
Exploring geometrical structures in

high-dimensional computer vision data

Xiping Fu

a thesis submitted for the degree of

Doctor of Philosophy
at the University of Otago, Dunedin,

New Zealand.

27 January 2016

Abstract

In computer vision, objects such as local features, images and video sequences
are often represented as high dimensional data points, although it is commonly
believed that there are low dimensional geometrical structures that underline
the data set. The low dimensional geometric information enables us to have a
better understanding of the high dimensional data sets and is useful in solving
computer vision problems.

In this thesis, the geometrical structures are investigated from di�erent per-
spectives according to di�erent computer vision applications. For spectral clus-
tering, the distribution of data points in the local region is summarised by a
covariance matrix which is viewed as the Mahalanobis distance. For the action
recognition problem, we extract subspace information for each action class.
The query video sequence is labeled by information regarding its distance to the
subspaces of the corresponding video classes. Three new algorithms are intro-
duced for hashing-based approaches for approximate nearest neighbour (ANN)
search problems, NOKMeans relaxes the orthogonal condition of the encoding
functions in previous quantisation error based methods by representing data
points in a new feature space; Auto-JacoBin uses a robust auto-encoder model
to preserve the geometric information from the original space into the binary
codes; and AGreedy assigns a score, which re�ects the ability to preserve the
order information in the local regions, for any set of encoding functions and an
alternating greedy method is used to �nd a local optimal solution.

The geometric information has the potential to bring better solutions for com-
puter vision problems. As shown in our experiments, the bene�ts include in-
creasing clustering accuracy, reducing the computation for recognising actions
in videos and increasing retrieval performance for ANN problems.

ii

Acknowledgements

My PhD journey has been helped by many great people who have been part of
this invaluable experience. These people have endeared me with pivotal life-
long lessons of which I am extremely grateful.

First of all, I would like to express my sincere gratitude to my supervisors Bren-
dan McCane, Steven Mills and Michael Albert. I must acknowledge that they
truly are the best supervision team. They provided professional, comprehen-
sive and caring supervision which is important for me to conduct my research.
Our weekly meetings were full of insightful discussions and I was inspired and
encouraged to explore the high dimensional world. I am also grateful to Shawn
Martin and Lech Szymanski who gave me lots of useful advice and contributed
to my PhD research.

I would like to thank all members in Graphics and Vision research group includ-
ing Nabeel Khan, Umair Khan, Hamza Bennani, Maria Mikhisor, Jordan Camp-
bell, Rassoul Mesbah, and Tapabrata Chakraborti. The lab life was friendly and
enjoyable, and we had vital discussions which undoubtedly contributed to this
research.

Last but not least, I would like to thank my parents and family members, and
especially my wife, Xiaorong Wang, for her support, patience and encourage-
ments during the past three years. I really appreciate Xiaorong’s willingness to
care for our parents as well as our lovely young daughter.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

Notations x

1 Introduction 1
1.1 Goal and objectives . 2
1.2 Research methods . 4
1.3 Contributions . 5
1.4 Thesis overview . 7

2 Manifold learning background 9
2.1 Introduction . 9
2.2 Manifolds . 9

2.2.1 Manifold concepts . 10
2.2.2 Example: Grassmannian manifold 14

2.3 Manifold learning methods . 15
2.3.1 Preserving local geometric information 16
2.3.2 Preserving global geometric information 21

2.4 Summary . 24

I Exploring geometric structures for clustering problems 25

3 Improved Spectral Clustering using Adaptive Mahalanobis Distance 26
3.1 Introduction . 26
3.2 Background . 28

3.2.1 Mahalanobis distance . 28
3.2.2 Spectral clustering . 29

3.3 Algorithm . 30
3.3.1 Motivation . 30
3.3.2 Algorithm . 32

iv

3.3.3 Computational complexity . 33
3.4 Experiments . 33

3.4.1 Arti�cial examples . 33
3.4.2 Motion segmentation by trajectories 35
3.4.3 MNIST and COIL20 data sets . 42

3.5 Summary . 43

II Exploring geometric structures for manifold data 45

4 Action Recognition based on Principal Geodesic Analysis 46
4.1 Introduction . 46
4.2 Background . 49

4.2.1 High order singular value decomposition 49
4.2.2 Distances on Grassmannian manifold 49
4.2.3 Gesture recognition based on a product space 51
4.2.4 Principal geodesic analysis on a manifold space 54

4.3 Algorithm . 56
4.3.1 Motivation . 56
4.3.2 Algorithm . 56

4.4 Experiments . 62
4.4.1 Cambridge Hand Gesture data set 62
4.4.2 UMD Keck Gesture data set . 64
4.4.3 KTH Human Action data set . 66

4.5 Summary . 69

III Exploring geometric structures for hashing methods 71

5 NOKMeans: Non-Orthogonal K-means Hashing 72
5.1 Introduction . 72
5.2 Background . 75

5.2.1 Notation . 75
5.2.2 Related work . 76

5.3 Algorithm . 78
5.3.1 Motivation . 78
5.3.2 Formulation . 80
5.3.3 Computational complexity . 82
5.3.4 Discussion . 83

5.4 Experiments . 84
5.4.1 Performance measurements . 86
5.4.2 Parameter selection . 90
5.4.3 Results . 90

5.5 Summary . 95

v

6 Auto-JacoBin: Auto-encoder Jacobian Binary Hashing 97
6.1 Introduction . 97
6.2 Background . 99

6.2.1 Notation . 99
6.2.2 Related work . 99

6.3 Algorithm . 101
6.3.1 Motivation . 101
6.3.2 Optimisation . 106
6.3.3 Computational complexity . 107

6.4 Experiments . 108
6.4.1 Parameter selection . 108
6.4.2 Performance with di�erent auto-encoder models 110
6.4.3 Results on benchmark data sets . 112

6.5 Summary . 118

7 How to select hashing bits? A direct measurement approach 120
7.1 Introduction . 120
7.2 Background . 121

7.2.1 Notation . 121
7.2.2 Related work . 121

7.3 Algorithm . 123
7.3.1 Motivation . 123
7.3.2 Optimization . 124
7.3.3 Computational complexity . 126

7.4 Experiments . 126
7.4.1 Parameter selection . 127
7.4.2 Comparing results with simulated annealing 127
7.4.3 Performance with di�erent pools 131

7.5 Summary . 136

8 Conclusion 137
8.1 Future work . 139

References 142

A Gradients calculation 153
A.1 Gradients calculation details . 153

A.1.1 Objective function . 153
A.1.2 Auto-encoder constraint . 154
A.1.3 Binary constraint . 154
A.1.4 First order constraint . 155

vi

List of Tables

3.1 Performance comparison on the Hopkins 155 motion segmentation database. 37

4.1 Recognition results for video sequences with static background in the Keck
gesture data set. 66

4.2 Recognition results of KTH action data set. 69

5.1 Data sets which are used for evaluating di�erent approximate nearest search
algorithms. 86

6.1 The p-values for two-sample t-tests between di�erent methods. 111
6.2 Retrieval performance (m-Recall) of Auto-JacoBin and the related hashing

methods on the SIFT1M. 118

7.1 Retrieval performance (m-Recall) of AGreedy and the related hashing meth-
ods on the SIFT1M. 135

vii

List of Figures

1.1 Layout of the thesis and the relationship between di�erent parts. 8

2.1 Visualization of the tangent space Tp(M). 12
2.2 Visualisation of the geodesic distance. 13
2.3 Visualisations of the exponential map exp and the logarithmic map log. . . 13

3.1 Unit balls under di�erent Mahalanobis distances. 28
3.2 Neighbourhood selection. 31
3.3 Clustering for two intersecting lines. 33
3.4 Clustering for two intersecting planes. 34
3.5 Clustering for two intersecting lines with noise. 34
3.6 Sample images from the Hopkins 155 motion segmentation database. . . . 35
3.7 Clustering results for kanatani1 video sequence. 38
3.8 Clustering results for cars6 video sequence. 39
3.9 Clustering results for 2T3RTCR video sequence. 40
3.10 The cars5_g13 data set. 40
3.11 Misconnections caused by Mahalanobis learning. 41
3.12 Example pictures in COIL20 and MNIST data sets. 42
3.13 Clustering performance in COIL20 and MNIST data sets. 43

4.1 Example pictures in the Cambridge Hand-Gesture data set. 47
4.2 Three ways to �atten a 3D tensor T . 50
4.3 Representing a video sequence as a 3D Tensor. 51
4.4 Visualisation of a Flat-Leftward video sequence in the manifold space Gr1×

Gr2×Gr3. 52
4.5 Visualisation of a V-shape-Contract video sequence in the manifold space

Gr1×Gr2×Gr3. 53
4.6 Visualisation of the mean of the Flat-Leftward video class in the manifold

space Gr1×Gr2×Gr3. 57
4.7 Visualisation of the mean of the V-shape-Contract video class in the mani-

fold space Gr1×Gr2×Gr3. 58
4.8 Visualisation of the proposed action recognition method. 59
4.9 Visualisation of preparing a video tensor A. 61
4.10 Average recognition accuracy for labelling each query video with various

numbers of training examples in each class. 63
4.11 Average computational time for labelling each query video with various

numbers of training examples in each class. 64

viii

4.12 Example video sequences in UMD Keck Gesture data set. 65
4.13 Confusion matrix for Keck data set. 67
4.14 Screenshots in the KTH Human Action data set. 68
4.15 Confusion matrixs of the proposed method on the KTH human action data

set. 70

5.1 Visualisation of di�erent encoding approaches. 75
5.2 Visualisation of data points encoded by ITQ and OKMeans. 77
5.3 Correlation of random vectors in R128 and R960 respectively. 79
5.4 Visualisation of the Voronoi diagrams under di�erent views. 80
5.5 Visualisation of re-representing the data point. 81
5.6 Image patches associated with randomly chosen features from the SIFT10M

data set. 85
5.7 Query results of the SIFT10M data set (1). 88
5.8 Query results of the SIFT10M data set (2). 89
5.9 Retrieval performance on the SIFT1M data set with di�erent λ. 91
5.10 Retrieval performance on the SIFT feature data sets. 92
5.11 Retrieval results on the SIFT1M data set for retrieving di�erent k nearest

neighbour points. 93
5.12 Retrieval results on the GIST1M data set for retrieving di�erent k nearest

neighbour points. 94

6.1 The ideal function which projects data points near to the manifold onto
their closest data points in the manifold. 101

6.2 Visualisation of the positions in Euclidean space. 103
6.3 Visualising of the warping. 105
6.4 Cost changes during the optimisation process. 109
6.5 The m-Recall performance when the weight parameter ranges from 0.1 to 10. 110
6.6 Retrieval performance on the NUS-WIDE data set by di�erent auto-encoder

models used in the optimisation objective. 113
6.7 Retrieval performance on the NUS-WIDE data set. 114
6.8 Retrieval performance on the GIST1M data set. 115
6.9 Retrieval performance on the SIFT1M data set. 116

7.1 Visualisation of a previous bit selection method. 122
7.2 Visualisation of multiple suboptimal solutions. 125
7.3 Parameters with di�erent retrieval settings. 128
7.4 The cost changes of di�erent optimisation methods. 129
7.5 Performance comparison with the simulated annealing optimisation method. 129
7.6 Retrieval performance of di�erent hashing methods on the NUS-WIDE data

set. 132
7.7 Retrieval performance of di�erent hashing methods on the GIST1M data set. 133
7.8 Retrieval performance of di�erent hashing methods on the SIFT1M data set. 134

A.1 The Auto-encoder model used in our proposed method. 154

ix

Notations

Most of the notations are de�ned when they are introduced for the �rst time
and clear in the context. For quick reference, here are the common symbols
used throughout the thesis:

N : the number of data points in a data set

xi: the i-th data point in a data set

X : the data set matrix where each column is a data point

D: the dimension of the high dimensional space

d: the dimension of the low dimensional space

Rd: the d dimensional Euclidean space

B: the binary code matrix where each column is a binary code of a data point

1: the all one column vector

I : the identity matrix

sign: the sign function which returns −1 or 1 as entries depending on the sign
of the input entries

M: the general manifold space

exp: the exponential map in Riemannian manifold

log: the logarithmic map in Riemannian manifold

G(d,D): the Grassmannian manifold which is a space of all the d dimensional
subspaces of the D dimensional Euclidean space

∅: the empty set

Tp(M): the tangent space of manifoldM at p

||A||F : the Frobenius norm of matrix A

x

Chapter 1

Introduction

In computer vision, we are often confronted with high dimensional data sets. For exam-
ple, the local image descriptor SIFT (Lowe, 2004) is represented as a 128D feature vector
and the global image descriptor GIST (Oliva and Torralba, 2001) can be represented as a
960D feature vector. The high dimension of the data sets poses challenges for us to solve
the corresponding computer vision problems including clustering, classi�cation, and vi-
sualisation tasks. The performance of machine learning tasks deteriorates quickly as the
dimension of the data set increases, and this phenomenon is often referred as ‘the curse of
dimensionality’ (Donoho, 2000).

Although the data sets are represented in high dimensional space, it is believed that they
have some low dimensional intrinsic structures due to the intrinsic freedom of the computer
vision objects. As a case in point, suppose we take 1, 000 pictures of a cup. The cup is on
a table, and all of the pictures are taken under same camera parameters as well as same
environment such as illumination conditions. The only di�erence is the camera positions
which are sampled from a circle. On one hand, only one parameter (radian) is enough to
represent the relationship between all of the pictures, i.e., each picture can be determined
by a scalar. On the other hand, we might represent each image by a high dimensional
descriptor such as a 960D GIST vector. Assuming that the high dimensional representation
is faithful, we expect some low dimensional structure inside the data points in the high
dimensional Euclidean space. In addition, for the data set that consists of high dimensional
vectors of the 1, 000 pictures, the 1D geometric information enables us to have a better
understanding of the distribution of the data points in the high dimensional space. Such
information can be further used for solving other computer vision tasks such as visualising
the data set in low dimensional space.

From the discussion above, we can see that geometric information from the data set

1

plays a pivotal role in solving di�erent computer vision problems. Manifold learning has
many successful techniques for discovering the intrinsic geometric information of the data
set, including Isomap (Tenenbaum, De Silva, and Langford, 2000) and LLE (Roweis and Saul,
2000) to learn the low dimensional representation of the data set. For instance, the main task
of Isomap is to learn the low dimensional representation of the original data set. The data
points in the low dimensional space are assumed to preserve the geodesic distance between
data points in the original space, i.e., the low dimensional representation is faithful to the
geometric information. Thus, the distance information in the low dimensional space has
a better semantic meaning than the distance calculated in the original space directly. In
addition, the geometric information can also be used as additional information for solving
computer vision problems. For instance, the curvature is used to describe the distribution
of the data points in a local region, and this information has been used for clustering the
data set (Kim, Tompkin, and Theobalt, 2013).

1.1 Goal and objectives

The quality of the approximation has an intimate relationship with the information we
obtained from the corresponding problems. As discussed in Jordan and Mitchell (2015), the
key feature of di�erent machine learning algorithms is that they are approximating some
functions in essence. This means that the more information we obtain from the data set, the
better mathematical model we might build for �tting real-world computer vision problems.

In this thesis, our main goal is to �nd structures, i.e., explore appropriate geometric
information, in high dimensional data sets for computer vision problems. Although it is
commonly assumed that data sets have low dimensional structures in high dimensional
spaces, the low dimensional structures are unclear for real world data sets. This is partly
due to the variety of the computer vision objects and the noise which is introduced when
we describe the objects. The structure can be any kind of information which helps us to
have a better understanding of the data set from the geometric perspective. For example,
the covariance of a data set in the local region helps us to �gure out how the data points
are distributed. Thus, the covariance information is also a kind of structure or geometric
information of the data set, and it can be used for solving real world problems.

According to di�erent application scenarios we focus on, our objectives consist of three
computer vision problems: spectral clustering for intersecting multiple manifolds problems,
video classi�cation based on representation in the product of Grassmannian manifolds, and
hashing-based approximate nearest neighbour (ANN) search problems.

2

• Spectral clustering for intersecting multiple manifolds problems.

Clustering is widely used in �elds such as computer vision, information science and
machine learning. The goal of clustering is to divide the data set into di�erent clusters
based on some similarity information between the data points (Rodriguez and Laio,
2014). There are many approaches available (Berkhin, 2006). As an example, K-
means is a simple algorithm that partitions a data set into K groups by minimising
intra-cluster Euclidean distance.

In the past decades, spectral clustering algorithms have been developed to overcome
some of the shortcomings of traditional clustering methods (Shi and Malik, 2000; Ng,
Jordan, and Weiss, 2002; Von Luxburg, 2007). Traditional algorithms often assume
normally distributed clusters, while spectral algorithms are capable of clustering non-
Gaussian, non-linear data. Spectral clustering works by representing data similarity
as a weighted graph. Each point in the data set is a node in the graph, and the non-
zero edges in the graph connect similar data points. This graph can be mapped into
a new space by computing eigenvectors of an associated matrix. Finally, K-means is
used to cluster the data in the new space.

• Video classi�cation based on representation in the product of Grassmannian

manifolds.

Human action recognition is a challenging research topic in computer vision with
numerous applications. For instance, it can be used to construct gesture based human
computer interfaces or build an automated surveillance system to detect abnormal
activities in public places (Aggarwal and Ryoo, 2011).

The representation of video sequences plays a pivotal role for practical action recog-
nition systems. The raw pixels of the video sequence are the starting point of di�erent
representations. For example, both the optical �ow and the gradient information can
be extracted based on the set of pixel values (Chaudhry, Ravichandran, Hager, and
Vidal, 2009; Lin, Jiang, and Davis, 2009; Shechtman and Irani, 2005; Dalal, Triggs, and
Schmid, 2006; Niebles, Wang, and Fei-Fei, 2008). The raw pixel can also be used to rep-
resent video sequences directly. The di�erence between consecutive video sequences
has an intimate relationship with linear space. Thus, Grassmannian manifolds are of-
ten used to summarise the video sequences (Turaga, Veeraraghavan, and Chellappa,
2008; Lui, Beveridge, and Kirby, 2010). After representation, the distance information
in the manifold space or other geometric information of the data points is used for
the action recognition task.

3

• Hashing-based approaches for ANN search problems.

Recent years have witnessed a surge of research interest in hashing methods which
return ANN data points. It has been shown that ANN often has good enough per-
formance for many real world applications including feature matching (Brown and
Lowe, 2003), image retrieval (Frome, Singer, Sha, and Malik, 2007) and object recog-
nition (Torralba, Fergus, and Weiss, 2008). For example, in content-based image re-
trieval (CBIR), the task is to retrieve similar images when given a query image. This
is often done by representing all of the images as points in a speci�c space, and then
retrieving the nearest neighbour points as similar images. Naive exhaustive search-
ing is linear in the number of images in the collection and becomes infeasible for
very large collections. Even specialised data structures such as KD-trees deteriorate
to linear search complexity or worse if the dimensionality of the data is large (We-
ber, Schek, and Blott, 1998). Since computer vision problems often have very large
collections and high dimensional data, approximation algorithms are of interest.

The main idea of hashing is to encode data points into binary codes which enables
fast retrieval and reduces storage space. As a case in point, one 960D GIST feature
takes 960 × 4 = 3840 bytes if it is stored as a �oating point vector, while it only
occupies 128/8 = 16 bytes if it is represented as a point in 128D Hamming space.
Further, calculating the distance between two points in Hamming space is very quick
since it only involves a bitwise XOR operation followed by a bit count.

1.2 Research methods

Although the tasks have a variety of formats among di�erent computer vision problems,
the �nal mathematical models are to deal with high dimensional data sets in essence. The
main di�culty is to decide what kind of geometric information can be used. For speci�c
computer vision problems, we have to analyse the problem and get a better understanding
of where the bottleneck is.

We explore the geometric information from two perspectives. The �rst one is to inves-
tigate whether techniques from related �elds such as the mathematical concepts from the
theory of manifolds and techniques from manifold learning can be used. Manifolds are a
well-studied mathematical model and provide nonlinear generalisations of many concepts
in Euclidean space. In the past decades, we can see lots of successful works have ideas
rooted in manifold concepts. One of the main purpose of manifold learning is to uncover
the manifold structure in the data set, and then use the information from the manifold

4

structure to solve real-world problems. Thus, the concepts and techniques from these two
�elds are our �rst priority to investigate.

The second perspective is to explore appropriate geometric information for correspond-
ing computer vision problems. In addition to the techniques provided from the �eld of man-
ifolds and manifold learning, we should also pay attention to new geometric information
for speci�c computer vision problems. Here the new geometric information is de�ned in a
broader sense including any kind of information related to the distribution information of
a data set. The new geometric information is tailored according to the need for addressing
the corresponding problems. Thus it has the potential to bring better solutions. Consider-
ing a set of data points, the order information of the data points according their distances
to some �xed point can be viewed as a kind of geometric information extracted from the
data. In later sections, we will see that the order information can be triangulated to learn
encoding functions for hashing methods.

1.3 Contributions

For spectral clustering, we propose to use the adaptive Mahalanobis distance for select-
ing the neighbourhood data points with the aim to build a better KNN graph. For video
sequence classi�cation, we propose to summarise the information of each action class in
the manifold space. For the hashing-based approach, we have proposed three new hashing
methods, NOKMeans, Auto-JacoBin and AGreedy, from di�erent perspectives. The �rst two
hashing methods aim to learn the encoding functions directly, and the third one selects a
set of encoding functions from a pool generated by any of the previous hashing methods.
The corresponding background and the contributions are as follows:

• Adaptive Mahalanobis distance for spectral clustering (Fu, Martin, Mills, and

McCane, 2013).

Spectral clustering tends to fail when the underlying manifolds are very close to each
other and/or they intersect. We propose an improvement to spectral clustering algo-
rithms using adaptive neighbourhoods computed using Mahalanobis distance. The
distribution information of data points in local region is summarised by a covariance
matrix which is viewed as a Mahalanobis distance and is used to relocate data points
in the local region. By repeating the learning in the local region, we aim to improve
the quality of the similarity between data points.

5

• Summarising the geometric information of video sequences (Fu, McCane, Al-

bert, and Mills, 2013).

After representing video sequences in the product of Grassmannian manifolds space,
we extract a subspace structure for each action class in the training data set. The sub-
space structure summarises the distribution information of the corresponding action
class in the manifold space.

• Labelling video sequence by its distance to the learned geometric informa-

tion (Fu et al., 2013).

With the information extracted from training data points in the manifold space, the
query video sequence is labeled by the information of its distances to the subspaces
of the corresponding video classes. The results on benchmark data sets show that the
new approach takes less computing time compared to previous work in this area, and
has similar or even higher recognition accuracy.

• Relaxing the orthogonal condition in quantisation error based hashing ap-

proaches (Fu, McCane, Mills, and Albert, 2014).

The quantisation error based hashing approaches aim to reduce the quantisation er-
ror between binary vectors and data points in Euclidean space. One condition which
is implicitly assumed is that the separating hyperplanes are mutually orthogonal. In
order to increase the representation capability of the hyperplanes when used for in-
dexing, we relax the orthogonality assumption without forsaking the alternate view
of using cluster centres to represent the indexing partitions. This is achieved by view-
ing the data points in a space determined by their distances to the hyperplanes.

• First order approximation of an ideal noise removing function

In order to preserve the geometric information of the data set, we consider an auto-
encoder model which has the noise removing e�ect. The function (forward propaga-
tion) is de�ned with the property that it projects the data points near the manifold
into the manifold wisely. We approximate this function by its �rst order approxima-
tion which has an intimate relationship with the data points in the local region.

• Auto-encoder Jacobian binary hashing (Auto-JacoBin)

For learning the encoding functions, the optimisation objective consists of two com-
ponents. The �rst component aims to preserve the geometric information of the data
set. This is done by minimising the gap between the learned auto-encoder model

6

and the learned �rst order approximation of an ideal noise removing function. The
second is a constraint on the hidden features and it encourages the hidden features
evenly distributed around the vertices of a hyper-cube in order to make full use of
binary codes.

• Scoring the encoding functions based on training data set (Fu, McCane, Mills,

and Albert, 2015).

Most previous hashing methods are based on some mathematical assumptions and
learn the encoding functions by solving the corresponding optimisation problems.
Thus, selecting a set of encoding functions from a pool which is generated by a set of
hashing methods might lead to a better quality of the encoding. Given a pool of bits,
we propose to select a set of bits according to a quality measurement directly related
to the large scale approximate nearest neighbour search problem. The higher score
means the better quality of the encoding functions. An alternating greedy optimisa-
tion method is proposed to �nd a locally optimal solution.

1.4 Thesis overview

This thesis consists of eight chapters and one appendix which is used to provide the support
material for Auto-JacoBin. The rest of the thesis is structured as follows.

Chapter 2 presents a brief introduction of manifolds and manifold learning. The tech-
niques and concepts provide background for the work in later chapters.

The following �ve chapters are divided into three parts according to di�erent computer
vision problems. The �rst part is about spectral clustering for intersecting multiple mani-
folds problems. The main challenge for this kind of clustering task is caused by the fact that
the data points from di�erent classes intersect with or lie close to one another. We propose
to �nd the neighbourhood data points iteratively by Mahalanobis distance. The second part
is about video classi�cation. Each video sequence is represented as a data point in the prod-
uct of Grassmannian manifolds. In previous work, the classi�cation is done by the nearest
neighbour classi�er which takes heavy computation when the size of the training data set
is large. We propose to extract geometric information for each video class, and use this
information for labelling the query video sequences.

The third part is about hashing-based ANN problems. Chapter 5 summarises our work
in NOKMeans. The orthogonal assumption in quantisation error based hashing approaches
is relaxed which enhances the partition capability of the encoding functions. Chapter 6

7

presents our work on Auto-JacoBin. Our main motivation is to investigate whether an
auto-encoder model can be used for learning the encoding functions since the auto-encoder
model is widely used for preserving information in data sets. Chapter 7 concerns an algo-
rithm called AGreedy. We propose to evaluate the set of encoding functions, i.e., assign
a score for any set of the encoding functions. In this way, the bit selection problem be-
comes an optimisation problem. According to the property of the bit selection problem, the
alternating greedy optimisation method is used to �nd a locally optimal solution.

Finally, Chapter 8 contains the discussion of the work in this thesis as well as the direc-
tions for possible future research. Appendix A provides the detail of the gradients calcula-
tion for the algorithm in Chapter 6.

In Fig. 1.1, we summarise the di�erent parts of the thesis into a graph structure in order
to have a visualisation of the thesis.

Fig. 1.1. Layout of the thesis and the relationship between di�erent parts.

8

Chapter 2

Manifold learning background

2.1 Introduction

This chapter summarises the mathematical background of manifolds and their applications
in manifold learning. Manifolds provide mathematical models and tools for us to explore
geometric information of high dimensional data sets. For real-world high dimensional data
sets, it is often believed that the data points are distributed on some low dimensional man-
ifold. In practice, it is not easy to explore the explicit manifold structures inside the data
set since the data points inevitably have noise, the data points are not well sampled or the
number of data points is not enough to learn the manifold structure. Thus, the main task of
manifold learning is to explore the implicit manifold structure of the data set. This kind of
information helps us to understand high dimensional data sets, and can be used for solving
di�erent computer vision or machine learning problems.

In the following sections, we present some relevant concepts related to manifolds in or-
der to have an intuition of the geometrical structures, and then we summarise some tech-
niques, which illustrate how the geometric information is used in practice, in manifold
learning.

2.2 Manifolds

In this section, some relevant concepts related to manifolds are summarised. The intuition
behind these concepts is important to understand the manifold when it is embedded in
some high dimensional space. We take the Grassmannian manifold as an example, and
its related computations are presented to facilitate the illustrations in later chapters. In
the next section, we will see that many manifold learning algorithms are motivated by the

9

concepts from smooth manifolds.

2.2.1 Manifold concepts

In this subsection, the basic concepts of manifolds will be discussed in an informal fashion.
This is so that the underlying intuition required to understand manifold learning can be
developed. For the complete development of this branch of mathematics see some mono-
graphs (Lee, 2010, 2012; Absil, Mahony, and Sepulchre, 2009).

DenoteM as a set of points in RD. Without any structure given to the set, it behaves
as a container, i.e., it is a collection of data points and the di�erent points are independent
from each other. Take a set with point listM = {p1, p2, p3, · · · } as an example, the only
information we can get is the membership of the set, i.e., for a given point x, we have the
membership as either x ∈M or x /∈M.

The topology space T ofM provides a way to enrich the structure of the point set. It
is a collection of subsets ofM and satis�es three conditions (Lee, 2010):

1. Both the empty set ∅ andM are in T ;

2. For any s1 ∈ T , s2 ∈ T , then s1 ∩ s2 ∈ T ;

3. For any index set I , such that {si}i∈I ⊂ T , then ∪i∈Isi ∈ T .

The topological space for the set helps to organise the ‘closeness’ relationship between
members in the set. For example, if T consists of all of the subsets ofM, then for any two
points x1, x2 ∈M , there existU1 = {x1} ∈ T , U2 = {x2} ∈ T , such that x1 ∈ U1, x2 ∈ U2,
and U1∩U2 = ∅. This means any two distinct points can be separated by di�erent elements
from T , whereas if T consists of only two subsets {∅,M}, there is no such separation
guarantee for distinct points.

Each element in T is called an open subset of M. In the following discussions, the
topological space of Euclidean space RD and its subsets are de�ned consistent with our
common sense. The topological space T of RD consists of all of the setAwith the property:
for any x ∈ A, there exists ε > 0, such that the ball B(x, ε) ⊂ A. For any subset of RD, its
topological space is induced by restricting T to the corresponding subset.

With topological space de�ned on U and V , a function f between them can be investi-
gated. The function f : U → V is said to be continuous if for any open set sv in V , f−1(sv)

is an open set in U . The f is called to be homeomorphism if it is bijective and both f and
f−1 are continuous. When U and V are open subsets of Euclidean spaces, the f is said to

10

be smooth (C∞) if it is continuous and di�erentiable for any order, and the f is said to be
a di�eomorphism if both f and f−1 are smooth.

With the concepts for functions, the structure ofM is explored by functions de�ned on
its subsets. A chart (U, f) ofM is a homeomorphism f : U → V where U ⊂M and V is
an open subset of RD. An smooth atlas ofM is a collection of charts A = {(uα, φα)}α∈I ,
such that ∪α∈Iuα =M and the di�erent charts are compatible with each other, i.e., for any
two (uα, φα) and (uβ, φβ), φα ◦ φ−1

β and φβ ◦ φ−1
α are smooth.

With the de�nition of chart and atlas, local regions can be explored by some speci�c
chart and the atlas enables that all of the regions can be explored. A smooth D-manifold
M is a set with a maximal smooth atlas A = {uα, φα}α∈I , i.e., for any smooth atlas B,
if A ⊂ B, then A = B, and for ∀(uα, φα) ∈ A, φα maps uα into a D dimensional open
subset in RD. With the smooth atlas structureA on the manifoldM, the function f , which
mapsM into a Euclidean space, is called to be smooth if for any p ∈ M, there exists an
chart (U, φ) such that p ∈ U and f ◦ φ−1 is a smooth function (Lee, 2012). For functions,
which map between two manifolds, the smoothness is de�ned similarly by the smooth atlas
structures.

The de�nition of a smooth manifold helps us to understand the data set from local
perspectives. A manifold is a set of points whose local structure is like that of RD. As a
case in point, the unit sphere in R3 is a smooth 2-manifold. From the de�nition of smooth
2-manifold, we can see that the local patch from the sphere has similar properties as R2.

In multivariable calculus, the gradients and tangent plane can be de�ned analytically
and can be visualised in Euclidean space. For manifolds, tangent vector and tangent space
have their corresponding generalisations. The tangent vector can be de�ned implicitly by
utilising functions on the manifold (Absil et al., 2009). Denote C∞p (M) as the set of all the
smooth functions which map the neighborhood of p into R, and f : R → M is a smooth
map. For all g ∈ C∞p (M), g ◦ f is a smooth map between some open subsets of R, thus we
have the corresponding gradient. A tangent vector ε for manifoldM at p is de�ned as a
map from C∞p (M) to R, where the map is de�ned through an implicit curve f : R→M,
and

ε(g) = lim
τ→0

g ◦ f(t+ τ)− g ◦ f(t)

τ
. (2.1)

The tangent space of M at p is the set of all tangent vectors at p, and it is a vector
space with the same dimension as the manifold. Whereas the de�nition of tangent vec-
tor is implicit and abstract since it is a map on C∞p (M), the tangent space enables further
exploration of the manifold. For example, with the inner product structure de�ned appro-
priately on tangent spaces Tp(M), lots of concepts in Euclidean space can be generalised

11

to manifold space.

Fig. 2.1. Visualization of the tangent space Tp(M). The tangent space consists of all of the
tangent vectors at p. This �gure is redrawn from Absil et al. (2009).

A Riemannian metric g de�nes an inner product on all of the tangent spaces and it is a
smooth function when it is viewed as a function de�ned on {(ε1p, ε2p) | (ε1p, ε2p) ∈ Tp(M) ×
Tp(M), p ∈ M} and g(ε1p, ε

2
p) = 〈ε1p, ε2p〉gp (Absil et al., 2009). The manifoldM equipped

with a Riemannian metric g is called a Riemannian manifold (M, g). With the inner product
gp on tangent space Tp(M), the norm of the tangent vector εp is induced by the inner
product:

||εp||g = (〈εp, εp〉gp)
1
2 . (2.2)

Since the tangent vector is a generalisation of the gradient in multivariable calculus, the
length of a smooth curve is calculated by the length of the tangent vectors along the curve.
Suppose f : [a, b] → M is a piecewise smooth curve on a Riemannian manifold (M, g),
the length of the curve is de�ned as

L(f) =

∫ b

a

||ḟ(t)||gdt, (2.3)

where ḟ(t) is the corresponding tangent vector induced by f at t.
With the de�nition of the length of a curve in the manifold, geodesic distance between

two data points p1and p2 in the manifold is de�ned as the ‘shortest’ distance among all of
the lengths of the curves which start from p1 and end at p2 (Absil et al., 2009), i.e.,

Dg(p1, p2) = inf
f∈F

L(f), (2.4)

where F = {f | f : [a, b]→M is a piecewise smooth curve, and f(a) = p1, f(b) = p2}.

12

Fig. 2.2. Visualisation of the geodesic distance. The geodesic distance between two data
points p1 and p2 is the minimum length of the curves between them.

The tangent space has an intimate relationship with the manifold in the local region.
The exponential map, exp, and the logarithmic map, log, make connections between data
points on the manifold and data points in the tangent space. Considering the tangent space
Tp(M) of the Riemannian manifold (M, g), for any x ∈ Tp(M), there exists a unique
(geodesic) curve such that f(0) = p, ḟ(0) = x and f̈(t) = 0 (Absil et al., 2009). Denote
p2 = f(1), the exponential map exp and the logarithmic log are de�ned as

exp(x) = p2, (2.5)

and
log(p2) = x. (2.6)

Fig. 2.3. Visualisations of the exponential map exp and the logarithmic map log. The expo-
nential map exp maps each tangent vector to the point in the nonlinear manifold. Both of
these two points have the same distance to the origin of the tangent space. The logarithmic
map log, which is de�ned around the origin, is the inverse function of the exponential map.
This �gure is redrawn from Lee (2012).

13

Above, a number of concepts related to manifolds have been summarised. From a set of
data points, with structures equipped gradually, the set becomes a manifold or Riemannian
manifold, which enables us to explore the geometrical properties of the data set including
the distance computation between two manifold data points and the local approximation
of the manifold space. The main purpose of this section is to present the key concepts and
intuitions behind manifolds.

2.2.2 Example: Grassmannian manifold

Grassmannian manifold has wide applications in computer vision. It has been used to rep-
resent video sequences (Turaga, Veeraraghavan, Srivastava, and Chellappa, 2011), a set of
images with di�erent poses or di�erent illuminations (Harandi, Sanderson, Shirazi, and
Lovell, 2011). In this section, take the Grassmannian manifold Gr(d,D) as an example,
the key concepts, such as the tangent space, geodesic curve, exponential map exp and the
logarithmic map log, are summarised for this speci�c manifold space.

The Grassmannian manifold Gr(d,D) consists of all the d-dimensional subspaces in
RD. Denote X ′ as the transpose of a matrix X . Since any matrix X ∈ RD×d with the
property X ′X = Id determines a unique d-dimensional subspace, Gr(d,D) is de�ned as

Gr(d,D) = {[X]|X ∈ RD×d, X ′X = Id}, (2.7)

where [X] represents a d-dimensional subspace which is generated by the columns of X .
Since the unit orthogonal basis is not unique for a d-dimensional subspace, the point in
Gr(d,D) might have di�erent representations, i.e., suppose [X], [Y] ∈ Gr(d,D), [X] and
[Y] are equivalent means that there exists A ∈ Rd×d such that X = Y A.

Although the de�nition of the Grassmannian manifold is di�erent of any subset of the
Euclidean space, it is proved that Gr(d,D) is equivalent to a quotient manifold RD×d

∗ /∼
(Absil et al., 2009), where RD×d

∗ is an open subset of RDd and ∼ is some equivalence re-
lationship which is used to induce the quotient manifold. Thus, Gr(d,D) has a natural
manifold structure that is induced from Euclidean space.

With the manifold structure induced from RDd, the related manifold concepts includ-
ing tangent space, geodesic curve, exponential map exp and the logarithmic map log have
analytic expressions, which enables Gr(d,D) to be used in practice. For example, if video
sequences are viewed as points in a Grassmannian manifold, the geodesic distance can be
used to measure the distance between two video sequences.

Suppose [X] ∈ Gr(d,D), the tangent space at [X] is:

T[X] Gr(d,D) = {X⊥A|A ∈ R(D−d)×d}, (2.8)

14

whereX⊥ ∈ R(D−d)×d is the orthogonal complement ofX . The Riemannian metric (canon-
ical metric) on Gr(d,D) is induced from the vector inner product:

〈Y1, Y2〉g =〈Vec(Y1),Vec(Y2)〉

= tr(Y1Y
′

2).
(2.9)

for ∀Y1, Y2 ∈ T[X] Gr(d,D).
Given a tangent vector Y ∈ T[X] Gr(d,D), there is a unique geodesic curve f such that

f(0) = [X], and ḟ(0) = Y . Furthermore, the geodesic curve has analytic expression:

f(t) = [XV cos(Σt) + U sin(Σt)], (2.10)

where U ∈ R(D−d)×d,Σ ∈ Rd×d, V ∈ Rd×d are obtained from the singular value decompo-
sition (SVD) decomposition of Y = UΣV ′.

From the relationship between tangent vector and geodesic curve, the exponential map
is

exp[X](Y) = f(1) = [XV cos(Σ) + U sin(Σ)]. (2.11)

For all [X2] ∈ Gr(d,D), the logarithmic map log[X]([X2]) is calculated by

log[X]([X2]) = U1θV
′

1 , (2.12)

where U1 ∈ RD×d, V1 ∈ Rd×d and θ = arctan(Σ1) are obtained from the SVD decomposi-
tion of X⊥X ′⊥X2(X ′X2)−1 = U1Σ1V

′
1 .

From Equation (2.9) and Equation (2.12), we have a natural way to de�ne the geodesic
distance, which is induced by the canonical metric, between [X] and [X2]:

d([X], [X2]) = || log[X]([X2])||F . (2.13)

2.3 Manifold learning methods

Manifold learning has become an active research topic since the seminal works of LLE
(Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000). In this section, di�erent man-
ifold learning techniques have been summarised in order to have a better understanding of
how the geometry of the data set is explored. According to whether it extracts information
only from a local region of the data set, we summarise the techniques in manifold learning
into two categories. The category of preserving local similarities focus on exploring infor-
mation between data points in their neighbourhood, and the category of preserving global
similarities focus on preserving information which is extracted from the global view of the
manifold space.

15

2.3.1 Preserving local geometric information

For preserving local similarities, the local region of data point x is often obtained by:

• The K nearest neighbours, i.e., the K data points x1, x2, · · · , xK such that they have
the smallest distances to x.

• An ε ball round x, i.e., all of the data points xi and ||x − xi||2 < ε where ε is a
prede�ned constant.

Di�erent manifold learning techniques explore the local geometric information from dif-
ferent perspectives. Then this local geometric information is used to learn a set of low
dimensional points representing the data which preserve the geometric information of the
original data set. In this category, we summarise four manifold learning techniques: LLE,
LE, LSTA and HLLE.

LLE

In Locally Linear Embedding (LLE) (Roweis and Saul, 2000), the geometric information of
data points in the local region is characterised by the reconstruction property between
data points. For data point xi, denote xi1 , xi2 , · · · , xiK as its local neighbours. Assuming
the data points are distributed around some implicit manifold, we expect some linear patch
structure among these K + 1 data points. Thus, the xi can be roughly reconstructed by its
K neighbourhood points, and the weights are obtained by solving following optimisation
problem:

arg min
wi

||xi −
K∑
j=1

wiijxij ||2

s.t.,wii1 + wii2 + · · ·+ wiiK = 1.

(2.14)

where the constraint
∑K

j=1wiij = 1 ensures that the reconstruction weights are not a�ected
by translation of the data set.

Denote W ∈ RN×N as the learned weight matrix, where wij is its element in the ith

row and jth column. The ith row of W is the reconstruction weight for xi (The weights for
the data points which are not used for reconstructing xi are set to 0).

With the information summarised in W , LLE aims to learn a set of data points y1, y2,

· · · , yN in a low dimensional space (Rd), such that the reconstruction relationship (W) is
preserved among these new data points. Denote

J(Y) =
N∑
i=1

||yi −
N∑
j=1

wijyj||2, (2.15)

16

is the reconstruction error for Y = [y1, y2, · · · , yN] ∈ Rd×N .
From Equation (2.15), we can see that any translation to Y will not a�ect the �nal cost.

Besides, the cost, J(Y), equals to 0 when all yi’s are set to 0, so we need some normalisation.
Thus two constraints

N∑
i=1

yi = 0, (2.16)

and
1

N

N∑
i=1

yiy
′
i = I, (2.17)

are introduced.
The �nal optimisation problem has an analytic solution. Denote M = (I −W)′(I −

W), v1, v2, · · · , vd ∈ RN are its eigenvectors corresponding to the second smallest to the
(d + 1)th smallest eigenvalue. The column vectors of V = [v1, v2, · · · , vd]′ ∈ Rd×N are the
corresponding vectors y1, y2, · · · , yN .

LE

In Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003), the similarity information between
data points in the local region is represented by a similarity matrix W ∈ RN×N . For two
data points xi and xj in the same local region, the similarity between them can be calculated
by the heat kernel, i.e.,

wij = exp(−||xi − xj||
2

t
), (2.18)

where t is a prede�ned constant, otherwise, the similarity is 0. Alternatively, the similarity
can be assigned 1 or 0 according to whether they belong to the same local region or not.

The similarity matrix preserves the relative distance information of the original data set.
For example, higher similarity means that the corresponding data points are closer. This
information is used to learn a set of low dimensional points y1, y2, · · · , yN ∈ Rd. Belkin
and Niyogi (2003) proposed to minimise the cost:

J(Y) =
N∑
i=1

N∑
j=1

||yi − yj||2wij. (2.19)

The intuition behind the cost function is that if xi and xj are similar, then assign large
weight for the corresponding distance of the points in the low dimensional space. This
is equivalent to the e�ect that, if ||xi − xj||2 > ||xi − xk||2, we expect to have the same
relationship for low dimensional embeddings, i.e., ||yi − yj||2 > ||yi − yk||2.

17

Denote D ∈ RN×N as a diagonal matrix where Dii is the sum of the ith row of W , and
L is calculated by L = D −W , it is easy to verify that

J(Y) = Y ′LY. (2.20)

In order to avoid the degenerate solution and an arbitrary scale factor, two constraints
are introduced:

Y ′DY = I, (2.21)

Y ′D1 = 0. (2.22)

The optimisation problem then has an analytic solution. For the generalised eigenvector
problem

Lv = λv, (2.23)

denote v1, v2, · · · , vd as the eigenvectors corresponding to the smallest non-zero d eigen-
values. The column vectors of V = [v1, v2, · · · , vd]′ ∈ Rd×N are the corresponding vectors
of y1, y2, · · · , yN .

LTSA

In Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004), each local region is
approximated by a linear patch, and then these patches are aligned with each other in
the low dimensional space. Suppose y1, y2, · · · , yN ∈ Rd, and a map f exists such that
xi = f(yi) + εi ∈ RD here xi is viewed as an sample with noise εi.

With the assumption that data points in the local region have low intrinsic dimension,
i.e., it can be approximated by a d-dimensional a�ne subspace, the data points in the local
region are represented by a new coordinate corresponding to the local linear patch. The
corresponding optimisation problem is

min
K∑
j=1

||xij − (x+Qθj)||22, (2.24)

where the columns of Q ∈ RD×d are a set of basis set of the corresponding subspace, Θ =

[θ1, θ2, · · · , θK] is the local coordinates of the data points in the local region. The optimal so-
lution for Equation (2.24) is obtained by assigning x as the mean ofXi = [xi1 , xi2 , · · · , xiK],

18

Q as Qi = [v1, v2, · · · , vd] where v1, v2, · · · , vd are the leading d left singular vectors of
Xi(1− 11′/K), and Θ as Θi = Q′iXi(1− 11′/K).

Suppose the local coordinates are aligned in the low dimensional space, denote Y =

[y1, y2, · · · , yN] as the embedding data points, Yi = [yi1 , yi2 , · · · , yiK] as the corresponding
local region of Xi and Yi as the mean of Yi. Since Θi is a d dimensional approximation of
Xi, we expect that there is an a�ne transform between Yi and Θi, i.e.,

yij = Yi + Liθj + εj. (2.25)

DenoteEi = [ε1, ε2, · · · , εK] as the error matrix of the reconstruction which should be min-
imised. Given Yi and Xi, the optimal solution for Li, which gives minimal reconstruction
error, is Yi(1− 11′/K)Θ+

i .
Considering the overall reconstruction error:

N∑
i=1

||Ei||2F =
N∑
i=1

||Yi(I − 11′/K)− LlΘi||2F

=
N∑
i=1

||Yi(I − 11′/K)(I −Θ+
i Θi)||2F

=
N∑
i=1

||Y SiWi||2F

= ||Y SW ||2F ,

(2.26)

where Si is the selection matrix such that Y Si = Yi, Wi = (I − 11′/K)(I − Θ+
i Θi),

S = [S1, S2, · · · , SN], W = diag(W1, ,W2, · · · ,WN) and the || · ||F is the Frobenius norm
of a matrix.

With the constraint that Y Y ′ = I , the optimal solution is obtained by Y = [v1, v2, · · · ,
vd]
′ ∈ Rd×N , where v1, v2, · · · , vd are its eigenvectors corresponding to the second smallest

to the (d+ 1)th smallest eigenvalues of SWW ′S ′.

HLLE

In Hessian-based Locally Linear Embedding (HLLE) (Donoho and Grimes, 2003), the map-
ping f between manifoldM and low dimensional embedding is assumed to be isometric,
i.e., the geodesic distance between two data points inM is preserved after the mapping.
Considering any coordinate component function f : M → R, given m ∈ M, suppose
g : U → R is induced by f , where U ⊂ TmM is an open set containing 0, and for any m′

from the neighbourhood of m, it can be uniquely approximated by a data point x ∈ TmM ,

19

thus g(x) is de�ned as f(m′). The curviness of f at m is de�ned by

H tan
f (m) =

(
∂2g(x)

∂ui∂uj

∣∣∣∣
x=0

)
, (2.27)

and the overall curviness is measured by

H(f) =

∫
||H tan

f (m)||2Fdm. (2.28)

For estimating the Hessian matrix, Donoho and Grimes (2003) proved that Equation
(2.28) is approximated by solving a least-square problem. Denote Xi = [xi1 , xi2 , · · · , xiK]

as the K nearest neighbourhood data point of xi and Yi = [fi1 , fi2 , · · · , fiK]. The entries
in
(
∂2g(xi)
∂ui∂uj

∣∣∣
x=0

)
are estimated by least-square estimation, i.e., the SVD is used to obtain a

basis for the tangent space Txi(M), and the corresponding coordinates U ∈ RK×d of the
neighbourhood data points. Denote Ai ∈ RK×(d+1), Bi ∈ RK×d(d+1)/2 such that:

[Ai, Bi] = [1, U:,1, U:,2, · · · , U:,d, U:,1 · U:,1, U:,1 · U:,2, · · · , U:,d · U:,d], (2.29)

where the U:,i · U:,j is the element-wise product of the ith and jth columns of U . Denote
Hi as the remainder of Bi after the projection of Ai is removed, this can be done by Gram-
Schmidt orthonormalisation on [Ai, Bi], and the �nal d(d+ 1)/2 columns is Hi. Thus, the
||H tan

f (xi)||2F is approximated by

||H tan
f (xi)||2F = Y ′iHiH

′
iY
′
i , (2.30)

and H(f) is approximated by its discrete version:

H(f) =
N∑
i+1

Y ′iHiH
′
iY
′
i

=
N∑
i+1

Y SiHiH
′
iS
′
iY

= Y SHS ′Y ′,

(2.31)

where Si is the selection matrix such that Y Si = Yi, S = [S1, S2, · · · , SN], and H =

diag(H1H
′
1, H2, H

′
2, · · · , HNH

′
N).

For the �nal low dimensional embedding, with the constraint that Y Y ′ = I , the op-
timal solution is obtained by Y = [v1, v2, · · · , vd]′ ∈ Rd×N , where v1, v2, · · · , vd are its
eigenvectors corresponding to the second smallest to the (d+ 1)th smallest eigenvalues of
SHS ′.

20

2.3.2 Preserving global geometric information

For preserving global geometric information, the optimisation focuses on the information
obtained in a larger region rather than based on the information from the local region.
Three manifold learning techniques are summarised as examples in this category. Tenen-
baum et al. (2000) proposed Isomap to approximate the geodesic distances between any
two data points, and then this information is preserved in learning the low dimensional
embedding data points. Weinberger, Sha, and Saul (2004) proposed Maximum Variance
Unfolding (MVU) to maximise overall distances between the embedding data points with
the constraint that the distances of data points in the local region are preserved. Lin, He,
Zhang, and Ji (2013) proposed to use a parallel �eld structure to learn the low dimensional
embedding.

Isomap

In Isomap (Tenenbaum et al., 2000), the geodesic distance between any two data points from
the data set is estimated, and then Multidimensional Scaling (MDS) (Cox and Cox, 1994) is
used to learn a low dimensional embedding.

For any two data points x1 and x2, the geodesic distance between them is the smallest
curve length between the two data points along the manifold space. Tenenbaum et al. (2000)
proposed to approximate the implicit manifold by a KNN graph of the data set. Each data
point from the data set is viewed as a node in the graph, and then this data point is con-
nected to its K nearest neighbourhood data points. The weights between connected data
points are assigned by the corresponding Euclidean distances. With appropriate manifold
assumptions, the geodesic distances of the data points in the same local neighbourhood
are approximated with the corresponding Euclidean distances. For data points that are not
in the same local neighbourhood, the geodesic distances are approximated by the short-
est path searching through the KNN graph. In this way, the distance matrix D ∈ RN×N

has better semantic information than the distance calculated by the Euclidean distances
directly.

With the distance matrix D, a low dimensional embedding is obtained by the classical
MDS method which aims to �nd a set of points such that the Euclidean distances between
them are the same as D. Suppose y1, y2, · · · , yN ∈ Rd are the corresponding low dimen-
sional embedding. Denote H = I − 1

N
11′, thus τ(D) = 1

2
HDH ′ corresponds to the inner

product of the data set after centring. The optimal solution is obtained by calculating the
eigenvectors v1, v2, · · · , vd which correspond to the largest d eigenvalues of τ(D). The

21

column vectors of V = [v1, v2, · · · , vd]′ ∈ Rd×N are y1, y2, · · · , yN .

MVU

In order to unfold the manifold in low dimensional space, Weinberger et al. (2004) proposed
Maximum Variance Unfolding (MVU) to maximise the distribution of the embedding data
points, i.e. the optimisation objective is to maximise

N∑
i=1

N∑
j=1

||yi − yj||2. (2.32)

Imagine that the data points are sampled from a piece of paper which is folded in 3D space.
Now, we are doing some operations on this paper such that the data points from the paper
are as far apart as possible. After some number of operations, the paper will be �attened.
Bengio, Paiement, Vincent, Delalleau, Roux, and Ouimet (2004) proved that kernel princi-
pal component analysis (KPCA) has an intimate relationship with manifold learning tech-
niques including Isopmap, LLE and LE. For example, di�erent manifold learning methods
are viewed as special Kernel PCA if the kernel function is de�ned appropriately. This moti-
vates MVU to model the relationship of data points in the kernel space, and the optimisation
objective is to �nd the speci�c kernel matrix with some appropriate constraints.

Suppose φ maps each data point x into a kernel space, the �rst constraint of the points
in the kernel space is that they should be centred, i.e.,

∑N
i=1 φ(xi) = 0. Considering the

kernel matrix K ∈ RN×N , where kij is the inner product between φ(xi) and φ(xj). Thus
the centring condition is equivalent to:

0 = |
N∑
i=1

φ(xi)|2 =
N∑
i=1

N∑
j=1

φ(xi)
′φ(xj) =

N∑
i=1

N∑
j=1

kij. (2.33)

For data points in the same local neighbourhood, their distance should be preserved, i.e.,

|xi − xj|2 = |φ(xi)− φ(xj)|2. (2.34)

Denote gij = x′ixj , Equation (2.34) is equivalent to:

gii + gjj − 2gij = kii + kjj − 2kij. (2.35)

The optimisation aims to maximise the overall distances between φ(x1), φ(x2), · · · ,
φ(xD). Since

1

2N
=

N∑
i=1

N∑
j=1

|φ(xi)− φ(xj)|2 = Tr(K), (2.36)

22

the �nal optimisation problem is to �nd a kernel matrix which is positive semide�nite, thus
it is a semide�nite programming problem with two constraints.

With the solution K obtained by semide�nite programming, the d dimensional em-
bedding is obtained by calculating the eigenvectors v1, v2, · · · , vd which correspond to the
largest d eigenvalues of K . The column vectors of V = [v1, v2, · · · , vd]′ ∈ Rd×N are
y1, y2, · · · , yN .

PFE

In parallel �eld embedding (PFE) (Lin et al., 2013), a parallel �eld structure is learned from
the data set, and then this information is used to learn the low dimensional embedding. A
vector �eld ξ on the manifoldM is a smooth map such that ξ(x) ∈ Tx(M), for all x ∈M.
Intuitively, it selects one tangent vector in each tangent space Tx(M). A parallel vector
�eld is a generalisation of parallel vectors in manifold space. It is formally de�ned as a
vector �eld satisfying 5ξ = 0, where 5 is the covariant derivative on the manifold (Lin
et al., 2013).

The optimisation problem for learning the vector �eld ξ is:

min J(V) =

∫
M

|| 5 V ||2Fdx

s.t.,

∫
M

||V ||2 = 1.

(2.37)

Denote Ti ∈ RD×d as the matrix representing a basis of Txi(M), thus each tangent vec-
tor ξ(xi) ∈ Txi(M) can be represented as Tivi. the discrete version of Equation (2.37) is
approximated by

N∑
i=1

N∑
j=1

wij||PiTjvj − Tivi||, (2.38)

where the weight is de�ned as wij = 1
||xi−xj ||2 if xi and xj are in the same local neigh-

bourhood, and wij = 0 otherwise, Pi = TiT
′
i is the orthogonal projection from RD to the

tangent space Txi(M). With the discrete version of Equation (2.37), the discrete version of
V , i.e., its value at the position of each data point, is obtained by solving the corresponding
eigenvector problem.

Suppose f is a map fromM to an open subset of Rd satisfying f(xi) = yi. The equa-
tion5f = V , where5f is the gradient �eld of f , ensures that f is a linear function which
changes linearly along the geodesic curve on the manifold. Intuitively, f behaves as un-
folding the manifold into Rd. The optimisation problem for learning this linear function f

23

is:

J(f) =

∫
M
|| 5 f − V ||2dx. (2.39)

The discrete version of Equation (2.39) is approximated by

J(Y) =
N∑
i=1

N∑
j=1

wij||(Pi(xi − xi))′Vxi − yj + yi||2. (2.40)

Thus, the �nal solution is solved by setting ∂J(Y)
∂Y

= 0.
In this section, we have summarised some examples of how geometric information from

a data set is mined and then used for learning low dimensional embeddings. The sum-
marised techniques have various applications in related �elds. For example, LE has been
developed into a linear manifold learning method (He and Niyogi, 2004) and a regulariser
for regression problems (Cai, He, Zhang, and Han, 2007). Our focus is how the geometric
information is explored and used for learning the low dimensional embedding. Thus, we
have not summarised other techniques in manifold learning including the uni�ed viewpoint
of di�erent manifold learning techniques (Bengio et al., 2004; Lawrence, 2004), learning the
low dimensional embedding through probability distribution (Hinton and Roweis, 2002;
Van Der Maaten and Hinton, 2008) and label information (Yan, Xu, Zhang, Zhang, Yang,
and Lin, 2007).

2.4 Summary

This chapter provides the theoretic background for the work in this thesis, and the sum-
marised manifold learning techniques also shed light on related works in later chapters.
For example, our work in video classi�cation heavily relies on the Grassmannian manifold
and its related computations; the tangent space is used to approximate the distribution of
data points in local regions and this kind of information is used to learn the encoding func-
tions for ANN search tasks; the techniques in manifold learning provide examples as well
as motivate us to mine geometric information for appropriate computer vision problems.

24

Part I

Exploring geometric structures for
clustering problems

25

Chapter 3

Improved Spectral Clustering using
Adaptive Mahalanobis Distance

Note: Some portions of this chapter are taken from Fu et al. (2013).

In this chapter, we address the clustering problem when data points belong to di�erent
manifolds that are close to or intersect with each other. Traditional spectral clustering
algorithms usually fail to separate such manifolds. We propose to improve the similarity
matrix construction step in spectral clustering by learning a local Mahalanobis distance.
We show the e�ectiveness of the method on some arti�cial data sets, and also incorporate
this modi�cation into recent related algorithms, and compare these algorithms on some
real data sets.

3.1 Introduction

In the past few years, a lot of work has been done to extend clustering algorithms to ever
more di�cult problems. Speci�cally, algorithms have been designed to cluster data which
are sampled from multiple manifolds. These manifolds may be very close to each other and
may even intersect. For this kind of clustering problem, we need to construct an elaborate
similarity matrix W to group the data using spectral clustering. Chen and Lerman (2009)
have constructed a similarity matrix based on the polar sine, which is a high dimensional
generalisation of the sine function. For each data point, the polar sine is estimated based
on data points randomly chosen from the data set. Thus, it is a global algorithm and has
good performance when the data points are sampled from linear manifolds.

The similarity matrix W can also be estimated based on information extracted from lo-
cal regions. Wang, Jiang, Wu, and Zhou (2011) incorporated tangent space information into

26

the similarity matrix. They used the mixture of probabilistic principal component analysers
(MPPCA) (Tipping and Bishop, 1999) model to �t the data set. In this model each data point
has a corresponding tangent space which is learned from MPPCA. With this information,
the similarity matrix is constructed from the distance information and the angle informa-
tion of corresponding tangent spaces. Gong, Zhao, and Medioni (2012) estimated the local
tangent space using a weighted low-rank matrix factorisation. The main assumption is that,
when calculating the tangent space at x, the more distant points from the neighbourhood
contribute more to the error than nearby ones do. Thus they introduce a penalty for neigh-
bourhood points according to their distances to x. With the tangent space information for
each data point, they construct a similarity matrix W using both distance information and
angle information of the local tangent spaces. Finally, Arias-Castro, Lerman, and Zhang
(2013) proposed three algorithms which address the manifold intersection problem. The
central idea behind these algorithms is to incorporate local covariance information which
is calculated by each x and its neighbourhood points to construct a similarity matrix.

In this work, we propose an algorithm designed to improve the selection of neighbour-
hoods in the case of data sampled from multiple neighbourhoods. By improving neighbour-
hood selection, we improve the similarity matrix used by spectral clustering algorithms.
Like previous works (Gong et al., 2012; Wang et al., 2011; Arias-Castro et al., 2013), we
are trying to construct a better similarity matrix for spectral clustering. Unlike previous
work, we do not explicitly estimate local tangent spaces, nor do we use a single covariance
measurement to reject certain edges. Instead, we select edges by employing an iterative
Mahalanobis distance calculation. Since we are concerned only with neighbourhood selec-
tion, the modi�ed neighbourhood selection method can be applied as a pre-processing step
for various spectral clustering algorithms (Gong et al., 2012; Wang et al., 2011; Ng et al.,
2002).

In Section 3.2, we introduce the necessary background for the modi�ed neighbourhood
selection method, including details on the Mahalanobis distance and spectral clustering.
In Section 3.3, we describe how to select neighbourhoods using an iterative computation
of Mahalanobis distance. We provide examples and discuss computational complexity. In
Section 3.4, we incorporate the modi�ed neighbourhood selection method into other al-
gorithms and compare the resulting performance on some real data. In Section 3.5, we
summarise the work in this chapter.

27

3.2 Background

3.2.1 Mahalanobis distance

The modi�ed neighbourhood selection method uses the Mahalanobis distance to select
neighbourhoods. To de�ne the Mahalanobis distance, we suppose that x, y ∈ RD and
that Σ ∈ RD×D is a symmetric positive de�nite covariance matrix. The Mahalanobis dis-
tance is de�ned as dΣ(x, y) =

(
(x− y)′Σ−1 (x− y)

)− 1
2 . Under the Mahalanobis distance,

the space RD can be viewed as normalised by Σ. In Fig. 3.1, we show a unit sphere in the
Mahalanobis distance using two di�erent covariance matrices.

Fig. 3.1. Unit balls under di�erent Mahalanobis distances. On the left we use Σ = I , and
on the right we use a diagonal matrix with entries (3, 1, 1) for Σ.

The Mahalanobis distance has been widely used for solving machine learning problems.
For example, Goldberg, Zhu, Singh, Xu, and Nowak (2009) proposed the Multi-Manifold
Semi-Supervised learning algorithm. Their main idea was to reduce the clustering size by
partitioning the unlabelled data points into small regions. Next, for the size-reduced data
set, the local covariance for each data point was calculated. The similarity matrix was then
constructed by this Mahalanobis distance information and the Hellinger distance between
them. Kushnir, Galun, and Brandt (2006) also proposed to use Mahalanobis distance calcu-
lated by covariance matrices around the local region, to �nd the structure of the data set. In
this work, we propose to learn the Mahalanobis distance iteratively. The hope is that such
an approach will allow a better determination of the neighbourhood of each data point.

Another closely related �eld is distance metric learning (Yang and Jin, 2006) which
learns the Mahalanobis distance for the data set. Distance metric learning can be divided
into two branches. One is supervised distance metric learning which means we have label
information of the data points. With this kind of information, we can �nd the optimal Ma-
halanobis matrix for the distance measurement (Xing, Jordan, Russell, and Ng, 2002; Wein-
berger, Blitzer, and Saul, 2005). The other is unsupervised distance metric learning which
is closely related to manifold learning or dimensionality reduction (Yang and Jin, 2006). It

28

aims to �nd a low dimensional structure which is usually from one latent manifold. No-
tice that our modi�cation is to learn the local Mahalanobis distance for the unsupervised
clustering problem, and the data points are assumed to be sampled from multiple manifolds
which are close to or intersect with each other.

3.2.2 Spectral clustering

Suppose we have a data set X = {x1, x2, . . . , xN} ⊂ RD. The �rst step in any spec-
tral clustering algorithm is the construction of a weighted similarity graph. In this graph,
vertices correspond to data points xi and edges give the similarity between two points xi
and xj . For example, we might form the weighted similarity graph using ε-balls to spec-
ify neighbourhoods: for each data point xi, we connect it to point xj if the Euclidean
distance d(xi, xj) ≤ ε. Another common approach for generating weighted similarity
graphs is to connect each data point to its K nearest neighbours (KNN graph). The simi-
larity between the neighbourhood data points is assigned by Gaussian similarity function
w(xi, xj) = exp(− ||xi−xj ||

2

2σ2).
After assigning an appropriate weight to each edge, we get the similarity matrix W =

(wij) for the graph. Note thatwij = 0 if an edge does not exist. Spectral clustering (Ng et al.,
2002) is done by calculating the normalised Laplacian L = I −D−1/2WD−1/2, where D is
a diagonal matrix with Dii = ΣN

j=1wij . Next, we compute the smallest k eigenvalues of the
eigenvalue problem Lu = λu, where u1, . . . , uk are the corresponding eigenvectors. If we
form a matrix U = (u1, u2, . . . , uk) ∈ RN×k, T = (y′1, y

′
2, . . . , y

′
N)′ ∈ RN×k is obtained by

normalising each row of U , then yi is viewed as a representation of xi. Finally, we cluster
{y1, y2, . . . , yN} into k clusters using K-means. An overview of the process is given in
Algorithm 1.

The similarity matrix W plays a pivotal role in spectral clustering. The values in the
similarity matrix are used to re�ect the relationship between data points, i.e., high similarity
between data points means they are close to each other and from the same class. In the
extreme case, if each data point only connects data points from the same class, then T only
has k distinct rows and these distinct rows are orthogonal with each other (Ng et al., 2002).
Thus, the spectral clustering algorithm can cluster the data set successfully. In real-word
data sets, the similarity matrix might not be ideal, but it has been shown that if the similarity
matrix is close enough to the ideal case, the spectral clustering algorithm can cluster the
data set successfully.

29

Algorithm 1 Spectral Clustering Algorithm (Ng et al., 2002)
Input: Data set X ∈ RD×N , the number of clusters k.
Output: A set of k clusters.

1: Construct a similarity graph, denote the corresponding adjacency matrix as W .
2: Calculate the normalized Laplacian L = I − D−1/2WD−1/2, where D is a diagonal

matrix with Dii = Σn
j=1wij

3: Calculate the smallest k eigenvalues of the eigenvalue problemLu = λu, u1, u2, · · · , uk
are the corresponding eigenvectors.

4: Form U = (u1, u2, · · · , uk) = (y′1, y
′
2, · · · , y′N)′ ∈ RN×k and normalize each row of U ,

denote the new matrix as T = (y′1, y
′
2, . . . , y

′
N)′ ∈ RN×k

5: Cluster {y1, y2, · · · , yN} into k clusters by K-means algorithm.

3.3 Algorithm

3.3.1 Motivation

From the discussion of spectral clustering, we can see that the clustering results are asso-
ciated with the quality of the similarity matrix. When data points from di�erent classes
are close to each other, misconnections arise, i.e., we might assign large similarity weights
between data points from di�erent classes. This is the main cause of failure if we use spec-
tral clustering to divide the data set. Thus our focus is to explore appropriate geometric
information for learning the similarity matrix W .

We aim to extract some geometric information for deciding the neighbourhood of the
data points. If there are fewer misconnections in the similarity graph, the performance of
spectral clustering will improve. Clustering is an unsupervised learning problem, i.e., we do
not have any prior information of the data distribution or class labels, so we use isotropic
ball distance to �nd the nearest neighbourhood points. The distribution information of data
points in a local region is used to learn the Mahalanobis distance information. Notice that
the learned Mahalanobis distance can be used to �nd the nearest neighbour points again.
We repeat the above procedure hoping to reduce the number of wrong connections.

An example is shown in Fig. 3.2. Here the data points are chosen from two intersecting
lines with some random noise. For the blue point xi, we select its 20 nearest neighbourhood
points which are shown in the top-left position, we notice that there are at least 6 miscon-
nections. Calculate the covariance of these (20 + 1) points, and then use this covariance
as the Mahalanobis distance to �nd its 20 nearest neighbourhood points. For this example,

30

Fig. 3.2. Neighbourhood selection. Here we consider a data set with two intersecting lines
and a neighbourhood centre near the intersection point. From the top left to the bottom
right, we show snapshots of the neighbourhood of the blue data point in each iteration.
The neighbourhood centre is shown enclosed within a circle surrounding the neighbour-
hood. Non-Neighbours are shown in grey. As the algorithm converges, the neighbourhood
improves so that the intersecting line is ignored.

31

we see that after 6 iterations, the blue point has ‘correct’ connections.

3.3.2 Algorithm

The neighbourhood learning algorithm is summarised in Algorithm 2. This algorithm aims
to select neighbourhoods respecting to the manifold structures, regardless of nearby mani-
folds or manifold intersections, and it is based on iteratively recomputing the Mahalanobis
distance for a given neighbourhood centre. For ith data point xi, the main task is to identify
its K nearest neighbours. In the absence of prior information, we assume an isotropic Ma-
halanobis distance (Σ = I) (Line 2) to �nd the closest K neighbours (Line 4). Using these
neighbours, we compute the covariance and re-compute the Mahalanobis distance (Line 5).
We return to Line 3 and select a new set of K neighbours based on the new Mahalanobis
distance and repeat unless there is no change of the covariance or neighbourhood of the xi
(Line 6-10).

In practice, we do not wait for convergence, but terminate after a �xed number of it-
erations Imax. After the neighbourhood selection process, we apply a spectral clustering
algorithm. We denote the resulting algorithm as Modi�ed-SC.

Algorithm 2 Identify neighbourhood using Mahalanobis Distance
Input: Data set X with N elements; neighbourhood size K ; maximum number of
iterations Imax.
Output: Neighbourhood for each data point.

1: for i = 1 to N do

2: Let Σ = I .
3: for j = 1 to Imax do
4: Use distance (xj − xi)′Σ−1(xj − xi) to �nd K nearest neighbours of xi.
5: Calculate the covariance Cov of {xi1, xi2, . . . , xiK}.
6: if Cov = Σ then

7: Go to Line 14.
8: else

9: Set Σ = Cov, and return to Line 5.
10: end if

11: end for

12: Record the points {xi1, xi2, · · · , xiK} as xi’s neighbourhood.
13: end for

32

3.3.3 Computational complexity

Taking N to be the total number of points in the data set and K is the size of neighbour-
hood, spectral clustering takes O(KN2) to �nd nearest neighbourhood points and solv-
ing a generalised eigenvalue problem takes O(N3). Our modi�cation involves identifying
neighbourhood iteratively at most Imax times. The time required to identify neighbour-
hood is O(KN2Imax). Since solving the generalised eigenvalue problem dominates the
main computation, the modi�ed algorithm has roughly the same complexity as the tradi-
tional spectral clustering algorithm. Besides, we should note that the time for identifying
the neighbourhood in the proposed method can be further reduced by fast approximate
nearest neighbour search methods (Bentley, 1975; Indyk and Motwani, 1998).

3.4 Experiments

3.4.1 Arti�cial examples

We examine some arti�cial examples which cannot be partitioned using traditional spectral
clustering algorithms. The �rst example is two intersecting lines. For this example, we gen-
erated 400 points uniformly sampled from two lines. We used K = 10 nearest neighbours
and identi�ed k = 2 clusters. The results of a traditional spectral clustering algorithm
(Ng et al., 2002) compared with the same spectral clustering algorithm modi�ed using our
neighbourhood selection is shown in Fig. 3.3.

−20

−10

0

10

20

−20

−10

0

10

20

−15

−10

−5

0

5

10

15

−10

−5

0

5

10

15

−20

−10

0

10

20

−15

−10

−5

0

5

10

15

Fig. 3.3. Clustering for two intersecting lines. On the left we show the result of a traditional
spectral clustering algorithm, and on the right the result of the same algorithm modi�ed
by �rst applying Algorithm 2.

In our next example, we use two intersecting planes. For this example, we generated

33

200 points sampled from a Gaussian distribution from each plane. We again used K = 10

nearest neighbours and identi�ed k = 2 clusters. Clustering by our method yielded only
two misclassi�ed points. A comparison with the traditional method is shown in Fig. 3.4.

−1

0

1

−1−0.8−0.6−0.4−0.200.20.40.6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1

0

1

−1−0.8−0.6−0.4−0.200.20.40.6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 3.4. Clustering for two intersecting planes. One plane is in the plane of the page,
the other is orthogonal to the page and horizontal. On the left we show the results of a
traditional spectral clustering algorithm, and on the right the result of the same algorithm
modi�ed by our neighbourhood selection scheme. There are two misclassi�ed points using
our approach, shown in green with triangular shape.

The previous two examples show that for manifold intersections, the performance of
spectral clustering can be improved using our iterative algorithm for learning the Maha-
lanobis distance. We note that when the data lies on a manifold without error, the method
will work for a large range of K . However, if there is noise, the value of K should be large
enough to eliminate the noise. For example, in Fig. 3.5, we show that for two intersecting
lines with noise, the data can still be partitioned successfully if we choose K = 20.

Fig. 3.5. Clustering for two intersecting lines with noise. The Modi�ed-SC algorithm is
able to cluster noisy data using larger neighbourhoods. Errors are shown in green with
triangular shape.

34

3.4.2 Motion segmentation by trajectories

The Hopkins 155 motion segmentation database (http://www.vision.jhu.edu/
data/) (Tron and Vidal, 2007) is a benchmark for testing motion segmentation and sub-
space learning algorithms. There are 155 data sets, including 13 articulated sequences
which relate to people’s motion, 38 tra�c sequences, and 104 checkerboard sequences.
The checkerboard sequences display di�erent combinations of movements of both checker-
board and camera, such as rotation and translation. Some of the sample images are shown
in Fig. 3.6.

Fig. 3.6. Sample images from the Hopkins 155 motion segmentation database. Each image
is a representative of one video sequence. The ground truth of the di�erent segmentations
is distinguished by di�erent colors.

Suppose there are F frames in one video sequence. A speci�c feature can be charac-
terised by its position (xi, yi) in the ith frame. The trajectory of this feature is de�ned as

35

http://www. vision.jhu.edu/data/
http://www. vision.jhu.edu/data/

(x1, y1, x2, y2, . . . , xF , yF) ∈ R2F . Typically trajectories belonging to a speci�c rigid move-
ment lie in the same low dimensional manifold. Therefore, we can use multi-manifold
learning algorithms to separate them.

We applied our neighbourhood connection method to the standard spectral clustering
algorithm (SC), spectral multi-manifold clustering (SMMC) (Wang et al., 2011), and robust
multi-manifold structure learning (RMMSL) (Gong et al., 2012). We name the modi�ed al-
gorithms Modi�ed-SC, Modi�ed-SMMC and Modi�ed-RMMSL. We compare these modi�ed
algorithms with SC, SMMC, RMMSL, generalised principal component analysis (GPCA) (Vi-
dal, Ma, and Sastry, 2005), and spectral curvature clustering (SCC) (Chen and Lerman, 2009)
on the Hopkins 155 motion segmentation database. The code for GPCA (Vidal et al., 2005),
SCC (Chen and Lerman, 2009), and SMMC (Wang et al., 2011) was downloaded from corre-
sponding authors’ homepages123.

The results of the comparison are shown in Table 3.1. We show the performance of
some speci�c data sets as well as the average performance across the whole database. Each
experiment is repeated 100 times, and the misclassi�cation rate is reported. To facilitate
visualisation of the motion segmentation results, we present the segmentation results of
the �rst three data sets in Fig. 3.7–3.8 respectively. The clustering method and the corre-
sponding misclassi�cation rate are shown at the top of each picture. We use the 10th frame
of the corresponding video sequence as a representative. The top left picture shows the
positions of all the features. The remaining pictures show the segmentation results of the 8
clustering methods respectively. Features from di�erent clusters are distinguished by dif-
ferent colours. In most cases, our modi�cation improves the results of the standard method,
and in certain cases the improvement is signi�cant.

Note that some of these algorithms have already been tested on this data set, and the
results may be di�erent from those shown in Table 3.1. This is probably due to di�erences in
parameter selection and data pre-processing used in each algorithm. For example, Wang et

al. (2011) tested the SCC and SMMC algorithms without data pre-processing, i.e. on the 2F

dimensional data directly, while Chen and Lerman (2009) pre-processed the data using PCA.
Further, Gong et al. (2012) performed their experiments by �rst tuning the parameters, then
choosing the best parameter for the trials, whereas we do not tune the parameters. Hence,
1http://www.vision.jhu.edu/code.htm
2http://www.math.sjsu.edu/~gchen/scc.html
3http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/publication.htm

36

http://www.vision.jhu.edu/code.htm
http://www.math.sjsu.edu/~gchen/scc.html
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/publication.htm

kanatani1 cars6 2T3RTCR cars5_g13 1R2RCT_A Average

GPCA 0% 0% 42.16% 1.17% 5.94% 10.21%

SC 0.74% 37.72% 1.31% 16.45% 3.80% 9.51%

Modi�ed-SC 0% 0% 0.75% 16.55% 6.65% 8.88%

SMMC 3.26% 0.82% 15.17% 9.45% 15.18% 9.62%

Modi�ed-SMMC 1.92% 0.82% 14.52% 9.20% 14.66% 9.35%

RMMSL 0% 8.19% 34.70% 6.38% 34.44% 8.55%

Modi�ed-RMMSL 0% 0% 1.31% 5.51% 4.51% 7.37%

SCC 0% 19.36% 0.57% 0% 0.04% 3.40%

Tab. 3.1. Performance comparison. Here we compare a host of spectral clustering algo-
rithms using the Hopkins 155 motion segmentation database. Misclassi�cation rates are
reported, and bold-face is used when our modi�cation is as good or better than the result
of the standard algorithm. In some cases there are signi�cant improvements in sense of the
misclassi�cation rate.

the results shown in Table 3.1 can only be compared in the context of our trials. In other
words, we tested the methods using the same parameters and pre-processing. We only
varied the method of edge connection (neighbourhood selection).

Due to the large number of methods considered, however, there are some subtleties
in our analysis, which we now discuss. First, the variety of algorithms requires a standard
method of pre-processing and parameter selection which will work for all methods. For pre-
processing, we �rst use PCA to project the trajectories into 5 dimensional space. Actually,
the dimension of trajectories from a rigid-body movement ranges from 2 to 4 (Tron and
Vidal, 2007). Thus after projection the trajectories are still on di�erent low dimensional
manifolds in R5. Besides, GPCA is designed to address the subspace intersection problem.
Thus D = 5 is the minimum dimension for GPCA.

Some algorithms, such as SMMC, Modi�ed-SMMC, RMMSL, Modi�ed-RMMSL, and SCC

need intrinsic dimension information, which we always set as d = 3 since this leads to a bet-
ter estimation of the distribution of the trajectories. For SC, Modi�ed-SC, SMMC, Modi�ed-

SMMC, RMMSL and Modi�ed-RMMSL, the neighbourhood size K is set to 2dlog(N)e, as
suggested when using SMMC (Wang et al., 2011). For SMMC, the number of components
M of MPPCA and the adjustable parameter o are using the default settings, i.e., they are
set to d N

10d
e and 8. Since the number of features in this data set ranges from 39 to 556, the

number of components is up to 18. We found that the MPPCA used in SMMC sometimes

37

Fig. 3.7. Clustering results for kanatani1 video sequence. There are 30 frames in this data
set. The red car is driving in the carpark, and the camera is moving in order to follow the
car.

returns undesirable results. For example, when the number of components is set too large,
some component in MPPCA might have only one data point and this leads to computation
error when estimating the tangent information in the local region. Thus, the upper limit
and lower limit of the number of components M are set to be 3 and 9 respectively.

When comparing SC and Modi�ed-SC, the only di�erence is the parameter for the num-
ber of iterations to use in the Mahalanobis distance computation. For SC, we use a sin-
gle iteration, and for Modi�ed-SC we use 10 iterations. For the comparison of SMMC and
Modi�ed-SMMC, our results depend heavily on the outcome of the MPPCA process. Thus
for comparison, we �x the MPPCA procedure. In other words, we use the same result from
MPPCA, then run the di�erent algorithms. For RMMSL and Modi�ed-RMMSL, we note that
the outliers have been previously removed in the Hopkins 155 data set. Thus we can skip
the outlier detection process in RMMSL, so we set σc = 0.02, σn = 1, and Kth = 5 for the
self-tuning step. After estimating the weighted tangent space for each data point, we apply
the di�erent edge connection methods to continue the experiment.

The results in Table 3.1 are produced using a set of �xed parameters. For real world data

38

Fig. 3.8. Clustering results for cars6 video sequence. There are 31 frames in this data set.
The car is crossing the frame and turning left at the same time.

sets, this is not necessarily the best way to choose parameters. In the cars_g13 data set,
for example, it seems that several algorithms have poor performance. When we analysed
this data set in detail, we found that the poor performance was related to the distribution
of the points. The cars5_g13 data consists of 36 points for car one, and 307 points for
the background. By visualising the data, we noticed that the background points are less
localised than the car points, as shown in Fig. 3.10 (left). If we choose K = 12 there are in
fact three clusters, as shown in Fig. 3.10 (right). Even though two of the three clusters are
in the same subspace, they are not connected, thus explaining the poor performance of the
algorithms. To address the problem we tried other parameters. For K = 20 we obtained
better performance (13.11% and 0% for SC and Modi�ed-SC respectively).

Although our modi�cation generally improves the results over the standard algorithm,
we noticed that in some cases the results are worse. Take the 1R2RCT_A data set in Ta-
ble 3.1 as an example, the Modi�ed-SC method has a higher misclassi�cation rate than the
original SC algorithm. After a detailed analysis, we noticed that for certain data points, the
iterative Mahalanobis distance learning may introduce incorrect connections. This situa-

39

Fig. 3.9. Clustering results for 2T3RTCR video sequence. There are 26 frames in this data
set. The camera is rotating in the video, and the long checkerboard in the middle is swaying.

−0.08−0.07−0.06−0.05−0.04−0.03−0.02−0.010 −0.2

0

0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 3.10. The cars5_g13 data set. On the left we show the features provided with the data.
On the right we show how the data is clustered into three groups in its projection into R3.

tion is shown in Fig. 3.11. The data shown in Fig. 3.11 has a complicated distribution, and
this is probably the main reason that the modi�ed neighbourhood selection method has
failed. To some extent, this problem can be mitigated by allowing larger neighbourhoods.
For example with K = 20 the misclassi�cation rate is 3.56% for the Modi�ed-SC algorithm

40

and 4.04% for the SC algorithm. However, this is a minor improvement, and we tend to
prefer a �xed choice of parameter for fair comparisons.

−0.1−0.050
−0.1−0.0500.050.10.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.0500.050.1−0.02−0.010

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.0500.050.1−0.02−0.010

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Fig. 3.11. Misconnections caused by Mahalanobis learning. On the top, we visualise the
features in R3, with points belonging to di�erent clusters distinguished by blue, green,
and black. We want to �nd the neighbours of the red point which belongs to the blue
cluster. In the middle, we show its neighbours, which have four misconnections, in red
after one iteration. On the bottom, we show in red the neighbourhood learned by the
iterative Mahalanobis algorithm. Notice it has introduced one more misconnection.

41

3.4.3 MNIST and COIL20 data sets

MNIST (LeCun, Bottou, Bengio, and Ha�ner, 1998) and COIL20 (Nene, Nayar, and Murase,
1996) are two other commonly used benchmark data sets for object recognition and clus-
tering algorithms. MNIST is a data set of handwritten digits, with each digit represented
by a 28 × 28 image matrix. The COIL20 data set has 20 objects, and each object has been
captured by 72 images taken as the object is rotated by 5◦ increments. Some of the sample
images are shown in Fig. 3.12. For these data sets, we compared the performance of the
SC and Modi�ed-SC algorithms since these two algorithms need the smallest number of
parameters.

Fig. 3.12. Example pictures in COIL20 and MNIST data sets. The top two rows are example
images taken from COIL20. The other images are taken from MNIST.

The misclassi�cation rates are summarised in Fig. 3.13. The parameters D and K are
tuned for each data set in order to achieve the best clustering performance. For COIL20,
the whole data set is used for testing the performance of di�erent clustering methods. We
project the data points to RD, where D is 20, and the number of nearest neighbours K is 6.
Since K-means algorithm is used in the �nal stage of the spectral clustering methods, we
repeat the experiments 100 times and report the average misclassi�cation rates. For MNIST,
we randomly choose 50 data points from each digit. The parameters D = 20 and K = 7

are used for this data set. The experiment is repeated 100 times and the average results are
presented. From Fig. 3.13, we can see that Modi�ed-SC has lower misclassi�cation rates for
both COIL20 and MNIST data sets and the standard deviations show that the performance

42

Fig. 3.13. Clustering performance in COIL20 and MNIST data sets. In COIL20, the misclas-
si�cation rates for SC and Modi�ed-SC are 27.33% and 24.25% respectively. The corre-
sponding rates are 31.31% and 28.80% in MNIST. The error bars show the corresponding
standard deviations of the misclassi�cation rates.

of spectral clustering methods is relatively stable on the MNIST. In order to show the im-
provement is statistical signi�cant, we adopt the two-sample t-test. The null hypothesis
is that the misclassi�cation rates from these two methods have the same means but their
variances might be di�erent. The alternative hypothesis is that the misclassi�cation rates
from Modi�ed-SC has a smaller mean. The p-values for these two tests are 4.11× 10−6 and
1.19 × 10−15 respectively. In practice, the null hypothesis is often rejected if the p-value
is smaller than a signi�cance level αt = 0.05. Thus, the alternative hypothesises are ac-
cepted in both tests and the neighbourhood identi�cation method can be used to improve
the quality of the similarity matrix W in spectral clustering method.

3.5 Summary

We have proposed an algorithm for using local information to learn an adaptive Maha-
lanobis distance, and thus provide high quality neighbourhoods for various algorithms.
We have applied a modi�ed neighbourhood selection method to spectral clustering, seek-
ing improvement when the manifolds belonging to di�erent clusters are near or intersect
with each other. However, this type of neighbourhood selection could be used in any situ-
ation where higher quality edge connections are required.

We incorporated our proposed modi�cation into some recent spectral clustering algo-

43

rithms (Wang et al., 2011; Gong et al., 2012) and compared the performance of the mod-
i�cation against the original algorithms. In most cases we obtained improvements with
real-world benchmark image data sets.

During our experiments, we noticed that in some cases the modi�cation produces worse
performance. We have analysed this phenomenon, noting that a change in parameters can
often improve the situation.

44

Part II

Exploring geometric structures for
manifold data

45

Chapter 4

Action Recognition based on Principal
Geodesic Analysis

Note: Some portions of this chapter are taken from Fu et al. (2013).

In this chapter, we have investigated the use of geometric information for action recog-
nition. Previously, Lui et al. (2010) proposed to represent each video sequence as a data
point in some special manifold space and predict new video sequences by a nearest neigh-
bour classi�er. The computation required to label a query video is proportional to the size
of the training data set, since we have to calculate the distances between the query video
and all of the videos in the training data set. The high dimension of the manifold also
makes the distance computation time consuming. This motivates us to explore geometric
information for the recognition problem. Our approach for addressing this problem is to
extract low dimensional subspace information for each class of the training videos, and
then this information is used to label the query videos. Thus, the computation for labelling
new video sequences depends on the number of classes rather than the size of the training
data set.

4.1 Introduction

Action recognition in video sequences is an active research topic in computer vision. Its
applications include surveillance system (Danafar and Gheissari, 2007), action based video
annotation and retrieval (Poppe, 2010), and gesture-based human computer interfaces (Ag-
garwal and Ryoo, 2011). Fig. 4.1 presents some video sequences from the Cambridge Hand
Gesture data set (Kim, Wong, and Cipolla, 2007), which consists of 9 gesture classes based
on 3 di�erent hand shapes (Flat, Spread and V-shape) and 3 di�erent motions (Leftward,

46

Rightward and Contract).

Fig. 4.1. Example pictures in the Cambridge Hand-Gesture data set. Each row shows
some exemplar pictures from one video sequence. Here we show all of the 9 hand
gestures: Flat/Leftward, Flat/Rightward, Flat/Contract, Spread/Leftward, Spread/Rightward,
Spread/Contract, V-shape/Leftward, V-shape/Rightward and V-shape/Contract in each row re-
spectively.

A key aspect of the problem is how to represent the video sequences and we brie�y re-
view three common methods: optical �ow methods, interest-point methods and geometrical-
structure methods. Efros, Berg, Mori, and Malik (2003) proposed a motion descriptor which
is based on optical �ow measurements of the video sequences, and then used a nearest
neighbour algorithm for classi�cation. Chaudhry et al. (2009) used the histogram of ori-
ented optical �ow (HOOF), which is scale and direction invariant, to represent each frame

47

in the video sequences. Lin et al. (2009) proposed a shape-motion descriptor that is the
concatenation of both optical �ow information and shape information obtained either by
silhouettes or the histogram of oriented gradients (HOG). Interest point methods include
the work of Laptev and Lindeberg (2003) who generalised the Harris corner detector from
2D to 3D space, and proposed to extract space-time interest points (STIP) as 3D corners in
the spatial-temporal video sequences.

The focus of this work is geometrical-structure methods which typically consider a
video sequence as a point on a nonlinear manifold (Lui, 2012c). Kim et al. (2007) repre-
sented the video sequence as a 3D tensor, and introduced a canonical correlation analysis
technique to measure the similarity between two video sequences. In two papers, Turaga
et al. represented an action video as a point on a Grassmannian manifold and estimated a
class-speci�c Gaussian distribution on this manifold from training examples (Turaga et al.,
2008, 2011). Classi�cation is then made by assigning an example video to the most likely
pre-learned class. Lui et al. (2010) proposed to view a video sequence as a point in a prod-
uct space. They use the high order singular value decomposition (HOSVD) (De Lathauwer,
De Moor, and Vandewalle, 2000) to factorise the tensor into a data point in the product of
Grassmannian manifolds. In this way, the gesture recognition problem is changed to �nd
the nearest point on the product space. In other papers, Lui et al. furthered the idea of
action recognition in product spaces by using the tangent bundle structure and a nonlinear
least squares regression framework respectively (Lui and Beveridge, 2011; Lui, 2012b).

In this work, noting that the dimension of Grassmannian manifolds is very high in
Turaga’s work (Turaga et al., 2011) and in Lui’s work (Lui, 2012d), we use principal geodesic
analysis (PGA) (Fletcher, Lu, Pizer, and Joshi, 2004) on the Grassmannian manifold to reduce
that dimensionality. In contrast to Turaga et al. (2011) who estimated the Gaussian distri-
bution in high dimensions directly, our approach uses a low dimensional approximation of
the data distribution. Lui (2012d) also exploited a low dimensional manifold structure, but it
has a much higher computational complexity than our proposed method. We will compare
our approach and the algorithm in Lui (2012d) in Section 4.3.

In Section 4.2, we introduce the necessary background for the proposed action recog-
nition method, including details on HOSVD, computations on the Grassmannian manifold,
the previous works on product space, and PGA on Grassmannian manifolds. In Section 4.3,
we describe the proposed action recognition algorithm based on PGA. In Section 4.4, we
test the proposed algorithm on several benchmark action data sets, and compare its perfor-
mance with other action recognition algorithms. In Section 4.5, we conclude this chapter.

48

4.2 Background

4.2.1 High order singular value decomposition

The high order singular value decomposition (HOSVD) (De Lathauwer et al., 2000) is a gen-
eralisation of singular value decomposition (SVD). For a 3D tensor T with size n1×n2×n3,
its HOSVD is represented as:

T = S ×1 V
1 ×2 V

2 ×3 V
3 (4.1)

where S ∈ Rn1×n2×n3 is the core tensor, V i is the orthogonal matrix which spans the
row space of T unfolded along dimension i, and ×i is the tensor i-mode multiplication.
The tensor unfolding operation converts a tensor into a matrix by using one dimension
as the rows and stacking all other dimensions into the columns of the unfolded matrix.
Fig. 4.2 shows an example of the unfolding along di�erent dimensions. We use di�erent
colours to di�erentiate the unfolding in di�erent directions. Note that the �attened tensor
is a 2D matrix. The matrix V i is obtained by the SVD of the ith unfolding. The n-mode
multiplication between a tensor T ∈ Rn1×n2×···×nK and a 2D matrixM ∈ RJ1×nk is de�ned
by:

(T ×nM)i1i2···in−1j1in+1···iK =
In∑
in=1

Ti1i2···in−1inin+1···iKMj1in . (4.2)

From the de�nition of n-mode multiplication, we can see that it is actually the matrix mul-
tiplication along the nth dimension of T by M . Finally, the core tensor is calculated by:

S = T ×1 (V 1)′ ×2 (V 2)′ ×3 (V 3)′. (4.3)

4.2.2 Distances on Grassmannian manifold

In Section 2.2.2, we have seen that the geodesic distance between two data points on a
Grassmannian manifold can be calculated by Equation (2.13). Actually, this distance com-
putation is based on the assumption that the Grassmannian manifold is equivalent to a quo-
tient manifold (RD×d

∗ /∼) and the canonical metric is used. In addition, there are alternative
ways to view the Grassmannian manifold. For example, any data point [X] ∈ Gr(d,D) can
be viewed as a data point XX ′ inRD×D, i.e., viewing Gr(d,D) as a subset ofRD×D. With
di�erent embeddings as well as di�erent metrics, we have di�erent ways to de�ne the dis-
tances between any two data points in the Grassmannian manifold.

49

Fig. 4.2. Three ways to �atten a 3D tensor T . The tensor is partitioned into columns along
the ith dimension, and then the columns are aligned into a 2D matrix which is used to
generate V i in the HOSVD of T .

The calculation of di�erent distances between two points on the Grassmannian man-
ifold has an intimate relationship with the concept of principal angles which is a gener-
alisation of angle information to high dimensions. Suppose S1, S2 are two subspaces. Let
r = min{dim(S1), dim(S2)} be the smaller of these two dimensions, then the principal
angles between S1 and S2, θ1, θ2, · · · , θr satisfying 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr, are determined
by the equations:

cos(θk) = max
uk∈S1

max
vk∈S2

u′kvk

s.t. u′kuk = v′kvk = 1, i = 1, 2, · · · , k − 1

u′kui = v′kvi = 0, i = 1, 2, · · · , k − 1.

(4.4)

Taking the chordal distance (Conway, Hardin, and Sloane, 1996; Turaga et al., 2011) as an
example, the distance between [X] and [Y] is de�ned as:

d([X], [Y]) = || sin θ||2 (4.5)

50

where θ = [θ1, θ2, · · · , θr] is the vector of principal angles between the two linear subspaces
spanned by the columns of X, Y respectively, and sin is applied component-wise.

4.2.3 Gesture recognition based on a product space

A video sequence can be naturally represented as a 3D tensor A. Each frame is viewed as
a 2D matrix, and frames are stacked into a 3D matrix (Fig. 4.3). Lui et al. (2010) proposed
that the 3D tensor representation of an action video can be viewed as a point in a product
manifold (a product of Grassmannian manifolds) by taking HOSVD of this tensor.

Fig. 4.3. Representing a video sequence as a 3D Tensor. Each frame is converted into a 2D
grayscale matrix, and the frames are stacked into a 3D matrix.

For a given video tensor, A, its HOSVD is

A = S ×1 V
1 ×2 V

2 ×3 V
3. (4.6)

From the de�nition of HOSVD, Vi can be viewed as a data point in Grassmannian manifold
Gri. Thus, the tensor A can be viewed as a point in the product space of Gr1×Gr2×Gr3.
As an example, suppose a video sequence is represented as a 3D tensorAwith size 20×20×
32. For a 3D tensor there are 3 possible unfolding, hence V 1, V 2 have dimension 20× 640,
and V 3 has dimension 32× 400 in this case. This video sequence can be viewed as a point
in the product space of Gr1(20, 640)×Gr2(20, 640)×Gr3(32, 400).

Fig. 4.4 and Fig. 4.5 show two examples of such representations in the manifold space.
The two video sequences are from the Cambridge Hand Gesture data set (Kim et al., 2007).
For each video sequence, each frame is resized to 64 × 64 pixels and 32 frames are used.
In order to have a better visualisation, we approximate the HOSVD of A by rank 3, i.e., the
three columns, which correspond to the largest eigenvalues, are used in V i (i = 1, 2, 3).

51

Fig. 4.4. Visualisation of a Flat-Leftward video sequence in the manifold space
Gr1×Gr2×Gr3. Each row shows one data point in the corresponding Grassmannian man-
ifold Gri. Here the subspace is represented by one of its basis sets, i.e., three mutual unit
orthogonal vectors, and then each vector is reshaped into 2D pictures.

Each row in the �gure corresponds to the three columns from the same V i. Since these
three columns are a set of unit basis for the subspace spanned by unfolding a video tensor,
the ith row corresponds to one data point in the Grassmannian manifold Gri. Besides, we
can see that the �rst row is consistent with the common sense of the motion in a video
sequence since it corresponds to the three components of the PCA decomposition of the
video sequence. Because the video is not �attened along the time axis, the second and
third row do not show the direct connection with the motion information, but, from the
comparison between Fig. 4.4 and Fig. 4.5, we can see that the pattern for di�erent motions is

52

Fig. 4.5. Visualisation of a V-shape-Contract video sequence in the manifold space
Gr1×Gr2×Gr3. Each row shows one data point in the corresponding Grassmannian man-
ifold Gri. Here the subspace is represented by one of its basis sets, i.e., three mutual unit
orthogonal vectors, and then each vector is reshaped into 2D pictures.

di�erent. This means that the motion information is encoded into the subspace or the data
point in Gri. Thus, each data point in the Gri captures an aspect of the motion information
of the video sequence.

Lui et al. (2010) proposed a novel action recognition algorithm by using the geometric
structure of the video sequences. They use the chordal distance to calculate the distances
between the query video and video sequences in the training data set. The query video is
predicted by the nearest neighbour classi�er, i.e., it is predicted to have the same label as

53

Algorithm 3 Action Classi�cation on Product Manifolds (Lui et al., 2010)
Input: N training videos A1, A2, · · · , AN , one query video Aquery
Output: Label information for the query video Aquery

1: For each training video Ai, use the HOSVD technique, to compute V 1
i , V

2
i , V

3
i .

2: Represent the query video Aquery as V 1
query × V 2

query × V 3
query.

3: The distance between Ai and Aquery is

d(Ai, Aquery) =

√√√√ 3∑
j=1

d2
g(V

j
i , V

j
query)

where dg(·, ·) is the chordal distance on the Grassmannian manifold (Equation (4.5)).
4: Assign the label of video Aquery using NN-Classi�er, i.e., the query video has the same

label as its nearest neighbour video.

its nearest neighbour point. The whole process is summarised in Algorithm 3
Later, Lui et al. furthered the idea of the algorithm by incorporating the tangent bun-

dle structure, i.e., Equation (2.13) is used for calculating distances between the query video
and each video sequence in the training data set, of the Grassmannian manifold (Lui and
Beveridge, 2011; Lui, 2012b) and introducing the least squares regression framework on the
Grassmannian manifold (Lui, 2012a,d). The product space based recognition algorithms
have several advantages, for example, they only use the raw pixels of the video sequences,
and they have high recognition accuracy by utilising the geometrical structure of the Grass-
mannian manifold. On the other hand, as discussed in O’Hara (2013), the product space
based algorithms have scalability limitations since these algorithms either have to calcu-
late the distances between all of the training examples and the query video or have to do
many iterations in each test. Therefore, they have a high computational cost when the
number of training examples is large.

4.2.4 Principal geodesic analysis on a manifold space

Principal geodesic analysis (PGA) on nonlinear manifolds has been discussed in Fletcher
et al. (2004). The main idea of PGA is to generalise the concepts of principal component
analysis (PCA) to nonlinear manifolds. The general framework for PGA is formulated in
Algorithm 4 where the operations exp and log are the exponential and logarithmic maps
respectively. The key point of the generalisation of PCA to nonlinear manifolds is to make
use of the tangent space by computing a point x̄ on the manifold M which represents

54

the mean of the data (in some sense) and then projecting all of the data points onto the
tangent space Tx̄M. The mean of a data set in a manifold space is de�ned to minimise the
optimisation objective:

C(x) =
1

2N

N∑
i=1

d(xi, x)2. (4.7)

Denote x̄ as the current estimation of the mean. The gradients of C(x) at x̄ is the average
of the data points when they are mapped to the tangent space Tx̄M by the logarithmic map
(Karcher, 1977), i.e.,

∇C(x̄) = − 1

N

N∑
i=1

logx̄ xi. (4.8)

Thus, the mean x̄ is updated with expx̄(
τ
N

∑N
i=1 logx̄ xi) where τ is the step length of the

optimisation. For Grassmannian manifold, the logarithmic map and the exponential map
are calculated by Equation (2.12) and Equation (2.11) respectively. As discussed in Fletcher
et al. (2004), we �x the τ = 1 in our experiments. After calculating the covariance of the
projected points on this tangent space, we follow the usual PCA procedure by calculating
the corresponding eigenvectors and eigenvalues.

Algorithm 4 Principal Geodesic Analysis (Fletcher et al., 2004)
Input: N data points x1, x2, · · · , xN ∈ Rn

Output: Principal directions v1, v2, · · · , vk ∈ Tx̄M, where x̄ is the mean of the data
points on the same manifold.

1: initialize the mean x̄ = x1 of the data points
2: do

3: ∇C(x̄) = − 1
N

∑N
i=1 logx̄ xi

4: x̄← expx̄(−τ∇C(x̄))

5: while ||∇C(x̄)|| > ε

6: Project the data points into the tangent space of Tx̄M by yi = logx̄ xi, i = 1, 2, · · · , N
7: Calculate the covariance matrix Cov = 1

N

∑N
i=1 yiy

′
i

8: Calculate the eigenvectors and eigenvalues of Cov.
9: Return eigenvectors v1, v2, · · · , vk which correspond to the leading k eigenvalues.

55

4.3 Algorithm

4.3.1 Motivation

The Grassmannian manifolds, which are used to represent human actions in Liu’s method,
tend to have a very high dimension. The dimension of the Grassmannian manifold Gr(k, n)

is (n−k)k. As an example, the dimension of the manifold Gr(32, 400) is (400−32)×32 =

11776. With the assumption that real data points tend to have hidden low dimensional
structure, in this chapter we try to exploit this low dimensional structure in nonlinear man-
ifolds in order to improve scalability and produce an e�ective algorithm for video-based
recognition algorithms.

We are interested in investigating whether the low dimensional information extracted
by PGA can be used for labelling the video sequences. The �rst step of PGA is to �nd the
mean of the data points in the manifold. In Fig. 4.6 and Fig. 4.7, we have visualised means
of the two video classes from Cambridge Hand Gesture data set (Kim et al., 2007). We use
the Flat-Leftward and V-shape-Contract classes from Set 5, and each of them consists of 20
video sequences. For better visualisation, we use a three dimensional subspace to represent
each component of the product manifold. The mean of each class is calculated iteratively
(Line 2 – Line 5 in Algorithm 4).

Compared to Fig. 4.4 and Fig. 4.5, which show speci�c two video sequences, Fig. 4.6
and Fig. 4.7 present the information summarised from the same video classes. From the
�gures, we can see that the mean captures the motion information of the video class, and
the means for di�erent classes are distinct with each other. Due to the similarity between
the mean and the original representation of the video sequence, we speculate that all of the
data points between them have similar motion information, i.e., the low dimensional space
contains the information of some speci�c action class. Thus the subspace information for
each video class can be used to label the query video sequences.

4.3.2 Algorithm

A visualisation of our approach is shown in Fig. 4.8. The top picture shows the o�ine train-
ing stage. For each class, we use Algorithm 4 to compute the mean, covariance structure,
and a low-dimensional approximation of the class. The bottom picture shows the online
testing stage. We compare the distance of the query data point to the extracted subspace
of each class. The whole process is summarised in Algorithm 5. The �rst task can be cal-

56

Fig. 4.6. Visualisation of the mean of the Flat-Leftward video class in the manifold space
Gr1×Gr2×Gr3. We use 20 video sequences from Set 5 in Cambridge Hand Gesture data
set. Each row shows the the data in the corresponding Grassmannian manifold Gri. Here
the subspace is represented by one of its basis set, i.e., three mutual unit orthogonal vectors,
and then each vector is reshaped into 2D pictures. Compared to the speci�c video sequence
from the same video class, as it is shown in Fig. 4.4, the mean of the action class captures
the motion information of this class since the pattern in corresponding rows is similar.

culated o�ine, and only needs to be run once for the training examples. The second task
is computed online, and in the testing stage, we only need to compare the distance of the
query data to the information extracted in the o�ine stage.

One of the advantages of this approach is that we can extract the classi�cation infor-
mation based on the training examples o�ine, and for testing the query videos, we classify

57

Fig. 4.7. Visualisation of the mean of the V-shape-Contract video class in the manifold space
Gr1×Gr2×Gr3. We use 20 video sequences from Set 5 in Cambridge Hand Gesture data
set. Each row shows the the data in the corresponding Grassmannian manifold Gri. Here
the subspace is represented by one of its basis set, i.e., three mutual unit orthogonal vectors,
and then each vector is reshaped into 2D pictures. Compared to the speci�c video sequence
from the same video class, as it is shown in Fig. 4.5, the mean of the action class captures
the motion information of this class since the pattern in corresponding rows is similar.

the query videos by using the extracted information rather than calculating the distance
to each training example. Hence, the online calculating time is independent of the num-
ber of training examples, and linear in the number of classes and this makes the algorithm

58

Fig. 4.8. Visualisation of the proposed method. The top picture displays the o�ine training
stage. For each action class, the mean x̄ of data points from this classed is located and then
each data point is mapped to tangent space Tx̄M by logarithmic map. The subspace of
the data points in Tx̄M is viewed as the geometric information of this action class. The
bottom picture shows the online testing stage. For each action class, the query data point
is mapped into the corresponding tangent space and its distance to the subspace extract in
o�ine training stage is viewed as its distance to this action class.

scalable to large data sets.
The above algorithm utilises the appropriate tangent space structure, and then investi-

gates the low dimensional subspace structure of the data distribution, i.e., we model a least
squares regression on the tangent space. This idea shares some similarity with the work in
(Lui, 2012d) and (Lui, 2012a), where non-linear least squares regression on a Grassmannian
manifold was proposed. The main di�erence between these two approaches is that since
the Grassmannian manifold is a non-linear space, the work in (Lui, 2012d) and (Lui, 2012a)

59

Algorithm 5 Action Classi�cation based on Principal Geodesic Analysis
Input: N training videos A1, A2, · · · , AN , one query video Aquery, suppose the label
of the training video Ai belongs to {1, 2, · · · , C}.
Output: Label information for the query video Aquery.

1: For each class, k, use Algorithm 4 to compute the intrinsic means Ā1
k, Ā

2
k, Ā

3
k and use

PCA to �nd the low dimensional subspaces S1
k , S

2
k , S

3
k for the points of the class in the

tangent spaces TĀ1
k
, TĀ2

k
, TĀ3

k
of the three means respectively.

2: For the query video Aquery, use HOSVD technique to compute V 1
query, V

2
query, V

3
query.

3: for k = 1 to C do

4: Project each V j
query, j ∈ {1, 2, 3}, to the tangent space TĀj

k
, and calculate its distance

to the subspace Sjk, denote the distance as dj(k,Aquery).
5: end for

6:

LabelAquery = arg min
k=1...C

√√√√ 3∑
j=1

(
dj(k,Aquery)

)2

developed a kernel version of the least squares regression on the manifold directly. Our
approach, by contrast, is based on a linear least squares regression by projecting the data
to an appropriate tangent space. In addition, for classi�cation of the query video sequence,
the algorithm in (Lui, 2012d) and (Lui, 2012a) needs to do a weighted Karcher mean cal-
culation, which is computationally expensive, for each query example. However, in our
approach, the Karcher mean calculation is done o�ine, and we only need to test the query
against each class of training examples. Thus the online computation of our approach is
independent of the number of training examples.

In our experiments, we represent each video by a 20× 20× 32 or 32× 32× 64 tensor
as commonly used in previous work (Lui, 2012b,d; O’Hara, 2013). This is mainly due to
computational complexity considerations since the dimensionality of these representations
are already 36,576 and 193,464 respectively.

As for the video representation step, take the tensor A with size 20 × 20 × 32 as an
example. The action region is located by manual cropping or human body detection tech-
niques in each frame, and then the action region is resized to a 20×20 pixel size. Finally, we
select the middle 32 frames of the video sequence or resize all of the frames to size 32, such
as by interpolation techniques or sampling the frames uniformly. The steps of preparing a
video tensor are visualised in Fig .4.9. We also have to decide the dimension of the linear
subspace Si in the tangent space. For the experiments we have done in Section 4.4, we set

60

the dimension of Si to be the same as the number of training examples in the corresponding
class. This is because the number of training examples from each class in our experiments
is much smaller than the dimension of the tangent space. In practice, when we have many
training examples in each class, we suggest to set a threshold for the maximum dimension
of the subspace.

Fig. 4.9. Visualisation of preparing a video tensor A. The left picture shows a sequence of
video frames. The �rst step is to locate the action regions. The frames, which are related
to the gesture actions, are distinguished with yellow colour. The middle picture shows the
extracted gesture action regions. Depending on di�erent scenarios, the whole frame or
only the action region is used. Finally, the 3D matrix, which consists of the pixel values, is
converted to a video tensor A with �xed size.

For the implementation of the proposed approach, we need to calculate the exponential
map and the logarithmic map multiple times. Since each video sequence is represented by
the product of Grassmannian spaces, the exponential map and the logarithmic map in the
product space can be calculated for each component and their product gives the �nal result
(Lui, 2012b). Since each component of the product space is a Grassmannian manifold, the
exponential map and the logarithmic map have analytic expressions (Equation (2.11) and
Equation(2.12)).

For calculating the logarithm (Equation (2.12)), it is computationally expensive to cal-
culate the orthogonal complement X⊥ of X ∈ RD×d, where D and d are the dimension of
representative of the data points in Grassmannian manifold and they are �xed in the video
representation step with the relationship D � d in general, and X satis�es X ′X = Id.
Here, we use the implementation suggested in Gallivan, Srivastava, Liu, and Dooren (2003).

We �nd a rotation G for the column vectors of X , s.t. XG =

(
L

X02G

)
, where L ∈ Rd×d

61

is a lower triangular matrix with negative diagonal elements, and X is partitioned by

X =

(
X01

X02

)
. Then the orthogonal complement O of X is calculated by

O = In −

(
L− Id
X02G

)
(I − L)−1(L′ − Id G′X ′02). (4.9)

In our implementation, the rotation G is obtained by calculating the QR decomposition of
X01 which takesO(d3) steps. SupposeX01 = QR, whereQ ∈ SO(d) = {A ∈ Rd×d|A′A =

I} andR is an upper triangular matrix, we getG by �ipping the columns ofQ according to
the sign of the diagonal element of R. The computation of the orthogonal complement O
also takes O(d3) time since we have to calculate the inverse of one matrix with size d× d.
Therefore the overall computation of calculating the orthogonal complement O is O(d3).

4.4 Experiments

We compared the proposed method with previous action recognition algorithms (Lui et al.,
2010; Lui and Beveridge, 2011) on three action data sets: the Cambridge Hand Gesture data
set (Kim et al., 2007), the UMD Keck Body Gesture data set (Lin et al., 2009) and the KTH
human action data set (Schuldt, Laptev, and Caputo, 2004).

4.4.1 Cambridge Hand Gesture data set

There are 900 image sequences in Cambridge Hand Gesture data set (Kim et al., 2007) and
each gesture is displayed by 2 people under 5 di�erent illumination conditions with 10
repetitions. This data set has a large intra-class variation in spatial and temporal alignment
since each image sequence in this data set was recorded by a �xed camera with isolated
gestures in space and time.

In this chapter, we follow the same data preprocessing steps as Lui et al. (2010), Lui
(2012b) and Lui (2012d). For each image sequence, we choose the middle 32 pictures, and
then resize each image into size 20× 20. Therefore, each gesture video is represented by a
3D tensor with size 20× 20× 32.

For this data set, we test the related algorithms with various numbers of training exam-
ples, and report the recognition accuracy (Fig. 4.10). The number of training examples for
each class is up to 80. Since there are at most 20 video sequences for each class in each illu-
mination condition, we use set 1 as testing data set, and the training examples are sampled
from the following 4 sets. The accuracy results in Fig. 4.10 is averaged over 10 repetitions,

62

and three methods use the same training examples in each repetition. When the size of the
training set is small, the standard deviation of the recognition accuracy tends to be larger
due to random sampling e�ects. When all of the video sequences are used, the standard de-
viation is 0 since the training data are always the same in each repetition. From this �gure,
we can see that the proposed approach has almost the same recognition accuracy as the
algorithms proposed in Lui and Beveridge (2011) and Lui et al. (2010), and it has the highest
recognition accuracy in 8 of 16 scenarios. When the size of the training examples is large
enough, the algorithm in Lui and Beveridge (2011) has relatively better performance since
the training examples in NN classi�er can fully capture the action class’s distribution.

In Fig. 4.11, we show the average computational time for each query. The algorithms
are implemented in Matlab R2013b on an iMac with a 3.2GHz quad-core Intel Core i5 pro-
cessor. In our implementation, the proposed method is the fastest in the testing stage when
the number of training examples is large. Although the Matlab code is not optimised in our
implementation, Fig. 4.11 shows that the proposed method has almost the same computa-
tion time regardless of the number of training examples. The average computation time of
the algorithm in Lui and Beveridge (2011) and the algorithm in Lui et al. (2010) is propor-
tional to the number of total training examples, whereas the average computation time of
our proposed approach is proportional to the number of classes of the training examples.

Fig. 4.10. Average recognition accuracy for labelling each query video with various num-
bers of training examples in each class. Each experiment repeats 10 times. The standard
deviations are shown for the corresponding bars.

63

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.3

0.6

0.9

1.2

1.5

Number of examples / class

T
im

e
 (

s
e
c
o
n
d
s
)

Algorithm in Lui et al. (2010)

Proposed

Fig. 4.11. Average computational time for labelling each query video with various num-
bers of training examples in each class. The x axis indicates the number of examples in
each class, and the y axis shows the corresponding average computational time for each
algorithm. We have not shown the average computational time of the algorithm in Lui and
Beveridge (2011), which ranges from 1–15 seconds and also shows the linear relationship
between the time and the number of training examples in each class.

4.4.2 UMD Keck Gesture data set

The UMD Keck Gesture data set (Lin et al., 2009) is a collection of 14 di�erent gestures,
which are a subset of military signals, including the gestures for Turn left, Turn right, At-
tention left, Attention right, Attention both, Stop left, Stop right, Stop both, Flap, Start, Go
back, Close distance, Speed up and Come near. These gestures are displayed by three people,
and the person repeats the same gesture three times in each video sequence. The data set
is recorded by a colour camera with 640×480 resolution. According to the background in-
formation, the data set is divided into two subsets: video sequences with static background
and video sequences with dynamic background which are recorded by a moving camera or
other objects moving around. In total, there are 3 × 3 × 14 = 126 video sequences with
static background, and 4× 3× 14 = 168 sequences with dynamic background.

For the preprocessing of this data set, we have to segment the video sequences by each

64

Fig. 4.12. Example video sequences in UMD Keck Gesture data set. Here we show 4 military
signals: Turn left, Come near, Attention right and Start. Each of them occupies two rows
respectively.

independent action, which has already been provided as a part of the data set, and localise
the action region in each frame. Lui has shared with us the preprocessed data of the 126
sequences with static background. Each of these action sequences have square bounding
boxes that we resized to size 32×32×64. For the 168 sequences with dynamic background,
we manually select the bounding box for the �rst frame in each video sequence, and the
following position of the bounding boxes in each frame is tracked by the Real-Time Com-
pressive Tracking algorithm (Zhang, Zhang, and Yang, 2012). After extracting the action
region, we resize the 3D tensor into size 32× 32× 64.

We test the performance of the proposed method according to the testing protocol in
Jiang, Lin, and Davis (2012) and Lui (2012b). The �rst experiment is conducted on 126 video
sequences with static background. We use the leave-one-out testing method where we se-
lect the gestures displayed by one person as testing examples, and use the remaining video

65

sequences as training examples. The performance of di�erent algorithms is shown in Table
4.1. In this data set, the proposed method has the highest recognition accuracy. The sec-
ond experiment uses all of the videos with static background as training data points, and
the video sequences with dynamic background are used as testing data. The recognition
accuracy of the proposed algorithm achieves 93.4% which is again higher than the recog-
nition accuracy of the other two algorithms (both are 92.8%). In both experiments, the
proposed method takes similar amount of time (0.343 seconds and 0.350 seconds) to label
each video sequence. The Algorithm in Lui et al. (2010) and Algorithm in Lui and Beveridge
(2011), which are based on nearest neighbour classi�er, take longer time to label the video
sequences in the second experiment (0.607 to 0.9055 in Algorithm in Lui et al. (2010) and
18.014 to 27.068 in Algorithm in Lui and Beveridge (2011)).

The confusion maps of the algorithms on both static and dynamic background are
shown in Fig. 4.13. The confusion map details the prediction results including the infor-
mation of mispredictions. From the maps, we can see that the Stop both class is relatively
challenge across all of the algorithms. One interesting phenomenon is that although the ac-
curacy on the Stop both class is 89% for these three algorithms, the pattern of misprediction
is di�erent. For example, the proposed method predicts all of the misclassi�ed video se-
quences as Come near, whereas the other two method predict them to be Stop left and Speed

up respectively. In addition to the improved overall accuracy of the proposed method, we
also notice that the proposed method has the best performance for each action class.

Person 1 Person 2 Person 3
Algorithm in Lui et al. (2010) 95.23% 97.61% 100%

Algorithm in Lui and Beveridge (2011) 90.47% 97.61% 95.23%

Proposed 97.61% 100% 100%

Tab. 4.1. Recognition results for video sequences with static background in Keck gesture
data set.

4.4.3 KTH Human Action data set

The KTH Human Action data set (Schuldt et al., 2004) is a benchmark data set for human
activity recognition. It has six di�erent human activities including Boxing, Hand clapping,
Hand waving, Jogging, Running and Walking. Each action is performed by 25 people in 4

66

Fig. 4.13. Confusion matrix for Keck data set. The �rst column shows the recognition
accuracy results for static background data set, and the second column shows the results
for dynamic background data set. The �rst row is the classi�cation accuracy results of
proposed method. The second and the third rows are the results from Algorithm in Lui
et al. (2010) and Algorithm in Lui and Beveridge (2011) respectively.

67

Fig. 4.14. Screenshots in the KTH Human Action data set. Here we show six di�erent human
actions: Hand clapping, Hand waving, Running, Walking, Boxing, and Jogging in each row
correspondingly.

di�erent scenarios, including outdoors (Scene 1), outdoors with scale variation (Scene 2),
outdoors with di�erent clothes (Scene 3) and indoors (Scene 4). Some example frames are
shown in Fig. 4.14. We use 598 video sequences for training and testing (there are 600 videos
in this data set, and we noticed that one video is missing and one other could not be opened
in our downloaded data set).

The common protocol for the preprocessing of this data set is to segment the video
sequences into independent human activities and then extract the action region. The ac-
tion region extraction is often done by manually cropping or using human body detection
techniques (Kim and Cipolla, 2009). Lui shared with us their video sequences segmentation
information and the position of the bounding box. After extracting the action region, each
action is resized into a 3D tensor with size 20× 20× 32.

For this data set, we test the three algorithms using leave-one-out. Table 4.2 presents
the recognition accuracy of the three algorithms. Our proposed approach has similar per-

68

formance to the algorithms from Lui et al. (2010) and Lui and Beveridge (2011) except the
second scenario. This is possibly due to the fact that the videos in scene 2 are taken with
scale variation and we use the �xed space-time bounding box to capture the action region.
Compared to our approach, the algorithms in Lui et al. (2010) and Lui and Beveridge (2011)
classify the query video by calculating its distance to each training example which might
lead to a higher recognition accuracy. The confusion maps of the proposed method on these
four scenarios are shown in Fig. 4.15. From the confusion maps, we can see that the pre-
diction accuracy on scenario 1 is highest across all of the six action classes. Although the
accuracy is comparatively lower in scenarios 2, we notice that the prediction for the Run-

ning class is highest when compared to the results in other scenarios. This is possibly due
to the fact that Running is relatively una�ected by scale variations. For other action classes,
such as Boxing, Hand clapping, Hand waving and Walking, the scale variation deteriorates
the recognition accuracy due to the di�erent distributions of the training and testing data
sets. Besides, the confusion matrixes in Fig. 4.15 also show the relationship between di�er-
ent action classes. For example, across the four scenes, video sequences from Boxing class
are often classi�ed as Hand clapping class, while video sequences from Hand clapping class
are often classi�ed as Hand waving class.

For labelling each video sequence, the proposed method takes about 0.027 seconds,
while the Algorithm in Lui et al. (2010) and Algorithm in Lui and Beveridge (2011) take
0.297 and 3.669 seconds respectively.

Scene 1 Scene 2 Scene 3 Scene 4
Algorithm in Lui et al. (2010) 98.67% 98.00% 95.87% 97.33%

Algorithm in Lui and Beveridge (2011) 98.67% 98.00% 96.67% 98.67%

Proposed 99.33% 93.33% 95.33% 96.67%

Tab. 4.2. Recognition results of KTH action data set.

4.5 Summary

In this chapter, we have investigated the low dimensional structure of the geometrical rep-
resentation of the video sequences. This idea is motivated by the fact that the dimensional-
ity of the Grassmannian manifold used in practice is very high, and the action data points
tend to lie in a low dimensional space. The approach we proposed is based on the principal

69

Fig. 4.15. Confusion matrix of the proposed method on the KTH human action data set.
The �rst row shows that results on scenarios 1 and scenarios 2 respectively, and the second
row shows that results on scenarios 3 and scenarios 4 respectively.

geodesic analysis method. We apply this framework on the Grassmannian manifold, and
the query video is classi�ed based on the information obtained from PGA. We compare the
proposed method with previous algorithms based on the same geometrical assumptions.
The experimental results show that the proposed approach has comparable accuracy in ac-
tion recognition as previous work and, in contrast to previous similar methods, has a linear
computational complexity in the sense of the number of action classes regardless of the
number of training data points.

70

Part III

Exploring geometric structures for
hashing methods

71

Chapter 5

NOKMeans: Non-Orthogonal K-means
Hashing

Note: Some portions of this chapter are taken from Fu et al. (2014).

Hashing based approaches for approximate nearest neighbour search problems have an
intimate relationship with manifold learning since both aim to learn a set of data points
in another space. In this chapter, we give a brief introduction to hashing methods. We
introduce a new technique called NOKMeans, which is a generalisation of the quantisa-
tion error-based hashing methods such as ITQ (Gong and Lazebnik, 2011) and OKMeans

(Norouzi and Fleet, 2013). Our main contribution is to increase the encoding capability of
the hashing functions while, at the same time, inheriting the merits of the quantisation er-
ror based methods. We have conducted experiments on several large scale data sets, and
the performance of NOKMeans shows that it is superior in most cases to other state of the
art techniques.

5.1 Introduction

Finding nearest neighbour points is a computational task which arises frequently in com-
puter vision, information retrieval and machine learning. Naive search is infeasible for
massive real-word data sets since it takes linear time to retrieve the nearest point in the
data set. For low dimensional data, the nearest neighbour search problem can be addressed
by e�cient and e�ective tree based approaches such as KD-tree (Bentley, 1975) and R-tree
(Guttman, 1984). Due to the curse of dimensionality, when it comes to the high dimen-
sional scenario, tree based approaches deteriorate rapidly and can even become worse than
naive search (Weber et al., 1998). Recent years have witnessed a surge of interest in meth-

72

ods based on hashing which can return approximate nearest neighbour (ANN) data points.
Hashing techniques have been utilised in large scale medical image searching (Yu, Zhang,
Liu, Zhong, and Metaxas, 2013), image matching for 3D reconstruction (Cheng, Leng, Wu,
Cui, and Lu, 2014), collaborative �ltering for Recommender Systems (Shrivastava and Li,
2014) and approximating the SVM kernel (Mu, Hua, Fan, and Chang, 2014).

Locality sensitive hashing (LSH) (Indyk and Motwani, 1998) introduced the exploration
of hashing methods that encode the data into binary codes. In LSH, each binary code is
obtained by a projection matrix which is randomly generated. The randomness of the pro-
jection matrix guarantees that the similarity between data points is inherited into the binary
codes if su�ciently many bits are used to encode the data points. In recent investigations,
LSH has been used for the nearest neighbour search problem with the Lp norm (Datar, Im-
morlica, Indyk, and Mirrokni, 2004), the learned Mahalanobis metric (Jain, Kulis, and Grau-
man, 2008), the Reproducing kernel Hilbert space (Kulis and Grauman, 2009) and search
in the sense of maximum inner product (Shrivastava and Li, 2014). All of these algorithms
belong to the category of data independent hashing algorithms whose main feature is that
the binary codes are obtained from some random matrices. Although their performance is
guaranteed, in order to �nd the nearest neighbour points e�ectively, a large number of bits
are required which causes e�ciency and memory problems in practical systems.

Another category of hashing algorithms attempt to encode data points by utilising the
distribution information which is obtained from the training data set. Since the bits are
used e�ectively, compact binary codes obtained from data dependent methods often return
more satisfactory neighbour points. One of the seminal approaches in this vein is Spectral
Hashing (Weiss, Torralba, and Fergus, 2008), which calculates binary codes by embedding
the data points into Hamming space. The optimal embedding is determined by the follow-
ing characteristics: neighbourhood relationships should be preserved, the code should be
balanced (-1’s and 1’s should occur with roughly equal frequency), and bits should be pair-
wise independent. This hashing approach has been extensively developed in recent years
(Wang, Kumar, and Chang, 2010b; Liu, Wang, Kumar, and Chang, 2011; Liu, Mu, Kumar,
and Chang, 2014; Xu, Bu, Lin, Chen, He, and Cai, 2013). In some data sets, label informa-
tion is available. This motivates hashing approaches that utilise label information of the
data points. For example, if two data points have the same label, the similarity between
them can be assigned as 1, and −1 otherwise. In Supervised Hashing (Liu, Wang, Ji, Jiang,
and Chang, 2012), the objective function aims to learn binary vectors such that the cosine
similarity between them are the same as the similarities summarised from label informa-
tion. In minimal loss hashing (Norouzi and Blei, 2011), a similar similarity matrix is used to

73

construct a loss function, and the solution of the resulting optimisation problem is obtained
by solving a structural SVM problem.

Another approach to the design of binary codes is to minimise the quantisation error
between the binary codes and the original data points directly. Intuitively, reducing quanti-
sation error means that less information is lost during the encoding. Since these algorithms
use a binary encoding, the input space is divided into two pieces for each bit. Most hashing
algorithms address this kind of partition problem by learning a set of hyperplanes which can
be viewed either in the original space or in the Reproducing Kernel Hilbert space (RKHS).
Each data point is encoded by its relative position to these hyperplanes, −1 for one side of
the plane, 1 for the other. The left picture in Fig. 5.1 shows a 2D space partitioned by two hy-
perplanes. When the hyperplanes are mutually orthogonal, we can �nd a set of data points
(indexing centres) such that the partition of the space (Voronoi diagram) according to this
set coincides with the space partitioned by the hyperplanes. The hash code for the indexing
centres can be prede�ned since these points are chosen from the vertices of a hyper-cube
(Gong and Lazebnik, 2011) or hyper-cuboid (Norouzi and Fleet, 2013). The middle picture
in Fig. 5.1 shows such a set of indexing centres (red points). Thus the encoding process for
each data point can also be viewed as assigning to it the same binary code as its nearest
indexing centre. In ITQ (Gong and Lazebnik, 2011), the data points are �rst projected onto
the PCA directions, and then rotated in such a way that the total quantisation error of the
training data points is minimised. This quantisation error based approach has been further
extended to Kmeans Hashing (He, Wen, and Sun, 2013) and OKMeans (Norouzi and Fleet,
2013).

The focus of this chapter is to design a compact binary code based on minimising quan-
tisation error. We propose a novel hashing algorithm: Non-Orthogonal K-means (NOK-
Means). The essential idea of this algorithm is that increasing the freedom of the sepa-
rating hyperplanes can lead to a better binary code in the sense of retrieval performance.
We achieve this by relaxing the orthogonality constraints in Gong and Lazebnik (2011) and
Norouzi and Fleet (2013) to a near orthogonal assumption. One problem introduced by
this relaxation is that the explicit indexing centres cannot be found in the original feature
space any more. This is because for any given indexing centres, the space will be divided
into Voronoi cells if we index each data point by its nearest indexing centre. When the hy-
perplanes are not mutually orthogonal, it is impossible to �nd centre points such that the
hyperplanes are exactly the separating boundaries for the Voronoi diagram. We address this
problem by viewing the data points in a re-represented space where we can �nd speci�c

74

Fig. 5.1. Visualisation of di�erent encoding approaches. The left �gure shows two hyper-
planes in general position. The space is divided into four pieces. The binary code of a data
point in this space can be determined by its position relative to these hyperplanes. The
middle �gure shows that when the hyperplanes are mutually orthogonal, we can �nd a
set of indexing centres (red points) whose binary codes have been prede�ned. The binary
code of a point in this space can be determined by assigning it the same code as its nearest
indexing centre. The right �gure is a visualisation of our proposed method. The purple
points are the implicit indexing centres which are viewed in the re-represented space.

indexing centres. After encoding each data point into its nearest indexing centre, the hy-
perplanes are exactly the separating boundary of the Voronoi diagram. In the right picture
in Fig. 5.1, the purple points are viewed as a set of indexing points after re-representation.

5.2 Background

5.2.1 Notation

Suppose we want to build a binary code index for the data set {x1, x2, · · · , xN}, xi ∈ RD.
Denote X ∈ RD×N as the data matrix where each column is a data point. The binary
code for this data set is denoted as B ∈ {−1, 1}d×N where each column corresponds to
a d bit binary code in Hamming space. The Hamming matrix of equal size to X whose
entries are ±1 according to the sign of the corresponding entry of X is denoted sign(X).
Assuming the data set is already centred and the hyperplanes pass through the origin, each
hyperplane can be �xed by its normal direction. Therefore, the d hyperplanes, which are
used to determine the binary code, can be speci�ed by a hyperplane matrix (projection
matrix) A ∈ RD×d where each column corresponds to one normal direction. Another view
of the space which is partitioned by the hyperplanes is that the space is divided into regions
(partitions) where the data points in the same region have the same binary code. We use 1

75

to represent an all ones column vector and I is the identity matrix. Denote k as the number
of true nearest neighbour points for each query and K as the maximum number of data
points retrieved in Hamming space.

5.2.2 Related work

When given a set of indexing centres, the encoding process shares some similarity with
the K-means clustering algorithm. Each data point is encoded into a binary code according
to its nearest indexing centre which behaves as a cluster centre in the K-means algorithm.
ITQ (Gong and Lazebnik, 2011) aims to �nd an optimal binary code in the sense of minimal
quantisation error. Speci�cally, the data points are preprocessed by centring and then pro-
jecting to a low dimensional space by PCA, and then solving an optimisation problem. The
main idea of the optimisation problem is to �nd a rotation R ∈ Rd×d in order to minimise
the quantisation error between the rotated data points and their corresponding indexing
centres. Suppose V ∈ Rd×N is the preprocessed data, and B ∈ {−1, 1}d×N is the encoding
binary matrix. The optimisation problem of ITQ is:

min J(R,B) = ||B −RV ||2F
s.t. R′R = I

B ∈ {−1, 1}d×N
(5.1)

If we combine the PCA projection matrix P and the �nal orthogonal matrix R together,
we can see that ITQ has the following features:

• It aims to �nd a set of mutually orthogonal hyperplanes;

• Its optimisation model is to �nd minimum quantisation error in the subspace obtained
from PCA;

• Its index centres are from the vertices of a rotated d-dimensional hyper-cube in the
PCA subspace.

The left picture in Fig. 5.2 shows a visualisation of ITQ. Two hyperplanes are used to par-
tition the data points. The red points are the corresponding indexing centres. The data
points in the space can be encoded either by their position relative to the hyperplanes or
by their nearest indexing centre.

OKMeans (Norouzi and Fleet, 2013) generalises ITQ by embedding the vertices of a d
dimensional hyper-cube in RD, then the vertices are rotated by R ∈ RD×d, scaled by
S ∈ Rd×d (S is a diagonal matrix) in the corresponding directions and translated byµ ∈ RD.

76

Thus the indexing centres can be viewed as points chosen from the vertices of a rectangular
hyper-cuboid. Finally, the optimisation objective is modelled as minimising the quantisa-
tion error which is formulated as:

min J(R, µ,B, S) = ||X − µ1′ −RSB||2F
s.t. R′R = I

B ∈ {−1, 1}d×N

µ ∈ RD

S ∈ Rd×d, Si,j = 0 if i 6= j ∈ {1, 2, · · · , d}

(5.2)

If we view µ ∈ RD as the ‘origin’ of the data points, the columns of the rotation matrix
behave as the normal directions of the corresponding hyperplanes, the regions of the data
points which have the same index are separated by these hyperplanes. A visualisation
of OKMeans is shown in the right picture of Fig. 5.2. From the visualisation of both ITQ

and OKMeans, we can see that both of the partitions from ITQ and OKMeans are divided
by mutually orthogonal hyperplanes, and the indexing centres of ITQ and OKMeans are
chosen from a unit hyper-cube and a rectangular hyper-cuboid respectively.

Fig. 5.2. Visualisation of data points encoded by ITQ and OKMeans. The black point is the
centre of the data points. The red points are the indexing centres. The indexing centres are
chosen from the vertices of a square (ITQ) and rectangle (OKMeans) respectively.

77

5.3 Algorithm

5.3.1 Motivation

As discussed above, the main idea of ITQ and OKMeans is to �nd a set of mutually orthog-
onal hyperplanes. The hyperplanes are used to partition the data points, thus we can index
each data point as a point in {−1, 1}d according to its relative position to the hyperplanes.
In this work, we investigate the situation when the orthogonality assumption used in ITQ

and OKMeans is relaxed. Speci�cally, we adopt the ‘near’ mutually orthogonal property
which is also used in Wang, Kumar, and Chang (2010a). One advantage of the relaxation
is that it will increase the representation capability of the hyperplanes. The quality of the
hash code is closely related to the position of the hyperplanes since the hyperplanes behave
as the separating boundary of di�erent index regions. Thus the �exibility of the position of
the hyperplanes can lead to smaller overall quantisation error. Furthermore, as discussed in
Wang et al. (2010a), the ‘near’ mutually orthogonal condition is favoured since the mutually
orthogonal condition has some practical problems even though it is an approximation to
the bit independent property. Therefore, to some degree, the near orthogonal constraint is
a trade o� between independence (Weiss et al., 2008) and representation capability.

Besides, the assumption of a ‘near’ mutual orthogonal condition is consistent with the
fact that the vectors in high dimensional space tend to ‘near’ mutual orthogonality with
each other as the dimension increases. Consider two D dimensional random vectors X =

(x1, x2, · · · , xD) andY = (y1, y2, · · · , yD) where each coordinate is independently sampled
from N (0, 1). The correlation between X and Y is de�ned as Cor(X, Y) = X′Y

||X||||Y || . It is
easy to verify that the expectation and variance of Cor(X, Y) is 0 and 1

D
respectively. Thus,

whenD is large, random vectors tend to have the ‘near’ mutual orthogonal property which
is one of the bene�cial aspects of the curse of dimensionality. In Fig. 5.3, we have generated
64 random vectors in R128 and R960, and show their correlations. The left �gure shows the
correlation of the random vectors in R128. From this �gure, we can see that most of the
correlations are between −0.2 and 0.2. When considering the higher dimensional space,
such as the correlation in R960 which is shown in the right picture, we noticed that the
overall correlations tend to be much smaller.

When the separating hyperplanes are orthogonal to each other, we can �nd appropriate
indexing centres in the original space. For example, if we view the red points in Fig. 5.2 as
indexing centres, and then index each data point according to its nearest indexing centre,
we will �nd that the region of di�erent index partitions is exactly the same as the space
partitioned by the hyperplanes. When the hyperplanes are not orthogonal, it is impossible

78

to �nd indexing centres in the original space; when given a set of data points as index-
ing centres, the resulting segmented space will have a general Voronoi diagram structure
and the hyperplanes will not coincide with the boundary diagram when the corresponding
hyperplanes are not orthogonal. The left picture of Fig. 5.4 shows the resulting Voronoi
cells for the indexing centres (purple points) in the original space. We can see that it is
impossible to �nd two hyperplanes to separate these cells.

10 20 30 40 50 60

10

20

30

40

50

60 −0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

10

20

30

40

50

60 −0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.3. Correlation of random vectors in R128 and R960 respectively. Each vector is ob-
tained by sampling each coordinate from independentN (0, 1) random variables, and then
normalising each vector to have unit norm. From the picture, we can see that most of the
correlations between the random vectors are small, and the overall correlations tend to be
smaller when the dimension of the vectors increases.

In this work, we view the indexing centres in a transformed space used to re-represent
the data points. In this way, if we index each data point by its nearest centre, the hy-
perplanes coincide with the boundaries of di�erent index regions. The intuitive idea is as
follows: suppose the hyperplanes are �xed, we can re-represent each data point by its rel-
ative distance to the hyperplanes. Fig. 5.5 shows one way to re-represent the data points.
There are three hyperplanes in the original space. After re-representation, the data point is
represented as a point in 3D space. In the new representation space, the vertices {−1, 1}d

can be viewed as the indexing centres. If we encode every data point as the binary code of
its nearest indexing centre, we can see that the hyperplanes are exactly the boundary of the
di�erent indexing regions. An example of partitioning with non-orthogonal hyperplanes
is shown in Fig. 5.4, the purple points can be viewed as the indexing centres in the new
representation space. One advantage of this view is that the hyperplanes can be viewed

79

Fig. 5.4. Visualisation of the Voronoi diagrams under di�erent views. The purple points
in the left picture are viewed as the indexing centres in the original space. The resulting
Voronoi cells can never be separated by two hyperplanes since the indexing centres are in
general position rather than from the vertices of a square or rectangle. The right picture
shows the resulting Voronoi cells when the purple points are viewed as the indexing centres
in the re-represented space.

as the boundary of the di�erent indexing regions. This re-representation trick allows us
to formulate the problem by minimising the quantisation error between data points and
indexing centres.

5.3.2 Formulation

When the orthogonal assumption is relaxed to near orthogonal, we propose the following
optimisation model to learn the hyperplanes which can be used to index the data points:

min J(A,B) = 1
2N
||A′X −B||2F + λ

4
||A′A− I||2F

s.t. A ∈ RD×d

B ∈ {−1, 1}d×N
(5.3)

In above optimisation model, the columns of A behave as the normal directions of the
hyperplanes, and B ∈ {−1, 1}d×N is the encoding matrix. When each column of A has
a unit norm, the resulting re-represented data points are represented using the distance
information of the data point to each hyperplane, i.e., each data point is represented by
a vector where each element corresponds to the signed distance between the data point
and one speci�c hyperplane. When the columns do not satisfy the unit norm property,
the new representation can be viewed as a scaling e�ect on the data points represented

80

Fig. 5.5. Visualisation of re-representing the data point. The original two dimensional space
is partitioned by three hyperplanes, and each data point is represented by its distance to
the hyperplanes. We can see that each indexing region corresponds to one octant (there
are 23 of them) in the right �gure.

by distance information. The �rst part in the objective function is used to minimise the
average quantisation error, the second part is used as a regulariser in order to maintain
the near orthogonal property, λ is the regularisation parameter and the fraction is kept for
convenience in further calculation.

For solving the above optimisation problem, we use alternating descent to �nd a locally
optimal solution:

Fix A it is easy to see that B = sign(A′X) is the optimal solution.

Fix B we use �rst order gradient descent to update the projection matrix A:

∂J(A,B)

∂A
=

1

N
X(X ′A−B) + λ(AA′ − I)A (5.4)

Therefore, A can be updated by A− γ ∂J(A,B)
∂A

. For the step length γ, we use a simple
line search strategy, i.e. start with γ = 1, if the updated A does not improve the cost
function, update the step length γ with sγ. The process is continued until the total
cost is reduced.

In all of the following experiments, the initialisation of A is obtained by the PCA pro-
jection times a random rotation matrix which is a common approach used in hashing algo-
rithms, and s is set to be 0.125. The backtracking line search process takes 10 to 20 iterations

81

Algorithm 6 Non-Orthogonal K-means
Input: N training data points x1, x2, · · · , xN , Imax is the maximum iteration for the
overall optimisation problem and Istep is the maximum iteration for �nding the step
length.
Output: The hyperplane matrix A ∈ RD×d.

1: Center the training data points, denote the centred data points as X ⊂ RD×N , and
initialising the hyperplane matrix A.

2: for i = 1 to Imax do
3: Update B:

B ← sign(XA).

4: Calculate the gradient direction by Equation (5.4).
5: Search the step length γ by backtracking line search with at most Istep iterations. If

the maximum number of step length search iterations is reached, stop training stage.
6: Update A by:

A← A− γ ∂J(A,B)

∂A
.

7: end for

to �nd the appropriate step length. In order to make it feasible to run the algorithm in a
reasonable amount of time so as to assess its output, we set the maximum iteration for line
search step as Istep = 50. When the maximum number of iterations is reached, we stop
the training stage since the projection is almost unchanged if we continue to update A by
a very small step length. Finally, the maximum iteration Imax for the alternative descent
method is set to 50 which is the same value used in ITQ and OKMeans.

5.3.3 Computational complexity

In each iteration, the time required to updateB isO(NDd). The projection matrixA is up-
dated in two steps. The �rst step is to calculate the gradient which takesO(ND2 +NDd).
Here O(ND2) is used for calculating XX ′. For establishing the step length, in each iter-
ation, we have to check the appropriateness of the current γ, this involves calculating the
objective function which takes O(NDd). Suppose the maximum iteration for the over-
all optimisation problem is Imax and the maximum iteration for �nding the step length is
Istep, thus the overall time required to update the hyperplane matrix A (Line 2 – Line 7) is
O(Imax(NDd+ND2 +NDd+ Istep(NDd))) = O(ImaxND

2 + ImaxIstepNDd). The time

82

required to calculate X ′X , which can be precalculated, is O(ND2). Therefore the overall
computing time in training stage isO(ND2 + ImaxIstepNDd) which takes more computa-
tion than ITQ and OKMeans (O(Imax(Nd

2 + d3) and (O(Imax(NDd+D3)) respectively).
During the training stage on our machine (implemented in MATLAB with single core),

NOKMeans takes about 2.820 seconds per iteration when N , D and d are set to 105, 128

and 64 respectively, while for the same setting, ITQ and OKMeans take 0.259 and 0.419
respectively. This slowdown, by a factor of about 10, is typical for parameter values of N ,
D and d usually encountered in real problems. Since the line search step requires the most
computation in the current implementation, the training stage can be sped up by choosing
an appropriate initial step length γ and backtracking parameter s or a faster line search
algorithm.

Finally, for encoding data and query points, it takes the same computational complexity
as most hashing based algorithms. Each data point takesO(Dd) time to compute the binary
code. For retrieving the K nearest neighbour points in Hamming distance, we use exhaus-
tive search in all of our experiments since the distance calculation is e�cient in Hamming
space and it is easy to �nd the nearest neighbour points due to the distance property which
only take values from {0, 1, 2, · · · , d}. To speed up this process, one can build a hash table
or use fast nearest neighbour searching designed for Hamming space (Norouzi, Punjani,
and Fleet, 2012).

5.3.4 Discussion

The proposed method shares some similarity with ITQ. For ITQ, the �nal projection matrix
is the PCA projection matrix P multiplied by the learned rotation matrix R, and, for the
proposed algorithm, the projection matrix is learned during the optimisation process di-
rectly. When the parameter λ is in�nite, the projection matrix A in NOKMeans shares the
orthogonal property, i.e. A′A = I . Nevertheless there are still some di�erences between
these two algorithms even as λ tends to in�nity. For example, the quantisation error in ITQ

is calculated in the PCA subspace, while the quantisation error in the proposed method is
calculated in the space determined by A which is learned during the optimisation process.

Compared to OKMeans, the proposed algorithm also utilises a rectangular hyper-cuboid
to some degree. When the parameter λ is positive, the learned projection matrix can be
decomposed into A = QS where each column in Q ∈ RD×d has a unit norm, and S

is a diagonal matrix which has a scaling e�ect in each direction. Notice that the overall
quantisation error ||AX−B||2F = |S|2||Q′X−S−1B||2F , thus our proposed method can be
viewed as re-representing each data point by its distance information to each hyperplane,

83

and then encoding the data point according to the indexing centres from the vertices of
a hyper-cuboid. This hyper-cuboid is obtained by scaling the unit hyper-cube by S−1 in
the corresponding directions. On the other hand, the S in the optimisation objective in
OKMeans is viewed as an independent variable. One advantage of modelling the scale e�ect
is that the resulting indexing centres will �t better to the data points in the sense of the
quantisation error, but it also introduces a distortion problem. For example, the Hamming
distance between neighbouring vertices is always 1, but their Euclidean distance is not �xed
due to the scale e�ect of the hyper-cuboid in di�erent directions. With the regularisation
parameter λ in our method, the scale value will be constrained to around 1, and therefore
the scale distortion is minimal.

5.4 Experiments

We evaluate the proposed hashing algorithm on four real data sets: SIFT1M (Jégou, Douze,
and Schmid, 2011), SIFT10M, SIFT1B (Jégou, Tavenard, Douze, and Amsaleg, 2011), GIST1M
(Jégou et al., 2011), and compare the performance of related algorithms: LSH (Indyk and
Motwani, 1998), Spectral Hashing (Weiss et al., 2008), ITQ (Gong and Lazebnik, 2011), OK-
Means (Norouzi and Fleet, 2013), on these data sets.

SIFT1M, SIFT1B, and GIST1M are three benchmark data sets which are used for test-
ing the performance of di�erent nearest neighbour searching algorithms. In SIFT1M and
SIFT1B, each data point is a 128D SIFT feature (Lowe, 2004) extracted from Flickr images
and INRIA Holidays images (Jégou, Douze, and Schmid, 2010). In GIST1M, each data point
is a 960D GIST feature (Oliva and Torralba, 2001) which is extracted from the tiny image
set (Torralba, Fergus, and Freeman, 2008), Holidays image set and Flickr1M (Jégou, Douze,
and Schmid, 2008).

SIFT10M is our own data set. Each data point in this set is a SIFT feature which is
extracted from Caltech-256 (Gri�n, Holub, and Perona, 2007) by the open source VLFeat li-
brary (Vedaldi and Fulkerson, 2008). Caltech-256 is a benchmark image data set in computer
vision that features a large number of classes (256) and high intra-class variations in each
category. For each SIFT feature in the SIFT10M data set, we have the corresponding image
patch which provides a kind of ‘visualisation’ of the corresponding SIFT feature and assists
us to analyse the performance of di�erent hashing methods. Fig. 5.6 shows some random
collection of these patches. From the �gure, we can see that the SIFT feature re�ects the
distribution information of the pixel value, such as the corner and boundary information,
of the image in local region.

84

For SIFT10M, the base data points, training data points, and the query points are ran-
domly chosen from all SIFT features extracted from the image set. The true nearest neigh-
bour points are provided by exhaustive nearest neighbour search in 128D Euclidean space.
For the other three benchmark data sets, we use the publicly available base points, training
points, and query points, and true nearest neighbour information for the query points di-
rectly. Detailed information about these data sets including the number of training points,
query points and base data points used in our experiments are summarised in Table 5.1.

Fig. 5.6. Image patches associated with randomly chosen features from the SIFT10M data
set. The SIFT features are extracted from Caltech-256 (Gri�n et al., 2007) by the open source
VLFeat library (Vedaldi and Fulkerson, 2008). Each of the features is associated with a patch
which is used for visualisation purposes. The key point detection method is often used to
localise the interest regions, and then SIFT features are calculated. Due to the fact that
boundaries or corners are important for representing images, from the �gure, we can see
that most of the patches correspond to this kind of information.

85

Data set data type dimension base points training points query points

SIFT1M SIFT feature 128 106 104 104

SIFT10M SIFT feature 128 107 104 104

SIFT1B SIFT feature 128 109 104 104

GIST1M GIST feature 960 106 104 103

Tab. 5.1. Data sets which are used for evaluating di�erent approximate nearest search al-
gorithms. SIFT1M, SIFT1B and GIST1M are three benchmark data sets for testing the per-
formance of hashing methods. SIFT10M is prepared for the purpose of visualisation as well
as a medium size data set between SIFT1M and SIFT1B.

5.4.1 Performance measurements

For evaluating the performance of di�erent hashing methods, we �rst investigate how the
hashing methods are used for ANN problems. We take SIFT10M as an example since the
corresponding patches provide the ‘visualisation’ of the retrieval results. Fig. 5.7 and Fig. 5.8
show two examples of �nding the nearest neighbour data points for the query points re-
spectively. The top left picture shows the patches of the query point and its true 99 nearest
neighbour points among the 10, 000, 000 data points. Here the patch of the query point is
highlighted by a red border, and the patches of the true 99 nearest neighbour points are
ordered by its next position of the same row or the next row if there is no space left in the
same row. From top left picture, we can see that SIFT feature has a faithful representation
of image patches since the corresponding patches of the neighbouring features are visually
similar.

For each hashing method, we use 128 bits to encode each SIFT feature and retrieve 1, 000

nearest neighbour data points in sense of the Hamming distance. Here we should note that
the 1, 000 data points might not be exactly the same as the true 1, 000 nearest neighbour
data points in sense of the Euclidean distance and we only retrieve 0.01% of the base data
set. Then we retrieve the 99 nearest neighbour data points among the 1, 000 selected points
in sense of the Euclidean distance, and the 99 data points are placed accordingly in each
sub�gure. If the data point is among the true 99 nearest neighbour points of the query in
sense of the Euclidean distance, we highlight it by a blue border, otherwise the patch is
plotted without a border.

From Fig. 5.7 and Fig. 5.8, we can see that although the hashing methods return ap-
proximate nearest neighbour data points, i.e., the retrieved 99 points are not exactly the
same as the true 99 nearest data points, the returned data points are very close to the query

86

data points since their corresponding patches have similar visual appearance. Thus, this is
the main reason why ANN is useful in practice. On the other hand, although the hashing
methods return satisfactory results, we hope it can return the true nearest neighbour data
points in sense of Euclidean distance as frequently as possible since this would guaran-
tee the reliability of image retrieval or feature matching. Thus, the percentage of the true
nearest neighbour data points retrieved is an important indicator for evaluating the perfor-
mance of di�erent hashing methods. From the number of the blue borders in Fig. 5.7 and
Fig. 5.8, we can see that most of the true nearest neighbour data points are retrieved when
only 0.01% of the base data set is considered. According to this indication, for these two
query points, NOKMeans has the leading performance since it has the highest percentage
for retrieving the true 99 nearest neighbour data points.

Based on the desirable features of an ANN method in practice as outlined above, we
adopt recall as the main indicator for evaluating retrieval performance. For each query
data point, we retrieve its nearest i data points in sense of the Hamming distance. Recall@i

is the percentage of true nearest neighbour points in the retrieved data set, i.e.:

Recall@i =
#retrieved true nearest neighbour points

#true nearest neighbour points (5.5)

We have varied i from 1 toK = 10, 000 to give a better overall picture of performance. Re-
call is an important indicator of retrieval performance and it also has internal relationships
with other common measurements. For instance, higher recall often corresponds to higher
precision. The main reason we use recall is that an ANN problem often involves a large
scale data set, so K is large even if 1% of the base data set is retrieved, whereas k is much
smaller. Thus, the precision does not fully re�ect performance since it reduces to almost 0

when i increases.
In order to evaluate overall retrieval performance of the hashing algorithm, we use the

m-Recall (mean recall) measure which averages Recall@i when the number of data points
retrieved in Hamming space is up to K :

m-Recall =

∑K
i=1 Recall@i

K
(5.6)

here K is the maximum retrieved nearest points in Hamming space.
From the de�nition of m-Recall, we can see that it mainly addresses retrieval perfor-

mance when part of the data set is retrieved. The average over i re�ects a kind of global
information similar to mean average precision (MAP) which is calculated by averaging the
precision and is commonly used in information retrieval. Actually, the only di�erence of

87

Fig. 5.7. Query results of the SIFT10M data set (1). The top left picture shows the patches of
the query point and its true 99 nearest neighbour data points in sense of Euclidean distance.
The other pictures show the retrieval results of di�erent hashing methods. Each data point
is encoded into 128D binary codes, 0.01% of base data is retrieved, and from among those
the 99 nearest points in sense of the Euclidean distance are returned. The patches with
blue borders are among the true 99 nearest neighbour data points, and the number of blue
squares is shown in the brackets.

88

Fig. 5.8. Another Query results of the SIFT10M data set (2). The top left picture shows
the patches of the query point and its true 99 nearest neighbour data points in sense of
Euclidean distance. The other pictures show the retrieval results of di�erent hashing meth-
ods. Each data point is encoded into 128D binary codes, 0.01% of base data is retrieved,
and from among those the 99 nearest points in sense of the Euclidean distance are returned.
The patches with blue borders are among the true 99 nearest neighbour data points, and
the number of blue squares in shown in the brackets.

89

the de�nitions between recall and precision is the denominator, which is the number of
true nearest data points for recall and the number of retrieved data points in precision.
From the de�nitions, we can see that recall emphasises the percentage of true k nearest
neighbour points is retrieved, while precision emphasises the percentage of true nearest
neighbour points among the retrieved data points. As discussed previously, the k is much
smaller than K for the ANN problem, the precision will be almost 0 due to the high value
of K regardless of whether the true nearest neighbour points are retrieved or not. Besides,
we can also view m-Recall as a weighted version of MAP if the weight wi for Precision@i

is de�ned as:

wi =

{
1
i
, i = 1, 2, · · · , K

0, i = K + 1, K + 2, · · · , N
(5.7)

From the weights, we can see that m-Recall has a better re�ection of the retrieval per-
formance when a small part of the data set is retrieved. Thus, m-Recall is used here for
evaluating the quality of the hashing bits.

5.4.2 Parameter selection

When using this model to learn the hyperplanes, we have to decide the value of the param-
eter λ. In order to test the sensitivity of the parameter λ in the optimisation, we choose λ
from {101, 102, 103, 104, 105, 106, 107}. The m-Recall for di�erent λ is shown in the right
image in Fig. 5.9. From Fig. 5.9, we can see that, at beginning, the m-Recall increases as
λ increases. After reaching the peak, the m-Recall dips moderately as λ keeps increasing.
This motivates us to have a strategy to learn the index for di�erent data sets. For each data
set, λ is �xed by choosing from {101, 102, 103, 104, 105, 106, 107} for one speci�c task, and
choosing the parameter such that it reaches peak performance, then use this parameter for
the whole data set. In the following experiments, the parameter is �xed as 104, 105, 106 and
105 for SIFT1M, SIFT10M, SIFT1B and GIST1M respectively. However it is worth noting
that performance is similar for values of λ in the range 104–106 on all four data sets.

5.4.3 Results

We have evaluated NOKMeans, ITQ, OKMeans, Spectral Hashing and LSH on the four data
sets. Fig. 5.10 shows the recall curves of di�erent algorithms for searching the nearest
neighbour point for each query. For each SIFT feature data set, we report the recall perfor-
mance when the data points are encoded by 64, 96 and 128 bits respectively. The experi-
mental results enable us to view the performance of di�erent algorithms from two dimen-

90

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

R
ec

al
l@

i

λ=10
1

λ=10
2

λ=10
3

λ=10
4

λ=10
5

λ=10
6

λ=10
7

ITQ

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

λ

m
−

R
e
c
a
ll

Fig. 5.9. Retrieval performance on the SIFT1M data set with di�erent λ. Each data point is
encoded into 128 bits, and the task is to retrieve the nearest neighbour point for each query.
The performance of ITQ is also reported as a baseline, and its m-Recall is 0.9652.

sions, i.e. increase the number of bits to encode the SIFT feature and the scale of the data
sets. From these two dimensions, we can see that, generally speaking, the more bits used to
encode the feature points, the higher the recall. On the other hand, the nearest neighbour
point searching problem becomes more di�cult for bigger data sets. When each data point
is indexed to a 64 bit binary code, the proposed algorithm has a comparable recall perfor-
mance to the state of the art result (OKMeans), and has a much better recall performance
than the remaining algorithms. When we use more bits to encode the data set, we �nd that
the proposed algorithm has the highest performance among these algorithms.

The performance of the proposed algorithm coincides with our model assumption. This
is because when few bits are used, the independence property, which leads to the mutually
orthogonal condition, plays the main role when designing the hash code. When more bits
are used to index the feature points, the mutual orthogonality condition leads to the loss
of representation capability. Take the following toy example. Suppose the data points are
distributed in a 2D subspace in 3 dimensional space, and we use three bits to encode the
data points. If the three hyperplanes are mutually orthogonal, the data points are e�ectively
encoded with two bits since the 2D subspace is partitioned into 4 di�erent index regions.
When the orthogonality condition is relaxed, the 2D space can be partitioned into 6 di�erent
indexing regions. So when the mutual orthogonality condition is relaxed, the separating
capability of the hyperplanes will increase.

As discussed in Weiss, Fergus, and Torralba (2012) and He et al. (2013), retrieving di�er-
ent numbers of nearest neighbour points a�ects the performance of searching algorithms.
Fig. 5.11 shows the recall curves of di�erent algorithms for searching nearest neighbour

91

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

Fig. 5.10. Retrieval performance on the SIFT feature data sets. Di�erent data sets are re-
ported in di�erent rows (SIFT1M, SIFT10M, SIFT1B respectively). For each SIFT feature
data set, we show the Recall@i when each data point is encoded with 64, 96 and 128 bits
for columns 1, 2 and 3 respectively.

points on SIFT1M. We report the recall performance when the data points are encoded by
64, 96 and 128 bits according to the three columns respectively and k is set to be 1, 5, 10, 50

and 100 according to the �ve rows respectively. As k increases, Recall@i decreases. Take
i = 1 as an example, Recall@i can be either 0 or 1 when k = 1, whereas the Recall@i is
at most 0.01 when k = 100. That is why Recall@i decreases in 5.11 for large k. Another
reason for the decrease of the performance is that the ith true nearest neighbour is more
di�cult to retrieve when i increases. Here the k true nearest neighbour points are ordered
according to their distances to the query point. Thus, they are denoted as 1st, 2nd, · · · , kth.
Since the hyperplanes partition space into chunks, each data point belongs to one of the
chunks. For the query data point, we can consider the chunk in which it is located. Now, it

92

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

i

10
0

10
1

10
2

10
3

10
4

R
e
c
a
ll

@
i

0

0.2

0.4

0.6

0.8

1

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

Fig. 5.11. Retrieval results on the SIFT1M data set for retrieving di�erent k nearest neigh-
bour points. Here, k ranges from {1, 5, 10, 50, 100} for row 1, 2, 3, 4 and 5 respectively, and
each SIFT feature is encoded by 64, 96 and 128 bits for the columns 1, 2 and 3 respectively.

93

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

Fig. 5.12. Retrieval results on the GIST1M data set for retrieving di�erent k nearest neigh-
bour points. Here, k ranges from {1, 5, 10, 50, 100} for row 1, 2, 3, 4 and 5 respectively, and
each SIFT feature is encoded by 64, 96 and 128 bits for the columns 1, 2 and 3 respectively.

94

is easy to prove that the ith true nearest neighbour has smaller chance to be located in the
same chunk when i increases.

From Fig. 5.11, we can see that NOKMeans has the leading performance when k is small.
When k increases to 50 or 100, its performance degenerates as expected but it still has
comparable performance to OKMeans. Besides, another phenomenon we can see from the
�gure is that NOKMeans has a good Recall@i when i is small such as up to 1, 000. These
phenomena are partly due to the model we are using for learning the encoding functions.
Since we increased the partitioning capability of the hyperplanes, they are more able to �t
the data, and this is the main reason we can generalise the quantisation error based methods
to have a better performance. But, at the same time, the �tness of the hyperplanes leads to
degeneration more quickly when both k and K are large.

Fig. 5.12 shows the retrieval results on GIST1M data set, which has the highest number
of dimensions among our test scenarios. We report the recall performance when the data
points are encoded by 64, 128 and 256 bits according to the three columns respectively and
k is set to be 1, 5, 10, 50 and 100 according to the �ve rows respectively. Similar patterns
as discussed in the SIFT1M data set are observed. From the �gure, we can see that the
performance gain of our proposed algorithm is larger when the number of encoding bits is
increased and it has the leading performance across all of the di�erent scenarios. Another
phenomenon we can see from the �gure is that, in order to retrieve more true nearest
neighbour points, it is better to retrieve a relatively large number of points in the Hamming
space. For example, if we retrieve 1, 000 nearest neighbour points in Hamming space, the
recall of �nding 100 nearest neighbour points is much lower than the recall of searching 1

nearest neighbour point, while for retrieving 10, 000 points in Hamming space, the recall
gap between di�erent nearest neighbour points is relatively small.

5.5 Summary

In this chapter, we have investigated a minimum quantisation error based hashing algo-
rithm. Speci�cally, our focus is on the quantisation error of the re-represented data points.
In this way, the Voronoi diagram in the original space is the same as the space which is
separated by hyperplanes. Compared to the previous quantisation based algorithms, the
hyperplanes learned in our algorithm are without the constraint that they are mutually or-
thogonal. We believe this relaxation leads to a better binary code index for large scale high
dimensional data. We have tested the proposed algorithm on three benchmark data sets as
well as a new SIFT data set. The experimental results show that our method performs better

95

than current state of the art methods especially when it is used to encode high dimensional
data points such as GIST1M.

96

Chapter 6

Auto-JacoBin: Auto-encoder Jacobian
Binary Hashing

In the previous chapter, we discussed hashing-based approaches for approximate nearest
neighbour search problems and presented our new method: NOKMeans, which is a general-
isation of quantisation error based approaches. In this chapter, we investigate another way
to keep geometric information about the data points when they are encoded into binary
codes. Auto-encoder model is a two layer neural network which transforms the data set
nonlinearly and keeps geometric information of the data set simultaneously. This motivates
us to use an auto-encoder model to preserve the information during the binary encoding.
At the same time, we �nd that the tangent spaces in local regions can be used to assist this
purpose. Finally, we propose a new hashing method based on these observations: Auto-
JacoBin.

6.1 Introduction

When high dimensional data points are indexed into compact binary codes, information
loss is the main concern. Most previous work focuses on modelling the obtained binary
codes optimally, i.e., the data points in the new space should have similar geometric in-
formation as in the original space. Although some algorithms including ITQ model the
binary codes in the PCA subspace, these approaches still have the problem of poor geome-
try preservation due to the non-linear nature of binarisation.

In this work, motivated by the success that auto-encoder model has in preserving ge-
ometric information of the high dimensional data set (Van Der Maaten, Postma, and Van
Den Herik, 2009; Hinton and Salakhutdinov, 2006), we are interested in investigating its

97

ability to learn binary codes for the corresponding data points. Our optimisation model is
constructed from both the auto-encoder model and the optimal binary code’s perspectives.

For the auto-encoder model, we use a two layer network to keep geometric information
consistent with the high dimensional data points. The main assumption of auto-encoder
model is that the data points are sampled from some manifold. The task is to �nd a set of
parameters for the neural network such that the data points from the manifold are recon-
structible, i.e., the gap between the output data points and the input training data points is
as small as possible. Points drawn from a domain around the manifold can be thought of as
noisy data points. It is one of the features of the neural network model that it can process
such points. Indeed, properly modelling the functions in this larger domain gives better
feature learning capability for the model. Motivated by some recent e�orts which aim to
remove noise during the neural network forward propagation (Vincent, Larochelle, Lajoie,
Bengio, and Manzagol, 2010; Rifai, Vincent, Muller, Glorot, and Bengio, 2011), we de�ne
the optimal noise removing function directly and investigate its �rst order approximation
property which is used as a component in our later optimisation model. We believe that the
high order information from the optimal noise removing function makes the learned auto-
encoder model robust to noise, and enables the discovery of local relationships between the
data points consistent with geometric information.

For the optimal binary codes’ perspective, since our �nal interest is to obtain binary
codes and the auto-encoder model does not provide these codes directly, the constraint,
which minimises the gap between the learned features and the optimal ideal binary codes,
is often used in designing hashing algorithms. We use an approximate 1-norm to model
the gap minimising problem with the aim being to have a better distribution in Hamming
space for the binary code.

Our main contributions are as follows:

• A novel “noise removing” function. We investigate a function which has a noise
absorbing property, and �nd that its Jacobian matrix has an intimate relationship
with the tangent space in the local region.

• A robust constraint that encourages the binary codes to have an optimal distribution
in Hamming space.

• A novel hashing algorithm. The auto-encoder model is adapted for generating e�ec-
tive binary codes as well as preserving geometric relationships of the original real-
world data sets.

98

6.2 Background

6.2.1 Notation

SupposeX = [x1, x2, · · · , xN] ∈ RD×N are the training data points, we denote the underly-
ing distribution of the training data as the manifoldM, and, for each xi ∈M, Ti ∈ RD×dM

is a basis for the tangent space at xi. We use the two layer auto-encoder model to en-
sure the hidden layer captures the geometric relationships in the training data set. Denote
W1 ∈ Rd×D and W2 ∈ RD×d as the weight matrices which connect the neural network
from the input data points to hidden layer and the hidden layer to output layer, and the
biases in the hidden and output layers are denoted as b1 and b2. The features from the
hidden layer are denoted as Y = [y1, y2, · · · , yN] ∈ Rd×N where yi = tanh(W1xi + b1)

and the features in the output layer are denoted as Z = [z1, z2, · · · , zN] ∈ RD×N where
zi = tanh(W2yi + b2). The main assumption of the auto-encoder model is that input and
output should be as similar as possible. Thus the object of the auto-encoder model is to �nd
a set of parameters for the neural network such that

J1(W1,W2, b1, b2) =
N∑
i=1

||zi − xi||2 (6.1)

is minimised. The �nal binary code is obtained by B = sign(W1X) ∈ Rd×N .

6.2.2 Related work

The task of learning Hamming codes for a point cloud is a little di�erent from the aim of
auto-encoders used in other �elds. This is because we not only hope to obtain binary codes,
but also to use the optimal distribution in Hamming space: bit distributions that are equally
likely and uncorrelated at each location (Weiss et al., 2008). In this work, we introduce a
constraint on the features in the hidden layer with the aim that the obtained binary codes
have this optimal distribution. Due to the additional constraint, directly applying the auto-
encoder model for the hashing problem does not provide us with many gains as measured
by common retrieval indicators as shown in the experimental section. Thus, we have to
explore an auto-encoder model which has the property that when the constraint is applied
to the features in the hidden layer, the model still has the ability to transfer geometric
information from the original data set to the features in hidden layer. This motivates us to
seek a robust auto-encoder and adapt it for binary encoding.

For noise-free data, we expect that data points can be reconstructed exactly. Thus, it
can be directly done by minimising J (W1,W2, b1, b2). For noisy data, it is not obvious that

99

such a strategy is a good one. Considering a data point x out of the manifoldM and z, the
corresponding output. Training the auto-encoder model such that distance between x and
z is minimised might deteriorate the �nal performance of auto-encoder model. In order to
account for both the noise-free and noisy scenarios, we formulate the optimisation objective
(Equation (6.1)) of auto-encoder model in a uni�ed way. Denote f as a function which is
de�ned one the manifoldM and with some ε neighbourhood of it, and the restriction of f
toM is the identity, i.e., x = f(x) for ∀x ∈ M. Thus the uni�ed optimisation objective is
to �nd a set of parameters for the neural network such that

J (W1,W2, b1, b2) =
N∑
i=1

||zi − f(xi)||2 (6.2)

Note that for noise-free data, Equation (6.1) is equivalent to Equation (6.2), while for noisy
data, the condition f(xi) = xi might not be satis�ed and we have to de�ne f appropriately.

Recent e�orts for dealing with noisy data are the denoising auto-encoders (DAE) (Vin-
cent et al., 2010) and contractive auto-encoders (CAE) (Rifai et al., 2011). The main starting
points of these algorithms are that the learned features in the hidden layer keep the im-
portant intrinsic structure of the original data set while unimportant information, such as
the noise, is discarded as much as possible. In DAE, noise is manually added to the train-
ing data points; since we know the correspondence between the noisy and clean versions, a
constraint is introduced to minimise the gap between these two versions according to some
loss function. In CAE, the Jacobian norm of the function, which maps the input data points
to the hidden layer, is minimised for a contractive e�ect. In the extreme case, CAE may
contract all of the data points in the original space to a single point. This constraint is used
to discard noise, but the distance between the input and output points is also considered.
In the balance of these two constraints, data on the manifold will be unchanged and data
outside the manifold will contract to the manifold.

Both DAE and CAE focus on training a model such that noisy data are projected onto
the manifold and non-noisy data are left alone. When the data points have some noise,
i.e., they are distributed around the manifold, output and the hidden layer should keep the
important information and at the same time be robust to some degree of noise. This pro-
cess is done implicitly with both approaches. DAE introduces arti�cial noise, and assumes
that eliminating arti�cial noise will also help to eliminate real noise, i.e., the ideal noise
data point is projected to the original data point through the forward propagation of the
learned neural network. For CAE, the noise discarding process is done through balancing
geometric consistency and the contractive property by minimising the norm of the Jaco-
bian matrix. This motivates us to explore an explicit function which has the ideal noise

100

absorbing property.
Fig. 6.1 displays one of the functions we are going to explore. Notice that each data

point around the manifold is exactly projected to the nearest point in the manifold, while
DAE and CAE do not have this kind of guarantee albeit they are designed to discarding the
noise.

Fig. 6.1. The ideal function which projects data points near to the manifold onto their closest
data points in the manifold. In the left �gure, the coloured points, which are sampled around
the black curved manifold, are the input data points for the ideal noise removing function.
Here di�erent data points are distinguished with di�erent colours. The right �gure shows
the corresponding output data points of the function. Here each circle represents an output
data point and corresponds to the star with the same colour in left �gure.

6.3 Algorithm

6.3.1 Motivation

The binary codes we want to get have some intersections with the auto-encoder model.
On one hand, the features of both approaches are from the hidden layer with the aim that
features in the hidden layer have the same amount of information as in the original data set.
On the other hand, previous auto-encoder models focus on obtaining ‘better’ features since
their main purpose in learning these features is to train a classi�er, and the auto-encoder
model is viewed as a building block for a deep neural network. For hashing, we hope that
the features in hidden layers are geometrically consistent with the original space, i.e., the
relative order information between the data points is preserved, and the hidden features
should be close to the binary codes under some metric.

101

Notice that both CAE and DAE try to project data points around the manifold to data
points in the manifold. This motivates us to de�ne a function f with this property directly,
and the data points around the manifold can be viewed as noisy data points, i.e., it is gen-
erated by data points from the manifold plus some noise. Without any prior information
we assume that each noisy data point is generated from the closest point on the manifold.
Formally, we seek a function, f , such that

f(x) = arg min
m∈M

||x−m||2F . (6.3)

The object of training is to �nd a set of parameters for the network such that over all gap
between the output points and the optimal recovered points is minimised.

The function f is only valid in some proper regions. This is because for data points
outside the manifold, their closest point in the manifold might not be unique. In practice, we
assume that the noise is constrained to a limited region around the manifold and therefore
f is valid most of the time. Minimising the distance between x and z can be viewed as the
0th-order approximation of the function f . More information about f can be captured by
using higher order approximations and the Jacobian matrix of f is intimately related with
the tangent space ofM:

Theorem 6.3.1. SupposeM is a d dimensional compact smooth submanifold in RD, f is

a function de�ned as f(x) = arg minm∈M ||x − m||2F , ∀x ∈ RD . For each m inM, let

Tm ∈ RD×d be the local normal basis of the tangent space toM at m. Then, the Jacobian

matrix of f atm is TmT ′m.

Proof. To prove Jm = TmT
′
m, we have to show that

lim
t→0

||f(m+ t)− f(m)− TmT ′mt||
||t||

= 0, (6.4)

where m ∈M ⊂ RD and t ∈ RD.
Sincem ∈M, from the de�nition of f we can see that f(m) = m. Thus f(m)+TmT

′
mt

is the projection point ofm+t to the tangent space atm. Denote the positions of the points
m,m+t, and f(m+t) asO,A, andB respectively. LetC andD be the projections ofA and
B to the tangent space respectively, as shown in Fig. 6.2. Denote UV as the line segment
between U and V , then −−→UV and ||UV || are the corresponding vector and the length of the
segment. Thus, Equation (6.4) is equivalently represented as:

lim
t→0

||CB||
||OA||

= 0. (6.5)

102

Fig. 6.2. Visualisation of the positions in Euclidean space. For better understanding, the blue
curve can be imagined as a d dimensional manifold, and the x-axis is viewed as a tangent
plane at position O.

In the following, we show that

lim
t→0

||CD||
||OA||

= 0, (6.6)

and
lim
t→0

||BD||
||OA||

= 0. (6.7)

Since CB is a side of the triangle CDB, we have ||CB|| ≤ ||CD||+ ||DB||. Thus, the
results from Equation (6.6) and Equation (6.7) ensure that Equation (6.5) is true.

To prove Equation (6.6), we �rst locate the pointE, such that−−→EB =
−−→
CD. Note thatD is

the projection point ofB to the tangent space, and−−→CD is a vector in the tangent space, thus
we have −−→BD ⊥ −−→CD. It is easy to show that the quadrilateral EBDC is a rectangle. Thus,
we can conclude that −−→EB ⊥ −−→EC . On the other hand, since C is the projection point of A
in the tangent space, we have−→AC ⊥ −−→CD. Therefore, we have−→AC ⊥ −−→EB since−−→EB =

−−→
CD.

Considering the plane ACE, we have −→AC ⊥ −−→EB and −−→EC ⊥ −−→EB, therefore −−→EB ⊥ the
plane ACE and −−→EB ⊥ −→AE.

Consider ∠ABE. B is the closest point onM to A, so

||OB|| ≤ ||OA||+ ||AB|| ≤ 2||OA||, (6.8)

and ||OB|| → 0 when t→ 0. Therefore, the tangent space at B tends to the tangent space
at O when t → 0 sinceM is a smooth submanifold in RD. From the de�nition of f , we

103

can conclude that AB is perpendicular to TB . Thus, ∠ABE → π
2
, when t → 0. Since

−−→
EB ⊥

−→
AE, we have

||CD|| = ||EB|| = ||AB|| cos∠ABE ≤ ||OA|| cos∠ABE. (6.9)

The �nal inequality is true due to the de�nition of the function f . Thus we have

0 ≤ lim
t→0

||CD||
||OA||

≤ lim
t→0

cos∠ABE = 0, (6.10)

and so Equation (6.6) is proved.
To prove Equation (6.7), we �rst show that

lim
t→0

||BD||
||OD||

= 0 (6.11)

We decompose the proof of (6.11) into two steps. The �rst step is to show it is true under
special assumption when the direction of vectorOD is �xed as t tends to 0. Considering the
corresponding path (curve) of B, the tangent vector of this curve has the same direction as
OD. Thus, we conclude that∠BOD → 0 when t→ 0. The second step is to show it is true
for general case. SinceM is smooth, the �rst order of the manifold structure is continuous.
Thus we have ∠BOD → 0 when t → 0. Since ||BD||||OD|| is exactly the tangent of ∠BOD, we
have the conclusion that limt→0

||BD||
||OD|| = 0.

Since limt→0
||CD||
||OA|| = 0 and ||OC|| ≤ ||OA||, ∀ε > 0, ∃δ, such that when ||t|| < δ, we

have 0 ≤ ||OC||+||CD||
||OA|| < 1 + ε. Therefore, when ||t|| < δ, we have

0 ≤ lim
t→0

||BD||
||OA||

≤(1 + ε) lim
t→0

||BD||
||OC||+ ||CD||

(6.12)

≤(1 + ε) lim
t→0

||BD||
||OD||

= 0,

and so Equation (6.7) is proved. �

If we view the tangent space as a point in the Grassmannian manifold, Theorem 6.3.1
tells us that the Jacobian matrix at m ∈ M is exactly the point where the Grassmannian
point Tm is embedded in RD×D. Assuming the training data points are sampled from the
manifoldM, for each point xi, we estimate its tangent space Ti by the local PCA technique.
So now, the manifoldM is approximated by tangent patches at the training data points.
On the other hand, when parameters of the three layer neural network are �xed, the output
features can be viewed as a function of the input features. Thus, the Jacobian matrix of the
function obtained from the neural network can be analytically expressed. Speci�cally, for
the data point xi, the Jacobian matrix Ji can be expressed as

Ji = W ′
1

(
W ′

2 �
(
1− z2

2

) (
1− z2

3

)′)
, (6.13)

104

where � is the point-wise product operator between two matrices and (·)2 is the element-
wise square of the entries of a vector. Therefore, we propose to minimise the distance
between Ji and TiT ′i in our optimisation model.

Since the features in the hidden layer range from −1 to 1, and binary codes are what
we really need, we use the metric ||Y Y ′ − NI||1 to constrain the features in the hidden
layer. The reason for this metric is that since the ideal elements in Y are either 1 or−1, the
ideal diagonal position of Y Y ′ should be N exactly, and the non-diagonal position in Y Y ′

should be 0 due to the desirable property of uncorrelated binary codes. The 1-norm of || · ||1
is calculated by summing the absolute value of the matrix’s elements. Since the absolute
value function is non-di�erentiable at 0, we approximate it by introducing a constant value
ε = 0.0001, i.e. ||a||1 ≈

√
a2 + ε. We denote the approximate 1-norm as || · ||ε1.

Finally, the optimisation objective is

minC(W1,W2, b1, b2) (6.14)

=
N∑
i=1

(||xi − zi||2F + ||Ji − TiT ′i ||2F) + α||Y Y ′ −NI||ε1,

where N is the number of training data points and α is a weight parameter balancing the
optimal binary codes and the geometric relationships from the training data set.

00.10.20.30.40.50.60.70.80.91

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6.3. Visualising of the warping. The left picture shows the training data set, which
consists of 1, 000 data points sampled from {(x1, x2, x3) | x1 + x2 + x3 = 1 and xi > 0}.
Each data point is distinguished by di�erent colours. The right picture shows the hidden
features. The colour of the data points are distinguished according to their positions in
di�erent quadrants. The neural network has the e�ect to warp the manifold of the data set
into the surface of the cube in the 3D space.

105

Fig. 6.3 shows a toy example for the visualisation of the e�ects of the two optimisation
components. The data points are randomly sampled from a plane {(x1, x2, x3) | x1 + x2 +

x3 = 1 and xi > 0}. The left picture in Fig. 6.3 shows the training data points in the 3D Eu-
clidean space. After optimisation, the hidden features are plotted in the right picture. Since
we want to encode the data points into binary vectors, the data points are distinguished
according their positions in di�erent quadrants. The visualisation of the hidden features
fully explains the motivation of the proposed optimisation model. Firstly, the robust auto-
encoder is used to preserve the geometric information. For example, the transform from
the training data points to the hidden features behaves like warping a piece of paper and
the relative (distance) order information in local region is kept. Secondly, the constraint on
the hidden features has the e�ect to disperse the hidden features to the vertices of the cube.
Note that we only use three bits to encode the training data set, the number of di�erent
binary codes is at most 7. Thus, from the colour in the right picture, we can see that the
constraint makes us use the binary codes fully. In all, the proposed optimisation model is
capable of maintaining geometric information as well as learning optimal binary codes.

6.3.2 Optimisation

For optimising the objective function C , we propose to update the parameters by a mini-
batch stochastic gradient descent method (Bengio, 2012). Since Equation (6.14) is non-
convex, using mini-batch of training data achieves a better solution in general and this
is the main reason we propose to use the stochastic gradient descent method for learning
the parameters. The maximum number of epochs is set to be Imax. In each epoch, the train-
ing data is randomly divided intommini-batches and the parameters are updated with each
mini-batch of training data points respectively. For updating the parameters, we have to
calculate the gradients: ∂C

∂W1
, ∂C
∂W2

, ∂C
∂b1

and ∂C
∂b2

respectively. The detailed gradient calcula-
tion is provided in appendix A. Denote θi as the vector of parameters W1,W2, b1 and b2

at the ith iteration and Gi as the gradient of C at the ith iteration. To �nd the step length
λi, such that the Wolfe conditions are satis�ed, we use the line search code developed by
Mark Schmidt for Matlab 1.

Since tanh is used in the neural network, the data points have to be normalised properly.
In our experiments, we scale the data points by the inverse of the maximum norm from the
training data set, and then scale the data points by 0.8 again as the training data points
might not fully cover the distribution of the base and query data sets. For initialising the
1http://www.di.ens.fr/~mschmidt/Software/minFunc.html

106

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

parameters, suppose µ is the mean of the training data points, W1 is initialised by the PCA

projection times a random rotation matrix, and W2, b1, and b2 are initialised as W ′
1,−W1µ,

and µ respectively. The reason that we use this set of initial parameters is that tanh can be
approximated by a linear function around the origin, and this set of parameters is optimal
for reconstruction error when a linear function is used in the neural network. For estimating
the tangent planes, we retrieve the (D + d) nearest data points for each xi, and take the
PCA projection which preserves 98% of the energy or the most energetic d dimensions,
whichever is smaller. Algorithm 7 is a summary of the proposed training process.

Algorithm 7 Auto-JacoBin
Input: Training data points x1, x2, · · · , xN , the maximum iteration Imax, and the num-
ber of batches m.
Output: The parameters W1,W2, b1 and b2.

1: Initialise W1,W2, b1, b2, and then vectorise them into a vector θ.
2: for i = 1 to N do

3: Estimate the tangent space Txi(M).
4: end for

5: for i = 1 to Imax do

6: Randomly permute the order of the training data set, and divide the training data
into m subsets.

7: for j = 1 tom do

8: Calculate the gradient Gij of the current jth subset.
9: Find the optimal step length λij such that the Wolfe conditions are satis�ed by

line-search.
10: Update the parameter θ:

θ ← θ − λijGij

11: end for

12: end for

13: Reshape the vector θ into parameters W1,W2, b1 and b2.

6.3.3 Computational complexity

For the tangent plane estimation stage, theK nearest neighbours are located by brute-force
which takes O(N2K) computation time and the spectral decomposition takes O(ND3).

107

This computation could be reduced by exploring the low dimensional structure such as the
Nyström method (Drineas and Mahoney, 2005) but we have not done so yet.

In each iteration, calculating Y andZ takesO(NDd) time, and both the Jacobian matri-
ces and the gradient calculation take O(ND2d). Since we use a line search method to �nd
the step length, it might take multiple evaluations to satisfy the Wolfe conditions. It is too
computationally and memory expensive to use all training data points at each optimisation
step, and therefore we approximate by using a batch size of 1, 000 points.

6.4 Experiments

To evaluate the performance of Auto-JacoBin, we conducted experiments on two bench-
mark image data sets and one local feature data set. Two data sets use global image features:
960D GIST features in the GIST1M (Jégou et al., 2011) set; and 128D wavelet texture fea-
ture (Manjunath and Ma, 1996) for the NUS-WIDE (Chua, Tang, Hong, Li, Luo, and Zheng,
2009) set. We also use the local feature data set SIFT1M (Jégou et al., 2011). For GIST1M and
SIFT1M, the training set, query set and base set have the same setting as in the last chapter.
For NUS-WIDE, we randomly choose 10, 000 points as the query points, 10, 000 points as
training points, and the remaining 249, 648 data points as the base points.

The performance of Auto-JacoBin is compared with several state of the art hashing al-
gorithms including LSH (Indyk and Motwani, 1998), Spectral Hashing (Weiss et al., 2008),
ITQ (Gong and Lazebnik, 2011), OKMeans (Norouzi and Fleet, 2013), and NOKMeans (Fu
et al., 2014). The performance of di�erent hashing methods for real large scale high dimen-
sional data sets is compared with Recall@i (Equation (5.5)) and m-Recall (Equation (5.6))
indicators.

6.4.1 Parameter selection

There are essentially two parameters that need to be chosen for our solution: the number
of iterations of the line search optimisation process and the weight parameter α. We have
analysed the costs during optimisation and notice that it converges quickly. As a case in
point, Fig. 6.4 shows a typical cost changes during the optimisation stage. The experiment is
conducted on the NUS-WIDE data set. The task is to learn 64 bits for encoding the base data
set, and the weight parameter is set to be 0.1. From the �gure, we can see that the objective
function converges quickly and it makes tiny changes after the �rst 20 iterations. Another
observation from the cost-iteration plot is that the cost decreases monotonically despite

108

0 10 20 30 40 50
0

1

2

3

4
x 10

4

Iteration

C

Fig. 6.4. Cost changes during the optimisation process. The experiment is conducted on
NUS-WIDE data set with d = 64 and α = 0.1. From the �gure we can see that the optimi-
sation converges quickly and there are almost no changes after the �rst 20 iterations.

lack of guarantees that this would occur since the input data points keep changing in each
iteration. Thus, we can either set it to be a �xed value as it is done in our experiments or
terminate when the cost is below a threshold. In our experiments, the number of training
data points is 10, 000, the batch size is 1, 000, and the training data points are randomly
shu�ed in each epoch. Thus, each pass of the training data set takes m = 10 iterations.
We set the total number of iterations to be 50 in accordance with other hashing methods.
Therefore, the optimisation cycles through the training data set Imax = 5 times in total.

For the weight parameter α, we empirically test its value at 0.01, 0.1, 1, 10. Fig. 6.5
shows the m-Recall when the data points are encoded with 64, 96 and 128 bits respectively
for the nearest point search for each query in the NUS-WIDE data set. For visual compar-
ison, we have included the corresponding m-Recall performance of NOKMeans which is a
competing hashing method as shown in the experiments later. The experiment is repeated
5 times. Since the m-Recall in each experiment is average over 10,000 query tests, the de-
viations of the m-Recall are relatively small for all of the tests. From the chart in Fig. 6.5,
we can see that the proposed approach has stable performance when the weight parameter
α ranges from 0.01 to 10, and its overall performance is always better than NOKMeans on
the NUS-WIDE data set. In the following experiments, we �x the weight parameter α to be

109

0.1.
In order to show that the parameter α = 0.1 is statistical signi�cant, we adopt the two-

sample t-tests between Auto-JacoBin with parameter α = 0.1 and other methods in Fig. 6.5.
The corresponding p-values are summarised in Table 6.1. According to the signi�cance level
αt = 0.05, Auto-JacoBin with parameter α = 0.1 is statistical signi�cant better than Auto-

JacoBin with parameter α = 0.01, 10 and NOKMeans. When the data points are encoded
with 128 bits, Auto-JacoBin with parameter α = 0.1 is statistical signi�cant better than
Auto-JacoBin with parameter α = 1.

Fig. 6.5. The m-Recall performance when the weight parameter ranges from 0.1 to 10. The
computational task is to �nd the nearest neighbour point for each query in the base data
set of NUS-WIDE. The performance is compared when each data point is encoded into
64, 96 and 128 bits respectively. The standard deviations of the m-Recall are shown in the
corresponding bars.

6.4.2 Performance with di�erent auto-encoder models

In order to see the impact of the �rst order constraint for Auto-JacoBin, we report the com-
parative results for AutoBin – an optimisation without the Jacobian component. The cost
function of AutoBin is optimised with two di�erent methods. One, referred to as AutoBin1,
uses the same optimisation method as in Auto-JacoBin. The other, referred to as AutoBin2,

110

α = 0.01 α = 1 α = 10 NOKMeans

α = 0.1 (64 bits) 3.22× 10−5 4.25× 10−1 9.78× 10−5 1.62× 10−6

α = 0.1 (96 bits) 3.49× 10−5 5.81× 10−1 1.50× 10−3 1.40× 10−4

α = 0.1 (128 bits) 1.94× 10−5 2.19× 10−2 6.01× 10−4 7.36× 10−7

Tab. 6.1. The p-values for two-sample t-tests between di�erent methods. The null hypoth-
esis is that the corresponding two methods have the same means of m-Recall but their vari-
ances might be di�erent. The alternative hypothesis is that Auto-JacoBin with parameter
α = 0.1 has a larger mean of m-Recall.

is using the whole training data set in each iteration using LBFGS (Liu and Nocedal, 1989),
and it only needs cost and gradient information for Mark Schmidt’s Matlab toolbox.

The proposed auto-encoder is motivated from DAE and CAE which are designed to have
a noise removing e�ect. It is also interesting to see that the performance of the correspond-
ing hashing methods when the auto-encoder component in the proposed optimisation ob-
ject is replaced withDAE andCAE respectively. We refer to these two new hashing methods
as denoising auto-encoder binary hashing (DAutoBin) and contractive auto-encoder binary
hashing (CAutoBin). For DAutoBin, the noise is injected by randomly setting a �xed per-
centage of elements as 0. Take the 960D GIST feature as an example, suppose we �x the
percentage by threshold t, we generate a random number ri (i = 1, 2, · · · , 960) between 0

and 1 for each entry of x = (x1, x2, · · · , x960)′ ∈ R960, and set

xi =

{
xi, ri > t

0, ri ≤ t
(6.15)

We empirically test the parameter t from a set {0.01, 0.05, 0.1, 0.2} and the weight param-
eter α from a set {0.01, 0.1, 1, 10}. For CAutoBin, both the parameter λ for the Jacobian
norm and the weight parameter α are tuned from the set {0.01, 0.1, 1, 10}. Finally, the op-
timisation for DAutoBin and CAutoBin is similar as Algorithm 7. The main di�erence is
the gradient calculations which can be derived similarly as for Auto-JacoBin.

Fig. 6.6 shows the performance of the hashing methods based on di�erent auto-encoder
models in NUS-WIDE. Each data point is encoded with 128 bits, k is set to 100, and the
Recall@i performance is reported when i ranges from 1 to 10, 000. From the �gure, we
can see that the Recall@i of Auto-JacoBin is consistently better than the performance of
other hashing methods. DAutoBin, CAutoBin and the AutoBin1 have comparable results,
and AutoBin2 gives the lowest Recall@i. Although the objective function of AutoBin1 and

111

AutoBin2 is the same, their performance is quite di�erent. The performance of AutoBin1
is comparable to the performance of DAutoBin, while the performance of AutoBin2 gives
the lowest Recall@i. From the comparison we �nd that the mini-batch stochastic gradient
decent optimisation has the advantage of �nding better local minima.

From our experiments, we note that DAutoBin is slightly better than AutoBin1, and
AutoBin1 is slightly better than CAutoBin. The α in CAutoBin is set to be 0.01. We found
that the performance of CAutoBin decreases when α increases in our experiments. The
possible reason is that the denoising e�ect in CAutoBin is achieved implicitly by balanc-
ing two components. Due to the contractive component, the recovery of the original data
points is not as good as using auto-encoder directly. Thus the performance of CAutoBin is
decreased slightly. For DAutoBin, the noise is injected manually and the neural network
is trained to recover the data point. The intuition behind this model makes sense since it
aims to remove noise automatically. One of the problems for this approach is that it is un-
clear why the original data is the best recovery of the noisy data. Here is an extreme case,
suppose x1 and x2 are two close but di�erent data points, thus they might have the same
noisy data point x. According to the de�nition, when x is an input data point, the output
of DAutoBin is assumed to be x1 and x2 at the same time. This contradicts the fact that x1

and x2 are two distinct points. On the other hand, Auto-JacoBin does not have this kind of
contradictory behaviour since it estimates the best projection of the noisy data point. We
believe this is the main reason that Auto-JacoBin has a better performance than DAutoBin.

6.4.3 Results on benchmark data sets

The computational task is to �nd the k nearest neighbour points in the base data set for
each query. Here we evaluate scenarios where k ∈ {1, 5, 10, 50, 100}. The Recall@i per-
formance is reported when i ranges from 1 to 10, 000. Therefore, only a part of the base
data set is retrieved (1%, 0.1% and 0.1% for the NUS-WIDE, GIST1M and SIFT1M respec-
tively). For both NUS-WIDE and SIFT1M, we report the Recall@i performance when the
number of bits, which are used to encode the data points, is up to its feature’s dimension,
i.e., they are tested with 64, 96 and 128 bit encodings. For the GIST1M data set, more bits
are used to encode the data points because the underlying features have more dimensions.
In our experiments, GIST1M is tested with 64, 128 and 256 bit encodings. The results for
NUS-WIDE are shown in Fig. 6.7 and the results for GIST1M is in Fig. 6.8. The Recall@i

performance of di�erent hashing approaches for SIFT1M, as they are shown in Fig. 6.9, are

112

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 AutoBin1

 AutoBin2

 ContractiveAutoBin

 DenosingAutoBin

 Auto−JacoBin

Fig. 6.6. Retrieval performance on the NUS-WIDE data set by di�erent auto-encoder mod-
els used in the optimisation objective. Each data point is encoded with 128 bits, and the
retrieval task is to �nd the 100 nearest neighbour points for each query.

much closer and more di�cult to see in a graph, and therefore we present the m-Recall
in a table. Table 6.2 shows the m-Recall performance of di�erent hashing methods on the
SIFT1M data set. Each row corresponds to one speci�c setting, where (i, j) means j bits
are used for encoding the data set and the retrieval task is to �nd the i nearest neighbour
points for each query.

In all the three �gures (Fig. 6.7–6.9), the �rst row is the Recall@i performance for the
nearest neighbour data point search task when the data points are encoded with di�erent
number of bits. The SIFT1M and NUS-WIDE are encoded with 64, 96, 128 bits respectively
and the GIST1M is encoded with 64, 128, 256 bits respectively. The three pictures display
the Recall@i performance when di�erent number of bits, in increasing order, is used to
encode each data point. The following rows show the comparison results for di�erent re-
trieving tasks (5, 10, 50 and 100 nearest neighbour searching respectively) when the corre-
sponding bits are used to encode the data points.

From Fig. 6.7 and Fig. 6.8, it is clear that the proposed method performs better than
previous techniques. Other observations are that (unsurprisingly) the utilisation of more

113

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

Fig. 6.7. Retrieval performance on the NUS-WIDE data set. The rows from top to bottom
show retrieval performance for k = {1, 5, 10, 50, 100} (nearest neighbours). The columns
from left to right show the performance with 64, 96, 128 encoding bits respectively.

114

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

Fig. 6.8. Retrieval performance on the GIST1M data set. The rows from top to bottom show
retrieval performance for k = {1, 5, 10, 50, 100} (nearest neighbours). The columns from
left to right show the performance with 64, 128, 256 encoding bits respectively.

115

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

ITQ

LSH

Spectral Hashing

OKMeans

NOKMeans

Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

ITQ

LSH

Spectral Hashing

OKMeans

NOKMeans

Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

ITQ

LSH

Spectral Hashing

OKMeans

NOKMeans

Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

i

R
e
c
a
ll

@
i

 ITQ

 LSH

 Spectral Hashing

 OKMeans

 NOKMeans

 Auto−JacoBin

Fig. 6.9. Retrieval performance on the SIFT1M data set. The rows from top to bottom show
retrieval performance for k = {1, 5, 10, 50, 100} (nearest neighbours). The columns from
left to right show the performance with 64, 96, 128 encoding bits respectively.

116

bits results in better performance for all methods, and the performance decreases as k in-
creases. Somewhat surprisingly, the data independent LSH algorithm performs comparably
with many of the data-dependent algorithms, especially as the number of bits increases.
One of the main reasons is that when modelling the data distribution, the data dependent
hashing algorithms are done by some kind of relaxation such as obtaining the binary code
from some threshold or encoding the data point into its nearest binary code, it is inevitable
that the information contained in the original data set is lost to some degree when a limited
number of bits are used to encode each data point during this process. While for LSH, the
obtained binary codes can preserve the similarity between the data points albeit the projec-
tion is randomly generated. Another interesting point is that the comparative performance
of di�erent hashing algorithms depends on the data set. For NUS-WIDE, when few bits are
used to encode the data points, Spectral Hashing has the lowest score. When the number of
bits is increased, the performance of Spectral Hashing is comparable to LSH and NOKMeans,
and has much better performance than ITQ and OKMeans. Both ITQ and OKMeans assume
that their projection matrix is orthogonal. This constraint limits the separating capacity of
di�erent bits. That is why when more bits are used for encoding of the data points, the per-
formance does not increase as much as other algorithms. For the proposed hashing method
and Spectral Hashing and LSH, the projection matrices do not have this kind of constraint.
Thus, the potential partition capability of these algorithms is better.

Overall, the bene�ts of the proposed method are clear. Even with a limited bit budget,
the proposed hashing method has excellent Recall@i performance. For instance, when
64 bits are used to encode each data point on the NUS-WIDE data set, Recall@1000 is
0.92, which is 13% higher that state of the art results (the previous best is 0.81 from the
NOKMeans). Also, to ensure good recall, when using 256 bits on the GIST1M data set, the
proposed method requires K = 2, 000 to achieve a 0.9 Recall@i. Compared with K =

6, 000+ for the other methods, ours allows for improved computational performance in
practice.

For the local feature data set, the proposed method has comparable performance to state
of the art results (NOKMeans, OKMeans and ITQ). From Fig. 6.9, we can see that the yellow
curve is always in the top position albeit it is overlapped with other leading performance.
For better visualisation, we summarise some of the results based on the m-Recall indicator.
Table 6.2 shows the m-Recall when the data points are encoded with di�erent bits and
for di�erent retrieving tasks. From this table, we can see that the proposed method has
comparable performance with other state of the art algorithms. Its performance becomes

117

Algorithms ITQ LSH Spectral Hashing OKMeans NOKMeans Auto-JacoBin

(1, 64) 0.879 0.825 0.908 0.933 0.930 0.935

(1, 96) 0.940 0.912 0.944 0.967 0.967 0.971

(1, 128) 0.965 0.952 0.962 0.979 0.982 0.983

(5, 64) 0.842 0.772 0.865 0.903 0.893 0.905

(5, 96) 0.915 0.872 0.910 0.947 0.943 0.952

(5, 128) 0.946 0.926 0.936 0.965 0.966 0.971

(10, 64) 0.820 0.740 0.837 0.882 0.867 0.883

(10, 96) 0.897 0.847 0.887 0.931 0.924 0.937

(10, 128) 0.933 0.907 0.916 0.953 0.953 0.960

(50, 64) 0.752 0.650 0.749 0.814 0.779 0.811
(50, 96) 0.839 0.767 0.806 0.876 0.853 0.881

(50, 128) 0.884 0.842 0.844 0.908 0.898 0.915

(100, 64) 0.714 0.604 0.699 0.773 0.728 0.767
(100, 96) 0.803 0.722 0.757 0.840 0.807 0.843

(100, 128) 0.852 0.802 0.797 0.876 0.859 0.883

Tab. 6.2. Retrieval performance (m-Recall) of di�erent hashing methods on the SIFT1M.
Each row corresponds to one speci�c setting, where (i, j) means j bits are used for encoding
the data set and the retrieval task is to the �nd i nearest neighbour points for each query.
For these tests, K = 10, 000.

better when more bits are used to encode the data points. Another observation we can
make is that LSH is consistently the worst, or nearly the worst, performer for this data set.

6.5 Summary

In this work, we have proposed a novel hashing algorithm which adopts the auto-encoder
model to produce binary codes that are geometrically consistent with the data points in
the original space. We have introduced a new auto-encoder objective function that makes
use of the �rst order properties of geometric conservation (the Jacobian matrix) and has
good noise-reduction properties. We proved that the Jacobian of the de�ned function has
an intimate relationship with the tangent space of the manifold of the training data set, and
show how the Jacobian can be expressed analytically.

The experiments are conducted on three large scale feature data sets. The performance

118

of the proposed method is compared with several state of the art hashing algorithms. It has
the best performance for global image features and comparable performance for the SIFT
feature data set.

119

Chapter 7

How to select hashing bits? A direct
measurement approach

Note: Some portions of this chapter are taken from Fu et al. (2015).

In the previous two chapters, we have discussed two methods to learn encoding func-
tions. These two hashing methods are based on some geometrical assumptions and learn
the encoding functions directly by solving corresponding optimisation problems. Since
di�erent hashing methods have di�erent geometrical assumptions, the encoding functions
generated from di�erent hashing methods might complement one another, i.e., using a set
of encoding functions which are generated from di�erent hashing methods might lead to
better retrieval performance. In this chapter, we address the problem of selecting an opti-
mal set of bits (of a certain size) from a larger bit pool which is generated from any previous
hashing method. We propose to assign a set of encoding functions with a score, which is
calculated with information from data points in the local region and has an intimate rela-
tionship with the retrieval performance. In this way, the optimisation objective is to �nd a
set of encoding functions with the highest score.

7.1 Introduction

In practice, generating candidate encoding functions (bits) for hashing problems is rela-
tively easy. For example, one could use random hyperplanes (LSH) in the original space,
or any of the previous hashing methods proposed for generating bits. More recently, fo-
cus has shifted from generating the best bits, to selecting a few bits from a large bit pool
(Liu, He, Lang, and Chang, 2013). Such bit selection methods typically select bits which
are maximally independent and best preserve similarity between data points. For example,

120

one might try to maximise the correlation between the Hamming distance in hash space
and the Euclidean distance in the original space. Although very sensible, preserving such
similarities is only a proxy for the true objective – retrieving the true nearest neighbours.

In this work, we propose to measure the quality of a set of bits using retrieval perfor-
mance directly. Thus, the optimal bit set is the one with the highest score. Measuring all of
the possible subsets is impractical due to a combinatorial explosion. For example, selecting
64 bits from a pool with 1, 000 bits, we have to measure the quality of C(1000, 64) ≈ 10102

di�erent bit sets. In view of this, we propose an alternating greedy optimisation method
to �nd a local maximum. Actually, the main purpose is to �nd a set of bits such that it can
be used to retrieve the true nearest neighbour points e�ectively. Therefore, there do exist
many reasonable solutions, which are good enough for the retrieval task, and this is the
main reason that our optimisation is e�cient and e�ective.

Our main contributions are as follows:

• We investigate the approximate nearest neighbour search problem in large scale data
sets, and then propose to measure the quality of a bit set by m-Recall which is appro-
priate for this retrieval task.

• An alternating greedy optimisation method is proposed for the combinatorial opti-
misation problem. The experimental results show that it is e�ective and e�cient for
the bit selection problem.

7.2 Background

7.2.1 Notation

SupposeX = [x1, x2, · · · , xN] ∈ RD×N is the training data set. The bit poolP consists ofL
bits which can be generated by any previous hashing algorithms. Denote B ∈ {−1, 1}N×L

as the binary matrix of the training data set encoded by the pool. The task of bit selection
is to choose S = {b1, b2, · · · , bM} with M bits from the pool P . Denote k as the number
of true nearest neighbour points for each query and K as the maximum number of data
points retrieved in Hamming space.

7.2.2 Related work

With the hashing methods proposed previously, many encoding functions are available
to encode data points. Due to storage and retrieval e�ciency considerations, we want

121

Fig. 7.1. Visualisation of a previous bit selection method. In the left picture, each line is
an encoding bit from the pool. The pool is represented as a graph which is obtained by
the similarity preservation information of the bits and the mutual information between the
bits. The three red nodes, which correspond to the solution of the optimisation problem,
are selected as the �nal encoding functions.

to encode the data points with few bits. Rather than limit the pool to a single method
of generating bits, one could hope that di�erent hashing algorithms might complement
each other, and thus lead to a richer bit pool from which to select bits and ultimately a
better encoding scheme. In a previous bit selection method (Liu et al., 2013), two kinds
of information are used in order to select a set of bits from the pool. First the selected
bits should capture the local geometric information of the original data set. The second
criterion is that the mutual independence information between the selected bits should be
minimised. The bit selection problem is described as a dense subgraph discovery problem,
and the �nal optimisation problem is formulated as:

arg max
x

1

2
x′Ax

s.t. x ∈ {0, 1}L

|x|0 = M

(7.1)

where A incorporates both the similarity preservation and the mutual independence in-
formation of the bits from the pool. The support of the solution x corresponds to the bits
to be selected. This approach is typical of much previous work on bit generation and bit

122

selection where the goal is to produce a set of independent bits that maintain the metric
structure of the original data as much as possible. Such approaches are very suitable for
dimensionality reduction and binary embedding problems but, although su�cient, are not
necessary for retrieval tasks.

7.3 Algorithm

7.3.1 Motivation

Much previous work on binary hashing for ANN focuses on preserving similarity or order
information in a local neighbourhood (Datar et al., 2004; He et al., 2013; Indyk and Motwani,
1998). In ANN however, especially for image retrieval applications, the goal is to retrieve
the most relevant data-points and rank them highly among all results retrieved. Preserving
similarity is a su�cient condition for achieving this goal. Alternatively, preserving order
information (Wang, Wang, Yu, and Li, 2013) is also a su�cient condition. However, when
retrieving multiple data-points, maintaining the order may also not be necessary, depending
on the application. These observations motivate us to seek a direct way to select bits from
a bit pool rather than through maintaining similarity or order information extracted from
the original data set.

As discussed in section 5.4.1, m-Recall is a suitable indicator for measuring the perfor-
mance of hashing methods for ANN tasks. In practice, it is infeasible to calculate m-Recall
directly for each set of encoding functions since the data set is of large scale and high di-
mension. It would take too much computation to encode the whole data set, generate the
query data points, and then calculate the m-Recall. Indeed if this were feasible it would be
feasible to calculate the nearest neighbours directly. The training data set is assumed to
have the same distribution as the base data set but a much smaller size which enables us
to learn the encoding functions. As opposed to common hashing methods which aim to
extract information from the training data set and then learn the encoding functions, we
propose to calculate the m-Recall of a set of encoding functions on the training data set.
Speci�cally, we only need to set two parameters: the number of true nearest neighbour
points kG and the maximum number of data points to be retrievedKG for the training data
set in order to mimic the ANN task in base data set.

123

7.3.2 Optimization

The task of bit selection from a pool is to �nd a �xed size subset such that the cost according
to some measurement is as high as possible:

arg max
S

m-Recall(S)

s.t. S ⊂ P

|S| = M

(7.2)

This is a combinatorial optimisation problem, and it is NP hard (Hamo and Markovitch,
2005). We propose to obtain a reasonable solution by an alternating greedy (AGreedy) op-
timisation method, which is summarised in Algorithm 8.

Algorithm 8 Bits selection with alternating greedy method
Input: Training data points x1, x2, · · · , xN ; bit poolP ; maximum number of iterations
Imax; size of the selected bit set M .
Output: The selected bit set S .

1: Initialize S with M bits which are randomly sampled from P . Denote the m-Recall of
the sampled M bits on the training data set as m-Recall(S).

2: for i = 1 to Imax do

3: for j = 1 toM do

4: Prepare the candidate bit set C = P − S .
5: Precompute Hamming distances DPre ∈ RN×N based on the M − 1 bits from

S − bj . Here bj is the jth bit in S .
6: for k = 1 to |C| do
7: Update the Hamming distance Dk based on DPre and the bit bk.
8: Compute the m-Recall mk based on Dk and the true nearest neighbour

information.
9: end for

10: Find bk such that mk is the largest among m1,m2, · · · ,m|C|.
11: if mk > m-Recall(S) then

12: Update m-Recall(S) with mk.
13: Update the jth bit in S with bk.
14: end if

15: end for

16: end for

124

When a pool is given, the task of bit selection is to �nd M bits from the pool. In order
to measure the quality of the selected bits on the training data set, we test its performance
when part of the training data set is retrieved, and calculate the m-Recall as a measurement
of the quality of the selected bits (Line 8). Each bit position is updated sequentially – that
is, �rst bit 0 is updated, then bit 1, etc. The best candidate bit from the bit pool is chosen
(Line 11–14) by evaluating all bits left in the pool (Line 6–9). This updating approach has
two computational bene�ts. First, for each candidate bit the computation is independent
and therefore it is easy to parallelise. Second, since each bit position is updated sequentially,
the remaining M − 1 bits are �xed. Therefore, the Hamming distance for those M − 1 bits
can be precomputed (Line 5), with the �nal Hamming distance computed as the sum of the
precomputed distance and the distance of the candidate bit (either 0 or 1 – Line 7).

Fig. 7.2. Visualisation of multiple suboptimal solutions. The top left �gure shows the bit
pool. The remaining three �gures show three bits selected from the bit pool. Although the
solutions are totally di�erent, the retrieval performance is similar.

Although the proposed alternating greedy (AGreedy) optimisation method only guar-
antees to �nd a local maximum, we believe it is e�ective to �nd a reasonable solution. One
reason is that this optimisation problem has multiple local maxima, and it is relatively easy
to �nd a reasonable solution by random initialisation. This is visualised in Fig. 7.2. The
top left picture shows the pool of the encoding bits, and the other three pictures show the

125

selected 3 encoding bits. Although the selection results are di�erent, the performance of
the selected bits have similar near optimal performance.

7.3.3 Computational complexity

The bulk of the computation is done by calculating m-Recall for each selected bit set. For
each m-Recall calculation, it takesO(N2) time to compute the Hamming distances between
all of the training data points. Since the Hamming distances are discrete values which
range from 0 to M , it takes O(N) time to �nd the K nearest neighbour points for each
query point. Thus, for N queries, K nearest neighbour searching in Hamming space takes
O(N2). Finally, for updating each bit, we have to take O(|P |) = O(L−M) = O(L) time
for m-Recall calculations, thus with Imax iterations updating S, it takes O(ImaxMLN2) in
total.

7.4 Experiments

For evaluating the proposed bit selection method, we test its performance on three real
large scale data sets: SIFT1M (Jégou et al., 2011), GIST1M (Jégou et al., 2011) and NUS-
WIDE (Chua et al., 2009). The feature vectors from these data sets cover both local and
global image descriptors, and their dimension ranges from 128 to 960. The training set,
query set and base set have the same setting as in the last chapter.

The performance of previous state of the art hashing algorithms is either included as
baselines or used to generate the bit pools. LSH (Indyk and Motwani, 1998) is a data inde-
pendent approach which generates encoding functions using a random Gaussian distribu-
tion. Spectral Hashing (Weiss et al., 2008) is based on a model which inherits local geometric
information from the original space. ITQ (Gong and Lazebnik, 2011), OKMeans (He et al.,
2013) and NOKMeans (Fu et al., 2014) are based on minimising the quantisation error which
is the gap between the original data points and the binary codes when both of them are
viewed in Euclidean space. NDomSet (Liu et al., 2013) uses a graph optimisation technique
to select a bit set from a pool.

For each hashing algorithm, the binary encoding functions are learned based on the
training data set only, and then used to encode the base data set and the query data set.
For the bit selection methods, the pool is generated by a set of hashing algorithms. Only
the selected bits from the pool are used to encode the base data set and the query data set.
The performance of di�erent hashing algorithms is compared based on the same settings

126

including the number of bits, the number of true nearest points (k) to be retrieved and the
number of data points to be retrieved (K) in the Hamming space.

For comparing the performance of di�erent hashing methods, we use Recall@i and
m-Recall as the indicators since they can be tailored to indicate the performance of the
hashing methods in real ANN tasks. Hashing methods are mainly used for nearest neigh-
bour searching tasks for large scale high dimensional data sets. The K and k are much
smaller than the size of the base data set and this means ANN is not exactly the same as
other information retrieval tasks. Although the optimisation objective in training stage is
to �nd the bit set such that it has the highest m-Recall, we should note that the evaluations
are taken on di�erent data sets and the size of training data is much smaller when it is
compared to the size of the base data set.

7.4.1 Parameter selection

For the proposed bit selection method, we only need to set two parameters. One is the
number of data points to be retrieved (KG) and the other is the number of true nearest
neighbour points (kG) for the training data set. The main purpose of this setting is to mimic
the retrieval scenario in real large scale data. So, we empirically set KG to be 1%− 10% of
the training data set and kG to be 1− 200 depending on KG.

Fig. 7.3 shows the performance of the selected bits on the base data set. The perfor-
mance is based on SIFT1M, the retrieval task is to �nd the nearest neighbour point for each
query, and the corresponding m-Recall is reported for each set of parameters. The pool is
generated by LSH with 1, 000 bits. The bit selection task is to choose 64 bits. From the
�gure we can see that KG is relatively stable when it ranges from 5 to 200. Thus, the size
of KG does not a�ect the performance much. Based on this observation, we set KG to 100

and kG to 5 for all of the following experiments.

7.4.2 Comparing results with simulated annealing

When a subset is chosen, the cost is calculated by the m-Recall performance on the training
data set. Thus, it is a combinatorial optimisation problem. Finding the global maximum and
its corresponding subset is NP-hard. In practice, simulated annealing (Kirkpatrick, Gelatt,
Vecchi, et al., 1983) is widely used for this kind of non-convex discrete optimisation problem.
The main idea of simulated annealing is to accept the candidate bit with some probability,
which is related to the original cost, current cost as well as the stage of the overall iteration.

127

Fig. 7.3. Parameters with di�erent retrieval settings. The pool is generated with 1, 000

bits. The maximum number KG of retrieved data points is set to be 100, 500 and 1, 000

respectively, and they correspond to the three groups in the �gure. In the �rst group, kG of
true neighbourhood data points is set to be 1, 5, 10 and 20. In the second group, kG is chosen
from {1, 5, 10, 50, 100}. In the third group, kG is chosen from {1, 5, 10, 50, 100, 200}.

Comparing our proposed method with simulated annealing gives a good indication of how
close the greedy method approaches a reasonable solution of simulated annealing.

For comparison with simulated annealing, the pool consists of 1, 000 bits which are gen-
erated by LSH. The bit selection task is to choose 32 bits which will be used for encoding
the NUS-WIDE data set. Thus, in each iteration, there are (1, 000 − 32) = 968 candidate
bits. Initially bits which decrease the retrieval performance are accepted with probability
0.1, which decreases to 0.00001 over 1, 936 iterations. Bit selection with simulated anneal-
ing is similar to Algorithm 8. The only di�erence is that, in each bit iteration, simulated
annealing accepts the randomly chosen candidate bit according to some probability; while
the proposed optimisation method considers all of the candidate bits and then chooses the
best one.

The related cost changes and the performance are compared in Fig. 7.4 and Fig. 7.5.
Fig. 7.4 shows the cost changes of di�erent optimisation methods. The left �gure shows the
cost changes of the alternating greedy optimisation method. The bit updating goes through
two times, i.e., the bit set is updated 64 times. In each update, it takes 1, 000 − 32 = 968

128

0 20 40 60 80
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

6

Iteration

C
o

s
t

0 2 4 6 8

x 10
4

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

6

Iteration

C
o
s
t

Fig. 7.4. The cost changes of di�erent optimisation methods. The pool is generated by LSH

with 1, 000 bits. The selection task is to choose 32 bits for encoding NUS-WIDE. The �rst
�gure shows the cost changes of the AGreedy method. The second �gure shows the cost
changes of the simulated annealing optimisation method. The total amount of m-Recall
measurements is the same for both optimisation methods. The di�erence between them is
that AGreedy takes 64 iterations and needs about 28 minutes to run in our 64-core machine,
while simulated annealing takes (32× 1, 936) iterations and needs about 3 days to run.

Fig. 7.5. Performance comparison with the simulated annealing optimisation method. The
pool is generated with 1, 000 bits. The selection task is to choose 32 bits for encoding NUS-
WIDE. The results are divided into three groups. The �rst group is the m-Recall perfor-
mance of the proposed alternating greedy method. The second is the simulated annealing
optimisation method. The experiment takes (32× 1, 936) iterations of the bit update. The
m-Recall of the (2×32)th, (10×32)th, (50×32)th, (100×32)th, (500×32)th, (1, 000×32)th,
(1, 500 × 32)th and (1, 936 × 32)th iteration is reported. The third group summaries the
corresponding results of other hashing methods used as baseline in the experiment. The
standard deviations of the m-Recall are shown inthe corresponding bars.

129

times of m-Recall measurements. The second �gure shows the cost changes of the simulated
annealing optimisation method. The bit updating goes through 1, 936 times and the cost is
updated (1, 936× 32) times. In each update, it takes one m-Recall measurement. From the
left picture in Fig. 7.4, we can see that the �rst iteration of the bit updating of the proposed
alternating greedy optimisation method is e�ective. The cost changes slightly in the second
iteration. Since computation is the main concern during optimisation, we set a maximum
of two iterations (Imax = 2) in all of the following experiments. Although there are only
two iterations in AGreedy, it takes much more time to update each bit because it has to
calculate m-Recall for each candidate bit. While in simulated annealing, each bit is updated
with a randomly chosen bit according to some probability, i.e., only one m-Recall measure
is needed to update the bit. To facilitate the performance comparison, we set the same
amount of m-Recall measurements (2× 32× 968) for both optimisation methods.

Fig. 7.5 shows the performance of the selected bits in a real large-scale data set. We
repeat each experiment 5 times. The results are divided into three groups. The �rst group
shows the performance of bits selected by the proposed alternating greedy optimisation
method. The second group shows the performance of the bits selected by simulated anneal-
ing method. We take the results from the (2× 32)th, (10× 32)th, (50× 32)th, (100× 32)th,
(500×32)th, (1, 000×32)th, (1, 500×32)th and (1, 936×32)th iteration, and use them to en-
code NUS-WIDE respectively. With the null hypothesis that AGreedy and the method from
ith iteration have the same means of m-Recall but their variances might be di�erent and the
alternative hypothesis that AGreedy has a larger mean of m-Recall, the p-values for the �rst
4 tests are 1.00×10−6, 1.74×10−8, 1.36×10−5 and 1.50×10−3 respectively. According to the
signi�cance level αt = 0.05, AGreedy has signi�cant better results than the methods from
iterations up to (100× 32). The third group shows the results from other baseline hashing
methods, and they are ordered as ITQ, LSH, Spectral Hashing, OKMeans, NOKMeans, and
Auto-JacoBin. Since the pool is generated by LSH, it is interesting see whether AGreedy and
simulated annealing methods select better quality encoding functions. The p-values for the
corresponding two-sample t-tests range from 1.20× 10−3 to 1.61× 10−4. Thus, according
to the signi�cance level αt = 0.05, these methods select better quality encoding functions
from the pool. Besides, the standard deviations of di�erent hashing methods show that
AGreedy has a relatively stable performance.

From Fig. 7.4 and Fig. 7.5, we can see that the proposed alternating greedy optimisation
method has similar performance with the results from the simulated annealing method.
The main advantage of the proposed method is that it can be run on a multi-core machine.
Taking the experiments in this section as an example, the proposed method takes about 28

130

minutes for our 64-core machine. For the same amount of evaluations (2× 32× 968), the
simulated annealing method takes about 3 days. From the time comparison, we can see
that the proposed method has about 160 times speedup. This is due to the steps of parallel
running and distance pre-computation as discussed in section 7.3.2. There are also some
variants of the simulated annealing method which addressed the sequential implementation
of simulated annealing (Onbaşoğlu and Özdamar, 2001). In view of the facts that AGreedy
has comparable performance as the sequential simulated annealing method and can be
implemented e�ciently in multi-core machines, we use AGreedy for all of the following
experiments.

7.4.3 Performance with di�erent pools

For both NOKMeans and NDomSet, a set of choices is considered for each parameter, and
then the best choice is �xed for all following experiments. For each data set, we show results
in a Recall@i graph over all K for k = 1, 5, 10, 50, 100. For SIFT1M, we also report results
for several values of k and K in tabular form, because the curves in an m-Recall graph are
di�cult to distinguish from each other.

We test the bit selection algorithms on di�erent pool sources. Pool 1 is generated with
{LSH}. Pool 2 is generated with {LSH, ITQ, OKMeans, NOKMeans, Auto-JacoBin}, and
Pool 3 is generated with {LSH, ITQ, OKMeans, NOKMeans, Auto-JacoBin, Spectral Hashing}.
When the pool size is �xed, each hashing method generates the same number of bits. The
pool size for SIFT1M and NUSWIDE is 600, and the pool size for GIST1M is 1200. For
di�erent pools, the corresponding bit selection method will be distinguished by append-
ing the pool index, i.e. NDomSetP1, NDomSetP2, AGreedyP1, AGreedyP2 and AGreedyP3.
The performance of NDomSetP3 is not included since the corresponding performance is the
worst among all of the baseline algorithms. The possible reason is that Spectral Hashing
and NDomSet use similar optimisation functions, which a�ects the selection in NDomSet.

Fig. 7.6 displays the Recall@i performance of di�erent hashing methods on NUSWIDE.
The data set is encoded with 64, 96 and 128 bits respectively, and for each query, the re-
trieval task is to �nd 1, 5, 10, 50 and 100 nearest neighbour points. The performance of all
algorithms tends to increase as the number of bit increase. The retrieval task becomes more
challenging when more true nearest neighbour points are required to be retrieved. From
the �gure, we can see that AGreedyP3 has the best performance. The possible reason is that
it has the most variety since it includes random, quantisation error based and nonlinear

131

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

 ITQ LSH Spectral Hashing OKMeans NOKMeans Auto−JacoBin NDomSetP1 NDomSetP2 AGreedyP1 AGreedyP2 AGreedyP3

Fig. 7.6. Retrieval performance of di�erent hashing methods on the NUS-WIDE data set.
The �rst row shows the Recall performance for retrieving the nearest neighbour point for
each query point. Each data point is encoded with 64, 96 and 128 bits respectively. The
following rows show the corresponding results for the 5, 10, 50 and 100 nearest neighbour
retrieving tasks.

132

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

 ITQ LSH Spectral Hashing OKMeans NOKMeans Auto−JacoBin NDomSetP1 NDomSetP2 AGreedyP1 AGreedyP2 AGreedyP3

Fig. 7.7. Retrieval performance of di�erent hashing methods on the GIST1M data set. The
�rst row shows the Recall performance for retrieving the nearest neighbour point for each
query point. Each data point is encoded with 64, 128 and 256 bits respectively. The fol-
lowing rows show the corresponding results for the 5, 10, 50 and 100 nearest neighbour
retrieving tasks.

133

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

i

Re
ca
ll@

i

 ITQ LSH Spectral Hashing OKMeans NOKMeans Auto−JacoBin NDomSetP1 NDomSetP2 AGreedyP1 AGreedyP2 AGreedyP3

Fig. 7.8. Retrieval performance of di�erent hashing methods on the SIFT1M data set. The
�rst row shows the Recall performance for retrieving the nearest neighbour point for each
query point. Each data point is encoded with 64, 96 and 128 bits respectively. The following
rows show the corresponding results for the 5, 10, 50 and 100 nearest neighbour retrieving
tasks.

134

encoding methods. AGreedyP3 is much better than AGreedyP2 which ranks second in most
scenarios. The only di�erence between Pool 2 and Pool 3 are the Spectral Hashing bits,
indicating that Spectral Hashing bits complement the bits from other hashing algorithms;
despite the fact that Spectral Hashing alone is often the worse performer.

The retrieval performance for GIST1M has a similar trend as shown in Fig. 7.7. We can
see that the bit selection algorithms have better performance when more hashing func-
tions are used to generate the bits. AGreedyP3 has the leading performance for GIST1M.
AGreedyP2 has comparable performance as Auto-JacoBin and this is the main reason that
the yellow curve is invisible in most �gures. It is interesting to compare the retrieval per-
formance among LSH, NDomSetP1 and AGreedyP1 since Pool 1 is generated by LSH. We
�nd that NDomSetP1 does not always get much better performance than LSH. For exam-
ple, when selecting 128 bits from Pool 1 on GIST1M, NDomSet has similar performance to
LSH. For di�erent k nearest neighbour retrieving tasks, the gap between AGreedyP3 and
the second leading performance is widened when k increases. Thus, AGreedyP3 is capable
for di�erent retrieving scenarios.

Algorithms LSH OKMeans NOKMeans Auto-JacoBin NDomSetP1 NDomSetP2 AGreedyP1 AGreedyP2 AGreedyP3

(1, 64) 0.825 0.933 0.930 0.935 0.873 0.898 0.892 0.917 0.926
(1, 96) 0.912 0.967 0.967 0.971 0.938 0.952 0.950 0.964 0.967
(1, 128) 0.952 0.979 0.982 0.983 0.966 0.974 0.973 0.981 0.981
(5, 64) 0.772 0.903 0.893 0.905 0.824 0.857 0.849 0.884 0.894
(5, 96) 0.872 0.947 0.943 0.952 0.906 0.926 0.923 0.944 0.948
(5, 128) 0.926 0.965 0.966 0.971 0.943 0.955 0.955 0.968 0.969
(10, 64) 0.740 0.882 0.867 0.883 0.793 0.831 0.822 0.863 0.873
(10, 96) 0.847 0.931 0.924 0.937 0.884 0.907 0.904 0.929 0.933
(10, 128) 0.907 0.953 0.953 0.960 0.926 0.941 0.941 0.957 0.959
(50, 64) 0.650 0.814 0.779 0.811 0.702 0.749 0.739 0.791 0.806
(50, 96) 0.767 0.876 0.853 0.881 0.808 0.841 0.838 0.876 0.881
(50, 128) 0.842 0.908 0.898 0.915 0.864 0.888 0.889 0.915 0.918
(100, 64) 0.604 0.773 0.728 0.768 0.654 0.704 0.694 0.750 0.766
(100, 96) 0.722 0.840 0.807 0.843 0.763 0.799 0.797 0.841 0.847
(100, 128) 0.802 0.876 0.859 0.883 0.824 0.851 0.854 0.886 0.889

Tab. 7.1. Retrieval performance (m-Recall) of di�erent hashing methods on the SIFT1M.
Each row corresponds to one speci�c setting, where (i, j) means j bits are used for encoding
the data set and the retrieval task is to �nd the i nearest neighbour points for each query.
For these tests, K = 10, 000.

Fig. 7.8 and Table 7.1 shows the performance of di�erent hashing algorithms on SIFT1M.
Note that we have not presented the m-Recall for all of the hashing methods since some of
them have been already summarised in Table 6.2. Although the di�erence between curves

135

is di�cult to distinguish, we can see that the curve for AGreedyP3 is always among the top
positions of the curves and the green line which corresponds to the performance of LSH is
the lowest in most cases. From Table 7.1, we can see that AGreedyP3 has comparable per-
formance to other state of the art hashing methods and stands out when more bits are used
to encode the data points. From the performance of AGreedyP1, we can see that AGreedy
always selects better encoding functions since its performance is much better than LSH. We
believe this is due to the direct measurement of the proposed bit selection method. The fact
that the encoding bits from LSH are generated by random Gaussian distribution and S is
randomly selected from Pool 1 ensures that the performance of AGreedy is comparable to
LSH at the initialisation stage. For AGreedy, m-Recall improves with more iterations, thus
its performance should almost always be better than LSH.

7.5 Summary

In this chapter, we focused on the problem of selecting bits from a bit pool. We used a
direct measurement to evaluate the quality of a set of bits from the pool, and found a rea-
sonable solution by an alternating greedy optimisation method. One might expect that a
bit-selection algorithm that directly optimises the criteria of interest would do no worse
than any of the bit-generation methods used to create the bit pool. This is true in two of
the data sets tested here (NUSWIDE and GIST1M). For SIFT1M, this is not true when few
bits are used, but AGreedy does better as more bits are added. With few bits it is more likely
that a poor early bit-selection could not be overcome later.

136

Chapter 8

Conclusion

In this thesis, we have investigated the use of geometric information for three computer
vision applications. We summarise the contributions according to how the geometric in-
formation is used:

• Viewing covariance matrix of data points in the local region as Mahalanobis

distance (Fu et al., 2013).

For real-world clustering problems, such as the motion segmentation of video se-
quences, the implicit manifolds of di�erent classes might be close to or intersect with
each other. Data points near the intersecting regions might have large similarity with
data points from other clusters. This is the main cause of failure in previous cluster-
ing methods. We propose to use the learned Mahalanobis distance to �nd the nearest
neighbour data points. This allows us to learn a better similarity matrix such that the
modi�ed spectral clustering method has better clustering performance as measured
by the misclassi�cation rate. The experimental results on data sets, which are fea-
tured as the data points from di�erent clusters intersect or are close to each other,
show that the corresponding spectral clustering methods with the learned similarity
have lower mis-classi�cation rates.

• Extracting subspace information for action classes and using this informa-

tion for labelling query videos (Fu et al., 2013).

In previous work, video sequences are represented as data points in some special
manifold space (the product of Grassmannian manifolds). The nearest neighbour
classi�er is used for labelling the query video sequences. Due to the heavy computa-
tion required to calculate the distances between data points in the manifold space, the
nearest neighbour classi�er takes too much time to label the query video when the

137

size of the training data set is large. We use the framework of principal geodesic anal-
ysis to learn the subspace information in a tangent space for each class. To label a new
video sequence, we calculate its distance to the subspaces extracted in o�ine training
stage. The class which corresponds to the subspace that has the smallest distance to
the query video is predicted as the label. Thus, the computation for labelling a video
sequence is proportional to the number of classes rather than the number of training
points in training data set. The experimental results show that the proposed method
takes less computation and has comparable recognition accuracy performance with
previous related methods.

• Representing data points in a new space (Fu et al., 2014).

NOKMeans generalises the quantisation error based hashing methods which view
the binary codes as special points in the original space and aim to minimise the gap
between the original data points and the binary codes. The orthogonality of the hy-
perplanes is implicitly assumed in previous work. When the separating hyperplanes
are orthogonal to each other, we have explicit indexing centres in the original space,
and otherwise, it is impossible to obtain indexing centres in the original space due
to the general position of the Voronoi diagram. In order to increase the representa-
tion capability of these binary codes, we relax the mutually orthogonal condition in
quantisation error based hashing algorithms and address the existence of the index-
ing centres by viewing data points in a new space, which are determined by their
distances to the hyperplanes. We index each data point by its nearest centre, the hy-
perplanes coincide with the boundaries of di�erent index regions. This view bene�ts
from the advantages of both quantisation error based hashing approaches and the
non-orthogonal hyperplanes.

• Mapping data points near the manifold space in the local region.

For the auto-encoder model, we assume that the noisy data point is distributed around
the manifold, and its ‘optimal’ recovery is the nearest data point in the manifold.
Although this function cannot be analytically expressed, it can be approximated by
a �rst order form, which has an intimate relationship with the tangent spaces of the
manifold. We use this auto-encoder model and a constraint on the hidden layer to
obtain the binary codes. The auto-encoder model has the ability to keep the geometric
information during forward propagation, and the constraint also has the e�ect of
ensuring a better distribution of the binary codes in the sense that they are equally
likely and uncorrelated between bits.

138

• Selecting a bit set which preserves the order information in the local region

(Fu et al., 2015).

AGreedy selects a set of bits from a large bit pool. There are many hashing algorithms,
but none of these algorithms are universally best for real data sets due to the variety
of the high dimensional data sets. Each method is based on some geometrical model
assumption which is used to approximate the geometric information of the original
data set. Selecting some bits from a pool, which is generated from a rang of hashing
methods, has the potential to �nd an hashing method which might better than any
of the speci�c methods. We assign a score for each of the selected bit set. In this way,
the bits selection is converted into a combinatorial optimisation problem, and we
use an alternating greedy method to �nd a local optimal solution. This optimisation
method is easy to implement on multicore computers and run in parallel. The use of
shared data structures in this algorithm further reduces the amount of computation
required.

We have tested the hashing methods on several large scale high dimensional data sets
including both local and global image features. Experimental results show that the proposed
methods achieve state of the art results on these data sets.

8.1 Future work

For the spectral clustering problem, we learn a similarity matrix from the Mahalanobis dis-
tance which is based on geometric information in the local region. The similarity matrix
learning can be decomposed into two steps. The �rst step is to decide the connections be-
tween data points, and the second step is to assign a weight for each connection. In the
region where data points from di�erent classes is close to or intersect with each other, the
learned Mahalanobis distance is used to �nd a better quality of the neighbourhood, i.e., the
data points near the intersection region have more connections to the data points from the
same cluster. Thus, the proposed method focuses on smart connections. In the future, we
are interested in investigating how to calculate the similarity with the assistance of geomet-
ric information including the tangent space, parallel vector �elds and the local curvature.
Combining smart connections and smart similarity would have several bene�ts. For exam-
ple, it would not only enable the data points to be connected to the data points from its own
class, but also ensure that the similarity between them is strong. In some extreme cases,
the data points might have mis-connections. The smart similarity is a possible remedy to
this kind of problem since it aims to assign a small weight to such a connection.

139

For the action recognition problem, we have explored the use of subspace information
for each action class. From our experiments, we can see that the geometric information can
be used for labelling new action videos, and the computation time is proportional to the
number of classes in training data set. In the future, we are interested in exploring more
elaborate geometric information, such as the distribution of the data points in the product
of Grassmannian manifolds space. It would be also interesting to investigate the hashing
approach for the data set in manifold space by encoding the data points in manifold space
into binary codes. Since the representation of the video sequences in manifold space is
faithful and the hashing methods guarantee fast distance computation, labelling of new
query videos might be further sped-up while maintaining the recognition accuracy.

For the hashing-based ANN tasks, we have investigated how to learn the encoding func-
tions directly and how to select a set of encoding functions. Currently, we focus on a single
view of the computer vision data set, since each image is represented by one vector such as
the GIST feature. Thus, the main task is to �nd nearest neighbour points with same repre-
sentations. In practice, one image might be described by multiple di�erent descriptors, such
as BOW or GIST features, or may be associated with text information. We would like to
explore how to use multiple features and retrieving images when the query is given in form
of textual information. As initial work in this direction, we plan to investigate whether the
techniques used in previous hashing methods for single views can be generalised to the
multiple view hashing problem. Fo example, the geometric information explored for the
single view ANN is still useful as each view could be investigated separately and then the
relationship between di�erent views is combined for classi�cation.

There are other interesting research questions for the single view hashing problem. For
example, most of the hashing methods assume that the training data set has the same dis-
tribution as the base data sets. In real world data sets, this might not always the case due
to the large volume of data or when the base data set is generated continually such as the
images in social networks. Hashing methods, which adapt to this kind of change, might
have better retrieval performance since they would incorporate the newest distribution in-
formation from the data base. To learn this kind of encoding function, we might consider
two aspects of the optimisation model. The �rst one is that the training data should be sam-
pled chronologically, i.e., the time information of the training data points should be consid-
ered for learning the encoding functions. The mini-batch stochastic gradient descent-like
method used in this thesis might be useful for solving the corresponding optimisation prob-
lem since only a batch of data points are used in each iteration. The second issue is how
to preserve the previously learned information. The encoding functions might loose the

140

capability to preserve the geometric information of the whole base data set if we only use
the newest training data set to update the encoding functions. Thus, both the learned in-
formation and the new training data set should be considered. This phenomenon is often
referred as ‘catastrophic forgetting’ in training neural networks. For addressing this issue,
the mechanisms of rehearsal (Robins, 1995) are the �rst priority for us to consider.

141

References

Absil, P. A., Mahony, R., and Sepulchre, R. (2009). Optimization algorithms on matrix man-

ifolds. Princeton University Press.

Aggarwal, J. and Ryoo, M. (2011). Human activity analysis: A review. ACM Computing

Surveys, 43(3), 1–43.

Arias-Castro, E., Lerman, G., and Zhang, T. (2013). Spectral clustering based on local PCA.
arXiv preprint arXiv:1301.2007 .

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6), 1373–1396.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architec-
tures. Neural Networks: Tricks of the Trade, 437–478.

Bengio, Y., Paiement, J. f., Vincent, P., Delalleau, O., Roux, N. L., and Ouimet, M. (2004).
Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. In
Advances in Neural Information Processing Systems, 177–184.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM , 18(9), 509–517.

Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping Multidimen-

sional Data, 25–71. Springer.

Brown, M. and Lowe, D. (2003). Recognising panoramas. In Proceedings of International

Conference on Computer Vision, 1218–1225.

Cai, D., He, X., Zhang, W. V., and Han, J. (2007). Regularized locality preserving indexing
via spectral regression. In Proceedings of the 16th ACM Conference on Information and

Knowledge Management, 741–750.

142

Chaudhry, R., Ravichandran, A., Hager, G., and Vidal, R. (2009). Histograms of oriented
optical �ow and Binet-Cauchy kernels on nonlinear dynamical systems for the recogni-
tion of human actions. In IEEE Conference on Computer Vision and Pattern Recognition,
1932–1939.

Chen, G. and Lerman, G. (2009). Spectral curvature clustering (SCC). International Journal
of Computer Vision, 81(3), 317–330.

Cheng, J., Leng, C., Wu, J., Cui, H., and Lu, H. (2014). Fast and accurate image matching with
cascade hashing for 3D reconstruction. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition.

Chua, T. S., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y. (2009). NUS-WIDE: A real-
world web image database from National University of Singapore. In ACM International

Conference on Image and Video Retrieval.

Conway, J. H., Hardin, R. H., and Sloane, N. J. (1996). Packing lines, planes, etc.: Packings
in Grassmannian spaces. Experimental Mathematics, 5(2), 139–159.

Cox, T. and Cox, M. (1994). Multidimensional scaling. Chapman and Hall, London.

Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of
�ow and appearance. In Proceedings of European Conference on Computer Vision, 428–441.

Danafar, S. and Gheissari, N. (2007). Action recognition for surveillance applications using
optic �ow and SVM. In Proceedings of the 8th Asian Conference on Computer Vision, 457–
466.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive hashing
scheme based on p-stable distributions. In ACM Symposium on Computational Geometry,
252–262.

De Lathauwer, L., De Moor, B., and Vandewalle, J. (2000). A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), 1253–1278.

Donoho, D. L. (2000). Aide-memoire. High-dimensional data analysis: The curses and bless-
ings of dimensionality. American Math. Society Lecture-Math Challenges of the 21st Cen-

tury.

143

Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of Sci-

ences, 100(10), 5591–5596.

Drineas, P. and Mahoney, M. W. (2005). On the Nyström method for approximating a Gram
matrix for improved kernel-based learning. Journal of Machine Learning Research, 6,
2153–2175.

Efros, A. A., Berg, A. C., Mori, G., and Malik, J. (2003). Recognizing action at a distance. In
Proceedings of International Conference on Computer Vision, 726–733.

Fletcher, P. T., Lu, C., Pizer, S. M., and Joshi, S. (2004). Principal geodesic analysis for the
study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–
1005.

Frome, A., Singer, Y., Sha, F., and Malik, J. (2007). Learning globally-consistent local dis-
tance functions for shape-based image retrieval and classi�cation. In Proceedings of In-

ternational Conference on Computer Vision, 1–8.

Fu, X., Martin, S., Mills, S., and McCane, B. (2013). Improved spectral clustering using
adaptive Mahalanobis distance. In The 2nd Asian Conference on Pattern Recognition, 171–
175.

Fu, X., McCane, B., Albert, M., and Mills, S. (2013). Action recognition based on principal
geodesic analysis. In Proceedings of the 28th Conference on Image and Vision Computing

New Zealand, 259–264.

Fu, X., McCane, B., Mills, S., and Albert, M. (2014). NOKmeans: Non-orthogonal k-means
hashing. In Proceedings of the 12th Asian Conference on Computer Vision.

Fu, X., McCane, B., Mills, S., and Albert, M. (2015). How to select hashing bits? A direct mea-
surement approach. In Proceedings of the 30th Conference on Image and Vision Computing

New Zealand.

Gallivan, K., Srivastava, A., Liu, X., and Dooren, P. (2003). E�cient algorithms for inferences
on Grassmann manifolds. In Proceedings of the 12th IEEE workshop on statistical signal

processing, 315–318.

Goldberg, A. B., Zhu, X., Singh, A., Xu, Z., and Nowak, R. (2009). Multi-manifold semi-
supervised learning. In International Conference on Arti�cial Intelligence and Statistics,
169–176.

144

Gong, D., Zhao, X., and Medioni, G. (2012). Robust multiple manifolds structure learning.
In Proceedings of the 29th International Conference on Machine Learning.

Gong, Y. and Lazebnik, S. (2011). Iterative quantization: A Procrustean approach to learning
binary codes. In Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion, 817–824.

Gri�n, G., Holub, A., and Perona, P. (2007). Caltech-256 object category dataset. California
Institute of Technology.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In ACM

SIGMOD Conference on Management of Data.

Hamo, Y. and Markovitch, S. (2005). The COMPSET algorithm for subset selection. In
Proceedings of the 19th International Joint Conference on Arti�cial Intelligence, 728–733.

Harandi, M. T., Sanderson, C., Shirazi, S., and Lovell, B. C. (2011). Graph embedding dis-
criminant analysis on Grassmannian manifolds for improved image set matching. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2705–2712.

He, K., Wen, F., and Sun, J. (2013). K-means hashing: An a�nity-preserving quantization
method for learning binary compact codes. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition.

He, X. and Niyogi, P. (2004). Locality preserving projections. In Advances in Neural Infor-

mation Processing Systems, 153–160.

Hinton, G. E. and Roweis, S. T. (2002). Stochastic neighbor embedding. In Advances in

Neural Information Processing Systems, 833–840.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504–507.

Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of

Computing, 604–613.

Jain, P., Kulis, B., and Grauman, K. (2008). Fast image search for learned metrics. In Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition.

145

Jégou, H., Douze, M., and Schmid, C. (2008). Hamming embedding and weak geometric con-
sistency for large scale image search. In Proceedings of European Conference on Computer

Vision, 304–317.

Jégou, H., Douze, M., and Schmid, C. (2010). Improving bag-of-features for large scale image
search. International Journal of Computer Vision, 87 (3), 316–336.

Jégou, H., Douze, M., and Schmid, C. (2011). Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1), 117–128.

Jégou, H., Tavenard, R., Douze, M., and Amsaleg, L. (2011). Searching in one billion vectors:
Re-rank with source coding. In International Conference on Acoustics, Speech, and Signal

Processing, 861–864.

Jiang, Z., Lin, Z., and Davis, L. S. (2012). Recognizing human actions by learning and match-
ing shape-motion prototype trees. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(3), 533–547.

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255–260.

Karcher, H. (1977). Riemannian center of mass and molli�er smoothing. Communications

on Pure and Applied Mathematics, 30(5), 509–541.

Kim, K. I., Tompkin, J., and Theobalt, C. (2013). Curvature-aware regularization on Rie-
mannian submanifolds. In Proceedings of International Conference on Computer Vision,
881–888.

Kim, T., Wong, S., and Cipolla, R. (2007). Tensor canonical correlation analysis for action
classi�cation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion, 18–23.

Kim, T. K. and Cipolla, R. (2009). Canonical correlation analysis of video volume tensors for
action categorization and detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(8), 1415–1428.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated anneal-
ing. Science, 220(4598), 671–680.

Kulis, B. and Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable image
search. In Proceedings of International Conference on Computer Vision.

146

Kushnir, D., Galun, M., and Brandt, A. (2006). Fast multiscale clustering and manifold iden-
ti�cation. Pattern Recognition, 39(10), 1876–1891.

Laptev, I. and Lindeberg, T. (2003). Space-time interest points. In Proceedings of International

Conference on Computer Vision, 432–439.

Lawrence, N. D. (2004). Gaussian process latent variable models for visualisation of high
dimensional data. In Advances in Neural Information Processing Systems.

LeCun, Y., Bottou, L., Bengio, Y., and Ha�ner, P. (1998). Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, 2278–2324.

Lee, J. M. (2010). Introduction to topological manifolds, Volume 218. Springer-Verlag New
York.

Lee, J. M. (2012). Introduction to smooth manifolds, Volume 202. Springer-Verlag New York.

Lin, B., He, X., Zhang, C., and Ji, M. (2013). Parallel vector �eld embedding. Journal of

Machine Learning Research, 14(1), 2945–2977.

Lin, Z., Jiang, Z., and Davis, L. S. (2009). Recognizing actions by shape-motion prototype
trees. In Proceedings of International Conference on Computer Vision, 444–451.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1-3), 503–528.

Liu, W., Mu, C., Kumar, S., and Chang, S. F. (2014). Discrete graph hashing. In Advances in

Neural Information Processing Systems.

Liu, W., Wang, J., Ji, R., Jiang, Y. G., and Chang, S. F. (2012). Supervised hashing with kernels.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2074–2081.

Liu, W., Wang, J., Kumar, S., and Chang, S. F. (2011). Hashing with graphs. In Proceedings

of International Conference on Machine Learning.

Liu, X., He, J., Lang, B., and Chang, S. F. (2013). Hash bit selection: A uni�ed solution for
selection problems in hashing. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 1570–1577.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2), 91–110.

147

Lui, Y. (2012a). A least squares regression framework on manifolds and its application to
gesture recognition. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 13–18.

Lui, Y. (2012b). Tangent bundles on special manifolds for action recognition. IEEE Transac-

tions on Circuit and Systems for Video Technology, 22(6), 930–942.

Lui, Y. and Beveridge, J. R. (2011). Tangent bundle for human action recognition. In IEEE

International Conference on Automatic Face and Gesture Recognition, 97–102.

Lui, Y., Beveridge, J. R., and Kirby, M. (2010). Action classi�cation on product manifolds. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 833–839.

Lui, Y. M. (2012c). Advances in matrix manifolds for computer vision. Image and Vision

Computing, 30(6), 380–388.

Lui, Y. M. (2012d). Human gesture recognition on product manifolds. Journal of Machine

Learning Research, 13, 3297–3321.

Manjunath, B. S. and Ma, W. Y. (1996). Texture features for browsing and retrieval of image
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842.

Mu, Y., Hua, G., Fan, W., and Chang, S. F. (2014). Hash-SVM: Scalable kernel machines for
large-scale visual classi�cation. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition.

Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image library (COIL-20).
Technical report, Technical Report CUCS-005-96.

Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems.

Niebles, J. C., Wang, H., and Fei-Fei, L. (2008). Unsupervised learning of human action
categories using spatial-temporal words. International Journal of Computer Vision, 79(3),
299–318.

Norouzi, M. and Blei, D. M. (2011). Minimal loss hashing for compact binary codes. In
Proceedings of the 28th International Conference on Machine Learning, 353–360.

Norouzi, M. and Fleet, D. (2013). Cartesian k-means. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 3017–3024.

148

Norouzi, M., Punjani, A., and Fleet, D. (2012). Fast search in hamming space with multi-
index hashing. In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, 3108–3115.

Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic representation
of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175.

Onbaşoğlu, E. and Özdamar, L. (2001). Parallel simulated annealing algorithms in global
optimization. Journal of Global Optimization, 19(1), 27–50.

O’Hara, S. (2013). Scalable learning of actions from unlabeled videos. Ph. D. thesis, Colorado
State University.

Poppe, R. (2010). A survey on vision-based human action recognition. Image and vision

computing, 28(6), 976–990.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-encoders:
Explicit invariance during feature extraction. In Proceedings of the 28th International

Conference on Machine Learning.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Sci-

ence: Journal of Neural Computing, Arti�cial Intelligence and Cognitive Research, 7 (2),
123–146.

Rodriguez, A. and Laio, A. (2014). Clustering by fast search and �nd of density peaks.
Science, 344(6191), 1492–1496.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500), 2323–2326.

Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: A local SVM
approach. In Proceedings of 17th International Conference on Pattern Recognition, 32–36.

Shechtman, E. and Irani, M. (2005). Space-time behavior based correlation. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, 405–412.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8), 888–905.

Shrivastava, A. and Li, P. (2014). Asymmetric LSH (ALSH) for sublinear time maximum
inner product search (MIPS). In Advances in Neural Information Processing Systems.

149

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

Tipping, M. E. and Bishop, C. M. (1999). Mixtures of probabilistic principal component
analyzers. Neural Computation, 11(2), 443–482.

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: A large data set
for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 30(11), 1958–1970.

Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and large image databases for
recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion, 1–8.

Tron, R. and Vidal, R. (2007). A benchmark for the comparison of 3-d motion segmentation
algorithms. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

Turaga, P., Veeraraghavan, A., and Chellappa, R. (2008). Statistical analysis on Stiefel and
Grassmann manifolds with applications in computer vision. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, 1–8.

Turaga, P., Veeraraghavan, A., Srivastava, A., and Chellappa, R. (2011). Statistical computa-
tions on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2273–2286.

Van Der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine

Learning Research, 9(85), 2579–2605.

Van Der Maaten, L. J., Postma, E. O., and Van Den Herik, H. J. (2009). Dimensionality
reduction: A comparative review. Journal of Machine Learning Research, 10(1-41), 66–71.

Vedaldi, A. and Fulkerson, B. (2008). VLFeat: An open and portable library of computer
vision algorithms. In Proceedings of the International Conference on Multimedia, 1469–
1472.

Vidal, R., Ma, Y., and Sastry, S. (2005). Generalized principal component analysis (GPCA).
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (12), 1945–1959.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. A. (2010). Stacked de-
noising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.

150

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17 (4),
395–416.

Wang, J., Kumar, S., and Chang, S. (2010a). Semi-supervised hashing for scalable image
retrieval. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
3424–3431.

Wang, J., Kumar, S., and Chang, S. F. (2010b). Sequential projection learning for hash-
ing with compact codes. In Proceedings of the 27th International Conference on Machine

Learning.

Wang, J., Wang, J., Yu, N., and Li, S. (2013). Order preserving hashing for approximate
nearest neighbor search. In Proceedings of the 21st ACM International Conference on Mul-

timedia, 133–142.

Wang, Y., Jiang, Y., Wu, Y., and Zhou, Z. H. (2011). Spectral clustering on multiple manifolds.
IEEE Transactions on Neural Networks, 22(7), 1149–1161.

Weber, R., Schek, H. J., and Blott, S. (1998). A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proceedings of the 24th In-

ternational Conference on Very Large Data Bases, 194–205.

Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2005). Distance metric learning for large margin
nearest neighbor classi�cation. In Advances in Neural Information Processing Systems,
1473–1480.

Weinberger, K. Q., Sha, F., and Saul, L. K. (2004). Learning a kernel matrix for nonlinear
dimensionality reduction. In Proceedings of the 21st International Conference on Machine

Learning, 106.

Weiss, Y., Fergus, R., and Torralba, A. (2012). Multidimensional spectral hashing. In Pro-

ceedings of European Conference on Computer Vision, 340–353.

Weiss, Y., Torralba, A., and Fergus, R. (2008). Spectral hashing. In Advances in Neural

Information Processing Systems.

Xing, E. P., Jordan, M. I., Russell, S., and Ng, A. Y. (2002). Distance metric learning with
application to clustering with side-information. In Advances in Neural Information Pro-

cessing Systems, 505–512.

151

Xu, B., Bu, J., Lin, Y., Chen, C., He, X., and Cai, D. (2013). Harmonious hashing. In Interna-

tional Joint Conference on Arti�cial Intelligence.

Yan, S., Xu, D., Zhang, B., Zhang, H. J., Yang, Q., and Lin, S. (2007). Graph embedding
and extensions: A general framework for dimensionality reduction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(1), 40–51.

Yang, L. and Jin, R. (2006). Distance metric learning: A comprehensive survey. Michigan

State Universiy.

Yu, X., Zhang, S., Liu, B., Zhong, L., and Metaxas, D. N. (2013). Large scale medical image
search via unsupervised PCA hashing. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops.

Zhang, K., Zhang, L., and Yang, M. (2012). Real-time compressive tracking. In Proceedings

of European Conference on Computer Vision, 864–877.

Zhang, Z. and Zha, H. (2004). Principal manifolds and nonlinear dimensionality reduction
via tangent space alignment. SIAM Journal on Scienti�c Computing, 26(1), 313–338.

152

Appendix A

Gradients calculation

A.1 Gradients calculation details

A.1.1 Objective function

The objective function for Auto-JacoBin is:

C(W1,W2, b1, b2) =
N∑
i=1

(||xi − zi||2F + ||Ji − TiT ′i ||2F) + α||Y Y ′ −NI||ε1.

Here we focus on the gradients of C , for the objective functions of AutoBin, the only dif-
ference between the two is that the latter does not include the �rst order constraint. For
e�cient implementation in Matlab, all of the gradients are formulated in terms of matrix
operations. In the following subsections, we present the gradients for each components ac-
cording toW1, b1,W2, b2 respectively. For a batch of training data points, the �nal gradients
is straightforward. Fig. A.1 displays the three layer neural network used in our method.

In the following gradients, � is the operator of point-wise product between two matri-
ces. To unveil the steps of the gradients calculation, we denoteW (i)

2 as the ith row vector of
W2, 1ni as the zero column vector with the ith position equal to 1, On as an n-dimensional
one vector, and δW1

n,m as the zero matrix with size W1 with its (n,m)th position 1. We also
use ⊗, 	 and sum(·) operators, which function as follows. The W1 ⊗W2 is a D ×D × d
matrix such that its (i, j, k)th element isW (ki)

1 W
(jk)
2 . For aD×D matrix U and aD×D×d

matrix V , U 	 V is a D ×D × d matrix such that its (i, j, k)th element is U (ij)V (ijk). The
operation of both⊗ and	 can be implemented in Matlab by the repmat and dot functions
e�ciently. For a 2-D or 3-D matrix Q, the sum(Q) produces respectively a 1-D or 2-D
matrix by adding the row entries similarly to the sum function in Matlab.

153

Input Output Hidden

W1, b1 W2, b2

x z = tanh(W2y+ b2)y = tanh(W1x + b1)

Fig. A.1. The Auto-encoder model used in our proposed method. The hidden layer is colored
in black, the biases in purple. The forward calculation is shown under the corresponding
layer.

A.1.2 Auto-encoder constraint

The gradients can be calculated as:

∂||z − x||2F
∂W1

= 2
((
W ′

2

(
(z − x)�

(
1− z2

)))
�
(
1− y2

))
x′

∂||z − x||2F
∂b1

= 2
((
W ′

2

(
(z − x)�

(
1− z2

)))
�
(
1− y2

))

∂||z − x||2F
∂W2

= 2
(
(z − x)�

(
1− z2

))
y′

∂||z − x||2F
∂b2

= 2
(
(z − x)�

(
1− z2

))
A.1.3 Binary constraint

∂||Y Y ′ −NI||ε1
∂W1

= 2

((
(Y Y ′ −NI)

(
(Y Y ′ −NI)

2
+ ε
)− 1

2
Y

)
�
(
1− Y 2

))
X ′

∂||Y Y ′ −NI||ε1
∂b1

= 2

((
(Y Y ′ −NI)

(
(Y Y ′ −NI)

2
+ ε
)− 1

2
Y

)
�
(
1− Y 2

))

154

A.1.4 First order constraint

To simplify the notation, we denote A = TT ′. Since the constraint can be decomposed
as ||J − A||2F = ||J ||2F − 2 Tr(JA′) + const, the gradients can be decomposed into two
components:

Gradients for ||J ||2F

Since z is a vector, we can calculate its gradient according to each component z(i):

∂(z(i))

∂x
=
∂(tanh(W

(i)
2 tanh(W1x+ b1) + b

(i)
2))

∂x
= W ′

1

(((
W

(i)
2

)′ (
1− (z(i))2

))
�
(
1− y2

))
The Jacobian function can be expressed as

J = W ′
1

(
W ′

2 �
(
1− y2

) (
1− z2

)′)
and

||J ||2F = ||∂(z)

∂x
||2F =

D∑
i=1

(
1− (z(i))2

)2
D∑

m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

Thus

∂||J ||2F
∂W1

=
D∑
i=1

∂
(
1− (z(i))2

)2
∂W1

D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

+
D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

∂
(∑d

n=1W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2
∂W1

=
D∑
i=1

(((
W

(i)
2

)′
2
(

1− (z(i))2
)2 (
−2z(i)

))
�
(
1− y2

))
x′

D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

+

D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

2

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))(d∑
n=1

δW1
n,mW

(i,n)
2

(
1− (y(n))2

))

+

D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

2

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

×
(

d∑
n=1

1dn

(
W

(n,m)
1 W

(i,n)
2

(
−2y(n)

)(
1− (y(n))2

))
x′

)

= −4

(
W ′2 �

(
Od
((

1− z2
)2

(z)
)′)
�
((

1− y2
) (
OD
)′)
�
(
Odsum

((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))2)))
ODx′

+ 2

(
W ′2

(
W ′1

(
W ′2 �

(
Od
((

1− z2
)2)′)� ((1− y2) (OD)′

)))′)
�
((

1− y2
) (
OD
)′)

− 4

(
sum

(
sum

(((
OD

((
1− z2

)2)′)� (W ′1 (W ′2 � (1− y2) (OD
)′)))

	 (W1 ⊗W2)

)))′
�
(
y − y3

)
x′

155

∂||J ||2F
∂b1

=

D∑
i=1

∂
(
1− (z(i))2

)2
∂b1

D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

+

D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

∂
(∑d

n=1W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2
∂b1

=

D∑
i=1

(((
W

(i)
2

)′
2
(

1− (z(i))2
)2 (
−2z(i)

))
�
(
1− y2

)) D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

+
D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

2

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

×
(

d∑
n=1

(
W

(n,m)
1 W

(i,n)
2

(
−2y(n)

)(
1− (y(n))2

))
1Dn

)

= −4

(
W ′2 �

(
Od
((

1− z2
)2

(z)
)′)
�
((

1− y2
) (
OD
)′)
�
(
Odsum

((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))2)))
OD

− 4

(
sum

(
sum

(((
OD

((
1− z2

)2)′)� (W ′1 (W ′2 � (1− y2) (OD
)′)))

	 (W1 ⊗W2)

)))′
�
(
y − y3

)

∂||J ||2F
∂W2

=
D∑
i=1

∂
(
1− (z(i))2

)2
∂W2

D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

+
D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

∂
(∑d

n=1W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2
∂W2

=
D∑
i=1

1Di 2(1− (z(i))2)2(−2z(i))y′
D∑

m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

+

D∑
i=1

(
1− (z(i))2

)2 D∑
m=1

2

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))(
1Di

(
W

(mc)
1 �

(
1− y2

))′)

= −4

((
(1− z2)2z

)
�
(
sum

((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))2))′)
y′

+ 2
((

1− z2
)2

(Od)′
)
�
((

W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))′ (
W1 �

(
1− y2

)
(OD)′

)′)

∂||J ||2F
∂b2

=

D∑
i=1

∂
(
1− (z(i))2

)2
∂b2

D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

=

D∑
i=1

2(1− (z(i))2)2(−2z(i))1Di

D∑
m=1

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))2

= −4
(
(1− z2)2z

)
�
(
sum

((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))2))′

Gradients for Tr(JA′)

Tr(JA′) = Tr(
∂(z)

∂x
A′) =

D∑
i=1

(
1− (z(i))2

) D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

156

∂ Tr(JA′)

∂W1
=

D∑
i=1

∂
(
1− (z(i))2

)
∂W1

D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

+

D∑
i=1

(
1− (z(i))2

) ∂∑D
m=1 ami

(∑d
n=1W

(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))
∂W1

=

D∑
i=1

(((
W

(i)
2

)′ (
1− (z(i))2

)(
−2z(i)

))
�
(
1− y2

))
x′

D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

+
D∑

m=1

ami

(
d∑

n=1

δW1
n,mW

(i,n)
2

(
1− (y(n))2

)
+ 1dn

(
W

(n,m)
1 W

(i,n)
2

(
−2y(n)

)(
1− (y(n))2

))
x′

)
D∑
i=1

(
1− (z(i))2

)
= −2

(
W ′2 �Od

((
z − z3

))′ � (1− y2)OD �Odsum
((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))
�A

))
ODx′

+
((
Od
(
1− z2

)′)� (W ′2 � ((1− y2) (OD)′
)))

A′

− 2
(
sum

(
sum

(((
OD

(
1− z2

))
�A

)
	 (W1 ⊗W2)

)))′
�
(
y − y3

)
x′

∂ Tr(JA′)

∂b1
=

D∑
i=1

∂
(
1− (z(i))2

)
∂b1

D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

+
D∑
i=1

(
1− (z(i))2

) ∂∑D
m=1 ami

(∑d
n=1W

(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))
∂b1

=

D∑
i=1

(((
W

(i)
2

)′ (
1− (z(i))2

)(
−2z(i)

))
�
(
1− y2

)) D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

+
D∑
i=1

(
1− (z(i))2

) D∑
m=1

ami

(
1dn

(
W

(n,m)
1 W

(i,n)
2

(
−2y(n)

)(
1− (y(n))2

)))
= −2

(
W ′2 �Od

((
z − z3

))′ � (1− y2)OD �Odsum
((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))
�A

))
OD

− 2
(
sum

(
sum

(((
OD

(
1− z2

))
�A

)
	 (W1 ⊗W2)

)))′
�
(
y − y3

)
∂ Tr(JA′)

∂W2
=

D∑
i=1

∂
(
1− (z(i))2

)
∂W2

D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

+

D∑
i=1

(
1− (z(i))2

) ∂∑D
m=1 ami

(∑d
n=1W

(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))
∂W2

=
D∑
i=1

1Di (1− (z(i))2)(−2z(i))y′
D∑

m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

+
D∑
i=1

(
1− (z(i))2

) D∑
m=1

ami

(
1Di

(
W

(mc)
1 �

(
1− y2

))′)

= −2

((
z − z3

)
�
(
sum

((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))
�A

))′)
y′

+
((

1− z2
)

(Od)′
)
�
(((

W1 �
(
1− y2

)
(OD)′

)
A
)′)

∂ Tr(JA′)

∂b2
=

D∑
i=1

∂
(
1− (z(i))2

)
∂b2

D∑
m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

=
D∑
i=1

1Di (1− (z(i))2)(−2z(i))
D∑

m=1

ami

(
d∑

n=1

W
(n,m)
1 W

(i,n)
2

(
1− (y(n))2

))

= −2
((
z − z3

)
�
(
sum

((
W ′1

(
W ′2 �

(
1− y2

)
(OD)′

))
�A

)))′

157

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Notations
	Introduction
	Goal and objectives
	Research methods
	Contributions
	Thesis overview

	Manifold learning background
	Introduction
	Manifolds
	Manifold concepts
	Example: Grassmannian manifold

	Manifold learning methods
	Preserving local geometric information
	Preserving global geometric information

	Summary

	I Exploring geometric structures for clustering problems
	Improved Spectral Clustering using Adaptive Mahalanobis Distance
	Introduction
	Background
	Mahalanobis distance
	Spectral clustering

	Algorithm
	Motivation
	Algorithm
	Computational complexity

	Experiments
	Artificial examples
	Motion segmentation by trajectories
	MNIST and COIL20 data sets

	Summary

	II Exploring geometric structures for manifold data
	Action Recognition based on Principal Geodesic Analysis
	Introduction
	Background
	High order singular value decomposition
	Distances on Grassmannian manifold
	Gesture recognition based on a product space
	Principal geodesic analysis on a manifold space

	Algorithm
	Motivation
	Algorithm

	Experiments
	Cambridge Hand Gesture data set
	UMD Keck Gesture data set
	KTH Human Action data set

	Summary

	III Exploring geometric structures for hashing methods
	NOKMeans: Non-Orthogonal K-means Hashing
	Introduction
	Background
	Notation
	Related work

	Algorithm
	Motivation
	Formulation
	Computational complexity
	Discussion

	Experiments
	Performance measurements
	Parameter selection
	Results

	Summary

	Auto-JacoBin: Auto-encoder Jacobian Binary Hashing
	Introduction
	Background
	Notation
	Related work

	Algorithm
	Motivation
	Optimisation
	Computational complexity

	Experiments
	Parameter selection
	Performance with different auto-encoder models
	Results on benchmark data sets

	Summary

	How to select hashing bits? A direct measurement approach
	Introduction
	Background
	Notation
	Related work

	Algorithm
	Motivation
	Optimization
	Computational complexity

	Experiments
	Parameter selection
	Comparing results with simulated annealing
	Performance with different pools

	Summary

	Conclusion
	Future work

	References
	Gradients calculation
	Gradients calculation details
	Objective function
	Auto-encoder constraint
	Binary constraint
	First order constraint

