regional Council (ORC) from 2006 to 2009 indicated a slow 

increase in chl a concentration (0.56 to 0.74 mg m-3) in Roy’s Bay, a semi-enclosed 

arm of Lake Wanaka.  Nitrogen concentrations also showed an increasing trend in this 
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bay (Otago Regional Council 2009).  Urban, residential and agricultural development 

have been steadily increasing in the catchment surrounding Roy’s Bay, and the 

increasing trends in chl a and TN may reflect changing land use patterns in the area.  

Because of the large volume of water in the lake, increased influx of external organic 

matter/energy to this system may be quickly diluted, resulting in no apparent change 

in microbial processing of organic material.  However, the long residence time of the 

lake (> 6 years) may result in the steady build-up of organic material in the sediments, 

which could lead to in shifts in pelagic and benthic food web dynamics.  While the 

increases noted to date are not enough to change the trophic status of the lake, the 

possibility of a decline in the water quality of the lake makes it important to 

understand underlying causes for these changes.  

1.4.2 Objectives 
The overarching goal of my thesis was to broaden our understanding of how land use 

practices affect aquatic ecosystems by examining how low-intensity development of 

grassland catchments affects nutrient dynamics and microbial activity in large high 

country lakes.  Thus, research was conducted to trace variations in the movement of 

external material from minimally developed grassland catchments into a large, 

oligotrophic lake and to determine how this material affects biota in the lake.   

Lake Wanaka was chosen as a study site because the catchment is dominated by 

native tussock grasslands, land use intensity in the catchment is relatively low, and the 

large, deep nature of the lake can dilute incoming nutrients, making it difficult to 

measure land use impacts simply by sampling open water sites.  Furthermore, few 

studies have been conducted in Lake Wanaka and its surrounding catchment, and 

there is little information available concerning what impact (if any) low-intensity 

development in the catchment is having on the lake (Burns 1991, Otago Regional 

Council 2009).  Research undertaken for this project included: intensive sampling of 

small streams and one of the main inflows to the lake during different seasons and 

hydrological conditions, following the path of two main tributaries out into the lake, 

and developing and carrying out laboratory-based experiments.  

This thesis is made up of five main research chapters (Chapters 2-6), one of which 

(Chapter 2) has been provisionally accepted by the peer-reviewed scientific journal, 

Marine and Freshwater Research.  The chapters are organised by decreasing spatial 
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scale, and move from the broader lake catchment to a more intensive analysis of how 

one main tributary influences the lake.  Chapter 2 follows temporal variations in the 

movement of macronutrients and bulk DOC inputs into nine tributaries reflecting a 

gradient of increasing pasture cover, while Chapter 3 examines whether nutrients 

from a selection of these tributaries could be linked to transparent exopolymer particle 

formation in the lake.  Chapter 4 follows the movement of inflowing water from two 

main tributaries to the lake (the Matukituki River and the Makarora River) and 

considers their effect on phytoplankton distribution and primary productivity in the 

lake.  Chapter 5 looks at how farming in the Matukituki Valley affects the quality of 

organic matter being delivered to the lake and Chapter 6 examines what impact this 

terrestrially-derived DOM has on bacterial activity and productivity.  A summary of 

each research chapter is provided below. 

In Chapter 2, I hypothesised that i) DOC and N concentrations in tributary streams 

would increase with increasing land development in their catchments, but soils in the 

catchments would attenuate P input and ii) weather-related factors that increase 

hydrological connectivity in the landscape would enhance the influx of N and DOC to 

the tributaries.  Sampling occurred over a four-year period and spanned eight streams 

and one river representing a gradient of increasing pasture cover.  Physical and 

chemical variables measured in the stream water were compared with meteorological 

and landscape data.  Agricultural development correlated positively with N and DOC 

concentrations in stream water, but was not significantly associated with P 

concentrations in streams.  Weather-related variables were significant predictors of 

DOC, but not N.  Temperature and soil moisture mitigated the influence of pasture 

cover on surface water DOC concentration under very dry or wet conditions.  My 

results indicate that while concentrations of N and DOC entering Lake Wanaka 

increase as agricultural development in grassland catchments increases, weather and 

soil moisture conditions can mediate the amount of DOC transferred from soils into 

streams. 

 

The aim of Chapter 3 was to determine whether external input of nutrients and 

dissolved organic carbon (DOC) could facilitate transparent exopolymer particle 

(TEP) formation in Lake Wanaka water; and whether TEP generation was related to 

the recent dominance by the diatom, Lindavia.  I first wanted to determine whether 
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TEP concentration increased in response to inputs of catchment-derived nutrients and 

DOC.  Next I wanted to determine whether algal growth in response to artificial 

nutrient enrichment promoted TEP formation.  As Lindavia intermedia abundance 

increased in Lake Wanaka around the same time that organic aggregates began 

appearing in the lake, I hypothesised that TEP concentrations should increase in lake 

water treatments where this diatom is present.  In four eight-day laboratory 

experiments, lake water was amended with water from streams representing a gradient 

of increasing pasture cover.  In two subsequent 12-day experiments, a parallel set of 

treatments was amended with saturating concentrations of N and P.  When lake water 

was enriched with N and P, algal growth, chl a concentration, diatom abundance and 

TEP increased substantially.  TEP generation was not associated with abundance of 

Lindavia intermedia, although this may reflect constraints of the experimental set up.   

 

While increased nutrient export from smaller streams will likely result in localised 

impacts on the lake, land use intensification in the catchments of the main tributaries 

can potentially extend into the open water.  Thus, the aim of Chapter 4 was to 

understand how catchment-derived materials are delivered to Lake Wanaka under 

stratified and un-stratified conditions, and what effect this material has on 

phytoplankton biomass in the lake (as measured by chl a).  The glacial origin of both 

the Matukituki and Makarora Rivers suggests the river water will likely plunge and 

either inflow along the bottom of the lake or interflow as a density current.  The 

plunging plumes would contain higher concentrations of nitrogen, DOC and total 

suspended solids (TSS) than the lake, and could provide a wedge of nutrients to the 

metalimnion, thereby stimulating primary productivity.  Water column profiles were 

taken along transects outside the Matukituki River mouth on ten occasions from 2009 

to 2012, and on three occasions outside the Makarora River mouth between 2009 and 

2010.  While the Makarora River plume was not apparent on the dates sampled, cold 

river temperatures and high suspended solid loads produced a traceable plume outside 

the Matukituki River mouth.  After initial turbulent mixing, the Matukituki River 

plume tended to plunge and interflow as a density current.  A noticeable chl a 

underflow on three of the sampling dates indicated the river plume was either 

bringing in fluorescing material or supporting phytoplankton growth in the lake.    
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Dissolved organic matter (DOM) can also play an important role in regulating 

heterotrophic and autotrophic production in aquatic systems.  Chapter 5 focused on 

how vegetation cover and land use can influence dissolved organic carbon (DOC) 

character by qualitatively comparing DOM in the Matukituki River and the lake.  I 

hypothesised that deep lake water (100 m depth) and Matukituki River water would 

contain a greater proportion of aromatic DOM structures than shallow water (20 m 

depth) in Lake Wanaka, due to differences in source materials and exposure to bio- 

and photodegradation.  I further hypothesised that the Matukituki River would contain 

a greater proportion of heteroelement formulae than the Lake as a result of land use 

activity in the Matukituki River Valley.  Ultrahigh resolution mass spectra of DOM 

from the river and lake were analysed using van Krevelen diagrams to investigate 

molecular variations between sites.  The Matukituki River water did not have more 

aromatic components, but did have significantly more CHO-S formulae than the lake.  

The river water also contained a high number of sulfonate-like formulae, which could 

reflect pesticide or fertilizer application in the catchment.  The low number of 

sulphur-containing formulae in the lake compared with the river implies this material 

may be rapidly biodegraded, and indicates DOM from the Matukituki River could 

influence bacterial activity in the lake.  

Chapter 6 examined how Matukituki River water influenced microbial physiological 

diversity and bacterioplankton activity, as compared to the lake.  As nutrient 

limitation (particularly P) affects primary productivity in the lake, I hypothesised that 

seasonal changes in bacterial physiological diversity would be positively related to 

phytoplankton biomass in Lake Wanaka.  As agricultural practices within the 

Matukituki River catchment influence the character of DOM being transported to the 

lake, I further hypothesised that bacterial activity would increase in response to 

increased availability of terrestrially-derived labile DOM, while bacterial productivity 

will increase with increasing P availability.  Bacterial physiological diversity in the 

river and lake was monitored seasonally from 2012 to 2013 using Biolog ecoplates.  

Bacterial activity and productivity were determined via bioassays conducted in the 

austral winter, spring and summer of 2012- 2013.  As N and P concentrations in Lake 

Wanaka are often low (i.e. growth-limiting), DOM lability was determined by adding 

saturating nutrient concentrations.  In the Matukituki River, bacterial communities 

were consistently able to breakdown a diverse array of organic substances, reflecting 
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consistent exposure to a labile supply of DOM.  In the lake, seasonal patterns in 

organic substrate use differed by depth, reflecting variations in thermal stratification 

affecting the movement of DOM into deeper waters.  Additions of river water to lake 

water stimulated bacterial respiration and uptake of DOC and P, but did not affect 

bacterial productivity.  This lack of apparent change in bacterial productivity likely 

reflects limitations of my experimental design.  However, it may indicate that as 

scarce P supplies were depleted, lake bacteria mineralised DOC instead of 

incorporating it into the cell for growth and reproduction.  If the latter explanation is 

the case, changes in nutrient and DOC export to the lake could lead to shifts in 

heterotrophic and autotrophic production, potentially facilitating a change in lake 

trophic status. 
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2 Land use, soil properties and weather conditions 
influence nutrient fluxes into a deep oligotrophic 
lake   

2.1 Introduction 
Land use intensification can increase nutrient and suspended solid loads leading to 

declining water quality in streams and lakes (Carpenter et al. 1998, Dauer et al. 2000, 

Meador and Goldstein 2003, Niyogi et al. 2003, Galbraith and Burns 2007, Abell et 

al. 2011b).  Changing land use patterns can also alter stream hydrology (Allan 2004), 

affect UV penetration of surface waters (Findlay et al. 2001) and alter organic matter 

inputs (Wilson and Xenopoulos 2009).  Such changes can intensify aquatic weed 

growth (Lewis et al. 2011), cause volatility in dissolved oxygen levels, reduce habitat 

availability, alter food webs (Williamson et al. 2015), attenuate light (Morris et al. 

1995), alter trace metal bioavailability (Thurman 1985), and lower species diversity 

(Carpenter et al. 1998, Dauer et al. 2000).    

Studies have shown that modification of native grassland systems can affect water 

yield (Mark and Dickinson 2008), erosion and runoff, leading to net declines in 

nutrient (McIntosh 1997) and organic carbon concentrations in soils (Farley et al. 

2004).  Yet studies comparing nutrient and dissolved organic carbon (DOC) fluxes in 

indigenous grassland and pasture streams are relatively infrequent in the literature.  

Studies that measure DOC input into streams often occur in forested systems (Bass, 

Bird et al., 2011), or compare forested and pasture-dominated systems (Quinn and 

Stroud, 2002), while studies comparing streams draining native grassland and pasture-

dominated catchments tend to focus on changes in macronutrient concentrations 

(Niyogi et al. 2003, Riley et al. 2003, Niyogi et al. 2007).   

While many grassland zones around the world have been developed for farming, 

livestock grazing or other uses (Suttie et al. 2005), large areas of relatively 

unmodified indigenous grassland are still present on the South Island of New Zealand.  

The tall tussock grasses found in this region share many characteristics with forested 

systems; these plants are perennial and long-living (Moore 1955, Mark and Dickinson 

2008) and root systems make up a significant proportion (23.6 – 44.7%) of their 

biomass (McIntosh 1997).  Though several New Zealand studies compare 

macronutrient concentrations in tussock grassland and pasture catchments (e.g. 
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Niyogi et al. 2007), most of these studies do not include changes in dissolved organic 

carbon (DOC) concentration.  Including DOC in studies of water quality is important 

since organic matter can control bacterial abundance and activity (Bernhardt and 

Likens 2002), alter trace metal bioavailability (Thurman 1985), attenuate light (Morris 

et al. 1995), increase surface water acidity (Hope et al. 1994) and affect the 

bioavailability of N (Bernhardt and Likens 2002).    

One known New Zealand study (Riley et al. 2003) monitored changes in nitrogen (N), 

phosphorus (P) and DOC concentrations in streams draining modified and unmodified 

native grassland sub-catchments.  However, this study did not take into account the 

mediating effects of weather-related variables on stream nutrient and DOC 

concentrations, which can mitigate or enhance input of exogenous material into 

surface waters (Wilson and Xenopoulos 2008).  For example, high discharge events 

associated with rainfall can increase nutrient (Arheimer and Lidén 2000, Verheyen et 

al. 2015) and DOC export significantly (Bass et al. 2011), while prolonged dry 

periods can reduce the hydrological connectivity of the landscape, disrupting the 

transport of DOC to streams  (Wilson and Xenopoulos 2008).   

My study focused on eight tributaries draining into, or adjacent to, Lake Wanaka 

(South Island, New Zealand) from spring 2009 to autumn 2012.  The Lake Wanaka 

catchment is predominantly covered in native tussock grasses, and the dominant soil 

types include brown soils along steep hillsides, and pallic soils and recent fluvial 

deposits along valley floors (Landcare Research 2016).  Soils in the region are formed 

from sedimentary greywacke schist, but differ in drainage ability.  Brown soils drain 

reasonably well under moderate to high rainfall, while pallic soils (formed from wind-

blown silt) are poorly-drained (Currie 2014).  Nitrogen, P and organic matter (OM) 

concentrations in all of these soils are generally low (Leamy 1966).  Brown soils 

exhibit moderate P retention as the P binds with iron oxides in the soil, but may 

experience significant N losses as these soils drain freely (Currie 2014).  Recent 

fluvial soils tend to have low nutrient retention capabilities (Leamy 1966, Currie 

2014), with particularly high N-leaching rates occurring in coarse-grained sandy soils 

that allow rapid water movement (Vinten et al. 1994).  While agricultural 

development in the Wanaka catchment is relatively low intensity, even low intensity 

pastoral development of hilly grassland catchments can increase in-stream nutrient 

concentrations and sedimentation (Niyogi et al. 2003, Riley et al. 2003) through 
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fertilizer application and feces deposition.  Conversion from slow growing to highly 

productive vegetation can also increase soil organic matter concentrations, thereby 

increasing the amount of dissolved organic carbon available for export (Lambert et al. 

2000, Hedley et al. 2009).  

I studied how the conversion of native grasslands into pasture affects the 

concentrations and fluxes of macronutrients and DOC in headwater streams during 

periods of low to moderate flow.  As soils in the Wanaka catchment are likely to leach 

N readily, and as increased soil organic matter (SOM) could increase the amount of 

DOC available for export, I hypothesised that:  

Hypothesis (i): land use intensification will serve as a primary predictor of in-

stream N and DOC concentrations by increasing the availability of organic 

matter and N in the soil.  However, the relationship between land use and P 

concentration will be mitigated by the capability of the soil to retain P and low 

flow conditions.   

As short-term variations in rainfall, soil moisture, and temperature can mediate the 

effect of agricultural development on stream DOC, N and P concentrations (Wilson 

and Xenopoulos 2008, Bass et al. 2011), I further hypothesised that: 

Hypothesis (ii): factors that increased the hydrological connectivity of the 

landscape will significantly enhance stream nutrient and DOC concentrations 

through the subsurface movement/leaching of material into waterways.   

While my study focused mainly on 2nd – 4th order streams in the Wanaka catchment, I 

also discuss the implications of anthropogenic development of larger catchments on 

lake nutrient status. 

2.2 Material and Methods 
2.2.1 Field sampling 
All streams sampled in this study are tributaries draining into, or adjacent to, Lake 

Wanaka (44° 42’S, 169° 09’E), a large (192 km2, 311 m deep), sub-alpine, 

oligotrophic (mean open water chl a = 0.49 mg m-3, Secchi depth between 11 and 

13.9 m) lake, located east of the Southern Alps in Central Otago, New Zealand 

(Figure 2).   
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Figure 2: The Lake Wanaka catchment (44° 42’S, 169° 09’E) showing the approximate 
locations (!) of the streams sampled between 2009 and 2012 (Clockwise from top right: 
Wharf Creek; Boundary Creek; Neck Creek; Bullock Creek; Stoney Creek; Alpha Burn; Jack 
Hall Creek (a.k.a Fern Burn); the Matukituki River). 
 
The mean annual temperature in the region is 16°C.  Rainfall in the catchment is 

highly variable, with higher precipitation rates occurring closer to the Southern Alps, 

and drier conditions occurring further east.  In general, Wanaka township, located 

near the southeastern corner of the lake, receives approximately 680 mm year-1 of rain 

(Rosen and Jones 1998), while westerly sites such as Mount Aspiring Station receive 

substantially more rainfall (2700 mm yr-1) (LINZ 2005).  The lake catchment consists 

of moderately well drained, mountainous terrain with basement lithologies of 

metavolcanic greenschist and quartzo-feldspathic grey schist (Rosen and Jones 1998).  

Soils in the catchment are well- to moderately-drained brown and podzolised soils 
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with small amounts of pallic and recent alluvial soils, and are considered to be of low 

and moderate fertility (Landcare Research 2016).  Lake Wanaka is situated 300 m 

above sea level (a.s.l.) and the highest mountain in its catchment rises above 3000 m 

a.s.l.  Water inputs to the lake are sourced from rainfall, snowmelt and glacier melt. 

Table 2: Sub-catchment landscape characteristics and mean chemical concentrations for each 
stream listed in order of percentage pasture cover in the catchments.  Abbreviated variable 
titles include: Ord indicates stream order, %P: pasture cover (%), %T: native tussock cover 
(%), %F: forest cover (%), S<15: terrain with a slope of 0 – 15° (%), S16–25: terrain with a 
slope of 16 – 25° (%), S≥26: terrain with a slope ≥ 26° (%), NO3: nitrate-nitrogen (µg l-1), 
DRP: dissolved reactive phosphorus (µg l-1), DOC: dissolved organic carbon (mg l-1), TN: 
total nitrogen and TP: total phosphorus (µg l-1).  

 Tributary Ord % %T %F S<15 S16–
25 S≥26 DOC NO3 DRP TN TP 

Wharf 
Creek 2 0 86 0 3.5 36.5 60 2.8 10.3 5.63 11.5 17.9 

Boundary 
Creek 4 1 68 5 9 27 64 2.1 10.0 1.81 25.2 14.0 

Neck Creek 3 3 74 11 8 31 61 2.0 1.7 1.25 13.6 3.2 
Matukituki 

River 6 15 47 11 16 24 60 2.3 45.7 1.96 73 11.7 

Fern Burn 4 42 48 2 27 23 50 3.4 76 1 126 5.3 
Alpha Burn 3 48 37 3 25 19 56 3.9 387 1.78 419 8.2 

Bullock 
Creek 2 55.5 0 6 82 10 8 3.0 478 0.96 652 3.5 

Stoney 
Creek 2 68 8 2 44 23 33 4.9 288 3.03 437 20.4 

 

During my study, eight tributaries (seven 2nd – 4th order streams and one 6th order 

river) with increasing proportions of pasture cover (Table 2) were sampled during the 

austral spring of 2011 through the autumn of 2012.  In a pilot study, six streams were 

sampled during the spring and summer of 2009-2010 and autumn of 2011.  All of the 

streams are spring-fed with additions of snowmelt in the spring except for Bullock 

Creek, which is mainly groundwater-fed from the Wanaka Basin, and the Matukituki 

River, which is partly fed by glacial melt water.  Streams were sampled within 200 m 

of the stream outlet to Lake Wanaka at times of low to moderate flow.  For safety and 

logistical reasons, flood events were not sampled.  In each stream, measurements of 

temperature, oxygen concentration, conductivity and salinity were made using a YSI 

6000 rapid-pulse environmental monitoring system (YSI Incorporated, Yellow 

Springs OH, USA), and pH was measured using a calibrated field IQ Scientific pH 

meter (IQ Scientific Instruments, Hach Company, Colorado, USA).  Flow rate was 

measured using a Marsh-McBirney current meter (Marsh-McBirney Incorporated, 

Frederick, MD, USA) with readings taken at depths 40% above the stream bottom.  
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Discharge rates (Q) were calculated by measuring depth and flow velocities at 

equidistant points along a measured transect that extended across the stream channel.  

A five-liter water sample was collected from each stream in an acid-washed 

polyethylene container and stored on ice, in the dark, until filtered.  Water samples for 

determining nutrient concentrations were taken from the middle (or as far as safely 

possible) of each stream.  Additional water samples were collected in duplicate acid-

washed 50-ml polyethylene tubes for total nitrogen (TN) and total phosphorus (TP) 

analysis.  Samples were filtered within eight hours of collection.     

2.2.2 Sample processing and analysis 
Water samples were kept at 4°C and in the dark until 250 – 500 ml were filtered 

through acid-washed pre-combusted Whatman GF/F (Pittsburgh, USA) filters (0.7 µm 

nominal pore size glass fiber) under low vacuum pressure (< 100 mmHg).  Milli-Q 

(Millipore Corporation, Bedford, MA, USA) water held in a pre-sterilised 

polyethylene container was filtered alongside stream water for quality control 

purposes.  Duplicate 50-ml subsamples for analysis of dissolved organic carbon 

(DOC), dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), and total 

dissolved nutrients (TDN) were collected in acid-washed 50-ml polyethylene tubes 

pre-rinsed with ultra-pure Milli-Q water.   

Immediately after filtration, DOC samples were wrapped in aluminum foil to prevent 

photo-degradation, stored at 4°C and analysed within two-three days to one week of 

collection (Dafner and Wangersky 2002).  Unfortunately, DOC samples were not 

acidified prior to storage, and bacteria capable of passing through the GF/F filters may 

have consumed or altered some of the DOC.  Respiration could have led to a decrease 

in DOC, but it is unlikely DOC concentrations decreased substantially during the 7-

day storage period.  While bacterial respiration (BR) is stimulated at higher 

temperatures (20 – 25°C) (Berggren et al. 2010), respiration rates are low at colder 

temperatures (0 – 5°C).  In studies using unfiltered water from temperate and boreal 

streams, carbon losses due to bacterial respiration ranged from <0.1 to 0.5 mg C l-1 wk 
-1 at 5°C (Roland and Cole 1999, Apple et al. 2006, Berggren et al. 2010). These 

changes in DOC concentration are similar to natural variations that occurred in 

laboratory blanks (0.10 - 0.35 mg C l-1) and internal standards (0.17 – 0.47 mg C l-1) 

when running the TOC analyser.  
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As samples taken during March and May 2011 were not processed within one week of 

collection, they were not used in the DOC analysis.  DOC was measured on a 

Shimadzu Total Carbon Analyser TOC-V CSH (Shimadzu, Kyoto, Japan) using 

potassium hydrogen phthalate as a standard.  Samples were purged with ultra-pure 

oxygen to remove DIC (dissolved inorganic carbon) and four injections were run for 

each sample, with the three closest concentrations averaged to give the DOC value.  

Chromophoric DOM (cDOM; determined by filtering samples through GF/F filters 

and measuring absorbance at 440 nm in a Shimadzu Spectrophotometer with a 10 cm 

path length), in the water samples rarely exceeded that of Milli-Q water (deionized 

and 0.2 µm-filtered water) and so this measure was discontinued. 

Dissolved and total nutrient samples were analysed on a Skalar Auto-analyser (Skalar, 

Breda, the Netherlands) using standard colorimetric methods.  TN and TP samples 

were digested using potassium peroxidisulphate, boric acid and sodium hydroxide and 

autoclaved 30 minutes prior to analysis.  To minimise sample contamination in the 

field and lab, all filtration equipment and plastic ware were acid-washed and rinsed 

with Milli-Q water prior to sampling, and Milli-Q water was filtered alongside water 

samples to create field blanks.  Field blanks and laboratory test tubes containing Milli-

Q water were interspersed with field samples for quality control purposes and to 

ensure carryover between samples was negligible.  Randomly chosen samples were 

re-run to account for drift in the instrument.  Blank values were subtracted from field 

samples before analysis.    

2.2.3 Data analysis 
ArcGIS analysis was carried out in the Spatial Ecology Research Facility (SERF) in 

the School of Surveying, University of Otago.  Stream catchments were delineated 

using River Environment Classification (REC) catchment database software provided 

by the Ministry for the Environment, New Zealand.  Topographic slope was 

determined from raster images at a 1:25,000 scale (pixel size 2 m ground) using Topo 

vector data.  Slope was quantified by counting the number of raster tiles with a slope 

of 1 – 77° in the stream catchment and buffer zone, and determining percentage area 

for each slope angle.  Percentage gently (< 15°), moderately (16 – 25°) and steeply (> 

26°) angled ground was then calculated.  
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Vegetation cover was determined using the New Zealand Land Cover Database 

version 3 (LCDB v.3) (Terralink and Landcare Research, Lincoln, New Zealand) 

(LCDB, 2012).  Vegetation cover was determined for the stream catchment as well as 

within 100 m landward from each bank of the stream (Niyogi et al. 2007) by 

overlaying the catchment and the 100 m buffer boundaries onto the LCDB database.  

Localised rainfall and soil moisture data were based on virtual climate station (VCS) 

data provided by the National Institute of Water and Atmospheric Research (NIWA) 

CliFlo database, which are derived from the raw data recorded at 600 climate stations 

around New Zealand.  Daily frequencies of rainfall were summed for the seven days 

prior to sampling, and analysed.  Rainfall between sites varied by less than 15 mm on 

all sampling dates except in 29 October 2011 and 19 November 2011.  On these dates, 

weekly rainfall at four northern sites (Wharf Creek, Boundary Creek, Sawyer Burn 

and Neck Creek) exceeded rainfall totals at two southern sites (Bullock Creek and 

Stoney Creek) by 20 to 30 mm.   

Evaporation and soil moisture levels were averaged for the seven days prior to 

sampling.  In the CliFlo database, soil moisture conditions are determined from the 

amount of rainfall entering the pasture root zone (defined as the top 150 mm of soil) 

and the amount lost by evapotranspiration (these variables are interpolated for the 

sub-catchments from rainfall, wind speed, temperature, solar radiation and relative 

humidity data obtained from 70 climate stations around the country over a 34-year 

period) (Tait and Woods 2007).  Modeled soil moisture does not account for 

differences in soil type or vegetation cover.  Air temperature data were obtained from 

VCS data and the “Aero AWS” climate station near Wanaka Airport.   

2.2.4 Statistical analysis 
Univariate and multivariate analyses were carried out using SPSS (v. 21.1, IBM) 

software.  Data that were not normally distributed (i.e. some nutrient data) were log10 

transformed before analysis.  Between-group comparisons of median values of stream 

nutrients from different catchments were made using the Kruskal-Wallis non-

parametric test when assumptions of normality or homoscedasticity were violated.  As 

TP and DRP data were not normally distributed regardless of the transformation used, 

data were compared using non-parametric analyses.  Simple and multiple linear 

regressions were performed on mean values and individual stream data that met the 

conditions for normality and homoscedasticity. Relationships between predictor 
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variables that did not change during the course of the study (i.e. landscape variables 

such as vegetation cover and catchment slope) and N, P and DOC were made using 

stream annual mean concentrations.  As a focus of my study concerned how the 

nutrients transported in the tributaries could affect Lake Wanaka, flow-weighted mean 

nutrient and DOC concentrations (FWMC) were also calculated using the formula: 

𝐹𝑊𝑀𝐶 =   
(𝑐!   𝑥  𝑄!)  !

!

𝑄!!
 

where ci = raw concentration, Qi  = stream flow rate at the time of sampling, and 𝑄!!  

= sum of flow rate for the stream.   

As sites were sampled multiple times, I used linear mixed-effects models to account 

for variability between sampling sites, and lack of independence among samples.  The 

mixed-effects models related solute concentration to contemporaneous meteorological 

values (fixed effects) while accounting for cross-site differences (random effects).  

Adding parameters increases model complexity, and can increase likelihood due to 

overfitting.  I used Bayesian Information Criterion (BIC) to select the best fitting 

model, because BIC penalizes the model based on the number of parameters used 

(Schwarz 1978). 

As fixed effects are categorical independent factors, meteorological variables were 

analysed using dummy-coded grouping variables.  Rainfall was grouped into 10 mm 

intervals, soil moisture was grouped by 10% intervals, and air temperature was 

grouped into 1 °C intervals.  I used variance components to estimate the contribution 

of the random (i.e. pasture cover) effect to the variance of the dependent variable (i.e. 

DOC, N, P).  Pearson’s correlation was also used to compare univariate relationships 

among the variables.  In all analyses, statistical significance was accepted if p < 0.05. 

2.3 Results 
2.3.1 Stream physico-chemistry 
Generally, the catchments examined had low nutrient and DOC concentrations, 

representative of low intensity land use activities.  Over the course of the entire 

sampling period, pH was circum-neutral, and dissolved oxygen (DO) concentrations 

indicated stream waters were usually well-aerated.  DOC concentrations ranged from 

1.14 to 5.69 mg l-1, while TN and NO3-N concentrations were quite variable, ranging 
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from 2.19 to 753 µg l-1 and from below detection to 624 µg l-1, respectively 

(Appendix A, Table A1).  Phosphorus concentrations were also quite variable, 

ranging from <1.0 to 8.91 µg l-1 for dissolved reactive phosphorus (DRP) and 1.38 to 

86.99 µg l-1 for total phosphorus (TP).  Comparatively, median trigger values of the 

Australia and New Zealand Environmental Conservation Council (2000) guidelines 

for the protection of upland rivers (> 150m a.s.l.) are: DRP = 9 µg l-1, NO3-N = 167 

µg l-1, TN = 295 µg l-1, TP = 26 µg l-1. 

2.3.2 Relationships between nutrients and landcover 
Total nitrogen, NO3-N and DOC concentrations were consistently higher in farmed 

(Alpha Burn, Fern Burn) and urban catchments (Bullock Creek, Stoney Creek) than in 

catchments with minimal (< 5%) development (Boundary Creek, Wharf Creek, Neck 

Creek) (Table 2).  Flow-weighting NO3-N and TN concentrations did not increase the 

strength of the relationship between solutes and pasture cover, but did improve the fit 

of DOC regression models (Table 3).   

Table 3: Linear regression models of dissolved organic carbon (DOC; mg l-1), nitrate - 
nitrogen (NO3-N) and total nitrogen (TN) (µg l-1) to percent pasture cover (%Pas).  f-w 
indicates flow-weighted mean concentration averaged over the sampling period. 

Regression model r R2 p n 
DOC = 1.98 + 0.032 %Pas 0.86 0.74 0.006 8 
DOCf-w = 1.53 + 0.032 %Pas 0.87 0.76 0.005 8 
     
LOG(TN) = 1.25 + 0.024 %Pas 0.95 0.90 <0.001 8 
LOG(TNf-w) = 1.28 + 0.021 %Pas 0.91 0.84 0.001 8 
     
LOG(NO3-N) = 0.88 + 0.028 %Pas 0.91 0.83 0.002 8 
LOGNO3-N f-w = 0.82 + 0.028 %Pas 0.88 0.79 0.003 8 

  
Using raw data, N and DOC showed a strong, positive relationship with the 

proportion of the catchment covered in pasture (Table 3).  The proportion of pasture 

cover in the catchment explained 90% of variability in mean stream TN 

concentrations and 83% of variability in mean NO3-N concentrations (Table 3).  

Pasture cover also explained over 76% of variability in mean DOC concentrations in 

streams (Figure 3B).    
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Figure 3: Nitrate-nitrogen (NO3-N) (µg l-1) A., C., E., F., and dissolved organic carbon (DOC) 
B., D., F., H., concentrations (mg l-1) in relation to total rainfall (mm, summed over 7 
preceding seven days), modeled soil moisture (% saturation, averaged over 7 preceding days) 
and percentage pasture cover in the catchment.  Mean raw (○) and flow-weighted (●) data are 
presented in Figures A and B.  In Figures C through H., streams are denoted by: (�) Stoney 
Creek (68% pasture cover); (�) Bullock Creek (55.5% pasture cover); (�) Alpha Burn (48% 
pasture cover); (¯) Fern Burn (42% pasture cover); (¿) Matukituki River (15% pasture 
cover); (¢) Neck Creek (3% pasture cover); (£) Boundary Creek (1% pasture cover); (Ö) 
Wharf Creek (< 1% pasture cover).  Black interpolation line in D. F. and H. represents mean 
fixed effects values. 

In contrast, total (TP) and dissolved inorganic phosphorus (DRP) concentrations did 

not increase with increasing pasture cover (Figure 4 A and B).  The highest DRP 
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concentrations were recorded in Wharf Creek, which is predominantly covered in 

tussock and contains no pastureland (see Table 2; Figure 4C).  Rainfall was moderate 

at the time of sampling (0.5 to 4 mm hr-1).  This high DRP concentration resulted in a 

weak positive correlation between DRP and percent tussock cover in the catchment (r 

= 0.319, p = 0.005).  Very high TP concentrations (69.5 and 104.5 µg l-1) were 

recorded in duplicate samples taken from Boundary Creek (BC) (< 1% pasture cover) 

in March 2011 under moderate rainfall conditions (Figure 4D).  On the same date, 

DRP concentrations in Boundary Creek were 1.36 µg l-1 and 1.50 µg l-1.  As the 

sampling site for Boundary Creek was located downstream from State Highway 6, 

material flushed into the creek from the road may have contributed to the high TP 

concentration recorded on this date. 

 

Figure 4: Dissolved reactive phosphorus (DRP) A., and total phosphorus (TP) B., 
concentrations in each stream by percent pasture cover in the catchment.  Mean raw (") and 
flow-weighted (#) data are provided.  Boxplots of mean C., DRP and D., TP values for each 
stream are also given.  (*) indicates an outlier.  In Figures C., and D., SC = Stoney Creek, B = 
Bullock Creek, A = Alpha Burn, F = Fern Burn (Jack Hall Creek), T = Matukituki River, N = 
Neck Creek, BC = Boundary Creek, W = Wharf Creek. 

Slope and pasture cover were positively related in my study (r = 0.79, p = 0.020), and 

it is likely some of the variation in stream solute concentration stems from differences 

in terrain between the catchments.  However, the relationship between DOC and 
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gently sloping terrain (r = 0.45, R2 = 0.20, p = 0.265, n = 8) was not as strong as 

between DOC and pasture cover (Table 3).  Likewise, the relationship between in-

stream N and gently sloping terrain was weaker (TN: r = 0.84, R2 = 0.70, p = 0.010, n 

= 8; DIN r = 0.70, R2 = 0.50, p = 0.050, n = 8) than the relationship between N and 

pasture cover (Table 3). 

When the samples for each stream were analysed separately for each month, the 

extent of pasture cover accounted for at least 73% of the variability in TN (r = 0.85 – 

0.99, R2 = 0.73 – 0.98, p < 0.05, n = 6 – 8) and explained more than 47% of the 

variance in NO3-N concentration (r = 0.68 – 0.98, R2 = 0.47 – 0.94, p < 0.061, n = 6 – 

8).  Comparisons of monthly DOC measurements and pasture did not produce 

consistent results, with only five months (all sampled from October 2011 to April 

2012) showing a significant (r = 0.83 – 0.92, R2 = 0.69 – 0.85, p < 0.05, n = 8) 

relationship between DOC and pasture cover.  The lack of a consistent association 

between DOC and pasture cover suggests other variables influenced the relationships 

between DOC concentration and land use in these tributaries. 

2.3.3 Meteorological conditions and stream physico-chemistry 
To determine whether meteorological conditions were influencing N, P and DOC in 

my study streams, we compared rainfall (summed over the preceding week), soil 

moisture (averaged over the preceding week) and air temperature (maximum on the 

day of sampling) with flow rate and concentrations of N, P and DOC at the time of 

sampling.  Rainfall was consistently higher in steeper catchments located at the 

northern end of the lake (e.g. Wharf Creek, Boundary Creek, Neck Creek and Sawyer 

Burn) than in catchments located in the south (e.g. Bullock Creek and Stoney Creek).  

On two occasions (29 October 2011 and 19 November 2011), differences in weekly 

rainfall exceeded 10 mm.  On all other sampling dates, differences in weekly rainfall 

between catchments did not exceed 10 mm, which was within the estimated error 

range of the virtual climate station data of 5 – 15 mm for catchments with elevations 

< 500 m (Tait et al. 2012).    
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 Table 4: Linear mixed effects model of DOC concentration.  Fixed effects: A.  air 
temperature (°C); B: Soil moisture capacity (%); C: Rain: Rainfall (mm).  Random effect 
Pasture = Pasture cover (%).  Models are listed above each table.  S.E. = standard error. 

 
A.   DOC ~ (Fixed)Air temperature + (Random)Pasture + error 

Fixed effect Estimate S.E. Sig. 95% Confidence Interval (CI) 
    Low High 
Intercept 2.88 0.44 <0.001 1.95 3.78 
13°C -0.07 0.39 0.852 -0.86 0.71 
16°C 0.19 0.45 0.681 -0.72 1.09 
17°C 0.45 0.37 0.235 -0.30 1.20 
18°C -0.31 0.28 0.280 -0.87 0.26 
19°C 0.49 0.30 0.103 -0.10 1.09 
20°C 0.56 0.29 0.058 0.02 1.14 
23°C 0.25 0.35 0.488 -0.47 0.96 
24°C -0.39 0.30 0.201 -0.99 0.22 
25°C -0.85 0.38 0.033 -1.63 -0.73 
26°C 0b 0    
Random Estimate S.E. Wald Z Sig 95% CI 
     Low High 
Residual 0.13 0.03 4.52 <0.001 0.08 0.20 
Pasture 0.96 0.53 1.82 0.069 0.33 2.83 

 
B.   DOC ~ (Fixed)Soil moisture + (Random)Pasture + error 

Fixed effect Estimate S.E. Sig. 95% Confidence Interval (CI) 
Intercept 2.20 0.47 <0.001 1.21 3.15 
0-10 % 0.62 0.52 0.233 -0.42 1.66 
11-20 % 0.80 0.38 0.042 0.03 1.56 
21-30 % 0.32 0.38 0.415 -0.46 1.09 
31-40 % 0.43 0.43 0.315 -0.43 1.30 
41-50 % 1.28 0.38 0.002 0.51 2.05 
51-60 % 1.04 0.38 0.009 0.27 1.80 
61-70 % 0.59 0.38 0.130 -0.18 1.36 
71-80 % 0.35 0.38 0.361 -0.42 1.12 
81-90 % 0b 0    
Random Estimate S.E. Wald Z Sig 95% CI 
     Low High 
Residual 0.21 0.05 4.57 <0.001 0.14 0.33 
Pasture 0.79 0.45 1.77 0.077 0.26 2.40 

 
C.   DOC ~ (Fixed)Rainfall + (Random)Pasture + error 

Fixed effect Estimate S.E. Sig. 95% Confidence Interval (CI) 
Intercept 2.23 0.52 <0.001 1.17 3.29 
1-10 mm 0.59 0.40 0.152 -0.22 1.40 
11-20 mm 0.98 0.40 0.019 0.17 1.79 
21-30 mm 0.62 0.41 0.135 -0.20 1.44 
31-40 mm 0.37 0.56 0.514 -0.76 1.50 
41-50 mm 0.31 0.45 0.499 -0.60 1.22 
51-60 mm 0b 0    
Random Estimate S.E. Wald Z Sig 95% CI 
     Low High 
Residual 0.26 0.05 4.73 <0.001 0.17 0.40 
Pasture 0.95 0.54 1.76 0.078 0.31 2.89 
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In most streams, flow rate increased as conditions became wetter.  In five of the 

tributaries, flow rate correlated positively with soil moisture or rainfall (r = 0.64 – 

0.82, p < 0.05).  Stream nutrient concentrations rarely correlated with flow rate.  

Exceptions include concentrations of TN (r = -0.74, p = 0.034) and NO3-N (r = -0.78, 

p = 0.013) in Fern Burn, and NO3-N in Alpha Burn (r = -0.88, p < 0.001), which 

tended to decrease with increasing flow rate.  Dissolved reactive phosphorus  

concentrations increased with increasing flow in the Matukituki River (r = 0.69, p = 

0.040). 

No significant relationships were apparent between meteorological variables and in-

stream N concentrations (Figure 3).  However, rainfall (F(5, 50.229) = 2.686, p = 0.032), 

soil moisture (F(8,47.260) = 3.947, p = 0.001) and air temperature (F(9, 46.054) = 9.043, p < 

0.001) were all significant predictors of variation in DOC concentration, after 

accounting for cross-site differences.  DOC ~ Air temperature + Soil moisture + Air 

temperature*Soil moisture + Pasture produced the best model based on BIC values 

(Appendix A Table A2). 

The response of DOC to changes in air temperature varied across sites, even when 

allowing for differences between sites in the magnitude of the responses.  DOC 

concentrations were generally highest when air temperatures were near 20°C, then 

decreased as temperature increased (Table 4; Figure 3D).  Increasing temperature 

tended to correspond with drier soil conditions and lower DOC concentrations (Figure 

5).  DOC concentrations were highest when soil moisture content ranged from 41-

50%.  Past this point, DOC concentration decreased as soil moisture content 

continued to increase (Figure 3H).  Similar to soil moisture, DOC concentration 

increased as rainfall increased from between 1-10 mm to between 11-20 mm (see 

Table 4; Figure 3F).  When rainfall values exceeded 40 mm, DOC concentration 

tended to decrease in streams.     



 34 

 

Figure 5: Boxplots of mean (top graph) dissolved organic carbon (DOC) and (middle graph) 
nitrate-nitrogen (NO3-N) on each sampling date between October 2009 and April 2012.  The 
bottom graph shows mean soil moisture content in the week prior to sampling (bars) 
compared with air temperature ($).  Dates on the x-axis are as follows: 10/09:  October 14-
16, 2009; 11/09: November 27-28, 2009; 3/10: March 7-8, 2010; 3/11: March 26-27, 2011; 
5/11: May 20-21, 2011; 10/11: October 29-30, 2011, 11/11: November 19-20, 2011; 12/11: 
December 17-18, 2011, 2/12: February 4, 2012, 3/12: March 9-10, 2012, 4/12: April 1, 2012.  
DOC samples from March 26-27, 2011 and May 20-12, 2011 were not included in the study 
and are not present in Figure 5A. 
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The proportion of organic and inorganic N and P differed between streams draining 

modified (> 40% pasture cover) and unmodified (< 5% pasture cover) catchments, the 

Matukituki River and Lake Wanaka (Figure 6).  Dissolved inorganic nitrogen (DIN = 

NO3-N + NH4) made up 50% of TN in the lake, similar to proportions in the 

Matukituki River (59.3%) and modified catchments (53.7%), while unmodified 

streams had smaller proportions of DIN (34%) than the lake.  Modified streams had 

greater proportions of dissolved organic phosphorus (DOP) (27.3%%) and particulate 

phosphorus (PP) (40.8%) than open waters in Lake Wanaka, where DRP made up the 

majority of P (66.7%).  In unmodified streams, the majority of phosphorus was in 

particulate (66.1%) and dissolved inorganic (24.3%) form.  In the Matukituki River, 

72% of P was in particulate form. 

 

Figure 6: The proportions of nutrient fractions in waters of different origins.  Particulate N 
(PN), dissolved inorganic N (DIN), dissolved organic N (DON), particulate P (PP), dissolved 
reactive P (DRP) and dissolved organic P (DOP). catchments are also grouped into modified 
(> 40% pasture) and unmodified (< 5% pasture).   
 

2.4 Discussion 
2.4.1 Landscape variables and stream physico-chemistry 
In support of my first hypothesis that N and DOC concentrations will increase with 

increasing pasture development, TN, NO3-N and DOC concentrations in the sampled 

streams were strongly positively correlated with pasture cover.  The relationship 
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between N and percent pasture cover in my study is consistent with other studies of 

land use and nutrient enrichment in aquatic systems (Wang et al. 2001, Quinn and 

Stroud 2002, Niyogi et al. 2003, Niyogi et al. 2007, Wilson and Xenopoulos 2008).  

Previous research also supports the relationship I found between in-stream DOC 

concentrations and land use.  The range of DOC concentrations in my study (0.8 to 

5.7 mg l-1) was similar to the range reported by Quinn and Stroud (2002) (0.10 – 8.80 

mg l-1), and is comparable to other studies conducted in hilly catchments (see Table 

5).  In general, agricultural development increases soil organic matter concentration, 

thereby increasing the amount of DOC available for export to nearby streams 

(Lambert et al. 2000, Hedley et al. 2009), although soil characteristics (Post and 

Kwon 2000), landscape (Dillon and Molot 1997) and weather conditions (Schiff et al. 

1997), can affect the delivery of organic matter to waterways.  Overall, DOC 

concentrations were low (< 10 mg l-1) in my sampled streams, which probably stems 

from low soil organic matter content in the region (Leamy 1966, Brash and Beecroft 

1987) and relatively good soil drainage in the catchment (Landcare Research 2016) as 

soil drainage capacity is inversely related to DOC concentration (Moore 1989, Wilson 

and Xenopoulos 2008).  

Unlike N and DOC, P concentrations in my study streams were not significantly 

related to land use.  While this finding supports my second hypothesis that P 

concentration will not increase as readily as N and DOC in stream water, it differs 

from several other New Zealand studies that report increasing TP and DRP 

concentrations with increasing pasture cover (see Table 5).  Niyogi et al. (2003) 

reported DRP concentrations up to 12 times higher in streams with a high proportion 

of pasture cover than in undisturbed catchments.  Similarly, Riley et al. (2003) found 

a strong correlation between DRP and TP concentrations and pasture development. 

Quinn and Stroud (2002), reported a 2.5- to 7.7-fold increase in TP concentrations 

from a catchment developed fully in pasture compared with one in native vegetation, 

with higher exports of TP occurring during wet winters.  Verheyen et al. (2015) 

reported high P concentrations in forested streams during dry periods in the summer, 

which they attributed to warm temperatures stimulating microbial breakdown of leaf 

litter in the stream.  In contrast, P concentrations were highest in streams draining 

pastureland during peak flows as overland flow supplemented P concentrations 

already in the stream (Verheyen et al. 2015).   
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Table 5: A comparison of terrain, vegetation, climate, and concentrations of N, P and DOC in 
12 recent stream studies.  Climate data listed as mean annual rainfall (Rain) and mean 
maximum and minimum air temperature (T).  NO3-N and DRP data presented in µg l-1, while 
DOC data given as mg l-1.  Relevant findings from each study are described. Y-B = yellow-
brown soil, W & X = Wilson and Xenopoulos, 2008. 

Site Terrain Climat
e Vegetation Soil Nutrients Author Findings 

Sweden Rolling 
hills 

R: 620 
T: -

13.5 – 
3.1 

Forest 
(boreal) Peat DOC: 11.7 

– 26.1 

Agren 
et al. 

(2010) 

High DOC concentrations during 
periods of high discharge in spring and 

after long winters, but lower if DOC 
export during the previous summer and 

autumn was high. 
Daintree 

Nat’l 
Park, 

Australia 

Steep 4900 Rainforest Acidic 
brown 

DOC: 0.9 – 
5.3 

Bass et 
al. 

(2011) 

DOC concentrations increased with 
increasing stream flow rate/discharge.  

Changes in stream discharge affected the 
quality of DOC. 

Westland
NZ Steep 

R: 
2400 
T: 5 –

16 

Forest and 
clear cut 

Gravel 
& silty 
loam 
clay 

DOC: 1.7 – 
21 

Moore 
(1989) 

DOC concentrations were higher in 
streams draining logged catchments.  

During storm events, DOC 
concentrations increased with discharge 

prior to hysteresis. 

Hamilton 
NZ 

Hilly to 
steep 

R: 
1600   

T: 13.7 

Forest, 
pasture Y-B 

DOC: 1.5 – 
2.28 NO3: 
99 – 858 

DRP: 13.7 
– 38.2 

Quinn 
& 

Stroud 
(2002) 

N species, TP and DOC concentrations 
were highest in streams draining pasture. 
Flow was strongly, positively related to 

NO3-N concentration. 

Hamilton
NZ 

Hilly to 
steep 

R: 
1600 

T: 13.7 

Forest, 
pasture Y-B 

DOC: 3.7 – 
5.6 NO3: < 
1.0 – 536 

DRP: <1.0 
– 59 

Findlay 
et al. 

(2001) 

DOC concentrations were higher in 
surface and subsurface flow paths than 
in the groundwater.  DOC quality was 
affected by these riparian flow paths. 

Michigan
USA Gentle * 

Forest, 
cropland, 

urban 

Gravel 
glacial 
till & 
sand 

DOC: 0.81 
– 7..98 

NO3: 14 – 
17496 

DRP: 2 – 
111 

Johnso
n et al. 
(2009) 

DIN concentrations were significantly 
higher in agricultural streams, but DOC 
concentrations were not affected by land 
use.  Higher concentrations of DIN did 

not stimulate uptake of DOC. 

Ontario, 
Canada * * 

Forest, 
cropland, 
wetland, 

urban 

* DOC: 1.7 – 
24.1 

W & X 
(2008) 

DOC concentrations were not strongly 
influenced by the amount of agricultural 
development within the catchment.  Soil 
drainage was the best predictor variable 

for DOC. 

Scotland, 
UK Hills * 

Forest, 
grassland/ 

moor 
Peat DOC: 7.6 – 

10.8 
Grieve 
(1984) 

DOC concentrations were greater in 
forested than grassland catchments.  
Discharge was less able to explain 
variation in DOC concentrations in 

catchments with increasing extents of 
peaty soil. 

Eastern 
Otago, 

NZ 
* * 

Tussock 
and/or 

forest to 
farmland 

* 
NO3: 5 – 

1797 DRP: 
2 – 101 

Niyogi 
et al. 

(2007) 

DIN, DRP and TP concentrations 
increased with increasing pasture cover.  

Tussock -dominated catchments had 
very low nutrient concentrations and 

little fine sediment. 
Eastern 
Otago, 

NZ 
* * 

Tussock, 
forest, 
pasture 

* 
NO3: 6 – 

2647 DRP: 
2 – 35 

Niyogi 
et al. 

(2003) 

DIN and DRP concentrations were low 
in pristine streams and high in streams 

draining developed catchments. 

Eastern 
Otago, 

NZ 

Rolling 
hills * Tussock, 

pasture schist 

DOC: ≈ 2.7 
– 7.5 NO3: 
3.5 – 33.6 
DRP: ≈5 – 

23 

Riley 
et al. 

(2003) 

Nutrient loads were higher in streams 
draining pasture than streams draining 

grazed or ungrazed tussock. 

Central 
Otago, 
New 

Zealand 

Hilly to 
steep 

Rain: 
680 T: 
8 – 23 

Tussock, 
pasture, 
forest, 
urban 

Brown 
pallic 

& 
fluvial 

DOC: 1.99 
– 5.42 

NO3: 2.97 
– 478 DRP: 
0.96 – 5.63 

Weaver 
et al. 

NO3-N, TN and DOC concentrations 
increased with increasing pasture cover. 

Weather conditions were weakly 
associated with NO3-N and DOC 

concentrations but were not associated 
with TP or DRP. 
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It appears that the catchments in my study area were able to retain much of the current 

P added as fertilizers and stock faeces, possibly because pasture development was of 

low intensity and the minerogenic soils were able to effectively bind DRP.  However, 

it should be noted that stream water samples were not collected during high flow 

events, and I have, therefore, underestimated particulate P and possibly DRP fluxes 

from these catchments.  Although different flow regimes were captured during my 

study, the full range of hydrological flows (e.g., storm events) that could contribute to 

P input into streams was not sampled due both to logistical and safety issues related to 

‘flood chasing’.  High flow events can significantly increase P influx into the stream 

water (House et al. 1998, Correll et al. 1999, Kolpin et al. 2000, Quinn and Stroud 

2002), as rainfall and storm events increase P input to streams via surface runoff and 

subsurface flow (House et al. 1998, Kolpin et al. 2000).  Furthermore, particulate P in 

riverbed sediments may be re-suspended as flow increases (House et al. 1998).   

2.4.2 Meteorological conditions and stream physico-chemistry 
While weather-related factors were significant predictors of DOC in stream water, the 

relationship between increasing hydrological connectivity and DOC concentration 

was not straightforward.  The highest DOC concentrations were recorded in the late 

spring and autumn, when temperatures were warm and soil conditions were not 

extremely dry or wet.  Low DOC concentrations were recorded in summer (February 

2012) and early autumn (March 2010) under hot, dry conditions (Figure 5A).  

Dissolved organic carbon concentration also decreased as soil conditions approached 

saturation (Figure 3H).  These results suggest the combined effect of temperature and 

soil moisture can mitigate the influence of pasture cover on surface water DOC 

concentration in the Lake Wanaka catchment.   

Previous research has shown that the interplay of factors regulating DOC input in 

streams is complex.  Warmer temperatures stimulate microbial decomposition of soil 

organic matter and DOC production (Moore and Dalva 2001), but precipitation or 

increased soil moisture content is necessary to leach that DOC from soils (Godde et 

al. 1996).  When soil moisture conditions become very dry or very wet, relationships 

between DOC concentration and landscape variables can weaken (Wilson and 

Xenopoulos 2008).  Under dry conditions, in-stream DOC concentrations may 

decrease, as stored water moves vertically to lower soil horizons and groundwater 

instead of to stream surface waters (Stieglitz et al. 2003).  Increasing soil moisture 
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content as a result of rainfall or snowmelt can prolong contact between stored water 

and surface soils, increasing the connectivity of the upper and lower catchment.  This 

increased connectivity allows for the lateral movement of water and solutes into 

streams (Stieglitz et al. 2003, McGuire and McDonnell 2010), and multiple studies 

report a positive relationship between stream discharge (related to rainfall or 

snowmelt) and DOC concentration (Meyer and Tate 1983, Moore 1989, Grieve 1990, 

Hinton et al. 1997, Clark et al. 2007, Wilson and Xenopoulos 2008, Bass et al. 2011).  

However, consistent or prolonged spells of high rainfall and runoff can ultimately 

result in hysteresis, where water from the upper catchment dilutes downstream DOC 

concentrations leading to a decrease in DOC (Meyer and Tate 1983).   

In the Wanaka watershed, decreasing DOC concentrations with increasingly wet soil 

conditions may reflect frequent or repeated leaching of DOC from the soil, reducing 

the amount of DOC available for release (Godde et al. 1996).  It may also reflect 

limitations of my sampling design.  Steep terrain in the Wanaka watershed likely 

facilitates the rapid movement of water from the upper watershed during wet 

conditions, diluting solute concentrations in lower stream reaches.  As sampling did 

not occur after significant rain events, I may have missed initial increases in DOC 

associated with rainfall or stream discharge. 

Unlike DOC, TN and NO3-N concentrations were not influenced by soil moisture 

content, rainfall, or changes in air temperature.  These results contrast with the 

findings of Arheimer and Lidén (2000) who reported high in-stream nitrate 

concentrations during rainy periods and following snowmelt, and lower 

concentrations during dry periods.  In their study, biological uptake and plant growth 

during summer months reduced the amount of N available for leaching, leading to 

lower concentrations of N in stream water (Arheimer and Lidén 2000).  This is 

particularly true in small streams during low flow conditions, where algae can retain 

the bulk of nutrients in the stream (Marti et al. 1997).  I did not observe a consistent 

pattern in N or P concentrations related to the growing season when comparing 

individual streams (data not shown).  In general, the lowest NO3-N concentrations 

occurred in my study streams in the late spring (Figure 5B) in conjunction with 

moderate flow conditions. 
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2.4.3 Implications for the lake 
My findings indicate that even relatively low intensity land use clearly influences 

stream nutrient and DOC concentrations.  In the largest tributary sampled, the 

Matukituki River, current nutrient and DOC concentrations are within the range of 

those in the lake (Figure 6).  However, future anthropogenic development in this 

catchment could increase nutrient loading as urban and agricultural development 

appears to have done in my small, modified catchments.  I caution that land use 

impacts on small streams should not be extrapolated directly to a large river 

catchment, because in-stream nutrient attenuation processes can vary substantially 

between small and large streams as river discharge and flow velocity affect nutrient 

spiraling length (Alexander et al. 2000, Hall et al. 2002).  But in high discharge, fast-

flowing rivers and smaller streams similar to those sampled in my study, land use has 

been shown to increase nutrient export, either through increased inorganic N loads or 

by altering stream metabolism (Alexander et al. 2000, Hall et al. 2002, Strayer et al. 

2003, Hall et al. 2009).  Thus, it is likely that increased agricultural or urban 

development in the Matukituki River catchment would promote increased 

concentrations of DIN, DOP (Figure 6) and DOC reaching the lake.  Increased 

macronutrient and DOC loading to Lake Wanaka has the potential to stimulate 

changes in the pelagic microbial population, affect phytoplankton productivity (Bayer 

et al. 2015) and result in changes in food webs and community structure.   

2.5 Conclusion 
My findings show that N and DOC concentrations are higher in tributaries to Lake 

Wanaka that have greater pasture cover in their catchments.  Although the intensity of 

agricultural activity and urbanisation in the region is relatively low, modification of 

catchments around Lake Wanaka appears to affect N and DOC loading to the lake.  

The relationship between land use and DOC export from these catchments is mediated 

by weather conditions, where DOC concentrations increase under warm temperatures 

and ‘normal’ soil conditions.  In contrast, weather conditions did not significantly 

enhance the relationship between land use and N or P export in my study streams. My 

findings have potential relevance to other temperate, mountainous, catchments with 

low intensity agricultural development. 
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3 Factors related to production of transparent 
exopolysaccharide particles and the formation of 
lake ‘snow’ in Lake Wanaka 

3.1 Introduction 
Amorphous organic aggregates form through the coagulation of transparent 

exopolymer particles (TEP) (Alber and Valiela 1994, Kiørboe et al. 1994, Logan et 

al. 1995, Grossart et al. 1997, Farooq and Long 2001).  TEP are optically clear 

polysaccharides that vary in adhesiveness by age and algal source (Alldredge et al. 

1995, Passow and Alldredge 1995a), and are often considered to be exudate that is 

suspended in the water column (Alldredge and Gotschalk 1989).  Initial particle 

formation occurs through the collision and clumping of small exudate particles 

(Logan et al. 1995), which then collide with other larger particles, including 

phytoplankton cells, as they grow in size and age (Alldredge and Gotschalk 1989, 

Logan et al. 1995).  Large macroscopic aggregates found in lake and marine systems 

have been referred to as “snow” (e.g. Grossart et al. 1993; Logan et al. 1995).  

Many species of diatoms and cyanobacteria are known to produce extracellular 

polysaccharides (Maurin et al. 1997, Simon et al. 2002), and extensive field evidence 

exists for aggregate formation at the termination of diatom blooms (Alldredge and 

Gotschalk 1989, Alldredge et al. 1993, Logan et al. 1995, Passow and Alldredge 

1995a).  Contrasting studies attribute TEP formation to either extracellular 

polysaccharide production during diatom blooms (Alldredge et al. 1995, Logan et al. 

1995) or to nutrient limitation inhibiting biomass production but not limiting 

photosynthesis, resulting in algal cell exudation of polysaccharides into the water 

column (Smetacek 1985, Alldredge and Gotschalk 1989, Kiørboe et al. 1994, Engel et 

al. 2002).  These two hypotheses are not mutually exclusive, as Penna et al. (1999) 

noted that several species of marine diatom were capable of increasing in biomass and 

producing extracellular polysaccharides under nutrient-limited conditions, and that 

extracellular polysaccharide material was present in the water during all phases of cell 

growth.   
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Figure 7: Schematic diagram of lake snow formation and uptake in pelagic waters. OM = 
organic matter; DOM = dissolved organic matter; DIM = dissolved inorganic matter (e.g. 
nutrients); TEP = transparent exopolymer particles. 
 
In both low and high productivity systems, the presence of aggregated material in the 

water column provides nutrient-enriched micro-patches for colonisation by various 

microbial organisms (Berger et al. 1996), as well as a food source for larger 

components of the microbial food web (heterotrophic nanoflagellates, ciliates, 

rotifers, and crustacean grazers) (Figure 7) (Simon et al. 2002).  Organic aggregate 

formation can also facilitate the vertical movement of organic matter to deeper waters, 

with rapid removal occurring in relation to particle size (Li and Logan 1995, Logan et 

al. 1995).  In non-bloom conditions, smaller particle sizes and more patchy 

distribution can lead to longer circulation of aggregates in the water column and 

gradual, as opposed to pulsed, sedimentation rates (Logan et al. 1995).  As benthic 

primary production can substantially contribute to whole-lake primary production in 

low productivity systems (Vadeboncoeur et al. 2002), increases in pelagic primary 

production and the export of phytoplankton to the bottom of a lake can lead to shifts 

in benthic and pelagic community composition, food web dynamics (Chandra et al. 
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2005), oxygen concentrations and the release of bound nutrients into the water 

column (Genkai-Kato and Carpenter 2005).   

While most work on organic aggregate production has occurred in marine settings, 

aggregate formation has also been reported in lake systems (Grossart and Simon 

1993, Logan et al. 1995, Grossart et al. 1997, Grossart et al. 1998).  In Lake Wanaka, 

lake “snow” has been recorded in monthly field samples from 2008 (Bodger et al. 

2011), although anecdotal reports from local fishermen indicate it has been present in 

the lake in the summer since 2003.  Microscopic observations of aggregates obtained 

from Lake Wanaka from 2008 to 2010 showed they were composed of algae, detrital 

material, bacteria and protozoans (Bayer 2013), and many of the aggregates contained 

the dominant diatom in the lake, Lindavia intermedia (P. Novis, Landcare Research, 

Lincoln).  Lindavia intermedia has only recently become the dominant phytoplankter 

in Lake Wanaka (Naismith 1994, Galbraith and Burns 2007, Bayer et al. 2015).  

Preliminary analyses of diatom cases in sediment cores from Lake Wanaka indicate 

Lindavia intermedia (formerly identified as Cyclotella stelligera, Cyclotella bodanica 

and Cyclotella sp.) numbers increased substantially around 2003, which coincides 

with initial reports of organic aggregates in the lake (E. Saulnier-Talbot and M. 

Schallenberg, personal communication). 

Factors driving organic aggregate formation in Lake Wanaka are currently unknown.  

My aim was to determine whether external input of nutrients and dissolved organic 

carbon (DOC) could facilitate TEP generation in Lake Wanaka water; and whether 

TEP generation was related to the recent dominance by the diatom, Lindavia.  

Previous studies have shown increased nutrient loads can stimulate algal growth in 

New Zealand lakes (Galbraith and Burns 2007, Abell et al. 2011b), and algal blooms 

have been positively linked to TEP generation in field and laboratory studies 

(Alldredge et al. 1995, Passow and Alldredge 1995a, Grossart et al. 1997).  

Transparent exopolymer particle precursor material has also been found to form from 

terrestrial leachates (Bozeman 2012), and increasing inputs of chromophoric DOC 

may facilitate TEP formation in low-productivity catchments (von Wachenfeldt and 

Tranvik 2008, Chateauvert et al. 2012).    

In the Lake Wanaka catchment, tributaries with more pasture cover deliver more 

nitrogen (N) and DOC to the Lake (see Chapter 2).  Phosphorus (P) concentrations in 
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inflowing tributaries are generally low (Appendix A, Table A1), and do not appear 

related to land use (see Chapter 2).  However, P concentrations are often higher in 

streams (see Table A1) than in the open water of Lake Wanaka (DRP: < 1.0  - 1.7 µg 

l-1 between 10 – 150 m depth, 2008 – 2012).  As catchment-derived material can 

stimulate phytoplankton growth (Galbraith and Burns 2007, Abell et al. 2011b), and 

facilitate organic aggregate formation in lake systems (von Wachenfeldt and Tranvik 

2008, Chateauvert et al. 2012), I predicted that (i): 

Prediction (i): TEP concentration will increase in response to inputs of 
catchment-derived nutrients and DOC.   

During diatom blooms, high cell numbers can increase the total amount of 

polysaccharides produced, resulting in more rapid detection of organic aggregates in 

the water column (Alldredge et al. 1995; Alldredge and Passow 1995a).  As algal 

blooms are linked to N and P availability, I predicted that (ii):  

Prediction (i): Artificial nutrient enrichment will generate more TEP and result 

in more rapid organic aggregate formation than catchment-derived nutrients 

and DOC.   

Lindavia intermedia is currently the dominant phytoplankter in Lake Wanaka (Bayer 

et al., 2015), and abundance of this species increased around the time organic 

aggregates were first reported in the lake (E. Saulnier-Talbot and M. Schallenberg, 

personal communication).  If a change in phytoplankton community structure from 

picoplankton to diatoms, particularly Lindavia, is a driving factor for the production 

of TEP and formation of ‘lake snow’ in Lake Wanaka, I predicted that (ii):  

Prediction (ii): TEP concentrations will increase with increasing 
presence/abundance of Lindavia. 

3.2 Methods 
In November 2011, December 2011, February 2012, March 2012, November 2012, 

February 2013 and May 2013, 10 litres of water was collected at 20 m depth from the 

open water of Lake Wanaka at Aspiring Basin (44º35.702 S 169º04.030 E).  Lake 

water was pre-filtered through a 50-µm mesh screen to remove large grazers while 

retaining the dominant diatom, Lindavia intermedia.  In May 2013, 10 l of water were 

also collected from the open water of Lake Wakatipu and Lake Hawea.   
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On the other six dates, five litres of water were collected from three tributaries to the 

lake that represent a gradient of increasing land use: Boundary Creek (1% pasture 

cover), Alpha Burn (48% pasture cover) and Bullock Creek (56% pasture cover + 

21% urban).  Water samples were kept in the dark and transported on ice back to the 

laboratory.  Stream water was filtered through Milli-Q rinsed 0.22 µm pore size 

polycarbonate filters within 24 hours of collection to remove biota.  Two litres of lake 

water were also filtered through 0.22 µm polycarbonate filters to act as exudate for 

the experimental control.   

3.2.1  Stream and lake mixture experiments 
During the austral spring through autumn, 2011-2012, experiments were run to 

determine whether catchment-derived inputs of N, P and DOC promoted TEP 

generation in Lake Wanaka water.  In these experiments, lake water was amended 

with water from Alpha Burn, Bullock Creek and Boundary Creek (Table 6).  

Treatments were made by adding 150 ml of the 0.22 µm filtered stream water to each 

of 3 replicate 300-ml BOD bottles, and then adding 150 ml of 50 µm filtered lake 

water.  The BOD bottles were loaded onto a plankton wheel to provide a constant rate 

of gentle turbulence throughout the study (Alldredge et al. 1995).  Bottles were 

subjected to a 12 hour light (311 µmol photons m2 s-1): 12 hour dark cycle, and room 

temperature was maintained at 12°C ± 1.0°C.  Each experiment lasted for 8 days, and 

samples were taken on day 0 and day 8 for TEP concentration, dissolved oxygen 

(DO), and nutrient concentrations.  The eight-day endpoint was chosen as visible 

aggregates have been reported to form within this period in marine and lake systems 

(Alldredge and Jackson 1995), and to prevent excessive oxygen production in the 

BOD bottles.  
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Table 6: Initial ‘N’ = nitrate-nitrogen (µg l-1), ‘P’ = dissolved reactive phosphorus (µg l-1) and 
‘DOC’ dissolved organic carbon (mg l-1) concentration by treatment in the 8-day experiments. 
Treatments were mixtures of 50-µm-filtered Lake Wanaka water and 0.22-µm-filtered stream 
water exudate from stream draining draining pastoral land cover (Pasture), pastoral and urban 
cover (Pasture + Urban) and tussock land cover (Tussock).  The control was a mixture of 50-
µm-filtered Lake Wanaka water and 0.22-µm-filtered Lake Wanaka water.   
 Control Pasture Pasture + Urban Tussock 
November 2011     

N 37.2 187.6 350.7 22.1 
P 1.1 1.1 1.3 1.2 

DOC 2.11 2.92, 3.01 2.68, 2.37 1.93, 2.14 
December 2011     

N 39.8 158.1 123.7 18.2 
P b.d. b.d b.d. b.d. 

DOC 2.15 2.88 2.59 2.14 
February 2012     

N 25.6 276.2 303.6 15.7 
P b.d. 1.4 b.d. 1.0 

DOC 1.88 2.94, 2.52 2.57, 2.37 2.14, 2.02 
March 2012     

N 16.2 * * 14.7 
P b.d. * * 1.3 

DOC 2.39 ± 0.18   2.33, 2.44 

3.2.2 Nutrient enrichment experiments 
Experiments were run in the austral spring (November) and summer (February) of 

2012 – 2013 to determine how artificial nutrient enrichment affected TEP generation 

in the original stream mixtures.  These experiments included the original mixture 

treatments, plus a parallel set of treatments that were amended with saturating 

concentrations of N and P.  Initial concentrations of NO3-N and DRP present in the 

mixture treatments and control are provided in Table 7.  Nutrient-amended treatments 

were spiked with 1200 µgN l-1 and 140 µgP l-1 to promote high cell abundances and 

ensure detectable aggregation (Alldredge et al. 1995, Passow and Alldredge 1995a).  

These N and P concentrations reflect super-eutrophic conditions in New Zealand 

lakes (Bryers and Bowman 2000).    

The November 2012 and February 2013 experiments were run for 12 days to allow 

more time for TEP generation (8-day experiment: TEP < 2.8 gum xanthan 

equivalents).  TEP concentration was measured on day 0, 4, 8 and 12, while samples 

for chl a, phytoplankton enumeration, nutrients and DOC were taken at the start and 

end of the experiment.  As the volume of water required for these additional samples 

was significantly larger than the 300 ml available in the BOD bottles, the experiment 

was run using 1-litre acid-washed polyethylene bottles.  In November 2012, pH was 
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measured at the end of the experiment, while in February 2013, pH and alkalinity 

measurements were measured every second day (Appendix B, Table B1).  Lids were 

removed from bottles for one hour every other day to allow for oxygen and carbon 

dioxide equilibration and to prevent pH reaching harmfully high levels.   

Table 7: Initial nutrient concentration ± 1 standard error by treatment in the 12-day 
experiments. Treatments were mixtures of 50-µm-filtered Lake Wanaka water and 0.22-µm-
filtered stream water exudate from streams draining pastoral land cover (Pasture), pastoral 
and urban cover (Pasture + Urban) and tussock land cover (Tussock).  The control was a 
mixture of 50-µm-filtered Lake Wanaka water and 0.22-µm-filtered Lake Wanaka water.  ‘N’ 
= nitrate-nitrogen (µg l-1), ‘P’ = dissolved reactive phosphorus (µg l-1), DOC = dissolved 
organic carbon (mg l-1). b.d. = below the detection limit of the Skalar Autoanalyser.  
 Control Pasture Pasture + Urban Tussock 
November 2012     

N 38.4 ± 0.3 162.9, 162.1 303.3, 303.9 24.7, 19.2 
P <1.0, 1.0   2.5, 2.7 1.4, 1.3 1.6, 1.3 

DOC 2.4 ± 0.16 2.5 ± 0.03 3.2 ± 0.07 3.7 ± 0.06 
February 2013     

N 22.7 ± 1.0   133.5  2.14.8, 253.5 12.1, 11.3 
P b.d.  0.9 b.d. 1.0, <1.0 

DOC 2.9 ± 0.22 4.9, 7.7 16.6, 18.1 9.3, 9.4 
 

In November 2012, chl a was extracted using standard fluorometric procedures 

(Parsons et al. 1984), but equipment breakdown meant only five treatments could be 

processed.  Samples were not taken for phytoplankton enumeration during this 

experiment.  In February, chl a was extracted from 5-ml replicate samples and 

quantified using a FLUOStar Omega plate reader (BNG Labtech, Ortenberg, 

Germany) following procedures described by Biggs and Kilroy (Biggs and Kilroy 

2000).     

3.2.3 TEP generation and Lindavia abundance 
Dominant algae were identified and enumerated in the February 2013 experiment, and 

TEP concentration was compared to Lindavia counts.  Transparent exopolymer 

particle concentration was also compared with Lindavia counts in an experiment run 

in May 2013.  The May experiment differed from those in November and February 

because it compared TEP production in Lake Wanaka water with two other lakes 

(Lake Wakatipu and Lake Hawea), in which Lindavia does not make up a significant 

proportion of total phytoplankton composition.  Using water from other lakes allowed 

me to determine whether TEP formation was indicative of processes occurring in 

Lake Wanaka, or if it was an artefact of the experimental design.  Parallel treatments 
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were enriched with nutrients (1200 µgN l-1 and 140 µgP l-1) and run alongside the 

lake treatments.    

3.2.4  TEP processing and analysis 
Methods for the semi-quantitative determination of TEP abundance are described in 

Passow and Alldredge (1995b).  Briefly, BOD bottles were gently inverted in ensure 

even mixing before an aliquot was removed and filtered through a 0.4 µm 

polycarbonate filter under very low (< 5 kPa) consistent vacuum pressure.  To avoid 

clogging the filters, the volume of water filtered varied depending on the amount of 

TEP present (Passow and Alldredge 1995b).  However, attempts were made to filter 

up to 50 ml of water, where possible.  When the filter appeared dry, 0.5 ml of 0.22 

µm-filtered Alcian blue dye (0.02%) (Sigma Aldrich, New Zealand) was added to the 

filtration tower and allowed to stain the filter for 2 to 5 seconds.  Filters were rinsed 

with 2 ml of Milli-Q water, placed in 20 ml scintillation vials and acidified with 5 ml 

of 80% H2SO4 for two hours under gentle agitation on a shaker table (70 rpm minute-

1).  Samples were inverted, then poured into a 1 cm glass cuvette to analyse the 

amount of light absorbed by each sample using a Shimadzu spectrophotometer 

(Shimadzu, Kyoto, Japan) (787 nm).  For quality control purposes, triplicate 50-ml 

Milli-Q samples were filtered, stained, and analysed in the same manner as treatment 

water.   

Xanthan gum was used as a calibration standard for each experimental run.  Adding 

15 mg xanthan gum powder to 200 ml of Milli-Q water and grinding the solution with 

a mortar and pestle created the xanthan gum solution.  The solution was then poured 

into a beaker and stirred on a VELP Scientifica magnetic stirring hot plate (VELP 

Scientifica, Italy) for at least 30 minutes before grinding the solution again to break 

apart any gum xanthan clumps.  To determine the dry weight of gum xanthan in the 

solution, 0.5 – 3.0 ml aliquots were filtered onto pre-weighed 25 mm, 0.4 µm-pore 

size polycarbonate filters.  Additional 0.5 – 3.0 ml aliquots of gum xanthan solution 

were filtered and stained with Alcian blue.  A calibration factor (fx) was calculated by 

relating gum xanthan dry weight to absorbance reading from the stained filter, where: 

𝑓!   =   𝑊  ×  [(𝑒𝑠𝑡!"! − 𝐶!"!)  ×  𝑉!"!!]!! 

where: W = dry weight of the standard (mg l-1) 
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est787 = average absorption of the standard 

C787  = blank absorption 

Vst = volume filtered for staining (L) (Passow and Alldredge 1995b)    

TEP concentration in natural water samples were converted to xanthan gum 

equivalents using the formula:  

𝐶!"# =    (𝐸!"! − 𝐶!"!)  ×  𝑉!   ×  𝑓! 

where: E787   = the absorption of the sample 

C787 = absorption of the blank 

Vf  = volume filtered (L) 

fx  = the calibration factor (mg) (Passow and Alldredge 1995b).  

3.2.5 Nutrient and DOC processing and analysis 
At the start and end of the experiment, 50-ml subsamples were taken from each 

treatment bottle for analysis of dissolved reactive phosphorus (DRP), nitrate nitrogen 

(NO3-N), dissolved organic carbon (DOC) and total dissolved nitrogen and 

phosphorus.  Samples were stored in acid-washed 50-ml polyethylene tubes pre-

rinsed with ultra-pure Milli-Q water.  Dissolved inorganic nutrient samples were 

analysed on a Skalar Auto-analyser (Skalar, Breda, the Netherlands) using standard 

colorimetric methods.  To minimise sample contamination, all filtration equipment 

and plastic ware were acid-washed and rinsed with Milli-Q water prior to sampling, 

and Milli-Q water was filtered alongside water samples to create laboratory blanks.  

Test tubes containing Milli-Q water were interspersed with experimental samples and 

blanks for quality control purposes and to ensure carryover between samples was 

negligible.  Randomly chosen samples were re-run to account for drift in the 

instrument.  Blank values were subtracted from experimental samples before analysis.    

Immediately after filtration, DOC samples were wrapped in aluminum foil to prevent 

photo-degradation, stored at 4°C and analysed within one week of collection (Dafner 

and Wangersky 2002).  Unfortunately, DOC samples were not acidified prior to 

storage, and bacteria capable of passing through the GF/F filters may have consumed 
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or altered some of the DOC.  Respiration could have led to a decrease in DOC, 

although it is unlikely DOC concentrations decreased substantially during the 7-day 

storage period.  While bacterial respiration (BR) is stimulated at higher temperatures 

(20 – 25°C) (Berggren et al. 2010), respiration rates are low at colder temperatures (0 

– 5°C).  Studies of bacterial respiration rates at 5°C report carbon losses ranging from 

<0.1 to 0.5 mg C l-1 wk -1 (Roland and Cole 1999, Apple et al. 2006, Berggren et al. 

2010).  These changes in DOC concentration fall within variations that occurred in 

laboratory blanks (0.10 - 0.35 mg C l-1) and internal standards (0.17 – 0.47 mg C l-1) 

when running the TOC analyser.  

DOC was measured on a Shimadzu Total Carbon Analyser TOC-V CSH (Shimadzu, 

Kyoto, Japan) using potassium hydrogen phthalate as a standard.  Samples were 

purged with ultra-pure oxygen to remove DIC (dissolved inorganic carbon) and four 

injections were run for each sample.  The three closest concentrations averaged to 

give the DOC value.   

3.2.6 Phytoplankton identification and enumeration 
Phytoplankton enumeration and the identification of dominant algae were carried out 

using samples from the February 2013 and May 2013 experiments.  Fifty- to 100-ml 

volumes of water were taken from each bottle at the start and end of the experiment, 

preserved with Lugol’s iodine (5% v v-1), and stored in clean, opaque polyethylene 

bottles until analysed.  Samples were gently inverted to ensure adequate mixing 

before being poured into clean, dry settlement chambers.  Depending on the 

productivity in the treatment, 25-ml or 50-ml settlement chambers were used.  

Chambers were covered on a stable, horizontal, level, platform, and algae were 

allowed to settle for 24 to 48 hours depending on the height of the settlement 

chamber.  

Algal counts and phytoplankton identification to genus level were determined using 

an inverted microscope at either 400x to 1000x magnification using methods 

described by Wetzel and Likens (Wetzel and Likens 2001).  A Whipple grid ocular 

was calibrated at both 400x and 1000x magnification using a stage micrometer.  To 

enumerate phytoplankton within the sample, the Whipple grid was moved across the 

diameter of the chamber bottom in several passes.  At each stop, all cells within the 

grid were counted before the grid was blindly moved to the next site.  Enumeration 
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continued until at least 300 cells had been counted or more than 25 grids had been 

counted.  Total cell counts in each sample were calculated as:  

𝑇𝑜𝑡𝑎𝑙  𝑐𝑒𝑙𝑙𝑠  𝑝𝑒𝑟  𝑚𝑙 =
𝑐 ∗ 𝐶𝐴

𝑛 ∗𝑊 ∗ 𝑉 

Where  c = the total number of cells counted 

CA  = the area of the settlement chamber (mm-2) 

n  = the number of Whipple grids counted 

W = the size of the Whipple grid (mm-2) 

V  = the volume of the sample (ml).   

For each sample, the total number of Lindavia cells were tallied by systematically 

counting cells along transects until the entire bottom of the sediment chamber had 

been covered. 

3.2.7 Statistical analysis 
All statistical analyses were carried out using SPSS (v. 21.1, IBM) software.  TEP 

generation between treatment groups was compared using One-way ANOVA, or 

Kruskal-Wallis tests if assumptions of normality and homoscedasticity were not met.  

During each experimental run, initial and end nutrient concentrations were compared 

with the amount of TEP generated in each treatment bottle.  NO3-N concentrations 

were log10-transformed prior to analysis.  Pearson Correlations and linear regressions 

were used to compare TEP formation with concentrations of TEP, DOC, NO3-N, 

DRP, chl a and pH in the 8-day and 12-day experiments.  Significant differences in 

phytoplankton abundance and taxa were compared with TEP concentration using 

Pearson Correlations.  In all analyses, statistical significance was accepted if p ≤ 0.05. 

3.3 Results 
3.3.1 The influence of catchment-derived nutrients and DOC on TEP 

generation 
The 8-day experiment was run four times from November 2011 to March 2012.  

Initial DOC (F(3, 10) = 16.676, p < 0.001) and N (F(3, 10) = 43.553, p < 0.001) 

concentrations were significantly higher in the Pasture and Pasture+Urban treatments 

than in the Lake Control, while initial P concentrations did not differ significantly 
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between treatments.  Changes in dissolved oxygen (DO) never exceeded 1.1 mg l-1 

during any run of the experiment.   

While the amount of TEP generated differed between treatments, this difference was 

not statistically significant in November 2011, December 2011 and March 2012.  The 

substantial within-treatment variability in TEP concentration on these dates may 

explain the lack of significant differences between the treatments.  In February 2012, 

significantly more TEP was generated in the Tussock treatment than in the Pasture 

and Pasture+Urban treatments (χ2 = 3.857, p = 0.050) (Table 8).  However, the 

Tussock treatment did not generate significantly more TEP than the Lake Control. 

Table 8: The amount of transparent exopolymer particles (TEP) (in xanthan gum equivalents 
± 1 standard error) generated in each treatment group during four, 8-day experimental runs 
and 2, 12-day experimental runs.  Treatments were mixtures of 50-µm-filtered Lake Wanaka 
water and 0.22-µm-filtered stream water exudate from streams draining pastoral land cover 
(Pasture), pastoral and urban cover (Pasture + Urban) and tussock land cover (Tussock).  The 
control was a mixture of 50-µm-filtered Lake Wanaka water and 0.22-µm-filtered Lake 
Wanaka water.  Significant difference between treatments are highlighted in bold. 

 Control Pasture Pasture+Urban Tussock 
8-day experiments 

November 2011 1.19 ± 0.63 0.82 ± 0.17 0.95 ± 0.25 1.43 ± 0.49 
December 2011 0.57 ± 0.12 0.47 ± 0.12 0.29 ± 0.11 1.16 ± 0.37 
February 2012 0.19 ± 0.05 0.16 ± 0.02 0.03 ± 0.03 0.95 ± 0.68 
March  2012 0.06 ± 0.03 * * 0.15 ± 0.10 

12-day experiments 
November 2012 0.14 ± 0.05 0.91 ± 0.21 0.25 ± 0.03 0.24 ± 0.10 
February 2013 0.56 ± 0.13 -1.23 ± 0.26† -1.58 ± 0.85† 3.14 ± 0.79 

Only two treatments were run in March 2012.  * indicates treatments that were not run in the March 2012 
experiment. 
† Initial concentrations of TEP were extremely high in Bullock Creek and Alpha Burn water, resulting in negative 
TEP values by day 8 in the Pasture+Urban and Pasture treatments.  

TEP generation was not associated with initial DOC or nutrient concentrations during 

any runs of the 8-day experiment. TEP generation was also not significantly 

associated with ΔDO, or with nutrient or DOC uptake, during any of the 8-day 

experimental runs.  

3.3.2 Nutrient enrichment and TEP 
 The 12-day experiment was run in November 2012 and February 2013.  In addition 

to the original mixture treatments, NO3-N and PO4-P were added at saturating 

concentrations (final concentration: 1200 µgN l-1 and 140 µgP l-1) to parallel 

treatments, in order to stimulate an algal bloom.  Transparent exopolymer particle 
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concentrations were significantly higher in nutrient enriched treatments compared 

with unamended mixture treatments in both November (χ2 = 26.289, p < 0.001) and 

February (χ2 = 14.17, p < 0.001).  TEP generation increased steadily in both the 

mixture treatments and nutrient-enriched treatments in November (Figure 8 A and B), 

with aggregates visible in nutrient-enriched treatments by day 6. TEP concentrations 

were 2.8 to 9.3 times higher in nutrient-enriched treatments than the mixture 

treatments by day 12 (Figure 8).   

In February, stream water used for two of the treatments (Pasture and Pasture+Urban) 

had very high initial TEP concentrations (2.71 and 5.64 gum xanthan equivalents, 

respectively).  TEP concentrations decreased by day 4 in these treatments (1.31 and 

3.13 gum xanthan equivalents, respectively), and then increased toward the end of the 

experiment to 8.30 and 11.63 gum xanthan equivalents (Figure 8D).  TEP 

concentrations were 1.7 to almost 4 times higher, and chl a concentration was 7.5 to 

34 times higher, in the nutrient enriched treatments than in the mixture treatments by 

day 12.  

3.3.2.1. TEP generation in mixture treatments 
Table 9: Between-treatment comparisons of nutrient uptake, or transparent exopolymer 
particle generation (TEP) during the 12-day experiments.  K-W = Kruskal Wallis test, d.f. = 
degrees of freedom, Mixture = treatments amended with stream water only, Enriched = 
treatments amended with stream water + saturating concentrations of N and P (1200 µg N l-1 
and 140 µg P l-1), NO3 = nitrate-nitrogen, DRP = dissolved reactive phosphorus. 

Month Experiment Test Variable d.f. F χ2 Sig 

November 

Mixture 
K-W TEP   8.128 0.043 

ANOVA NO3 3, 8 192.202  <0.001 
ANOVA DRP 3, 7 29.043  <0.001 

Enriched 
K-W TEP   10.068 0.018 
K-W NO3   8.980 0.030 

ANOVA DRP 3, 8 49.275  <0.001 

February 

Mixture 
K-W TEP   8.803 0.032 

ANOVA NO3 3, 7 104.292  <0.001 
K-W chl a   0.411 0.938 

Enriched 

K-W TEP    10.017 0.017 
ANOVA NO3 3, 8 8.368  0.008 
ANOVA DRP 3, 8 28.295  <0.001 
ANOVA chl a 3, 8 20.796  <0.001 

 

As in the 8-day experiments, there was no clear pattern between initial nutrient 

concentrations, nutrient uptake and TEP generation in the mixture treatments during 

the 12-day experiments.  Transparent exopolymer particle generation was highest in 

the Pasture treatment in November and in the Tussock treatment in February (Table 
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9).  In November, more NO3-N was also taken up in the Pasture treatment than in the 

other treatments, and more DRP was taken up in all of the treatments than in the Lake 

Control (Table 9).   

In February, TEP generation was not significantly associated with initial N or P 

concentrations or nutrient uptake, possibly because initial concentrations of TEP were 

extremely high in treatments containing stream water from the Pasture (Alpha Burn) 

and Pasture + Urban (Bullock Creek) catchments (Figure 8C).  Algal biomass 

(measured using chl a) was also not significantly associated with nutrient uptake or 

TEP generation in the mixture treatments. 

3.3.2.2. Nutrient-enriched treatments 
TEP increased with decreasing DRP and NO3-N concentrations in nutrient-enriched 

treatments in November (Table 10).  In February, significantly more DRP was taken 

up in all of the treatment groups compared with the Lake Control (Table 9), but TEP 

generation was not significantly associated with initial nutrient concentrations or 

nutrient uptake (Table 10).    

Table 10: Correlation matrix of transparent exopolymer particle (TEP) formation and chl a 
over 12 days compared with the change in nutrient concentrations in experiment bottles.  
Experiment bottles contained mixtures of 50 µm-filtered Lake Wanaka water and 0.22 µm-
filtered stream exudate from streams draining pastoral land cover (Pasture), pastoral and 
urban cover (Pasture + Urban) and tussock land cover (Tussock).  Nutrient-enriched 
experiment bottles, which were run in parallel to the original mixture treatments, also 
contained saturating concentrations of N and P (1200 µg N l-1 and 140 µg P l-1).  Italicised 
numbers indicate p < 0.05. 

  Δ TEP Δ NO3 Δ DRP Δ chl a 

November: ambient 
Δ TEP 1 -0.544 -0.440 0.733 
Δ NO3  1 0.034 0.471 
Δ DRP   1 -0.467 

November: enriched 
Δ TEP 1 -0.533 -0.685 0.578 
Δ NO3  1 0.885 -0.704 
Δ DRP   1 -0.777 

February: ambient 
Δ TEP 1 -0.138 * 0.458 
Δ NO3  1 * -0.103 
Δ DRP   1 * 

February: enriched 
Δ TEP 1 -0.141 -0.242 0.200 
Δ NO3  1 0.925 -0.830 
Δ DRP   1 -0.932 

 

Chlorophyll a was not significantly associated with TEP generation in nutrient-

enriched treatments in either November or February (Table 10).  However, chl a 

concentrations were significantly higher in all nutrient-enriched treatments than in the 

original treatments and nutrient-enriched control (F(7,15) = 52.494, p < 0.001).    
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Figure 8: Concentration of transparent exopolymer particles (TEP) in A. mixture treatments 
and B. nutrient-enriched treatments from the November 2012 12-day experiment, C. mixture 
and D. nutrient-enriched treatments from the February 2013 12-day experiment.  Thin vertical 
lines indicate ± 1 standard error. 
 

In February 2013, nutrient enrichment significantly increased micro- and nano-

phytoplankton abundance compared with original mixture treatments (Appendix B, 

Table B2).  However, TEP concentration was not significantly associated with any 

algal class or genera in either the amended or original treatments, and phytoplankton 

community composition changed in all treatments during the experiment (Table 11).  

At the start of the experiment, diatoms made up approximately 11% of counted 

phytoplankton cells. By the end of the experiment, diatoms made up 1 to 67% of 

counted phytoplankton cells, while green algae, commonly Ankistrodesmus, 

(Pseudo)sphaerocystis, Tetraspora, Botryococcus, Dictosphaerium, and (possibly) 

Stichococcus,  made up 8 to 88% of cells (Table 11; Figure 9).  
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Figure 9: Composition and abundance of dominant phytoplankton taxa by treatment in the 
February 2013 experiment. C = lake water control; P = stream water from pasture-dominated 
catchment; P+U = stream water from Pasture + Urban-dominated catchment; T = stream 
water from Tussock-dominated catchment. 
 
Table 11: Mean abundance of dominant micro- and nano-phytoplankton taxa ( ± 1 standard 
error) in the lake water at the start of the February 2013 experiment, and in each treatment at 
the end of experiment.  ΔTEP  = the amount of transparent exopolymer particles (TEP) 
generated over the course of the experiment.  (P) Pasture, (P+U) Pasture+Urban, (T) Tussock. 
(*) highlights negative values, which were a result of very high initial TEP concentrations in 
these two treatments.   

Treatment Cells (ml-1) 
Diatoms 

(ml-1) 
Diatoms 

(%) 
Lindavia cells 

(ml-1) 
Nitzschia cells 

(ml-1) ΔTEP 
Start 89.3 ± 19.2 11 ± 0.6 13.6 5.7 ± 1.4 0.2 ± 0.2 0.2 ± 0.04 

Control 120, 1071 4.9, 12.9 4, 1.2 1.6, 0 1.6, 6.5 0.6 ± 0.2 
P 317, 208 36, 8.2 11.6, 3.9 3.3, 5.5 23.3, 2.7 -1.2 ± 0.3* 

P+U 378.4 ± 101 12.2 ± 5.4 3.7 3.0 ± 0.6 3.0 ± 1.6 -1.4 ± 0.9* 
T 165.4 ± 39.3 58.3 ± 51.7 25.8 5.4 ± 1.5 48.5 ± 47.5 3.5 ± 0.7 

Control 
+ nutrients 2677 ± 643 1562 ± 478 56.6 21.2 ± 5.4 1478 ± 499 1.3 ± 0.3 

P + nutrients 3590 ± 218 2739 ± 143 76.6 22.7 ± 3.5 2607 ± 139 2.3 ± 0.4 
P+U  

+ nutrients 4296 ± 272 2719 ± 423 62.6 8.0 ± 4.8 2459 ± 426 6.0 ± 1.8 

T + nutrients 3544 ± 175 1971 ± 250 55.2 27.1 ± 4.6 1777 ± 208 8.2 ± 1.6 
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Figure 10: Diatom composition and abundance for each treatment by day 12 for A. original 
mixture treatments and B. nutrient-amended treatments in the February 2013 experiment. 
Control = lake water control; P = stream water from pasture-dominated catchment; P+U = 
stream water from Pasture + Urban-dominated catchment; T = stream water from Tussock-
dominated catchment. 
 
In nutrient-enriched treatments, diatoms made up a greater proportion of total counted 

cells (47 to almost 84%) (Table 11; Figure 9).  Nitzschia sp. was the most prevalent 

diatom, making up 87-97% of diatoms (Figure 10) and 44-80% of total counted cells.  

Observational comparisons of live cells collected from treatments indicated that TEP 
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was associated with algal surface coatings on individual Lindavia cells and colonial 

green algae, as well as with aggregated material (Figure 11, Figure 12).   

 

Figure 11: (clockwise from top left) Two Lindavia diatoms from different angles, plus 
Nitzschia (diatom) and colonial green algae associated with surface-coatings of TEP; 
aggregated material with Lindavia cell visible; colonial green alga (possibly, Gonium) with 
colourless envelope; loosely aggregated material dominated by Nitzschia cells. 
 

 

Figure 12: Phytoplankton biomass in A. initial concentrations in each mixture and B. end 
concentrations (after 12 days) in a nutrient-spiked mixture of Lake Wanaka and Alpha Burn 
water in February 2013.   
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Figure 13: Scatterplot of TEP to Lindavia cell numbers (ml-1) in (top graph) mixture and 
(bottom graph) nutrient-enriched treatments from the February 2013 12-day experiment. 

3.3.3 TEP formation and Lindavia abundance 
Transparent exopolymer particle concentrations were not positively associated with 

the presence or abundance of Lindavia sp (Figure 13).  In February 2013, the number 

of Lindavia cells remained fairly constant in the mixture treatments. Lindavia 

numbers increased in nutrient-enriched treatments (Figure 10), but the proportion of 

Lindavia cells to total counted cells remained the same or decreased in almost all 

BOD bottles.  At the start of the February 2013 experiment, Lindavia sp. made up 

35.7 to 75% of total diatom cells in the different treatments (Figure 10).  By the end 
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of the experiment, this genus made up 0.4-2.4% of total diatom cells in nutrient-

amended treatments, and 5 to 86% of diatom cells in the original mixture bottles. 

An inter-lake comparison of TEP generation was run in May 2013, to ensure TEP 

formation in the previous experiments was not simply a result of laboratory 

conditions.  TEP formation was examined using water from Lake Wanaka and two 

lakes that do not experience ‘lake snow’ (Lake Hawea and Lake Wakatipu), and in 

which Lindavia is not present in significant numbers.  Only lake water was used in 

this experiment; no stream exudates were added to any treatment.  Parallel nutrient-

amended treatments were run for each lake.    

Over the course of the May 2013 experiment, phytoplankton composition changed in 

each treatment (Figure 14; Table 12).  Significantly greater numbers of Lindavia and 

Nitzschia were present in the nutrient-enriched Lake Wanaka treatment than the Lake 

Wakatipu and Lake Hawea treatments (Lindavia χ2 = 6.72, p = 0.035, df = 2; 

Nitzschia χ2 = 7.20, p = 0.027, df =2) (Figure 14).  The only significant increase in 

TEP (µ = 0.24 gum xanthan equivalents) concentration occurred in the ambient Lake 

Wanaka treatment (F(4, 10) = 62.686, p < 0.001).  TEP concentrations in all other 

treatments were less than 0.05 xanthan gum equivalents.    
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Figure 14: Composition and abundance by day 12 of (A) dominant phytoplankton taxa and 
(B) diatoms in c = Lake Wanaka (Control); h = Lake Hawea and w = Lake Wakatipu.  cs = 
Lake Wanaka Start; hs = Lake Hawea Start, ws = Lake Wakatipu Start; cn = Lake Wanaka + 
nutrients (19 µM NO3-N and 1.4 µM PO4-P); hn = Lake Hawea + nutrients and wn = Lake 
Wakatipu + nutrients. 
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Table 12: Inter-lake comparison of start (S) and end values of phytoplankton abundance, 
including dominant taxa ± 1 standard error.  Green (ml-1) = the abundance of identified 
Chlorophyte algae.  CS = Lake Wanaka Start; HS = Lake Hawea Start, WS = Lake Wakatipu 
Start C = Lake Wanaka (Control); H = Lake Hawea and W = Lake Wakatipu; CN = Lake 
Wanaka + nutrients (1200 µgN 1-1 and 140 µgP 1-1); HN = Lake Hawea + nutrients and WN = 
Lake Wakatipu + nutrients. 

 Total cells 
(ml-1) 

Diatoms 
(ml-1) 

diatom 
(%) 

Lindavia 
(ml-1) 

Nitzschia 
(ml-1) 

Other  diatom  
(ml-1) 

Green  
(ml-1) 

CS 100 ± 26 10.7 ± 1.2 13 ± 4.5 6.9 ± 2.4 0 3.4 ± 0.2 64.5 ± 26 
HS 55 ± 4.3 24 ±  0.1 44 ± 4 0 0 24 ± 0.1 8.0 ± 1.3 
WS 23.5 ± 7.4 0.5 ± 0.3 3.6 ± 2.5 0 0 0.5 ± 0.3 8.2 ± 5.8 
C 62.0 ± 4.6 7.2 ± 1.8 11 ± 2 2.4 ± 0.5 1.2 ± 0.7 3.6 ± 1.2 18.5 ± 0.8 
H 135 ± 16 118 ± 14.5 87 ± 1.6 0 0 118 ± 14.5 4.6 ± 1.2 

W 107 ±  28.5 4.8 ± 0.3 5.4 ± 1.7 0.9 ± 0.6 0.4 ± 0.3 2.6 ± 1.2 62.7 ± 
32.5 

CN 303 ± 37 181 ± 35 57 ± 4 19.4 ± 4.7 126 ± 23 36.2 ± 7.2 50.5 ± 1.6 
HN 325 ± 65 183 ± 81 40 ± 15 0 3.8 ± 0.6 179 ± 81.5 20.5 ± 3.9 

WN 209 ± 23 81.9 ± 4.6 41 ± 10 0.3 ± 0.2 33 ± 2.1 47.9 ± 6.0 111 ± 17.9 

 

3.4 Discussion 
In all of the experiments, the algal community structure changed markedly from that 

observed in Lake Wanaka.  Thus, the experimental results may not reflect in lake TEP 

drivers and dynamics.   

3.4.1 The influence of catchment-derived nutrient and DOC inputs on TEP 
generation 

The results from my study do not support my first hypothesis that catchment-derived 

nutrients and DOC would increase TEP generation in Lake Wanaka water.  In the 8-

day experiments, initial DOC and N concentrations were significantly higher in two 

of the treatment groups compared with the Lake Control (Table 6), but these two 

groups frequently had the lowest TEP concentrations (Table 8).  None of the 

treatments had significantly higher concentrations of TEP than the Lake Control.   

Other studies report a positive relationship between catchment-derived material and 

TEP production.  In an estuarine system in Israel, anthropogenic effluents released 

into the water column promoted high phytoplankton biomass, resulting in 2 to 5-fold 

higher TEP concentrations than at oligotrophic sites further downstream (Bar-Zeev 

and Rahav 2015).  In a study of 12 Swedish lakes, isotopic signatures and 

fluorescence index indicated settling organic aggregates were predominantly 

composed of allochthonous DOM (von Wachenfeldt and Tranvik 2008), and in a 

study of three arctic lakes, terrestrially-derived chromophoric dissolved organic 

carbon (cDOM) accounted for 53% of TEP-carbon (TEP-C) (Chateauvert et al. 2012).  
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In the latter study, both allochthonous DOM and TEP in lake water increased with 

increasing river discharge (Chateauvert et al. 2012).    

The lack of a relationship between catchment-derived material and TEP in my study 

may reflect the study design (e.g. laboratory as opposed to field experiments; use bulk 

DOC concentrations instead of isotopes of cDOM).  It may also reflect the 

hydrological condition of the streams at the time of sampling.  Generally, water 

collection occurred at low to moderate flows, although samples were taken at high 

flows prior to the February 2013 experiment.  On this date, DOC concentrations were 

elevated in the sampled streams (Appendix B, Table B3) compared with low flow 

conditions (Table 6), and initial TEP concentrations in the Pasture and Pasture+Urban 

treatments were very high.  These high initial values may indicate TEP precursor 

material was present in the stream water (Figure 8C), but more work is required to 

substantiate a link between TEP, DOC and stream discharge in the Wanaka 

catchment.   

The lack of a relationship between catchment-derived material and TEP may also 

reflect interactions between bacteria, DOC and TEP in the treatments.  Bacteria have 

a complex, and occasionally contrary, relationship with TEP abundance.  Not only 

can bacteria indirectly and directly contribute to TEP generation, but they also 

colonise and actively break down this substrate (Arnous et al. 2010).  Under nutrient-

limited conditions, bacteria can outcompete phytoplankton for nutrients (Thingstad et 

al. 1993, Mindl et al. 2005, Cunha and Almeida 2009) resulting in the release of TEP 

by phytoplankton.  Bacteria can also actively produce TEP through the renewal of 

capsular material (Fazio et al. 1982, Ford et al. 1991, Passow 2002). This capsular 

material, composed of mucopolysaccharides (Ford et al. 1991), helps protect the cell 

from predators and toxins, regulates the transfer of ions at the cell surface, and helps 

concentrate nutrients (Fazio et al. 1982).  Constant renewal of this capsular material 

results in release of older material into the water column, and natural bacterial 

assemblages are capable of generating between 195 to 377 µμg xanthan gum 

equivalents a day (Passow 2002).  In one study, bacterial carbon reportedly made up 

3-10% of TEP-carbon (TEP-C) generated in lagoon water (Rochelle-Newell et al. 

2010).  As I did not measure bacterial abundance or activity, I cannot quantify the 

contribution of bacterially-produced carbon to total TEP-C in my treatments.  Nor can 
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I determine whether the chemical composition of the DOC influenced bacterial 

activity and TEP production or uptake in the treatments.  These parameters would be 

useful to include in future studies of organic aggregate formation in Lake Wanaka.    

3.4.2 Nutrient enrichment and TEP formation 
Algal blooms formed, and more TEP was generated, in nutrient-enriched treatments 

than in the mixture treatments.  This supports my second hypothesis that nutrient 

enrichment would further increase TEP generation in lake and stream mixtures by 

stimulating algal growth.  My data are consistent with previous studies linking 

nutrient availability, diatom blooms and TEP formation (Bodungen et al. 1986, 

Riebesell 1992, Kiørboe et al. 1994, Alldredge et al. 1995, Li and Logan 1995, Logan 

et al. 1995, Passow and Alldredge 1995a).  For example, in a mesocosm study by 

Alldredge et al. (1995), high initial concentrations of NO3-N (46 µM) silicate (SiO4-

Si) (45 µM) and phosphate (PO4-P) (3 µM) stimulated a dense phytoplankton bloom 

dominated by diatoms, which was associated with an increase in TEP (Passow and 

Alldredge 1995a).  In a separate study, Alldredge et al. (1995) reported that formation 

of large organic aggregates was related to increases in chl a, and that chain-forming 

diatoms such as Chaetoceros, Thalassiosera, Leptocylindrus and Nitzschia dominated 

phytoplankton biomass.  Studies of TEP formation in Lake Constance have reported 

an association between pennate diatoms and surface films glued together by TEP 

(Grossart et al. 1997).    

High initial TEP concentrations in the Pasture and Pasture+Urban treatments in the 

February experiment meant TEP generation was not significantly associated with 

initial nutrient concentration or nutrient uptake.  However, a significant association 

between DRP uptake and TEP generation was apparent in the November 2012 

nutrient-enriched treatments.  While the results of my experiments cannot be 

extrapolated directly to Lake Wanaka, they indicate that increased nutrient availability 

(particularly P) in the lake could stimulate algal growth and promote production of 

‘lake snow’ in Lake Wanaka.    

3.4.3 TEP generation and Lindavia 
My third hypothesis, TEP concentration will increase with increasing abundance of 

Lindavia sp., was not supported by the February 2013 or May 2013 experiments.  In 

February, Lindavia abundance was not significantly associated with the amount of 
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TEP generated in any of the ambient or nutrient-enriched treatments.  In May, a 

significant increase in TEP only occurred in the ambient Lake Wanaka treatment, 

while Lindavia abundance increased significantly in the nutrient-enriched Lake 

Wanaka treatment.  

The lack of a significant relationship between TEP formation and Lindavia abundance 

may indicate that laboratory conditions were not optimal for Lindavia intermedia 

growth.  Lindavia intermedia is a dominant phytoplankter in warm epilimnetic waters 

during the mid- to late summer (Interlandi and Kilham 1999).  However, in Lake 

Wanaka, L. intermedia abundance is not positively associated with increased light 

intensity (Bayer 2013), and low light levels and low water temperature (4°C) have 

been used to successfully culture this phytoplankter in the lab (Theriot, personal 

communication to C. Burns).  Although temperature was controlled to reflect the 

average temperature of Lake Wanaka in my experiments, the (relatively) warm water 

temperature (12°C) and saturating light levels during the experiment may have 

inhibited L. intermedia cell growth and extracellular polysaccharide production.    

Other factors, including the removal of grazers during prefiltration, may also account 

for the lack of a relationship between Lindavia and TEP concentration.  Grazers can 

influence phytoplankton composition by preferentially consuming certain 

phytoplankton (Sarnelle 2005).  In Lake Wanaka, cladocerans like Daphnia ‘pulex’ 

are the dominant zooplankton throughout the year, and Daphnia preferentially 

consume small diatoms like Nitzschia and Cyclotella (Sarnelle 2005).  Nitzschia is not 

a dominant phytoplankter in Lake Wanaka (Clayton and Coleman 1976, Naismith 

1994, Bayer et al. 2015).  As this diatom made up a significant proportion of total cell 

numbers in my treatments, the increase in Nitzschia cell numbers over Lindavia may 

indicate Nitzschia are better adapted to growth under laboratory conditions, or that 

grazer exclusion allowed the Nitzschia population to grow rapidly. 

3.5 Conclusions 
Under laboratory conditions, nutrient enrichment (particularly P enrichment) of Lake 

Wanaka water increased chl a concentrations, nano- and micro-phytoplankton 

abundance, and TEP generation.  However, TEP generation was not associated with 

any particular diatom species, nor was it associated with catchment-derived N, P or 

DOC.  As the algal community changed markedly over the course of these 
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experiments, the changes reported here may not reflect in-lake TEP drivers and 

dynamics.  More intensive field and laboratory work needs to be carried out to 

determine what is causing the formation of organic aggregates in Lake Wanaka, and 

the possible effects (especially in the sediments) of the sedimentation of this material.   
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4 Intermixing depth and influence of two large river 
plumes on Lake Wanaka 

4.1 Introduction 
The path a river plume takes on entering a lake is a function of the density difference 

between the inflowing water and the lake surface water (Pickrill and Irwin 1982).  In 

temperate climates, river and lake temperatures vary seasonally, and many lakes 

undergo seasonal stratification, where warmer, lower density water lies on top of 

colder, higher density water.  When the lake is thermally stratified, a cold, sediment 

laden river plume may plunge along the bottom, or interflow where the density of the 

river water matches the surrounding lake water (Pickrill and Irwin 1982, Marti et al. 

2011).  However, a warm plume could flow over the surface of the lake if the river 

water is warmer than that of the lake (Pickrill and Irwin 1982).    

Understanding changes in river inflow is important, as a river plume can influence the 

distribution of suspended material, nutrients and organic matter in a lake, which can 

play an important role in regulating both heterotrophic and autotrophic production 

(Hecky et al. 2003, MacKenzie and Adamson 2004, Emmerton et al. 2008, Johengen 

et al. 2008).  Nutrient and organic carbon inputs can stimulate phytoplankton and 

bacterioplankton activity, particularly in nearshore areas (Scavia and Fahnenstiel 

1987, Lohrenz et al. 1990, Lohrenz et al. 1992).  A turbid plume interflowing into the 

epilimnion can cause initial light limitation, reducing phytoplankton productivity 

(Lohrenz et al. 1990, Lohrenz et al. 1992, McCullough et al. 2007), while a plunging 

plume can deliver exogenous sediment, nutrients and dissolved oxygen to the bottom 

waters near the lake bed, affecting benthic productivity (Johengen et al. 2008) and 

nutrient cycling.  

Anthropogenic activity can alter river discharge patterns, affecting the depth and 

direction of an inflowing river (Loizeau and Dominik 2000).  For example, 

hydroelectric dams built along the Rhone River helped prevent flooding and 

decreased suspended solid loads reaching Lake Geneva.  However, the subsequent 

decrease in river water density and flow rate restricted the number and intensity of 

oxygen-rich underflows, potentially exacerbating oxygen-deficits in the deeper waters 

of the Lake (Loizeau and Dominik 2000).  As terrestrially-derived material (e.g. total 

suspended solids (TSS), nutrients, dissolved organic carbon (DOC) and dissolved 
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oxygen (DO)) can help support biological activity in a lake system, and as 

anthropogenic activity frequently enhances productivity (Galbraith and Burns 2007, 

Abell et al. 2011b), it is important to understand the loads of terrestrially-derived 

materials to a lake system and where the loads are directed within the lake in order to 

better understand impacts of land use activities on lakes.   

In Central Otago, New Zealand, Lake Wanaka is an important tourist and fishing 

destination known for its high water quality, ecology and scenic value.  Recent 

changes to phytoplankton community structure (Bayer 2013) and the fouling of 

fishing lines and water intake filters by phytoplankton-derived organic aggregates 

have raised concerns about whether the lake is in a steady state.  Urban, residential 

and agricultural development has been steadily increasing in the area, and increasing 

trends in chl a and TN concentration have been noted in bays close to developed areas 

(Otago Regional Council 2009).  These trends are not statistically significant, 

although this may in part be due to the dilution potential of a lake as large as Lake 

Wanaka.    

Lake Wanaka has two main inflowing tributaries: the Matukituki River and the 

Makarora River.  The Matukituki River flows in from the west while the Makarora 

River flows in from the north.  Both drain glaciated terrain, national parkland and 

low-intensity farmland.  Currently, we do not know what impact (if any) the influx of 

terrestrially-derived material from these two tributaries may be having on Lake 

Wanaka.   

The aim of my study was to understand how catchment-derived materials are 

delivered to Lake Wanaka under stratified and un-stratified conditions, and 

what effect this material has on phytoplankton biomass in the lake (as measured 

by chl a).  The glacial origin of both the Matukituki and Makarora Rivers suggests the 

river water will likely plunge and either inflow along the bottom of the lake or 

interflow as a density current.  As plunging plume could provide nutrients to the 

metalimnion and hypolimnion, which in turn could stimulate phytoplankton growth in 

the mixed layer, I hypothesised that: 

Hypothesis: Chlorophyll a concentration in Lake Wanaka will increase in the 

presence of the Matukituki and Makarora River plumes. 
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4.2 Materials and methods 
Lake Wanaka is located in Central Otago along the eastern border of the Southern 

Alps in New Zealand.  It is a large glacially formed lake covering approximately 180 

km2, whose deepest basin exceeds 300 m.  The lake lies on a north-northeast axis and 

is long, narrow (maximum length of 45.5 km; width of 11.6 km) and steeply-sided 

(Irwin 1980).  The lake drains to the southeast via the Clutha River.   

The Matukituki River (catchment area: 799 km2) is the major inflowing tributary to 

the lake from the west, originating at the Main Divide of the Southern Alps and 

flowing for roughly 50 km before discharging into the lake via a braided gravel-bed 

delta in West Wanaka Bay.  The Makarora River (catchment area: 710 km2) is the 

main inflowing tributary from the north, and flows for approximately 35 km before 

discharging via a braided gravel-bed delta into the northern end of the lake.  Both 

river deltas are changeable.  During the course of this study, the middle reaches of the 

Matukituki River mouth were occasionally blocked by shoals and/or sandbars, which 

disappear after high flow events. The mountainous terrain within these catchments 

restricts most agricultural development to the lower slopes and alluvial plains, with 

agricultural development consisting primarily of low-intensity farming of sheep, cattle 

and deer (Rosen and Jones 1998).   

4.2.1 Sampling design 
Plumes generated by the Matukituki and Makarora Rivers were monitored and 

sampled as they entered Lake Wanaka.  The Matukituki River plume was sampled 10 

times between 2009 and 2012.  The Makarora River plume was sampled three times 

between 2009 and 2010.  On each occasion, a series of stations extended from 

entrance mixing sites towards the open water of the lake.  The entrance-mixing site 

was defined as the first sampling station on the transect leading from the river to the 

open water of the lake.  The entrance mixing site was frequently 5-10 m from the 

river mouth.  It is also referred to as the site of initial turbulent mixing.  ‘Open water’ 

was defined as deep-water stations, far from the shore, where the influence of the 

river plume was not normally apparent.  Two sites, the Aspiring Basin site for the 

Matukituki River plume (220 m deep, 5 km from river mouth) and S4 for the 

Makarora River plume (100 m deep, 2.3 km from river mouth) were sampled to 

represented ‘open water’ in the lake. 
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Figure 15: Top map: the Lake Wanaka catchment.  Black solid arrows indicate the Matukituki 
and Makarora Rivers.  The mid-basin sampling sites (Aspiring Basin and S4) are labelled on 
the map and the location is marked by ( ).  Bottom map: CTD cast sites ( ) and transects 
(numbered T1, T2 and T3) outside the Matukituki River mouth. 
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Both the Matukituki and Makarora River plumes were sampled in spring (September, 

November) 2009 and autumn (March) 2010.  Sampling occurred in the morning 

between 8:00 and 11:30 h.  At each station, water samples were taken for nutrients 

and dissolved organic carbon (DOC) at depths of 2 m and 10 m, and also 20 m, 40 m, 

80m and 100 m, when possible.  Water samples were collected in triplicate from the 

river and directly outside the river mouth, while duplicate samples were taken at all 

other lake sites.  Samples were collected and stored in clean, 1-litre acid-washed 

polyethylene containers.  CTD (Conductivity, Temperature, Depth) casts were made 

using a Seabird SeaCAT 19s profiler CTD (Seabird Electronics, Washington, USA), 

and measured temperature, conductivity, beam attenuation (optical backscatter), 

fluorescence, density and depth.  Casting sites were determined using a global 

positioning (GPS) unit to an accuracy of ± 5 m.  Temperature and suspended solid 

concentrations were used as tracers of the river plume.  River measurements of 

temperature, oxygen concentration, conductivity and salinity were made using a YSI 

6000 rapid-pulse environmental monitoring system (YSI Incorporated, Yellow 

Springs OH, USA).  Hourly discharge rates for the Matukituki River were obtained 

from the National Institute of Water and Atmospheric Research (NIWA).  Discharge 

rates were not available for the Makarora River. 

Total nitrogen (TN) and total phosphorus (TP) samples were frozen prior to analysis.  

Upon thawing, these samples were digested using potassium peroxidisulphate, boric 

acid and sodium hydroxide and autoclaved 30 minutes prior to analysis.  Samples 

were then processed on a Skalar Auto-analyser (Skalar, Breda, the Netherlands) using 

standard colorimetric methods.  To minimise sample contamination, all filtration 

equipment and plastic ware were acid-washed and rinsed with Milli-Q water.  Field 

blanks were interspersed with field samples for quality control purposes and to ensure 

carryover between samples was negligible. Randomly chosen samples were re-run to 

account for drift in the instrument.  Blank values were subtracted from treatment 

samples before analysis.  

Water samples analysed for DOC were kept at 4°C and in the dark until 250 – 500 ml 

were filtered through acid-washed pre-combusted Whatman GF/F filters (0.7 µm 

nominal pore size glass fiber) under low vacuum pressure (< 100 mmHg), within 8 

hours of sample collection.  For quality control purposes, field blanks were filtered 

alongside field samples using Milli-Q water held in a pre-sterilised polyethylene 
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container.  Filtered DOC samples were wrapped in aluminium foil to prevent 

photodegradation and stored at 4°C until analysed within one week of collection.  

Dissolved organic carbon (DOC) samples were processed on a Shimadzu Total 

Carbon Analyser TOC-V CSH (Shimadzu, Kyoto, Japan) using potassium hydrogen 

phthalate as a standard.  Samples were purged with ultra-pure oxygen to remove 

dissolved inorganic carbon (DIC) and four injections were run for each sample, with 

the three closest concentrations averaged to give the DOC value.    

Unfortunately, DOC samples were not acidified prior to storage, and bacteria capable 

of passing through the GF/F filters may have consumed or altered some of the DOC.  

Respiration could have led to a decrease in DOC, but it is unlikely DOC 

concentrations decreased substantially during the 7-day storage period.  While 

bacterial respiration (BR) is stimulated at higher temperatures (20 – 25°C) (Berggren 

et al. 2010), respiration rates are low at colder temperatures (0 – 5°C).  Studies of 

bacterial respiration rates at 5°C report carbon losses ranging from < 0.1 to 0.5 mg C 

l-1 wk -1 (Roland and Cole 1999, Apple et al. 2006, Berggren et al. 2010).  These 

changes in DOC concentration fall within variations that occurred in laboratory 

blanks (0.10 - 0.35 mg C l-1) and internal standards (0.17 – 0.47 mg C l-1) when 

running the TOC analyser.  

Table 13: Comparison of percent land cover in the Makarora and Matukituki catchments 
(based on LCDB v. 3 data). 

Land cover (%) Makarora Matukituki 
Built-up area/Urban 0.0 0.0 
River/lake shoreline 1.1 2.3 
Alpine gravel/rock/landslide 7.2 7.0 
Snow/ice 1.3 3.8 
Alpine grass 0.7 1.4 
Exotic grassland 2.5 15.8 
Tussock grassland 61.2 47.6 
Fernland 1.6 4.6 
Scrub/shrub 5.7 4.9 
Exotic forest 0.1 0.3 
Indigenous forest 18.6 11.3 

  

The Matukituki River plume was sampled an additional seven times between 2011 

and 2012.  The Matukituki River plume was chosen for additional sampling as the 

plume was easier to identify from CTD beam attenuation data, and had a greater 

proportion of agriculturally developed land than the Makarora River catchment (Table 



 73 

13).  Sampling occurred in March, May and November 2011, and January, March, 

June and October 2012.  These dates were chosen to reflect seasonal changes in 

density between the river and lake.   

CTD casts were taken along three transects running parallel to the shoreline of Lake 

Wanaka outside the Matukituki River mouth (Figure 15).  Transects followed the 10 

m, 20 m and 50 m bathymetric contours of Lake Wanaka.  Four to six casts were 

taken along each transect line, with a total of 15 to 18 casts taken per sampling event; 

115 casts were taken in total.  CTD casts along these transect lines included casting 

sites 1, 2 and 3 from pilot sampling in 2009-2010.  A cast was also taken from the 

mid-lake Aspiring Basin site (max depth: 220 m). Contour plots of the CTD casts 

were used to pinpoint the main river plume channel and direction of the plume in the 

lake.  Casts that overlaid the main river discharge site were used to develop profiles of 

the river plume entering the lake.  Each of these profiles included at least three or five 

CTD casts of the water column.  Profile plots were made with Golden Software 

SURFER v. 11 using a triangulation with linear interpolation gridding method. 

Duplicate one-litre water samples were collected at 2 m depth from multiple sites on 

four sampling dates and analysed for suspended solid concentrations (SSC).  

Suspended solid concentrations were measured to calibrate beam attenuation (beam 

transmissometer) readings from the CTD.  Suspended solids were calculated 

gravimetrically by filtering a known volume of water through a dry, pre-weighed 1.5 

µm pore size filter.  Filters were dried at 100 to 105°C for at least 3 hours and cooled 

over silica gel before weighing.  Suspended solid concentration (SSC) was calibrated 

to CTD beam attenuation data (r = 0.842, R2 = 0.710, p < 0.001, n = 17) using the 

formula (1): 

(1) SSC  =  10.023  +  (-­‐  0.1*(beam  attenuation  (%)) 

Temperature and SSC were then combined to calculate differences in density between 

the river plume and the lake water using the formula (Kaper and Engler 2013): 

(2) ρ1  =  ρ0/(1  +  β(t1  –  t0))  +  SSC    

Where: ρ1 = final density of the water (kg l-1) 

ρ0 = initial density of freshwater at 20°C (kg l-1)  
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β  = volumetric expansion coefficient (1/°C)  

t1  = final temperature (°C)  

t0 = 20°C 

SSC = suspended solid concentration (kg l-1). 

Chlorophyll a was calibrated to CTD fluorescence data (3) using a formula derived 

from 2008 to 2010 Lake Wanaka data (Bayer 2016) where:  

 (3) chl  a  =  (2.2601  *  CTD  fluorescence  reading)  –  0.2578  

4.2.2 Statistical analysis 
All statistical analyses were carried out using SPSS (v. 21.1, IBM) software.  

Temperature, suspended solid concentration, chl a concentration and nutrient data 

were compared at each site and between sampling dates using Pearson’s product-

moment correlation coefficient to determine the distance and depth the river plume 

intermixed.  Statistical significance was accepted if p < 0.05. 

4.3 Results 
Thermal stratification was well established in the lake during the summer (January 

2012) and early autumn (March, 2010, 2011, 2012).  The depth of the thermocline 

varied, but generally occurred between 20 and 90 m on these dates. During the winter 

(June 2012), temperatures at the Aspiring Basin site changed < 1.4°C between the 

surface and deep waters (> 100 m) of the lake.  In the early spring (September 2009: 

and October 2012), water temperature at the Aspiring Basin site and S4 changed less 

than 0.6°C between the surface and deep water (> 100 m) in the lake.  

On all 10 dates the Matukituki River plume was sampled, the river water was colder 

than surface waters of the lake (Figure 16), and contained more suspended material.  

The Makarora River was colder than lake surface waters in November 2009 and 

March 2010, and contained more suspended material than the lake in November 2009 

(Table 14).  As temperature data were not collected from the Makarora River in 

September 2009, comparisons between the river and the lake could not be made for 

this month.  
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Table 14: Physical and chemical data for the Matukituki, River Makarora River and Lake 
Wanaka by sampling date (m yr-1 = month year-1).  R = river and L = lake.  For 9/09, 11/09 
and 3/10, rivers are distinguished as T = Matukituki River and M = Makarora River.  
Makarora River only sampled in 2009 and 2010, all other dates represent Matukituki River 
data. (*) indicates missing data. 
Date T (°C) DOC (mg l-1) TN (µg l-1) TP (µg l-1) TSS (max) DO (mg l-1) Flow 
m yr-1 R L R L R L R L R‡ L R L m3 s-1 

9/09T 4 9.1 * * * 52.3 ± 
16.6 * 0.6 ± 

0.8 5.6 0.8 12.71 7.41 62.8 

9/09M  * 9 * * * * * * 1.05 0.9 * 7.43 * 
11/09
T 8 11.5 2.7 ± 

0.1 
2.0 ± 
0.6 

109.5 
± 9.8 

124 ± 
37.9 < 1.0 < 1.0 1.5 0.7 * 7.34 43.8 

11/09
M 9 9.9 2.4 ± 

0.6 
1.9 ± 
0.4 

42.4 ± 
27.5 

97.8 ± 
34.5 < 1.0 < 1.0 0.6 0.8 * 7.43 * 

3/10T 11.7 15.7 1.5 ± 
0.1 

1.8 ± 
0.3 

64.9 ± 
14.1 

54.6 ± 
13.8 

11.8 
± 2.9 

1.7 ± 
0.4 1.0 0.7 10.84 7.02 33.8 

3/10M 10.2 14.1 1.6 ± 
0.6 

1.8 ± 
0.2 

168.6 
± 7.8 

104.5 
± 18.4 

1.3 ± 
0.3 

1.0 ± 
0.6 0.6 0.9 10.84 7.13 * 

3/11 11.5 13.6 * * 56.2, 
58.4 * 5.9, 

5.6 * 6.43 1.7 10.54 6.83 66.1 

5/11 * 13.6 4.1 ± 
1.0 1.9 175.4, 

157.4 * 5.42 * 4.4 0.8 * 7.05 30.7 

11/11 8.5 10.8 2.6 ± 
0.1 2.1 * * * * 0.8 0.6 11.27 7.42 29.1 

1/12 13.2 14.6 2.9 2.2 * * * * 4.0 1.1 9.89 6.90 37.5 

3/12 10.9 15.3 2.2 ± 
0.2 

2.3 ± 
0.3 44.3 * 6.0 * 3.2 1.1 9.64 6.74 43.2 

6/12 7.9 11.1 3.2 ± 
0.4 

2.8, 
3.0 96.6 56.89 5.4 < 1.0 1.5 1.0 9.78 6.91 27.7 

10/12 7.3 9.5 2.2 ± 
0.2 1.4 286.8 47.27 3.8 3.1 4.9 1.2 * 7.97 50.7 

R‡= parameter measured at the sites of initial turbulent mixing along transect T1  
 

 

Figure 16: Comparison of water temperature in the Matukituki River (�) and the mean 
temperature of surface waters (> 20 m) ($) and deep water (>150 m) (¯) at Aspiring Basin 
(44º35.702 S 169º04.030 E) at the time of sampling.     
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4.3.1 Direction of the river plume 
Plume profiles at entrance mixing sites (located > 5 m outside the river mouth) were 

complex, with the river plume frequently interflowing as several distinct layers.  

These layers are apparent in density profiles from the entrance-mixing sites (Figure 

17), as well as in temperature and suspended solid profiles (Appendix C Figure C1 

and C2).  Frequently, density profiles at the entrance-mixing site showed denser river 

water interflowing in surface to near-surface waters of the lake, with a small layer of 

colder water apparent at, or near, the lake bottom (Figure 17 E, G, H, I).  This 

complex initial interaction between the river plume and the lake likely reflects 

turbulent mixing due to the steep drop-off of the river delta.  Such turbulent mixing 

meant the density of the river plume did not always correlate with depth at entrance-

mixing sites (Table 15). 

Table 15: Correlations between density and depth at entrance-mixing sites (site ‘1’) and at a 
second sampling site (site ‘2’), which continued to follow the trajectory of the river plume out 
into Lake Wanaka.  Distance between site 1 and site 2 and average flow rate over the 24 hours 
prior to sampling are also given.  ρ = density (kg l -1).  Bold font indicates when the lake was 
thermally stratified. 

Date 
ρ (kg l-1) to 
depth (m) 

site ‘1’ 
Sig. 

ρ (kg l -1) to 
depth (m) 

site ‘2’ 
Sig. Distance 

(m) 
Flow rate 
(m3 s-1) 

19/09/2009 -0.908 <0.001 0.641 <0.001 107 62.8 
19/09/2009 -0.619 0.001 0.157 0.435 499 * 
13/11/2009 -0.872 <0.001 -0.511 <0.001 134 43.8 
13/11/2009 0.816 <0.001 0.660 <0.001 800 * 
07/03/2010 -0.411 0.101 0.766 <0.001 520 33.8 
07/03/2010 -0.681 0.021 0.631 0.037 349 * 
26/03/2011 -0.820 0.024 0.921 <0.001 137 66.1 
21/05/2011 -0.122 0.736 0.680 0.001 101 30.7 
19/11/2011 0.889 <0.001 0.928 <0.001 20 29.1 
07/01/2012 0.542 0.014 -0.765 <0.001 60 37.5 
10/03/2012 -0.310 0.303 0.850 <0.001 103 43.2 
09/06/2012 -0.528 0.078 0.352 0.099 25 27.7 
12/10/2012 -0.877 <0.001 -0.730 <0.001 49 50.7 

 

Occasions when density increased with increasing depth were November 2011 and 

January 2012 at entrance-mixing sites of the Matukituki River (Figure 17F and G), 

and November 2009 at Makarora River entrance-mixing sites (Figure 18).  Although 

density increased with increasing depth at the Makarora inflow site in November 2009 

(T: 9.71 – 9.79°C; SSC: 0.27 – 0.29 mg l-1), there was minimal variation in 

temperature and suspended solid concentrations, which made it difficult to distinguish 
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the river plume.  The same is true at the Matukituki River inflow site in November 

2011 (T: 10.78 – 11.20°C; SSC: 56 – 80 mg l-1).  In January 2012, the Matukituki 

River plume mainly plunged, although a thin layer of dense water was also retained 

near the surface (Figure 17G; Appendix C Figure C1 and Figure C2). 

Generally, once past the site of initial turbulent mixing, density increased with 

increasing depth, reflecting a plunging river plume (Table 15).  Occasions where this 

did not occur include: October 2012, January 2012 (Figure 19) and November 2009 at 

sites outside of the Matukituki River.  The lack of a positive correlation between 

density in depth in November 2009 and October 2012 possibly reflects weather 

conditions at the time of sampling, as high winds deposited noticeable quantities of 

dust on the lake surface, and wind-driven mixing may have stirred up shallower areas 

of the lake.  In January 2012, the negative correlation between density and depth at 

site 2 could reflect the similarity between the inflowing river temperature and the 

surface temperature of the lake (see Table 14), or diel variations in the depth of the 

inflowing plume.  
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Figure 17: Density profiles at initial sampling sites outside the Matukituki River mouth (~10 
m in September and November 2009; < 5 m on all other dates) in, A. September 2009, B. 
November 2009, C. March 2010, D. March 2011, E. May 2011, F. November 2011, G. 
January 2012, H. March 2012, I. June 2012.  The red arrow(s) indicate the cooler water of the 
river plume. 
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Figure 18: Density profiles at initial sampling sites in Lake Wanaka outside the Makarora 
River mouth (~ 10 m from the river mouth) in A. September 2009, B. November 2009, and C. 
March 2010, and directly outside the Matukituki River mouth in D. October 2012.   

4.3.2 Material transported to the lake 
Both the Matukituki River and Makarora River transported nutrients, dissolved 

organic carbon (DOC), dissolved oxygen (DO) and suspended solids to Lake Wanaka.  

Dissolved oxygen concentrations showed both the Matukituki River and mid-basin 
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sites in the lake were well oxygenated, and that Lake Wanaka waters remained well 

oxygenated with increasing depth (Appendix C, Table C1).   

The Matukituki River had consistently higher total suspended solid concentrations 

(TSS) than Lake Wanaka (Table 14), and this parameter (Figure 20), along with 

temperature (Figure 21), proved useful for tracking the river plume out into the lake 

(also see Appendix C, Figures C3 through C9).  Generally, bulk DOC and TN 

concentrations in the Matukituki and Makarora Rivers were not elevated compared to 

the lake, although TN concentrations were higher in the Makarora River than the mid-

basin site in March 2010, and in the Matukituki River in June and October 2012 

(Table 14).  At entrance-mixing sites (located approximately 5 m from the river 

mouth), TN concentrations were either within range of, or less than, mid-basin TN 

concentrations.  The exception occurred at the Makarora entrance-mixing site 

sampling station in March 2010, where TN concentrations averaged 192.63 ± 82.2 µg 

l-1 at 2 m depth and 101.53 ± 13.96 µg l-1 at 10 m depth, while mid-basin (S5) 

concentrations averaged 104.5 ± 18.4 µg l-1.  Dissolved organic carbon concentrations 

in the Matukituki River were within the range of DOC concentrations from the 

Aspiring Basin site on all sampling dates. 

The Matukituki River frequently had higher TP concentrations than the lake (Table 

14), but the differences between the river and lake were insufficient to allow tracking.  

The only sampling station in the lake where TP concentration exceeded background 

(mid-basin) concentrations was the entrance-mixing site for the Matukituki River.  At 

this site, TP concentrations averaged 5.06 ± 3.27 µg l-1 in September 2009 and 5.96 ±  

1.88 µg l-1 in March 2010.  Total phosphorus concentrations were within the range of 

background concentrations by the next sampling station (100 m from river mouth in 

September 2009; 520 m from river mouth in March 2010).  Total phosphorus 

concentrations at all sites were below detection in November 2009. 
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Figure 19: The Matukituki River plume as denoted by density (kg l-1) in the spring (A. 
September 2009; B. October 2012; C. November 2011), summer (D. January 2012; E. March 
2012), and late autumn/winter (F. May 2011; G. June 2012).  Contour lines = 0.0005 kg l-1.  
Depth (m) is shown on the Y-axis, while distance from the river mouth (m) is shown on the 
X-axis. 
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Figure 20: The Matukituki River plume as denoted by suspended solid concentration (mg l-1) 
in the spring (A. September 2009; B. October 2012; C. November 2011), summer (D. January 
2012; E. March 2012), and late autumn/winter (F. May 2011; G. June 2012).  Contour lines = 
0.4 (mg l-1).  Depth (m) is shown on the Y-axis, while distance from the river mouth (m) is 
shown on the X-axis. 
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Figure 21: The Matukituki River plume as denoted by temperature (°C) in the spring (A. 
September 2009; B. October 2012; C. November 2011), summer (D. January 2012; E. March 
2012), and late autumn/winter (F. May 2011; G. June 2012).  Contour lines = 0.5°C.  Depth 
(m) is shown on the Y-axis, while distance from the river mouth (m) is shown on the X-axis. 

4.3.3 River plume dynamics and chlorophyll a 
Once past the initial zone of turbulent mixing, chl a concentration was often higher 

between the layers of the Matukituki River plume (surface-flowing and interflowing) 

(see January 2012 in Appendix C, Figure C10; September 2009 Appendix C, Figure 
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C11), and occasionally above the plume (see March 2012 in Appendix C, Figure 

C10).  For example, in September 2009, density profiles at the Matukituki River 

entrance-mixing site showed the river plume interflowed near the surface, while a thin 

layer flowed along the bottom of the lake (Figure 19A).  At this site, chl a 

concentrations were highest between the two plume layers (see Appendix C, Figure 

C11).  Approximately 100 m out in the lake, these layers were apparent as an 

interflow at 15 m and an underflow at 40 m.  Again, chl a concentrations were highest 

in the waters between these two layers, with a chl a maximum occurring at 

approximately 30 m (see Appendix C, Figure C11).    

On three dates, an underflowing or interflowing chl a layer extended from the river 

mouth out into the lake (Figure 22).  In May 2011, a low chl a underflow extended 

150 m from the river entrance out into the lake (Figure 22 F).  A similar underflow 

extended approximately 10 m out into the lake in June (Figure 22G).  In March 2012, 

an interflowing chl a layer was apparent out to 150 m (Figure 22E).  Evidence of a chl 

a underflow (May 2011, June 2012) and interflow (March 2012) suggests the river 

plume was either bringing in fluorescing material or supporting phytoplankton growth 

in the lake.    
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Figure 22: Water column profiles of chlorophyll a concentration (mg m-3) from the mouth of 
the Matukituki River moving towards the open water of Lake Wanaka.  Spring (A. September 
2009; B. October 2012, C. November), summer (D. January 2012; E. March 2012), and late 
autumn/winter (F. May 2011; G. June 2012) profiles are included.  Contour lines = 0.15 mg 
m-3 for all profiles.  Depth (m) is shown on the Y-axis, while distance from the river mouth 
(m) is shown on the X-axis. 
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Figure 23: Chlorophyll a (black line) and temperature (grey line) profiles at the Aspiring 
Basin open water site (44º35.702 S 169º04.030 E) in Lake Wanaka at different times of the 
year.  The scale for chl a (mg m-3) is given on the top axis of each graph.  The scale for 
temperature (°C) is given on the bottom axis of each graph. Sampling dates are as follows: 
September: 19 September 2009; October: 12 October 2012; November: 19 November 2011; 
January: 7 January 2012; March (early): 10 March 2012; March (late): 26 March 2011; May: 
21 May 2011; June: 9 June 2012. 
 
The highest chl a concentrations (0.87 - 1.87 mg m-3 below 20 m depth) were 

recorded at the Aspiring Basin site in October 2012, despite cool water temperatures 

associated with the early spring (Figure 23).  The Aspiring Basin site was always 

sampled in the morning (between 8:00 and 9:00 h) to avoid high sunlight intensity 

associated with solar noon.  However, non-photochemical quenching of the surface 

water fluorescence profile may still have occurred.    

At mid-lake sites (e.g. Aspiring Basin or S4, approximately 2 km south of the 

Makarora inflow), chl a tended to decrease as the density of the surrounding water 

increased in the summer and autumn/early winter when the lake was either thermally 

stratified or when thermal stratification was breaking down.  On these occasions, algal 

growth was restricted to the mixed layer above the thermocline.  Instances where chl 

a was not significantly correlated with density at the mid-lake site occurred in the 

spring when the lake was isothermal (Table 16).   
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Table 16: Pearson correlations between density and chl a concentration at mid-lake sites (AB 
= Aspiring Basin for the Matukituki outflow, S4 = arbitrary site north of Minaret Basin for 
the Makarora outflow. Bold font indicates p < 0.05. 

site 19/09 
2009 

13/11 
2009 

07/03 
2010 

26/03 
2011 

21/05 
2011 

19/11 
2011 

07/01 
2012 

10/03 
2012 

09/06 
2012 

12/10 
2012 

AB 0.77 0.004 -0.63 -0.98 -0.95 0.13 -0.51 -0.89 -0.98 -0.28 
S4  -0.36 -0.16        

 

4.4 Discussion 
4.4.1 Direction/depth of the river plume 
Matukituki River water was consistently colder and more turbid than Lake Wanaka.  

Thus, one would expect the river plume to plunge and flow along the bottom of the 

lake, or interflow as a density current.  However, at entrance-mixing sites, the plume 

frequently intermixed as several distinct layers, with a thin layer plunging along the 

bottom.  A similar pattern was not obtained for the Makarora River plume as 

suspended solid concentrations and water temperatures were frequently similar 

between the river and the lake.  

The initial surface suspension of the Matukituki River plume is likely related to the 

bathymetry at the river-lake interface, as a steeply sloping bed at the mouth of the 

delta could cause a fast flowing plume to initially lift away from the channel bottom 

even if the plume was more dense than the lake water (Spigel et al. 2005, Mackay et 

al. 2011).  Turbulent mixing produces anomalies in T, conductivity and SSC profiles, 

reflecting complex layers of river and lake water in underflow and interflow 

(McCullough et al. 2007).  As distance from the river mouth increases, these 

anomalies can become less pronounced (McCullough et al. 2007).    

The Matukituki River water tended to plunge as it moved out in the lake, although the 

thermal structure of the water column affected whether the plume interflowed or 

underflowed.  When thermal stratification was well established in the lake, the river 

plume tended to plunge and interflow as a density current above the thermocline 

(Figure 19D and E).  When the lake was isothermal or weakly stratified, the depth of 

intermixing was more variable, with the plume either interflowing (Figure 19A) or 

plunging along the bottom (Figure 19A, C, F).  The one occasion where the plume 

appeared to flow along the surface (Figure 19B), likely reflected deposition of dust on 

the lake surface as a result of windy conditions at the time of sampling.  
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The propensity of the Matukituki River plume to sink and flow as a bottom, or 

density, current is supported by the likely presence of sublacustrine channels in the 

lake bed.  The CTD casts taken from March 2011 through October 2012 included 

sites that possibly follow one of these channels out into the lake.  Bathymetric maps 

showing the possible sublacustrine channel in relation to the Matukituki River plume 

are presented in Appendix C (Figures C12 and C13).  The channel is similar to ones 

described by Irwin (1980), which originated near the mouth of the Matukituki River 

and extended out past Rabbit Island (approximately 5 km from the river mouth).  

These channels were likely scoured out by underflows and density currents related to 

the river plume (Irwin 1980).  Irwin (1980) described similar channels outside the 

Makarora River mouth as well as outside the Rees and Dart River Mouth in nearby 

Lake Wakatipu (Central Otago, New Zealand).    

While I did not record any instances of continued surface flow beyond the initial 

mixing zone in Lake Wanaka, theoretically the Matukituki and Makarora River 

plumes could overflow along the surface given the right conditions.  In Lake 

Wakatipu, a similar large (289 km2), deep (380 m) monomictic oligotrophic lake 

located on the South Island of New Zealand, underflows generally predominate from 

the headwater delta, which drains two large, glacially-fed rivers.  During warmer 

months, large diurnal variation in river density occasionally produced an interflowing 

layer near the base of the thermocline (Pickrill and Irwin 1982).  Based on density 

data extrapolated from the Rees River, the authors speculated that diurnal variations 

in river temperature could result in the plume occasionally flowing along the surface 

in summer, as river temperatures increased during the late afternoon and water density 

decreased.  On one occasion, turbid waters from the Makarora River were reported to 

extend up to 100 m from the river mouth during calm conditions (Irwin 1980).  Thus, 

these plumes can surface flow for a considerable distance into Lake Wanaka when 

conditions allow.    

4.4.2 Export of terrestrially-derived material to the lake 
At the Matukituki River entrance-mixing sites, the river plume contained higher 

concentrations of TSS and marginally higher concentrations of total phosphorus (TP) 

than the mid-basin (Aspiring Basin) site, while total nitrogen (TN), dissolved organic 

carbon (DOC), and dissolved oxygen (DO) concentrations were usually within range 

of background concentrations in the lake.  The similarity between riverine and lake 
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TN, DOC and DO concentrations made the river plume signal too weak to track for a 

great distance using these parameters.  Although the Matukituki River (TP: 5.79 to 

12.57 µg l-1) generally had higher TP concentrations than background concentrations 

in Lake Wanaka at the time of sampling (Lake Wanaka TP: < 1.0 to 1.7  µg l-1, with 

8.3  µg l-1 = maximum recorded TP on 22/03/2009), this variable was also not a good 

indicator of the river plume as concentrations were at, or near, the range found in 

lakes classified as oligotrophic (TP: 4.1 to 9.0  µg l-1).    

The marginally elevated TP concentrations in the river compared with the lake could 

reflect land use in the catchment, as application of conventional fertilizers and/or 

manure can increase soil P concentrations above what is necessary for plant growth 

(Gburek et al. 2000).  Currently, the majority of P transported by Matukituki River is 

in particulate form (see Figure 6 in Chapter 2), which potentially reflects the export of 

surplus P bound to clay particles and metal hydroxides to the lake via surface runoff 

(Gustafsson et al. 2012).  As TP concentrations were not elevated in the Makarora 

River compared with the lake, this may reflect the smaller proportion of land in the 

catchment devoted to pasture cover, or that far fewer samples were taken from the 

Makarora River, and sampling did not occur during or following high flow events 

which can increase P export to downstream water bodies (Correll et al. 1999, Line et 

al. 2000). 

Unlike TN, TP, DOC and DO, suspended solid concentrations (SSC) proved a useful 

parameter for tracking the Matukituki River plume (Figure 20, Appendix B).  While 

suspended solids transported by the Matukituki River are probably glacial in origin, 

agricultural activity also likely contributes some of the suspended solid load via soil 

compaction and stock trampling of river banks (Gburek et al. 2000).  As the 

Matukituki River plume tends to plunge as it moves out into the lake, the turbid 

waters would be unlikely to attenuate light and restrict phytoplankton growth in 

relatively shallow waters in the lake (McCullough et al. 2007).    

4.4.3 Chlorophyll a and the Matukituki River plume 
Attempts were made to avoid sampling at solar noon, but chl a profiles were not 

corrected for fluorescence quenching.  Exposure of phytoplankton to high light stress 

can lead to non-photochemical quenching, as phytoplankton in the upper euphotic 

zone inhibit fluorescence in order to protect their photosystems from excess light 
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energy (Hamilton et al. 2010).  The result is fluorescence readings that are under-

representative of phytoplankton abundance at the surface (Fennel and Boss 2003, 

Sackmann et al. 2008).  Low chl a concentrations are apparent in surface water in 

September, October, November, January and March, which may be indicative of non-

photochemical quenching of the fluorescence profile, although the March 2012 beam 

attenuation profiles does not indicate the presence of high concentrations of 

particulate matter in surface waters (Appendix C Figure C14).  

The apparent chl a underflow/interflow in March, May and June supports my 

hypothesis that chl a concentration will increase in the presence of the river plume.  

While chl a concentrations were often low at the lentic-lotic boundary, this may 

reflect decreased light availability (Smith and Demaster 1996), as the initial 

turbulence of the plume entrained suspended solids near the surface of the lake.  Low 

chl a concentrations also likely reflect initial dilution by the river plume (Mackay et 

al. 2011).  Once past the initial zone of turbulent mixing, chl a concentration was 

often higher between the layers of the plume (if surface flowing and interflowing) 

(Appendix C, Figure C10 and Figure C11), and occasionally above or below the 

plume.  Other studies of river plume influences on phytoplankton biomass also report 

an increase in chl a as hydrological conditions change from river-dominated zones to 

the lake-transition zones (Kimmel et al. 1990, Mackay et al. 2011).  Along this 

gradient, algae are increasingly able to utilise enhanced inflowing nutrient 

concentrations as light penetration improves and initial riverine dilution decreases 

(Mackay et al. 2011).   

In Lake Wanaka, the highest chl a concentrations were recorded at the mid-basin site 

not directly impacted by the river plume.  While the Matukituki River plume likely 

extends out as far as the Aspiring Basin site during flood events, the river plume (as 

determined by density) was not apparent in any of the CTD profiles taken at this site.  

At the mid-basin site, chl a maxima were not related to thermal stratification or a 

particular season, as maxima occurred both when the lake was mixed (October 2012) 

and when thermal stratification was well established (January 2012).  However, 

thermal stratification did influence the distribution of chl a in the water column.  

When the Lake was stratified, chl a concentrations were highest in the epilimnion.  

When the Lake was mixed, chl a concentrations were more uniformly distributed 

throughout the water column (Figure 23).  Chlorophyll a concentrations remained 
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relatively high during the winter and early spring (0.63 – 1.87 mg m3), which could 

reflect good water transparency combined with nutrient replenishment from deeper 

waters in the lake (Otago Regional Council 2009, Bayer 2013, Bayer et al. 2015). 

4.5 Conclusions  
Plumes from the main inflowing tributaries to Lake Wanaka can potentially extend far 

into the lake.  Temperature, suspended solid concentrations and density were useful 

parameters for tracing the Matukituki River plume as it flowed into the Lake.  

Turbulent mixing at the lentic-lotic boundary resulted in complex layers of light and 

dense waters.  As the river plume extended into the lake, it tended to plunge and either 

interflow or underflow depending on the thermal structure of the water column.  

Currently, nitrogen and DOC concentrations in the Matukituki River are within the 

range of those in the lake (see Chapter 2), while phosphorus concentrations exceed 

background concentrations in the lake.  Catchment-derived materials exported to the 

lake by the Matukituki River plume appear capable of stimulating phytoplankton 

growth, and controlling the depth of phytoplankton growth, in nearshore waters.    
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5 Potential Influence of Low-intensity Land Use on 
Dissolved Organic Carbon Character in the 
Matukituki River and Lake Wanaka  

5.1 Introduction 
Dissolved organic matter (DOM) plays an important role in regulating heterotrophic 

and autotrophic production in aquatic systems (Hecky et al. 2003, MacKenzie and 

Adamson 2004, Emmerton et al. 2008, Johengen et al. 2008).  The quality and 

quantity of DOM can control bacterial biomass and activity (Scavia and Fahnenstiel 

1987, Cotner et al. 2000, Findlay et al. 2001, Bernhardt and Likens 2002), alter 

bacterial community structure (Crump et al. 2003), affect trace metal bioavailability 

(Thurman 1985), attenuate light (Morris et al. 1995), increase surface water acidity 

(Hope et al. 1994), and affect the bioavailability of N (Bernhardt and Likens 2002, 

Johnson et al. 2009).  While determining the quantity of DOM within a system is 

important, the quality of DOM (determined by its chemical composition and 

molecular structure) determines how it reacts with its environment (Davis and Benner 

2005, Johnson 2008, Wagner et al. 2015).  Generally, DOM that is rapidly 

bioavailable (i.e., high quality DOM) is enriched with N and P and of low molecular 

weight to facilitate enzymatic transformation and transport across membranes (Freese 

et al. 2007).  

The source of the DOM influences its chemical composition and how it is processed 

in the environment.  Algal exudate, comprised of high concentrations of freshly-

produced carbohydrates (Biddanda and Benner 1997) or other low molecular weight 

(LMW) aliphatic material such as proteins or organic acids, is highly labile and tends 

to be rapidly biodegraded (Hansen et al. 2016).  In comparison, terrestrially derived 

DOM (tDOM) spans a continuum from relatively unaltered, easily identifiable plant 

residues to plant and animal material that has been strongly altered by microbial and 

chemical processes (Biddanda and Benner 1997).  While tDOM from agriculturally-

modified catchments tends to be less structurally complex and can contain a greater 

proportion of heteroatoms than forested or wetland-dominated catchments (Wilson 

and Xenopoulos 2009, Wagner et al. 2015), DOM sourced from woody vegetation 

tends to contain a higher proportion of humic substances such as lignins and tannins 

(Benner 2004), or their soluble microbial degradation products.  As these humic 



 94 

substances have been strongly altered through decomposition and humification 

processes, they tend to be enriched in aromatic structures that can be relatively 

resistant to further microbial processing (Johnson et al. 2009, Cerdán et al. 2016).  

However, these substances can be highly photoreactive, and can photochemically 

break down into more bioavailable photoproducts (Mead et al. 2013).  

Biodegradation and photodegradation can alter DOM composition.  Biodegradation of 

DOM can lead to the rapid incorporation or mineralisation of high quality (i.e., low 

molecular weight aliphatic) DOM (Hansen et al. 2016), while photodegradation can 

break large DOM molecules into smaller, more bioavailable photoproducts that can 

then be taken up by microorganisms (Moran and Zepp 1997).  Biodegradation occurs 

in both photic and aphotic zones, but the influence of photodegradation decreases 

with increasing depth, which can result in chemically distinct DOM in surface waters 

and deep waters (Moran and Zepp 1997).  For example, in the open ocean, surface 

DOM is predominantly composed of recently produced labile biological substances, 

while deep (> 200 m) DOM consists primarily of old (3000 to 4300 year old) 

biologically refractory humic material (30–80%) (Mopper and Schultz 1993).  In 

coastal areas, lakes and rivers, pronounced light attenuation as a result of coloured 

DOC, turbidity or productivity can restrict photolysis and the production of more 

biologically labile photoproducts to surface waters (Moran and Zepp 1997).    

Determining DOM composition in aquatic systems is difficult due to the complexity 

and diversity of the naturally occurring DOM pool (Kim et al. 2003, Gonsior et al. 

2011, Mead et al. 2013).  Recent advances in ultra-high resolution spectrometric and 

spectroscopic techniques offer detailed information on the molecular composition of 

naturally sourced DOM.  One such method, Electrospray Ionization Fourier 

Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), can 

characterise thousands of individual molecular formulae typically found in a given 

DOM sample (Stenson et al. 2002, Koch et al. 2007, Tremblay et al. 2007, Hertkorn 

et al. 2008, Gonsior et al. 2011).  A qualitative technique, FT-ICR-MS has been used 

to differentiate between marine and freshwater sources of DOM (Tremblay et al. 

2007, Gonsior et al. 2011) and between the molecular composition of DOM collected 

in rainfall from coastal compared to continental storms (Cottrell et al. 2013, Mead et 

al. 2013).  However, few studies applied ESI FT-ICR-MS to look at differences in 
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DOM composition within a large lake and between a lake and its inflowing tributaries 

(Minor et al. 2012), particularly in catchments with minor agricultural development.   

Lake Wanaka is a large (192 km2), deep (311 m), oligotrophic lake located in Central 

Otago, New Zealand (44° 42’S, 169° 09’E).  Waters in the lake are clear (Secchi 11-

13.9 m) and productivity is low (mean chl a = 0.49 mg m-3,).  The clarity and long 

hydraulic residence time in Lake Wanaka (> 6 years) would allow DOM in surface 

waters to become severely photobleached, potentially producing smaller, more 

bioavailable photoproducts.  Biological activity in surface waters would also produce 

labile, low molecular weight (LMW) aliphatic DOM.  In deep waters (> 100 m) of the 

lake, photolysis will not affect DOM bioavailability, as photosynthetically active 

radiation drops to below 1% of its surface value by 40 m depth in Lake Wanaka 

(Bayer 2013).  As biodegradation of sinking, senescent autochthonous and 

terrestrially-derived material would remove labile DOM from the water column 

leaving behind DOM that is more resistant to microbial degradation, I hypothesised 

that: 

Hypothesis (i): Deep lake water will contain a greater proportion of aromatic 

structures than near-surface waters in Lake Wanaka 

Flowing into the western side of Lake Wanaka, the Matukituki River drains national 

parkland and low-intensity farmland.  Land cover in the Matukituki River catchment 

is similar to the overall Wanaka catchment (see Table 1 in General Introduction) with 

the majority of land cover comprised of tussock grassland (47.6%), and woody 

vegetation (forest (11.6%) + scrub/shrub (9.6%) = 21.1%), pastureland (15.8%) and 

snow and ice (10.8%).  Woody vegetation is not the dominant land cover in the 

Matukituki Valley, but makes up a significant proportion (1/5) of vegetation in the 

catchment.  As aromatic DOM concentrations are higher in soils beneath patches of 

woody vegetation than in between patches of woody vegetation (Cerdán et al. 2016), 

DOM in the river may contain recalcitrant (but photochemically active) humic 

substances.  As the short residence time and high turbidity of the Matukituki River 

will likely limit photodegradation of aromatic riverine DOM, I hypothesised that: 

Hypothesis (ii): The Matukituki River will contain a greater proportion of 

aromatic structures than near-surface water in Lake Wanaka 
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In addition to woody vegetation, a small proportion (15.8%) of the Matukituki Valley 

is covered in pastureland.  The growth of highly productive vegetation and presence 

of animal manure can not only increase inputs of less humified and more labile OM to 

streams, but can also increase the molecular diversity of DOM (Ohno et al. 2007, 

Wilson and Xenopoulos 2009, Bida 2013), particularly the presence and abundance of 

heteroatoms (i.e., atoms other than carbon and hydrogen) in the DOM signature 

(Wagner et al. 2015).  As the volume of Lake Wanaka would dilute inflowing 

material from the Matukituki River, I hypothesised that: 

Hypothesis (iii): The Matukituki River water will have proportionally more 

heteroelement DOM formulae than Lake Wanaka. 

5.2 Methods 
5.2.1 Study site and field sampling 
Lake Wanaka is located in the high country of Central Otago, New Zealand.  Land 

development is the area is relatively low intensity (Davies‐Colley 2013), although this 

region is experiencing a slow shift in vegetation cover from tussock-dominated 

grasslands to increasing areas of agricultural and urban development (McGlone 

2001).  The mountainous terrain surrounding Lake Wanaka restricts most urban and 

agricultural development to alluvial plains and the glacially-formed basin at the 

southern end of the lake.  Agricultural development in the area (including the 

Matukituki River Valley) consists primarily of sheep, beef cattle and deer farming 

(Rosen and Jones 1998).  

In June 2012, duplicate 5-L water samples were collected in Lake Wanaka from 20 m 

and 100 m at the Aspiring Basin site (44º35.702 S 169º04.030 E) to determine the 

character of DOM in the lake.  Samples were collected using a 5-L Niskin water 

sampler, and stored in acid-washed polyethylene containers that had been thoroughly 

rinsed with Milli-Q water.  On the same morning, two duplicate 5-L water samples 

were collected from the Matukituki River for the same purpose.  Matukituki River 

water samples were taken from the middle of the river in the main flow approximately 

20 cm below the surface.  All water samples were stored on ice in the dark and 

transported back to the laboratory.   

 



 97 

5.2.2 Bulk DOC concentration 
Triplicate 50 ml water samples from each container were filtered through a 

Durapore® PVDF membrane 0.22 µm filter.  The filter was wrapped in aluminium 

foil to prevent photo-degradation and stored at 4°C to determine bulk DOC 

concentration.  Bulk DOC samples were analysed on a Shimadzu TOC-V CSH Total 

Carbon Analyser (Shimadzu, Kyoto, Japan) using potassium hydrogen phthalate as a 

standard.  Samples were acidified to pH 2.5 using analytical grade HCl, then purged 

with ultra-pure oxygen to remove dissolved inorganic carbon (DIC).  Four injections 

were run for each sample, with the three closest concentrations averaged to give the 

DOC value. 

5.2.3 Characterisation of DOM 
The remaining large-volume water samples were immediately filtered through a 

Millipore GV 0.22 µm filter, acidified to pH 2.2 (± 2) and stored for one month at 4°C 

in acid-washed and Milli-Q rinsed polyethylene containers until solid phase extraction 

(SPE).  Optimal water volumes filtered for SPE were determined using maximum 

recorded DOC concentrations in the river and lake in order to achieve a target eluate 

concentration of > 10 µg C ml-1.  The Agilent Bond Elut PPL SPE cartridges (1 g PPL 

resin) were activated with 5 ml methanol (HPLC-grade) and the methanol was rinsed 

off with acidified Milli-Q water.  Each water sample was then gravity-fed (< 20 ml 

min-1) through the activated cartridge.  After the extraction, cartridges were rinsed 

with 5 ml of acidified Milli-Q water, and dried under a vacuum.  After drying, each 

cartridge was flushed twice with 5 ml of HPLC-grade methanol, eluting the solid-

phase extracted DOM (SPE-DOM) into amber 20 ml vials that had a lid with a 

Teflon-coated silicon seal.  Samples were analysed using a 12 Tesla Bruker Solarix 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) 

instrument at the Helmholtz Center for Environmental Health, Research Unit 

Analytical BioGeochemistry, Germany, to obtain ultra-high resolution mass spectra of 

the SPE-DOM.  Ions were produced via electrospray ionization (ESI) in negative ion 

mode, and molecular formula assignments were based on the following elements: 1H0- 

∞, 12C00- ∞, 16O0- ∞, 32S0- ∞, 34S0- 3, 14N0- 10 (Gonsior et al. 2011).  Samples were 

injected at 3 µL min-1 and 500 scans were averaged at a mass-to-charge ratio (m/z) 

between 147 and 1000.  The FT-ICR-MS was calibrated internally using arginine 
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clusters and again externally using known exact DOM molecular formulae (Timko et 

al. 2015). 

Duplicate samples were averaged before the formula assignments (intensities of each 

m/z ion).  This meant that lower abundance m/z ions were averaged with slightly 

higher abundance ions in the replicate sample, resulting in more peaks over the 

relative abundance threshold, and an overall increase in the number of assigned 

formulae for the averaged spectra.  Summary data from the duplicate samples are 

available in Appendix D, Table D1.   

Van Krevelen diagrams (van Krevelen 1950, Kim et al. 2003) were used to 

investigate molecular variation between sites.  Van Krevelen diagrams are constructed 

from elemental ratios of hydrogen to carbon (H:C) on the y-axis and oxygen to carbon 

(O:C) on the x-axis.  While molecular formulae that have the same elemental ratios 

overlap on these diagrams, major chemical classes in the DOM can produce 

characteristic H:C and O:C ratios that cluster within a particular region of the 

diagram.  These regions can help indicate the source DOM material, although 

formulae falling within these characteristic ranges do not definitively identify the 

compounds (Kim et al. 2003).  This is because no structural information is available 

from mass spectrometric results alone, and a high number of isomers may be present.  

The van Krevelen diagrams were also useful for visualising the presence and 

abundance of aromatic compounds after applying a general aromaticity index.   

To distinguish aliphatic compounds from aromatic compounds, the general 

aromaticity index (AI) developed by Koch and Dittmar (2006; updated in 2016) was 

used.  Koch and Dittmar (2016) calculated AI by first calculating the double bond 

equivalents (DBE) of the molecular core of the original molecular formula.  The DBE 

of the molecular core (DBEAI) is calculated by subtracting all functional groups that 

potentially contribute to Double Bond Equivalents (DBE) from the original molecular 

formula (DBEAI  =  1  +  (C  −  O  −  S  −  !!(N  +  P  +  H)).  Next, CAI is determined by the 

formula CAI  =  C  −  O  −  S  −  N  −  P, to get the respective number of carbon atoms in the 

molecular formula (Koch and Dittmar 2006, Koch and Dittmar 2016). The 

aromaticity index was then calculated as:  

𝐴𝐼 = !"#!"
!!"
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In addition to AI,  a  modified aromaticity index (AImod)  was also calculated, where: 

𝐴𝐼!"# =
1+ 𝐶 − !

!
𝑂 − 𝑆 − !

!
(𝑁 + 𝑃 + 𝐻)

𝐶 − !
!
𝑂 − 𝑁 − 𝑆 − 𝑃

 

The AImod index accounts for the fact that carboxyl groups are made up of both 

carboxyl oxygen that is bound with sigma (σ) bonds (the first bond formed between 

carbon and another atom), as well as carbonyl groups that are bound with π-bonds 

(second or third bonds between atoms) (Koch and Dittmar 2006, Koch and Dittmar 

2016).  The modified aromaticity index is less conservative than the original 

aromaticity index, and increases the number of compounds identified as aromatic.  

Double bond equivalents and DBEs normalised to the number of carbons (DBE/C) 

were also used to analyse the different DOM signatures from the three sites.  Double 

bond equivalents represent the degree of unsaturation of a compound (or the number 

of double or triple bonds potentially present in a compound), which affects the 

number of hydrogen atoms a compound can bind (Minor et al. 2012).  Unsaturation 

increases with an increasing number of double bonds, and unsaturation combined with 

low H:C and O:C values, can be indicative of aromatic structures (Minor et al. 2012). 

5.2.4 Analysis of the data 
Statistical analyses were carried out using SPSS (v. 21.1, IBM) software.  Chi-square 

(χ2) statistical tests were used to determine whether the proportion of aliphatic to 

aromatic compounds was the same at the three sites.  The tests were also used to 

determine whether the proportion of heteroelement formulae were the same for each 

site.  In a few instances, quantitative comparisons were made using One-way 

ANOVA, or Kruskal-Wallis tests if assumptions of normality and homoscedasticity 

were not met.  In all analyses, statistical significance was accepted if p ≤ 0.05. 

5.3 Results 
In June 2012, bulk DOC concentration was 3.32 ± 0.49 mg l-1 in the Matukituki 

River, which was similar to bulk DOC concentrations at the two sites in Lake Wanaka 

(3.05 ± 0.24 mg l-1 at 20 m and 3.25 ± 0.004 mg l-1 at 100 m).  In general, bulk DOC 

concentrations in the Matukituki River (1.27 to 3.81 mg l-1, mean DOC = 2.46 ± 0.57 

mg l-1, n = 16) were similar to the lake (mean lake DOC = 2.04 ± 0.47, range = 1.43 to 

2.91 mg l-1, n = 10) when sampled during low to moderate flows (flow rate < 65 m3 s-



 100 

1).  The Matukituki River flow rate can be as high as 1000 m3 s-1 in flood, and flow 

rates greater than 100 m3 s-1 are not uncommon.  Hence this ‘average’ DOC 

concentration does not reflect the amount of material brought in by the river during 

high flows. 

5.3.1 Aromaticity of DOM 
Aromaticity index data are presented as both AI and AImod in Table 17.  Van Krevelen 

diagrams using calculations of AImod are presented in Figure 24, while diagrams using 

calculations of the more conservative AI formula are available in Appendix D (Figure 

D1).    

Table 17: Total number of carbon, hydrogen and oxygen (CHO), carbon, hydrogen, oxygen 
and sulphur (CHO-S) and carbon, hydrogen, oxygen and nitrogen (CHO-N) containing 
formulae in each sample.  Total number of aliphatic (≤ 0.5), aromatic (> 0.5) and 
conservatively defined aromatic (≥ 0.67) CHO, CHO-S and CHO-N are also given.  Aliphatic 
and aromatic groups were determined using both the Aromaticity Index (AI) and the modified 
Aromaticity Index (AImod).  

AI 

 
Total number  of 

formulae ≤ 0.5 > 0.5 ≥ 0.67 

Site CHO CHO
- N 

CHO
-S CHO CHO

-N 
CHO

-S CHO CHO
-N 

CHO
-S CHO CHO

-N 
CHO

-S 
R 2305 716 1215  2206  706 1215 99 10 0 6 0 0 

20  2274 810 616 2175 798 614 99 12 0 7 0 0 
100  2607 1071 544 2431 1046 543 176 25 0 39 3 0 

AImod 
R 2306 718 1215  1867 529 1212 438 188 3 94 37 0 
20  2275 811 616 1823 587 610 451 223 4 103 57 0 

100 2608 1072 544 2023 770 538 584 301 5 173 67 0 

 
Analysis of DOM composition using FT-ICR-MS revealed a lot of overlap in DOM 

signatures between the two lake sites, with the majority of the compounds at each site 

being aliphatic (Figure 24, Appendix D Figure D1).  However, the two lake sites did 

not have similar proportions of aliphatic to aromatic compounds (χ2 = 13.13, p = 

0.0003) (see Appendix D, Table D2).  Fewer than expected aromatic compounds were 

present in water from the 20 m site, while more than expected aromatic compounds 

were present in water from the deep (100 m) site.  Deep-sourced (100 m) lake water 

had a significantly higher number of averaged double bond equivalents (DBEs) (χ2 = 

6.292, p = 0.012) and DBEs normalised to the number of carbons (DBE/C) than the 
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shallow water (20 m) site (Table 18; Appendix D, Table D3).  Number-averaged H:C 

values (Appendix D, table D3) were significantly lower at the 100 m site than at the 

20 m site (χ2 = 8.949, p = 0.011) (Table 19).    

Similarly, FT-ICR-MS revealed a lot of overlap between the Matukituki River and the 

shallow water of the lake (Table 17).  Like both lake sites, the Matukituki River DOM 

was predominantly composed of aliphatic compounds.  The river and 20 m lake site 

had similar proportions of aliphatic to aromatic compounds, but the river and 100 m 

lake site did not (χ2 = 13.96, p = 0.0002).  Fewer than expected aromatic compounds 

were present in the river water, while more than expected aromatic compounds were 

present in 100 m lake water (Appendix D, Table D4).  Matukituki River water 

contained the lowest number of DBEs and DBE/Cs of all three sites (Table 18; 

Appendix D, Table D3).   

Table 18: Average number (± 1 standard deviation) of double bond equivalents (DBE) and 
DBE normalised to the number of carbons (DBE/C) in CHO, CHO-N and CHO-S formulae 
found in the Matukituki River (River), at the shallow water site in Lake Wanaka (20 m), and 
at the deep water site in the lake (100 m).  Lake water from 100 m depth with the highest 
number of DBE and DBE/C, are highlighted in bold. 

Site CHO CHO-S CHO-N 
 DBE DBE/C DBE DBE/C DBE DBE/C 

River 9.94 ± 3.89 0.47 ± 0.16 5.64 ± 2.64 0.29 ± 0.40 9.01 ± 2.56 0.53 ± 0.13 
20 m 10.37 ± 3.95 0.49 ± 0.15 5.98 ± 2.92 0.32 ± 0.15 9.28 ± 2.61 0.55 ± 0.12 

100 m 10.69 ±  4.13 0.50 ±  0.16 6.47 ±  2.92 0.35 ±  0.15 9.84 ±  2.77 0.55 ± 0.12 

5.3.2 Heteroelement DOM signature  
More than half of the assigned compounds from the three sites (54.4 – 61.7%) 

contained only carbon, hydrogen and oxygen (CHO) (Table 17).  Carbon, hydrogen 

oxygen and nitrogen (CHO-N) formulae made up 16.9 to 25.4% of all formulae from 

the three sites, with the highest diversity of CHO-N compounds occurring in the deep 

waters of Lake Wanaka (1071 unique formulae out of 4224 total formulae, or 25.4%) 

and the lowest abundance of CHO-N formulae occurring in the Matukituki River (716 

unique formulae out of 4240 total formulae, or 16.9%).  In contrast, the greatest 

diversity of carbon, hydrogen, oxygen and sulphur (CHO-S) formulae was found in 

the Matukituki River (1215 unique formulae) (see bold font, Table 17), while the least 

diversity of CHO-S formulae were found in the deep water of the lake.  No CHO-P 

formulae were detected by mass spectrometry. 
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River and lake DOC signatures did not differ significantly in mean molecular weight 

or O:C (Table 19).  However, H:C was significantly higher in Matukituki River water 

than the other two sites (F(2, 2369) = 24.639, p < 0.001).  Chi-square tests showed the 

proportion of CHO, CHO-N and CHO-S formulae differed significantly between the 

River and Lake (χ2 = 388.139, p < 0.001) (Table 20).    

Table 19: Average mass (kDa), O:C and H:O ratio (± 1 standard deviation) for carbon, 
hydrogen and oxygen (CHO) compounds; carbon, hydrogen, oxygen and nitrogen (CHO-N) 
compounds, and carbon, hydrogen, oxygen and sulphur (CHO-S) compounds in the 
Matukituki River (R) and Lake Wanaka at 20 m (20) and 100 m (100) depth in June 2012. 
Mean H:C values differed significantly between sites and are highlighted in bold. 
Site CHO CHO-N CHO-S 

 Mass  O:C H:C Mass O:C H:C Mass O:C H:C 
R 442.5 ± 

128 
0.48 ± 
0.15 

1.15 ± 
0.32 

376 ± 
81.4 

0.49 ± 
0.1 

1.13 ± 
0.24 

431 ± 
0.55 

0.44 ± 
0.14 

1.52 ± 
0.28 

20  449.6 ± 
129 

0.49 ± 
0.15 

1.12 ± 
0.31 

377 ± 
82.9 

0.50 ± 
0.1 

1.10 ± 
0.23 

417 ± 
123 

0.44 ± 
0.14 

1.47 ± 
0.30 

100  449.1 ± 
133 

0.48 ± 
0.17 

1.10 ± 
0.32 

392 ± 
92.3 

0.48 ± 
0.11 

1.09 ± 
0.22 

419 ± 
121.5 

0.44 ± 
0.15 

1.42 ± 
0.30 

 

Table 20: Chi-square (χ2) contingency table comparing the proportion of carbon, hydrogen 
and oxygen (CHO-), carbon, hydrogen, oxygen and sulphur (CHO-S) and carbon, hydrogen, 
oxygen and nitrogen (CHO-N)-containing formulae at each site.  Observed (Obs), expected 
(Exp) and cell-specific chi-square values are given.  River: Matukituki River; 20 m: 20 m 
depth in Lake Wanaka; 100 m: 100 m depth in Lake Wanaka. 
 River 20 m 100 m Total 
CHO        Obs 
                 Exp 
                  χ2 

2305 
2503.69 

15.77 

2274 
2186.89 

3.47 

2607 
2495.42 

4.99 
7186 

CHOS      Obs 
                 Exp 
                  χ2 

1215 
827.48 
181.48 

616 
722.78 
15.77 

544 
824.75 
95.57 

2375 
 

CHON      Obs 
                 Exp 
                  χ2 

716 
904.83 
39.41 

810 
790.34 

0.49 

1071 
901.84 
31.73 

2597 

Total 4236 3700 4222 12158 
 

A comparison of CHO-S compounds using van Krevelen diagrams showed molecular 

ions with high H:C (≈ 2) and O:C (< 0.6) ratios were present in the river and shallow 

waters of the lake (sampled at 20 m), but were missing from deeper (100 m) lake 

waters.  All molecules falling within this range were present in the river water.  These 

compounds were mainly C8  – C13 (see bold font, Table 21) with neutral mass ranging 

from 225 to 330.  The relative abundance of these compounds was low (0.56% to 

4.10%) compared to other CHO-S compounds in the water samples.  Relative 

abundance is the relative intensity of each mass to charge (m/z) peak compared with 
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the most abundant peak (which is assigned 100%).  The absence of these most of 

these C8  – C13 compounds in the deep lake water sample suggests these CHO-S 

compounds are degraded rather rapidly. 

Table 21: Unique compounds containing carbon, hydrogen, oxygen and sulphur (CHO-S) 
with high H:C and O:C ratios located only in the Matukituki River (River), in the Matukituki 
River and shallow water site in Lake Wanaka (River and Lake (20 m)), and at all three sites.  
C8 – C13 compounds are in bold font.  Relative abundance gives the relative intensity of each 
mass to charge (m/z) peak compared with the most abundant peak (which is assigned 1.0 (or 
100%)). 

Location Formula 
Neutral 
Mass 

Relative 
abundance O:C H:C 

River C8H18O5S 226.09 0.56 0.63 2.25 
 C10H22O6S 270.11 0.79 0.6 2.20 
 C11H22O8S 314.10 1.79 0.73 2.00 
 C19H38O18S 586.18 0.75  2.00 

River and Lake (20 
m) C8H16O5S 224.07 0.56 0.63 2.00 

 C8H16O6S 240.07 1.56 0.75 2.00 
 C9H18O6S 254.48 1.62 0.67 2.00 
 C9H18O7S 270.08 0.90 0.78 2.00 
 C10H20O6S 268.10 4.10 0.60 2.00 
 C10H20O7S 284.09 2.12 0.70 2.00 
 C11H22O7S 298.11 0.65 0.64 2.00 

All three sites C11H22O9S 330.10 1.70 0.82 2.00 
 

The river also contained 394 different CHO-S formulae with low O:C (≤ 0.50) but 

high H:C (> 1.5) ratios.  Ninety-eight different CHO-S compounds with low O:C and 

high H:C ratios were found at 20 m depth in the lake, and 73 different CHO-S 

compounds were found at 100 m.  Molecules with low O:C (< 0.4) and high H:C (> 

2.1) ratios fell within the range found in sulfonates commonly used as surfactants (see 

bold font, Table 22).  A highly saturated (DBE = 0, H:C > 2) compound with a 

chemical formula similar to lauryl sulphate (dodecyl sulphate) (C12H26O4S ) made up 

a significant portion of DOM characterised in both the river (67.72%) and the lake at 

100 m (47.76%).  Other surfactant-like compounds were abundant at all three sites 

(Table 22).    
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Table 22: Formulae containing carbon, hydrogen, oxygen and sulphur (CHO-S) in Lake 
Wanaka and/or the Matukituki River with low O:C (< 0.5) and high H:C (> 1.5) ratios and a 
high (> 25) relative abundance.  Sulfonate-like compounds are highlighted in bold font. 
Relative abundance gives the relative intensity of each mass to charge (m/z) peak compared 
with the most abundant peak (which is assigned 1.0 (or 100%)).  (R) Matukituki River, (20) 
20 m depth in Lake Wanaka, (100) 100 m depth in Lake Wanaka. 

Location Sites Relative 
abundance Formula Mass O:C H:C 

River R 31.29 C16H26O8S 378.13 0.50 1.63 
 R 29.99 C16H28O8S 380.15 0.50 1.75 
 R 29.66 C19H30O5S 370.18 0.26 1.58 
 R 27.01 C20H32O10S 464.17 0.50 1.67 

River and 20 m R 
20 

67.72 
47.76 C12H26O4S 266.16 0.33 2.17 

All three sites 
 

100 
20 
R 

1.58 
3.49 

26.22 
C12H20O6S 292.10 0.5 1.67 

 

100 
20 
R 

1.35 
13.73 
32.13 

C14H30O3S 278.19 0.21 2.14 

 

100 
20 
R 

25.45 
22.80 
29.2 

C14H30O4S 294.19 0.29 2.14 

 

100 
20 
R 

22.73 
24.91 
26.71 

C14H30O5S 310.18 0.36 2.14 

 

100 
20 
R 

4.97 
7.18 

27.89 
C15H24O7S 348.12 0.20 1.60 

  
100 
20 
R 

1.47 
11.88 
27.66 

C15H32O3S 291.88 0.20 2.13 

 

100 
20 
R 

19.93 
24.09 
28.38 

C16H34O6S 354.21 0.37 2.12 

 

100 
20 
R 

1.32 
4.99 

36.94 
C17H26O3S 326.15 0.23 1.53 

 

100 
20 
R 

2.14 
11.64 
69.49 

C18H28O4S 340.17 0.22 1.55 

 

100 
20 
R 

20.78 
22.81 
31.57 

C19H30O3S 338.19 0.16 1.58 

 

100 
20 
R 

50.98 
38.70 
29.65 

C20H34O3S 354.22 0.15 1.7 

 



 105 

 

Figure 24: Van Krevelen plots of H:C and O:C molar ratios in formulae containing carbon, 
hydrogen and oxygen (CHO) (A., C., E.) and CHO and sulphur (CHO-S) (B., D., F.) obtained 
from Lake Wanaka at 20 m and 100m depth and from the Matukituki River, respectively.  
Aliphatic compounds are represented by (#), aromatic compounds (compounds with a 
modified aromaticity index (AImod) ≥ 0.5 are represented by (∆).  Compounds with AImod > 
0.67 are represented by (%). 
 
An androsterone sulphate-like formula (C19H30O5S) was detected in the Matukituki 

River water (Table 22).  This does not mean androsterone sulphate was present in the 

water, as a large number of isomers are possible for any given exact molecular 
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formula.  As sulfonic acids are strong ionizers in negative mode electrospray 

(Gonsior, personal communication), trace amounts would be visible in our samples.  

While sulfonic acid signals that were present in all samples cannot be ruled out to be 

contaminants, sulfonic acids are also frequently used in land applications and may 

reflect land use practices in the catchment (Jensen 1999, Sablayrolles et al. 2009, 

Gonsior et al. 2011). 

The river also contained a higher number of compounds with relatively low H:C (H:C 

< 1.5) and O:C (O:C ≤ 0.50) ratios compared with either lake site, with 243 unique 

compounds present in the river, while only 73 compounds were found at 20 m depth 

and 64 were present at 100 m depth (data not shown).  While these compounds do not 

fall within the threshold of the aromaticity index, they indicate the river contained not 

only a greater number of CHO-S formulae than the lake, but also a more diverse range 

of CHO-S compounds than the lake.   

5.4 Discussion 
5.4.1 Aromaticity of Riverine and Lake DOM 
The data presented above provide a snapshot of the DOM signature of the Matukituki 

River and Lake Wanaka on one sampling date, and do not account for variability in 

the DOM signature over time.  

In support of my hypothesis that deep water in Lake Wanaka would contain more 

refractory DOM than shallow waters, the greatest number of aromatic structures was 

found in deep-sourced (100 m depth) lake water.  This was reflected by the 

aromaticity index as well as by comparing average double bond equivalents and 

double bond equivalents normalised to carbon (DBE/C) between sites.  Using the 

latter method, the highest average DBE and DBE/C occurred in the deep water of the 

lake.  Deep lake water also had the lowest average H:C values, possibly due to 

photobleaching of aromatic compounds in surface waters (Catalán et al. 2013).  This 

result is consistent with data from the open ocean, where DOM in deep waters and 

surface waters are spectroscopically and chemically distinct.  In the open ocean, 

surface DOM is predominantly composed of recently produced, labile biological 

substrates while DOM from deep waters consists of both biologically usable material 

(e.g. amino acids, simple sugars) as well as old (3000 to 4300 y.o.) biologically 

refractory humic material (30-80%) (Mopper and Schultz 1993).   
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Contrary to my second hypothesis, the Matukituki River did not contain more 

aromatic compounds than upper waters in Lake Wanaka.  The low number of 

aromatic structures in the River water may reflect weather conditions preceding 

sampling, as weather conditions can influence the level of aromaticity in soil organic 

matter.  In their 1989 study, Zech et al., reported that soil aromaticity increased as the 

temperature:precipitation ratio increased, and other studies have shown that the 

number of in-stream aromatic compounds increases with increasing flow rate (Wilson 

and Xenopoulos 2009, Minor et al. 2012).  In the Wanaka region, one could speculate 

that aromaticity of soil organic matter in the Matukituki Valley would be higher 

during dry spells in the summer, as warmer temperatures combine with low rainfall.  

In my study, water samples were collected in the winter when temperatures would be 

fairly low, which may have affected the aromaticity of the SOM.  Precipitation and 

river flow rates were also low in the weeks prior to sampling, making it less likely 

aromatic compounds in SOM were transported to the river.  The low flow rate of the 

Matukituki River at the time of sampling (29 m3 s-1), may have further affected the 

DOM signature of the River water, as small streams, with more variable DOM 

composition, can disproportionately impact on the DOM signature in larger 

downstream systems during periods of low flow (Wagner et al. 2015).    

Aromaticity of SOM can also vary depending on the mineral content of the soil and 

the chemical structure of organic matter (Zech et al. 1997).  The Matukituki Valley is 

made up of brown soils (previously called yellow-brown earths) along the steep 

glacially-formed valley walls, and recent fluvial deposits along the valley floor.  The 

brown allophanic and orthic soils in the Matukituki Valley are capable of adsorbing 

and stabilising DOC (Martin and Haider 1986, Zech et al. 1997), reducing its 

potential for transport to nearby surface waters (Lin et al. 2012).  Aromatic 

polyphenols have been shown to adsorb well to mineral phases (Gonsior et al. 2014), 

including when mixed with high sediment loads in rivers (Gonsior et al. 2016), which 

would remove this material from the DOM pool.      

The low number of aromatic structures in the River water may also reflect landscape 

characteristics of the catchment.  Steep valley walls tend to have less productive plant 

cover and less soil organic matter than soils on gentle slopes that support highly 

productive vegetation (Lambert et al. 2000).  The combination of severe erosion 

potential along the Matukituki Valley hillsides (LINZ 2005), thin hillside soil organic 
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layers, and adsorption of aromatic structures to minerals in the soils could reduce the 

amount aromatic tDOM being transported to stream and downstream water bodies.  

Consistent with this conclusion, Wagner et al. (2015) reported few aromatic humic-

like structures in the DOM signature from the Ganges-Brahmaputra River, which they 

attribute to low amounts of terrestrially-derived DOM entering the upper reaches of 

the river due to thin soil organic layers on the steeply-sided, sparsely vegetated terrain 

(Wagner et al. 2015).  Catchment vegetation can also affect the amount of aromatic 

DOM supplied to the river.  Aromatic DOM concentrations are higher in soils beneath 

patches of woody vegetation than beneath open areas (Cerdán et al. 2016).  While 

indigenous beech forests are present up the Matukituki Valley, the catchment is 

predominantly covered in native tussocks and grassland, which may not supply much 

aromatic DOM. 

5.4.2 Diversity of the CHO-S signature 
In support of my third hypothesis, the Matukituki River DOM was distinct from both 

lake sites by having the greatest number of formulae containing carbon, hydrogen, 

oxygen and sulphur (CHO-S).  Overall, CHO-S formulae made up 28.7% of 

compounds in the Matukituki River and 12.9 to 16.6% of compounds in the Lake 

Wanaka.  However, CHO-S was the only heteroelement-containing DOM signature 

that was significantly increased in the Matukituki River.  No CHO-P formulae were 

detected by mass spectrometry, which suggests particulate phosphorus (see Chapter 4) 

or dissolved inorganic phosphorus (See Figure 6 in Chapter 2) make up the majority 

of P in the Matukituki River and Lake Wanaka. The greatest CHO-N diversity 

occurred at the deep water (100 m) site in the lake, although the relative abundance of 

CHO-N compounds at all three sites was very low (< 6%).  As CHO-N in deep lake 

water also had the highest average DBE of the three sites and the lowest average H:C 

values, increased diversity of dissolved organic N may reflect the presence of 

refractory aromatic structures that are resistant to biodegradation and are too deep to 

undergo photodegradation.  Chemically distinct deep waters dominated by long-

lasting humic substances that, while photoreactive, are biologically refractory, has 

been reported in the open ocean (Mopper and Schultz 1993).  

The reason Matukituki River water had a higher proportion of sulphur-containing 

DOM than the lake is unclear.  Potentially, the high number of CHO-S formulae 

reflects agricultural practices in the Matukituki Valley.  Soils in Central Otago are 
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considered sulphur-deficient (Leamy et al. 1974, Brash and Beecroft 1987), and 

sulphur-containing fertilizers are frequently applied to soils in the Matukituki Valley.  

While inorganic sulphur is not necessarily a good proxy for organically-bound 

sulphur, it may indicate that organic sulphur is also elevated due to land use practices.  

Plants cannot use elemental sulphur until it is converted to sulphate by soil bacteria. 

Sulphate-sulphur that is taken up by plants can help increase plant productivity, which 

results in increased incorporation of S into organic matter and the eventual flushing of 

decomposing plant matter into the river and lake.  The link between agricultural 

activity and a more diverse, aliphatic CHO-S (and CHO-N) signature has been 

reported in a study of large river systems from around the world (Wagner et al. 2015).  

Other studies have also reported more diverse CHO-S signatures in relation to 

different anthropogenic activities (Gonsior et al. 2011, Tseng et al. 2013).  While the 

Matukituki River did not have a more diverse CHO-N signature than the Lake, this 

may reflect the fact that sulfonic acids are much better ionizers than organic nitrogen 

compounds, and are detected much more easily in FT-ICR-MS.    

Potential sulfonates in the Matukituki River water could stem from agricultural 

activity in the catchment.  Sulfonates are surfactants found in detergents, sewage 

sludge, fertilizers and pesticides (Jensen 1999, Sablayrolles et al. 2009, Gonsior et al. 

2011).  Sulfonates are used in pesticide and fertilizer formulations as they make good 

emulsifiers and dispersal agents (Jensen 1999, Sablayrolles et al. 2009).  In the United 

States, lignin sulfonate (a synthetic product) can be used as a plant or soil amendment 

in farming practices in the United States, including on organic farms.  Sulfonates have 

been recorded in undisturbed soils, possibly as a result of wind drift following aerial 

application of pesticides that contain linear alkylbenzene sulfonate (LAS) (Carlsen et 

al. 2002).   

Sulfonates are generally highly biodegradable under aerobic conditions (Scott and 

Jones 2000, Jurado et al. 2013), with a > 90% biodegradation rate of LAS in 

laboratory tests (Jurado et al. 2013) and in wastewater treatment plants that employ 

aerobic treatment processes (Scott and Jones 2000).  Sulfonate-like substances were 

found in water samples from the Matukituki River and both sites in Lake Wanaka 

(Table 22).  However, the lowest diversity of CHO-S formulae were found at the deep 

water (100 m) site (Table 17), which could indicate these molecules are rapidly 
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biodegraded in the lake.  It could also indicate they are removed through binding to 

other particles, uptake by biota or sequestration in the sediment. 

Sulphur bound to organic compounds in the Matukituki River water could also be 

geologic in origin.  Sulphur entering freshwater lakes is primarily derived from the 

weathering of rocks in the catchment and oxidation from organic sources (Girdano et 

al. 2008).  In the Wanaka region, the primary basement rock types (quartzofeldspathic 

schist (greyschist) and greenschist (Craw 1984a, Rosen and Jones 1998) contain 

minor amounts of pyrite (FeS2) (Craw 1984b).  The large amounts of fresh rock in the 

Matukituki catchment can lead to fairly rapid weathering, resulting in the flushing of 

pyrite into streams and the Matukituki River.  While weathering processes could 

oxidise the pyrite to sulphate and ferrous iron (2FeS2 + 7 O2 + 2 H2O & 2Fe2+ + SO4
2- 

+ 4H+), this SO4
2- would not bind with DOM in the water column, as DOM is 

negatively charged.  Sulphate oxidised from pyrite could become part of the DOM 

pool through assimilation by plants.  However, high rainfall and rapid erosion rates in 

the Valley means eroded pyrite or SO4
2- is likely rapidly flushed into streams and 

downstream water bodies, reducing the amount of time available for incorporation 

into plant tissue.   

5.5 Conclusions 
Bulk concentrations of DOM in the Matukituki River and the water column of Lake 

Wanaka were similar, but more aromatic DOM structures were present in the deep 

water of Lake Wanaka than in surface waters.  The higher number of aromatic 

structures in deep lake water may reflect more rapid removal of labile, aliphatic 

material by lake bacteria.  Contrary to predictions, the diversity of aromatic DOM 

compounds was relatively low in the river, which could result from landscape 

characteristics and vegetation cover in the catchment, or possibly reflect the 

dominance of compounds derived from agricultural production, or even in-stream 

production.  

The Matukituki River contained not only a greater number of sulphur-containing OM 

compounds than the lake, but also a more diverse range of CHO-S compounds than 

the lake.  As my study provides only a snapshot of the DOM signature of these water 

bodies, a temporal analysis of DOM character in the River and Lake is needed to 

confirm my results.  Some of this S is probably geologic in origin, but some may 
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reflect application of fertilizers with high SO4-S content in the River catchment.  

Future work with sulphur stable isotopes could help elucidate the source material of 

the S, and quantify whether (or how much) CHO-S in the Matukituki River is a result 

of agricultural development in the catchment. 

   



 112 

  



 113 

6 Bacterioplankton metabolism of dissolved 
organic matter in Lake Wanaka  

6.1 Introduction 
Land use influences delivery of dissolved organic and inorganic nutrients to streams 

and lakes, affecting microbial cycling of macronutrients and carbon (Findlay et al. 

2001, Burns and Galbraith 2007, Galbraith and Burns 2007).  The metabolism of 

dissolved organic matter (DOM) is generally attributed to heterotrophic 

microorganisms such as bacteria and other protists, which metabolise dissolved 

organic carbon (DOC) as an energy source (Johnson 2008).  The rate of bacterial 

mineralisation of DOM is related to both the quantity and the “quality” of the DOM 

(Findlay et al. 2001).  The “quality” of the DOM can be characterised by the 

molecular weight and the N- and P- richness of the DOM.  DOM of high quality 

should be high in N and P content and of low molecular weight, to facilitate transport 

across membranes and enzymatic transformation (Freese et al. 2007).    

 “Native” bacteria residing in the water column metabolise DOM, either taking up 

available dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) 

into microbial biomass, or mineralising it into inorganic forms that are available to 

algae (Bernhardt and Likens 2002, Bernhardt et al. 2005).  Under conditions of N and 

P scarcity, bacteria can also compete with phytoplankton for inorganic nutrients 

(Thingstad et al. , Mindl et al. 2005, Cunha and Almeida 2009), and this ability to 

take up both organic and inorganic dissolved forms of N and P allows the bacteria to 

better cope with changes in nutrient availability in their environment (Cunha and 

Almeida 2009).   

Seasonal changes in water column stratification can affect the supply of DOM and 

macronutrients to bacterial communities in lake systems.  Increased water 

temperature, solar radiation and the development of a relatively shallower mixed layer 

in the spring can instigate phytoplankton blooms and the associated release of low 

molecular weight (LMW) DOM compounds for bacterial uptake (Ducklow et al. 

1993, Kirchman 1994).  Stratification can restrict the movement of this 

photosynthetically-produced DOM into the hypolimnion (Ducklow et al. 1993, 

Kirchman 1994) trapping deep water bacterial populations and resulting in reduced 

bacterial productivity (BP) and fewer numbers of actively respiring cells (Lovejoy et 
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al. 1996).  Labile DOM associated with phytoplankton biomass (chl a) has been 

linked with bacterial productivity both in spring blooms (e.g. Cole et al. 1988), and 

during winter mixing (Lovejoy et al. 1996).  Seasonal changes in DOM source and 

lability (associated with phytoplankton biomass and terrestrially-derived labile OM) 

have also been associated with taxonomic changes in the bacterial community 

(Dominik and Höfle 2002, Crump et al. 2003), while seasonal changes in physico-

chemical variables in an estuarine system have been associated with changes in 

bacterial physiological diversity (Davis and Benner 2005).  Bacterial productivity 

fuels the microbial food web and supplies carbon to higher trophic levels (Farooq and 

Long 2001).  Therefore, it is important to understand the response of bacterioplankton 

communities to changes in DOM and macronutrient supply.  

In Lake Wanaka, primary productivity and organic matter concentrations in the water 

column are low, and nutrient scarcity often limits phytoplankton growth (Bayer 

2013).  P-limitation is particularly apparent in the surface waters during the summer 

months when the lake is thermally stratified.  However, Lake Wanaka experiences a 

winter/spring chl a maximum after turnover replenishes surface nitrate concentrations 

from the deeper waters (Bayer 2013).  As chl a concentration is a biological indicator 

of phytoplankton biomass (Ducklow et al. 1993), more labile DOM (L-DOM) 

compounds may be present in the water column during these periods for bacterial 

metabolism.  The effect this increase in chl a concentration has on microbial 

physiological diversity is unknown.  The availability of phytoplankton-derived DOM 

may also correlate to the production of enzymes by the bacterial communities 

(bacterial physiological diversity; BPD) to break down a diverse array of organic 

substrates.  Thus, I hypothesised that:  

Hypothesis (i): BPD will increase during periods of high phytoplankton biomass 

(chl a) in Lake Wanaka. 

Tributaries to the lake can also supply L-DOM to lake bacterioplankton communities.  

In general, DOM sourced from agriculturally modified catchments tends to be less 

structurally complex than DOM derived from forested or wetland-dominated 

catchments (Wilson and Xenopoulos 2009), and is therefore easier to metabolise.  

Currently, agricultural development in the Lake Wanaka catchment is dominated by 

low-intensity farming (Rosen and Jones 1998).  In the Matukituki River catchment 
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(one of the two main inflows to Lake Wanaka) farms are primarily stocked with 

sheep, beef cattle and deer.  As agricultural practices within the Matukituki River 

catchment may enhance the export of low molecular weight dissolved organic matter 

(LMW-DOM) to the lake, I hypothesised that:  

Hypothesis (ii): Bacterial activity will be enhanced by the availability of 

terrestrially-derived labile DOM  

In oligotrophic systems, macronutrient scarcity can affect bacterial biomass 

production (del Giorgio and Cole 1998).  While conditions of nutrient scarcity, 

combined with low concentrations of organic matter (OM) in the water column may 

be sufficient for planktonic bacterial metabolism, growth may be restricted (Caron 

1994, Stets and Cotner 2008).  Under these conditions, bacterial respiration rates (BR) 

may remain high in order to keep metabolic pathways primed to take advantage of 

increases in nutrient concentrations (Smith and Prairie 2004, Berggren et al. 2010).  

The availability of L-DOM in the absence of N and P may result in the secretion of 

excess microbial carbon as organic exudate, or as respired CO2 (Berggren et al. 2010).  

However, the availability of both labile organic matter and inorganic nutrients can 

strengthen the coupling between bacterial biomass synthesis and energy uptake.  As 

nutrient concentrations (particularly P) are low in Lake Wanaka (Bayer 2013), I 

hypothesised that: 

Hypothesis (iii): Microbial production will be stimulated by increasing P 

availability, while the increased availability of labile DOC will stimulate 

bacterial respiration (BR) (reference Hypothesis 2).  

6.2 Methods 
In June and October 2012 and February 2013, 20 litres of water were collected from 

a) the open water of Lake Wanaka in Aspiring Basin (44º35.702 S 169º04.030 E) at 

depths of 20 m and 100 m, and b) from the mouth of the Matukituki River.  River and 

lake water were stored in acid-washed polyethylene containers, rinsed thoroughly 

with Milli-Q water, and transported on ice in the dark back to the laboratory.  In the 

laboratory, all water was stored in the dark at 4°C, and experiments were set up within 

24 hours of collection.  Five litres of river water and 5 litres of lake water were 

filtered through Milli-Q-rinsed 0.22 µm polycarbonate filters to remove biota.  The 

remaining lake water and river water was filtered through Milli-Q-rinsed 2.0-µm-pore 
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size polycarbonate filters which removed most phytoplankton, large heterotrophs and 

particle-attached bacteria, leaving free-living bacteria, small protists, pico-

phytoplankton and picoeukaryotes.  

6.2.1 Microbial Physiological Community Structure/Diversity 
Biolog™ ecoplates (Biolog, Inc. 21124 Cabot Blvd., Hayward, CA 94545) were used 

to determine changes in bacterial physiological community structure in the lake and 

the river.  Biolog™ ecoplates contain 31 simple organic substrates, including 

polymers, carbohydrates, amino acids, carboxylic acids and amines.  Inoculation of 

the ecoplates with sample water can give a metabolic “fingerprint” of the microbial 

community based on the carbon substrates used.  Changes in the fingerprint pattern 

can indicate changes in bacterial physiological community structure over time and 

bacterial physiological community structure between sites. 

The Biolog™ ecoplates contain three replicate wells for each substrate, as well as 

three control wells that do not contain a carbon substrate.  One hundred and fifty µl of 

2.0 µμm-filtrate from the lake (20 m or 100m) or the river were used to inoculate each 

well.  Plates were inoculated within 24 hours of sample collection and incubated at 

15°C in the dark for 7 days, with readings taken daily starting at time zero 

(immediately after inoculation).  A temperature of 15°C was chosen as an incubation 

temperature to allow for rapid bacterial response while maintaining a temperature 

within the natural range for surface waters of the lake during summer (14.3 °C  -  15.2 

°C  at 20 m depth).  In situ temperatures at 100 m depth (9°C – 9.5°C) and the 

Matukituki River (7.3°C - 11°C) were consistently lower than incubation 

temperatures.  At 20 m depth, in situ temperatures were lower than incubation 

temperatures in June (11.5 °C) and October 2012 (9.5°C).  The ability of the bacterial 

community to metabolise a substrate was indicated by the formation of coloured 

tetrazolium salts.  Colour development was measured at optical density OD590 on a 

FLUOStar Omega plate reader (BNG Labtech, Ortenberg, Germany) at the University 

of Otago, Dunedin.  Plate readings made on day 5 were used to assess bacterial 

physiological diversity as the number of wells exhibiting color development plateaued 

by day 5 on all plates.  In all incubations, the background signal in the control wells 

increased over the course of the incubation.  To eliminate false positive readings as a 

result of background noise, a significant colour development detection limit was 
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established as the mean colour development of control wells plus two times the 

standard deviation of colour development in those wells. Optical density responses 

were converted to binary representations (where, 0 = no or negative response and 1 = 

positive response).      

6.2.2 Bioavailability experiment 
Bioavailability experiments were run in a pilot experiment in March, followed by 

experiments in June and October 2012, and February 2013.  Treatments consisted of 

lake water controls, lake water + saturating concentrations of N and P 

(Lake+Nutrients), lake water + river water (Lake+River) and lake water + river water 

+ nutrients (Lake+River+Nutrients) (Table 23).  Lake water used in the experiments 

was sourced from 20 m depth at the Aspiring Basin site (44º35.702 S 169º04.030 E).  

For each treatment, 150 ml of 0.22-µm-filtered stream or lake water and 150 ml of 

2.0-µm-filtered lake water were added to three replicate 300-ml BOD bottles.  The 

BOD bottles were wrapped repeatedly in black plastic to prevent light penetration and 

loaded onto a plankton wheel running at 4 RPM to provide a constant rate of 

turbulence throughout the experiment.  Room temperature was maintained at 12°C ± 

1.0°C for all experiments, reflecting the average annual water temperature of Lake 

Wanaka.  To determine whether nutrient enrichment stimulated metabolism of DOM 

in the treatments, parallel treatments were spiked with a high concentration of 

inorganic nutrients (1200 µg NO3-N l-1 and 140 µg PO4-P l-1final concentration) 

(Table 23).      

Table 23: Treatments used in the bioavailability bioassays in June and October 2012.  In 
February 2013, only the Lake and Lake+Nutrients treatments were run. 

Treatment Inoculum and Exudate proportions Nutrients 

Lake ½ 0.22-µm filtered lake water 
½ 2.0-µm filtered lake water  

Lake + Nutrients ½ 0.22-µm filtered lake water 
½ 2.0-µm filtered lake water 

1200 µg NO3-N l-1  
140 µg PO4-P l-1  

Lake + River ½ 0.22-µm filtered river water 
½ 2.0-µm filtered lake water  

Lake + River + 
Nutrients 

½ 0.22-µm filtered river water 
½ 2.0-µm filtered lake water 

1200 µg NO3-N l-1  
140 µg PO4-P l-1 

 
The experiment lasted for 15 days with dissolved oxygen (DO), dissolved organic 

carbon (DOC), total organic carbon (TOC), nitrate (NO3-N), dissolved reactive 

phosphorus (DRP), total nitrogen (TN), total phosphorus (TP) and total dissolved 

nutrients (TDN) concentrations measured on day 0 and day 15.  Dissolved oxygen 

was measured using a YSI 58 oxygen meter (YSI Inc., Yellow Springs, OH).  Two 
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BOD bottles containing Milli-Q water were run alongside the treatments to account 

for drift in the oxygen meter between the start and end of the experiment.  On day 0 

and day 15, DO was measured twice in three randomly chosen bottles to also account 

for drift in the oxygen meter.  Dissolved N, P and DOC concentrations were obtained 

by filtering 50-ml aliquots from each bottle through acid-washed pre-combusted 

Whatman, glass fibre GF/F filters (0.7 µm nominal pore size) that were pre-rinsed 

with 200 ml of Milli-Q water under low vacuum pressure (< 100 mmHg).  Milli-Q 

water held in a pre-sterilised polyethylene container was filtered alongside stream 

water for quality control purposes.  All water samples were then frozen at – 20°C 

prior to analysis.  DOC was measured on a Shimadzu Total Carbon Analyser TOC-V 

CSH (Shimadzu, Kyoto, Japan) using potassium hydrogen phthalate as a standard.  

Samples were thawed, and then purged with ultra-pure oxygen to remove dissolved 

inorganic carbon (DIC).  Four injections were run for each sample, with the three 

closest concentrations averaged to give the DOC value.   

Dissolved and total nutrient samples were processed on a Skalar Auto-analyser 

(Skalar, Breda, the Netherlands) using standard colorimetric methods.  TN and TP 

samples were digested using potassium peroxidisulphate, boric acid and sodium 

hydroxide and autoclaved for 30 minutes prior to analysis.  To minimise sample 

contamination, all filtration equipment and plastic ware were acid-washed and rinsed 

with Milli-Q water, and Milli-Q water was filtered alongside water samples as 

laboratory blanks.  Laboratory blanks and test tubes containing Milli-Q water were 

interspersed with field samples for quality control purposes and to ensure carryover 

between samples was negligible.  Randomly chosen samples were re-run to account 

for drift in the instrument.  Blank values were subtracted from treatment samples 

before analysis.    

Bacterial respiration was calculated in two ways: as mg of carbon mineralised per m3 

per day (mg C m-3 day-1) and the overall change in CO2 (ΔCO2) over the course of the 

15-day experiment.  ΔCO2 was calculated indirectly using ΔDO as a proxy, assuming 

a respiration quotient (RQ) of 1 (Wetzel and Likens 2001).  As the BOD bottles are a 

closed system, the movement of carbon should be traceable by the change in 

concentrations of TOC (measured as the non-purgeable organic carbon (NPOC) in 2.0 

µμm filtrate by the Schimadzu TOC analyser), DOC, POC and CO2.  In closed 
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systems, ΔTOC should be negatively associated with ΔCO2 as the organic carbon 

source is broken down and mineralised.  Therefore, if ΔTOC and ΔCO2 are negatively 

correlated, then ΔPOC can be calculated as = -1 * (ΔDOC + ΔCO2) (Carlson et al. 

1999).  Change in POC was used to infer microbial biomass production. 

6.2.3 Statistical Analysis 
All statistical analyses were carried out using Canoco (v. 4.5) and SPSS (v. 21.1, 

IBM) software.  Microbial physiological diversity was compared using 

correspondence analysis (CA), an ordination technique in which the main patterns of 

substrate metabolism by bacterial communities were statistically summarised on two 

independent axes.  A Categorical Principal Components Analysis was also run to 

graphically display the relationship between carbon substrate usage, season and depth 

in Lake Wanaka.  For each site and sampling date, organic substrates were grouped as 

carbon, hydrogen, oxygen (CHO) compounds, CHO plus nitrogen (CHO-N) or CHO 

plus phosphorus (CHO-P).  Bacterial utilisation of substrates in these groups was 

compared using Chi-square (χ2)   tests.     Physico-chemical parameters were compared 

with the total number of substrates utilised by day 5 using Pearson’s product-moment 

correlation.  Day 5 was chosen for comparison as the number of substrates being 

metabolised plateaued after this point in all sites.  Comparisons of mean 

concentrations between sites were carried out using one-way ANOVA.  If 

assumptions of normality or homoscedasticity were violated, Kruskal-Wallis non-

parametric analyses were undertaken. 

In the bioavailability experiments, one-way ANOVA followed by Tukey’s post hoc 

test was used to compare treatment effects in June and October.  In February, two-

sample t-tests were performed to compare lake controls and the Lake+Nutrients 

treatment.  In instances where the assumptions of normality or homoscedasticity were 

violated, comparisons were made using the Kruskal-Wallis non-parametric test.  

Potential correlations between variables (BR, ΔDOC, ΔPOC, ΔDRP, ΔNO3-N) were 

made using Pearson’s product-moment correlation.  The strength of relationships 

between variables was tested using linear regression.  In all analyses, the statistical 

threshold for significance was α = 0.05. 
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6.3 Results  
6.3.1 Bacterial physiological diversity and phytoplankton biomass 
 

Table 24: Seasonal differences in organic substrates metabolised (X) by bacterioplankton 
communities from the Matukituki River and Lake Wanaka at 20 m and 100 m.  MW = 
molecular weight (g).  type = the substrate group (e.g. AN = amine, AA = amino acids, CHO 
= carbohydrates, PM = polymers, CA = carboxylic acids, CP = orthophosphates).  ‘N,P’ 
represents whether the compound contained nitrogen or phosphorus.  Total = the total number 
of organic substrates utilised from each site at each sampling date.  A = Autumn (March), W 
= Winter (June), Sp = Spring (October), and S = Summer (February). 

    20 m 100 m River 

	
   MW Type 
N, 
P A 

 
W Sp S A 

 
W Sp S A 

 
W Sp S 

Putrescine 88.1 AN N X X X 	
   	
   	
   X X X X X X 

Phenyl ethylamine 121.2 AN N 	
   X X 	
   	
   	
   X X X 	
   	
   X 

l-Serine 105.1 AA N X X X 	
   	
   	
   X X X X X X 

l-Threonine 119.1 AA N 	
   	
   	
   	
   	
   	
   X 	
   	
   	
   	
   X 

l-Asparagine 132.1 AA N X X X 	
   X 	
   X X X X X X 

Phenylalanine 165.2 AA N 	
   	
   X 	
   	
   	
   X X 	
   	
   	
   X 

l-Arginine 174 AA N 	
   X X 	
   	
   	
   X X X X X X 
Glycyl-glutamic 
acid 204.1 CA N  X X    X X X X  X 

i-Erythritol 122.1 CHO 	
   	
   X X 	
   	
   X X X X X X X 

d-Xylose 150.1 CHO  	
   	
   X 	
   	
   	
   X 	
   X X 	
   	
  
d-Mannitol 182.2 CHO  X X X X X X X X X X X X 

b-Methyl glucoside 194.2 CHO  	
   	
   	
   	
   	
   	
   	
   	
   X X X X 
N-Acetyl-
Glucosaminic acid 237 CA N X X X 	
   X X X X X X X X 

d-Cellobiose 342.3 CHO   X X X  X X  X X X X 

α-D-Lactose 360.3 CHO  	
   	
   X 	
   	
   X X 	
   X X X X 

Glycogen 666.6 PM  X X X 	
   	
   X X X X X X X 

α –Cyclodextrin 972.8 PM  	
   	
   X 	
   	
   	
   X X X X X X 

Tween 40 1277 PM  X X X X X X X X X X X X 

Tween 80 1310 PM  X X X X 	
   X X X X X X 	
  
α -ketobutyric acid 102 CA  	
   	
   	
   	
   	
   X X 	
   	
   X 	
   X 
Pyruvic acid 
methyl ester 102.1 CA 	
   X X X X X X X X X X X X 

γ  hydroxybutyric 
acid 104.1 CA  	
   X 	
   	
   	
   X 	
   X X X X X 

Itaconic acid 130 CA  	
   X X 	
   	
   X X X X X X X 

D-Malic acid 134.1 CA  	
   X X 	
   	
   	
   X X X X X X 
4-Hydroxybenzoic 
acid 138.1 CA  	
   X X 	
   	
   	
   X X X X X X 

2-Hydroxybenzoic 
acid 138.1 CA  	
   	
   	
   	
   	
   	
   	
   X 	
   	
   	
   	
  
d-Galacturonic 
acid 194.1 CA  X X X X X X X X X X X X 

d-Glucosaminic 
acid 195.2 CA N X X X 	
   	
   X X X X X X X 

d-Galactonic acid 196 CA 	
   X X X X 	
   	
   X X X X X X 
D-l-α-Glycerol 
phosphate 172.1 CP P 	
   X X 	
   	
   	
   X X X X X X 

Glucose-1-
phosphate 260.1 CP P X 	
   	
   	
   	
   X X 	
   X X X X 

Total    13 22 25 7 6 15 28 24 27 27 24 28 
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At 20 m depth, the bacterial community metabolised fewer amine, amino acid and 

orthophosphate substrates in February (summer) and March (autumn) than in the June 

(winter) and October (spring) (Table 24).  A similar pattern occurred at 100 m, 

although the pattern lagged behind by one season (Figure 25A and B).  At 100 m, the 

bacterial community metabolised fewer amine and amino acid substrates in March 

and June than in the October and February.  The ability of bacteria to metabolise 

substrates was not correlated with the molecular weight of the compounds at either 

depth or during any season. 

 
Figure 25: Ordination plots of seasonal differences in the number and type of organic 
substrates being metabolised by the microbial community at A. 20 m depth and B. 100 m 
depth.  In plot A., Axis 1 (45%) represents the difference in substrate utilisation in the 
summer compared with the other seasons, while Axis 2 (36%) represents the difference in 
substrate utilisation in March (autumn) compared with June (winter) and October (spring).  In 
plot B., Axis 1 (43.4%) is interpreted as the difference in substrate utilisation in the autumn 
compared with other times of the year; while Axis 2 (100m: 39.9%) represents the difference 
in substrate utilisation in June (winter) and October (spring) compared with February 
(summer).  (") represents the season the sample was taken, while (■) represent the organic 
substrates metabolised by the bacterial communities.  As there were a limited number of 
patterns of organic substrate utilisation, substrates often overlapped in ordination space.  In 
A., letters represent: a = N-acetyl-glucosaminic acid, b = l-asparagine; c = 2-hydroxybenzoic 
acid; d = 4-hydroxybenzoic acid; a-cyclodextrin; D-l-a-glycerol phosphate; d-mallic acid; 
glycyl-glutamic acid; l-arginine; l-serine; phenylalanine, phenylethyamine; putrescine; e = d-
xylose, l-threonine; f = d-glucosaminic acid, itaconic acid, i-erythritol, glycogen, tween 80; g 
= a-D-lactose, a-ketobutyric acid, d-cellobiose, glucose-1 phosphate h = γ-hydroxybenzoic 
acid.  In plot B, letters represent: i = d-cellobiose; j = glucose-1-phosphate (used only in the 
autumn); k = d-galactonic acid, tween 80 (used during every season); l = d-glucosaminic acid, 
glycogen, l-asparagine, l-serine, n-acetyl-glucosaminic acid, putrescine (used June, October, 
March); m = a-cyclodextrin, a-D-lactose, d-xylose, phenylalanine (used only in October); n = 
4-hydroxybenzoic acid, D-l-a-glycerol phosphate, D-mallic acid, glycyl-glutamic acid, i-
erythritol, itaconic acid, l-arginine, phenylethylamine (used in June and October); h= γ-
hydroxybenzoic acid. 
 
Binary substrate utilisation data were plotted in a correspondence analysis.  While no 

correlations among substrates were observed in the ordination plots, seasonal patterns 
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in substrate use were observed.  At 20 m (Figure 25A), Axis 1  accounts for 45% of 

total variance in the model, and represents the difference in substrate utilisation 

pattern in the summer compared with other times of the year.  Axis 2 (36% of total 

variance in the model) represents the difference in substrate utilisation pattern in June 

(winter) and October (spring) compared with March (autumn).  Bacterial metabolic 

activity at 100 m depth followed a similar pattern, (where Axis 1 = 43.4% and Axis 2 

= 39.9% of total variance) although it lagged behind patterns observed at 20 m by one 

season (Figure 25B).  This lag is apparent in a component loadings plot showing 

seasonal differences in organic substrate metabolism at both depths (Appendix E, 

Figure E1). The ordination plots showed that seasonal changes in bacterial 

physiological community structure were reflected the overall number of substrates 

used by the bacterial community.  Thus, the diversity of organic substrates utilised per 

plate was compared with chl a concentrations and physico-chemical parameters 

measured at the time of sampling.  Chlorophyll a, DOC and nutrient concentration (± 

1 standard deviation) for each sampling date are shown in Table 25.   

Table 25: Mean values ± 1 standard deviation of physico-chemical and biological parameters 
in Lake Wanaka and the Matukituki River at the time water samples were taken for analysis 
of microbial physiological diversity.  T = water temperature (°C), DOC = dissolved organic 
carbon (mg l-1), NO3-N = nitrate (µg l-1), DRP = dissolved reactive phosphorus (µg l-1), chl a 
(mg m-3 at 20 m depth), total substrates = the total number of carbon substrates used by day 5 
following incubation on Biolog Ecoplates, * = no data. b.d. = below detection 

Site Month T DOC NO3-N DRP chl a 
Total 

substrates 
River March 10.9 2.47 46.34 2.41 * 27 

	
   June 7.9 3.32 ± 0.49 49.17 1.94 * 27 

	
   October 7.3 8.50 ± 0.20 48.2 ± 3.3 1.0 ± 0.3 * 24 

	
   February * 2.28 ± 0.43 21 ± 1.47 1.12 ± 0.12 * 28 

Lake - 20 m March 15.1 2.36 ± 0.34 14.37 b.d. 1.2 13 

	
   June 11.1 3.05 ± 0.24 30.3 ± 0.18 0.45, 0.28 1 22 

	
   October 9.6 6.77 ± 0.98 34.9 ± 1.15 b.d. 1.61 25 

	
   February 14.3 2.12 ± 0.33 22.7 ± 0.66 1.02, < 1.0 0.41 7 

Lake - 100 m March 10.6 1.87 ± 0.06 49.62 b.d. 0.29 6 

	
   June 11 3.25 ± 0.004 * * 0.82 15 
	
   October 9.4 6.95 * * 1.55 28 

	
   February 9.5 2.55 ± 0.27 39.2 ± 0.44 0.97, < 1.0 * 24 
 

Bacterial physiological diversity (total substrates used) was strongly positively 

associated with chl a concentration (r = 0.901, R2 = 0.812, p = 0.006) in the lake 
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(Figure 26).  DOC concentration was also positively correlated with both chl a (r = 

0.850, p = 0.015, n = 7) and the total number of substrates used (r = 0.744, R2 = 

0.554, p = 0.034) in the lake (Figure 26).  Although a negative trend between BPD 

and temperature was apparent, the relationship was not significant (r = -0.656, R2= 

0.430, p = 0.077, n = 7).    

 

 
Figure 26: Scatterplot of the total number of organic substrates utilised by the bacterial 
community in Lake Wanaka and (left panel) chl a concentration (mg m-3) or (right panel) 
dissolved organic carbon (DOC) concentration (mg l-1) at the time of sampling. 

6.3.2 DOC lability and bacterial activity 
The relationship between bacterial activity and the availability of terrestrially-derived 

DOM was examined using i) BPD, ii) bacterial respiration and iii) DOC uptake rates.  

In the bioassays, lake water was amended with river water from the Matukituki River 

catchment in order to determine the quality of the riverine DOM, based on the 

responses of the microbial parameters.  In both the October (spring) and June (winter) 

experiments, DOC concentrations decreased while CO2 concentrations (estimated by 

changes in DO) increased, reflecting the respiration of DOC.  However, this 

relationship was only statistically significant during the October experiment (October: 

r = -0.737, p = 0.015, n = 10; June: r = -0.693, p = 0.057, n = 8).  As all experiments 

were conducted at the annual mean temperature of 12°C, these relationships reflect 

differences in DOM lability, not in seasonal temperatures. 

While BR rates were not significantly different between treatments in June, 

respiration rates (F(1,4) = 43.920, p = 0.003) were significantly higher in the 

Lake+River treatment than in the control in October.  In June, significantly more 

DOC (F(1,3) = 23.372, p = 0.017) was taken up in the Lake+River treatment than in the 
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Lake treatment.  This difference was not apparent in October, probably because of 

high within-treatment variability in DOC uptake (Lake+River = -0.24 ± 0.16, Lake = -

0.09 ± 0.28 mg DOC l-1).     

The ecoplate incubations showed bacterial communities in the Matukituki River were 

capable of metabolising a wide variety of substrates regardless of season (Figure 27).  

The strong variability in carbon substrate uptake in the lake compared to the river 

meant the ordination plots could be interpreted in the same way as described in Figure 

25.  In a correspondence analysis using combined data from the river and the lake, the 

first two axes explained 56.2% (using data from 20 m depth) to 58.6% (using data 

from 100 m depth) of total variance (Figure 27).  Using water from 20 m, Axis 1 

(35.2% of total variance) represents the difference in substrate utilisation in the 

February (summer) compared with other times of the year while Axis 2 (21% of total 

variance) represents the difference in substrate utilisation in June (winter) and 

October (spring) compared with March (autumn).   

 

Figure 27: Ordination plots of the seasonal differences in bacterial physiological diversity in 
the Matukituki River and Lake Wanaka at A., 20 m depth and B., 100 m depth.  In A., Axis 1 
explains 35.2% of total variance, while Axis 2 explains 21% of total variance.  In B., Axis 1 
explains 30.2% of total variance, while Axis 2 explains 28.4% of total variance.  Site codes: 
SL = Summer-Lake; SpL = Spring-Lake; WL = Winter-Lake; AL = Autumn-Lake; SR = 
Summer-River; SpR = Spring – River; WR = Winter- River; AR = Autumn – River.  Symbols 
represent organic substrate groups: (■) amino acids; (●) amines; (!) CHO; (x) polymers; (è) 
orthophosphates; ($) carboxylic acids. Clustering of Matukituki River samples is indicated 
by the green circle.  Red arrows indicate seasonal changes in carbon substrate use in the lake. 
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Bacterial metabolic activity at 100 m depth followed a similar pattern, although it 

lagged behind patterns at 20 m by one season (Figure 27).  In (B) Axis 1 (30.2% of 

total variance) represents the difference in substrate utilisation in March (autumn) 

compared with other times of the year; while Axis 2 (28.4% of total variance) 

represents the difference in substrate utilisation in June (winter) and October (spring) 

compared with February (summer).  Samples from the Matukituki River tended to 

cluster together as organic substrate uptake that was consistently high regardless of 

season (Figure 27).  The number of substrates used in the lake was most similar to 

those in the river in October (spring).  

Within the river samples, DOC positively correlated with BPD (r = 0.978, R2 = 0.986, 

p = 0.022, n = 4).  This relationship between DOC and microbial physiological 

diversity was not apparent when the River and Lake data were combined, likely 

because of the consistently higher number of substrates used in the river.  A Kruskal-

Wallis comparison confirmed the riverine microbial population was capable of 

metabolising more carbon substrates than the lake bacterial population at 20 m (χ2 = 

4.133, p = 0.042).  Significantly higher DRP concentrations were recorded in the 

Matukituki River than the Lake (F(2, 7) = 32.114, p < 0.001), and when the Lake and 

River data were combined, bacterial physiological diversity was positively associated 

with DRP concentration (r = 0.643, p = 0.013, n = 9).  

6.3.3 P availability, bacterial activity and bacterial production 
Nutrient enrichment did not increase microbial biomass production (as measured by 

the change in particulate organic carbon concentration (ΔPOC)).  Instead, POC 

concentrations decreased in almost all experiment bottles regardless of season or 

nutrient enrichment.  This decrease in POC may be related to limitations of my 

experimental design (see the Discussion, section 6.4.3.).  Nutrient enrichment 

increased BR in Lake controls and Lake+River treatments, although the difference 

between treatments was only significant in October (Figure 28).  In October, 

respiration rates increased in lake water when amended with either river water or 

saturating concentrations of N and P (F(3,8) = 29.415, p < 0.001), indicating that N- 

and P-limitation may be affecting uptake of DOM at this time of year.   

Dissolved oxygen concentration changed very little in the Lake Control treatment 

during the October experiment.  While DO concentration decreased in all the Lake 
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Control BOD bottles over the course of the October experiment, the decrease in one 

of the replicates could be accounted for by drift in the oxygen meter.  After correcting 

for drift, inclusion of this replicate reduced the mean respiration rate of the Lake 

Control.  In the other two Lake Control BOD bottles, respiration rates were 1.3 and 

1.8 g C m-3 day-1 after correcting for drift.   

 

Figure 28: Mean respiration rates for treatments from the winter (June) and spring (October) 
bioavailability experiments.  Any dissolved oxygen (DO) change less than 0.26 mg l-1 in June, 
or 0.2 mg l-1 in October and March can be attributed to instrument error, equivalent to 6.5 and 
5 g C m-3 day-1, respectively.  Error bars represent ± 1 standard error.  c  = Lake water control, 
t = Lake water + Matukituki River water, c+ n = Lake water + nutrients, t+n = Lake water + 
Matukituki River water + nutrients. 
 
DOC and DRP uptake increased with nutrient enrichment (Figure 29).  In June 

(winter), October (spring) and February (summer), DRP uptake was higher in 

nutrient-enriched treatments than in unamended treatments (Appendix E Table E1).  

Dissolved organic carbon uptake also increased in nutrient-enriched treatments 

compared with unamended treatments in February and October.  While DOC uptake 

was highest in the Lake+River treatment in June, the difference between treatments 

was not significant (Appendix E, Table E1).  Nitrate-nitrogen uptake increased in 

nutrient-enriched treatments compared with unamended treatments in October and 

June.  When data from the nutrient-enriched treatments were pooled, DOC uptake was 

not significantly associated with DRP uptake in nutrient-enriched treatments 

(Lake+River+Nutrients: r = 0.104, r2 = 0.011, p = 0.760; Lake+Nutrients: r = 0.525, 

r2 = 0.276, p = 0.226).  
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Figure 29: Mean values of the A., change in dissolved organic carbon (DOC) (ΔDOC) and B., 
dissolved reactive phosphorus (ΔDRP) over the 15-day incubation period in the February, 
June and October bioavailability experiments. Lake Controls (■); Lake+Nutrients (■); 
Lake+River (■); Lake+River+Nutrients (□).  Bars represent  ± 1 standard error. 

6.4 Discussion 
6.4.1 Bacterial physiological diversity and phytoplankton biomass 
In support of my hypothesis that bacterial physiological diversity (BPD) would be 

postively related to phytoplankton biomass, the microbial community utilised a more 

diverse range of substrates as chl a concentrations increased.  In Lake Wanaka, 

seasonal patterns in substrate use differed by depth, and substrate use phenology in 

the hypolimnion lagged behind shallow water patterns by one season (Figure 30, 

Appendix E, Figure E1).  While taxonomic bacterial community structure has been 

reported to vary vertically and temporally in lake systems (Hofle et al. 1999, Dominik 

and Höfle 2002, Nelson 2008), my study appears to be the only reported instance of 
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vertical and temporal variations in physiological bacterial community structure in a 

freshwater lake.   

Nelson (2008) noted bacterial communities were most taxonomically similar when the 

water column was well-mixed, while thermal stratification produced distinct  

communities, “with hypolimnetic communities generally grouping with samples from 

the previous date” (Nelson 2008).  Dominik and Hofle (2002) also reported that 

epilimnetic and hypolimnetic bacterial communities were distinctive during periods of 

thermal stratification in a small (14.3 ha, 29.2 m deep) eutrophic lake.  In their study, 

bacterial taxonomic diversity decreased with depth, except at the deepest 

hypolimnetic site in the spring when the thermocline was newly established.  At that 

time, the bacterial community diversity increased, which Dominik and Hofle (2002) 

attributed to bacterial degradation of senescent phytoplankton from the previous 

autumn.  While bacterial taxonomic diversity does not necessarily reflect 

physiological diversity (Langenheder et al. 2005), the influence of thermal 

stratification on substrate use patterns in my study agrees with temporal changes in 

bacterial taxonomic diversity reported by Nelson (2008) and Dominik and Hofle 

(2002). 

It is not surprising that seasonal variations in biological, chemical and physical 

parameters within lake systems influence bacterial physiological and phylogenetic 

community structure.  Phytoplankton blooms can release highly labile DOM into the 

water column for bacterial uptake (Dominik and Höfle 2002, Crump et al. 2003, 

McCallister and del Giorgio 2008), increasing bacterial activity through the release of 

dissolved free amino acids (DFAAs) and other low molecular weight DOM (Ducklow 

et al. 1993, Kirchman 1994, Davis and Benner 2005).  Seasonal variations in thermal 

stratification can affect the settling and advection of phytoplankton- and DOM-rich 

waters into deeper waters, affecting vertical patterns of bacterial respiration and 

growth (Ducklow et al. 1993).  In the open water of Lake Wanaka, the distribution of 

chl a was strongly influenced by thermal stratification in the lake.  During winter 

mixing, chl a was uniformly distributed throughout the water column, while during 

the summer/early autumn, when thermal stratification was well-established, the 

highest concentrations of chl a were confined to the upper 50 m of the water column 

(see Chapter 3).  In March 2012, maximum chl a concentrations occurred above 42 m, 

with a chlorophyll maximum occurring at 26 m.     
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Figure 30: Schematic diagram showing the delayed effect of thermal stratification in Lake 
Wanaka on organic substrate uptake by hypolimnetic bacterioplankton (100 m depth) (white 
arrows) compared to epilimnetic bacterioplankton (20 m depth) (black arrows). 
 
Previous research suggests Lake Wanaka experiences annual chl a maxima in the 

winter/early spring when the lake is mixed (Bayer 2013), and the relatively high 

concentrations of chl a recorded in the winter (June 2012: 0.63 – 1.1 µg l-1), and early 

spring (October 2012: 1.40 – 1.92 µg l-1, depth > 5 m) during my study support this 

conclusion.  Winter chl a maxima are unusual in monomictic lakes as algal biomass 

and productivity traditionally decrease due to cool water temperatures and reduced 

light availability (Vincent 1983).  However, winter peaks in phytoplankton biomass 

have been reported in other New Zealand lakes, including Lake Coleridge and Lake 

Taupo (White et al. 1980, Vincent 1983, Schallenberg and Burns 1997, James et al. 

2001).  In Lake Wanaka, winter phytoplankton growth is likely enabled by good 

water transparency (Bayer 2013) (2009 and 2011: Secchi depth ranged from 8 to 14.2 

m (Weaver, unpublished data); 2006 to 2007 Secchi depth ranged from 9 to 19.2 m 

(Otago Regional Council 2009)) combined with replenishment of nutrients from the 

hypolimnion (Bayer et al. 2015).   
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Figure 31: Chlorophyll a and water temperature profiles from the open water of Lake Wanaka 
in June and October 2012.  A., shows chl a and B., shows water temperature in June 2012. C., 
shows chl a and D., shows water temperature in October 2012.    
 
Although organic substrate uptake was not significantly linked to temperature, 

temperature may be an indirect driver of bacterial physiological diversity via thermal 

stratification and mixing.  In March 2012, when thermal stratification in the lake was 

well-established, few organic substrates were metabolised in shallow (20 m) or deep 

(100 m) waters.  As the thermocline broke down in June 2012 (Figure 31), the number 

of substrates used by the bacterial community increased at 20 m, but not at 100 m.  

The increase in the number of organic substrates used corresponded to increased chl a 

concentration in shallow waters (Figure 31).  However, a weak thermocline was still 

present (1.2 °C change over 70 m) at 100 m, which may have restricted the 

availability of labile DOM to deep water bacterial communities.  In October 2012, 

when the lake was completely isothermal, chl a concentrations were high and 
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distributed fairly uniformly between 20 m and 100 m depth.  Under these conditions, 

bacterial communities from 20 m and 100 m in Lake Wanaka were functionally 

capable of metabolising a diverse array of organic substrates.  In February 2013, the 

lake was thermally stratified and algal biomass at 20 m was low.  Few organic 

substrates were utilised in shallow waters, but microbial communities in deep waters 

were still capable of metabolising a variety of organic substrates. 

6.4.2 DOC lability and bacterial activity 
In River and Lake ecoplate incubations, riverine bacterial populations were able to 

consisently metabolise a wide range of carbon substrates regardless of season (Table 

25), suggesting riverine microbial communities were ‘acclimatised’ to a variety of 

DOM sources (Stutter and Cains 2016).  The greater variety of heteroelement DOM 

signatures in the Matukituki River compared with Lake Wanaka (see Chapter 5) 

supports the suggestion that riverine microbial communities are acclimatised to a 

more diverse DOM pool than communities in the lake.  The ability of the bacterial 

community to break down a wide variety of substrates may also reflect consistent 

exposure to a labile supply of DOM, as well as a more more consistent nutrient 

supply, as DRP concentrations were higher in the river than the lake.     

While allochthonous DOC has frequently been considered recalcitrant (Tranvik 1992, 

Jaffe et al. 2008), recent studies have shown terrestrially-derived DOM can alter 

bacterial community composition and stimulate bacterial activity and productivity 

(Findlay et al. 2001, Crump et al. 2003, Catalán et al. 2013).  Catalán et al. (2013) 

reported increased DOC uptake, bacterial growth efficiency and cell-specific growth 

when bacteria from a coastal lagoon were exposed to terrestrially-derived labile DOC.  

They found that DOC inputs into this large, shallow lagoon (78 ha, mean depth1.37 

m) were less aromatic than autochthonous DOM, and could be rapidly degraded into 

labile material through photooxidation and bacterial interaction (Catalán et al. 2013).  

Crump et al. (2003) reported that seasonal shifts in bacterioplankton community 

composition and bacterial productivity were related to shifts in labile DOM sources in 

Toolik Lake, Alaska, with pulsed inputs of terrestrially-derived labile DOM from 

snowmelt triggering transient but significant shifts in bacterial community 

composition (Crump et al. 2003).  As Toolik Lake is small and shallow (1.5 km2, 25 

m maximum depth, 7 m mean depth), changes in bacterial community composition 
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were influenced in part by the influx of riverine bacterial communities during these 

pulsed flows.   

In the bioavailability experiment, the increase in bacterial respiration and DOC uptake 

rates in treatments amended with Matukituki River water also supports my hypothesis 

that bacterial activity will increase in response to increased availability of 

terrestrially-derived labile DOM.  In these experiments, the measures of bacterial 

activity increased in response to additions of Matukituki River water.  In October, 

bacterial respiration rates were significantly higher in Lake+River treatments than in 

the Lake Controls.  In June, bacterial respiration rates were high in both the Lake and 

Lake+River treatments, but more DOC was taken up in the Lake+River treatment 

than in the Lake Control.  Increased uptake of DOC in the Lake+River treatment may 

reflect the quality of the riverine DOM.  As DRP concentrations were significantly 

higher in the Lake+River treatment than the Lake Control, increased uptake of DOC 

in the Lake+River treatment may also reflect the effect of nutrient limitation on 

bacterial activity in the Lake Controls.      

6.4.3 Nutrient enrichment and bacterial activity  
Nutrient enrichment did not produce a substantial increase in POC concentration in 

any of the treatments during any experimental run.  This result contradicts my 

hypothesis that bacterial production would increase with increasing availability of P, 

and contrasts other studies of temperate lake systems (Vidal et al. 2011 Smith and 

Prairie 2004, and others).  As there are difficulties associated with using POC as an 

estimate of bacterial productivity, the results of my study may reflect limitations of 

my experimental design.   

Frequently, radiolabelled substrates (such as [14C] leucine or [3H] thymidine) are used 

to measure bacterial productivity (BP) in short-term experiments (< 36 hours) 

(Tibbles and Harris 1996).  In these experiments, replicate samples and a kill control 

are taken from each treatment at established time intervals, a pre-determined amount 

of [14C] leucine or [3H] thymidine is added, and the samples are incubated for 0.5 to 3 

hours (del Giorgio and Cole 1998).  Incubation times are short as longer incubations 

can reflect substrate uptake by organisms other than bacteria, or the movement of 

radiolabelled material to other parts of the bacterial cell (Moriarty 1990).  While these 

techniques are very sensitive measures of BP, the short incubation time makes it 
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difficult to compare BP with BR, as measures of oxygen uptake require longer time 

scales (> 24 hours) (del Giorgio and Cole 1998).   

Long-term experiments are advantageous in this respect, as one can measure changes 

in DOC, POC and respiration rates over the same time scale.  However, there are 

several drawbacks to this experimental design.  First, bacteria may adhere to walls of 

the treatment vessel, confounding abundance measures (Zobell and Anderson 1936, 

del Giorgio and Cole 1998).  Second, filtration does not isolate bacteria from other 

picoplankton (del Giorgio and Cole 1998), and some predators, such as heterotrophic 

nanoflagellates (HNF) can also pass into the filtrate.  Predator grazing during the 

experiment can affect bacterial abundance, productivity and respiration (del Giorgio 

and Cole 1998).  In one study, the presence of HNF in incubation bottles reduced 

bacterial biomass accumulation by more than half, and increased respiration rates in 

these bottles were attributable to grazer activity (Johnson and Ward 1997).   

A third drawback of the experimental design is that some planktonic organisms 

(including some bacterial species) do not respond well to confinement in bottles.  

Auto-inhibitory metabolites can form during microbial growth in bottle experiments, 

resulting in a decrease in biomass of some bacterial species (e.g. Escherichia coli) 

(Landwall and Holme 1977).  Bottle incubations can also negatively affect 

autotrophic picoplankton in the filtrate.  In their 2011 study, Calvo-Diaz et al. 

reported a strong (> 50%) decrease in picophytoplankton biomass over a 24-hour 

period during bottle incubations.  As this decrease was not apparent in situ, the 

authors suggest that their results reflect the adverse reaction of the picophytoplankton 

to bottle confinement (Calvo-Diaz et al. 2011).      

Although nutrient enrichment was not associated with increased bacterial 

productivity, nutrient enrichment stimulated microbial respiration and uptake of DOC 

and DRP in Lake water.  Nutrient concentrations and respiration rates were higher in 

all treatments compared with the Lake Control, which suggests low nutrient 

availability may inhibit bacterial activity in unamended lake water.  As I did not 

quantify bacterial productivity (BP), I cannot directly compare DOC or P uptake with 

bacterial growth in my treatments.  However, relationships between C and P 

availability or uptake and BR, BP and/or BGE have been reported in multiple studies 

(Smith and Prairie 2004, Hall and Cotner 2007, Stets and Cotner 2008, Berggren et al. 



 134 

2010, Vidal et al. 2011).  In a study of 20 boreal lakes in Canada with a range of DOC 

and P concentrations, Smith and Prairie (2004) reported that bacterial productivity 

was dependent not only on C, but also the P availability.  They did not find a 

relationship between addition of a labile DOC source (glucose) alone and increased 

bacterial growth.  Likewise, Vidal et al. (2011) reported that additions of C (in the 

form of glucose) alone produced no significant increases in any of the parameters 

measured (BA, BR, BP, SBR, ΔDOC, ΔP).  Instead, they found that C+P added to 

water from four boreal lakes resulted in significant increases in BR (1.5 to 8.6 times) 

and BP (0.3 to 1.26 times).  Stets and Cotner (2008) reported that DOC additions 

increased DRP uptake in oligotrophic lake water, although the same result did not 

occur in eutrophic lake water.  Likewise, Carlson and Ducklow (1992) found that the 

addition of labile carbon in the form of amino acids or glucose increased bacterial 

growth efficiency (BGE).  However, in treatments with added glucose, cells produced 

storage C and increased in mass rather than in abundance.  It is possible that the 

combination of labile DOC and P stimulated both bacterial activity (as measured by 

BR) and bacterial growth in my treatments, but the limitations of the experimental 

design meant BP was not adequately measured.  Future studies may consider using 

more sensitive measures of BP while also accounting for BR in this oligotrophic 

system.  

6.5 Conclusions 
Land use intensification is increasing DOC and N loads to Lake Wanaka (Chapter 2).  

While in vitro experiments do not reflect in situ conditions and cannot be extrapolated 

directly to the field, my results show that labile DOC and P are currently entering the 

lake via the Matukituki River, and that this material is capable of stimulating 

bacterioplankton metabolic activity.  The phenology of substrate utilisation in the 

epilimnion and hypolimnion of the lake suggest that microbes are strongly coupled to 

autochthonous OM.  As microbial activity also increased with additions of river water 

and nutrients, lake bacterioplankton are likely opportunistic and flexible.  Increased 

inputs of nutrients and DOC to the lake from development can stimulate microbial 

uptake of P, resulting in these microbes outcompeting phytoplankton for this key 

nutrient. The implication of this change on trophic interactions in the lake warrants 

further study.  
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7 General Discussion 

7.1 Importance of freshwater resources 
Fresh water provides habitats for almost 6% of all vertebrate and invertebrate species 

on Earth (Shiklomanov 1993, Dudgeon et al. 2006, Carrizo et al. 2013) and is 

important for human survival.  Despite the importance of freshwater in many facets of 

human life, many anthropogenic activities lead to water pollution, habitat degradation 

and biodiversity loss. Over the past 40 years, water quality in New Zealand has been 

declining, mainly due to the increased influx of diffuse source pollutants as land 

development, particularly agricultural development, increases (McColl 1972, Vincent 

et al. 1984, Davies-Colley 2013, Larned et al. 2016).   

On the South Island of New Zealand, water quality in upland catchments is generally 

good (Davies-Colley 2013) and land use activities are relatively low-intensity.  Land 

use intensification in these upland catchments can substantially increase in-stream 

nutrient concentrations (Niyogi et al. 2007), resulting in increased nutrient export 

(Johnson 2008) to downstream lakes.  While nutrient and organic matter loading to 

receiving lakes may initially be diluted by lake volume, the continual input of external 

material can cause shifts towards degraded water quality over time (Edmondson 1994, 

Jassby et al. 2003, Scavia et al. 2014).  Large lakes are no exception, with instances 

of eutrophication documented in large lakes from New Zealand and abroad 

(Edmondson 1994, Schanz 1994, Edgar 1999, Caruso 2000, Rutherford 2003).    

7.2 Contributions of my research project 
In the examples cited above, large lakes underwent significant changes as a result of 

intensive anthropogenic activity.  However, when urban or agricultural development 

in a catchment is relatively low-intensity, determining the effect of land use on in-lake 

processes requires very precise study.  My research project contributed to our 

knowledge of how land use practices impact on aquatic ecosystems by examining the 

effect of low-intensity development of high country grassland catchments on nutrient 

dynamics and microbial activity in a large, low-productivity lake system.   

A key finding of my work is that there is a strong correlation between the proportion 

of pasture in the catchment and dissolved organic carbon (DOC) in streams during 

periods of low to moderate flow, but that air temperature and soil moisture can 

mitigate the influence of pasture cover on surface water DOC concentration under wet 
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or very dry conditions.  While no known studies of DOC dynamics in New Zealand 

currently include soil moisture as a fixed effect, the mediating effect of soil moisture 

on the relationship between landscape characteristics and in-stream DOC 

concentration has been reported overseas (Wilson and Xenopoulos 2008).  As the 

predictive strength of landscape variables can decrease as soil conditions deviate from 

‘normal’ (Wilson and Xenopoulos 2008), inclusion of soil moisture in predictive 

models can be useful in helping explain variations in DOC.  When sampling streams 

with flashy hydrographs, soil moisture may serve as a more useful predictor variable 

of DOC concentration than rainfall, particularly if intensive sampling is not feasible.   

I also found a relationship between the proportion of pasture in the catchment and 

increased concentrations of inorganic nitrogen (N) in stream water in Chapter 2, but 

no relationship between vegetation cover and phosphorus (P).  The lack of a 

relationship between P and pasture cover could reflect the fact that farming in the 

catchment is low-intensity.  Alternatively, it could reflect the ability of the 

minerogenic soil in the catchment to effectively bind P, or the fact that high rainfall 

events were not captured.  The latter explanation would mean particulate (and 

potentially) dissolved inorganic P fluxes from the catchment were likely 

underestimated, as high flow events can significantly increase P influx to stream 

water through runoff and subsurface flow, and particulate P bound to river bed 

sediments may be re-suspended by increased stream flow rates (House et al. 1998, 

Correll et al. 1999, Kolpin et al. 2000).  The influence increased influx of particle-

bound P would have on phytoplankton in Lake Wanaka is unclear, as particulate P is 

often considered less bioavailable than PO4-P (Hatch et al. 1999).  However, 

microbial mineralisation in the sediments would eventually release particle-bound P 

into the water column (Hupfer and Lewandowski 2008).  

Transparent exopolymer particle (TEP) formation did not increase following addition 

of catchment-derived nutrients and DOC in laboratory treatments. The lack of an 

association between these variables may reflect the hydrological condition of the 

streams (Chateauvert et al. 2012) at the time of water collection, or interactions 

between bacteria, TEP and DOC (Arnous et al. 2010) in the treatment bottles.   

However, enrichment of lake water with N and P facilitated transparent exopolymer 

formation (TEP) in laboratory treatments.  Nutrient enrichment also stimulated algal 

growth, chl a concentration and diatom abundance.  The relationship between diatom 
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blooms, TEP production and organic aggregate formation is consistent with previous 

research in marine and freshwater systems (Alldredge et al. 1995, Passow and 

Alldredge 1995a, Grossart et al. 1997).  TEP formation was not associated with 

Lindavia intermedia abundance, but this may reflect removal of large predators and a 

shift in community structure due to bottle effects (C. Burns, personal communication).  

The relevance of the findings concerning the production of TEP and nutrient 

availability should be tested further.   

While increased nutrient export from the smaller streams analysed in Chapter 2 and 

Chapter 3 probably has localised impacts on the lake around the stream mouths, land 

use intensification in the catchments of large tributaries could potentially influence 

processes in the open waters of the lake.  Thus in Chapter 4, I analysed how the main 

inflowing tributaries to Lake Wanaka, the Matukituki River and the Makarora River, 

influence phytoplankton activity and distribution in the lake.  Cold river temperatures 

and high suspended solid loads produced a traceable plume outside the Matukituki 

River mouth, but these variables were not useful in tracking the Makarora River 

plume.    

Plume profiles at entrance-mixing sites were complex, and the river plume frequently 

interflowed as several distinct layers.  The complex layers of lighter and denser water 

at this site probably result from the steep drop off from the delta into the lake (Spigel 

et al. 2005, McCullough et al. 2007, Mackay et al. 2011).  Often, a thin layer of dense 

water also plunged along the bottom at this site.  As it extended out into the lake, the 

direction of the plume varied, similar to plume patterns from other large, deep lakes 

regionally (Pickrill and Irwin 1982) and overseas (McCullough et al. 2007).  When 

the lake was isothermal or weakly stratified, the plume flowed along the bottom, 

interflowed as a density current or occasionally flowed near the surface of the lake.  

When thermal stratification was well-established, the river plume plunged in nearfield 

waters then consistently interflowed as a density current above the thermocline.   

Chlorophyll a concentrations were generally lower at the entrance-mixing site than 

further out in the lake.  This may reflect light attenuation (Smith and Demaster 1996) 

as the turbid plume was initially entrained near the surface, but is also likely related to 

initial dilution by the river plume (Mackay et al. 2011).  Once past the initial zone of 

turbulent mixing, chl a was often higher between the layers of the plume, and 
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occasionally above or below the plume, suggesting algae were increasingly able to 

utilise inflowing nutrient concentrations as light penetration improved and initial 

riverine dilution decreased (Kimmel et al. 1990, Mackay et al. 2011).  The highest chl 

a concentrations occurred at mid-basin sampling sites, where the influence of the river 

plume was not otherwise measurable.  As chl a profiles were not corrected for non-

photochemical quenching, fluorescence readings from shallow nearshore sites may 

not represent actual phytoplankton abundance near the lake surface (Fennel and Boss 

2003, Sackmann et al. 2008).   

Dissolved organic carbon concentrations in the Matukituki River and the lake were 

generally similar, but the composition of dissolved organic matter (DOM) differed on 

at least one occasion.  In June 2012, DOM signatures from deep (100 m) and shallow 

(20 m) water in Lake Wanaka showed that more aromatic DOM structures were 

present in the deep water of Lake Wanaka than in shallow waters, possibly reflecting 

the importance of DOM degradation and polymerisation by lake native bacteria.  

Matukituki River did not contain more aromatic structures than shallow waters of 

Lake Wanaka, despite a significant proportion of woody vegetation (20%) in the 

Matukituki Valley.  The low number of aromatic structures in the River DOM may 

reflect the capability of allophanic brown soils in the Matukituki Valley to adsorb and 

stabilise DOM (Martin and Haider 1986, Zech et al. 1997), reducing its potential for 

transport to nearby surface waters (Lin et al. 2012).  The high number of aliphatic 

compounds in the Matukituki River water could also reflect the dominance of 

compounds derived from agricultural production (15% of catchment land use) or even 

in-stream production. 

The Matukituki River water contained 28.7% more formulae containing carbon, 

hydrogen, oxygen and sulphur (CHO-S) than the lake in June.  The source of the S 

bound to these OM compounds is unknown.  It may be geologic in origin, as 

basement rock types in the catchment contain minor amounts of pyrite (Craw 1984b). 

It may also be related to agricultural activity and the application of S-containing 

fertilizers in the catchment.  Studies have shown that anthropogenic activity can 

increase the abundance of highly unsaturated aliphatic CHO-S and carbon, hydrogen, 

oxygen and nitrogen- (CHO-N) containing formulae in large river systems (Gonsior et 

al. 2011, Tseng et al. 2013, Wagner et al. 2015). While CHO-S diversity was higher 

in the Matukituki River compared with Lake Wanaka, the River did not contain a very 
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diverse CHO-N signature.  Possibly this is because some organic sulphur compounds 

are better ionizers than organic nitrogen compounds, and are detected more easily by 

FT-ICR-MS (Fourier transform ion cyclotron mass spectrometry).  However, the lack 

of a similar increase in CHO-N diversity in the River water weakens the supposition 

that agricultural activity is the source of the S. 

The composition of the DOM in the River and Lake (Chapter 5) may have influenced 

patterns in microbial metabolic diversity recorded in June 2012.  On this date, DOM 

from the Matukituki River and from 20 m depth in Lake Wanaka contained a greater 

proportion of allophanic compounds than water collected from 100 m depth in the 

Lake.  Microbial communities from both the river and shallow lake site (20 m) were 

capable of breaking down a more diverse array of organic substrates than the deep 

water (100 m) microbial community.   

In June, the Riverine bacterial community was capable of breaking down the greatest 

number of organic substrates, which may reflect exposure to a more diverse (and 

potentially more biodegradable) DOM signature.  Studies have shown that microbial 

phylogenetic community structure (Dominik and Hofle 2002, Nelson 2008) can vary 

spatially and temporally in response to DOM quality and quantity.  Changes in DOM 

supply can select for some taxa over others, leading to shifts in bacterioplankton 

community structure or growth (Dinasquet et al. 2013, Blanchet 2015), and additions 

of highly labile DOM can increase bacterial taxonomic diversity (Landa et al. 2013).  

As bacterial taxonomic diversity does not necessarily reflect physiological diversity 

(Langenheder et al. 2005), the link between diveristy of the DOM signature and 

microbial physiological diversity in these systems needs to be explored further.    

Chapter 6 followed on from Chapter 5 by examining whether DOM and P currently 

entering the lake via the Matukituki River were capable of stimulating 

bacterioplankton metabolic activity in the lake.  As riverine bacterial communities 

were consistently able to breakdown a diverse array of organic substances, they may 

experience consistent exposure to a labile supply of DOM, and potentially a more 

consistent supply of P.  In the lake, seasonal patterns in organic substrate use differed 

by depth, which may reflect variations in thermal stratification affecting the 

movement of DOM into deeper waters.  While phylogenetic community structure has 

been reported to vary vertically and temporally in lake systems (Hofle et al. 1999, 
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Dominik and Höfle 2002, Nelson 2008), my study appears to be the only reported 

instance of vertical and temporal variations in physiological community structure in a 

freshwater lake.   

In Lake Wanaka, organic substrate utilisation increased with increasing chl a 

concentration, and organic substrate use patterns in deep water lagged behind shallow 

water patterns by one season.  As Lake Wanaka experiences a chl a maxima during 

the winter and early spring when the lake is mixed (Bayer et al. 2015) temperature 

may indirectly drive bacterial physiological diversity via thermal stratification and 

mixing.  The influence of thermal stratification on substrate use patterns in my study 

agrees with temporal changes in bacterial phylogenetic diversity reported in other 

studies (Dominik and Höfle 2002, Nelson 2008) where the release of highly labile 

DOM into the water column by phytoplankton (Ducklow et al. 1993, Dominik and 

Höfle 2002, Crump et al. 2003, Davis and Benner 2005) and the influence of the 

thermal structure of the water column on the movement of phytoplankton- and DOM-

rich waters into deeper waters affects vertical patterns of bacterial community 

diversity (Dominik and Höfle 2002), respiration and growth (Ducklow et al. 1993).  

In bioassays containing mixtures of Lake Wanaka and Matukituki River water, 

addition of river water to lake water stimulated microbial respiration and uptake of 

DOC.  Changes in dissolved reactive phosphorus (DRP) concentration were not 

measureable in Lake Controls, as initial concentrations were frequently below 

detection.  However, DRP uptake increased as availability increased, either through 

addition of river water, or amendment of treatments with N and P (Figure 29).  Other 

studies of oligotrophic lakes also report increasing respiration rates in response to 

increased availability of labile DOM and P (Stets and Cotner 2008, Scott et al. 2012).       

7.3 Avenues of Future Research 
• My research project did not consider temporal changes in the structural 

complexity of DOC.  Previous research suggests the DOC becomes less 

structurally complex during prolonged dry spells, while more complex, 

recalcitrant aromatic components becomes available during wetter conditions 

(Wilson and Xenopoulos 2009, Minor et al. 2012).  As predicted climate 

changes in the Wanaka region include an increased frequency of extreme 

rainfall events (Bayer 2013), the potential for pulsed inputs of recalcitrant, 
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aromatic DOC into Lake Wanaka increases.  During dry spells or periods of 

low flow, DOM composition would likely be more variable (Wagner et al. 

2015).  Future research could include determining the changing character of 

stream and lake DOM in relation to land use and weather patterns, and 

factoring in how climate change affects the loading and character of 

exogenous DOM entering Lake Wanaka.  

• My project showed that nutrient enrichment increased TEP production in Lake 

Wanaka water in vitro, but we still do not know the mechanisms responsible 

for in situ TEP formation in this lake, or how TEP production/abundance 

varies spatially or temporally in relation to other water quality variables.  

Understanding mechanisms responsible for in situ TEP production is 

important, as organic aggregates provide nutrient-enriched micro-patches for 

colonisation by various microbial organisms (Berger et al. 1996), as well as a 

food source for larger components of the microbial food web (Simon et al. 

2002).   

• The settling of large phytoplankton-enriched organic aggregates can remove a 

source of P from surface waters (Li and Logan 1995, Logan et al. 1995, 

Grossart et al. 1997) that could then be released in deeper waters of the lake 

through microbial mineralisation in the water column or in the sediments 

(Hupfer and Lewandowski 2008).  To date, no known work has attempted to 

quantify the phosphorus sorption capacity of the sediments in Lake Wanaka.  

Such research could provide valuable information about P cycling from the 

sediments, and the effect settling organic aggregate material is having on the 

lake bed.    

• The Matukituki River had a more diverse CHO-S signature than Lake Wanaka 

in June 2012, but we do not know whether a high number of unique CHO-S 

compounds are consistently exported to Lake Wanaka.  We also do not know 

the source of the S, or the degree to which diversity of the DOM signature 

influences microbial physiological diversity in the lake or its inflowing 

tributaries.  We do not know if CHO-S exported to Lake Wanaka is used by 

lake phytoplankton, bacterioplankton or by benthic communities.  Neither do 
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we know whether inputs of S are affecting chemical interactions in the water 

column or in sediments of the lake.    

• Physical modeling of climate change impacts on Lake Wanaka suggest 

increased wind-mixing and water temperatures could affect the duration and 

depth of thermal stratification in the lake (Bayer 2013).  As Lake Wanaka lies 

along a roughly north-south axis, increased shear forces from wind energy 

could affect mixing depth, which in turn could affect the coupling between chl 

a and bacterial physiological diversity (BPD).  The impact that a decoupling 

between chl a and BPD would have on carbon movement within the lake is 

unknown.   

• Currently, Lake Wanaka is oligotrophic. Farmers and regional government 

scientists are working together to individually tailor farm management tools  

(e.g. OVERSEER) to catchments in order to farm more efficiently (Aspinall, 

personal communication).  Such tailored management practices are key to 

helping control diffuse influx of nutrients to the lake.  However, models such 

as CLUES and OVERSEER do not take into account DOM, and (as shown in 

my study and others (Findlay et al. 2001, Wilson and Xenopoulos 2009, 

Wagner et al. 2015)), land use practices can alter DOM character and 

influence bacterioplankton activity.    

• Little work has been carried out in the littoral zone ecology of Lake Wanaka, 

and more information is needed on benthic processes and the coupling 

between benthic and pelagic pathways for nutrient movement in large lake 

systems (Vadeboncoeur et al. 2002) in order to more comprehensively 

understand whole-lake responses to agricultural intensification.  Thus, future 

research could include tracing the influence and flow of externally-derived 

energy through littoral food webs in Lake Wanaka. 

7.4 Conclusions  
In the Lake Wanaka catchment, nitrogen (N) and dissolved organic carbon (DOC) 

concentrations are higher in tributaries that have more pasture cover in their 

catchments.  While nutrient and DOC loads exported from small tributaries probably 

have localised impacts on the lake, the main tributaries to the Lake can deliver 

external material much further from shore.  One of the main inflows, the Matukituki 
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River, has similar bulk DOC, N and P concentrations to the Lake.  However, these 

two water bodies differ in proportions of particulate and dissolved organic and 

inorganic nutrients, as well as in DOM composition.  External material brought in by 

the Matukituki River is capable of stimulating phytoplankton growth in nearshore 

waters.  Riverine DOM is also capable of influencing microbial metabolic activity and 

respiration in Lake Wanaka water.  Respiration rates and DOC uptake increase under 

nutrient enrichment, and increased availability of N and P stimulate algal growth and 

facilitate organic aggregate formation in laboratory experiments.     

Increased macronutrient and DOC loading to the Lake has the potential to stimulate 

changes in the microbial population, affect phytoplankton productivity and result in 

changes in food webs and community structure.  While the manner in which such 

changes in matter and energy flow would manifest themselves in higher trophic levels 

is beyond the scope of this study, my results provide a foundation for future research 

concerning land development and microbial dynamics in large, oligotrophic lake 

systems.      
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Table A2: Comparison of linear mixed-effects regression models using Bayesian 
Information Criterion (BIC).  Lower BIC values indicate a better the model.  
	
   	
  

Model BIC 
DOC = Fixed(rain) + Random(pasture cover) + error 119.695 
DOC = Fixed(soil moisture) + Random(pasture cover) + error 108.554 
DOC = Fixed(air temp) + Random(pasture cover) + error 86.554 
DOC = Fixed(rain) + Fixed(Soil moisture) + Random(pasture cover) + error 109.621 
DOC = Fixed(rain) + Fixed(air temp) + Random(pasture cover) + error 84.453 
DOC = Fixed(air temp) + Fixed(Soil moisture) + Random(pasture cover) + error 84.69 
DOC = Fixed(air temp) + Fixed(rain) + Fixed(air temp*rain) + Random(pasture 
cover) + error 80.138 

DOC = Fixed(air temp) + Fixed(Soil moisture) + Fixed(air temp*soil moisture) 
+ Random(pasture cover) + error 76.181 

 

  



 147 

 

Appendix B  
Table B1: Average pH values (1 ± standard deviation) in each treatment during the 12-day 
February 2013 experiment.  Columns denote the number of days from the start of the 
experiment.    
 Day 
Treatment 0 2 4 6 8 10 12 

Control 
7.2
7 

7.42 ± 
0.12 

7.74 ± 
0.09 

7.61 ± 
0.09 

7.41 ± 
0.14 

7.41 ± 
0.06 

7.59 ± 
0.09 

Pasture 
7.5
3 

7.39 ± 
0.01 

7.55 ± 
0.04 

7.51 ± 
0.04 

7.37 ± 
0.00 

7.33 ± 
0.04 

7.50 ± 
0.18 

Pasture + 
Urban 

7.4
8 

7.33 ± 
0.02 

7.41± 
0.09 

7.38 ± 
0.05 

7.30 ± 
0.01 

7.31 ± 
0.00 

7.46 ± 
0.02 

Tussock 
7.6
9 

7.33 ± 
0.02 

7.42 ± 
0.01 

7.40 ± 
0.02 

7.34 ± 
0.01 

7.34 ± 
0.01 

7.44 ± 
0.03 

Control + 
N 

7.2
7 

7.49 ± 
0.07 

7.48 ± 
0.08 

7.48 ± 
0.09 

7.53 ± 
0.06 

7.79 ± 
0.08 

8.47 ± 
0.25 

Pasture + 
Urban + N 

7.5
3 

7.43 ± 
0.01 

7.44 ± 
0.01 

7.46 ± 
0.02 

7.50 ± 
0.02 

8.00 ± 
0.08 

9.14 ± 
0.04 

Urban + N 
7.4
8 

7.18 ± 
0.04 

7.15 ± 
0.05 

7.17 ± 
0.03 

7.23 ± 
0.05 

7.64 ± 
0.11 

9.29 ± 
0.25 

Tussock + 
N 

7.6
9 

7.17 ± 
0.01 

7.21 ± 
0.03 

7.19 ± 
0.01 

7.33 ± 
0.05 

8.31 ± 
0.27 

9.23 ± 
0.10 

 
Table B2:  ANOVA comparison  of cell numbers in nutrient-enriched and unamended 
mixture treatments in February 2013.  Results for the total number of cells and for dominant 
algal classes are given.  d.f. = degrees of freedom 

 df F p 

Total cells ml-1 2, 22 89.449 <0.001 

Chlorophytes ml-1 2, 22 20.715 <0.001 

Lindavia ml-1 2, 22 14.420 <0.001 

Diatoms ml-1 2, 22 56.775 <0.001 

Nitzschia ml-1 2, 22 55.010 <0.001 

 
Table B3: Dissolved organic carbon (DOC) concentrations (mg C l-1) in stream water used in 
the February 2013 12-day experiment.  Experiment bottles contained mixtures of 50 µm-
filtered Lake Wanaka water and 0.22 µm-filtered stream exudate from streams draining 
pastoral land cover (Pasture), pastoral and urban cover (Pasture + Urban) and tussock land 
cover (Tussock). 
Stream Treatment DOC (mg C l-1) 
Bullock Creek  Pasture + Urban 28.66 ± 0.89 
Alpha Burn  Pasture 6.65 ± 0.36 
Boundary Creek  Tussock 12.65 ± 2.36 
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Appendix C 
  

Table C1: Comparison of dissolved oxygen concentrations (% saturation) between the 
Matukituki River and two depths (20 m and 100 m) at the Aspiring Basin site (44°35.702S 
169°04.030E) (max depth 220 m) in Lake Wanaka. 

Date River 
DO (%) 

Lake at 20 m 
DO (%) 

Lake at 100 m 
DO (%) 

September 2009 103.1 92.4 91.7 
November 2009  94.5 91.0 

March 2010 102.6 96.1 93.9 
March 2011 101.1 95.1 91.6 
May 2011  93.1 91.0 

November 2011 99.5 96.2 94.5 
January 2012 98.9 97.7 93.2 
March 2012 90.3 96.7 90.3 
June 2012 92.4 89.9 90.6 

October 2012 111.6 91.1 91.8 
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Figure C1: Temperature profiles at sampling sites directly outside the Matukituki River 
mouth in, A. September 2009, B. November 2009, C. March 2011, D. March 2011 E. May 
2011, F. November 2011, G. January 2012, H. March 2012, I. June 2012.  The red arrow(s) 
indicate the cooler water of the river plume. 
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Figure C2: Suspended solid profiles at sampling sites directly outside the Matukituki River 
mouth in, A. September 2009, B. November 2009, C. March 2011, D. March 2011 E. May 
2011, F. November 2011, G. January 2012, H. March 2012, I. June 2012.  The red arrow(s) 
indicate the cooler water of the river plume. 



 

 
Figure C3: (top) Total suspended solids (mg l-1) and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in September 2009.  Distance from the river mouth is given for each profile. 
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Figure C4: (top) Total suspended solids (mg l-1) and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in October 2012.  Distance from the river mouth is given for each profile. 
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Figure C5: (top) Total suspended solids (mg l-1) and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in November 2011.  Distance from the river mouth is given for each profile 
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Figure C6: (top) Total suspended solids (mg l-1) and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in January 2012.  Distance from the river mouth is given for each profile. 
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Figure C7: (top) Total suspended solids (mg l-1)  and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in March 2012.  Distance from the river mouth is given for each profile. 
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Figure C8: (top) Total suspended solids (mg l-1) and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in May 2011.  Distance from the river mouth is given for each profile. 
 

156 



 

  
 
Figure C9: (top) Total suspended solids (mg l-1) and (bottom) temperature (°C) profiles from the (left to right) Matukituki River mouth out into Lake Wanaka 
in June 2012.  Distance from the river mouth is given for each profile. 
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Figure C10: Density (kg l-1) and chlorophyll a (mg m-3) profiles from the Matukituki River mouth out into Lake Wanaka in (top) January 2012 and (bottom) 
March 2012.  The blue line represents chl a, the green line represents density.  The scale for chl a is given on the top axis of each graph.  The scale for density 
is given on the bottom axis of each graph.  Distance from the river mouth is given for each profile. 
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Figure C11: Density (kg l-1) and chlorophyll a (mg m-3) profiles from the Matukituki River mouth out into Lake Wanaka in (top) September 2009 and 
(bottom) May 2011.  The blue line represents chl a, the green line represents density.  The scale for chl a is given on the top axis of each graph.  The scale for 
density is given on the bottom axis of each graph.  Distance from the river mouth is given for each profile. 
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Figure C12: Bathymetry of West Wanaka Bay (left: plan view, right: 3-D image) in A. May 
2011, and B. January 2012.  Site 37 (labeled and marked by (+) on bottom right corner of plan 
view Map A.) was not sampled in January, which affected placement of the interpolation 
lines.  Red arrow in A. shows the direction of the river plume and possible sublacustrine 
channel.  Contour lines = 5 m.    
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Figure C13: Plan view showing the river plume (denoted by suspended solid concentration) 
flowing into Lake Wanaka in May 2011. Blue graphs show suspended solid concentration 
extending out into the lake with increasing depth.  The brown graph (bottom center) shows 
bathymetry of the Lake at the time casts were taken.  Sampling sites are noted (+) on the 
bottom graph. 
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Figure C14: Chlorophyll a (mg m-3) (black circle) and beam attenuation (m-1) (gray circle) 
profiles at the Aspiring Basin site at different times of the year.  On each graph, the top axis 
denotes chl a, while the bottom axis denotes beam attenuation.  Sampling dates are: 
September: September 19, 2009; October: October 12, 2012; November: November 19, 2011; 
January: January 7, 2012; March(early): March 10, 2012; March(late): March 26, 2011; May: 
May 21, 2011; June: June 9, 2012. 
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Appendix D  
 
Table D1: The number of unique formulae containing only carbon, hydrogen and oxygen 
(CHO), carbon, hydrogen, oxygen and nitrogen (CHO-N) and carbon, hydrogen, oxygen and 
sulphur (CHO-S) in the Matukituki River (R) and Lake Wanaka at 20 m (20) and 100 m (100) 
depth in June 2012.  Average mass (kDa), O:C and H:O ratio (± 1 standard deviation) in each 
sample are also given for CHO, CHO-N and CHO-S. The relatively large number of different 
CHO-S formulae in the river water is indicated in bold. 
  T1 T2 E1 E2 H 
Unique CHO 1515* 1740* 1704* 1434* 1521* 
CHOS 879* 923* 223* 571* 170* 
CHON 11* 7* 89* 22* 44* 
CHO        Mean O/C 
                Mean H/C 

0.47 
1.20 

0.48 
1.19 

0.49 
1.16 

0.49 
1.16 

0.48 
1.13 

CHOS     Mean O/C 
                Mean H/C 

0.40 
1.55 

0.46 
1.51 

0.45 
1.50 

0.37 
1.51 

0.40 
1.43 

CHON     Mean O/C 
                Mean H/C 

0.45 
1.16 

0.47 
1.13 

0.46 
1.10 

0.45 
1.17 

0.44 
1.10 

Mean MW (CHO) 447.83 454.80 469.71 451.85 447.47 
Mean MW (CHOS) 497.65 460.31 443.51 525.38 481.47 
Mean MW (CHON) 353.57 359.25 340.87 323.51 360.68 
      
*	
   Duplicate samples were averaged before the formula assignments (intensities of each m/z ion), 
resulting in more peaks over the relative abundance threshold, and an overall increase in the number of 
assigned formulae for the averaged spectra.  Averaging the duplicates allowed for removal of many 
noise peaks that were not present in both samples, and the inclusion of more low abundance m/z peaks 
that were present in both samples.  The inclusion of these low abundance peaks resulted in an increase 
in the total number of formulae in the averaged samples compared with teach duplicate sample.  

 
 
 
Table D2: Chi-squared contingency table comparing the number of aliphatic and aromatic 
carbon, hydrogen and oxygen (CHO) containing formulae in Lake Wanaka at 20 m and 100 
m depth. Aliphatic and aromatic formulae are determined using the Aromaticity Index (AI) 
and modified Aromaticity Index (AImod), where AI <=0.5 denotes aliphatic compounds, while 
AI > 0.5 denotes aromatic compounds.  Observed (Obs), Expected (Exp) and cell-specific χ2 

values are given.   
  20 m 100 m Total 

AI <=0.5 
Obs 
Exp 
χ2 

2175 
2145.88 

0.40 

2431 
2460.12 

0.34 
4606 

AI >0.5 
Obs 
Exp 
χ2 

99 
128.12 

6.62 

176 
146.88 

5.77 
275 

Total  2274 2607 4881 
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Table D3: Between-sample comparisons of mean hydrogen to carbon ratios H:C, mean 
oxygen to carbon ratios (O:C),  mean double-bond equivalents (DBE), and mean double-bond 
equivalents normalised to the number of carbons (DBE/C).  K-W = Kruskal Wallis test, d.f. = 
degrees of freedom 
Variable Test d.f. F χ2 Sig 
H:C ANOVA 2, 7183 4.386  0.012 
O:C K-W 2  8.949 0.011 
DBE K-W 2  36.033 <0.001 
DBE/C ANOVA 2, 7183 16.457  <0.001 
 
 
Table D4: Chi-squared contingency table comparing the number of aliphatic and aromatic 
carbon, hydrogen and oxygen (CHO) containing formulae from each site.  Aliphatic and 
aromatic formulae are determined using the Aromaticity Index (AI) and modified Aromaticity 
Index (AImod), where AI <=0.5 denotes aliphatic compounds, while AI > 0.5 denotes aromatic 
compounds.  Observed (Obs), Expected (Exp) and cell-specific χ2 values are given.  
  River 20 m 100 m Total 

AI <=0.5 
Obs 
Exp 
χ2 

2206 
2185.03 

0.20 

2175 
2155.85 

0.17 

2431 
2471.32 

0.66 
6812 

AI >0.5 
Obs 
Exp 
χ2 

99 
119.97 

3.66 

99 
118.35 

3.16 

176 
135.68 
11.98 

374 

Total  2305 2274 2607 7186 
  River 20 m 100 m Total 
AImod <=0.5 Obs 

Exp 
χ2 

1867 
1832.52 

0.65 

1823 
1807.87 

0.13 

2023 
2072.61 

1.19 

5713 

AImod >0.5 Obs 
Exp 
χ2 

438 
472.48 

2.52 

451 
466.13 

0.49 

584 
534.39 

4.61 

1473 

Total  2305 2274 2607 7186 
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Figure D1: Van Krevelen plots of H:C and O:C molar ratios in formulae containing carbon, 
hydrogen and oxygen (CHO) obtained from Lake Wanaka at 20 m and 100m depths and from 
the Matukituki River, respectively.  Aliphatic compounds are represented by (#), aromatic 
compounds (compounds with a modified aromaticity index (AImod) ≥ 0.5 are represented by 
(").  Compounds with AImod > 0.67 are represented by (#). 
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Appendix E 

 

Figure E1: Component loadings plot showing seasonal differences in the number of organic 
substrates metabolised by the microbial community at 20 m and 100 m depth in Lake 
Wanaka.  hypojune = 100 m depth in June 2012, epifeb = 20 m depth in February 2013, 
hypomar = 100 m depth in March 2012, epimar = 20 m depth in March 2012, epijune = 20 m 
depth in June 2012, hypooct = 100 m depth in October 2012, epioct = 20 m depth in October 
2012, hypofeb = 100 m depth in February 2013.  Red circles highlight where microbial 
physiological diversity (MPD) appears to lag behind MPD in shallow (20 m) waters by one 
season.  As sampling ran from March 2012 to February 2013, MPD from 20 m depth in 
February 2013 (epifeb) is not comparable with MPD from hypolimnetic water in March 2012 
(hypomar).    

 

Table E1: Between-treatment comparisons of nutrient and DOC uptake during the June 
(winter), October (spring) and February (summer) bioassay experiments.  DOC: dissolved 
organic carbon (mg  l-1), DRP: dissolved reactive phosphorus (µg l-1); NO3-N: nitrate nitrogen 
(µg l-1), K-W: Kruskal-Wallis test, d.f.: degrees of freedom, χ2:: chi-square value. 

Experiment solute Test d.f. F χ2 Sig. 
June DOC ANOVA 3, 7 4.053  0.058 

DRP K-W   4.860 0.027 
NO3-N K-W   5.333 0.021 

October DOC ANOVA 1, 7 6.613  0.037 
DRP K-W   5.771 0.016 

NO3-N K-W   4.500 0.034 
February DOC ANOVA 1, 4 58.561  0.002 

DRP K-W   3.857 0.050 
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