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Many complex systems are characterized by broad distributions capturing, for example, the size of
firms, the population of cities or the degree distribution of complex networks. Typically this feature
is explained by means of a preferential growth mechanism. Although heterogeneity is expected to
play a role in the evolution it is usually not considered in the modeling probably due to a lack of
empirical evidence on how it is distributed. We characterize the intrinsic heterogeneity of groups in
an online community and then show that together with a simple linear growth and an inhomogeneous
birth rate it explains the broad distribution of group members.
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I. INTRODUCTION

Many complex systems are characterized by
heavy-tailed distributions, e.g., Zipf’s law (originally
used to describe the frequency of words [1]), Pareto’s
law (originally describing the wealth of nations [2]),
and more recently scale-free topologies (capturing the
degree distribution of complex networks [3]) [4, 5]. This
property is typically perceived as a symptom of the
rich-gets-richer principle, and models implementing
some degree of preferential growth are usually the first
approach to explain heavy-tailed distributions [3, 6–16].
In line with the rich-gets-richer principle, the Gibrat’s
law suggests that the expected growth of a firm, a city
or social activity is proportional to its size [17–20].
However, in general, less attention has been devoted
to the time evolution of complex systems probably
due to the lack of empirical data along time (for some
exceptions see [5, 21–23]). In many network growth
models the time unit is mapped to the number of new
arriving elements which makes it difficult to compare
the results with real data. Moreover many models
assume that the elements are born identical which
leads to correlations between the age and frequency
(of words, wealth, degree or size) which is not fully
supported by empirical observations [24]. In many real
systems, especially in social systems, individuals or
elements are very diverse. In this direction, some models
incorporating heterogeneity in the form of fitness, hidden
variables or ranking have been proposed [25, 27, 29? ?
]. However, there is rather little empirical work showing
how intrinsic heterogeneity is distributed and its role in
complex system growth [30, 31]. Based on data collected
on a daily basis on the time evolution of an online
social system we will characterize the heterogeneity
of the groups and identify the heterogeneity and the
distributed birth dates as key players explaining the
heavy-tailed distribution of group sizes and the apparent
proportional growth of groups to their size.
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We study an online community called Flickr [32], where
members can create and join groups. The groups in
Flickr are mainly used to collaboratively post photos as-
sociated with the theme of the group. We will consider
each group as an element of the system characterized by
the number of members belonging to the group (group
size). We have collected two datasets containing in to-
tal over 260,000 member-created groups in Flickr, which
accounted for over 65% of all public groups existing in
Flickr. The first dataset has high temporal resolution
and a wide time window. It contains 9,503 groups tracked
for 350 days, between June 5, 2008 and May 20, 2009,
by the publicly accessible external service called Group-
Trackr [33]. The service tracked on a daily basis the num-
ber of members of the groups. The second dataset has
shorter time window and minimal temporal resolution,
but it covers a larger number of groups. It contains over
260,000 public groups for which we gathered information
on the number of members, collected in two snapshots
on December 18, 2009 and January 29, 2010. For these
groups we also gathered estimated information on their
birth date. As an estimation of the group birth date we
consider the time when the first photo was posted to the
group pool, as the first photo is normally posted to the
pool soon after the group creation. The oldest groups in
our dataset date back to July 16, 2004.

II. GROUPS’ GROWTH IN FLICKR

We first analyze the time evolution of groups. In
Fig. 1a we show how typical groups grow in number of
members on a daily basis during the period of one year.
As a first approach, a linear growth captures the indi-
vidual trend (despite evident deviations in the form of
sudden jumps). We have performed linear regression of
time evolution of sizes of 9,503 groups over the period of
almost one year. For about half of these groups the coef-
ficient of determination R2 has value over 0.95, and more
than 80% of the groups larger than 1000 has R2 higher
than 0.95. The difference comes from the fact that the
larger groups are affected less by the fluctuations of size.
Aggregated residual plots do not show any clear trend

ar
X

iv
:1

11
0.

56
73

v1
  [

ph
ys

ic
s.

so
c-

ph
] 

 2
5 

O
ct

 2
01

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36055312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pms@ifisc.uib-csic.es
http://ifisc.uib-csic.es


2

FIG. 1. (Color online) Characterizing the time evolution of online groups. (a) Time evolution of the group size for a represen-
tative sample of small and large groups. (b) Distributions of groups’ growth α (open circles) with fitted log-normal distribution
(line). The growth per day α is estimated based on growth over 6 weeks. (c) Distribution of group ages.

deviating from our linear model. The time series cover
considerable part of average lifespan of groups. Thus, we
consider that groups grow linearly in time, the size gi of
the group i evolves as

gi = 1 + αi(t− t0i ) = 1 + αiτi , (1)

where αi is the growth per unit of time, t0i is the birth
date and τi is the current age of group i. We estimate
the two parameters for 260,000 groups. The growth αi for
each group i is calculated as the change of its size during
6 weeks, per day. A log-normal distribution provides the
best fit to the distribution of growth values α (Fig. 1b)
with average µ = lnα = −3.62 and standard deviation
σ = 1.57. Finally, we estimated the current ages of all
groups, finding that the number of groups created daily
has been growing (almost linearly) in time (Fig. 1c).

III. LINEAR GROWTH MODEL WITH
HETEROGENEOUS BIRTH AND GROWTH

Based on those findings we propose a minimal model of
the time evolution of group sizes in Flickr, a linear growth
model with heterogeneous birth and growth, which in
short we will refer as the heterogeneous linear growth
model. The model proceeds as follows, at each time step
t: (i) new groups are created in the system. The num-
ber of groups created in each time step increases linearly

with t. Each newly created group i starts with one mem-
ber and it is assigned its own growth value αi, drawn
from a log-normal distribution. Growth value αi remains
unchanged for the simulation time; (ii) the size of each
group i is increased by αi.

We have run numerical simulations of the heteroge-
neous linear growth model where each time step of the
simulation corresponds to a single day. We have simu-
lated 1959 days in Flickr, from the moment when the
first group from our dataset appeared. As a result of
the numerical simulations we obtain the daily evolution
of the sizes of over 260,000 artificial groups. The distri-
bution of the final sizes of the groups reproduces with
a good agreement the observed distribution (Fig. 2a).
As it can be seen from Fig. 2a there is a small diver-
gence for large group sizes, which could be explained by
the deviations –mostly for small groups– from the linear
growth assumption. First, the strong fluctuations of the
time evolution of group sizes of the small groups (see the
jumps in Fig. 1) lead to a larger ’apparent’ growth than
the real one, therefore leading to an over-estimation of
their growth α and, as a consequence, the model displays
a larger number of big groups than in the real system.

The average growth of groups of the same size, 〈α|g〉,
shows that bigger groups grow faster (Fig. 2b) both for
the real data and the model in accordance with the
Gibrat’s law: 〈α|g〉 ∝ g. This result is obtained even
though the microscopic rules of the model do not imple-
ment the rich-gets-richer principle. The average growth
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FIG. 2. (Color online) The heterogeneous linear growth model
vs. real data. (a) Complementary cumulative distribution
function of groups sizes for the real data (circles), the het-
erogeneous linear growth model (filled triangles) and its an-
alytical solution (solid line). (b) Average daily growth as a
function of the initial size of the groups, estimated for the pe-
riod of 6 weeks and averaged over all groups of a given initial
size, for: the real data (circles), the model (triangles) and its
numerical solution (line). The dashed line corresponds to the
linear behavior 〈α|g〉 ∼ g.

is an average over all groups of a given size, each of them
growing linearly. Due to the heterogeneity and the lin-
ear growth, at a given time larger groups consist of old
groups that grow slowly and younger groups that grow
faster. Thus, the observation of preferential growth for
groups of the same size does not reflect in this case an un-
derlying rich-gets-richer principle, but it is a consequence
of the competition of groups with different growth values
and ages.

The statistical properties of the model can be esti-
mated analytically. From the definition, the average
growth of groups of the same size is given by:

〈α|g〉 =

∫∞
(g−1)/t αpαg(α, g)dα∫∞
(g−1)/t pαg(α, g)dα

, (2)

where pαg(α, g) is the joint probability of having a group
of size g and growth rate α, and

∫
pαg(α, g)dαdg = 1.

The lower limit of the integral is given by Eq. (1) and
depends on g, and the maximum value of τ is limited to

t, if the first group was created at time t = 0. We trans-
form Eq. (2) replacing the joint probability pαg(α(g, g))
by pατ (α(g, τ)) and making the assumption that τ and
α are independent random variables:

〈α|g〉 =

∫∞
(g−1)/t αpα(α)pτ (τ(α, g))∂τ∂g dα∫∞
(g−1)/t pα(α)pτ (τ(α, g))∂τ∂g dα

. (3)

The numerical solution of Eq. (3) for log-normal pα and
linear pτ is plotted in Fig. 2b. Similarly the distribution
of group sizes:

pg(g) =

∫ τmax

0

pgτ (g, τ)dτ (4)

=

∫ τmax

0

pα(α(g, τ))pτ (τ)
∂α

∂g
dτ , (5)

is plotted in Fig. 2a. As one can see the solutions for both
the average growth and the size distribution are in good
correspondence with the results of numerical simulations,
which indicates that the assumptions of independent ran-
dom variables and linear growth are reasonable.1

IV. HETEROGENEITY VS. PREFERENTIAL
GROWTH

We have shown that the heterogeneous linear growth
model captures the statistical properties which com-
monly are attributed to the preferential growth mech-
anism. Thanks to the intrinsic heterogeneity, different
growth patterns are permitted, even if groups have the
same number of members at any point in time. One
can see an example of this in Fig. 1a, where group sizes
are crossing themselves in time, though they continue
to grow as they grew before the crossing. To make a
direct comparison between the two mechanisms, hetero-
geneity vs. preferential growth, we consider the Simon
model [10]. The Simon model has been originally pro-
posed to explain the distribution of words’ frequency in
a written text. In the Simon model a word is added to
the text at every time step. With a given probability it is
a new word. In the other case it is chosen from the text at
random, so the words which appear more frequently are
chosen more often. We have adapted the Simon model
to our system. We have set the parameters to obtain the
same total number of groups and members as in the real
case; also the number of new groups created in the sys-
tem in each time step of the Simon model grows linearly,
to isolate the effect of the heterogeneity. First, in the Si-
mon model the final size of groups is heavily determined
by their initial size measured one year before (Fig. 3a),

1 The two equations are easily solvable if pα is power-law distribu-
tion and α, τ are independent random variables. In such a case
one can show that 〈α|g〉 ∝ g and that pg(g) is a power-law as
well.
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FIG. 3. (Color online) Comparison of Simon and heteroge-
neous linear growth model vs. real data. (a) Initial and final
group sizes over a period of 350 days for the real data (cir-
cles), the heterogeneous linear growth model (filled triangles)
and Simon model (diamonds). Each point represents a single
group, there are 9,503 points plotted for each set of points.
(b-d) Box plots with whiskers at 9th/91st percentile of final
size of groups as a function of their age at the time of the
measurement for 260,000 groups for (b) the real data, (c) the
heterogeneous linear growth model, (d) the Simon model.

thus there is little heterogeneity among the groups, in
contrast to the heterogeneous linear growth model which
displays a degree of heterogeneity similar to the one of

real groups. Second, for the Simon model the correlation
of size and age is strong, while it is weak for real groups
and the heterogeneous linear growth model (Figs. 3b-d).
The wide spread of group sizes corresponds to the high
heterogeneity of groups, which is not captured by the
preferential growth model (as observed in other systems
as, for instance, in the World Wide Web where the num-
ber of links to the page is not strongly correlated with
age of the web page [24]).

V. DISCUSSION

In summary, we have proposed a simple growth model
of heterogeneous elements with associated growing coun-
ters, based on the findings for a social system in an online
community. We found that the model captures many of
the features of the real system of online groups, namely
the heavy-tailed distribution of group sizes, the average
growth proportional to the current size of groups and
the weak correlation between the age and the size of
groups. Furthermore we made a direct comparison of
the heterogeneous linear growth model with a preferen-
tial growth model and showed the similarities and the
differences between these models. In the heterogeneous
linear growth model the heavy-tailed distribution of final
sizes of elements does not emerge from the growth pro-
cess itself (e.g., rich-gets-richer principle), but from the
intrinsic heterogeneity of elements which take part in this
growth process. This certainly does not answer the ques-
tion why some groups grow faster than the others, as we
do not understand yet what factors influence the fitness
of the groups. However it points that it does not have
to be due to the fact that one group is bigger than the
other as in preferential attachment models. The simplic-
ity of our approach suggests that the characterization of
the heterogeneity may play an important role in under-
standing the origin of broad distributions and the time
evolution of many real systems.
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[26] B. Söderberg, Phys. Rev. E 66, 066121 (2002).
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