Plasmonic and magnetoplasmonic nanostructures characterized by Scanning Near-field Optical Microscopy

Alan Vitrey, Elías Ferreiro-Vila, Patricia Prieto, Antonio García-Martín, María Ujué González, <u>José Miguel García-Martín</u>.

Instituto de Microelectrónica de Madrid (IMM-CNM-CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain

Grupo de Nanoestructuras magnéticas y magnetoplasmónicas

http://www.imm.cnm.csic.es/magnetoplasmonics

Outline

Introduction: Motivation & our approach

Techniques: Extinction, FDTD simulations, SNOM

Results:

rectangular nanostructurescircular nanostructures

Conclusions

Motivation: new optical devices based on metals

Localized Surface Plasmon (LSP)

Electron cloud oscillation at the dielectric/metal interface

Can be excited with light of appropriate frequency irrespective of the wavevector of the exciting light. The resonance depends on: shape, material, dielectric environment

•Strong localization of EM field in subwavelength volumes: Optical nanodevices

•Very sensitive to metal-dielectric interface: Sensors

<u>Magnetoplasmonic nanostructures</u>: active nanostructures, i.e. their plasmonic properties can be controlled by an applied magnetic field

Magnetoplasmonic nanostructures

noble metal (plasmonic) + ferromagnet (magneto-optical)

Introducing a ferromagnetic material:

Magneto-Optical activity at low magnetic fields

Control of MO activity with plasmon excitation

Control plasmon properties with magnetic field

fields

Magnetoplasmonic nanostructures

noble metal (plasmonic) + ferromagnet (magneto-optical)

Magnetoplasmonic nanostructures

noble metal (plasmonic) + ferromagnet (magneto-optical)

Modulation of the plasmon wavevector

Temnov et al., Nature Photonics 4, 107 (2010)

Techniques:

- •Exctinction spectroscopy: LSPR wavelength
- •FDTD simulations: understanding modes
- •SNOM: observation of the EM field distribution near the surface

Nanostructures: prepared by e-beam lithography & thermal evaporation

FyT 2010 – Tarragona

11-0110-916 1-110-941104111-5

Malgineto Plaismonilas

Extinction Spectra Setup

Simulations

FDTD code: Lumerical

Calculus of absorption and scattering cross-sections & simulation of the EM field distribution

Electric Field Modulus @ Surface L=520nm, 1st Order

Scanning Near-Field Optical Microscopy (SNOM) setup

Photomultiplier **f**

NANONICS Multiview 4000

> Avalanche Photodiode

Analysis: WSxM

CSIC

Malejnadie Manosaniladinas

MINEMI

Magneto Plasmonies

Topography

Optical signal

Reflection mode

Melejnerale Memorsanliaalines

Welliew Stephonles

Photonic Crystal with a good probe

Topography

2 3 4 5 6

X[µm]

0 1

CSIC

Optical signal

Simulation

Magnade Nanosanieduras

भावनिगासका भिविध्यातिभाविद्य

MINE

Reflection mode

Extinction spectra vs. simulation

At 632 nm: Resonance for in-plane polarization along the long axis

Magnade Nanosaniaannas

भावनिगासका भिविध्यातिभाविद्य

Rectangular nanostructures with Length: 400nm. Width: 200nm. Thickness: 60nm. Array periodicity: 1000nm

Tip

50nm ap. 50nm metallic coating

Optical signal

110nm ap. Uncoated

Rectangular nanostructures with Length: 400nm. Width: 200nm. Thickness: 60nm. Array periodicity: 1000nm

Reflection mode

Tip

Topography

Optical signal

150nm ap.50nm metallic coating

Rectangular nanostructures with Length: 500nm. Width: 100nm. Thickness: 60nm. Array periodicity: 600nm

Reflection mode

Optical signal

Tip

150nm ap. 50nm metallic coating

Constant plane at about 100nm

Rectangular nanostructures with Length: 500nm. Width: 100nm. Thickness: 60nm. Array periodicity: 600nm

Topography

Reflection mode

Extinction spectra vs. simulation

At 632 nm we are still exciting the LSP (but not in optimum conditions)

Circular nanostructures with Diameter: 175nm. Thickness: 60nm. Array periodicity: 400nm

Optical signal

TIP: 80nm ap. , 50nm metallic coating

Diameter: 175nm. Thickness: 60nm. Array periodicity: 400nm

Reflection mode

Optical signal

TIP: 80nm ap. , 50nm metallic coating

Diameter: 175nm. Thickness: 60nm. Array periodicity: 400nm Enhancement in the gap. Interaction with the probe?

Optical signal

TIP: 80nm ap. , 50nm metallic coating

Diameter: 175nm. Thickness: 60nm. Array periodicity: 400nm Enhancement in the gap. Interaction with the probe?

Optical signal

Diameter: 175nm. Thickness: 60nm. Array periodicity: 400nm TIP: 80nm ap. , 50nm metallic coating Reflection mode

Optical signal

The optical signal is still modulated above missing circles: collective effect (interference)

Diameter: 175nm. Thickness: 60nm. Array periodicity: 400nm TIP: 80nm ap. , 50nm metallic coating Reflection mode

Diameter: 150nm. Thickness: 60nm. Array periodicity: 400nm

TIP: 50nm ap. , 50nm metallic coating Transmission mode

Magnetic Nanostructures & Magnetoplasmonics: staff

Gaspar Armelles Optical and magneto-optical properties of nanostructures

José M. García-Martín Scanning probe techniques and nanomagnetism

Alfonso Cebollada Growth and epitaxy of nanostructures

María U. Gonzalez 2-D plasmonic elements

Magnade Nanosaniaduras

MINEMI

Magneso Plasmonies

Antonio García-Martín Theory of optical and magneto-optical properties

José V. Anguita High resolution lithography and nanofabrication

Postdocs, PhD students & technicians

Magnade Nanosaniaannas

Dr. David Meneses

Juan B. González-Diaz

Rui Fermento

Elias Ferreiro

Patricia Prieto

Jorge F. Torrado

Diana Martín

Conclusions

•Extinction spectra helps to identify the laser needed for exciting the LSP resonance in the SNOM experiments

•SNOM can provide the EM field distribution associated with LSP resonances

•The probe plays an important role

•In the future: the EM field distribution in magnetoplasmonic nanostructures can help us to place the magnetic material in the proper location to optimize the MO enhancement

Funding:

European Commission ("Nanomagma" NMP3-SL-2008-214107) Spanish MICINN ("Magplas" MAT2008-06765-C02-01/NAN and "Funcoat" Consolider Ingenio 2010 CSD2008-00023) Comunidad de Madrid ("Nanobiomagnet" S2009/MAT-1726)

Conclusions

•Extinction spectra helps to identify the laser needed for exciting the LSP resonance in the SNOM experiments

•SNOM can provide the EM field distribution associated with LSP resonances

•The probe plays an important role

 In the future: the EM field distribution in magnetoplasmonic nanostructures can help us to place the magnetic material in the proper location to optimize the MO enhancement

¡ MUCHAS GRACIAS POR VUESTRA ATENCIÓN !

Funding:

European Commission ("Nanomagma" NMP3-SL-2008-214107) Spanish MICINN ("Magplas" MAT2008-06765-C02-01/NAN and "Funcoat" Consolider Ingenio 2010 CSD2008-00023) Comunidad de Madrid ("Nanobiomagnet" S2009/MAT-1726)

