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Abstract

The purpose of this work is to introduce a new analytical and numerical approach
to the treatment of the initial value problem for the vacuum Einstein field equa-
tions on spacetimes with spatial topologies S3 or S1 × S2 and symmetry groups
U(1) or U(1)×U(1). The general idea consists of taking advantage of the action of
the symmetry group U(1) to rewrite those spacetimes as a principal fiber bundle,
which is trivial for S1 × S2 but not for S3. Thus, the initial value problem in
four dimensions can be reduced to a three-dimensional initial value problem for a
certain manifold with spatial topology S2. Furthermore, following the approach
presented by Beyer et al. in [30], we avoid coordinate representations that suffer
from coordinate singularities for S2 by expressing all the fields in terms of the
spin-weighted spherical harmonics.

We use the generalized wave map formalism to reduce the vacuum Einstein field
equations on a manifold with three spatial dimensions to a system of quasilinear
wave equations in terms of generalized gauge source functions with well-defined
spin-weights. As a result, thanks to the fully tensorial character of these equations,
the system of evolution equations can be solved numerically using a 2+1-pseudo-
spectral approach based on a spin-weighted spherical harmonic transform [112]. In
this work, however, we apply our infrastructure to the study of Gowdy symmetric
spacetimes, where thanks to the symmetry group U(1) × U(1), the system of
hyperbolic equations obtained from the vacuum Einstein field equations can be
reduced to a 1+1-system of partial differential equations. Therefore, we introduce
an axial symmetric spin-weighted transform that provides an efficient treatment
of axially symmetric functions in S2 by reducing the complexity of the general
transform.

To analyse the consistency, accuracy, and feasibility of our numerical infras-
tructure, we reproduce an inhomogeneous cosmological solution of the vacuum
Einstein field equations with spatial topology S3. In addition, we consider two
applications of our infrastructure. In the first one, we numerically explore the
behaviour of Gowdy S1 × S2 spacetimes using our infrastructure. In particular,
motivated by the works of Garfinkle [90] and St̊ahl [183], we study the behaviour of
some geometrical quantities to investigate the behaviour of those spacetimes when
approach a future singularity. As a second application, we conduct a systematic
investigation based on the previous research of Beyer [27, 28] on the non-linear
instability of the Nariai spacetime and the asymptotic behaviour of its perturba-
tions.
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Chapter 1

Introduction

Motivation of this work

For thousands of years, astronomers have struggled with basic questions about the size and
age of the universe. At the beginning of the twentieth century, the astronomer Edwin Hubble
made a critical discovery that soon led to reasonable answers to these questions. Those
measurements marked the first evidence that our universe is expanding. This discovery
caused a profound revolution in our view of the universe, and understanding the source of its
expansion is arguably the most dominant question in cosmology today [176].

In recent years, the standard cosmological model that emerges as a particular solution of
the Einstein field equations has dramatically improved our understanding of the universe. It
is built on several fundamental assumptions and principles; among them the so-called cosmo-
logical principle is particularly important. It states that our current universe is homogeneous
and isotropic, that is, there is neither a preferred place nor direction, at least approximately
on large scales. Although this model has been successful in explaining the majority of the
current observations, such as the current expansion of the universe and the spectrum of the
cosmic microwave background [121], it lacks of a fundamental justification. In fact, the the-
ory of quantum mechanics [137] states that the early universe (just after the universe was
born in the big bang) should have been extremely inhomogeneous and anisotropic due to
quantum fluctuations that yield the creation of the fundamental particles and eventually to
the formation of different kinds of matter distributions such as galaxies, stars or planets.
Hence, fundamental questions arise about how such primordial inhomogeneities evolved and
why they are essentially absent in the present universe on large scales that any consistent
cosmological model must be able to answer.

One way to address this puzzle is by the assumption of an extremely short, but particularly
violent, phase of expansion just after the big bang, called inflation. The basic idea is that
during this phase initial inhomogeneities are effectively smoothed out, and from the point
of view of any local observer, the universe rapidly becomes essentially homogeneous and
isotropic. However, there is theoretical evidence [48, 100] that some assumptions of this
model lead to significant drawbacks as important phenomena are ignored. In fact, it is
conceivable that some inhomogeneities caused by quantum fluctuations would trigger the
formation of primordial black holes [55] during the evolution of the universe. Therefore, if
such phenomenon was better understood and taken into account, then we could obtain more
general and realistic cosmological models.

In recent decades, there have been significant advances in this direction with a major
interest in cosmological models with spherical topologies, that is, with spatial topology given
by S3 or S1 × S2. Some of the most relevant are the spherical Friedman-Robertson-Walker
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Chapter 1. Introduction

models, Kottler-Schwarzschild-de Sitter models, the Bianchi IX and the Kantowski-Sachs
models just to mention a few (for an extended list see [101, 184]). With the exception of a
few particular cases, in general it is difficult to treat those spherical manifolds from both the
numerical and analytic point of view. The main difficulty lies in the fact that the complete
geometry of those manifolds cannot be covered by a single regular coordinate patch, and
any coordinate description of a tensorial quantity inevitably breaks down somewhere. This
problem is known in the literature as the pole problem because in standard polar coordinates
for S2, these coordinate singularities appear at the poles. There are several approaches to
deal with this issue (see for instance [26, 90] and references therein). Recently, Beyer et
al. [29, 30] introduced a pseudo-spectral method to solve the initial value problem for fields
in S2 as background. In particular, they have considered the 2 + 1-Maxwell and 2 + 1-
Dirac equations as test applications. The crucial point consists in expressing the fields in
terms of spin-weighted spherical harmonics which are a generalization of the well-known
spherical harmonic (see for instance [148]) and form a complete basis for any function in
S2. Mathematical concepts such as spin-weight, eth-operators and spin-weighted spherical
harmonics will be discussed in detail in chapter 5.

In the context of general relativity, the S2 topology arises from studies of the Einstein
field equations in several situations. For example, in the asymptotically flat setting, this
topology emerges when the spatial manifold is written as the product R× S2 for addressing
the spherical character of the far zone of the radiation field coming from an isolated source.
On the other hand, in the cosmological setting the topology S2 arises when the original
manifold has been reduced in accordance with the symmetry reduction procedure that will
be explained in chapter 4. Examples of this procedure can be found in the work of Moncrief
in [136] as well as in [32, 33]. Therefore, the main motivation for this work is to apply a
similar analytic formalism and numerical infrastructure for dealing with tensor fields in S2 to
the more complicated situation of the Einstein field equations.

Analytic approach to U(1)-symmetric spacetimes

The general idea of our approach consists of imposing the action of the symmetry group U(1)
on spacetimes with spherical topology in order to write them as a principal fiber bundle that
is trivial for S1 × S2, but not for S3. In order to take full advantage of the symmetry group
action, the original four-dimensional problem can be reduced to a three-dimensional one by
applying a symmetry reduction. In particular, it is known that the vacuum Einstein field
equations with cosmological constant can be reduced to an equivalent system of equations in
terms of a three-dimensional Lorentzian manifold coupled with two scalar fields. In fact, in
chapter 6, we shall demonstrate that after the symmetry reduction procedure we end up with
a three-dimensional manifold with topology R × S2. To our knowledge, this procedure was
first performed for the vacuum case by Geroch in [92]. Later, this idea was implemented by
Maeda et al. [131] in the context of the standard 3 + 1-decomposition, making the problem
suitable for numerical simulations. Nakamura et al. [140] extended the reduction to include
general matter sources and to consider the case of a perfect fluid. Choptuik et al. [58] added
a massless scalar field source without rotation, and later on a more general analysis including
arbitrary sources and rotation was carried out by Rinne et al. [167, 168]. In this work we
will restrict ourselves to the vacuum case because it displays many of the complicated and
fundamental features that we want to address. However, we emphasize that our approach
could be extended to the matter case. This will be done in a future project (see section 11.4).

The formulation of the initial value problem on the three-dimensional manifold with
topology R × S2 is carried out by implementing the generalized wave map formalism [87],
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which can be understood as a covariant version of the more familiar generalized harmonic
formalism. To our knowledge, this formalism was first introduced by Friedrich [87] in order
to generalize the original harmonic gauge considered in the pioneering work of Bruhat [79] on
the proof of well-posedness of the initial value problem in general relativity. This formulation
has gained considerable attention in the last decade due to the success of Pretorius [150]
to perform (to my knowledge) the first binary black holes merging simulation by using this
formulation. One of the reasons for his success consisted in the introduction of constraint
damping terms into the evolution equations which, as will be discussed in section 2.5.2,
enforce the decay of the numerical violation of the constraints along the evolution. This
formulation, which evolves the spacetime metric directly, is considered nowadays as one of
the most attractive methods for the numerical treatment of the initial value problem in general
relativity. For this reason, we have decided to implement it for our numerical infrastructure.
Using this approach, we will reduce the Einstein field equations to a coupled system of
quasilinear wave equations for the metric components and constraints. The coordinates will
be determined dynamically by means of the well-known gauge source functions. Even though
these functions are in principle arbitrary, we shall demonstrate that due to the complexity of
the topology of S2, they have to be chosen in such way that they satisfy certain conditions in
order to be consistent with the generalized wave map formalism. To our knowledge, we are
the first to combine the generalized wave map formalism with the spin-weight formalism and
hence the first to show that this leads to completely regular evolution equations (no singular
terms at the poles). We will devote chapter 6 to this issue.

Numerical approach

The numerical approach is based on the method of lines. Our choice for conducting the tem-
poral discretization is the well-known Runge-Kutta-Fehlberg method. Spatial derivatives are
calculated using the eth-operators [148] and the spin-weighted spherical harmonics transforms
(forward and backward), which are obtained from the algorithm introduced by Huffenberger
and Wandelt in [112] similarly as was used in [30]. As we will explain in chapter 7, the
underlying functional transform is two-dimensional since it represents functions defined on
the two-dimensional manifold S2 (in fact, a two-dimensional Fourier transform performs the
basic work of this transform).

As a result, we will end up with pseudo-spectral 2 + 1-infrastructure for solving the
Einstein field equations for spacetimes with spatial topology S3 and S1 × S2 and symmetry
group U(1). However, in this thesis, we will restrict to use our numerical and analytical
infrastructure to study a subclass of these spacetimes, namely Gowdy symmetric spacetimes.
As will be summarized in chapter 3, the understanding of these scenarios constitute an active
and rich area of investigation in both mathematical and numerical relativity; therefore, we
believe that it is the perfect arena for beginning to apply our infrastructure. In Gowdy
symmetric spacetimes, whose symmetry group is U(1) × U(1), there exist coordinates such
that the Einstein field equations can be reduced to a 1 + 1-system of partial differential
equations due to all the fields in S2 will be invariant under rotations around an axis (when we
consider S2 as the standard sub-manifold in R3), and will not depend on the azimuthal angle
ϕ in standard polar coordinates. For treating such functions, that we will call from now on
as axial symmetric, the two-dimensional transform is inefficient. Therefore, in this work we
present a new efficient implementation of a one-dimensional variant of this transform which
applies to axial symmetric functions in S2. The complexity O(L3) of the general algorithm
of Huffenberger and Wandelt is thereby reduced to the complexity O(L2), where L is the
band limit of the functions on S2 in terms of the spin-weighted spherical harmonics. Thus,
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Chapter 1. Introduction

clearly, using this transform, which will be called axially symmetric spin-weighted transform,
will allow us to optimize the pseudo-spectral implementation for the treatment of Gowdy
spacetimes. We dedicate chapter 7.4.2 to explain the details of this new algorithm.

Applications to Gowdy symmetric spacetimes

As we previously mentioned, using our approach we can reduce the Einstein field equations
into a coupled system of quasi-linear wave equations for the independent coordinate compo-
nents of the metric. In this formalism, the coordinates are determined dynamically by means
of the mentioned gauge source functions which, owing to the complexity of the S2 topology,
have to be chosen such that it allows to treat S2 with a single polar coordinate chart. Thus,
we obtain fully regular evolution and constraint equations where all singular terms induced
by the singular coordinate chart are accounted for explicitly. This regularization has also
been observed to work for the simpler equations considered in [29, 30], but we show here for
first time that this also applies to the full Einstein field equations. This is discussed in detail
in chapter 6. In addition, we carry out a judicious test of our numerical approach by repro-
ducing a family of exact inhomogeneous solutions with spatial topology S3 that belong to the
class of smooth Gowdy-symmetric generalized Taub-NUT solutions introduced by Beyer et al.
in [32] and which was motivated by the early work of Moncrief [135] about generalizations
of the Taub-NUT solution [188]. In this chapter, we explore the behaviour of the constraint
for different gauges by choosing different gauge source functions. Further, we discuss the
different error sources and how they arise in our implementation.

As a second application of our infrastructure, we conduct a study of singularities of Gowdy
spacetimes with spatial topology S1 × S2. It is well-known that in the last years there have
been several investigations of Gowdy spacetime. However, from those, as is summarized
in chapter 3, the most extensively studied by either analytical and numerical methods has
been the case of T3 spatial topology. On the other hand, the other two cases have received
less attention by the community because they exhibit some difficulties associated with the
coordinate poles, where the action of the symmetry group degenerates, which significantly
complicates their analysis. The reason lies in that for the S1 × S2 and S3 cases, the Killing
vectors generated by the action of the symmetry group U(1)×U(1) vanish at certain places
(the poles), in contrast to the T3 case where the two Killing fields are nowhere vanishing.
Thus, smoothness of the metric at the poles requires that the metric components behave in
a particular way at these points. In other words, the smoothness conditions at the poles act
as boundary conditions which are absent in the T3 case. In section 3.3, we summarize some
of the most relevant facts about the Gowdy symmetric spacetimes.

It is expected that the behaviour for the cases S1 × S2 and S3 should be similar to the
T3 case at all points at the singularity except at the poles, since the action of the Gowdy
symmetry group degenerates there. In fact, by means of analytical and numerical tech-
niques Garfinkle [90] confirmed the above by showing that the S1×S2 case displays the same
asymptotic velocity term dominated behaviour (except at the poles), which will be discussed
in section 3.2.2, with the same sort of “spiky” features at isolated points as the T3 case. By
spiky features we refer to spatial points where some metric components or geometric invariant
quantities develop “sharp features” (or simply “sharps”) in space the closer one approaches
the singularity in time. Those receive the name of spikes and are divided into two classes,
namely false and true spikes. The first class can be seen as “problems” due the chosen co-
ordinates (without any geometrical meaning) causing that some metric components develop
“sharps” in space near to the singularity. On the other hand, true spikes represent a local-
ized change in the geometric behaviour of the solution at the singularity causing geometric
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quantities like the Kretschmann scalar to develop sharps in space.
Spikes are mostly present in Gowdy spacetimes at the singularity; hence, a better under-

standing of those is needed in order to draw general conclusion about the behaviour of these
cosmological models. An example of this is found in the analysis carried out by St̊ahl [183] for
Gowdy spacetimes S1 × S2 and S3. Using Fuchsian methods, analogous to that done in [116]
for the T3 case, he found that under some given conditions it can be shown that there exists
a family of AVTD solutions for the cases S1 × S2 and S3. However, because of smoothness
conditions, the behaviour of those at the polar regions is still not well understood. St̊ahl
associates the complexity of analysing the dynamics of this sort of spacetimes near the polar
regions with a possible emerging of spikes. In other words, St̊ahl predicts that, in general,
spikes should emerge at the poles; consequently, a direct treatment by Fuchsian methods is
not enough for studying the behaviour at the singularities of those Gowdy spacetimes. Fur-
ther, the nature of this possible polar spikes remains unclear. Motivated by the above, as a
first application of our analytical and numerical infrastructure, in chapter 9 we numerically
study the behaviour of Gowdy spacetimes S1×S2. In particular, we study the rising of spikes
at the regions near the poles. However, since only true spikes have geometrical meaning,
we will focus on studying those by means of the behaviour of the Kretschmann scalar. By
doing so, we will show evidence that supports the claim that spikes are typical features at
the singularity at the poles.

As a third application of our infrastructure, in chapter 10 we conduct a systematic inves-
tigation of a particular spatially homogeneous solution of the vacuum Einstein field equations
with a positive cosmological constant called the Nariai spacetime [142]. This spacetime has
become an object of special interest since Ginsparg and Perry [95] proved that it emerges
as the extremal limit of Kottler-Schwarzschild–de Sitter spacetime [122], which can be in-
terpreted as a static black hole immersed in a de Sitter universe, which is the maximally
symmetric solution of the vacuum EFE with a positive cosmological constant that represents
an expanding universe at an exponential rate. In other words, the Nariai spacetime can be
interpreted as a de Sitter universe containing a black hole of maximal size, that is, the ratio
of the black hole is equal to the cosmological horizon.

Thanks to its geometrical properties, the Nariai spacetime has been useful for modelling
several situations. Among them, some works for modelling the quantum pair creation of black
holes during the inflation epoch were carried out by Bousso and Hawking [42–44]. These cos-
mological models “at the borderline between inflation and gravitational collapse” were based
on considering spherically symmetric perturbations of the Nariai spacetime. It was found that
under certain conditions these models yield inflationary universes locally isometric to the de
Sitter universe in agreement with the so-called cosmic no-hair conjecture [94, 106]. As we
will explain in chapter 3, this conjecture states that generic (inhomogeneous and anisotropic)
expanding solutions of the Einstein field equations with a positive cosmological constant ap-
proach to the de Sitter spacetime asymptotically, which is well-known to be homogeneous
and isotropic. Although there is some support for this conjecture in some special situa-
tions [120, 160, 194], the general case remains unclear due to the complexity of the Einstein
field equations. One of the most interesting features of the Nariai spacetime is that it is a
particular case where the conjecture does not hold. Therefore, if this conjecture is assumed
to be true, as it is usually expected, the Nariai solution should not be generic in a certain
sense, and in particular, it should be unstable under arbitrary perturbations.

Motivated by the above, Beyer [27, 28] considered this question under a particular kind
of perturbations, namely Gowdy symmetric perturbations. The basic idea of his approach
consists of embedding the Nariai spacetime in a more general class of solutions that shares
the same spatial topology, say S1 × S2. The perturbations are defined as solutions of the

5



Chapter 1. Introduction

Einstein field equations whose initial data in some Cauchy surface are “close” to data in
a Cauchy surface of the Nariai solution. The word “close” in this context means that the
two data sets (Nariai and its perturbations) should not deviate “excessively” with respect
to some suitable norm. Following this approach, the first work [27] was dedicated to study
the instability of the Nariai solution under general homogeneous perturbations which gives
rise to a parametric family of spatially homogeneous solutions, namely the Kantowski-Sachs
family. The second work [28] was devoted to the investigation of spatially inhomogeneous
perturbations. Here, the perturbations were defined in the Gowdy symmetric class with
spatial topology S1 × S2. Therefore, all the fields are invariant under translations along the
manifold S1 by the action of the group U(1) and under rotations around the polar axis of
S2. Based on a series of numerical experiments for different initial data sets, the expected
instability of the Nariai solution under this sort of perturbations was confirmed. However, as
is pointed out by the author, the underlying mechanism that triggers either the expanding or
collapsing behaviour of the perturbed spacetime was not well understood. This is one of the
questions that we address in chapter 10. We study the mechanism whereby Gowdy symmetric
perturbations of the Nariai spacetime develop either an expanding or collapsing behaviour in
order to obtain greater understanding of the instability of the Nariai spacetime. Additionally,
we explore the asymptotic behaviour of the perturbations of the Nariai spacetime for both
when the curvature blows up (the collapsing case) and when it tends to a constant value (the
expanding case). In particular, the latter case is analysed in light of the CNH.

Organization of this work

This work is organized as follows. In the first part, called Preliminaries, we review the
most relevant existing results and numerical techniques related to this work. These are
mainly summarized in chapters 2 and 3. In addition, we provide all the necessary underlying
mathematical background material on which our analytical and numerical method is based in
chapters 4 and 5. Later in Part II, the analytical treatment for the initial value problem for
U(1) symmetric spacetimes with spatial topologies S3 or S1 × S2 is introduced in chapter 6,
followed by a detailed discussion of the pseudo-spectral approach in chapter 7. In Part III, we
present and analyse three applications of our infrastructure to Gowdy symmetric spacetimes.
In particular, chapter 8 is devoted to reproducing an exact solution of the vacuum Einstein
field equations with spatial topology S3 in order to test our infrastructure. In chapters 9 we
focus on numerically studying the emerging of spikes near the polar regions for the case S1×S2

with zero cosmological constant. Later in 10, a situation with a positive cosmological constant
is considered in order to study the non-linear stability of the Nariai spacetime. In chapter 11
we summarize the results obtained in this work and discuss some future projects. Since,
the aim of this work is to be as self-contained as possible, in appendix A we have included a
summary of some mathematical tools in differential geometry, such as fundamental definitions
and conventions, that will be used in this work. We recommend the reader to have a “quick
view” of this chapter in order to get familiar with the notation used in this thesis.
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Preliminaries
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Chapter 2

Approach to the Einstein field
equations

The Einstein field equations (EFE) consist of a system of ten coupled, non-linear, partial
differential equations (PDEs) in four dimensions, which are in general difficult to solve an-
alytically. Because of this complexity, exact solutions of the EFE are only known in some
particular cases such as spherical or axially symmetric solutions as well as homogeneous so-
lutions. However, if one is interested in studying cases with little or no symmetry at all,
it is very likely that finding an analytic solution of the EFE turn out to be an impossible
task. In order to overcome this difficulty, researchers tried to solve the EFE using numerical
techniques initiating in this way the field of the numerical relativity.

Numerical relativity appeared as an independent field of research in the 1960s with the
pioneering efforts of Hahn and Lindquist [104], but it was not until in the 1970s when the first
truly successful simulations were carried out by Smarr [180] and Eppley [75] in the context
of collision of two black holes. However, at that time, the power of the available computers
was very modest, and the simulations that could be performed were limited to some specific
cases. This situation changed during the decades of the 1980s and 1990s with the appearance
of better computers, which allowed researchers to tackle many different problems in gen-
eral relativity such as rotating stars, black hole collisions, gravitational collapse, singularity
structures, and the collisions of compact objects like neutron stars. A general introduction
to numerical relativity can be found in [15,124,125] and more detailed discussion is available
in the books [1, 16].

One of the essential difficulties in numerical relativity is to achieve long-term stable and
accurate calculations. To do so, there have been proposed several ways to write the EFE
which are mathematically equivalent. However, experience over the years has revealed that
equivalent sets of evolution equations display different numerical stability. We devote this
chapter to discussing some of the most relevant formulations that are used in numerical
relativity. However, in order to provide a context for the discussion, we start the chapter by
reviewing the formulation of the initial value, or simple Cauchy problem, in general relativity.
In addition, we provide a brief discussion about hyperbolicity and stability, which are concepts
that will play a fundamental role in the numerical solution of the Cauchy problem in general
relativity. Then, in section 2.4, we discuss some of the most relevant formulations of the EFE
used in numerical relativity. Moreover, we provide a discussion of the generalized harmonic
formulation of the EFE [79] which corresponds to a particular case of the generalized wave
map formalism [87]. The latter will be chosen for our numerical implementation and will
be discussed in chapter 6. For some applications of the generalized harmonic formulation in
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general relativity; see, for instance, [12,127,151,152].

2.1 The Einstein field equations

In the theory of general relativity, we consider the spacetime as the set (M, gab), where M is
a smooth real four dimensional manifold endowed with a Lorentzian metric gab of signature
(−,+,+,+), which is a solution of the EFE

Gab + Λgab = κTab . (2.1)

Here Gab := Rab−
1

2
gabR is the Einstein tensor with Rab being the Ricci tensor, κ a propor-

tionality constant and Λ is the cosmological constant. Hereafter we shall choose units such
that κ is equal to one. The gravitational field is measured by the curvature of the spacetime
represented in terms of the Ricci tensor. The energy, momentum and stress of the matter con-
tent are represented by the symmetric energy-momentum (or stress-energy) tensor denoted
by Tab. All non-gravitational sources of energy and momentum in the spacetime contribute
to Tab like particles, fluids, fields, etc. Therefore, the EFE relate the geometry of spacetime
with its matter content. For the particular case when there is no matter content, say the
vacuum case, the EFE can be written in the shorter form

Rab = Λgab . (2.2)

This is the case that we will consider in this work. The equation is written in such a way
that the space and time are treated in an equal manner. This covariance is very important
(and quite elegant) from a theoretical point of view, but it does not allow us to think clearly
about the evolution of any system described by the EFE. Thus, the first thing we need to do
in order to rewrite the EFE as a Cauchy problem is to split the roles of space and time in a
clear way. We devote the next section to the treatment of this issue.

2.2 Formulation of the Cauchy problem

2.2.1 Cauchy surfaces

A hypersurface Σ of the manifold M is the image set of a 3-dimensional manifold by the
embedding Φ : Σ → M , where “embedding” means that Φ is a diffeomorphism, that is, an
one-to-one mapping such that both Φ and Φ−1 are continuous. The induced metric on Σ is
defined by (see [98])

hab = Φ∗gab .

The hypersurface is said to be spacelike if the metric hab in Σ has signature (+,+,+), timelike
if the metric has signature (−,+,+) and null if the metric has signature (0,+,+). If the
tangent vector field to a curve are timelike or null, the curve is a causal curve. A Cauchy
surface is a spacelike hypersurface Σ in M such that each causal curve intersects Σ once and
only once. Not all spacetimes admit a Cauchy surface. An example of these are spacetimes
with closed timelike curves like the extensions of the Taub-NUT solution [144]. A spacetime
(M, gab) that admits a Cauchy surface is said to be globally hyperbolic. An important conse-
quence of this is that the spacetime can be foliated by a family of Cauchy surfaces (Σt) such
that

M =
⋃
t∈R

Σt .
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By foliation or slicing, we mean that there exists a smooth scalar field τ on M which is
regular (in the sense that its gradient never vanishes) such that each hypersurface is a level
surface of this scalar field. Mathematically we write this as

∀t ∈ R, Σt = {p ∈M | τ(p) = t} .

Since we assume that τ is a regular scalar field, the family member of hypersurfaces Σt do not
intersect each other, that is, Σt ∩Σt′ = ø for t 6= t′. The scalar function τ can be interpreted
as a global time function.

2.2.2 The Cauchy problem

Let (M, g) be a 4-dimensional globally hyperbolic spacetime such that it can be foliated into
Cauchy surfaces Σt parametrized by a global time function. In addition, let us consider a
unit normal vector na to the Cauchy surfaces Σt. The spacetime metric gab induces a spatial
metric hab on each Σt by means of the relation

hab = gab + nanb . (2.3)

Let ta be a vector field on M satisfying ta∇at = 1. The vector ta can be decomposed into its
normal and tangential parts to Σt by defining the lapse function α and the shift vector βa

respectively

α := −tana, βa := habt
b . (2.4)

We remark that these quantities cannot be considered as dynamical variables of the spacetime
evolution since they represent the gauge freedom that fixes the coordinates in which the
evolution equations are treated. On the other hand, we introduce the extrinsic curvature (or
second fundamental form) as follows1

Kab :=
1

2
Ln hab . (2.5)

The trace of this quantity K := Kaa is called the extrinsic mean curvature and can be
interpreted as a measure of how much the Cauchy surface Σt changes along the vector field
na. The EFE yield a system of ten second-order partial differential equations for the ten
unknown metric components gµν . From those ten equations, six determine the evolution of
the metric components, while the remaining four represent conditions (or constraints) that
must be satisfied during the evolution. The latter are extracted in view of the fact that
Gabn

a does not contain second-order derivatives of the metric components gµν . Using the
Gauss-Codazzi and Codazzi-Mainardi equations (see [195]) these constraint equations can be
written in the conventional form2

(3)R+K2 −KabKab − 2Λ = 2ρ, (2.6)

Db(Kba − hbaK) = ja, (2.7)

where (3)R and Db = hb
aDa are the projected Ricci scalar and covariant derivative in some

Σt, and ρ := nanbT
ab, ja := habncT

bc correspond to the energy and momentum density
respectively. Note that as a consequence of the Bianchi identities for the Ricci tensor we
have DaGab = 0. This fact guarantees that if the constraints are initially satisfied, they

1See section A.5.
2Note that as stated in section 2.1, we are using units such that κ = 1 in the EFE.

11



Chapter 2. Approach to the Einstein field equations

should be preserved during the whole evolution, i.e., the constraint propagates during the
evolution. Hence, the solution obtained from the evolution equations corresponding to an
arbitrary initial data set is a solution of the EFE; consequently, the given formulation of the
Cauchy problem is well-posed. Here we want to point out that the concept of well-posedness
of the Cauchy problem restricts its attention to only certain properties of the solutions like
short-time existence, uniqueness and continuous dependence on the initial data. Thus, this is
a necessary condition for the formulation of the initial value problem, otherwise one cannot
expect to obtain reliable conclusions about solutions achieved numerically.

A Cauchy development (M, gab) of a given initial data is called maximal global hyperbolic
development if there is no further Cauchy development of the same initial data set which
is an extension of (M, gab). An important contribution by Choquet-Bruhat and Geroch [61]
building on earlier work by Choquet-Bruhat [59] is the following theorem.

Theorem 2.2.1 Let (Σ, hab,Kab) be a vacuum initial data set. Then there exists a unique
(up to isometry) maximal Cauchy development of (Σ, hab,Kab).

In fact, the authors proved this theorem for the case of Λ = 0 but it is straightforward
to generalize their arguments (see [195]). An important consequence of this theorem is that
for a given fixed initial data set, the maximal Cauchy development is an extension of all
corresponding Cauchy developments. Hence, this result shows that the requirement for a
formulation of the Cauchy problem of EFE to be well-posed discussed above can indeed be
met.

2.3 Hyperbolicity and well-posedness

In what follows, we discuss briefly the notion of hyperbolicity, well-posedness and stability.
We will provide definitions (most of them taken from [1]) that are necessary for the rest of
this work. For a more extended discussion we refer the reader to the mentioned source as well
as [157] and references therein. Let us begin by considering the following first-order system
of evolution equations

∂tu+ Πi ∂iu = s(u) , (2.8)

where u is some n-dimensional vector-valued function of time and space, Πi are n×n matrices,
∂i denotes spatial derivatives for each spatial dimension and s(u) is a source term that may
depend on the components of u but not on their derivatives. The matrices Πi are usually
called characteristic matrices. Consider an arbitrary spatial unit vector σi and the matrix
P (σi) := Πi σi known in the literature as the principal symbol of the system. It is said that
the system is strongly hyperbolic if the principal symbol has real eigenvalues and a complete
set of eigenvectors for all σi. If, on the other hand, Πi has real eigenvalues but does not have
a complete set of eigenvectors the system is said to be weakly hyperbolic. It can be always
defined a matrix H(σi) called symmetrizer 3

H(σi) =
(
V −1

)T
V −1,

where V is the matrix of column eigenvectors of P (σi). For the particular case when the
symmetrizer is independent of σi, we say that the system is symmetric hyperbolic. Thus,
symmetric hyperbolic systems are strongly hyperbolic but not in the other way around.
However, in the case of one spatial dimension this distinction does not arise since the spatial
unit vector σi turns in to a constant that does not affect the symmetrizer. In this work, this

3The super index T indicates matrix transposition.
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case will be of particular relevance. In fact, for the particular situation that we will consider
in section 10.3, all that we have to do in order to determine whether our system is symmetric
hyperbolic is to check whether the matrix Π has a complete set of eigenvectors with all its
eigenvalues real numbers.

A crucial property of symmetric hyperbolic systems is that it can be proved that they are
well-posed, which means the following:

(i) There exists a local unique solution u of Eq. (2.8).

(ii) The solution u depends continuously on the initial data. In other words, small changes
in the initial data will correspond to small changes in the solution.

The above can be expressed more formally as follows. A system of partial differential equa-
tions is called well-posed if we can define a norm ‖·‖ such that

‖u‖≤ κeαt‖u0‖ , (2.9)

where u0 corresponds to the initial value of u with κ and α real constants. That is, the
norm of the solution can be bounded by the same exponential than for all initial data. This
indicates that the norm of u is bounded by a certain function, thus the system is stable.

2.4 Some formulations for the numerical solution of the EFE

There are several approaches for solving the EFE. The first was given by Arnowitt, Deser
and Misner [11] with the purpose of constructing a canonical formulation of the EFE seek-
ing the quantum nature of spacetime. Later in the late 1970s, this formulation was used
by Smarr and York [181, 182] (with a slightly different notation). Hereafter, we refer to
this formulation as the standard ADM formulation. This approach is based on splitting the
EFE into constraint and evolution equations as described in section 2.2.2. Up to the middle
of 1990s, the ADM formulation was the standard formulation in numerical relativity. This
method allowed researchers to study several situations that had never been explored before,
such as the formation of a naked singularity from collision-less particles [177], the critical
behaviour for a black-hole formation [57] and the black-hole horizon dynamics [10] just to
mention a few. Nevertheless, when scientists tried to make long-term simulations, they were
often interrupted by unexplained blow-ups in the violation of the constraints. Initially, this
was thought to be due to the lack of resolution, inappropriate gauge choice or the particular
numerical scheme implemented. However, after the accumulation of some numerical experi-
ence, researchers noticed that the lack of stability in long-term numerical simulations can be
related to the fact that the system of PDEs was only weakly hyperbolic. See, for instance, [1]
for a detailed demonstration.

In the early 90’s, Nakamura and Kojima [141] presented a reformulation of the ADM
formulation based on a conformal transformation which improved the stability of the standard
formulation. This new approach evolved over the following years until the late 90’s when
Baumgarte and Shapiro [14] compared it systematically with the ADM formulation in a
series of spacetimes showing that the new formulation had far superior stability properties
for all cases considered. Later, this formulation became the most popular until today. In fact,
nowadays it is used by most large three-dimensional codes in numerical relativity. The more
common version of this formulation is based on the work of Shibata and Nakamura [178] and
is commonly known as the BSSN formulation (Baumgarte, Shapiro, Shibata and Nakamura).
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In order to understand the superiority of the BSSN with respect to the ADM formulation, a
series of numerical comparison tests has been conducted by several research groups around
the world. In particular, Alcubierre et al. [2] found that one of the essential improvements of
the BSSN formulation lies in the use of the momentum constraints in the equations. Later,
Sarbach et al. [174] showed that the BSSN formulation is in fact strongly hyperbolic, so it is
natural that it behaves better than the ADM formulation, which is only weakly hyperbolic.

Following the idea of hyperbolicty, several strongly hyperbolic formulations of the EFE
have recently been proposed. We refer to them as strongly hyperbolic formulations. Some
of the most relevant formulations nowadays are the Bona-Massó [38–40] formulation, the
Frittelli-Reula formulation [89], the Kidder-Scheel-Teukolsky (KST) formulation [118], the
Nagy-Ortiz-Reula (NOR) formulation [138], the Conformal formulation [83] and the general-
ized wave map formalism [87], which can be understood as a covariant version of the more
familiar generalized harmonic formalism that was first introduced by Friedrich in order to
generalize the original harmonic gauge considered in [79]. In particular, the latest formula-
tion has gained considerable attention in the last decade due to the success of Pretorius [150]
performing (to our knowledge) the first binary black-hole merging simulation by using this
formulation. One of the reasons for his success consists of the implementation of “constraint
damping terms” in the evolution equations, which, as we will discuss in more detail in sec-
tion 2.5.2, enforce the decay of the numerical violation of the constraints along the evolution.
This formulation that evolves the full four-dimensional spacetime metric, and is not directly
based on the 3 + 1-formalism, is considered nowadays as the most powerful contender for the
BSSN. For this reason, we have decided to implement it in our numerical infrastructure.

2.5 The idea of the generalized wave map formalism

2.5.1 The general setting

Following the approach introduced by Friedrich [85], we can reduce the resulting PDE system
from EFE into a coupled system of quasi-linear wave equations for the independent coordinate
components of the metric. Later in section 6.3, we will apply this formalism to obtain general
evolution equations for the particular manifold R×S2. For now, let us start by rewriting the
components of the Ricci tensor as (see [88])4

Rµν = −1

2
gρσ∂ρ∂σ gµν +∇(µΓν) + Υµν , (2.10)

where the third term Υµν is a tensor which does not contain any second-order derivatives
of the metric. Hereafter, we denote this third tensor by Υµν(g, ∂g) to indicate that it only
depends on the metric components and its first derivatives. The terms Γµ denotes the con-
tracted connection coefficients Γν := gµρΓνµρ (see [184]). For the latter, it is assumed that it
satisfies

∇µΓν := ∂µΓν − ΓρνµΓρ,

which in other words means that the terms Γµ will be treated as covector components.
Note that Γνµρ corresponds to the standard Christoffel symbols if we use a coordinate frame.
However, as we will discuss in section 6.3, this will not be the case for our particular situation.
To continue with the description of the generalized wave map formalism (GWF), let us
note that the Ricci tensor considered as a differential operator acting on the metric is not
hyperbolic because of the second-order derivatives of the metric contained in ∇(µΓν). Thus,

4We have use ∂ρ to denote general frame vectors.
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the PDE theory for hyperbolic system cannot be used to guarantee well-posedness of the
Cauchy problem. One way to overcome this problematic situation is by adding the so-called
gauge functions Fµ, introduced by Friedrich in [85]. We start by defining a tensor field

R̂ab := Rab +∇(aDb), (2.11)

where the components of Dν are defined by

Dν := Fν − Γν . (2.12)

Thus, substituting this expression into Eq. (2.10), the components Rµν of the Ricci tensor
Rab can be written as

R̂µν = −1

2
hρσ∂ρ∂σhµν +∇(µΓν) + Υµν(h, ∂h) +∇(µDν), (2.13)

where the quantity Da has to be a covector in order to preserve Rµν as the components of
a tensor. Later in section 6.3, we will come back to this delicate issue for our particular
implementation in R × S2. Hereafter, we will refer to it as the violation covector. The
functions Fµ are allowed to depend on the metric and the spacetime coordinates but not on
the derivatives of the metric. Thus, if this is given, the Eq. (2.13) turns into a hyperbolic
quasi-linear system for the metric components. In order to recover the original Ricci tensor,
we set the violation covector Da and its covariant derivative ∇(aDb) equal to zero. Thus,
these will be the constraint equations along the evolution. The gauge source functions and
the initial data determine the coordinates by

∇ν∇νxµ = −Fµ.

The constraint equations are preserved since the evolution of Da is driven by quasilinear wave
equations known as the subsidiary system (see [162] for details)

∇b∇bDa +Db∇(bDa) = 0. (2.14)

This tensorial equation is obtained by substituting the modified Ricci tensor Eq. (2.13) into
the EFE and using the divergence free property. Under the above consideration, the local
Cauchy problem for the system Eq. (2.13) is well-posed; therefore, we can guarantee the
existence and uniqueness of the solution and their continuous dependence on the initial data.

2.5.2 Constraint damping terms

Although hyperbolicity is a desirable property to guarantee the well-posedness of the system,
it does not necessarily guarantee the stability of any numerical solution obtained from it.
In fact, it may happen that in a hyperbolic formulation (see [179]) of the EFE, the error
associated with the constraint violation may grow at a bounded rate. Furthermore, this
error behaviour may not necessarily be due to the numerical algorithm itself, but to the
hyperbolic formulation of the EFE admitting rapidly growing solutions. See the discussion
in [152]. Therefore, it would be desirable if one could find a formulation of the EFE in which
the submanifold of solutions, which also obeys the constraints, was an attractor. Clearly,
this requires a mechanism for breaking the time-reversal symmetry of general relativity away
from the constraint surface. Some mechanisms have been suggested that include dynamic
adjusting of free parameters of the constraints (see for instance [190]) or adding derivatives of
the constraints so that the system becomes mixed parabolic and hyperbolic [52]. In particular,
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Brodbeck et al. [47] have suggested a general approach called λ-system to solve a system of
evolution equations and constraints such that the constraint surface is an attractor. Later on,
following this idea, Gundlach et al. [103] introduced the so called constraint damping terms
into the EFE by adding to the Ricci tensor Eq. (2.13) the term

κ
(
η(aDb) − gabηcDc

)
,

with ηa being a timelike vector and κ a constant. With this new term the subsidiary equation
Eq. (6.11) takes the form

∇b∇bDa +Dd∇(dDa) = 2κ∇cη(aDc). (2.15)

They have shown by means of perturbations of the Minkowski spacetime that all the “short
wave length” modes in the solutions of the subsidiary system Eq. (2.15) are damped at either
the rate e−κt or e−κt/2. In the last years, a good amount of numerical simulations have been
successfully conducted using this approach (see for instance [128, 150]), which confirms its
effectiveness for several situations.

Nevertheless, a complete understanding of how the “long wave length modes” solutions
are damped (or not) for generic spacetimes is still missing. Due to the expanding (or collaps-
ing) behaviour of most cosmological spacetimes, the “long wave length modes” are expected
to be dominant during the evolution. Therefore, for our particular interests (cosmological
spacetimes), we do not know whether or not adding constraint damping terms to the evolu-
tion equation will help to control the behaviour of the constraint. Later in section 10.5.2, we
will address again this issue in the investigations of the non-linear instability of the Nariai
spacetime.

2.5.3 Gauge drivers

One disadvantage of the GWF is that (to our knowledge) there is not a geometric description
of the relationship between the regular gauge source functions and the resulting spacetime
coordinates. One way to introduce a sort of criterion for the choice of such functions is by
means of the well-known lapse and shift view of the coordinate freedom (see section 2.4).
Using this, we can promote the regular gauge source functions to “system variables” by
proposing evolution equations for them, usually called gauge drivers, depending on some
prescribed lapse and shift. See, for instance, the formulation in [151]. Even though this
approach has been useful for the numerical solution of the EFE in some complicated scenarios
(see [150]), it may not be a good choice from a mathematical point of view. The reason lies
in the fact that the resulting system of evolution equations (including the gauge drivers) may
not be hyperbolic; hence, the setting of the Cauchy problem may not be well-posed any more.
In order to determine the hyperbolicity of the system, one would have to analyse the resulting
system of equations for the chosen gauge drivers with the particular choice of lapse and shift.
Later in section 9.3 and section 10.3, we will appeal to this sort of method in order to keep
the form of some metric components during the evolution. Some other (and more general)
proposals for gauge drivers that preserve the hyperbolicity can be found in [127,128].

On the other hand, a modified version of the GWF that uses precisely this idea of gauge
drivers is the Z4 formulation [36,37] proposed by Bona et al. The main idea of this approach
consists of combining the GWF with the standard ADM decomposition in order to turn the
EFE into a system of ten non-linear evolution evolutions, i.e., the four elliptic constraint
equations are transformed into evolution equations. To begin with, they start by writing
the Ricci tensor as proposed in the GWF by Eq. (2.13). In this formulation they refer to
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the violation covector Da as Za (from whence we assume the name comes from). Then, by
replacing the Ricci tensor in the EFE, followed by the standard ADM decomposition (see [16]),
the evolution equations for the extrinsic curvature K, the induced metric hab and the four
components of the Za covector are obtained. The evolution equations for the components
of Za now play the role of the Hamiltonian and momentum constraints which clearly are
satisfied when the components of Za vanish. It is important to highlight that in order to
obtain a strongly hyperbolic system, the slicing condition for the lapse function has to satisfy

(∂t − Lβ)α = −α2 f(α)
(
K − 2αZ0

)
, (2.16)

which is a generalization of the standard Bona–Masso slicing condition [39]. Then, provided
that f > 0 this slicing condition yields the strongly hyperbolicity of the Z4 formulation.
Some current application of this formalism as well as some modifications (such as the Z4c
formulation) can be found in [3, 170,197].
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Chapter 3

Cosmological spacetimes

As mentioned in chapter 1, in this thesis we will focus on studying some cosmological space-
times with certain symmetries. Therefore, we will provide some fundamental background
about some of the most remarkable issues and discoveries concerning those kinds of space-
times. We start this chapter by introducing the notion of cosmological spacetime. Then,
based on a symmetry classification, we list some of the most relevant cosmological space-
times in the literature. Later, we discuss relevant issues concerning current investigations on
cosmological spacetimes like cosmic censorship, the BKL-conjecture and the cosmic no-hair
conjecture. Since the aim of this work is to study Gowdy symmetry spacetimes, we devote
the last section of this chapter to introducing them. We based the following discussion on
the references [6, 24,99,155,163,193].

3.1 Generalities on cosmological spacetimes

We define a cosmological spacetime to any spacetime such that it can be foliated by a family
of closed Cauchy surfaces Σt, that is, each Σt is a compact manifold (see section A.1) without
a boundary. The cosmological spacetimes are usually classified depending on the dimension
of the isometry group (or number of Killing vectors) acting on them1. In what follows we
briefly mention some of the most relevant cosmological spacetimes in the literature.

Let us start by considering a vacuum maximally symmetric four-dimensional cosmological
spacetime, that is, a spacetime endowed with ten Killing vectors which coincides with the
dimension of the isometry group acting on it. For the case with a positive cosmological
constant, this spacetime is known as the de Sitter spacetime, which has spatial topology S3

and constitutes the simplest inflationary solution obtained from the EFE. Other interesting
cosmological spacetimes are the Friedmann-Lemaitre-Robertson-Walker spacetimes (FLRW),
which are obtained in the case when the isometry group has dimension six. This symmetry
group is assumed to act on spacelike hypersurfaces as opposed to the ten-dimensional case
above which acts on space and time. Since six is the largest number of dimensions of a
group acting on three-dimensional surfaces, this is the “maximal spacelike symmetry”, which
is also referred to as “spatially homogeneous and isotropic”. For the non-vacuum case, the
symmetries require that the matter fields are of perfect fluid type. The relevance of the
FLRW models, at least for suitable matter fields, stems from the fact that they are the
simplest parametrized models which have been successfully fitted to observational data [121].

One can show [130] that there cannot exist a five-dimensional isometry group acting on
three-dimensional hypersurfaces transitively (see section A.6). Thus, we continue with the

1See section A.6 for a formal definition of isometry groups.
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four-dimensional case. It turns out that there are two possibilities here. The first one arises
when the isometry group has a three-dimensional subgroup that acts simply transitively on
the spacelike Cauchy surfaces. This is called Locally Rotationally Symmetric or simply LRS-
Bianchi. The second case is realized when the four-dimensional isometry group does not have
such a three-dimensional subgroup. This is the so-called Kantowski-Sachs spacetime whose
spacelike surfaces are topologically equivalent to the manifold with geometry S1×S2 [67,115].

If the isometry group is at least three-dimensional and the action of the group is transitive
on the three-dimensional spacelike slices, which are usually called as homogeneous spacelike
slices, we obtain the Bianchi spacetimes. These are classified in terms of the three-dimensional
Lie algebras. See [193] for an introduction to the Bianchi classification and the definition of
the Bianchi types I to IX (and the classes Bianchi-A and Bianchi-B). The relation of the
allowed spatial topologies for (local) Bianchi isometry groups and the Thurston geometries
can be found in [6, 102]. The theory of Bianchi spacetimes has been mainly developed in
the recent years using dynamical system techniques, since the EFE can be reformulated in
system of ordinary differential equations in these cases. For a review of the current state, we
recommend [164] and references therein.

Let us now reduce the dimension of the isometry group further to two. Clearly, such
spacetimes cannot be spatially homogeneous any more. However, we still assume that the
orbits are subsets of spacelike Cauchy surfaces. In particular the Killing vector fields are
assumed spacelike. Further, let us restrict to spacetimes under the global actions of the
group U(1)×U(1). Spacetimes with such characteristics were discussed for the first time (to
our knowledge) by Gowdy in [99]. Later on, some of his arguments and results were clarified
and extended by Chrusciel in [63]. For the particular case when the tangent space orthogonal
to the Killing vector fields is integrable we obtained the so-called Gowdy spacetimes. The
assumption of a global smooth effective isometric U(1) × U(1) group action on a smooth
connected three-manifold has the following implications (see references in [99]). Firstly, the
associated Killing vector fields commute because the group action is Abelian. Secondly, the
action is unique. It can be proved that the only admissible topologies for the spatial three-
manifolds are equivalent to the three-torus T3, the three-sphere S3 (or lens spaces that are
always included implicitly in the following discussions) and S1 × S2. If U(1)×U(1) is a local
isometry group, then further topologies are possible; for instance, see [187]. However, we
will not consider those in this work. For the particular case where the Killing vectors can
be chosen to be orthogonal everywhere is called as polarized Gowdy spacetimes. Since in this
thesis we will focus on the study of Gowdy spacetimes, we will devote section 3.3 to introduce
them.

Next, we decrease the dimension of the isometry group even further to reach the one-
dimensional case. Most investigations about solutions of the EFE of this kind have been
conducted for the particular case when the spatial isometry group is U(1). In this situation,
the spacetime is usually treated by assuming that it is a U(1) bundle over a spatially compact
2 + 1-dimensional spacetime. Finally, the most general class of spacetimes is given when
there are no symmetries. Owing to spacetimes with symmetries should be considered as non-
generic in the space of all solutions of EFE, real statements about the character of generic
solutions cannot be made before this general class can be controlled. Unfortunately, the
techniques, both on the rigorous analytical as on the numerical side, are not sufficient yet
for such general studies. However, relevant techniques are progressing enormously so that
there is hope for deeper understanding in the near future. One of them is the theorem
about non-linear stability of the de Sitter spacetime by Friedrich [86]. This is restricted to
the case of a positive cosmological constant. Similar theorems for scalar fields and matter
models (Einstein-Vlasov models) have been proved by Ringström in [160,164]. Strong cosmic
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censorship and the BKL-conjecture for spacetimes with a scalar field, which resembles a
stiff fluid with its quiescent behaviour, have been studied, for instance, in [7]. Numerical
investigations on those were carried out in [69] and in the vacuum case in [91].

3.2 Some fundamental issues for cosmological spacetimes

3.2.1 The cosmic censorship conjecture

Studies on cosmological solutions of the EFE have led to astonishing results about our Uni-
verse. In particular, observations indicate that there was an initial singularity, or big bang,
in the distant past, and the simplest cosmological models like the Friedmann solutions, for
reasonable matter fields, predict precisely this behaviour. However, the question of whether
such curvature singularity may occur for generic solutions of the EFE is still open. The
Hawking–Penrose singularity theorems [105] shed some light on this question. They predict
incompleteness of causal geodesics and the existence of a singularity in a wide class of sit-
uations. However, the information about the geometric reasons for incompleteness that is
provided by these theorems is limited and does not allow general conclusions to be drawn. For
instance, it be possible that a globally hyperbolic spacetime is extensible to a non-globally
hyperbolic region in which the geodesics are incomplete. In such a case, if the extension into
the non-globally hyperbolic region is regular in an appropriate sense, there can be defined
a Cauchy horizon. By this, we refer to the “region” that separates the globally hyperbolic
“predictable” region from the non-globally hyperbolic rest, with the possibility of many kinds
of pathologies like closed causal curves. An example of this kind is found for the well-known
Taub-NUT spacetime [135, 162, 188]. More examples with this sort of behaviour are also
known for the class of polarized Gowdy solutions; see, for instance, [65, 66]. If these patho-
logical properties were “generic” among solutions of the EFE, Einstein’s theory of general
relativity would disagree with our fundamental beliefs about causality and deterministic laws
of the nature. Then, it is natural to think that there must be a way to exclude these types of
pathological solutions. This is precisely the concern of the strong cosmic censorship (SCC)
which was first formulated (to our knowledge) by Chruściel [64] for the class of cosmological
solutions in vacuum with arbitrary cosmological constant, based on the early ideas of Eardley
et al. [134] and Penrose [147]. The following is a non-rigorous statement of the conjecture.

Conjecture 3.2.1 Let Σ be a compact manifold of dimension 3. Then, for a generic vac-
uum initial data set (Σ, h,K), the corresponding maximal global hyperbolic development is
inextensible.

If this conjecture were true, it would imply that in generic situations, incompleteness of causal
geodesics is indeed caused by a geometric singularity in some sense, while the pathologies like
those encountered for the Taub-NUT spacetime only occur under special circumstances. At
this stage, however, this conjecture has not been confirmed in general situations; see, for ex-
ample, [162]. Additionally, in the presence of black holes, one might relax this conjecture and
state that violations of global hyperbolicity are only allowed when they are inside the event
horizon. This is the notion of the weak cosmic censorship. Weak cosmic censorship is usually
considered in the case of asymptotically flat solutions, and one of the first rigorous results
regarding it was obtained by Christodoulo [62], who proved the validity of this conjecture for
the spherically symmetric case.

21



Chapter 3. Cosmological spacetimes

3.2.2 The BKL-conjecture

The BKL-conjecture is an attempt to describe the properties of gravitational singularities
in general cases. Investigations in this direction were firstly carried out by Khalatnikov
and Lifshitz (KL) [126], and later improved altogether with Belinsky in [17, 18] (BKL). A
review and summary of the main results about this can be found in [20], while some recent
numerical studies can be found in [69, 91]. Further, investigations into the direction of a
precise formulation of the conjecture are given in [107]. This conjecture claims that generic
singularities of solutions of EFE are spacelike and locally modelled by the family of the
Mixmaster universes, which are spacetimes belonging to the class Bianchi IX, that it, one
believes to find infinite sequences of Kasner epochs (spacetime of type Bianchi I) observable
as oscillations when the spacetimes approached towards singularity. Each timelike world-line
is assumed to decouple from all neighbouring world-lines and to behave as an individual
“spatially homogeneous” spacetime. An important consequence of this concept (and also of
the following concept of AVTD solutions) is that spatial derivatives are “negligible”at the
singularity. This is usually referred as silent singularities. Furthermore, the BKL-authors
suggested that “matter does not matter” at the singularity (excluding some special cases),
that is, the details of the matter model are not important for the behaviour of the solution
near the singularity. However, there are cases like stiff fluids, which can “stop” the BKL-
like oscillations in such manner that the solution approaches towards, possibly point-wise
dependent, the Kasner solution [70, 76]. However, in many of the special classes of solutions
considered so far, even in vacuum, the solutions converge “only” to a point-wise dependent
Kasner solution without oscillations. This behaviour is called in the literature asymptotically
velocity term dominated (AVTD), a notion first introduced in [74] and later extended (and
applied) in [114]. One of the reasons why it is important to determine whether a solution is
AVTD type or not is due to Kichenassamy and Rendall [116]. Using Fuchsian methods they
proved that for generic AVTD spacetimes (see for an introduction [155]), the Kretschmann
scalar blows up at the singularity hence, generically, do not admit any extension.

3.2.3 The cosmic no-hair conjecture

Here we state the cosmic no-hair conjecture (CNH) which will play an important role in
our investigation on the asymptotic behaviour of the Nariai spacetime in chapter 10. As far
as we know, the notion of this conjecture was first introduced by Hawking et al. in [106].
The natural underlying question is whether in generic inflationary scenarios, cosmological
solutions of the EFE converge locally to the de Sitter spacetime in the future. A more formal
formulation of the conjecture is stated by Beyer in [27] as follows:

Conjecture 3.2.2 Any generic future causal geodesically complete asymptotically future ex-
panding cosmological solution of the vacuum EFE with positive cosmological constant is foli-
ated by Cauchy surfaces which approach a homogeneous and isotropic foliation of the de-Sitter
solution locally asymptotically to the future.

Although there is some support for this conjecture in special situations, the general case
remains unclear due to the complexity of the EFE. We point out that the precise defini-
tions of “genericity” and “approach” are not fixed by the conjecture. Apart from this, it is
often difficult to identify a foliation with the properties above for a given solution. In the
spatially homogeneous case, there are geometrically preferred foliations and the analysis can
be simplified. Indeed, there are several results in the literature that yield conditions for the
spatially homogeneous spacetimes so that their foliations approach toward a foliation of the
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de-Sitter solution. The first theorem in this direction was stated by Wald in [194] valid for
all the Bianchi spacetimes with Λ > 0. Later on, cases with matter and scalar field content
were considered in [9, 146, 154]. Some other results for the spatially homogeneous case can
be found in [50, 56, 119, 120, 196]. On the other hand, fundamental results in this context of
non-linear stability of the de-Sitter solution were proved in [86], which implies that the CNH
may also apply to certain solutions without any symmetry assumptions.

3.3 Gowdy spacetimes

Since in this work we shall focus on numerically investigating some aspects of Gowdy sym-
metric spacetimes, we devote this section to providing a small introduction to this kind of
solutions of the EFE as well as listing some of the most important known results about them.

3.3.1 General metric with group of motion U(1)× U(1)

In order to construct a metric representation for the Gowdy spacetimes, we will use a global
coordinate system from the isometry group and the properties of its trajectories. In those
parts of the spacetime that contains no degenerate close trajectories, one can choose two of the
spacelike coordinates to be the natural group coordinates. These coordinates are constructed
by choosing a reference point on each trajectory, representing that point by the identity of
the group and labelling any other point on the trajectory by the group parameters which
connects it to the reference point. Then, the group parameters, say ϕ and ρ, can be taken
to be values in (0, 2π). Moreover, the vector fields generated by the effective action of the
isometry group are respectively ∂aϕ and ∂aρ . Therefore, in those coordinates, we can write the
general metric invariant under the group action U(1)×U(1) by assuming that the components
of the metric will be all independent of ϕ and ρ, which is, in other words, demanding that
∂aϕ and ∂aρ are commuting Killing vectors. Let us now consider the twist parameters

c1 := εabcd∂
a
ϕ∂

b
ρD

c∂dϕ , c2 := εabcd∂
a
ϕ∂

b
ρD

c∂dρ . (3.1)

For a vacuum spacetime, these parameters are constant over the whole manifold (See
[93]). For the particular case when they vanish, which is another assumption of the Gowdy
symmetry, it can be proved (see [195]) that the two-dimensional subspace of the tangent space
at each point can be expanded by the orthogonal vectors to the mentioned Killing vectors, that
is, the two-dimensional subspace parametrized by the coordinates (ϕ, ρ) is integrable. On the
other hand, because any regular two-dimensional metric is conformally flat, the coordinates
θ and t can always be chosen so that the reference two-dimensional surface metric takes the
form (see [99])

Gab = L2e2a(t,θ)
(
−dt2 + dθ2

)
, (3.2)

where L is a constant that is included in order to make sure that all of the coordinates and
metric functions are dimensionless. In what follows, we assume L = 1. In the literature
such coordinates are called isothermal. Therefore, the invariance under the group action of
U(1) × U(1) altogether with the assumption of c1 = c2 = 0, the general form of the four-
dimensional Gowdy symmetric metrics is written (using the convention (x0, x1, x2, x3) =
(t, θ, ϕ, ρ)) as

gGowdy = e2a(t,θ)
(
−dt2 + dθ

)
+A

(
(q22dϕ+ q23dρ)2 + (q32dϕ+ q33dρ)2

)
,
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where the matrix formed by the coefficients qmn has unit determinant. The geometrical
significance of this representation is that the area of the group orbit labelled by the coordinates
t and θ is given by 4πL2A. The function A (which depends on t and θ) is usually referred
to as the orbit areal function or just areal function. The coefficients of the matrix qmn can
be parametrized in various ways. The parametrization that is used in most of the literature
about Gowdy spacetimes is choosing q22 = eP/2 , q23 = eP/2Q, q33 = e−P/2 and q32 = 0,
which yields the following metric form

gGowdy = e2a
(
−dt2 + dθ2

)
+A

(
eP (dϕ+Qdρ)2 + e−Pdρ2

)
. (3.3)

Combining two components of the Einstein tensor yields the important relation

G11 −G00 =

(
∂2A

∂θ2
− ∂2A

∂t2

)
/
(
L2e2aA

)
.

If the stress-energy tensor obeys the condition T11−T00 = 0, then the areal function decouples
and obeys the vibrating string equation (see [63])

∂ttA− ∂θθA = 0,

where we have used the notation ∂tt = ∂2/∂t2 as similar with to the variable θ. By choosing
a solution to this equation, one can link the arbitrary coordinates θ, t to the geometrically
invariant orbit area. Different choices for A lead to different global spacetime structures we
will see in the following.

3.3.2 The case T3

For this case, it is chosen A = t with periodic boundary conditions at θ = 0 and θ = 2π.
This spacetime is the “simplest” Gowdy model. In this case, the quantity a from the metric
Eq. (3.3) is usually written in terms of a new variable λ where a := −lnt/4 + λ/2. Then, the
metric takes the well-known form

gT3 = t−1/2 eλ/2
(
−dt2 + dθ2

)
+ t
(
eP (dϕ+Qdρ)2 + e−Pdρ2

)
. (3.4)

In the vacuum case, the evolution equations obtained from the EFE are given by

∂ttP +
∂tP

t
− ∂θθP +

(
∂θQ

2 − ∂tQ2
)
e2P = 0,

∂ttQ+
∂tQ

t
− ∂θθQ+ 2 (∂tP ∂tQ− ∂θP ∂θQ) e2P = 0,

with the constraints

∂tλ = t
(
∂tP

2 + ∂θP
2 +

(
∂θQ

2 − ∂tQ2
) )

e2P , (3.5)

∂θλ = 2t
(
∂tP ∂θP + ∂θQ ∂tQ e2P

)
. (3.6)

If the integral of the right-hand side of Eq. (3.6) vanishes due to the periodic conditions;
see [163], the constraints decouple from the evolution equations because λ can be computed
from P and Q. Hence, in an analytic analysis one can restrict the attention to the two semi-
linear coupled wave equations for P and Q with arbitrary initial data subject only to that
integral condition.
Moncrief, in [134], was able to prove global existence for solutions of these equations and
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showed that there is a crushing singularity in the limit t→∞. Hence, the maximal Cauchy
development of generic Gowdy data sets can be covered with the coordinates in which the
metric Eq. (3.4) has been written. However, this does not exclude the possibility that there
could be extensions beyond these coordinates. Geodesic completeness in the expanding time
direction was proven in [158]. Thus, the main problem was to study the shrinking time di-
rection and its extendibility.
In [66, 114], the polarized case Q = 0 where both Killing vectors can be chosen mutually
orthogonal everywhere was studied. Indeed, their techniques can be also applied to all the
other allowed spatial topologies, say S3 and S1 × S2. Strong cosmic censorship, asymptotic
velocity dominance (AVTD) (hence the BKL-conjecture) was confirmed in this class. Nu-
merical studies by Berger et al. [19, 21] and references therein support the idea that general
Gowdy spacetimes are AVTD.
On the other hand due to its complexity, the non-polarized T3 was first numerically inves-
tigated (to our knowledge) in [22] suggesting a non-oscillatory behaviour. In fact, it was
suggested to be AVTD almost everywhere with spiky features as the exceptional points.
These are formally defined in [156] in terms of the Kretschmann scalar. There are two dis-
tinct classes of spikes, namely false spikes and true spikes. The first class can be seem as
local “problems” due to the chosen coordinates without any geometric meaning causing some
metric components to blow up. On the other hand, true spikes represent a localized change
in the geometric behaviour of the solution at the singularity causing a localized divergence of
the Kretschmann scalar. In [159,161], Ringström showed that generic Gowdy solutions may
develop a finite number of false and true spikes with an AVTD in between, that is, in the open
interval between two spike points spikes, the solutions are AVTD in a precise sense. Hence,
spikes cannot accumulate somewhere thus the BKL-conjecture can be confirmed. Regarding
the SCC conjecture, it was also proved that these solutions are geodesically complete in the
expanding direction which confirms the SCC in this case.

3.3.3 The cases S1 × S2 and S3

Case S1 × S2

The metric for this case is obtained by choosing A = sin t sin θ. A spacetime with spatial
topology S1 × S2 is expected to have a term proportional to sin2 θdρ2 near the rotation axes
at θ = 0 and π. In these coordinates, ρ plays the role of the rotation angle at each axis. Since
the metric has the term Ae−Pdρ2 = sin t sin θ e−Pdρ2, so we need to define a new variable
that differs from P by a term proportional to −ln (sin θ). In addition are introduced the
quantities W and λ defined by P = W − lnA and a = λ/2−W/2 respectively. Using those,
the spacetime metric takes the form

gS1×S2 = eλ−W
(
−dt2 + dθ2

)
+ eW (dϕ+Qdρ)2 + e−W sin2 t sin2 θ dρ2. (3.7)

For this metric to be regular at the rotation axes, it is required that

eλ|sin θ=0= sin2 t+ lim
sin2 θ→0

Q2

sin2 θ
⇒ λ|θ=0,π= ln sin2 t . (3.8)

Additionally, this regularity condition requires Q to be zero at both axes. Moreover, for this
metric to be differentiable at the axes (or poles of S2), Q must be a differentiable function
on S2 so that its derivative with respect to θ must also vanish at the axes. Similarly, the
function W must be differentiable on S2. Thus, the boundary conditions at the axes are

Q|θ=0,π= Qθ|θ=0,π= Wθ|θ=0,π= 0. (3.9)
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Case S3

Similar to the previous case, we choose the areal function to be A = sin t sin θ. A spacetime
with constant time sections with S3 topology would have a metric with a rotation-axis term
proportional to θ2dρ2 near θ = 0 and another rotation axis term proportional to (π − θ)dϕ
near θ = π. In this case, the angles ϕ and ρ reverse roles at the two rotation axes. Therefore,
similarly as in the previous case, the spacetime metric is expressed in terms of the quantities
W and λ such that P = W − ln tan(θ/2)− ln tan(t/2) and a = λ/2. Using those, the metric
takes the form

gS3 = eλ
(
−dt2 + dθ2

)
+ 4

(
eW cos2 t

2
cos2 θ

2
(dϕ+Qdρ)2 + e−W sin2 t

2
sin2 θ

2
dρ2

)
.

Here, the regularity conditions at the poles for Q and W are exactly the same as for the case
S1 × S2. On the other hand, the regularity conditions for the function λ are

λ|θ=0= −W |θ=0+ln

(
1− cos t

2

)
, λ|θ=π= W |θ=π+ln

(
1 + cos t

2

)
.

Some facts about those spacetimes

There are some complete results given by Isenberg et al. [114] restricted to the polarized case
(Q = 0). There, the AVTD behaviour and the SCC are confirmed. Additionally, as mentioned
in chapter 1, Stahl [183] made a Fuchsian analysis analogous to [116] for these spacetimes in
the general case and found that under certain conditions, it can be shown that there exist a
family of AVTD solutions which will imply that the SCC in the shrinking direction. However,
these results are not general, hence have to be considered as partial or incomplete. Some
numerical investigations on the particular cases S1 × S2 and S3 can be found in [24, 90]. On
the other hand, by implementing the soliton method, (see for instance [109]), some partial
analytical results were obtained for the general class of this spacetimes regarding the SCC.
The first one was done by Hennig et al. [110] showing that the Gowdy spacetimes S1 × S2

with a regular past Cauchy horizon develop a regular future horizon if and only if a particular
quantity does not vanish. Later in [32], a similar result for a certain family of metric (smooth
Gowdy-symmetric generalized Taub–NUT solutions) with spatial topology S3 was obtained
by using the mentioned method altogether with Fuchsian methods. However, the nature of
the singular behaviour is slightly different for both cases: In the first case, the curvature
blows up along the entire future boundary, whereas for the second case the singularities are
given just at isolated points of the future Cauchy horizon.

Finally, we want to mention that one of the most recent advances in this kind of spacetime
that we are aware of, was carried out by Beyer et al. [33]. There, continuing with research
initiated in [32], they derive a three-parametric family of exact solutions that contains the two-
parametric Taub-NUT solution as a special case. Furthermore, for a special choice of these
parameters, they showed that the spacetime contains a curvature singularity with directional
behaviour that can be interpreted as a “true spike” analogous to the known results on the T3

case. For other parameter choices, the maximal globally hyperbolic region is singularity-free
but may contain “false spikes”.
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Chapter 4

Symmetry reduction

Generally speaking, the existence of symmetry can be used to reduce the complexity of the
EFE. This fact can be exploited in order to save computational resources when attempting a
numerical solution. In this chapter, we shall see how the EFE for a four-dimensional spacetime
M can be reduced into an equivalent system, that we call the Geroch-Einstein system, on
a three-dimensional Lorentzian manifold S. As mentioned in chapter 1, this procedure was
first introduced in vacuum spacetimes by Geroch in [92], and later extended in the context
of numerical relativity in the works in [58, 131, 140], just to mention a few. Owing to the
relevance of this approach in both our analytical and numerical infrastructure, we present a
detailed discussion of it. We conduct the following discussion based on [84,92,166].

4.1 The space of orbits

Let us assume (M, gab) to be a spacetime under the effective action of a one-dimensional
symmetry group. Then, there is an infinitesimal generator for the transformations which
leaves the metric invariant (see section A.6), namely a Killing vector ξa. Furthermore, it is
well-known that this vector field satisfies the following equations (see for instance [195])

D(aξb) = 0 , (4.1)

DaDbξc = −R d
bca ξd. (4.2)

Let us consider the orbits of the symmetry transformation. These are lines that split the
entire spacetime into a set of lines. The Killing vector is tangent to those lines which can
be considered integral curves of ξa. Next, we define the space of orbits S by considering the
map

π : M → S , (4.3)

which assigns to each point in M the orbit that it lies on. Assuming this map is differentiable,
it introduces a differential structure in S. Since ξa is tangent to the orbits and because π
collapses each line in M to a point in S,

π∗ξa = 0. (4.4)

Since S is a differentiable manifold, it can be defined a tensor algebra over its tangent bundle.
Furthermore, since S is derived from M , it is possible to represent its tensor algebra in terms
of the tensors algebra over M . To do so, let us consider a scalar field ζ : S → R. Then
ζ̂ := ζ ◦π : M → R is a scalar field on M which is constant along the symmetry lines, that is,

ξaDaζ̂ = Lξ ζ̂ = 0.
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Inversely, every scalar field in M that is constant along the symmetry lines can be written
as a scalar field in S combined with the projection map π. Next, consider a one-form αa
on S. Its pull-back α̂a = π∗αa is a one-form in M which satisfies the following two conditions:

Lξα̂a = Lξaπ∗αa = π∗Lπ∗ξaαa = 0,

〈π∗αa, ξa〉 = 〈αa, π∗ξa〉 = 0 .

Conversely, every one-form in M satisfying these two conditions comes from a unique
one-form in S. Next, we consider vector fields in S. Since the algebra of functions in S is
represented by functions in M , which are constant along ξa, every vector field va in M defines
a vector field in S provided that

ξa(ζ) = 0 =⇒ ξa(v(ζ)) = 0.

Note that when acting on scalars in S (represented on M), we obtain va(ζ) = (va + q ξa)(ζ),
so that the vectors va and va + qξa must be considered as “equivalent” for any function q in
M . Thus, let {va} be the equivalence class of va. It follows that

[ξa, vb](ζ) = ξa(vb(ζ))− vb(ξa(ζ)) = 0,

when acting on scalar field in S. Therefore, the commutator will be in general

[ξa, va] = q ξa,

for some function q in M such that the commutator [ξa, vb] is equivalent to the zero vector
field. We can always find a representative vector va in {va} such that the commutator with ξa

vanishes. These representatives are distinguished by scalars in S, that is, {va} = {va + ψ̃ ξa}
for some ψ̃ that is constant along ξa. This implies that we can represent a vector field in S
by an equivalence class of vector fields in M with the property

Lξavb = 0. (4.5)

In order to find a unique representative vector, we have to impose the condition that ξa is
spacelike, i.e.,

ψ̃ := ξaξ
a > 0. (4.6)

Therefore, a unique representative vector va of the equivalence class {va} can be fixed by
requiring vaξa = 0.

Following similar arguments as above, it can be concluded that any tensor T a...b... in S
can be represented as a tensor in M subject to the following conditions

T a...b... ξa = 0 = T a...b... ξ
b, (4.7)

LξcT a...b... = 0. (4.8)

In other words, the Lie derivative along the vector ξa as well as any other contraction with ξa

or ξa vanishes. Finally, because of the tensor algebraic compositions (outer product, scalar
multiplication and contractions) commutes with the map π, the entire tensor algebra in S is
completely and uniquely mirrored by tensors in M subject to the previous two conditions.
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4.2. Induced tensor fields in S

4.2 Induced tensor fields in S

Next, we define the induced metric h̃ab in S, the projector operator h̃ab from M to S and the
volume element εabc compatible with h̃ab by

h̃ab = gab −
1

ψ̃
ξaξb , (4.9)

h̃ab = δab −
1

ψ̃
ξaξb , (4.10)

εabc =
1

ψ̃1/2
εabcdξ

d , (4.11)

where εabcd is the antisymmetric Levi-Civita tensor (Eq. (A.5.4)) associated with gab. Evi-
dently, all these fields are in S since they satisfy conditions Eqs. (4.7) and (4.8). To define the
induced connection in S, let us consider the one-form αa in S. Then, the covariant derivative
in S is defined as

D̃aαb = h̃a
ph̃b

qDpαq , (4.12)

i.e., the covariant derivative in M is projected to S by the action of h̃b
q. Next, we define

some other fields in S that will allow us to express the geometry of S in terms of field in M .
To start with, let us consider ψ̃ being the norm of the Killing vector field Eq. (4.6). This
scalar field is in S owing to

ξcDcψ̃ = 2ξaξcDcξa = 0.

On the other hand, we define the twist of the Killing vector ξa as

Ωa = εabcd ξ
bDcξd, (4.13)

which is by construction, orthogonal to ξa. In virtue of the Frobenius theorem (see [195]),
the vanishing of Ωa is exactly the condition for the hypersurface orthogonality of the Killing
vector to S. In what follows we list some properties of these quantities which will be used in
the next section to relate the geometry of S and M . Next, we express the covariant derivative
of ξa as the sum of two terms, one orthogonal to ξa and another term proportional to ξa. To
do so, we make the ansatz

Daξb = εabcdξ
cvd + 2ξ[aub] ,

with va and ua both orthogonal to ξa. Transvecting with ξb results in

1

2
Daψ̃ = −ψ̃ub =

1

2
D̃aψ̃. (4.14)

Skewing with ξc and taking the dual we obtain

εdcabξcDaξb = −2ξc

(
δp
dδq

c − δpcδqd
)
ξpvq = 2ψ̃vd,

from where the covariant derivative of ξ can be written as

Daξb =
1

2ψ̃
εabcdξ

cΩd − 1

ψ̃
ξ[aD̃b]ψ̃. (4.15)

Using the relation above, we obtain the useful formula (which will be used in the next section)

Daξ
cDbξc =

1

4ψ̃

(
D̃aψ̃D̃bψ̃ + ΩaΩb − h̃abΩcΩ

c (4.16)

+
1

ψ̃
ξaξbD̃cψ̃D

cψ̃ − 2ξ(bεa)cde ξ
cΩdDeψ̃

)
.
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Chapter 4. Symmetry reduction

Now, we list some relations for the one-form Ωa. We start by writing its covariant derivative
as

DeΩa = εacdfReb
dfξbξc +

1

2ψ̃
gaeΩ

bD̃bψ̃ .

On the other hand, we compute the divergence and curl of the twist in terms of the covariant
derivative of S. To do so, noting that D̃aΩa = DaΩa, it can be obtained

D̃aΩa = εabcdD
aξbDcξd + εabcdξ

bDaDcξd .

Finally, using Eq. (4.16) in the first term and Eq. (4.2) in the second term, we obtain

D̃aΩa =
3

2ψ̃
ΩbD̃bψ̃ , (4.17)

D̃[aΩb] = −εabcdξcRdeξe. (4.18)

4.3 Relation between the geometry of M and S

In this section, we express the components of the Riemann tensor Rabc
d of M in terms of

certain fields in S. These relations will expose the relation between the geometry of both
manifolds, and will consequently allow us to “project” the EFE from the four dimensional
manifold M to the space of orbits S.
To begin with, let us note that there are three parts of the Riemann tensor of M which will
have to be treated differently. These are

Rabcd, Rabcdξd, Rabcdξbξd , (4.19)

which thanks to the symmetry and antisymmetry properties listed in Eqs. (A.4.2), encode
all the independent components of the Riemann tensor. The underlined indices indicate
projection with h̃a

b . Because these three parts are tensor fields in S, we will express them in
terms of fields in S. Using the curvature identity for ξa, Eq. (4.2), and Eq. (4.16), we obtain

−Rbcadξcξd = ξcDaDbξc = Da (ξcDbξc)−Daξ
cDbξc,

=
1

2
DaDbψ̃ −

1

4ψ̃

(
D̃aψ̃D̃bψ̃ + ΩaΩb − habΩcΩ

c

+
1

ψ̃
ξaξbD̃cψ̃ D

cψ̃ − 2ξ(bεa)cdeξ
cΩdDeψ̃

)
. (4.20)

The left-hand side of this expression is manifestly orthogonal to ξa. Hence, it can be projected
to S without loss of generality

−Rabcdξbξd =
1

2
D̃aD̃cψ̃ −

1

4ψ̃

(
D̃aψ̃D̃cψ̃ + ΩaΩc − hacΩbΩ

b
)
. (4.21)

Next, we look at the components Rabcdξd which can be obtained from the Killing equation
Eq. (4.2) by projecting all the indices. So we have

−Rabcdξd =
1

4ψ̃3/2

(
εbcdD̃aψ̃ + εcadD̃bψ̃ + εabdD̃cψ̃

)
Ωd − 1

2ψ̃2
εbcdD̃aΩ

d . (4.22)

The final part of the Riemann tensor is the completely projected one. We show by establishing
a relation between the covariant derivatives between both spaces that it can be written in
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4.4. Geroch-Einstein system

terms of the Riemann tensor from S. We start by considering the term D̃aD̃bαc for an
one-form αa in S. Then using Eqs. (4.9), (4.10) and (4.12) yields the relation

D̃aD̃bαc = h̃pah̃
q
bh̃
r
cDp

(
h̃sqh̃

t
rDsαt

)
= h̃pah̃

q
bh̃
t
cDpDsαt −

1

ψ̃
h̃pah̃

q
bh̃
r
c (Dpαq) ξ

sDsαr

− 1

ψ̃
h̃pah̃

q
bh̃
r
c (Dpαr) ξ

tDqαt .

Note that we have not used the underlined indices to indicate projection with respect to h̃a
b

because the metric in S do not commute with the covariant derivative operator D in M .
Now, anti-symmetrizing over the indices a and b we can eliminate the derivatives of αt on
the right-hand side of the equation. In addition, using for the second term Eq. (4.7) and for
the third one Eq. (4.8), it is obtained

D̃[aD̃b]αc = D[aDb]αc −
1

ψ̃

(
(Daαb)(Dcξs)α

s − (D[a|αc)(D|b]ξd) α
d
)
.

Using this expression altogether with Eq. (A.4.3), we obtain the relation between the Riemann
tensor R̃ in S and the Riemann tensor R in M given by the following expression

−Rabcd = −R̃abcd +
2

ψ̃

(
DaξbDcξd + DaξcDbξd −DbξaDcξd −DbξcDaξd

)
. (4.23)

Finally, contracting Eqs. (4.20), (4.21), (4.23) and using the relations listed in the last section
for ξa and Ωa, we obtain the total decomposition for the Ricci tensor of M in terms of fields
in S by

−2ξaξbRab =
1

2
D̃cD̃cψ̃ −

1

4ψ̃

(
D̃aψ̃D

aψ̃ − 2ΩcΩ
c
)
, (4.24)

−ξbRab =
1

2ψ̃2
εabcD̃

bΩc, (4.25)

−Rab = −R̃ab +
1

2ψ̃
D̃aD̃bψ̃ −

1

4ψ̃2

(
2D̃aψ̃D̃bψ̃ − ΩaΩb + h̃abΩcΩ

c
)
. (4.26)

4.4 Geroch-Einstein system

Having expressed the Ricci tensor of M in terms of fields in S, we can “project” the EFE from
M to S. To begin with, let us note that Eq. (4.24) and Eq. (4.26) contain second evolution
equations for the norm ψ̃ and the metric components h̃ab respectively. On the other hand
Eq. (4.25) (which is equivalent to the twist curl Eq. (4.18)), represents a constraint equation1.
This equation, altogether with Eq. (4.17), will be the constraints coming from the symmetry
reduction. However, for the vacuum case, those constraints turned into a evolution equation
for some given scalar field as follows.
By substituting Eq. (2.2) into Eq. (4.18), we obtain that Ωa is closed form, i.e., it satisfies
dΩ = 0. By virtue of Poincaré’s theorem (see for instance [184]), it can be introduced a twist
potential ω̃ such that

Ω = dω̃ ⇐⇒ Ωa = D̃aω̃. (4.27)

1Some authors refer to it as Geroch constraint [166,168]
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Chapter 4. Symmetry reduction

Then, replacing the twist potential in Eq. (4.17) and using equations Eqs. (4.24) and (4.26)
in the vacuum EFE, the coupled system of evolution equations is obtained

D̃aD̃
aψ̃ =

1

2ψ
D̃aψ̃D̃aψ̃ −

1

ψ̃
D̃aω̃D̃aω̃ − 2Λψ̃,

D̃aD̃
aω̃ =

3

2ψ̃
D̃aψ̃D̃aω̃, (4.28)

R̃ab =
1

2ψ̃
D̃aD̃bψ̃ −

1

4ψ̃2
D̃aψ̃D̃bψ̃ +

1

2ψ̃2

(
D̃aω̃D̃bω̃ − ĥabD̃cω̃D̃

cω̃
)

+ ψ̃h̃ab ,

for the variables ψ̃, ω̃ and h̃ab. Note that the constraint equations for the one-form Ωa are
implicitly “transported” by the evolution of the variable ω̃, i.e., ω̃ evolves such that the
constraint equations from the symmetry reduction Eqs. (4.18) and (4.17) are propagated.
Unfortunately, written in this way, the above system of evolution equations is not suitable
for the numerical scheme that will be introduced in chapter 6. The reason lies in the fact
that there are second-order derivatives of the norm ψ̃ in the right-hand side of the third
equation which spoils the hyperbolicity of the whole system. We overcome this difficulty is
by considering the conformal rescaling

ĥab := ψh̃ab. (4.29)

Using the conformal transformations listed in Eqs. (A.4.5) and (A.4.7), we can obtain an
equivalent system of evolution equations in which there are not second-order derivatives in
the right-hand side of the equations. For reasons of hyperbolicity that we shall clarify later
in section 6.3.2, this is the suitable form for our numerical implementation. Before writing
the resulting system, let us reduce the dimensionality of the equations. As aforementioned,
because the map π is smooth, it induces a differentiable structure in S, hence it can be con-
sidered as a smooth manifold in three dimensions. Thus, there is a unique smooth Lorentzian
metric in S that is pulled back to ĥab along π. We write this metric in S as hab. Conversely,
there are unique functions ψ and Ωa, which pull back the norm ψ̃ and twist potential ω̃ of
ξa. Then, using the conformal transformations into the system Eqs. (4.28) we obtain the
Geroch-Einstein system (GES)

∇a∇aψ =
1

ψ
(∇aψ∇aψ −∇aω∇aω)− 2Λ,

∇a∇aω =
1

ψ
∇aψ∇aω, (4.30)

Rab = Eab +
2Λ

ψ
hab ,

where

Eab =
1

2ψ2
(∇aψ∇bψ +∇aω∇bω) , (4.31)

and Rab being the three-dimensional Ricci tensor corresponding to the space of orbits S.
Note that we have used ∇a to denote the three-dimensional covariant derivative operator
associated with the metric hab. In addition, using the evolution equation of the scalar fields
ψ and ω it can be easily checked that the tensor

Tab = Eab −
1

2
habE, (4.32)
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4.5. Reconstruction of the four-dimensional Kretschmann scalar

is divergence free. Thus, it plays the role of the energy momentum tensor given by the coupling
between the three-dimensional gravity and two scalar fields ψ and ω. As a result, the GES
can be interpreted as 2+1 gravity model coupled to two scalar fields. The corresponding EFE
in S takes the form

Gab +
Λ

ψ
hab = Tab . (4.33)

where Gab is the Einstein tensor in terms of Rab.

4.5 Reconstruction of the four-dimensional Kretschmann scalar

The Kretschmann scalar (Eq. (A.4.4)) is an invariant gauge geometric quantity that will
play an important in this work. In order to compute this quantity for the four dimensional
manifold M , we need to have full knowing of the four-dimensional Riemann tensor. It can be
obtained by using the four-dimensional metric of M , which could be reconstructed following
the general procedure that will be described in detail in section 4.6. However, since this way
may involves solving some differential equations, it may turn out to be inconvenient from
the numerical point of view. A better way to obtain the twenty independent components of
the Riemann tensor of M is by means of the projection relations Eqs. (4.21), (4.22), (4.23).
In particular, we can obtain the four-dimensional Riemann tensor with respect to the three
frame vectors in S after being pulled back to M and the Killing vector ξa. This will allow us
to obtain the corresponding Kretschmann scalar of M in terms of quantities in S. To begin
with, let us write the Riemann tensor of M as

Rabcd = (δa
pδb

qδc
rδd

s)Rpqrs. (4.34)

Then, using Eq. (4.10) we obtain after a straightforward computation that the Riemann
tensor be expressed as

Rabcd = Rabcd +
1

ψ

(
Rabcpξpξd −Rabdpξpξc +Rapcdξpξb −Rbpcdξpξa

)
(4.35)

1

ψ2

(
Rbpdqξpξqξaξc −Rapdqξpξqξbξc +Rapcqξpξqξbξd −Rbpcqξpξqξaξd

)
.

In order to compute the Kretschmann scalar in M , we contract each covariant term of
the right-hand side with respect to its respective contravariant version. Then, using the
symmetric and antisymmetric properties of the Riemann tensor listed in Eqs. (A.4.2), the
Kretschmann scalar can be expressed as

K = RabcdRabcd +
4

ψ
RabcpξpRabcdξd +

4

ψ2
RapcqξpξqRabcdξbξd. (4.36)

Clearly, by using the projection relations Eqs. (4.21), (4.22), (4.23) this quantity can be
completely expressed in terms of the fields in the space of orbits S. This expression plays an
important role in this work; in particular it will be used in chapters 9.4.2 and 10.

4.6 Reconstruction of the four-dimensional metric

It is expected that from the dynamics of S, we will be able to reconstruct the evolution of
the four-dimensional manifold M . In what follows, we describe how this task can be carried
out. To begin with, let us consider the following two-form in S,

αab :=
1

ψ2
εabcD

cω, (4.37)

33



Chapter 4. Symmetry reduction

which can be proved to be curl-free, see [92] for details2. Thus, there exits a one-form η̂a in
S such that

dη = α ⇐⇒ ∇[aηb] = αab. (4.38)

Note that, in general, it is difficult to find an analytical solution for the expression above.
In section 6.5, we discuss how to address numerically this question. By now, let us assume
that we are able to solve the above system of equations by whatever means. Using the
commutation rule between the pull back and the exterior derivative operator [195], we can
pull back Eq. (4.38) to the four-dimensional manifold M such that

dη̃ = α̃, (4.39)

where α̃a := π∗αa and η̃a := π∗ηa are forms in M . Furthermore, by consequence of Eq. (4.4)
it follows

η̃a (ξa) = π∗ηa (ξa) = ηa (π∗ξa) = 0.

Notice that we always can add the gradient of a scalar function to η̃ without breaking
Eq. (4.39). Hence, we use this freedom for adding the one-form dρ such that

η̃ = π∗η + dρ =⇒ ξaη̃a = 1.

Finally, we pull back the metric ĥab from S to M to obtain another bilinear form h̃ab orthog-
onal to ξa. Then, the metric in M can be written as

gab = h̃ab + ψ̃η̃aη̃b. (4.40)

Note that ξa is a Killing vector of the metric gab since its coordinates components (by con-
struction) do not depend of the coordinate ρ. The metric gab does not seem to be unique
because we can always add (apart of dρ) a gradient of some scalar function f to η̃a such that,
the conditions ξaη̃a = 1 and Eq. (4.39) holds. However, this freedom only represents a shifting
in the coordinate ρ by the function f , hence it does not have any geometrical meaning.

2In the original work [92] it was proved that the quantity α̂ab := ψ−3/2ε̂abcD̂
cω is curl-free, where the

“hat” indicates that it is given in terms of the reduced metric ĥab. Then, using the conformal transformation
Eq. (6.1) we can obtain the curl-free quantity Eq. (4.37) in terms of the evolution metric hab.
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Chapter 5

Generalities of the manifold S2

As mentioned in chapter 1, in this thesis we will investigate Gowdy spacetimes with spatial
topologies S3 and S1×S2. However, based on the symmetry reduction discussed in chapter 4,
the analytical and numerical implementation will be carried out (see chapter 6) in the space
of orbits S with spatial topology S2. Hence, due to the important role of this manifold in our
approach, we devote the following chapter to discussing some of the most relevant geometric
aspects which will be used later along this work. We begin by using the isomorphism between
S3 and SU(2) (see section A.6) in order to find a smooth global vector field on S3 which, by
means of the Hopf map, can be used to define a frame in S2. Consequently, by introducing the
well-known Wigner d-matrices (see for instance [133]), we define the notion of spin-weight
of functions on S2 and introduce a global basis to describe those, namely the spin-weight
spherical harmonics. Then, some of their most important properties are listed, including their
relation with the raising and lowering differential operators known as eth-operators. Finally,
by setting a smooth complex frame on S2, the components of any tensor field on S2 are written
with a well-defined spin-weight. We base the following presentation on [24,30,80,133,139,172]

5.1 Smooth frame on S3

In this section we proceed to construct a smooth global manifold on S3. Let us start defining
the manifold S3 as the sub-manifold of R4 given by

S3 := { (x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 = 1 } . (5.1)

Next, consider the group of complex unitary 2×2-matrices with unit determinant SU(2). This
group considered as a subset of R4 obtains a natural smooth manifold structure. Moreover,
it is a well-known fact that it is diffeomorphic with S3 through the map Ψ : S3 → SU(2)
defined by (see [80])

Ψ(x1, x2, x3, x4) :=

(
x3 + ix4 −x1 + ix2

x1 + ix2 x3 − ix4

)
. (5.2)

Since the latter is a smooth Lie group, we can use the map Ψ to endow S3 with a Lie group
structure (see section A.6). Hence, both SU(2) and S3 can be considered as identical Lie
groups via the map Ψ. Henceforth, we will not distinguish any more between S3 with SU(2).
One of the main properties of Lie groups is that they are parallelizable, that is, a smooth
global frame can always be constructed at each point. In particular, we can find a smooth
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Chapter 5. Generalities of the manifold S2

global frame on SU(2) as follows. Let us define for every u ∈ SU(2) the left translation map
Lu : SU(2)→ SU(2) as1

Lu(v) := uv . (5.3)

Note that the map Lu is a diffeomorphism from the group to itself for each element u. We
choose a basis of the tangent space at the unit element Te(SU(2)), i.e., a basis {σi} such that
satisfies the Lie algebra [σi, σj ] = εijkσk for some given functions εijk. The standard choice
for this basis are the Pauli matrices

σ1 =
1

2

(
0 i
i 0

)
, σ2 =

1

2

(
0 −1
1 0

)
, σ3 =

1

2

(
i 0
0 −i

)
.

For all u ∈ SU(2), we define the left invariant smooth global frame {χai } on S3 as

χai : u 7→ (χi)u := (Lu)∗(σi).

Via Ψ we can consider SU(2) as a sub-manifold of R4. According to Eq. (5.2), the smooth
global frame {χai } in terms of the standard coordinates (x1, x2, x3, x4) is written as (see [139])

2χa1 = x4∂
a
x1 + x3∂

a
x2 − x2∂

a
x3 − x1∂

a
x4 ,

2χa2 = x3∂
a
x1 − x4∂

a
x2 − x1∂

a
x3 + x2∂

a
x4 , (5.4)

2χa3 = −x2∂
a
x1 + x1∂

a
x2 − x4∂

a
x3 + x3∂

a
x4 .

Now, we want to introduce more “suitable” coordinates to describe the above frame. The
Euler coordinates of S3 are defined by

x1 = cos
θ

2
cosλ1, x2 = cos

θ

2
sinλ1,

x3 = sin
θ

2
cosλ2, x4 = sin

θ

2
sinλ2,

where θ ∈ (0, π) and λ1, λ2 ∈ (0, 2π). Clearly, these coordinates break down at θ = 0 and π.
For convenience, we introduce coordinates (θ, ρ, ϕ) (which are also referred in the literature
to Euler coordinates) such that

λ1 = (ρ+ ϕ)/2, λ2 = (ρ− ϕ)/2, (5.5)

where ρ, ϕ ∈ (0, 2π). One of the main reasons to introduce such coordinates is that the vector
fields ∂aρ and ∂aϕ are smooth non-vanish vector fields in S3, unlike ∂aλ1 and ∂aλ2 which vanish
at certain places. When θ = 0, the vector field ∂aλ2 vanishes, while ∂aλ1 vanishes at θ = π.
On the other hand, the vectors ∂aρ and ∂aϕ become parallel at the poles (θ = 0, π) but never
vanish. Finally, using these coordinates, the smooth frame {χai } can be written as (see [24])

χa1 = − sin ρ ∂aθ − cos ρ
(
cot θ∂aρ − csc θ∂aϕ

)
,

χa2 = − cos ρ ∂aθ + sin ρ
(
cot θ∂aρ − csc θ∂aϕ

)
, (5.6)

χa3 = ∂aρ .

In the next section we will use this frame to construct a local smooth frame on S2.

1Also we could have defined the right translation as Ru(v) := vu. This translation can generate an
equivalent smooth global frame in SU(2) to the one generated by the left transformation.
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5.2 Construction of a frame for S2

Similarly to S3, the manifold S2 is defined as the sub-manifold of R3 satisfying

S2 := { (y1, y2, y3) ∈ R3 : y2
1 + y2

2 + y2
3 = 1 } .

Now, consider the Hopf map π : S3 → S2 defined in Cartesian coordinates by

π(x1, x2, x3, x4) = ( 2(x1x3 + x2x4), 2(x2x3 − x1x4), x2
1 + x2

2 − x2
3 − x2

4 ).

Using the Euler coordinates (θ, ρ, φ), this map can be written as

π(θ, ρ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ).

Therefore, writing y1 = sin θ cosϕ, y2 = sin θ sinϕ, y3 = cos θ, we can introduce polar
coordinates (θ, ϕ) in S2 for which the Hopf map π obtains the simple representation

π : (θ, ρ, ϕ) 7→ (θ, ϕ). (5.7)

In other words, θ and ϕ will be understood as representing coordinates in either S3 or S2. In
order to obtain a smooth frame on S2, we compute the push forward of the smooth global
frame on S3 (given by Eqs. (5.6)) along π. After a straightforward computation we obtain

π∗χa1 = − sin ρ ∂aθ + cos ρ csc θ ∂aϕ,

π∗χa2 = − cos ρ ∂aθ − sin ρ csc θ ∂aϕ,

π∗χa3 = 0.

In particular, note that the push-forward of π∗χa3 along π vanishes. Therefore, S3 can
be seen as a principal bundle over S2 with structure group U(1) generated by the fibers
tangential to π∗χa3 and projection map π. This is known in the literature as the Hopf bundle
(see section A.6) and is usually denoted by

S1 ↪→ S3 → S2 ,

meaning that the Hopf map projects S3 onto the base space S2 with fiber S1 generated by
the group2 U(1).

Let U be an open subset of S2. The poles θ = 0, π are assumed to be outside of U so
that the representation of the Hopf map given by Eq. (5.7) is well defined and the Euler
coordinates cover π−1(U). If we restrict ourselves to sufficiently small open subsets, it does
not represent a loss of generality since for any sufficiently small choice of the open set U can
always be introduced coordinates such that the poles are not in U .

Now, using Eqs. (5.6) let us set the orthonormal frame (ea1, e
a
2, e

a
3) on S3 at some fixed

parameter ρ such that

ea1 :=
−1√

2
(χa2 + iχa1) , ea2 := ea1 , ea3 := χa3 . (5.8)

On the other hand, using Eqs. (5.6) we can define a smooth complex frame (ma,ma) on S2

as3 on U by

ma :=
−1√

2
(π∗χa2 + iπ∗χa1) |ρ,

2 S1 := {(y1, y2) ∈ R2 : y21 + y22 = 1 }.
3m indicates the complex conjugate of ma.

37



Chapter 5. Generalities of the manifold S2

Figure 5.1: Illustration of the frame projection from S3 to S2 using the Hopf map. In order to
simplify the figure, abstract indices in the vectors field have been omitted.

Clearly, any specification of the parameter ρ yields another smooth orthonormal frame on
U which corresponds to a rotation of the original frame. The “standard” section, hence the
“standard” frame that we shall use without further notice in the following is given by ρ = 0,
that is,

ma =
1√
2

(
∂aθ −

i

sin θ
∂aϕ

)
.

Note that in those coordinates this frame is singular at θ = 0 or θ = π. Now, owing to the
group action U(1), at any point p = (θ, ρ, ϕ) ∈ S3 the frame (ea1, e

a
2, e

a
3) can then be projected

to the basis (eiρma, e−iρma) on S3 evaluated at the point π(p) ∈ S2. Further, the local section
σ : U → π−1(U) specified by any real function ρ = ρ(ϑ, ϕ) yields a different frame over U
which is related to (ma, m̄a) by a point-wise rotation

ma 7→ eiρ(ϑ,ϕ)ma, ma 7→ e−iρ(ϑ,ϕ)ma (5.9)

at each point in U . The above is clearly illustrated in Fig. 5.1. Note that we have used
ρ to denote the group parameter of U(1), while the rotation function has been denoted by
ρ(θ, ϕ). Clearly, any specification of the function ρ(θ, ϕ) yields to another smooth orthonormal
frame on U which corresponds to a rotation of the original frame. Therefore, it can be
interpreted as the smooth local section U → S3 defined by (θ, ϕ) 7→ (θ, ρ, ϕ) in the bundle of
orthonormal frames, or equivalently in the Hopf bundle. Doing this for every open subset U
of S2 (introducing coordinates such that the poles are not in U as above), the full bundle of
orthonormal frames (ea1, e

a
2, e

a
3) can be recovered and identified with the Hopf bundle.

Finally, if f : U → C is a component of a smooth real tensor field on S2 with respect to the
frame (ma,ma), the function eisρ · (f ◦π) on π−1(U) ⊂ S3, which is defined for some integer s
called the spin-weight, is the corresponding component obtained by any frame rotation above.
Any such function f is said to have the well-defined spin-weight s.

5.3 The spin-weighted spherical harmonics

Since the spin-weighted spherical harmonics (SWSH) play an important role in the rep-
resentation of functions over S2, we devote this section to introducing such functions and

38



5.3. The spin-weighted spherical harmonics

summarizing some of their most relevant properties. We start by describing the representa-
tion of the three-dimensional rotation group SO(3) as a preparation to introduce the SWSH.
The next discussion is based on [71,132,133].

5.3.1 Wigner d-functions

Any rotation % ∈ SO(3) is uniquely defined in Euler coordinates by % = (θ, ρ, ϕ). The
Wigner d-functions, Dl

mn(%) with l ∈ N and m,n ∈ Z, satisfying |m|, |n|≤ l, are the matrix
elements of the irreducible unitary representation of SO(3). Moreover, such matrices form
an orthogonal basis on L2(SO(3)). The Wigner d-functions may be decomposed in terms of
the reduced Wigner d-functions by

Dl
mn(ρ, θ, ϕ) = e−inρdlmn(θ)e−imϕ . (5.10)

The real d- functions are defined by [133]

dlmn(θ) =

√
(l + n)(l − n)

(l +m)(l −m)

(
sin

θ

2

)n−m (
cos

θ

2

)n+m

Pn−m,n+m
l−n (cos θ), (5.11)

where Pn−m,n+m
l−n (cosβ) are the Jacobi polynomials. Furthermore, the relation with the

Legendre polynomials Pml (cos θ) is given by the particular case

dlm0(θ) =

√
(l −m)

(l +m)
Pml (cos θ) . (5.12)

These functions satisfy a number of relations. Next, some of their most relevant properties
for this work are listed. We start by the symmetry relations

dlmn(θ) = (−1)m−ndl(−m)(−n)(θ),

dlmn(π − θ) = (−1)l−n dl(−m)(n)(θ), (5.13)

dlmn(−θ) = (−1)m−ndlmn(θ).

In the derivation of the axially symmetric spin spherical harmonic transform in section 7.4.2,
we often consider d-functions of the form dlmn(π/2) which satisfy

dlm0(π/2) = 0, for l +m = odd. (5.14)

To finalize this subsection, we want to mention that the Wigner d-matrices can be extended to
form a basis for the irreducible unitary representation for L2(SU(2)) (see for instance [172]).
This may allow defining spin-weighted spherical harmonics functions of half integers as well
as construct a half spin weight spherical harmonic transform which clearly would deal with
spinors fields. We refer the interested reader to the work of Beyer et al. [29] and references
therein. Because in this work we shall only consider tensor fields which have integer spin-
weights (we will see this in more detail in section 5.4), we will only consider the integer
case.

5.3.2 The spin-weighted spherical harmonics

To begin with, let us consider the space of square integrable functions L2(S2) with inner
product <,> defined by

< f, g >:=

∫
S2
f g sin θ dθ dϕ , (5.15)
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for any f, g ∈ S2 with g denoting the complex conjugation. The spin-weighted spherical
harmonics sYlm(θ, ϕ) constitute an orthogonal basis for the functions in L2(S2) with spin
-weight s. They were first developed by Newman and Penrose [143] and were soon realized
to be closely related to the Wigner d-functions by Goldberg et al. [96]. He showed that spin-
weighted functions may be defined equivalently from the expansion in Wigner d-functions
Dl
mn(ϕ, θ, ρ) of a function in L2(SO(3)) evaluated at ρ = 0. The spin-weighted spherical

harmonics (SWSH) are defined by

sYlm(θ, ϕ) = (−1)s
√

2l + 1

4π
Dl
m,−s(0, ϕ, θ).

Noting the decomposition given by Eq. (5.10), the spin spherical harmonics may also be
written in terms of the reduced Wigner d-functions as

sYlm(θ, ϕ) = (−1)s
√

2l + 1

4π
eimϕdlm,−s(θ). (5.16)

Note that under this form and using the relation Eq. (5.12), we can observe that the standard
spherical harmonics correspond to the particular case s = 0 of the SWSH. Next, we list some
of their most relevant properties. We start by considering the complex conjugation property

sY lm(θ, ϕ) = (−1)s+m −sYl,−m(θ, ϕ) . (5.17)

Next, we describe a closed-sum decomposition for products between SWSH. Using Eq. (5.3.2)
we can write the product of SWSH in terms of Wigner d-matrices as

s1Yl1,m1(θ, ϕ) s2Yl2,m2(θ, ϕ) =

√
2l1 + 1

4π
Dl1
s1m1

(0, θ, ϕ)

√
2l2 + 1

4π
Dl2
s2m2

(0, θ, ϕ), (5.18)

The product of the right-hand side can be decomposed in the so-called Clebsch-Gordan series
which in bracket notation (see [172]) is given by

Dl1
m1,s1 (ρ, θ, φ)Dl2

m2,s2 (ρ, θ, φ) =
∑
l∈Λ

〈l1, l2; m1, m2| l1, l2; l, (m1 +m2)〉

× 〈l1, l2; s1, s2| l1, l2; l, (s1 + s2)〉
Dl

(m1+m2),(s1+s2) (ρ, θ, φ) , (5.19)

where Λ := {max(|l1− l2|, |m1 +m2|, |s1 + s2|), . . . , l1 + l2}. Note that each Clebsch-Gordan
coefficient in the series is a real number, i.e., 〈·, · ; ·, ·| ·, · ; ·, ·〉 ∈ R. Defining

Al(s1, l1,m1; s2, l2,m2) :=

√
(2l1 + 1)(2l2 + 1)

4π (2l + 1)
〈l1, s1; l2, s2| l1, l2; l, (s1 + s2)〉

× 〈l1,m1; l2,m2| l1, l2; l, (m1 +m2)〉 , (5.20)

the Eq. (5.20) together with Eq. (5.19) provides us with the following decomposition of
Eq. (5.18)

s1Yl1,m1(θ, ϕ) s2Yl2,m2(θ, ϕ) =
∑
l∈Λ′

Al(s1, l1,m1; s2, l2,m2) (s1+s2)Yl,(m1+m2)(θ, ϕ), (5.21)

where Λ′ := {max(|l1−l2|, |s1+s2|, |m1+m2|), . . . , l1+l2}. Note that the product of two spin-
weighted spherical harmonics is given by a finite linear combination of spin-weighted spherical
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5.3. The spin-weighted spherical harmonics

harmonics with spin-weight equal to the sum of the original two spin-weights. On the other
hand, the orthogonality and completeness of the SWSH follows from the orthogonality of the
d-Wigner matrices ∫

S2

sYl1m1(θ, ϕ) sY l2m2(θ, ϕ) dΩ = δl1l2δm1m2 (5.22)

and
∞∑
l=0

l∑
m=−l

sYlm(θ, ϕ)sY lm(θ′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′) (5.23)

respectively, being δij the Kronecker delta and δ(x) the Dirac delta. Therefore, any square
integrable function with spin-weight s defined on S2 can be represented as

sf(θ, ϕ) =

∞∑
l=0

l∑
m=−l

salm sYlm(θ, ϕ),

where the salm are the complex coefficients of the function (also called spectral coefficients).
We are assuming the standard convention for coordinates θ ∈ (0, π) and ϕ ∈ (0, 2π). Notice
that the standard scalar spherical harmonics are given by s = 0. Furthermore, from those
functions we can obtain any SWSH by using the spin raising and lowering operators known
as the eth-operators ð and ð̄ defined by (for simplicity we have written sf(θ, ϕ) as just f)

ðf := ∂θf −
i

sinθ
∂ϕf − sfcotθ, (5.24)

ð̄f := ∂θf +
i

sinθ
∂ϕf + sfcotθ, (5.25)

for any function f on S2 with spin-weight s. By applying the eth-operators over the SWSH,
we obtain the properties of raising and lowering spin-weight

ð sYlm(θ, ϕ) = −
√

(l − s)(l + s+ 1) s+1Ylm(θ, ϕ), (5.26)

ð̄ sYlm(θ, ϕ) =
√

(l + s)(l − s+ 1) s−1Ylm(θ, ϕ). (5.27)

Thus, using the properties above it is easy to check that from any function f with spin-weight
s, we can get a function with either spin s + 1 from ð or spin s − 1 from ð̄. Thus, they are
also known in the literature as the raising and lowering operators [133]. Using the two latter
expressions, the commutator between those operators is obtained by

[ð̄,ð]f = 2sf . (5.28)

Finally, using the above expression and the definitions Eqs. (5.24)- and (5.25), the Laplacian
operator in the two-sphere can be written as

∆S2f =

(
ðð̄ + ð̄ð

)
2

f . (5.29)

Further, using the commutation relation Eq. (5.28) we obtain the two useful expressions

∆S2f = ðð̄f + sf , (5.30)

∆S2f = ð̄ðf − sf . (5.31)
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5.4 Tensor components in S2

Finally, we end this chapter by discussing the spin-weight of the tensors components of
any tensor over S2. To begin with, we choose the smooth complex frame (ma,ma) on S2

introduced in section 5.2. As mentioned, in these coordinates the frame (ma,ma) is singular
at θ = 0 or θ = π. Hence, we will just restrict ourselves to an open subset U of S2 so that the
poles θ = 0, π are outside. Let (ωb, ωb) be the dual coframe of (ma,ma). Then, the action
of U(1) on the inner product ω∗a(m

∗a) = 1 implies that the transformation for the coframe
should be

ω∗a = e−iρ(θ,ϕ)ωa. (5.32)

Now, let an arbitrary smooth tensor field T of type (p + q, r + s) for integers p, q, r, s ≥ 0
be given on U . Then, its components with respect to the frame (m∗a,m∗a) are functions
T : U → C given by

T ∗ a1...,ap,b1...,bq c1...,cr,d1...,ds := T (ω∗a1 , . . .︸ ︷︷ ︸
p

, ω∗b1 , . . .︸ ︷︷ ︸
q

,m∗c1 , . . .︸ ︷︷ ︸
r

,m∗d1 , . . .︸ ︷︷ ︸
s

).

Using Eqs. (5.9) and (5.32), these functions can be written in terms of the non rotated frame
(ma,ma) and coframe (ωb, ωb) as

T ∗ a1...,ap,b1...,bq c1...,cr,d1...,ds = ei(−p+q+r−s) ρ(θ,ϕ) T (ωa1 , . . .︸ ︷︷ ︸
p

, ωb1 , . . .︸ ︷︷ ︸
q

,mc1 , . . .︸ ︷︷ ︸
r

,md1 , . . .︸ ︷︷ ︸
s

),

= ei(−p+q+r−s) ρ(θ,ϕ) T a1...,ap,b1...,bq c1...,cr,d1...,ds . (5.33)

From the expression above, the spin-weight for the tensor components T a1...,ap,b1...,bq c1...,cr,d1...,ds
are given by −p+ q+ r− s. Note that due to the transformation rules Eqs. (5.9) and (5.32),
the spin-weight will always be an integer number implying that tensor components can be
written in terms of SWSH.
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Chapter 6

U(1)-symmetric spacetimes with
spatial topologies S3 or S1 × S2

In this chapter we derive the evolution and constraint equations that we are going to use in
our pseudo-spectral implementation. We start by applying the Geroch symmetry reduction
introduced in the last chapter to Gowdy spacetimes, to reduce the EFE in four dimensions
to the three-dimensional Geroch-Einstein system Eqs. (4.30), which describe a 2 + 1-gravity
model coupled with two scalar fields. In section 6.3, we discuss the generalized wave map
formalism for setting evolution equations that will be used for solving the Cauchy problem in
the space orbits S with spatial topology S2. In particular, we rewrite the system GES given
in Eqs. (4.30) as a coupled system of quasilinear wave equations for the metric components
with well-defined spin-weights. In other words, there will not be any singular term like cot θ
floating around in the evolution equations. This implies that we can describe fields in the
two-sphere with a single polar coordinate chart and obtain a fully regular evolution. In
section 6.4 we briefly discuss the equivalence between the constraints from the generalized
wave formalism and the standard Hamiltonian and momentum constraints from the ADM
formulation. Additionally, we obtain a representation of the constraint equations in the space
of orbits S based on the York-Lichnerowicz conformal decomposition. Finally, in section 6.5
we address the question of how to reconstruct the metric of the four-dimensional manifold
M from the three-dimensional metric in the space of orbits S.

6.1 The symmetry reduction for U(1)-symmetric spacetimes

Here, we use many of the mathematical tools introduced in chapter 4. Let us consider
M = R× Σ a time-oriented globally hyperbolic four-dimensional spacetime endowed with a
metric gab of signature (−,+,+,+), a global time-function t and a U(1)- symmetric Cauchy
surface Σ. We denote the hypersurfaces given by t = t0 for any constant t0 by Σt0 . Each Σt

is diffeomorphic to Σ. Let ξa be a smooth spacelike Killing vector field in M , that is, the
generator of the symmetry group U(1) and which is tangent to the hypersurfaces Σt. Let the
quantities

ψ̃ = gabξ
aξb, Ω̃a = εabcd ξ

bDcξd,

be the norm and the twist of ξa respectively. The operator Da is the covariant derivative
compatible with the metric gab. Let us define the induced metric h̃ab on S by

h̃ab := gab −
1

ψ̃
ξaξb.
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In order to take advantage of the symmetry induced by ξa over M , we introduce the space
of orbits S associated to ξ as follows. Consider the map

π : M → S,

where π maps every p ∈M to the (locally) uniquely determined integral curve of ξa starting
at p. We write the metric on S as ĥab and denote ψ, Ωa the fields that pull back to the
norm ψ̃ and twist Ω̃a of ξa respectively. As mentioned in chapter 4, for vacuum space times
(M, gab) the one-form Ωa is closed, i.e., dΩ = 0. Hence, this fact allows us to introduce a
twist potential ω so that Ω = dω. Finally, introducing the conformal rescaling

hab := ψĥab, (6.1)

the EFE in (M, gab) can be rewritten as the Geroch-Einstein system1 described in Eqs. (4.30),
which describes a 2+1 gravitational field coupled with two scalar fields. In addition, we point
out that there are no second-order derivatives on the right-hand side of the system GES. As
we shall explain later in section 6.3.2, this fact makes the system of evolution equations have
a suitable form for implementing the generalized wave formalism. In fact, this is the principal
reason for introducing the evolution metric hab by Eq. (6.1) and for writing the evolution
equations in terms of it instead of the reduced metric ĥab. In other words, in terms of the
reduced metric ĥab, the third equation contains second derivatives of ψ on the right-hand
side See for instance [92]. Hereafter, unless otherwise explicitly stated, we will work with the
evolution metric.

6.2 Equations for the cases with spatial topology S3 or S1× S2

In this section, we focus on the case S := R×S2 and the field equations in the form Eq. (4.30).
As before let t : S → R be a smooth time function on S and

Σt := {t} × S2 ' S2, t ∈ R.

We introduce coordinates (t, ϑ, ϕ) on the dense subset R×U of S and define T a = ∂at . With
the same choice of complex vector field ma on U ⊂ S2 as defined in section 5.2, we introduce
the frame (ea0, e

a
1, e

a
2) = (T a,ma,ma) on R×U . The spin-weight of any function f : R×U → C

is defined in the same way as in section 5.2, but now with respect to frame transformations
of the form

T a 7→ T a, ma 7→ eiρ(θ,ϕ)ma, m̄a 7→ e−iρ(θ,ϕ)ma

Therefore, the frame vector field T a has spin-weight 0, ma spin-weight 1 and ma spin-weight
−1. Under the above considerations, we shall choose the dual frame (ω0

a, ω
1
a, ω

2
a) by

ω0
a = ∇at, ω1

a =
1√
2

(∇aθ + i sin θ ∇aϕ) , ω2
a = ω1

a,

with spin-weight of 0, −1 and 1 respectively. Then, the general form of a smooth metric on
S is (see for instance [30,71])

hab = λ ω0
aω

0
b + 2 ω0

(a

(
β ω1

b) + β̄ ω2
b)

)
+ 2δ ω1

(aω
2
b) + φ ω1

aω
1
b + φ̄ ω2

aω
2
b . (6.2)

1We have used ∇a to denote the three-dimensional covariant derivative operator associated to hab.
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where the metric components are functions depending on (t, θ, ϕ) with spin-weight of 0 for
λ and δ, +1 for β and +2 for2 φ. Since the metric of a sphere of radius r can be written
as gS2 = 2rω1

(aω
2
b), we can interpret the metric component δ as the radius of the S2-factor.

Furthermore, in terms of the SWSH basis, it can be easily proved using Eq. (5.22) that the
mode l = 0 of function with zero spin-weight represents the mean value of the radius of
the S2-factor. Henceforth, the mode l = 0 will be known as the fundamental mode. This
interpretation will be used in section 10.6 for analysing the instability of the Nariai spacetime.

In the light of this non-orthonormal frame, the connection coefficients are given by
Eq. (A.3.1). After a straightforward computation we find that almost all the structure coef-
ficients (see section A.2) are zero except

C2
12 = C1

21 = −C2
21 = −C1

12 =
−1√

2
cot θ. (6.3)

The occurrence of the singular function cot θ is a consequence of the fact that the quantities
Cµνρ are not components of a tensor field, hence do not have well-defined spin-weights. The
above fact is the reason why in the connection coefficients, and hence in the Ricci tensor (see
Eq. (2.13)), there are terms like cotθ that diverge at the poles. These sorts of terms cannot
be written in terms of SWSH, hence do not have well-defined spin-weights. From now on,
we will refer to them as singular terms. As we will discuss in the next section, one way to
avoid these problematic terms is by writing the frame vectors in terms of the eth-operators
introduced in section 5.3. From Eqs. (5.2) and (5.24), the frame vector (ma,ma) can be
written in terms of the eth-operators by

ma(f) =
1√
2

(ðf + fs cot θ) , ma(f) =
1√
2

(
ð̄f − fs cot θ

)
, (6.4)

for some given function f on S2 with spin-weight s. We devote the next section to write the
evolution equations in a proper way such that all the terms turn out to have well defined
spin-weights.

6.3 Evolution equations

Before presenting the evolution equations, let us discuss a bit more about the singular terms
contained in Eq. (2.13) due to the structure constants Eqs. (6.3). As we just mentioned, by
replacing the derivatives along the frame vectors by the eth-operators, all the singular terms
in the evolution equations disappear. This “cancellation” procedure of the singular functions
is carried out because all the terms of the evolution equations form the components of the
Ricci tensor, which must have a well-defined spin-weight (see [30, 71]). In other words, the
frame components of smooth tensor fields in S2 have well-defined spin-weights so that they
can be written in terms of the SWSH, which are globally defined as smooth functions on
the two-sphere (even though their coordinate representation may be singular). Therefore,
expressing everything with respect to these bases and the spatial derivatives in terms of
eth-operators renders the equations manifestly without singular terms.

As was discussed in section 2.5, in most of the literature the related (but not covariant)
generalized harmonic formalism is used to set hyperbolic evolution equations for the EFE.
However, while this formalism is sufficient for many applications, it is a drawback for us. In
fact, for applications with spatial topology S2 covered by a single singular polar coordinate

2Clearly, β̄ and φ̄ have spin-weight −1 and −2 respectively.
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Chapter 6. U(1)-symmetric spacetimes with spatial topologies S3 or S1 × S2

system, it is far more convenient to work with actual covariant quantities (i.e., smooth tensor
fields). The reason of this lies in the fact that, as is pointed out in [162, 171], the violation
covector Da defined in Eq. (2.12) is not a tensor because Γa is not a covector. In order to
overcome this difficulty, we discuss in what follows the geometric formulation of the wave
map gauge.

6.3.1 The wave map gauge

We start by considering a map Φ : M → M̄ between two general smooth four-dimensional
manifolds M and M̄ (or open subsets thereof) equipped with Lorentzian metrics3 hab and
h̄ab. The map Φ is called a wave map if it extremizes the functional

F [Φ] =

∫
M

trh(Φ∗h̄) Volh.

In coordinate charts (xµ) on M and (yα) on M̄ we obtain the Euler-Lagrange equations
(see [195]) for the coordinate representation yα = yα(xµ) of Φ by

�hy
α + Γ̄αβγh

µν ∂y
β

∂xµ
∂yγ

∂xν
= 0. (6.5)

Here, Γ̄αβγ are the Christoffel symbols for the metric h̄ab in the coordinate basis on M̄ , and
�h is the wave operator defined for scalar functions defined by hab. Hereafter we call h̄ab
the reference metric. This equation is called the wave-map equation. More details about it
can be found in [60]. If the manifolds were Riemannian then the analogous equation would
characterize a harmonic map between M and M̄ . Let us point out that the left-hand side
of the equation defines a geometric object, namely a section in the pull-back bundle Φ∗TM̄ .
This is not immediately obvious due to the appearance of the Christoffel symbols in the
second term. However, the tensorial character of that term under change of coordinates in
M̄ is compensated for by the first term which, by itself, is also non-tensorial under such
coordinate transformations.

The generalized wave-map equation is the Eq. (6.5) with a non-vanishing, arbitrary right-
hand side, a section in Φ∗TM̄ with coordinate representation fα

�hy
α + Γ̄αβγh

µν ∂y
β

∂xµ
∂yγ

∂xν
= −fα. (6.6)

The minus sign appears on the right-hand side by convention. Suppose now that M̄ = M
and4 Φ = idM . Then (xµ) and (yα) are two coordinate charts for M and Eq. (6.6) can be
read as an equation determining the coordinate system (yα) for M by imposing a geometrical
gauge condition. This equation is a semi-linear wave equation of M which has solutions near
any Cauchy surface so that such a coordinate gauge always exists locally.

Choosing the coordinates according to this gauge, i.e., putting xµ = yµ and expressing
the wave operator in these coordinates yields the equation

(Γ̄αβγ − Γαβγ)hβγ = −fα,

where Γαβγ are the Christoffel symbols of the metric h on M . In this equation the tensorial
character becomes manifest since the left-hand side involves the difference of two connection

3All of the following arguments also hold if M and M̄ are n-dimensional manifolds for some arbitrary
positive integer n and if h̄ab is a general smooth pseudo-Riemannian (not necessary Lorentzian) metric.

4idM denotes the identity map.
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coefficients so it gives the components of a vector field in the coordinate basis of the (xµ).
Therefore, this equation holds in any basis on M as long as we interpret the Christoffel
symbols as the connection coefficients with the respect to the chosen basis. Note also that
this implies that imposing Eq. (6.6) does not constitute a condition on the coordinate system
but a condition on the metric components in their dependence on the coordinates.

We define the vector field Da with components given by

Dα := (Γ̄αβγ − Γαβγ)hβγ + fα. (6.7)

where fα are the components of the vector fa such that Da = 0 when Eq. (6.6) is imposed.
Note that in the light of our preliminary discussion about the generalized wave map formalism
in section 2.5, we are choosing gauge source functions such that

Fα = Γ̄αβγh
βγ + fα. (6.8)

A metric hab that is restricted by Da = 0 is said to be in wave gauge with respect to h̄ab.
We point out that the wave gauge reduces to the widely used generalized harmonic gauge
characterized by ∇ν∇νxµ = −fµ on space-times with topology R4 when the Minkowski
metric in Cartesian coordinates xµ is used as a reference metric. In other words, choosing the
reference metric as Minkowski yields Γαβγ = 0, hence Fα = fα. From now on, we proceed
similarly as was explained in section 2.5. We define a new tensor field

R̂ab := Rab +∇(aDb), (6.9)

where Da = habDb. Thus, substituting this expression into Eq. (2.13), the components Rµν
of the Ricci tensor Rab with respect to this frame can be written as

R̂σρ = −1

2
hµν∂µ∂νhσρ + Υσρ(h, ∂h) + hα(ρ∇σ)Γ̄

α
βγh

βγ +∇(σfρ), (6.10)

where Υµν(h, ∂h) is a symmetric tensor which does not contain any second-order derivatives
of the metric5. Further, note that ∂νhσρ represents the derivative of the function hσρ in the
direction of the frame vector field ∂aν . As already explained in section 2.5, the idea of the
generalized wave map formalism is to replace the Ricci tensor Rab in the field equation by
this new tensor R̂ab. We call the resulting equations the “evolution equations” since, under
suitable conditions, these have a well-posed initial value problem for any choice of generalized
gauge source functions fa and h̄ab. Then, the evolution equations in the space of orbits
Eqs. (4.30) takes the form

∇a∇aψ =
1

ψ
(∇aψ∇aψ −∇aω∇aω)− 2Λ,

∇a∇aω =
1

ψ
∇aψ∇aω,

R̂ab = Eab +
2Λ

ψ
hab,

with Eab given by Eqs. (4.31). This is manifestly a coupled system of quasilinear wave equa-
tions. The evolution equations and the contracted Bianchi identities implies the subsidiary
system

∇b∇bDa +Db∇(bDa) = 0. (6.11)

5Note that we write Υµν(h, ∂h) to indicate that it only depends of the metric components and its first
frame derivatives.
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Chapter 6. U(1)-symmetric spacetimes with spatial topologies S3 or S1 × S2

where clearly follows that Da = 0 if and only if Da = 0 and ∇aDb = 0 on the initial
hypersurface; these conditions therefore constitute constraints. Moreover, it can be satisfied
for any initial data hab, ψ and ω by a suitable choice of the free gauge source quantities fa
and h̄ab, and is hence referred to as the gauge constraint ; the constraints

∇µDν = 0, (6.12)

hold at the initial time if and only if the initial data satisfy the standard Hamiltonian and
Momentum constraints (supposing that the gauge constraint and the evolution equations are
satisfied). Later in section 6.4 we will explain this relationship in more detail. These are
equations that are therefore independent of the generalized gauge source functions. Hence
Eq. (6.12) represents the actual “physical constraints” on the initial data for hab, ψ and ω.

6.3.2 The covariant generalized wave gauge in the case R× S2

Next, we implement the generalized wave gauge introduced in the previous section to the
particular case of our interest, that is for S = R×S2. In order to simplify our implementation,
we choose as the reference metric h̄ of unit two-sphere

h̄ab = −ω0
aω

0
b + 2 ω1

(aω
2
b). (6.13)

This is a smooth metric on S which represents the static cylinder with the standard spatial
metric on S2. Note that all the remaining gauge freedom is then encoded in the vector field
fa. Next we define the singular and smooth contracted connections coefficients, respectively

Γ̆µ := hσρΓ̄µσρ, (6.14)

Γ̊µ := Γµ − Γ̆µ, (6.15)

Note that by construction, the Γ̆a terms do not contain any derivatives (but they contain
singular terms) since the connections coefficients Γ̄abc are obtained by (see Eq. (A.3.1))

Γ̄abc =
h̄ad

2
( Cdbc + Cdcb − Cbcd ) .

On the other hand, we point out that all the first-order derivatives of the metric encoded
originally in Γµ are now in Γ̊a. Therefore, using definitions introduced in Eqs. (6.15), we
write the components of the Ricci tensor Eq. (6.10) as

R̂µν = −1

2
hαβ∂α∂βhµν +∇(µΓ̊ν) + Υ̊µν(h, ∂h, Γ̆) +∇(µDν), (6.16)

where we have defined

Υ̊µν(h, ∂h, Γ̆) := ∇(µΓ̆ν) + Υµν(h, ∂h) , (6.17)

and the violation covector is given by

Da = fa − Γ̊a. (6.18)
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Finally, using Eqs. (6.11) and Eq. (6.16) we write the generalized wave Geroch-Einstein
system (WGES) for the space of orbits as6

hµν∂µ∂νψ − hµνΓρνµ∂ρψ =
hρσ

ψ
(∂ρψ∂σψ − ∂ρω∂σω)− 2Λ,

hµν∂µ∂νω − hµνΓρνµ∂ρω =
hρσ

ψ
∂ρψ∂σω, (6.19)

hρσ∂ρ∂σhµν − 2Υ̊µν(h, ∂h, Γ̆) = 2∇(µfν) −
1

ψ2
(∂µψ ∂νψ + ∂µω ∂νω)− 4Λ

ψ
hµν ,

where we have reduced the GES to a coupled system of quasilinear wave equations for the
independent coordinate components. We notice that the first terms on the left-hand side
constitute the principal part of this evolution system, i.e., quasilinear wave operators. These
terms by themselves are not tensorial, hence give rise to singular terms (terms proportional
to cot θ) which do not have well-defined spin-weights when the frame derivatives are replaced
by eth-operators. The second terms on the left-hand sides cancel these problematic terms
completely, and consequently, the left-hand sides become tensorial. The right-hand side
terms are tensorial already. As a result of this fully tensorial character of all these equations,
the system of evolution equations Eq. (6.19) can now be solved by implementing a pseudo-
spectral method based on the SWSH. In other words, we have obtained a system of evolution
equations whose spatial derivatives can be evaluated at any point by using the eth-operators,
hence we have overcome the pole problem for evolution problems on the S2 topology.

To finalize, recalling our previous discussion at the end of section 2.5, we point out that
thanks to the fact that there are no second-order derivatives in right-hand side in any of the
equations of GES, we obtain that the WGES is a system of quasi-linear wave equations. This
cannot be achieved using the reduced metric ĥab. Therefore, it becomes clear why we decided
to write the evolution equations in terms of the evolution metric hab instead of ĥab.

6.4 Constraint equations

6.4.1 Equivalence between the ADM and GWF constraints

In this part, we discuss the equivalence of the constraints from GWF (Da = 0 = ∂tDb)
with respect to the well-known Hamiltonian and momentum constraints from the ADM for-
mulation. This with the aim to construct initial data for our formulation based on the
York-Lichnerowicz conformal decomposition. To start with, we consider the orthogonal the
unit vector ηa to the Cauchy surface Σt

ηa :=
1

α
(1,−β,−β̄), na = (−α, 0, 0) , (6.20)

where β, β̄ are the components of the shift vector Ba and α =
√
ββ̄ − λ is the lapse function

from the ADM formulation (see section 2.2.2)7. The induced metric γab in the Cauchy surface
is given by

γab = hab + ηaηb .

6Note that because ψ is a scalar, ∇µψ = ∂µψ. Similarly for ω.
7Note that we have used the Ba instead of βa to denote the shift vector as is usual to avoid confusion with

the metric components β, β̄
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Next, we define the zero tensor that represents the EFE in the space of orbits Eq. (4.33) as8

Mab := Gab +
Λ

ψ
hab − T ab, (6.21)

Because the contraction Gabnb does not contain second time derivatives of any of the met-
ric components (see for instance [195]), the constraint equations can be represented as the
components of the vector Ca

Ca :=Mabnb . (6.22)

Furthermore, the standard Hamiltonian and momentum constraints from the ADM formula-
tion can be written respectively as

H := 2naCa,
Ja := γbaCa. (6.23)

Let us assume by now that we have solved these equations, thus the constraint vector Ca
vanishes. The question that arises now is this: How do we guarantee that the constraints
from the GWF are satisfied? Before answering this question, note that we can always choose
coordinates such that initially Da = 0. The real issue is to guarantee that ∂0Db = 0. In order
to establish the relationship between the last expression with the standard constraints from
the ADM, we substitute Rab by Rab +∇aDb into Eq. (6.21) to obtain (see [162])

∇(aDb) − 1

2
hab∇cDc =Mab.

Because of the definition Eq. (6.22), we can obtain the relation with the Hamiltonian and
momentum by just computing Mµ0. In other words, we shall focus in analysing

∇(0Dµ) − 1

2
h0µ∇νDν =Mµ0. (6.24)

Using coordinates such that Dν = 0 clearly implies that ∇νDµ = ∂νDµ owing to the second
terms ΓρνµDρ vanish. Further, any spatial derivative of Dν should vanish as well. Hence,
all the terms ∇νDµ vanish except ∇0Dµ = ∂0Dµ = ∂tDµ. With the above in mind, a
straightforward computation of Mµ0 in terms of Eq. (6.24) yields

Cν = −1

2

(
h0µhνρ + h0ρhνµ

)
∇µDρ +

1

2
h0νhµρ∇µDρ, (6.25)

= −1

2

(
h00hνρ∂0Dρ + h0ρhνo∂0Dρ − h0νh0ρ∂tDρ

)
, (6.26)

= −1

2
h00hνρ∂0Dρ . (6.27)

Clearly, this equation shows the direct dependence on the time derivatives of Dµ and the
constraints from ADM. Therefore, it is clear that by solving the standard Hamiltonian and
momentum constraints from ADM, we also find suitable initial data for the GWF formulation.
s.

8The energy momentum tensor Tab is given by Eq. (4.32).
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6.4.2 York-Lichnerowicz conformal decomposition on S2

To this day, the most successful approach to tackle the constraint equations has been the
conformal method, also known in the literature as the York-Lichnerowicz conformal decom-
position; see [13] and references therein. In this part, we will discuss the implementation of
the York-Lichnerowicz conformal decomposition on S2 for the Hamiltonian and momentum
constraint. To begin with, let us use Eqs. (6.23) and the Gauss-Codazzi and Codazzi-Mainardi
equations (see [195]) into the Hamiltonian and momentum constraints to obtain

(2)R+K2 −KijKij −
2Λ

ψ
= 2ρ,

Dj(Kji − γjiK) = ji,

(6.28)

where Dj = γj
µ∇µ, ρ := nµnνT

µν and ji := −γiνnµT νµ correspond to the energy and
momentum density respectively. Kij is the extrinsic curvature tensor with K = Kii. Note that
the indices i, j... represent spatial coordinate indices taking values 1, 2. In order to implement
the York-Lichnerowicz conformal decomposition, we proceed to decompose the extrinsic mean
curvature tensor into its trace and trace-free part. Because here we are in two dimensions,
the extrinsic curvature will have just three degrees of freedom. The decomposition of the
extrinsic curvature is given as

Kij = Aij +
1

2
Kγij , (6.29)

where one degree of freedom is left on the trace K while the other two remain in the trace-free
part Aij . Because the topology of the Cauchy surface is S2, we can guarantee that there exist
coordinates such that the induced metric on Σ is conformal to the standard unit two-sphere
metric. Hence, we look for initial data such that

γij := δγ̊ij ,

where γ̊ij represents the metric for the unit two-sphere in the frame (ma,ma) given by

γ̊ij =

(
0 1
1 0

)
.

Next, we introduce the conformal transformation for the trace-free part

Aij := δ−2Åij ,

from where, using the standard conformal transformation rules (see section A.4), it follows

Aij = Åij , (6.30)

DiA
ij = δ−2D̊iÅ

ij . (6.31)

The covariant trace-free part Aij turned out to be conformally invariant, thus we can use this
relation to identify the degrees of freedom of Aij . Because of the trace-free condition for Åij ,
it follows that the off-diagonal components are zero. Further, it is obtained that

Å11 = Å22, Å22 = Å11, Å22 =
¯̊
A11. (6.32)

As a consequence of the spin-weights from the frame vectors (ma,ma), the component A11

should be a function with spin-weight 2, whereas A22 should be with −2. We ended up
with one degree of freedom in the tensor Aij . Using all the mentioned properties for Aij , we
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proceed to write the Hamiltonian and momentum constraints. We start by considering the
term AijA

ij . Using Eqs. (6.4.2) and (6.30) we obtain

AijA
ij = 2

|Å11|2
δ2

, (6.33)

where |.| corresponds to the standard norm for complex functions. On the other hand, using
again the conformal transformation formulas Eqs. (A.4.7), we express the two-dimensional
Ricci scalar as

(2)R = δ−1
(
R̊− D̊aD̊

a ln δ
)
, (6.34)

where R̊ = 2 since it corresponds to the Ricci scalar of the unit two-sphere. Replacing
Eqs. (6.31), (6.33) and (6.34) into Eqs. (6.28) and expressing the frame vectors in terms of
eth-operators by means of Eq. (6.4), it can be obtained after a straightforward calculation
that the Hamiltonian and momentum constraints take the form 9

ð̄ð δ = 2δ + δ2

(K2

2
− 2Λ2 − 2ρ

)
+
|ðδ|2
δ
− 2|Å11|2, (6.35)

ð̄Å22 =
δ

2
ðK +

√
2δ2j2, (6.36)

ðÅ11 =
δ

2
ð̄K +

√
2δ2j1, (6.37)

where we have expressed the equations in terms of eth-operators instead of covariant deriva-
tives. Note that because the second equation corresponds to the complex conjugate of the
third one, the components of Aij can be totally determined by just solving either Eq. (6.36)
or (6.37). Therefore, an additional decomposition such that the conformal transverse or
weighted decomposition (see [1]) is not required in contrast to the three-dimensional case. In
order to write the constraints as an elliptic system of equations, let us consider a function
$ with spin-weight +1 such that Å11 = ð$. Then, using Eq. (6.32) and expressing the
Laplacian on S2 in terms of the eth-operators by Eq. (5.30), the constraint equations can be
reduced to the system of elliptic equations

∆S2δ = 2δ + δ2

(K2

2
− 2Λ2 − 2ρ

)
+
|ðδ|2
δ
− 2|ð$|2, (6.38)

∆S2$ =
δ

2
ð̄K +

√
2δ2j +$. (6.39)

where we have noted j = j2 (note that j1 = j̄). As a result, we have ended up with a system
of two second-order elliptic differential equations depending of K, ρ, j, where the two latter
are functions in terms of the scalar fields ψ and ω. In other words, the initial data depend
on the three functions K, ψ, ω.

To finalize this part, we point out that there are several results regarding the existence
and uniqueness of solutions of the constraint equations in three-dimensional Cauchy surfaces;
see [13] for a review. All of them depend on the prescribed mean curvature which could be
assumed to be either constant, near-constant, or far-from-constant. For the first two cases, it
is almost completely understood whether or not a solution of the constraint equations exists,
in contrast with the latter case for which just a few results are known. Nevertheless, we
stress that because all these results are given for three-dimensional Cauchy surfaces or bigger

9 We have use KijKij = AijA
ij +

1

2
K2.
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dimensions, they may not be extended directly to two-dimensional Cauchy surfaces. Hence,
in our particular situation, we do not know under what conditions solutions of the elliptic
system of equations Eqs. (6.38) and (6.39) exist unless we would solve the constraints in the
original manifold. Because this question goes beyond of the scope of this work, we leave it
as a future project.

6.4.3 Choosing initial data

After solving the two elliptic equations, the initial data is obtained by replacing Eq. (6.29) into
the relation between the mean curvature and the time derivative for the spatial metric (see

section 2.2.2) ∂t γij = 2αKij +D(iBj) , where Bi = δγ̊ijB
j , Bj = (β, β̄) and α =

√
ββ̄ − λ .

Thus, the time derivatives for the metric components δ and φ are obtained by

∂tδ =

√
ββ̄ − λ Kδ2 +

ðβ̄ + ð̄β
2
√

2
, (6.40)

∂tφ = 2

√
ββ̄ − λ A11 +

δðβ − βðδ
δ
√

2
. (6.41)

Notice that we have the freedom of choosing the functions λ and β, meaning that they fix the
gauge. Finally, the appropriate generalized gauge source functions should satisfy Γ̊a = fa.
Writing the explicit form of the Γ̊a coefficients in terms of the eth-operators by replacing
Eq. (6.4) into Eq. (6.15)

f0 =
(√

2ðββ̄2 +
√

2ðβ̄
(
δλ− ββ̄

)
−
√

2λðβφ̄+
√

2ðλ
(
βφ̄− δβ̄

)
− 2δλ∂tδ +

2ββ̄∂tδ + δ2∂tλ− φφ̄∂tλ− β̄2∂tφ+ λφ̄φt − β2∂tφ̄+ λφ∂tφ̄+
√

2δλð̄β −
√

2ββ̄ð̄β −
√

2βδð̄λ+
√

2φβ̄ð̄λ+
√

2β2ð̄β̄ −
√

2λφð̄β̄
)
/

2
(
δ2λ− 2βδβ̄ + φβ̄2 +

(
β2 − λφ

)
φ̄
)
,

f1 =
(
−
√

2β2ðφ̄+
√

2λφðφ̄+
√

2ðφβ̄2 + 2
√

2ðβ̄
(
βδ − φβ̄

)
−
√

2λðφφ̄+
√

2ðλ
(
φφ̄− δ2

)
− 4βδ∂tδ + 4φβ̄∂tδ − 4δβ̄∂tφ+ 4βφ̄∂tφ+ 4δ2∂tβ − 4φφ̄∂tβ −

2
√

2βδð̄β + 2
√

2φβ̄ð̄β + 2
√

2β2ð̄δ − 2
√

2λφð̄δ + 2
√

2δλð̄φ− 2
√

2ββ̄ð̄φ
)
/(

δ2λ− 2βδβ̄ + φβ̄2 +
(
β2 − λφ

)
φ̄
)
,

f2 = Γ̊1 . (6.42)

Note that under the previous construction, we have assumed the spatial metric γij to be
diagonal, which implies that φ = 0. However, we have written the general expression be-
cause they provide the general expression to monitor the evolution of the constraint violation
covector Da.

We end this section by mentioning that in this work we shall find initial data by analyti-
cally solving the constraints for some particular situation. However, for more general cases,
we could implement a Richardson’s iteration procedure (see [82]) based on the SWSH to
solve numerically the constraints equations. We believe that this opens the door to a large
number of possible situations that could be studied in future investigations. In section 10.4.2
we provide an description of the algorithm.
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6.5 Reconstruction of the four-dimensional metric

To finalize this chapter, we reconstruct the four-dimensional metric from the numerical solu-
tion of reduced metric ĥab obtained from the evolution metric hab. To begin with, we remark
that there is not a general analytic procedure for solving Eq. (4.38).

We start by considering Eq. (4.38), that leads to the following system of equations

∂0η1 − ∂1η0 = α01,

∂2η0 − ∂0η2 = α20, (6.43)

∂1η2 − ∂2η1 = α12.

Evidently, the first two equations are evolution equations for the fields η1 and η2, while the
latter corresponds to a constraint equation that can be written as

C = ∂1η2 − ∂2η1 − α12. (6.44)

From the curl-free property of αab, and the two previous evolution equations, it can be
obtained10

∂0 C = ∂1(α02 + ∂2η0)− ∂2(α03 + ∂1η0)− ∂0α12,

= ∂1α02 + ∂2α10 + ∂0α21 = 0,

This expression shows the propagation of the constraint once it is satisfied at the initial time
(∂0 = ∂t). Hence, if we would like to solve numerically the system Eqs. (6.43), firstly, we
would have to choose initial values for η0, η1, η2 such that the constraint Eq. (6.44) is satisfied,
and secondly, we would use the first two evolution equations to integrate numerically the
components η1, η2. Therefore, the reconstruction of the four-dimensional metric would follow
from the discussion given in section 4.6.

10Note that n0 is a real function with spin-weight 0.
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Chapter 7

The pseudo-spectral
implementation

As explained earlier, we will use a spectral method based on spin-weighted spherical harmonics
to approximate spatial derivatives. A basic introduction to spectral methods can be found
in books like [73, 78,192] and references therein. This chapter starts with a brief description
of the method of lines, which sets the framework for our numerical approach. The Runge-
Kutta-Fehlberg method is used as the temporal discretization (except for the convergence
tests for which the explicit 4th-order Runge-Kutta method is used). We shortly discuss these
methods in section 7.2. Besides, because the spin-weight spherical transform is based on the
standard discrete Fourier transform, we also briefly discuss some of its properties. The core
of this chapter is section 7.4, where we discuss the algorithm of complexity O(L3), where L
is the band limit of the functions on S2 in terms of the spin-weighted spherical harmonics to
compute the spin-weighted spherical harmonic transforms (forward and backward) introduced
by Huffenberger and Wandelt [112]. Henceforth, we will refer to this algorithm as HWTs.
Then, we introduce an optimized version of this transform for the case of functions on S2 with
spin-weight s that exhibit axial symmetry (i.e., invariant along the coordinate vector field
∂aϕ). As a result, we obtain an algorithm of complexity O(L2) which requires a low memory
cost in comparison with that required by HWTs. In this work, we will focus on functions that
exhibit axial symmetry, hence our spectral implementation is based on this transform. For
details, improvements and applications of the HWTs for general functions in S2 we refer the
reader to [29,30]. In section 7.5, we discuss our method for choosing the “optimal” grid size
in order to keep numerical errors as small as possible and, finally, section 7.6 provides a small
discussion about our Python implementation of the AST, which is the acronym adopted to
refer to the set of forward and backward transforms.

7.1 Method of lines

The framework of this work to numerically integrate the hyperbolic evolution equations in
time is the method of lines (MOL); see [54, 175]. To illustrate the method, let us consider
the function u(t, xµ) that we will note simply by u, which represents the vector of unknowns.
Then, a first-order system of PDEs can be written symbolically as

∂tu = f(t, u, ∂u),

where f(t, u, ∂u) includes all the spatial derivatives. Assuming that the PDEs system is well-
posed at certain time t for a given data u, the function f(t, u, ∂u) has been approximately
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determined somehow (for example, by implementing the fast Fourier transform) resulting in
the discrete function F (t, U), where the unknown u has been approximated, which is called
U . This approximation yields a time-dependent system of ordinary differential equations
(ODE) for U which can be symbolically written as

∂tU = F (t, U). (7.1)

This system is called the semi-discrete system of the original PDE problem because the spatial
derivatives have been completely approximated, while the time derivative is still “exact”.
Then, we solve this semi-discrete system numerically using any technique for solving ODEs.
The resulting system is known as the fully discrete system. There are many integrators for
ODEs discussed in the references above. In particular for this thesis, we choose the explicit
4th-order Runge-Kutta scheme (RK4) which will be used for convergence tests, and the
Runge-Kutta-Fehlberg scheme (RKF) for normal evolutions. We devote the next section to
briefly discuss their implementation.

7.2 Time integrator and convergence test

The following presentation is mainly based on the standard reference [51]. Consider the semi-
discrete system Eq. (7.1) with solution Un at certain discrete time tn. Then, the approximate
solution Un+1 at the next time tn+1 = tn + h is obtained using the RK4 (in 4 stages) as
follows;

k1 = F (tn, Un),

k2 = F (tn + h/2, Un + k1/2),

k3 = F (tn + h/2, Un + k2/2),

k4 = F (tn+1, Un + k3),

Un+1 = Un + (k1 + 2k2 + 2k3 + k4) /6.

This method has local truncation error O(h4) provided that the solution u has five continuous
derivatives. This means that for sufficiently small values of the step h, there exists a constant
C > 0 such that the difference between the discretized solution and the exact solution is
smaller than Ch4. A way to improve the accuracy of this method is by varying the time step
size whenever it is required. The idea is to adapt the time step to ensure that the truncation
error is kept within a specified bound, usually called tolerance (TOL). One of the most
popular of this type is the Runge-Kutta-Fehlberg Method due to its easy implementation
and effectiveness. This uses a 5th-order Runge-Kutta to estimate the local error of a RK4.
Owing to the size of the equations, we omit them here. However, they can be found explicitly
in [51].

On the other hand it is always essential to carry out a convergence test, which is a
study of how the numerical solution behaves as the resolution in a discrete implementation
is increased. This provides a way to quantify the total error in a numerical implementation.
The fundamental idea is based on comparing the errors (or relative errors) from the numerical
solutions obtained for different resolutions. See for instance [1] for a general discussion about
it. In particular, in this thesis, we will carry out convergence tests with the discrete scheme
RK4, which is described as follows. Let us assume two numerical solutions obtained with
RK4 for different step sizes h1, h2, where 2h2 = h1. Thus, the errors in each solution are
E1 = O(h4

1) and E2 = O(h4
1/16) respectively. The convergence factor for the RK4 is defined
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by

q := Log2

(
E1

E2

)
= 4, (7.2)

which means that by increasing the resolution by a factor of 2 our numerical solution will
approach the “exact solution” at the rate of 24, in line with the order of the RK4. Later, in
section 8.5, we will use this algorithm to test the convergence of our numerical implementa-
tion.

7.3 The discrete Fourier transform

A basic introduction to the fast Fourier transform, its properties and implementation can
be found in [73, 78, 192] and references therein. Here, we will restrict ourselves to mention
the necessary properties for this work. The one-torus T is defined by T := S1 parametrized
by the variable x ∈ [0, 2π]. Then, it can be defined L2(T) as the space of square integrable
functions in T with inner product

< f, g >:=

∫
T
f(x)g(x) dx , (7.3)

for any f, g ∈ T. According to the standard theory of Fourier series, those functions can be
written in terms of a convergence series by

f(x) :=
∞∑

n=−∞
ake

ikx, (7.4)

with Fourier coefficients (also known as frequencies or modes) ak ∈ C given by

ak =
1

2π

∫
T
f(x)e−ikxdx, (7.5)

which decay exponentially for large values of k. Usually, these are known in the literature
as wave numbers. Next, let us evaluate the function f ∈ L2(T) at a discrete even number of
points N regularly distributed by a distance ∆x over the interval [0, 2π]. Then, the discrete
Fourier transform is defined as

ak :=
1

N

N−1∑
m=0

Fme
−ixmk, (7.6)

where k takes integer values from −N/2 + 1 to N , and Fm denotes the the numerical values
of the function f sampled at the points xm = (2π/N)m for m ∈ {0, 1, ..., N − 1}. On the
other hand, the inverse discrete Fourier transform is defined as

Fm :=

N/2∑
k=−N/2+1

ake
ixmk. (7.7)

Hereafter we call the highest frequency L = N/2 as the band limit. The above equation is
known as the discrete backward Fourier transform. We have obtained the numerical values of
the function f ∈ L2(T). Note that the Fourier series expansion has been truncated at some
wave number L. In the light of these transforms, any function f ∈ L2(T) can be expressed
either in terms of its sampled values Fm or in terms of the set of modes ak’s . Note that for
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an odd number of grid points, the limits in the equation above are modified by −(N − 1)/2
for the lower limit and (N −1)/2 for the maximum (see [46] for details). Clearly, the two sets
are related by a square N ×N matrix. Thus, swapping representations requires performing
N2 operations. However, thanks to the algorithm of Cooley-Tukey [68], this computation
can be carried out in O(NLog2N) operations.

Conforming to Eq. (7.4), we require an infinite number of Fourier coefficients to describe
a continuous smooth function exactly. However, the Nyquist-Shannon theorem states that
for the discrete case, a finite number of Fourier coefficients is enough for sampling function.
Further, this number is determined by the size of the grid where the function is sampled.
The Nyquist-Shannon theorem states the following:

Theorem 7.3.1 If f ∈ L2(T) is band-limited so that its Fourier coefficients vanish after
wave number k, then f can be completely reconstructed from its values sampled at intervals
of ∆x provided that 1/∆x ≥ k.

The highest frequency k that can be reconstructed is known as the Nyquist frequency or
the cut-off wave number that we shall denote by kc. The theorem also asserts that if the
sampling is chosen such that it fails to satisfy the criterion above, the frequency k outside
of the Nyquist frequency band, i.e., |k|> kc, will reappear in the reconstructed function at
a frequency k + mkc, where m is an integer such that |k + mkc|≤ kc. This fact is known as
the aliasing error. In other words, aliasing error occurs when a high frequency is sampled
at discrete intervals and misinterpreted as a low frequency. In addition, aliasing may occur
during the computation of products among functions sampled on a finite grid. However, if
the Fourier series of both functions above are truncated up to some frequency k = 2kc/3
(and setting the other 1/3 frequencies equal to zero), then this problem can be avoided. This
procedure is known in the literature as the 2/3-rule to prevent aliasing. For a more detailed
discussion see for instance [73,192].

We finalize this section by mentioning the truncation error, that is the error coming from
the difference between f and its discretization F . As noted in [97], it can be proved that
the order of the truncation error for a Fourier series approximation of certain p-differentiable
function f that is truncated at wave number k is O(1/kp). Therefore, it is well-known that
“spectral methods converge exponentially” for smooth functions, hence are expected to be
more accurate than finite difference methods (like RK4) that converge polynomially.

7.4 Implementation of the spin-weighted transforms

7.4.1 General description of the HWTs

To begin with, let us consider a square integrable spin-weighted function f ∈ L2(S2) with
spin-weight s. The forward and backward spin-weighted spherical harmonic transformations
are defined, respectively, by

salm =

∫
S2

f(θ, ϕ) sY lm(θ, ϕ) dΩ, (7.8)

sf(θ, ϕ) =

L∑
l=|s|

l∑
m=−l

salm sYlm(θ, ϕ), (7.9)

where the decomposition has been truncated at the maximal mode L. Henceforth, we shall
refer to it as the band limit. To calculate numerically the integral in Eq. (7.8) over a finite
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coordinate grid, a quadrature rule and knowledge of the SWSH over that grid is required.
The quadrature rule presented in [112] is based on a smooth non-invertible map where the
poles are geometrically expanded as circles on T2. Once a quadrature rule on equidistant
points on T2 has been specified, we proceed to compute the SWSH which are written in
terms of the Wigner d-matrices introduced in section 5.3.2, and which can be calculated
using recursion rules given by [191]. Adopting the notation ∆l

mn := dlmn(π2 ) the Wigner
d-matrices in Eq. (5.16) can be expressed as

dlmn(θ) = im−n
l∑

q=−l
∆l
qm e−iqθ∆l

qn, (7.10)

where n and m take integer values that run from −l to l. Later in section 7.4.2, we explain in
detail how to compute the ∆l

nm terms. The expression above allows us to write the forward
and backward spin-weighted spherical harmonic transforms respectively as

salm = is−m
√

2l + 1

4π

l∑
q=−l

∆l
qmIqm∆l

qs, (7.11)

sf(θ, ϕ) =
∑
m,n

eimθeinϕJmn, (7.12)

where the matrices Imn and Jmn are computed from the standard two-dimensional Fourier
transforms (forward and backward respectively) over 2π-periodic extensions of the function

sf(θ, ϕ) into T2. In general, the complexity of the outlined algorithm is O(L3).

7.4.2 Axially symmetric spin-weighted transforms

The axially symmetric spin-weighted forward transform

Let us begin by pointing out that the previous algorithm can be decomposed into two main
tasks; namely, computation of the ∆l

mn terms and calculation of the Imn and Jmn matrices by
means of the two-dimensional forward and backward Fourier transform respectively, acting
over some given function f(θ, ϕ). Next, we discuss in detail how to simplify these tasks for
the case of axially symmetric functions, i.e., functions that only depend on the θ coordinate.
Let us consider a square integrable axially symmetric spin-weighted function f(θ) ∈ L2(S2)
with spin-weight s. Because of the ϕ dependence of the non-zero m modes of SWSH, see
Eq. (5.16), we can write the function f(θ) in terms of sYl0(θ, ϕ). Hence, the forward spin-
weighted spherical harmonic transform Eq. (7.8) can be written in a simple form as

sal =

∫
S2

f(θ) sY l(θ) sin θ dθdϕ,

where we have used the notation sal := sal0 and sYl(θ) := sYl0(θ, ϕ). Then, we rewrite
Eq. (7.11) as

sal = is
√

2l + 1

4π

l∑
n=−l

∆l
n0In∆l

ns, (7.13)

with1

In := 2π

π∫
0

e−inθ f(θ) sinθ dθ. (7.14)

1The factor 2π comes from the trivial integral over ϕ.
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Figure 7.1: Sampling on T.

Similarly to the procedure for HWTs [112], the number of computations required to obtain
the spectral coefficients sal can be reduced by a factor of two by using symmetries associated
with the ∆l

mn quantities. In addition, we can introduce another reduction owing to the
fact that ∆l

n0 = 0 for l + n = odd. This allows us to reduce the number of computations
by a further factor of 2. Therefore, we define the axially symmetric spin-weighted forward
transform (ASFT) as

sal = is
√

2l + 1

4π

l∑
n≡l(mod2)

∆l
n0Jn∆l

ns (n+= 2), (7.15)

where n is a positive integer that increases in steps of two and starts at 0 or 1 depending on
whether l is even or odd. The vector Jn is defined by

Jn :=

{
In n = 0,

In + (−1)sI(−n) n > 0.
(7.16)

The evaluation of In can be carried out by extending the function sf(θ) to T as a 2π-periodic
function. This allows the implementation of the standard one-dimensional Fourier transform
in contrast to the general case of HWTs that, because of the ϕ-dependence, requires a two-
dimensional Fourier transform. Now, we define the extended function on T as

sF (θ) :=

{
sf(θ) θ ≤ π,
(−1)s sf(2π − θ) θ > π.

Clearly, the vector In remains unchanged because sF (θ) agrees with sf(θ) on the integration
domain in Eq. (7.14). The function sF (θ) is chosen to be 2π-periodic, hence it can be written
as an one-dimensional Fourier sum. However, firstly we need to define the number of sampling
points in T. Let us consider Fig. 7.1. In this diagram, the upper part of the circumference
represents the number of samples Nθ taken for 0 ≤ θ ≤ π, whereas the lower part shows
the Nθ − 2 samples for π < θ < 2π. Clearly, the subtraction by 2 in the lower half of the
circumference comes from the extraction of the poles to avoid oversampling. Therefore, to
sample a function on T we proceed as follows. If the desired number of samples for a function

sf(θ) on S2 is Nθ, then the number of samples for the extended function sF (θ) on T should
be N ′θ = 2(Nθ − 1) and the spatial sampling interval will be ∆θ = 2π/N ′θ. Therefore, the
extended function can be written as a 1-dimensional Fourier sum by

sF (θ) =

N ′θ/2∑
k=−N ′θ/2+1

Fke
ikθ.
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The substitution of this equation into Eq. (7.14) yields

In = 2π

N ′θ/2∑
k=−N ′θ/2+1

Fkw(k − n), (7.17)

where w(p) is a function Z→ R defined by

w(p) =

π∫
0

eipθ sinθ dθ =


2/(1− p2) p even,

0 p odd, p 6= ±1,

±iπ/2 p = ±1.

By comparison with Eq. (7.17) we note that the latter is proportional to a discrete convolution
in the spectral space. Therefore, it can be evaluated as a multiplication in the real space such
that In is the 1-dimensional forward Fourier transform of 2π sF wr as follows

In =
2π

N ′θ

N ′θ−1∑
q′=0

exp (−inq∆θ) sF (q′∆θ) wr
(
q′∆θ

)
,

where wr(q
′∆θ) is the real-valued quadrature weight in T given by

wr(q
′∆θ) =

N ′θ/2∑
p=−N ′θ/2+1

e−ipq
′∆θ w(p).

Finally, we want to emphasize that even though this way of sampling functions on T allows us
to include the value of the extended function at the poles, it yields an even number of modes
in spectral space. Hence, we will not have the same number of positive and negative modes
after the implementation of ASFT. Indeed, for the mode IN ′θ/2 (see Eq. (7.16)), the vector JL′

cannot be calculated since the term I−N ′θ/2 is not given by the 1-dimensional forward Fourier
transform. We avoid this issue by calculating the set of Jn terms up to n = N ′θ/2− 1. Note
that setting IN ′θ/2 to zero does not constitute a loss of information due to the exponential
decay of the spectral coefficients of the Fourier transform. In fact, this extra mode is in
general numerically negligible, hence it will not affect the accuracy of the ASFT.

Now, in order to satisfy the Nyquist condition [78], the relation between the number of
sampling points in T and the band limit must satisfy the inequality

2(Nθ − 1) ≥ (2L+ 1) + 1,

where the last term on the right-hand side comes from counting the extra term without a
mirrored partner. As a result, the maximum value of the band limit for which the ASFT is
exact is given for

L = Nθ − 2. (7.18)

The axially symmetric spin-weighted backward transform

This transform maps the spectral coefficients sal back to the corresponding axially symmetric
function on S2. As the inverse transform does not contain integrals, issues of quadrature
accuracy do not arise. In a similar way as we implemented the properties of the 3-dimensional
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∆l
nm term to obtain Eq. (7.15), we can write from Eq. (7.12) the axially symmetric spin-

weighted backward transform (ASBT) as

sf(θ) =

N ′θ/2∑
n=−N ′θ/2+1

einθGn,

where the vector Gn is given by

Gn :=


0 if n = N ′θ/2,

is
L∑

l≡mod2(n)

√
2l+1
4π ∆l

n(−s) sal ∆l
n0 (l+= 2).

(7.19)

Similar to Eq. (7.15), l increases in steps of two and starts at l(mod2). We set GN ′θ/2 = 0
because in the implementation of the ASFT we chose IN ′θ/2 = 0. The evaluation of Eq. (7.19)
is carried out by a 1-dimensional inverse Fourier transform that results in a function sf(θ)
sampled on T. So, as we require the function on S2, we may simply truncate the output at
θ = π.

Computation of the three-dimensional ∆l
nm

So far, the forward and backward spin-weighted spherical harmonic transforms have been
simplified for axially symmetric functions by the implementation of a one-dimensional Fourier
transform instead of a two-dimensional one as required in the algorithm HWT. In fact, we
can simplify the computation of the ∆l

nm terms even further. This has a significant effect
on the efficiency of both ASFT and ASBT, given that such a task takes around half of the
execution time in practical situations. Therefore, we devote this section to discussing this
issue.

To begin with, we explain how the ∆l
nm terms are computed and we bring up a relevant

fact for both ASFT and ASBT. By examination of Eq. (7.15) and Eq. (7.19), we realize that
we do not really need to calculate the complete set of ∆l

nm terms2 to perform the transform.
Instead, we just need to compute up to the ∆l

ns term, where s is the spin-weight of the function
that is supposed to be transformed. This yields a remarkable speed-up of the algorithm since
mostly s� L. Now, based on this, we proceed to compute the ∆l

ns terms implementing the
recursive algorithm introduced by Trapani and Navaza in [191]. The recursive relations are
given by the following equations

(a) ∆l
l0 =

√
2l − 1

2l
∆l−1

(l−1)0,

(b) ∆l
lm =

√
l(2l − 1)

2(l +m)(l +m− 1)
∆l−1

(l−1)(m−1),

(c) ∆l
nm =

2m√
(l − n)(l + n+ 1)

∆l
(n+1)(m) −

√
(l − n− 1)(l + n+ 2)

(l − n)(l + n+ 1)
∆l

(n+2)(m),

where the letters “a”, “b” and “c” denote the sequence in which they should be used. We
note that terms with a combination of indices outside of the correct range are set to be 0.
One way to visualize the above algorithm is by means of the pyramidal representation of
the ∆l

ns terms in Fig. 7.2. The volume of the complete pyramid represents the complete

2 n and m take integer values from −l to l.
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Figure 7.2: Pyramidal representation for the
∆l

mn terms.
Figure 7.3: Upper view of the l-plane.

set of the ∆l
nm terms. Setting the top peak of the pyramid as ∆0

00 = 1, we start moving
down both in vertical direction using rule (a), and in diagonal direction by (b). Thus, the
∆l
ns terms in the right-hand side in the front face of the pyramid can be found. Then, using

rule (c) repeatedly, allows to find the terms behind the front face in order to calculate the
right-hand side of the pyramid volume. If we would need to compute the full set of ∆l

nm

terms, we would need to repeat this algorithm in order to obtain the complete right-hand
side of the pyramid volume. However, we just need to repeat step (b) until we reach the row
corresponding to l = |s| (for the given l-level) because we are just interested in computing
the first ∆l

ns terms. Moreover, since only the ∆l
ns terms with positive values of n are needed

to compute both ASFT and ASBT (see Eqs. (7.15) and (7.19)), we implement rule (c) until
we reach the column n = 0. The left-hand side of the pyramid volume can be obtained
by applying the mirror rule ∆l

n(−|s|) = (−1)l−n∆l
n|s| (see [191]). In Fig. 7.3, we observe a

schematic representation of this, where the number of ∆l
ns terms that have to be computed

are represented by the gray section. In this illustration we call the collection of the ∆l
ns terms

for each l as l-plane. Note that the gray section is not a rectangle since we can implement
the symmetric transposition rule ∆l

n|s| = (−1)|s|−n∆l
|s|n. In short, we will require O(L2)

operations to compute the ∆l
ns terms needed to implement both ASFT and ASBT, which

will allow us to pre-compute the ∆l
nm terms for a low memory cost in comparison with the

algorithm for HWTs3.

Outlook of the transforms

We have presented both the forward and backward spin-weighted spherical harmonic trans-
form for the axial symmetric case by implementing simplifications of the general algorithm
HWTs in order to optimize them for axially symmetric functions in S2. The first main simpli-
fication is the replacement of the two-dimensional by an one-dimensional Fourier transform
in both the forward and backward transforms. This substitution reduces the number of com-
putations from O(L2 log2 L

2) to O(L log2 L). The second simplification lies in the fact that
for both the forward and backward transforms we do not need to compute the full set of ∆l

nm

terms (which are in the general case L3 terms). The resulting algorithm requires just O(L2)
operations for each transform. However, if we pre-compute the Wigner coefficients ∆l

mn, as

3For L = 1024, the memory cost of AST is v 1MB whereas for HWT is v 1 GB.
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Figure 7.4: Time performance comparison between HWFT and ASFT.

we are going to do it in our numerical evolution, the transform only requires O(L log2 L)
operations. In what follows, we refer to those as the axial symmetric transforms (AST).

To finalize this outlook of the algorithm, in Fig. 7.4 we contrast the time of execution
between the HWFT and ASFT applied to a function f with spin-weight 0. As expected,
for lower band limits the time difference between both transforms is not really significant.
However, as we increase the band limit the difference becomes significant. In section 7.6 we
will provide some details of our Python implementation of those transforms.

7.5 Choosing the optimal grid

Because the axially symmetric transforms are based on the Fourier transform, we expect
that spectral coefficients decay exponentially to zero when the band limit tends to infinity.
Theoretically speaking, a function is described in spectral space by an infinite number of
spectral coefficients. On the other hand, because of the machine rounding error4, any suf-
ficiently smooth function is described by a finite set of spectral coefficients that contribute
numerically to the spectral decomposition. In other words, the spectral coefficients with an
order lower than 10−15 are negligible numerically, thus unnecessary for an accurate descrip-
tion of functions in the spectral space. Hereafter, we call the l-order to the last mode above
the order 10−15 as the optimal band limit. Consequently, by virtue of Eq. (7.18) the optimal
band limit defines the optimal number of grid points. Taking a larger number of grid points
in comparison than the optimal one will add unnecessary computations in the transform;
consequently, the accuracy is reduced instead of enhanced. We refer to this as the sampling
error. In our implementation this error in controlled by keeping the number of grid points as
close as possible to the optimal case. To this end, we proceed as follows. Initially, we sample
the initial data in a large grid. In our case we have chosen Nθ = 1025. Then, we apply the
ASFT to each function of the initial data and identify the highest mode, which is just above
the threshold 10−15. In other words, we identify the optimal band limit for each function
of the system. From all these modes we set the order of the highest mode as the optimal
band limit for the initial data. Henceforth, we will refer to this as the global optimal band

4In this paper, the terms “machine rounding error” and “machine precision” refer to the finite precision
such that numbers can be represented in a computer. We always assume that this precision is of order 10−15

which corresponds to standard “double precision”.
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limit. Using Eq. (7.18) we obtain the optimal number of grid points required to sample the
functions of the system. Finally, we begin the numerical solution of the system by interpo-
lating the initial data in the optimal grid. Now, we discuss how we keep the optimal grid
size during the evolution. For each time step, we check the last mode of each field in order to
observe whether they are smaller than some given tolerance. For this implementation, it has
been set to 10−14. Then, if some of those modes do not satisfy the mentioned condition, then
the number of grid points is not enough for sampling some of the functions of the system.
Therefore, we need to interpolate all the functions to a bigger grid. We point out that the
new grid should not differ too much from the previous one because, as we mentioned before,
it could lead to many unnecessary grid points, hence to larger errors. In this implementation,
we decided to increase the grid by four points each time it is required. Using this small
increment, we expect to stay close enough to the optimal grid and as a consequence keep a
good accuracy.

To finalize this section, we point out that due to non-linearities in our evolution equations,
some kind of filtering process is required in order to avoid the so-called aliasing effect. For
this we use the 2/3-rule explained in section 7.3.

7.6 Code implementation of the AST

As an outcome of this thesis, we have written a Python module (for Python 2.7) for the
implementation of the AST based on the algorithm discussed previously. For a basic in-
troduction to this programming language we recommend [53]. The module allows us to
create objects of spin-weighted functions for which we can define an algebra. Hence, the
basic operations of sum, subtraction and multiplication among spin-weighted functions can
be defined. We devote this last section to explaining the general structure of this module as
well as providing a simple example for its use. It is for free distribution and can be found
in http://gravity.otago.ac.nz/wiki/index.php/People/LeonEscobar at the link Axial

symmetric spin-weighted functions.

The module is divided into two pieces. The first part contains the implementation of the
AST algorithm in C-language. This is with the aim of making the code performance as fast
and efficient as possible. The source code for the implementation of the ASFT and ASBT,
as well as the eth-operators, are contained in this part. All these functions are compiled in
a dynamical C-library called “libaxial_spin_trans.so”. The source C-code for building
up this library, as well as the directions, are included (in a “readme” file) in the directory
c_code. Hence, even though the entire module has been written with the aim to be used
in Python, the C-library can be also implemented independently in another C-code if it is
desired. The second part of the module consists of the Python implementation. This part uses
the C-library mentioned above to define the Python functions of the module. One of the main
features of this module is the possibility for defining objects from the class “functions”. These
objects will represent the axial symmetric spin-weighted functions that have two attributes.
The first one contains the discrete representation of the function at the interval [0, π] as a
vector (we are assuming functions like f(θ)).

The second attribute is the spin-weight of the function. In addition, we define the basic
operations of sum, subtraction and multiplication among spin-weighted functions for the
object of this class. The ASFT, ASBT and eths-operator will act only over an object from
this class giving as output functions belonging to this class as well. For this reason, this
Python module can be seen not only as a set of functions but also as a Python environment
to work with axial symmetric SWSH. Here there is a summary of the functions available in
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the module (f represents an object that belongs to the class function_in_s2.)

1. create_mesh(Ntheta): This function creates an appropriate grid based on the number
of samples.

2. function_in_s2(list_of_functions,list_of_spins): This function defines func-
tions in [0, π] as objects. Each function is an object with two attributes as we have
already mentioned. Note that we can define an array of functions with their respective
array of spin-weights.

3. forward(f): To compute the forward axial symmetric spin transform of f. The output
is an object from the class salm which contains the spectral representation of the
function.

4. backward(salm): To compute the backward axial symmetric spin transform to objects
from the class salm. The output is an object of the class function_in_s2.

5. ethU(f): ð (raising spin) applied over f. The output is another object of the class
function_in_s2.

6. ethD(f): ð̄ (lowering spin) applied over f. The output is another object of the class
function_in_s2.

7. C(f): To take the complex conjugate of f. The output is another object of the class
function_in_s2.

In order to better illustrate how to use these functions, in what follows we discuss a short
example of their implementation. Let us consider the following Python code which shows
how to get started with this module.

1 import sys
2 import numpy as np
3

4 #To inc lude the path where the i s module i s to the v a r i a b l e enviroment
5 sys . path . append ( ’ /path/ to / the /module ’ )
6 from Axia l Sp in Weight Funct ions import f u n c t i o n s as s f
7

8 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Def in ing g r id ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 Ntheta = 64

10 theta = s f . create mesh ( Ntheta )
11

12 #∗∗∗∗∗∗∗∗∗∗∗∗∗Def in ing the f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗
13 f a = np . cos ( theta )
14 fb = np . s i n ( theta )
15 f o n g r i d = np . array ( [ fa , fb ] )
16 sp in s = np . array ( [ 0 , 1 ] )
17 f = s f . f u n c t i o n i n s 2 ( f o n g r i d , sp in s )
18

19 #∗∗∗∗∗∗ Computing the s p e c t r a l c o e f f i c i e n t s ∗∗∗∗∗∗
20 a l = s f . forward ( f )
21 # Returns a l l the s p e c t r a l c o e f f i c i e n t s o f the f i r s t f unc t i on
22 pr in t a l [ 0 ]
23 #retu rn s from the f i r s t s e t sa l , the c o e f f i c i e n t s with the f i r s t sp in
24 pr in t a l [ 0 , 1 ]
25 # Recovering the func t i on
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26 f 2 = s f . backward ( a l )
27

28 #∗∗∗∗∗∗∗∗∗ Action o f the eths ope ra to r s ∗∗∗∗∗∗∗∗∗
29 f 3 = s f . ethU ( f2 )
30 pr in t ” r e s u l t i n g sp in ” , f 3 . sp in
31 pr in t ” check ing the func t i on on the g r id ” , f 3 . map
32 f 4 = s f . ethD ( s f . ethU ( f3 [ 1 ] ) )
33 pr in t ” r e s u l t i n g sp in ” , f 4 . sp in
34 pr in t ” check ing the func t i on on the g r id ” , f 4 . map
35

36 #∗∗∗∗∗∗∗∗ Operat ions between f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗
37 f 5 = f [ 0 ] + f [ 1 ]
38 pr in t ” r e s u l t i n g sp in ” , f 5 . sp in
39 pr in t ” check ing the func t i on on the g r id ” , f 5 . map
40 f 6 = f ∗ f 2
41 pr in t ” r e s u l t i n g sp in ” , f 6 . sp in
42 pr in t ” check ing the func t i on on the g r id ” , f 6 . map
43

44 # Error o f no a l lowed operat i on .
45 pr in t f 2 + f4

In the first two lines, we load some default Python modules. In lines 5 and 6 we set
the environment of variable such that we can load the axial symmetric transform module
Axial_symmetric_spin_weight_functions in our script. Note that we have loaded the
module under the name sf. In lines 9 and 10 we define the grid. From line 13 to 17, we
define the array of axial symmetric spin-weighted functions composed by the functions fa

and fb (sampled as vectors) with spin-weights listed in the array spins. Once we have
defined the functionf we can use the ASFT, ASBT and the eths-operator on it, or in each
component by separated. For example, in line 20, we compute the spectral coefficients of
the array f by using the ASFT. Clearly, we can also recover the array of functions sampled
at the grid from the spectral coefficients by using ASBT. From line 29 to 32, we test the
action of the eth-operators in f while from line 37 to 45, we test the algebra corresponding
to SWSH. We want to point out that each component of the array f is also an object of the
class function_in_s2. Hence, we can also treat them as an independent axial symmetric
function (with its respective spin-weight) as is shown in lines 32 and 37. We have included
this Python script, called example.py, in the directory how_to_use_me.

Finally, we would like to mention that we have generalized this module to the general
SWSH. This module uses the C-library libcoffee.so linked with the C-library given by
Huffenberger and Wandelt in spinsfast.so. The latter can be downloaded at http://www.
physics.miami.edu/~huffenbe/research/spinsfast. The generalization of the Python
module is straightforward from the axial symmetric case, keeping almost the same structure
of the objects and functions. This module can be also found http://gravity.otago.ac.

nz/wiki/index.php/People/LeonEscobar at the link General spin weighted functions.
Because in this work we are only interested in considering axial functions, we have simply
used this module to test the performance of the axial symmetric one, but we did not use it
for any of our numerical studies. However, it may be useful for a future research in more
general scenarios.
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Chapter 8

Testing our implementation on a
Gowdy spacetime R× S3

To analyse the consistency, accuracy and feasibility of our numerical infrastructure, this
chapter we reproduce an inhomogeneous cosmological solution of the vacuum EFE with
spatial topology S3. In addition, we conduct a detailed numerical analysis to identify the
major sources of potential errors and explore the behaviour of the constraints for different
gauges by choosing different generalized gauge source functions.

8.1 The class of smooth Gowdy symmetry generalized Taub-
NUT solutions

As aforementioned in chapter 3, solutions of the EFE have the property of being uniquely
determined (up to isometries) by the Cauchy data on a Cauchy surface, at least locally in
time. However, there exist some special cases for which the maximal globally hyperbolic
development of the data can be extended in several inequivalent ways. These extensions are
not globally hyperbolic, hence there is a Cauchy horizon whose topology and smoothness may
be, in general, complicated. Furthermore, closed causal curves exist in the extended regions
which violate the causality conditions. A well-known example of this sort of solution is the
Taub solution [188], which is a two-parametric family of spatially homogeneous cosmological
models with spatial topology S3. This solution can be extended through smooth complete
Cauchy horizons with topology S3 to the Taub-NUT solutions [144].

As a test for our numerical implementation described along this chapter, we reproduce a
family of exact inhomogeneous solutions with spatial topology S3 that belong to the class of
smooth Gowdy-symmetric generalized Taub-NUT solutions introduced by Beyer et al. in [32]
and motivated by the early work of Moncrief [135] about generalizations of the Taub-NUT
solution. This class incorporates all Gowdy-symmetric time-oriented maximally extended
globally hyperbolic solutions of the EFE in vacuum with zero cosmological constant and
spatial topology S3. To cover the maximal global hyperbolic developments (see [63,162]), the
class is written in terms of some “areal” time function t ∈ (0, π) and the Euler coordinates
introduced in section 6.2 for the spatial part. In these coordinates the class of smooth metrics
takes the form1

gab = eM (−dt2 + dθ2) +R0

(
sin2 t eu(dρ+Q dϕ)2 + sin2 θ e−u dϕ2

)
, (8.1)

1Note that in order to be consistent with our notation, we have changed the original notation from [32] by
ρ1 → ρ and ρ2 → ϕ.
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with a positive constant R0 and smooth functions u, Q and M that depend only on t and θ.
A large class of such solutions of the Einstein vacuum equations were constructed in [32] as
an application of the Fuchsian method (see [4, 5, 34]).

8.2 The family of exact solutions

Here we discuss a three-parametric family of explicit smooth Gowdy-symmetric generalized
Taub-NUT solutions introduced by Beyer et al. in [33] which can be considered as spatially
inhomogeneous generalizations of the Taub solution. This family of exact solutions was
derived by implementing the so-called soliton methods (see [109]), and it was shown that
they are regular in the maximal globally hyperbolic region 0 < t < π. The components of
the metric Eq. (8.1) for this family of solutions are given as

eM =
R0

64c3
1

(
U2 + V 2

)
, eu =

R0

64c2
1

Ue−M

1 + y
,

Q = x+
c3

8

(
1− x2

)(
7 + 4y + y2 +

(1− y)V 2

4c2
1U

)
,

where

U := c2
3

(
1− x2

)
(1− y)3 + 4c2

1(1 + y), V := 4c1 (1− y) (1− c3x(2 + y)) ,

with x = cos θ, y = cos t. Here c1 and c3 are real constants that, together with R0, define a
particular solution, thus this is a three-parametric family of exact solutions. Clearly, accord-
ing to the definition of the Euler coordinates in Eq. (5.5), the coordinate vector fields ∂aρ and
∂aϕ are non-vanishing Killing vector fields with closed circles as integral curves. This allows
us to perform the Geroch reduction with respect to either of the two fields by defining the
corresponding projection map π, quotient manifold S, the objects ψ, ω and the projected
metric hab [33]. In this work we perform the Geroch reduction only with respect to the vector
field ∂aρ , hence we obtain the smooth orbit manifold S = R × S2. The push-forward of the
other vector field along π defined in Eq. (5.7), which we denote by ∂aϕ, is a smooth Killing
field of the 2 + 1 metric hab. Consequently, all the metric components are axial symmetric in
the sense defined in section 7.4.2, hence the axial symmetric transform introduced introduced
in chapter 7 is the natural choice for our numerical implementation discussed below. After
the symmetry reduction procedure we find that

ψ = R0 sin2 t eu, (8.2)

∂tω = −R0
sin3 t

sinθ
e2u∂θQ, (8.3)

∂θω = −R0
sin3 t

sinθ
e2u∂tQ, (8.4)

hab = ψ
(
eM (−dt2 + dθ2) +R0 sin2 θ e−udϕ2

)
,

where ψ and ω are the norm and twist associated to ∂aρ and hab the 2 + 1 metric. Now, as
described in section 6.3.2, see Eq. (6.2), we write the metric in terms of the frame (T a,ma,ma)

λ = R0 sin2 t eM+u, (8.5)

β = 0, (8.6)

δ = R0 sin2 t
(
eM+u +R0

)
/2, (8.7)

φ = R0 sin2 t
(
eM+u −R0

)
/2. (8.8)
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We notice that the smooth contracted connections coefficients Γ̊µ associated with hab are
calculated from Eq. (6.15) by first computing the contracted Christoffel symbols Γµ of hab
and then by calculating Γ̆µ from Eq. (6.14) and the background metric Eq. (6.13). The results
are

Γ̊0 = − cot t, (8.9)

Γ̊1 = Γ̊2 =
√

2 c2
3 csc2 t sin8 t

2
sin 2θ. (8.10)

Henceforth, we refer to hab as the 2 + 1 smooth Gowdy symmetry generalized Taub-NUT
solutions (GTN). We point out that this family of solutions contains the well-known Taub-
NUT solution [188] as a special case by setting c3 = 0 and writing c1 and R0 in terms of
arbitrary parameters l and m as

c1 =
1

l

(√
l2 +m2 +m

)
, R0 = 2l

√
l2 +m2, (8.11)

for l > 0 and m ∈ R. This is a spatially homogeneous solution. On the other hand,
inhomogeneous solutions are obtained by choosing any non-zero value for c3 (see [33] for
details).

8.3 Choice of the gauge and initial data

As we mentioned in the previous section, a homogeneous solution of the GTN family can
be obtained by choosing c3 = 0, whereas inhomogeneous solutions are given for any other
value of c3. Thus, we understand this parameter as a “switch” between homogeneous and
inhomogeneous solutions. This fact motivates us to write the metric only in terms of this
parameter and choosing c1 = 1, R0 = 2.

For the following it is also convenient to list the values of the metric functions at the
time t = π/2 which we shall use as the initial data for our numerical evolutions. Notice that
we cannot use t = 0 or t = π as initial times because the data are singular there. Thus,
evaluating Eqs. (8.5)–(8.8) and time derivatives at t = π/2, we obtain2

λ0 = −4− c2
3 sin2 θ, ∂tλ0 = −4c2

3 sin2 θ, (8.12)

φ0 =
c2

3

2
sin2 θ, ∂tφ0 = c2

3 sin2 θ, (8.13)

δ0 = 4 +
c2

3

2
sin2 θ, ∂tδ0 = c2

3 sin2 θ, (8.14)

β0 = 0, ∂tβ0 = 0. (8.15)

From Eq. (8.2) and its time derivative we obtain the initial value for ψ0 and ∂tψ0 respectively.
Finally, by integrating Eq. (9.8) with respect to θ and setting the irrelevant integration
constant to zero we obtain ω0. By considering Eq. (8.3) we obtain ∂tω0. The explicit form
of these functions is

2We have used ∂tg0 to denote the temporal partial derivative of any function g evaluated at the initial
time.
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ω0 =
−128(−8 + 16c3 cos θ)

256 + 288c2
3 + 3c4

3 − 512c3 cos θ − 4c2
3

(
−56 + c2

3

)
cos 2θ + c4

3 cos 4θ
, (8.16)

ψ0 =
8
(
1 + 1

4c
2
3 sin2 θ

)
(1− 2c3 cos θ)2 +

(
1 + 1

4c
2
3 sin2 θ

)2 , (8.17)

∂tω0 = 128(64 + 64c2
3 cos2 θ − 64c3

3 cos3 θ − 4c4
3 sin4 θ (8.18)

+c3 cos θ
(
−128 + 8c2

3 sin2 θ + 9c4
3 sin4 θ

)
)/ B ,

∂tψ0 = −64c3(128c3 cos2 θ − 32c3 sin2 θ + 4c3
3 sin4 θ + c5

3 sin6 θ (8.19)

+16 cos θ
(
−12 + 5c2

3 sin2 θ
)
− 24c3

3 sin2 2θ)/ B ,

where
B =

(
32− 64c3 cos θ + 64c2

3 cos2 θ + 8c2
3 sin2 θ + c4

3 sin4 θ
)2
.

8.4 Possible numerical error sources

The purpose of the following subsections is now to evolve the evolution equations (6.19) for
the just discussed initial data numerically. We shall do this for two sets of generalized gauge
source functions. Before we go into the details in section 8.5 and 8.6, however, let us discuss
possible numerical error sources that we shall focus on in the particular numerical examples
below.

Obvious error sources in our numerical evolutions are time and spatial discretization er-
rors. In general it is expected that time discretization errors are larger than spatial ones
thanks to the rapid (exponential) convergence of the latter. In order to investigate the
presumably more significant time discretization errors we shall use two different time dis-
cretization schemes, the (non-adaptive) 4th-order Runge-Kutta scheme and the (adaptive)
Runge-Kutta-Fehlberg (RKF) scheme. See [73] for details about adaptive Runge-Kutta meth-
ods. Spatial discretizations shall always be based on our adaptive framework discussed in
section 7.5. In particular for runs using the adaptive RKF scheme, all discretization errors
are therefore expected to be mostly small and well under control.

However, in our numerical experiments we identify further error sources that turn out
to be more severe than the previous ones. As discussed in section 7.5, we want to sample
each unknown function on an “optimal” grid where the corresponding band limit is given by
Eq. (7.18). Since, however, we are required to choose the same band limit for all unknown
functions and we have therefore decided to choose the maximum of all these “optimal” band
limits as the global band limit, we consequently oversample several of the unknowns. This is
not only inefficient numerically, but also leads to numerical noise. The origin of this noise is
that the “unnecessary” modes associated with too large band limits are in general not zero
numerically. In fact, while they are typically of the order of the machine precision initially,
they may grow during the evolution in particular due to the coupling of modes associated with
non-linear terms in the equations. Typically, the larger the difference between the optimal
band limit of any function and the global band limit is, the larger is this noise. This error is
difficult to control in practice and it is quite common that once this noise has started to grow
during the evolution it continues to grow faster and faster. We identify this error by looking
at the evolution of the highest modes of representative unknowns during the evolution. The
only conceivable cure for this problem would be to work with higher machine precisions, which
would, however, significantly slow down the numerical runs. Our numerical infrastructure
is completely based on “double precision”. We have not yet attempted to work with higher
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machine precisions such as “quad precision”. Further comments on this in the context of a
different numerical infrastructure can be found, for example, in [26].

Another severe numerical error is the constraint violation error. Recall that due to
Eq. (6.11), the constraints Dµ = 0 are satisfied identically during evolution if the exact
evolution equations hold and if the constraints are satisfied initially. In the numerical case,
however, we neither satisfy the evolution equations identically nor are the constraints satis-
fied identically initially. In order to make some steps to tackle this, one could try to analyse
this problem in the situation where the evolution equations are satisfied identically (i.e., we
pretend that the numerical evolutions are done with a infinite resolution in space and time
and with infinite machine precision), but where the constraints may be violated initially, say,
due to rounding errors associated with finite machine precision. Then, Eq. (6.11) describes
the exact evolution of the constraint violation quantities Dµ. The non-zero initial data for
these quantities imply that these quantities will in general be non-zero at all times during
the evolution and, depending on the particular properties of the evolution system, hence of
Eq. (6.11), may in fact grow rapidly during the evolution. If this is the case, the constraint
violation error can quickly become very large during the evolution. In particular, it cannot
be reduced by a higher numerical resolution because this error is a consequence of a severe
instability of the continuum evolution equations. There are two possible cures for these er-
rors. On the one hand, one can introduce constraint damping terms that render the evolution
equations stable (at least in practical situations) [31, 47, 103]. This technique has proved to
be quite useful for producing stable calculations for asymptotically flat spacetimes (see for
instance [150]). However, the analysis may be difficult and, in general, requires approxima-
tions that may only hold in certain regimes of the evolution. In this part, we work without
constraint damping terms. Another way to improve this error would be to work with higher
machine precisions as above.

In principle, the mentioned errors sources cannot always be separated from each other
cleanly. In fact, they may depend on each other, or they may be strongly coupled. In any
case, for practical purposes it is often useful to think of these as separate independent error
sources and analyse the numerical results consequently.

8.5 Numerical evolutions in areal gauge

In this section, we shall fix the gauge freedom for the evolution equations by identifying
the generalized gauge source functions with the contracted Christoffel symbols of the exact
solution. This is achieved by identifying the generalized gauge source functions fµ with
the quantities Γ̊µ of the exact solution given by Eqs. (8.9)–(8.10). As is common in the
literature, we refer to this coordinate gauge as areal gauge. We want to point out that the
same kind of spacetimes in the same coordinates have been constructed numerically with
different methods in [108]. However, in contrast to our discussion here, some of the EFE
turn out to be formally singular in the “interior” of the Gowdy square in the formulation
used there, hence are ignored to avoid serious numerical problems. We shall evolve the
evolution equations (6.19) for the initial data given by Eqs. (8.12)–(8.19) at t = π/2 and
these generalized gauge source functions. The resulting numerical solutions are given in the
same coordinates as the exact solution and direct comparisons between the exact and the
numerical solutions can be performed conveniently by considering the quantity

E(t) := max
µ,ν
‖ h(e)

µν (t, θ)− h(n)
µν (t, θ) ‖L2(S2) ,
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where h
(e)
µν (t, θ) represents a frame component of the exact solution for a given t, whereas

h
(n)
µν (t, θ) represents the numerical values. The norm ‖·‖L2(S2) is approximated by the discrete
`2-norm for functions d(t, θ) as

‖ d(t, θ) ‖L2(S2)≈

√√√√2π2

N

N∑
i=0

d(t, θi)2 , (8.20)

where N represents the total number of collocation points θi where the function is sampled.

As a first test for our numerical implementation we present a convergence test in Fig. 8.1
for c3 = 0.2. The evolution was carried out with the 4th-order Runge-Kutta scheme. The
figure shows the expected convergence rate when the time discretization error is dominant.
This is not surprising since at each t all the metric components are very smooth functions
that can be resolved on the grid with high accuracy so long as t does not get too close to
t = π. The oversampling and constraint violation errors discussed in the previous subsection
are expected to be small during the early evolution.

Next, we replace the non-adaptive 4th-order Runge-Kutta scheme by the adaptive RKF
method. In Fig. 8.2 and Fig. 8.3 we show the numerical evolutions of the geometric quantities
ψ and ω for c3 = 0.2. The numerical error in these calculations are shown in Fig. 8.4 for
different values of c3. The error tolerance Tol of the RKF method is chosen to be 10−8. This
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figure suggests that the numerical error is stable during a long period of the evolution and in
fact smaller than Tol. The larger c3 is, however, hence the more inhomogeneous the solution
is, the more rapidly the numerical errors grows close to t = π as expected. Fig. 8.5 indicates
that the behaviour close to t = π cannot be improved by decreasing the value of Tol. This
suggests that close to t = π the numerical error is not dominated by the time discretization
error. In fact, one of the other error sources discussed in section 8.4 must become dominant
there.

Our experience with this particular system suggests that both errors, i.e., the oversampling
error and the constraint violation error dominate at late times, in particular, when the value
of the constant c3 is increased. Regarding the oversampling error, we just point out that
due to the particular dependence of the initial data on c3, the initial oversampling noise is
larger the larger c3 is. This follows directly from Eqs. (8.12)–(8.19). We can check that
the optimal band limit of the metric components and their time derivatives are small in
comparison with the optimal band limits of ψ0, ω0 and the corresponding time derivatives.
The larger discrepancy, the larger c3 is. We then find that the resulting initial oversampling
noise grows during the evolution. In order to measure the constraint violation error, we define
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the quantity
D(t) := max

µ
‖ fµ(t, θ)− Γ̊µ(t, θ) ‖L2(S2).

In Fig. 8.6, we show the evolution of this quantity for c3 = 0.3. At late times, the curves
look very similar to ones of E(t) in Fig. 8.5. This suggests that the constraint violation error
contributes significantly to the total numerical error.

8.6 Numerical evolutions in wave gauge

In this section we describe numerical computations for the same spacetimes as before, but
using a different coordinate gauge. To this end, we want to choose the same initial data as
before but work with different generalized gauge source functions. Since we do not want to
resolve these complicated non-linear PDEs, our strategy is to use exactly the same initial
data for the values of the metric components and their first time derivative values, and also
exactly the same initial values of the generalized gauge source functions as before. In order to
implement a different coordinate gauge, we then apply the following “gauge driver condition”
during the evolution whose purpose is to rapidly drive the generalized gauge source functions
from their initial values fixed by the gauge constraint towards the target generalized gauge
source functions f̂µ:

fµ = (̊Γµ|t0−f̂µ)e−q(t−t0) + f̂µ. (8.21)

Here, the parameter q controls how rapidly the gauge is driven towards the target. The quan-
tities Γ̊µ|t0 are calculated from the initial data and are understood as functions of the spatial
coordinates only. Notice that different gauge drivers for the generalized wave representation
of the EFE were considered in [129]. Eq. (8.21) guarantees that the gauge constraint is sat-
isfied at the initial time. As discussed at the end of section 2.5, the physical constraints,
even though they pose highly non-trivial restrictions on the choice of the initial data because
they are essentially linear combinations of the well-known Hamiltonian and momentum con-
straints, turn out to not be restrictions on the generalized gauge source functions. Hence, it
is not necessary to introduce terms in Eq. (8.21) which account for the first time derivative
of Γ̊µ at t = t0.

We apply this idea to calculate the same spacetimes as before, but now we choose the
wave gauge as the target gauge, which is defined by the condition f̂µ = 0. For our numerical
tests we choose q = 10 in Eq. (8.21). Before we present our numerical results we notice that
it is straightforward to derive the formula

t(w) =
π

2
+

1

2
log

(
1− cos t

1 + cos t

)
, (8.22)

which for our spacetimes relates the time coordinate t in areal gauge (used in section 8.5)
and the time coordinate t(w) in wave map gauge. This formula holds identically even though
Eq. (8.21) is strictly speaking not the exact wave map gauge. However, as a consequence
of Γ̊0|t0=π/2= 0 that follows from Eq. (8.9), the target gauge source function f̂0 = 0 agrees
identically with f0 = 0. Eq. (8.22) is then obtained by solving the exactly homogeneous
wave map equation Eq. (6.5) for the wave map time coordinate function with appropriate
initial conditions. Eq. (8.22) allows us to make direct comparisons between our results here
and the results in the previous section. In particular, it reveals that the wave time slices
t(w) = const are the same as the areal time slices t = const (for different constants), and, the
“singularities” at t = 0, π are shifted to infinity, in particular, t(w) →∞ for t→ π. We point
out, however, that it is not possible to derive a formula that relates the spatial coordinates
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in both gauges. This is true even if q in Eq. (8.21) was so large that we could consider our
gauge as the exact wave map gauge. This is a consequence of the fact that the homogeneity
of the wave equations for the spatial wave map coordinates is destroyed by terms given by the
reference metric Eq. (6.13). In fact, we shall demonstrate below that the spatial coordinates
on each time slice are different in areal and wave map coordinates.

In order to obtain a more geometric and detailed comparison of the two gauges, we
consider the Eikonal equation as follows (See [81]):

∇aτ∇aτ = −1. (8.23)

Let τ be a smooth solution of the initial value problem of the Eikonal equation with smooth
initial data τ0 : Σ0 → R prescribed freely on any smooth Cauchy surface Σ0 in any smooth
globally hyperbolic spacetime. The method of characteristics applied to this PDE allows
us to prove that such a solution indeed always exists at least sufficiently close to the initial
hypersurface Σ0. For definiteness now we restrict ourselves to the case of zero initial data
τ0 = 0 for all of what follows. Fix any point p in the timelike future of Σ0 in the spacetime
and consider any timelike geodesic through p (with unit tangent vector). Any such geodesic
must intersect Σ0 at some point x0 in the past of p. There is precisely one such timelike
geodesic through p with unit tangent vector which intersects Σ0 perpendicularly in x0, hence
the point x0 is uniquely determined. The value τ(p) of the solution τ of the Eikonal equation
with zero initial data then represents the proper time along this timelike geodesic from x0

to p. The quantity τ is therefore a meaningful geometric scalar quantity which can be used
to compare our numerical spacetimes, in particular when the same spacetime is calculated in
different coordinate gauges. We proceed as follows for initial data parameter R0 = 2, c1 = 1
and c3 = 0.1 (see section 8.2)

Firstly, we calculate the corresponding solution of Einstein’s evolution equations in areal
gauge (in the same way as in section 8.5) and of the Eikonal equation Eq. (8.23) (with
zero initial data) up to t = 3. The value of the resulting τ function on the t = 3-surface
expressed with respect to spatial areal coordinates yields the dashed curve in Fig. 8.7. Sec-
ondly, Eq. (8.22) implies that t = 3 corresponds to t(w) ≈ 4.217. For the same initial data
parameters as in the first step, we calculate the corresponding solution of Einstein’s evolu-
tion equations in wave gauge numerically (using the gauge driver condition Eq. (8.21) with
q = 10) and of the Eikonal equation Eq. (8.23) (with zero initial data) up to t(w) ≈ 4.217.
The value of the resulting τ function on the t(w) ≈ 4.217-surface expressed with respect to
spatial wave map coordinates yields the continuous curve in Fig. 8.7.

Since the t = 3-surface and the t(w) ≈ 4.217-surface represent the same geometric surface
in our spacetime and since τ is a geometric scalar quantity, the value of the solution of the
Eikonal equation on this surface should be the same function in both steps above. However,
since this function is expressed in terms of different spatial coordinates, namely areal coordi-
nates in the first step and wave map coordinates in the second step, the two curves in Fig. 8.7
are slightly different. Hence, Fig. 8.7 can be understood as a representation of the difference
of these two sets of spatial coordinates. This difference is emphasized in Fig. 8.8 where the
two curves in Fig. 8.7 are subtracted directly. Intuitively, these two sets of spatial coordinates
should agree at geometrically distinct points, namely, at the poles and also at the equator
as a consequence of a reflection symmetry which is inherent to our particular class of exact
solutions. Indeed the difference curve in Fig. 8.8 is zero at the poles θ = 0, π and the equator
θ = π/2.

Next, we present plots of the constraint violations in both gauges; see Fig. 8.9. The
dashed curve has been calculated in areal gauge (in the first step above). The continuous
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curve has been calculated in wave map gauge (in the second step above) but has then been
expressed in terms of the areal time function by means of Eq. (8.22). It is interesting to
notice that the constraint violations are significantly smaller in wave map gauge than they
are in areal gauge towards the end of the numerical evolution.

Finally, we comment on the fact that in wave map gauge the shift quantity β in Eq. (6.2)
is a non-trivial non-zero function in contrast to areal gauge; see Eq. (8.6). When β cannot
be assumed to be zero identically, the algebraic complexity of the evolution equations is
increased dramatically. It is surprising that irrespective of this it appears that we get better
numerical results in wave map than in areal gauge.
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Chapter 9

Numerical studies of Gowdy
spacetimes R× S1 × S2

Motivated by the works of Garfinkle [90] and St̊ahl [183], in this chapter we shall numerically
explore the behaviour of Gowdy spacetimes S1×S2 using our analytical and numerical scheme.
In particular, we want to study the behaviour of the Kretschmann scalar, thereby identify
whether at the polar regions possible true spikes could emerge. As we mentioned in chapter 1,
we expect to cast some light on St̊ahl’s conjecture that in general this sort of spacetimes should
develop spikes at the polar regions at the singularity. We remark that due to smoothness
conditions of the topology S1 × S2 (also S3), the behaviour at the polar regions of Gowdy
solutions of the Einstein equations with such spatial topology is still not well understood.
Since only true spikes have geometrical meaning, we will focus on those. According to Rendall
and Weaver in [156], true spikes are characterized by a non-uniform spatial divergence of the
Kretschmann scalar. Thus, we will focus on determining whether this quantity tends to
develop spikes at the poles. As discussed in chapter 6, we stress that our implementation
allows us to avoid problematic terms like cot θ in the constraints and evolution equations. In
particular, the Kretschmann scalar can be evaluated without any problem at the poles using
our approach in contrast to the case of using the standard coordinate frame and differential
operators. In other words, thanks to our analytical and numerical infrastructure we can
compute the actual value of the Kretschmann scalar at the poles, which allows us to have an
understanding of the behaviour of this quantity at those particular places.

9.1 The general metric S1 × S2 in areal gauge

To begin with, let us use the metric for the case S1 × S2 in areal gauge introduced in sec-
tion 3.3.3,

gS1×S2 = eλ−W
(
−dt2 + dθ2

)
+ eW (dϕ+Qdρ)2 + e−W sin2 t sin2 θ dρ2, (9.1)

where the metric functions W , λ and Q depend only on t and θ and are subject to the
regularity conditions Eqs. (3.8) and (3.9). Recall that ρ is the coordinate on the S1-factor
while (θ, ϕ) are the coordinates on the S2-factor. Clearly, the coordinate vectors ∂aρ and ∂aϕ
correspond to the Killing vectors. Similarly to the generalized Gowdy Taub-NUT solution
considered in chapter 8, the spacetime singularities (“big bang” and “big crunch”) are at
t = 0 and t = π. In order to obtain a more convenient form for the metric, we introduce the
following transformation

W := P + 2 log sin θ + log sin t, λ := 2(P + γ + log sin θ log sin t). (9.2)
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Further, choosing the new time τ = − log tan(t/2), the metric becomes

gS1×S2 = sechτ{eP [e2γ
(
−sech2τdτ2 + dθ2

)
+ sin2 θ (dϕ+Qdρ)2] + e−Pdρ2}, (9.3)

which is the metric form used by Garfinkle in [90]. In his work, he points out that the
smoothness of the metric at the axis is satisfied if P , Q and γ are smooth functions of cos θ
with the two latter vanishing at the points θ = 0 and θ = π. As in the T3 case, the vacuum
Einstein field equations yield evolution equations just for the variables P and Q. On the
other hand, the variable γ is determined by the constraint equations

∂θγ =
cosh2 τ (A tanh τ +B cot θ)

cot2 θ − sinh2 τ
, (9.4)

∂τγ =
A cot θ +B sinh τ cosh τ

cot2 θ − sinh2 τ
, (9.5)

where the quantities A and B are given by

2A := tanh τ ∂θP + ∂τP∂θP + e2P sin2 θ ∂τQ∂θQ,

4B := 2 tanh τ ∂τP + ∂τP
2 + e2P sin2 θ ∂τQ

2 + tanh2 τ

+ sech2τ
(
∂θP

2 + e2P sin2 θ ∂θQ
2
)
− 4 .

Thus, for two given functions P and Q we can determine γ (up to some integration constant)
by integrating Eq. (9.4) and ∂τγ from Eq. (9.5). There are, however, two remaining difficulties
with respect to the equations that determine γ. The first one has to do with the fact that the
denominator in both equations vanishes. Then, smoothness of the metric requires that the
numerators of these equations vanish whenever the denominator does. The second difficulty
has to do with the fact that γ must vanish at the poles. Hence, these two requirements place
conditions on the choice of P and Q, but once these conditions are satisfied for the initial
data, the evolution equations will preserve them. For detail we refer the reader to [90].

9.2 Symmetry reduction and choice of initial data

Next, we conduct the symmetry reduction with respect to the Killing vector ξa = ∂aρ . Fol-
lowing the symmetry reduction explained in chapter 4 (similar to chapter 8), we obtain

ψ = e−P
(
Q2e2P sin2 θ + 1

)
sechτ, (9.6)

∂τω = sechτ sin θ
(
2Q∂θP + ∂θQ+ 2Q cot θ − e2PQ2 sin2 θ∂τQ

)
(9.7)

∂θω = sechτ sin θ
(
2Q∂τP + ∂τQ− e2PQ2 sin2 θ ∂τQ

)
, (9.8)

hab = ψ

(
sech τeP+2γ(−sech2τ dτ2 + dθ2) +

eP sin2 θ sechτ

1 + e2P sin2Q2
dφ2

)
, (9.9)
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where ψ and ω are the norm and twist associated with ∂aρ and the evolution metric hab. Now,
as described in chapter 6, we write the metric in terms of the frame (T a,ma,ma) as

λ = −e2γsech4τ
(
1 + e2PQ2 sin2 θ

)
, (9.10)

β = 0, (9.11)

δ =
sech2τ

2

(
1 + e2γ + e2(P+γ)Q2 sin2 θ

)
, (9.12)

φ =
sech2τ

2

(
−1 + e2γ + e2(P+γ)Q2 sin2 θ

)
. (9.13)

As initial data for our numerical implementation, we could have used the one given by
Garfinkle at [90]. However, for the following numerical experiment we use other initial data
because they require less grid points in our pseudo-spectral implementation than the one
used by Garfinkle. In other words, the spectral decomposition of the metric components
Eqs. (9.10)–(9.13) by using similar functions P,Q, ∂τP and ∂τQ as in Garfinkle’s work, turns
out to be a bit large, hence not very practical for our numerical purposes. Therefore, in order
to make numerical evolution as simple as possible, we decided to choose instead P = 0, ∂τP =
2, Q = 0, ∂τQ = 2 cos θ. Using Eq. (9.5) we obtain ∂τγ = 0 and after integrating Eqs. (9.4),
we obtain γ = (sin4 θ)/16 which clearly vanishes at the poles. For the initial time we set
τ = 0, which corresponds to t = π/2 in the coordinate time of Eq. (9.1). Then, evaluating
Eqs. (9.10)–(9.13) and their corresponding time derivatives we obtain the projected initial
data in the space of orbit S

λ0 = −e(sin4 θ)/8, ∂τλ0 = 0,

φ0 = (−1 + e(sin4 θ)/8)/2, ∂τφ0 = 0,

δ0 = (1 + e(sin4 θ)/8)/2, ∂τδ0 = 0,

β0 = 0, ∂τβ0 = 0.

From Eq. (9.6) and its time derivative, ψ0 and ∂tψ0 are obtained, while ω0 is obtained by
integrating Eq. (9.8) (and setting the integration constant to zero). Finally, considering
Eq. (9.7) the initial values are

ψ0 = 1, ∂τψ0 = −2,

ω0 = −(cos2 θ)/2, ∂τω0 = 0.

Note that it was not necessary to use the York-Lichnerowicz conformal decomposition on S2

introduced in section 6.4.2 for finding initial data in the space of orbits. Instead, we solved
the constraints in the original spacetime and projected the solution to the space of orbits.

9.3 Using a gauge driver

Using the initial data above, we obtain that initially the generalized gauge source functions
vanish. In this case, we keep f0 = 0 during the evolution. In addition, with the aim of
obtaining an expression for the Kretschmann scalar as short as possible (because in the
general case this expression is huge and not practical for numerical purposes) we decided to
keep β = 0 during the evolution. To do so, we use the evolution equation from the metric
component β to evolve the gauge source function f1 such that β = 0. In other words, from
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Figure 9.1: Snapshots of the evolution of ψ.
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Figure 9.2: Snapshots of the evolution of (2)R.

the differential equation of β we obtain an evolution equation for f1 such that it preserves
β = 0. Thus, the evolution equation for f1 is given by

∇(0f1) = −Υ̊01(h, ∂h, Γ̆) +
1

ψ2
(∂0ψ ∂1ψ + ∂0ω ∂1ω) ,

which is a first-order evolution equation that does not contain any second-order derivatives.
Later in section 10.3, we will implement a similar idea to preserve a convenient form of
the metric component. Further, we will analyse the hyperbolicity of the resulting system of
evolution equations in more detail. This analysis could be extended to the system considered
here, although not in a direct manner. Nevertheless, since we obtained stable evolutions in
our numerical experiment, we decided not to carry out such analysis for this case.

9.4 Numerical studies

9.4.1 Collapsing behaviour of the factors S1 and S2

In this part we describe the behaviour of two geometrical quantities, namely the norm ψ of
the Killing vector along the S1-factor and the Ricci scalar (2)R of the two-dimensional induced
metric γij (see chapter 6.4.2) of the Cauchy surfaces Στ determined by any constant value
of the coordinate time τ . To begin with, in Figs. 9.1 and 9.2 we show some snapshots of the
evolution for ψ and (2)R at several times. Note that the final time that is shown is t = 4.5,
which we believe is enough to draw some conclusions about the future behaviour of this
spacetime. However, we have to mention that we carried out the evolution up to this value
because some functions become “spiky” at some points during the evolution; consequently,
more spectral coefficients were required to describe them. Thus, we incremented of the
number of grid points along the evolution in the way described in section 7.5, and as a result,
the numerical temporal integration was slowed down owing to the large number of grid points
required in each time step. Certainly, this is a disadvantage of our pseudo-spectral method.

Getting back to our discussion, the behaviour of the norm ψ shown in the Fig. 9.1 reveals
that the length of the symmetry orbits contract faster near the polar and equatorial regions
than anywhere else. This suggests that spikes develop in these regions. On the other hand,
we plot in Fig. 9.2 some snapshots of the evolution for (2)R. In there, we observe that this
quantity grows revealing a contraction of the S2-factor in time. In both cases, the behaviours
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Figure 9.4: Early evolution of (2)R.

of ψ and (2)R suggest that the spacetime collapses1 faster at the poles than anywhere else,
hence in the regions around them some spikes may be given.

9.4.2 Behaviour of the Kretschmann scalar

In this part we discuss the behaviour of the Kretschmann scalar of original four-dimensional
spacetime. We can find this quantity in terms of fields in the space of orbit S by using
Eq. (4.36) obtained in section 4.5. Clearly, (T a,ma,ma, ξa) is the frame vector set in the
four-dimensional manifold that we use to carry out the reconstruction procedure. Let us
begin by considering Fig. 9.3 that shows the early behaviour of the Kretschmann scalar. In
there, we observe that this quantity does not grow at the beginning as one would expect.
Instead, it decreases for some time before increasing. We can interpret this behaviour as a
possible expansion of the four-dimensional spacetime before entering the contraction phase
due to the future singularity. This behaviour is significantly different from the observed for
the geometric quantities ψ and (2)R which both decrease and increase in a monotonic manner
since the beginning of the evolution. See, for instance, the early behaviour of (2)R in Fig. 9.4.

Next, we turn our attention to the behaviour of the Kretschmann scalar close to the final
time in our implementation. To start with, let us consider Fig. 9.5, which shows snapshots of
the evolution of the Kretschmann scalar. The other half of the figure is given by a reflection
about the equator which is preserved during the evolution owing to our choice of initial data.
However, for general solutions this symmetry does not holds. The figure shows clearly that
the Kretschmann scalar becomes “spiky” near the equator as well as at the poles, suggesting
that some possible future spikes could appear at those places. As mentioned before, Garfinkle
showed that the behaviour of this spacetime is similar to the T3 case except at the poles. This
implies that we could expect the emergence of spikes at any place. In addition to this, in the
region near to the poles some spikes could appear as well. In fact, it seems that the curvature
tends to diverge faster near the poles than at any other place. Moreover, it seems that the
spikes of the Kretschmann scalar moves toward the poles. This could be a direct consequence
of the divergent behaviour of ψ and (2)R at those places. Hence, it is reasonable to think that
if some spikes arise during the evolution, they should appear first at the poles than anywhere
else. We show the late (in our simulation) evolution behaviour of the Kretschmann scalar in

1This behaviour is different to the case with positive cosmological constant in section 10.7.1.
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Fig. 9.6. Clearly, it illustrates how large the spikes are in comparison with the other regions.
To finalize, we want to stress that by means of this numerical experiment, we have provided

some numerical evidence that support St̊ahl’s prediction about that, in general, spikes (true
spikes) may be developed at the poles in Gowdy spacetimes S1×S2 at the singularity. On the
other hand, using a different approach (solving the generalized conformal field equations),
Beyer [25] found similar numerical results for a certain family of Gowdy S3 spacetimes,
namely a class of solutions of the Einstein field equations close to the family of λ-Taub-NUT
spacetimes. These studies together with our findings provide evidence that supports St̊ahl’s
prediction that suggests that a direct treatment by Fuchsian methods is not possible for
studying the behaviour of this sort of Gowdy spacetimes, S1×S2 and S3, at the singularities.
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Chapter 10

Studies of Gowdy perturbations of
the Nariai spacetime

In this chapter we investigate the mechanism that triggers the non-linear instability of the
Nariai spacetime under Gowdy perturbations. This study extends the investigation initial-
ized by Beyer [27,28] which, by means of a series of analytical and numerical techniques, was
able to confirm the expected instability of the Nariai solution under this sort of perturba-
tions. However, as was mentioned in chapter 1, the underlying mechanism that causes such
instability was not well understood. This is one of the main questions that we address in this
chapter.

We begin this chapter by introducing the Nariai spacetime in section 10.1. Then, we define
perturbations of the Nariai spacetime in section 10.2. In section 10.4, based on the scheme of
the York-Lichnerowicz conformal decomposition for S2 introduced in section 6.4, we construct
both analytically and numerically initial data for perturbations of the Nariai spacetime.
Additionally, in section 10.5 we introduce the “Nariai gauge” that allows us to write the
evolution equations in a convenient form for the posterior analysis of the perturbations.
Further, by means of the use (and analysis) of constraint damping terms into the WGES,
we guarantee the stability of the numerical implementation. We devote section 10.6 to the
study of the instability of the Nariai spacetime. To do so, we start by introducing constraint
damping terms into the evolution equations in order to make our numerical scheme stable.
Then, by means of some numerical experiments, we present our discussion of the stability
of the Nariai spacetime under homogeneous and inhomogeneous perturbations. Finally, in
section 10.7, we explore the asymptotic behaviour of the perturbations of the Nariai spacetime
for both when the Kretschmann scalar blows up (the collapsing case) and when it tends to
a constant value (the expanding case). In particular, we analyse the second case in the light
of the cosmic no-hair conjecture (CNH) discussed in section 3.2.3.

10.1 The Nariai spacetime

Birkhoff’s theorem states that every spherically symmetric solution1 of the vacuum EFE
with positive cosmological constant is locally isometric either to the Kottler-Schwarzschild-
de Sitter (KSS) solution or to the Nariai solution (see, for instance, [105]). The first of
these solutions, found first by Kottler [122], can be interpreted as a black hole immersed in
a de Sitter universe, which is the maximally symmetric solution of the vacuum EFE with a

1Any spacetime that admits as isometry group the group of rotation SO(3) (see section A.6) is called
spherically symmetric.
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positive cosmological constant that represents an universe expanding at an exponential rate.
The KSS solution is characterized by two parameters, namely the mass of the black hole and
the value of the cosmological constant. When the latter vanishes the KSS reduces to the
Schwarzschild spacetime (see [101]). On the other hand, when the mass of the black hole is
zero, the KSS becomes the de Sitter spacetime.

The second solution was discovered by Nariai [142]. This spacetime has become an object
of special interest since Ginsparg and Perry [95] proved that it emerges as the extremal limit
of Kottler-Schwarzschild–de Sitter black holes. In other words, it can be interpreted as a
de Sitter universe containing a black hole of maximal size, that is, the ratio of the black
hole is equal to the cosmological horizon. The Nariai spacetime is the direct product of a
two-dimensional de Sitter space with a two-sphere and it admits a six-dimensional group of
motion.

Thanks to its geometrical properties, the Nariai spacetime has been used to model several
situations. Among them, we find the quantum pair creation of black holes during the inflation
epoch carried out by Bousso and Hawking [42–44] and the modelling of the spacetime between
two static masses (stars) by Fennen and Giulini [77], just to mention a few. The Nariai
spacetime metric can be written in coordinates that cover the maximal analytical extension
as

gNariai =
1

Λ
(−dt2 + cosh2 t dρ2 + gS2), (10.1)

with the standard coordinate ρ in the manifold S1, the standard metric gS2 of the two-sphere
and the time coordinate t ∈ R. Clearly, its spatial topology is S1 × S2 and ∂aρ is a Killing
vector along the S1-factor. Henceforth, we denote this vector as ξa. A particular property of
the Nariai solution is its time dependence. While the S1-factor of the spatial slices expands
(t > 0) or collapses (t < 0) in time, the volume of the S2-factor remains constant. Thus, the
expansion of this solution is clearly anisotropic; consequently, the cosmic no-hair picture is
not satisfied with respect to these coordinates. Moreover, Beyer in [27] showed that there are
no coordinates of the Nariai solution for which the cosmic no-hair picture is attained.

10.2 Perturbations

Next, we address the question of how to define perturbations of the Nariai spacetime. One
reasonable way to do it is by means of the standard linearised theory of cosmological pertur-
bations [137]. However, we will not follow this approach because we want to study the effect
of the full set of non-linear terms on the behaviour of the perturbations. In fact, it will be
shown in section 10.6 that the non-linear terms play a critical role in the behaviour of the
perturbed spacetime under inhomogeneous perturbations.

To begin with, the instability of the Nariai spacetime was first addressed (to our knowl-
edge) by Bousso and Hawking [41,43,44] in the spherically symmetric case. They considered
perturbations of the Nariai spacetime at the slice t = 0 such that the two-sphere area is not
constant, but instead is given such that the two-sphere size oscillates as a function of the
angular variable of the S1-factor. Then, if the sizes of the two-spheres are smaller than the
corresponding to Nariai, then the spacetime collapses in a big crunch. On the other hand, the
larger two-spheres will expand exponentially to generate an asymptotic to a de Sitter region.
In other words, they claimed that an arbitrary number of cosmological black holes can be
constructed, with expanding cosmological regions in between, in the spherically symmetric
case.

As mentioned in the previous section, Beyer [27] studied the instability of the Nariai
spacetime under general homogeneous perturbations. Later in [28], he studied whether spa-

90



10.3. Setting the Nariai gauge

tially inhomogeneous perturbations of the Nariai spacetime could be exploited in order to
construct cosmological black hole solutions with arbitrary combinations of black holes and
cosmological regions as was stated in the spherically symmetric case. However, in contrast
to the latter, he provided analytical and numerical evidence to suggest that it is not possible
to construct cosmological black hole solutions by means of inhomogeneous perturbations of
the Nariai solutions.

The basic idea of his approach consists of embedding the Nariai spacetime in a more
general class of solutions that shares the same spatial topology S1×S2. For the homogeneous
case the general class was the Kantowski-Sachs family while for the inhomogeneous case it
was a Gowdy symmetric family of metrics. The perturbations were defined as solutions of the
EFE whose initial data on some Cauchy surface are “close” to data in a Cauchy surface of the
Nariai solution. The word “close” in this context means that the two data sets (Nariai and
its perturbations) should be at a “small distance” with respect to some suitable norm. Using
this approach, he provided evidence, analytically for the homogeneous case and numerically
for the inhomogeneous case, that confirmed the instability of the Nariai solution. However, in
the latter case it was not well understood the source of the instability. As already mentioned
at the beginning of this chapter, we will address this question in section 10.6.

We point out that this perturbations introduced by Beyer were defined in the areal gauge,
hence they can not be easily translated to another gauge. Furthermore, it may happen that
what is a perturbation of the Nariai metric in the areal gauge might not be in another gauge
because its distance to the Nariai spacetime (in the new gauge) is no longer “small”. In other
words, the fact that two metrics are close under some given norm in certain gauge, does not
necessarily implies that they are going to remain close in any other gauge. Therefore, in order
to overcome this delicate issue, we introduce perturbations of the Nariai spacetime by ex-
ploiting the fact that its Kretschmann scalar is constant. After a straightforward calculation,
the Kretschmann scalar of the Nariai metric Eq. (10.1) can be expressed as

KNariai = 8Λ2. (10.2)

Thus, it is expected that the Kretschmann scalar of any real perturbation of the Nariai
metric will be close to this constant value but not equal. The important point here is that
if the Kretschmann scalar K of some spacetime is not equal to KNariai, then it cannot be
locally isometric to the Nariai spacetime, hence it can be a perturbation. Therefore, we
introduce perturbations of the Nariai spacetime as some Gowdy symmetric metric g with
spatial topology S1 × S2 and Kretschmann scalar K such that the difference

Kp := K −KNariai, (10.3)

is small non zero quantity. Hereafter, we will call Kp as the perturbation of the Kretschmann
scalar. Clearly, by taking any norm for the function2 Kp, it can be possible to define a gauge
invariant distance between the Nariai metric and the perturbation.

10.3 Setting the Nariai gauge

One of the disadvantages of the GWF (to our knowledge) is that there is not a geometric
relationship between the generalized gauge source functions and the resulting spacetime co-
ordinates. The most common way to introduce a sort of “criterion” for the choice of those

2For instance ‖Kp‖∞= max{ |Kp| : θ ∈ [0, π] }.
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functions is by means of the ADM “lapse” and “shift” view of the coordinate freedom. Us-
ing this, we can promote the generalized gauge source functions to “system variables” with
evolution equations (usually called gauge drivers) depending on some prescribed metric com-
ponents. Even though this approach has been successful in some complicated situations (see
for instance [150, 151]), it may cause some problems for the stability of the numerical im-
plementation for some situations. The reason lies in the fact that the resulting system of
equations (including the gauge drivers) may turn out not to be symmetric hyperbolic; then,
the setting for the Cauchy problem of the EFE will no longer be well-posed. In order to deter-
mine the hyperbolicity of the resulting system, one would have to analyse the resulting system
of equations for the particular choice of gauge drivers and metric components. Some other
general proposals for gauge drivers that preserve hyperbolicity can be found in [127,128]. In
this work, we will construct gauge drivers by forcing some evolution equations to provide a
specific solution of the metric components. In other words, by fixing some metric components
we construct the gauge drivers.

To begin with, we recall the form of the Nariai metric components defined in Eq. (10.1).
In these coordinates, after the symmetry reduction, the metric components h00 and h01 (the
ones that defined the gauge) satisfy

−λ = δ, β = φ = 0.

Henceforth, we will refer to this as the Nariai gauge. Next, we will find generalized gauge
source functions such that the Nariai gauge is preserved during the evolution. This will
simplify significantly the analysis of the behaviour of the perturbations in section 10.6. Let
us use the evolution equation for λ, δ, β and β̄ to express the evolution equations for the gauge
source function f0, f1 and f2. Hence, they are promoted to evolution variables; consequently,
the resulting system may or may not be symmetric hyperbolic. Next, we consider this question
for the Nariai gauge following the discussion about hyperbolicity in section 2.3.

Imposing Gowdy symmetry on the metric guarantees that all the functions are real. Hence
f1 = f2 and all the partial derivatives with respect to the coordinate ϕ vanish. Expanding the
covariant derivatives and expressing the frame vectors (ma,ma) in terms of the coordinate
vector ∂θ in Eq. (6.19), we obtain evolution equations for3 δ, φ, ψ and ω as

∂ttδ + a∂θθδ + b∂θf1 = ... , (10.4)

∂ttφ+ a∂θθφ+ b∂θf1 = ... , (10.5)

∂ttψ + a∂θθψ = ... , (10.6)

∂ttω + a∂θθω = ... , (10.7)

where a = h11/h00 and b =
√

2/h00. The ellipses in the right-hand side of the equations denote
the rest of the terms present in the evolution equations that are not relevant for this analysis,
that is, terms depending on the generalized gauge source functions, metric components and
their first-order derivatives. On the other hand, setting λ = −δ and β = β̄ = 0 we obtain
evolution equations for the generalized gauge source functions f0, f1 as

∂ttλ = −∂ttδ =⇒ ∂tf0 − ∂θf1 = ... , (10.8)

∂ttβ = 0 =⇒ ∂tf1 − ∂θf0 = ... . (10.9)

Naturally, these evolution equations, which we call gauge drivers, control the behaviour of the
generalized gauge source functions so that the Nariai gauge is preserved during the evolution.

3We are using ∂tt to denote second time derivative.
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Next, in order to analyse the hyperbolicity of the resulting system of evolution equations
Eqs. (10.4)–(10.9), we write them using the first-order form as

∂tu+ Π ∂θu = s(u) , (10.10)

where we have defined the vector

u = ( δ, ∂tδ, ∂θδ, φ, ∂tφ, ∂θφ, ψ, ∂tψ, ∂θψ, ω, ∂tω, ∂θω, f0, f1 ) , (10.11)

and Π is a matrix of dimension 14 × 14 depending on the quantities4 a, b. After a straight-
forward calculation we find the eigenvalues of Π

υ1,2,3,4 = −υ5,6,7,8 = −
√
−a, υ13 = −υ14 = −1, υ9,10,11,12 = 0.

Furthermore, it is obtained that the determinant of the matrix whose columns are the eigen-
vectors of the matrix V defined in section 2.3 is proportional to a2. Note that h00,−h11 > 0
provided that hab is a Lorentzian metric with signature (−,+,+). Thus, a < 0. Further,
because V is invertible (its determinant is always different from zero), we can always obtain a
complete set of eigenvectors with real eigenvalues that guarantees the strongly hyperbolicity
of the system Eq. (10.10). Moreover, recalling the mentioned in section 2.3 that for the case
of one spatial dimension the distinction between strongly hyperbolicity and symmetric hyper-
bolicity does not apply, we can conclude that the first-order system Eq. (10.10) is symmetric
hyperbolic.

10.4 Construction of initial data

10.4.1 Analytical initial data

In this part, we introduce a three-parametric family of initial data that allow us to obtain a
certain form for Kp (see section 10.2) that is different from zero. This implies that the family
of initial data yields perturbations of the Nariai spacetime. Let us begin by identifying the
initial data for the Nariai spacetime. According to Eqs. (10.1), the initial data for the Nariai
spacetime in the space of orbits S is given by

δ0 = ψ0 = 1, β0 = φ0 = ω0 = f0 = f1 = 0, (10.12)

∂tδ0 = ∂tψ0 = ∂tβ0 = ∂tφ0 = ∂tf1 = 0, ∂tf0 = −1, (10.13)

where for simplicity we have chosen Λ = 1. Henceforth, we keep this value for the cosmological
constant. To find initial data for the perturbations we choose the same metric components,
norm and twist, as for the Nariai metric leaving the perturbations totally determined by the
time derivatives of those functions. We express the constraint equations in terms of the time
derivatives of the metric components, thus their elliptic representation is not required. Using
Eqs. (6.40) and (6.41) to express K and A11 in terms of the metric components, and replacing
those into the constraint equations Eqs. (6.35)–(6.37) we obtain the following system5

(∂tδ0)2 = (∂tψ0)2 + (∂tω0)2 + (∂tφ0)2,

ð (∂tδ0) = ð̄ (∂tφ0). (10.14)

4Because of the size of Π we do not write it here explicitly.
5We have omitted the complex conjugate of the momentum constraint.
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There are an infinite number of functions (∂tδ0, ∂tφ0, ∂tω0, ∂tψ0) that satisfy these constraints.
In particular, for our numerical experiments we will restrict ourselves to the following family

∂tδ0 = 2 ε sin2 θ + c1 ,

∂tφ0 = ε sin2 θ ,

∂tω0 = c2 ,

∂tψ0 = ±
√

(∂tδ0)2 − (∂tφ0)2 − (∂tω0)2 ,

(10.15)

where ε, c1 and c2 are real constants. Clearly, by substituting the above functions in
Eqs. (6.42) we obtain the initial value of the generalized gauge source functions f0, f1. Note
that because of the square root, the parameters c1 and c2 have to be chosen such that
|c1|≥ |c2|, whereas ε is totally free. Next, we write the perturbation of the four-dimensional
Kretschmann scalar in terms of this family. As explained in section 4.5, using the confor-
mal relation Eq. (6.1) between the evolution and reduced metric, the projection relation of
the Riemann tensor Eqs. (4.21), (4.22) and (4.23) (and its symmetric and antisymmetric
properties), we can obtain all the components of the four-dimensional Riemann tensor with
respect to the frame (T a,ma,ma, ξa) in terms of fields in the space of orbits S. Note that the
Kretschmann scalar contains second time derivatives of the metric components. However,
these terms can be removed by using the evolution equation WGES Eq. (6.19). Further-
more, replacing Eqs. (10.12) into (4.36) and using the constraints Eqs. (10.14) the initial
Kretschmann scalar can be expressed as

K = 8 + 2 (∂tδ0 − ∂tψ0) ∂tψ0

(
2∂tδ0 ∂tψ0 − (∂tψ0)2 − 4

)
− 4 |ð(∂tψ0)|2

+(3 ∂tδ0 ∂tψ0 + 4(∂tψ0)2 − 2)(∂tω0)2 + 9(∂tω0)4/4 . (10.16)

From here, we obtain that the second and third terms corresponding to the perturbation
Kp of the Kretschmann scalar in terms of 6 ∂tδ0, ∂tψ0 and ∂tω0 as expected. Evidently, by
setting ε = c1 = c2 = 0, we obtain K = KNariai and the initial data for the Nariai spacetime.

10.4.2 Numerical initial data

In this part, we provide a numerical solution of the elliptic representation of the constraint
equations (see section 6.4.2) in the space of orbits S. We start by fixing part of the initial data
in order to simplify the constraints. In particular, we choose the free part of the initial data
such that the momentum constraint is automatically satisfied. Thus, we shall only focus in
solving the Hamiltonian constraint. However, we point out that the following algorithm could
also be used in more complicated situations where the momentum constraint is not trivially
satisfied. Following the work of Frauendiener [82], we use Richarson’s iteration procedure for
solving the Hamiltonian constraint for the axial symmetry case.

Simplifying the constraint equations

To begin with, from the definition of the energy momentum tensor given in Eq. (4.32), we
obtain that the energy and momentum density can be written in the Nariai gauge as

ρ =
(∂tψ)2 + (∂tω)2 + ðψ ð̄ψ + ðω ð̄ω

2δ2ψ2
,

j =
ðψ ∂tψ + ðω ∂tω√

2 δψ2
,

6The term ∂tφ does not appear in this expression because we have used the constraints equations to removed
it.
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where the norm ψ and twist ω are freely chosen. In order to simplify the equations, we
choose ω = 1 − ψ and ∂tψ = ∂tω that yield the cancellation of the momentum densities.
Furthermore, by setting the mean curvature K = 0, the equations Eqs. (6.36) and (6.37) are
trivially satisfied by choosing A11 = A22 = 0. We recall that K is the mean curvature of the
induced metric in the Cauchy surface obtained from the evolution metric hab (see section 6.1).
Under the above assumptions, the Hamiltonian constraint (Eq. (6.35)) takes the following
form in terms of the free functions ψ and ∂tψ:

∆S2δ = 2δ − 2δ2

ψ
− δ(∂tψ)2

ψ2
+
|ðδ|2
δ
− δ|ðψ|2

ψ2
. (10.17)

Next, we choose ψ = δ2 in order to obtain an elliptic equation depending on the free function
∂tψ as

∆S2δ = −2 + 2δ − ∂tψ

δ3
− 3|ðδ|2

δ
. (10.18)

Note that for ∂tψ = 0 we obtain the trivial solution δ = 1, that corresponds to the Nariai
metric at t = 0. Hence, in order to obtain perturbations of the Nariai solution, we have to
provide a non-zero function ∂tψ.

In principle, there is no restriction on the function ∂tψ, hence we might be able to prescribe
it freely and obtain a numerical solution up to some given accuracy. However, we point out
that we do not know whether we may or may not be able to find a solution of Eq. (10.18)
for some given function ∂tψ. Certainly, it would be interesting to determine the specific
conditions on the function ∂tψ in order to guarantee the existence of a solution for Eq. (10.18).
However, this question is beyond the scope of this work, thus it is left as an open problem
for a future research.

Richardson’s iteration procedure

Now, we describe the basic idea for using a spectral implementation based on the SWSH for
solving Eq. (10.18). Basically, we follow the approach introduced by Frauendiener in [82] for
solving non-linear elliptic equations. For more information about these kind of methods, the
interested reader is referred to [78,145] and references therein. Let us start by identifying the
right-hand side of Eq. (10.18) as a non-linear function f(δ, ðδ) with spin-weight 0. Addition-
ally, in order to use the AST, we assume the function f is axial symmetric. This assumption
allows us to write f as

f(t, θ) =

N∑
l=0

al(t) 0Yl(θ),

where we have used the notation introduced in chapter 7. The variable N represents the total
number of collocation points where the function is sampled. We construct a Richardson’s
iteration procedure by writing a numerical solution of Eq. (10.18) after n+ 1 steps by δn+1 =
δn + ζ, where ζ will be called the correction factor. Next, linearising the function f at the
step n+1 (written as fn+1) around the previous step n (fn) and replacing it into Eq. (10.18),
we obtain the linearised equation for ζ as 7

∆S2 ζ −
(
∂f

∂δ

)
n

ζ −
(
∂f

∂ ðδ

)
n

ð ζ = − (∆S2δn − fn) . (10.19)

7We have noted

(
∂f

∂δ

)
n

as the partial derivative of f with respect to δ evaluated at the step n.
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Figure 10.1: Decay of the norm of the residual error.

The right-hand side of this equation is known as the residual rn, that represents the failure
of δn to satisfy the elliptic equation at the step n. Due to the spatial topology of the domain,
we write the correction factor and the residual in terms of the SWSH. Using the properties
of the eth-operators Eq. (5.26), the linearised equation yields a system of equations for the N
coefficients of ζ written on the SWSH basis. Introducing suitable collocation points θ1, ..., θN ,
and forcing the approximate solution to satisfy Eq. (10.19) at those points, we obtain a system
of N equations for the N coefficients of ζ, i.e., we obtain a system of N×N equations that can
be solved numerically. At this point, we want to point out that the matrix in the right-hand
side of Eq. (10.19) is invertible, consequently the equation has a unique solution if the term
(∂f/∂δ)n is different from an eigenvalue of the Laplacian ∆S2 , namely −l(l + 1). As long as
this condition is satisfied, we can find a numerical solution of Eq. (10.19).

Once we have found the coefficients from the correction factor, we update the function δ
for the n + 1 step and repeat the procedure above until reach rn ∼ 0. For later use, and as
an illustrative example, we solve the Hamiltonian constraint for the initial function

∂tψ = ε 0Y3(ϑ). (10.20)

where the value of ε controls the order of the perturbation. In Fig. 10.1 we show the
behaviour of the norm ‖rn‖L2(S2) (see section 8.20) obtained for the choice of ε = 10−4 (note
that we have plotted the logarithm of the absolute value of that quantity). In the figure we
observe that the norm of rn decays until it reaches a satisfactory order of O(10−14). Once
we have obtained the function δ, we obtain the other fields as

φ0 = ∂tφ0 = ∂tδ0 = f0 = 0, ∂tω = ∂tψ,

ψ = δ2, ω = 1− δ2, f1 = Γ̊1.
(10.21)

Note that for ∂tψ we obtain δ = 1, then we recover the Nariai initial data. Later, in the
discussion about inhomogeneous perturbations, we will use this initial data. Finally, similarly
as it was done with the analytical initial data family, the function Kp can also be expressed
in terms of the initial data. However, because the equation turns out to be very large in this
case, we do not write it here.
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10.5 Setting a stable evolution

10.5.1 Evolution variables

In the coordinates used to write the Nariai spacetime Eq. (10.1) the variable ψ grows expo-
nentially. This behaviour is also observed for perturbations of the Nariai metric in the Nariai
gauge. Such exponential growth is very problematic from the numerical point of view because
the time derivatives will diverge in a short time crashing our numerical implementation. In
order to overcome this situation, let us consider the following transformations:

ψ → eψ∗ , δ → eψ∗δ∗, φ→ eψ∗φ∗, ω → eψ∗ω∗. (10.22)

We rewrite the first-order system Eqs. (10.10) in terms of new variables (δ∗, ψ∗, ω∗) which
will be called evolution variables. To show that this change of variables does not affect the
symmetric hyperbolicity of the resulting first-order system, let us first consider the original
second-order system WGEF Eq. (6.19). The principal part of the wave equation for δ in
terms of the new variable δ∗ is

hab∂a∂b(e
ψ∗δ∗) = hab

(
eψ∗∂a∂bδ∗ + 2eψ∗∂aδ∗∂aψ∗ + δ∗∂a∂be

ψ∗
)
,

where the last term ∂a∂be
ψ∗ can be written as the wave operator of ψ in terms of the new

variable ψ∗. Replacing the wave equation for ψ∗ obtained from the evolution equation for
ψ in the expression above, we obtain that the principal factor of the wave equation for δ∗
becomes

habeψ∗∂a∂bδ∗,

which just corresponds to a rescaling by a positive factor of the principal term in the evolution
equation. A similar result is obtained for the principal part of the evolution equations for φ∗
and ω∗. Next, defining the vector u∗ in similar manner as u was defined (see Eq. (10.11)),
we end up with the following first-order system

∂tu∗ + Π∗ ∂θu∗ = s(u∗) . (10.23)

By a straightforward calculation it can be proved that Π∗ has the same set of eigenvalues
and eigenvectors as the characteristic matrix Π corresponding to the system u; hence, the
symmetric hyperbolicity of the new system follows.

10.5.2 Constraint damping terms

Unfortunately, the proposed change of variables is not enough to make our numerical im-
plementation stable. The reason lies in the fact that the constraint equations can be solved
just up to some truncation error and this (from our experience) may trigger a growth of
the violation covector components Dµ. One way to deal with this problem, is by adding
constraint damping terms to the evolution equations WGES (see Eqs. (6.19)) in the way
explained in section 2.5.2. To start with, we assume that the violation covector components
as time-dependent functions. In other words,

Dµ(t, θ) ' Dµ(t). (10.24)

However, since Dµ is a covector, the projection of its spatial components D1,D2 to the frame
(ma,ma) have spin-weight 1 and −1, which directly implies that D1 = D2 = 0 under the
above assumption because only a function with spin-weight 0 can have a mode of l = 0
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Figure 10.3: Evolution of E(t) with κ = 8 using
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(which is spatially independent). On the other hand, because the perturbed metrics will be
“close” to the Nariai metric during the initial part of the evolution, we can use it as the
background metric for writing the subsidiary equation that rules the evolution of D0. Thus,
replacing the Nariai metric in Eq. (2.15) with ηa = (−1, 0, 0) we obtain the evolution equation
that govern the behaviour of D0(t) as

∂ttD0(t) + (1 + 2κ)∂tD0(t) = 0,

for some constant κ. Evidently, the solution of this equation is

D0(t) = Ae% +B, (10.25)

where % = −(1+2κ) with A being a real constant. An exponential decay for D0(t) is obtained
for κ > −1/2. Note that the function D0(t) will never tend to zero. Instead, it will approach
the constant value B which is fixed for the initial value D1(0). This, however, does not
represent a serious issue for our numerical calculations as long as we provide initial data such
that B is small enough. Thus, to control the growth of D0(t) we have to choose a suitable
value for the constant κ.

In order to check numerically the validity of the above statement we proceed as follows.
We define the constraint error for our implementation as8

E(t) :=
√
‖ D0(t, θ) ‖2

L2(S2)
+‖ D1(t, θ) ‖2

L2(S2)
,

where the norm ‖ . ‖L2(S2) is numerically computed by using Eq. (8.20). Fig. 10.2 shows the
error obtained for different values of the constant κ. Here, we have used the initial data
family described in section 10.4 with c1 = c2 = 0 and ε = −0.5 × 10−5. These data will
be used in section 10.7 to discuss the asymptotic behaviour of the Nariai spacetime. The
evolution was carried out implementing the pseudo-spectral method described in chapter 7
with the RKF method as time integrator.

As we expected, the error for κ = −4 grows exponentially whereas for κ = 8 it can be
controlled. At this stage, we want to point out that according to Eq. (10.25), for κ = 0 we
should obtain a damped solution for D0(t). However, such behaviour is not observed because
the numerical error coming from the time discretization grows rapidly due to the non-linear

8We have excluded D2(t) from this definition because D1(t, θ) = D2(t, θ) = D2(t, θ) in Gowdy symmetry.
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terms present in the evolution equations. Hence, the choice of some positive value for κ may
be required. From our experience, the value κ = 8 provides a good behaviour; hence, from
now on, we will use it in all that follows.

To finalize this section, Fig. 10.2 shows that the error behaviour can be controlled along
the evolution even though the perturbed metric moves away from the Nariai spacetime. Since
the previous analysis is not valid for the late behaviour, it is not expected that the proposed
constraint damping terms can control the error in that situation. However, as is also observed
in Fig. 10.3, the constraint damping terms improve the accuracy of our implementation. Note
that the error is always below the established error tolerance. Nevertheless, the price that
we pay for such accuracy is that the “time step” becomes smaller and smaller during the
evolution9 and eventually this “freezes” the evolution of the system. One could overcome
this issue by setting a lower bound for the time step value, with the drawback that the
error will start to grow rapidly after a minimum time step than the lower bound is required.
However, for the purposes of this work, it would be enough to do all the numerical experiments
in the range of time that we can “cover” satisfactorily without losing accuracy.

10.6 Perturbations of the Nariai spacetime

In this section we proceed with the analysis of the instability of the Nariai spacetime. For
simplicity, we have divided the perturbations into two types: homogeneous and inhomoge-
neous perturbations, which will be discussed separately. As mentioned in section 10.2, a
detailed analysis of the first case has been already done by Beyer in [27]. However, in this
section we revisit this case as a preparation for the analysis in the inhomogeneous case.

10.6.1 Homogeneous perturbations

Let us consider the case for which the analytical initial data family introduced in section 10.4.1
yields a constant value of Kp, that is given by choosing the initial values of the time derivatives
of the metric components to be spatially independent. Furthermore, since the perturbations
g are in this case manifestly homogeneous spacetimes, they should belong to a Kantowski-
Sachs family of metrics similar to the homogeneous perturbations in [27]. Therefore, from
now on, we refer to homogeneous perturbations for the case when the perturbation of the
Kretschmann scalar Kp does not depend on the spatial coordinate θ. However, we point out
that this definition of homogeneous perturbations is not general since it refers to a particular
initial data family.

To obtain the initial data for this case from the initial data family given in Eqs. (10.15), we
choose ε = 0 and take the negative root for ∂tψ0. The perturbations are given in terms of the
constants c1 and c2. Thus, all the variables can be expressed in terms of the fundamental mode

0Y0(θ) which is spatially independent. Henceforth, we shall understand that any homogeneous
perturbation is written only in terms of the fundamental modes.

We start this analysis by assuming that the initial perturbations are small, i.e., c2
1 = c2

2 ≈
0. Hence, all the terms proportional to these will be negligible in the evolution equations
only for the following heuristic discussion. Henceforth, we will refer to them as second-order

9In the cases shown in the figures the time step was in the order of 10−7.
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perturbations. As a result, all the second-order derivatives in the WGES vanish except10

∂ttψ∗ ≈ 2Λ.

∂tf1 ≈ −1,
(10.26)

where Λ = 1. We do not replace the value of Λ in the equation yet because we want to show
that its positive value is the cause of the initial growth of the variable ψ∗. The variable ∂tψ∗
grows until it reaches a certain order; consequently, the contributions of the non-linear terms
in the evolution equations that involve this quantity are no longer negligible. In other words,
non-linear terms like ∂tδ∗ ∂tψ∗ become first-order perturbations, namely terms proportional
to either c1 or c2. Then, the system of equations turns into

∂ttδ∗ ≈ (∂tδ∗ ∂tψ∗)/2 + (∂tψ∗)2/2 + ∂tψ∗f1,

∂ttψ∗ ≈ 2− (∂tδ∗ ∂tψ∗)/2− (∂tψ∗)2/2,

∂ttω∗ ≈ (∂tω∗ ∂tψ∗)/2,

∂tf1 ≈ −1 + (∂tψ∗)2/2.

(10.27)

This is the point where the evolution of the perturbed spacetime starts to be different from
the Nariai spacetime. Note that for the Nariai initial data ∂tδ∗ = 0 and just ∂tψ∗ changes
in time, i.e., for the Nariai initial data the variable δ∗, which we can interpret as the mean
radius of the S2-factor (see section 6.2), does not change during the evolution. On the other
hand, the perturbed initial data ∂tδ∗ 6= 0 causes the change of δ∗ in time. To illustrate the
above, we numerically solve the full system of evolution equations given in Eqs. (6.19) for the
initial data with parameters c1 = −c2 = 10−6. Let us start by considering Fig. 10.4 which
shows the evolution of the variable ∂tψ∗. In the figure is observed an early rapid growth of
this variable. On the other hand, we plot the behaviour of ∂tδ∗ and Kp in Fig. 10.5. In
there, we observe that both quantities move away from zero which is their corresponding
Nariai value. Clearly, the increment of δ∗ is due to ∂tδ∗ > 0 for the chosen initial data. Since
this sign never changes, it is expected that δ∗ grows indefinitely, i.e., the S2-factor expands.
Additionally, this initial data make that Kp < 0 (see Eq. (10.16)). Similarly, setting initially
c1 = 10−6 and c2 = 0 we obtain ∂tδ∗ < 0, which yields the monotonic decrease of δ∗ (the
S2-factor collapses) and the growth of Kp.

In short, we conclude that the S2-factor exhibits a collapsing behaviour for initial data such
that ∂tδ∗ > 0, whereas for ∂tδ∗ < 0 it exhibits an expanding behaviour. For the particular case
when ∂tδ∗ = Kp = 0, the Nariai case, the S2-factor does not change. Note that this clearly
shows that the fundamental mode of δ∗ is unstable, consequently yielding the instability of
the Nariai under this sort of perturbation.

The consistency of our analysis with respect to the results given by Beyer [27] becomes

evident if we consider the initial mean curvature, which according to [27] we denote by H
(0)
∗ ,

associated with the induced metric in the Cauchy surface in the space of orbits S, obtained
from the reduced metric ĥab (see section 6.1). This curvature in terms of the evolution
variables is given by11

H
(0)
∗ = ∂tδ∗.

This clearly relates the initial mean curvature of the S2-factor from the reduced metric ĥab
(the metric that is obtained from the symmetry reduction of the four-dimensional metric;

10For the numerical experiments, however, it will be used for the numerical computation the full system of
equations.

11This notation change for inhomogeneous perturbations where H2 is used instead of H
(0)
∗ according to [28].

100



10.6. Perturbations of the Nariai spacetime

0 1 2 3 4 5 6
t

0.0

0.5

1.0

1.5

2.0

2.5

∂
tψ
∗

Figure 10.4: Evolution of ∂tψ∗.

0 1 2 3 4 5 6
t

−0.003

−0.002

−0.001

0.000

0.001

0.002
∂tδ∗
Kp

Figure 10.5: Evolution of ∂tδ∗ and Kp.

see, for instance, section 6.1) with the initial value of ∂tδ∗. Using a different approach, Beyer

showed that homogeneous perturbations with initial mean curvature H
(0)
∗ > 0 produce an

expansion of the S2-factor, whereas the opposite behaviour (collapsing) is given for H
(0)
∗ < 0.

The Nariai spacetime is obtained for H
(0)
∗ = 0, that corresponds to ∂tδ∗ = 0 in our setting.

10.6.2 Inhomogeneous perturbations

In this part, we shall focus on studying the mechanism that “triggers” the instability of the
Nariai spacetime under inhomogeneous perturbations. Similarly, as was carried out in the
previous section, we will concentrate on evolution equations of the variable δ∗ and the initial
value of ∂tδ∗. To obtain this kind of perturbations, we provide initial data such that Kp is
spatially dependent. This corresponds to setting ε 6= 0 in the initial data family. Henceforth,
we will refer to any mode different from the fundamental as harmonic modes or simply
harmonics.

Next, we will focus on discussing the effect of the non-linear terms like ∂tδ∗∂tψ∗ in the evo-
lution equations, in order to illustrate how they may contribute to the triggering mechanism
that causes the expanding or collapsing behaviour of the S2-factor. Naturally, the following
discussion also holds for other non-linear terms. Let us begin by writing both functions in
terms of the SWSH basis as

∂tδ∗ =
∞∑
l1=0

al1 0Yl1(θ), (10.28)

∂tψ∗ =
∞∑
l2=0

bl2 0Yl2(θ). (10.29)

Note that we have used the axial symmetric notation introduced in chapter 7. The mul-
tiplication between those terms can be carried out by following the multiplication formula
for SWSH given in Eq. (5.21). In principle, this kind of product provides several harmonics
which will contribute to the evolution equations. However, just under certain conditions,
this product will produce contributions to the fundamental modes of the evolution equations.
These are of particular importance here because, as we already discussed in the previous sec-
tion, they trigger the expanding or collapsing behaviour of the S2-factor. In order to identify
how these fundamental modes are generated, let us consider the multiplication between two
terms from Eqs. (10.28) and (10.29) for some fixed l1 and l2 respectively. Using Eq. (5.21)
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we obtain

al1 0Yl1(θ) bl2 0Yl2(θ) =
∑
l∈Θ

Al(0, l1, 0 : 0, l2, 0) 0Yl(θ), (10.30)

where Θ := max{|l1−l2|, ..., l1+l2} and Al is a constant value obtained from the multiplication
between Clebsch-Gordan coefficients given by Eq. (5.20). To conduct the analysis of the above
product, we consider separately the following two situations.

Situation 1

When ∂tδ∗ and ∂tψ∗ have a non-zero fundamental mode. In this case the product between
those terms will produce contributions to the fundamental modes of the system of equations.
In particular, these contributions will trigger the changing in time of the fundamental mode of
δ∗ which, as mentioned in the previous section, controls the expanding or collapsing behaviour
of the S2-factor. In other words, according to the last section, the contributions to the
fundamental mode in the evolution equation of δ∗ causes that the S2-factor experiences either
an expanding or collapsing behaviour. Next, by using the analytical initial data family, we
provide numerical evidence that illustrates the above.

Let us consider the analytical initial data introduced in section 10.4.1 where ε = 0.5 ×
10−5, c1 = 4.47210022, c2 = 0 and ∂tψ is given by the positive root. From the initial data
Eq. (10.16) and using the evolution variables Eq. (10.22), it is obtained that the fundamental
mode of Kp is numerically zero (to the order of 10−14) while for ∂tδ∗ it is positive (to the order
of 10−11). Henceforth, we refer to this as12 data3. In Fig. 10.6 we plot the behaviour of Kp for
this initial data together with two others corresponding to data1 and data2, which describe
homogeneous perturbations with c1 = 0.5× 10−5, c2 = 0 and c1 = c2 = 1.4× 10−5. Note that
for data1 the fundamental mode of ∂tδ∗ is negative while for data2 is positive. Next, let us
consider Fig. 10.7 in which the vertical axis is shown in semi-logarithmic scale for a better
appreciation of the temporal change of the order of magnitude of the fundamental mode of
Kp. Since data1 yields Kp > 0 > ∂tδ∗, we obtain that the resulting S2-factor exhibits a
collapsing behaviour. On the other hand, for data2 we have initially Kp < 0 < ∂tδ∗, then the
S2-factor undergoes an expanding behaviour as expected. For data3, where the fundamental
mode of Kp was chosen numerically zero, we observe that the behaviour of Kp is initially

12Choosing ε = 0.5× 10−5 and c2 = 0 the value of c1 can be found.
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oscillatory but later becomes monotonic because of the growth of ∂tδ∗, which is illustrated
in Fig. 10.8. The figure shows that regardless the oscillation of Kp, if the variable ∂tδ∗
stays positive, eventually the homogeneous perturbations become dominant and trigger the
expansion of the S2-factor.

Situation 2

Now, let us consider the case when one of the functions ∂tδ∗ or ∂tψ∗ have a fundamental mode
different from zero. In this case, one might think that the product between these two func-
tions do not produce any fundamental mode. However, considering Eq. (10.30), we clearly
see that those can be produced when l1 = l2. Thus, we can say that homogeneous pertur-
bations are generated by the non-linear contributions of the inhomogeneous perturbations.
Furthermore, as we will confirm in the following numerical experiments, they will become
dominant and eventually trigger the expanding or collapsing behaviour of the S2-factor. In
order to determine whether inhomogeneous perturbations develop an expanding or collapsing
behaviour of the S2-factor, we have to look at the resulting sign of the fundamental mode
of ∂ttδ∗ when the homogeneous perturbation become dominant. According to our previous
discussion on homogeneous perturbations, if the fundamental mode of ∂ttδ∗ becomes positive
when the homogeneous perturbations become dominant, the S2-factor would experience a
collapsing behaviour. On the other hand, it would undergo an expansion if ∂ttδ∗ turns neg-
ative. Note that this behaviour is given because of the instability of the fundamental mode
of δ∗ discussed in our analysis of homogeneous perturbations. In what follows, by using the
numerical initial data, we provide numerical evidence that supports the above discussion.

Let us consider the numerical initial data as introduced in section 10.4.2. Following the
algorithm based on Richardson’s iteration, we solve numerically the Hamiltonian constraint
for ε = 10−2, 10−4 and 10−6 respectively. In all the cases, we obtained that the initial
fundamental mode of ∂tδ∗ (∂tδ∗0) is numerically zero (of order O(10−14)). This is clearly
illustrated in 10.9, which shows that its mean value is approximately zero. On the other
hand, Fig. 10.10 shows the initial perturbation of the Kretschmann scalar for the three cases,
which confirms that the three sets of initial data generate perturbations of the Nariai metric.

The evolution of the fundamental mode of ∂tδ∗ is shown in Fig. 10.11. In this plot,
we observe that this mode is initially zero. However, because of the contribution from all
the non-linear terms present in the evolution equation of ∂ttδ∗, this mode quickly starts to
oscillate. Eventually, this mode becomes dominant turning monotonic the behaviour of ∂tδ∗.
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Comparison with known results

Similarly to the case of homogeneous perturbations, let us consider the initial mean curvature
associated with the induced metric in the Cauchy surface obtained from the reduced metric
ĥab and denoted in this case by H2. For the numerical experiment carried out in [28], H2 is
chosen as a spatially depended function which is shifted up or down by the tuning of some
given parameter. When the mean value of H2 is above zero, an expansion of the S2-factor is
obtained while a collapsing behaviour is obtained for a mean value lower than zero. On the
other hand, in the “critical case”, when the mean value of H2 is zero (zero fundamental mode),
the behaviour was not understood. As was pointed out by Beyer, at some stage during the
evolution, the S2-factor “makes a decision” about whether to expand or to collapse. In our
analysis, this “decision” is clearly explained by the contributions of the non-linear terms to the
fundamental mode of ∂ttδ∗ as explained above, i.e., if the fundamental mode of ∂ttδ∗ becomes
negative when the fundamental mode becomes dominant, the S2-factor would experience a
collapsing behaviour in contrast to the expanding behaviour if such a mode was initially
positive.

We point out that in [28], the numerical experiments were conducted about the “critical
case” for “small” inhomogeneous perturbations. That is, perturbations given for an amplitude
of the function H2 in the order 10−4. For large perturbations (bigger than 10−4) it was posed
the question on whether it might be observed different behaviours, such as the formation of
multiple collapsing and expanding regions as it is claimed in [41] that can be given for the
spherically symmetric case. However, our analysis suggests that such a behaviour cannot
occur. This is clearly illustrated in the numerical experiment shown above that uses the
numerical initial data for 10−2, 10−4 and 10−6. In terms of the evolution variables, the mean
curvature H2 can be written as

H2 = ∂tδ∗ δ
−3/2
∗ .

Similarly for ∂tδ∗, it is found that the initial fundamental mode (which corresponds to its mean
value) of H2 in all the cases is zero. In Fig. 10.12 we show the initial value of this function for
each amplitude (Note the similarity of the initial functions ofH2 to ∂tδ∗). Recalling Fig. 10.11,
the evolution of the variable ∂tδ∗ shows that by increasing the order of the inhomogeneous
perturbations, we enlarge the initial contribution to the fundamental mode of ∂ttδ∗ that yields
a faster expansion or collapse of the S2-factor than if we were using a smaller value of ε.

To finalize this section, we point out that all the above analysis provides evidence of
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the non-linear instability of the Nariai spacetime under inhomogeneous perturbations and
that our approach to this issue constitutes a significant progress in the understanding of the
underlying mechanism.

10.7 Studies of the asymptotic behaviour

We devote this section to the study of the asymptotic behaviour of the Kretschmann scalar of
the perturbations for when K < KNariai and K > KNariai, that we identify as the expanding
and collapsing cases respectively. The names comes from the fact that for the first case K
stays bounded whereas for the second one it blows up.

For the following numerical experiments, we will use the analytical initial data family
such that c1 = c2 = 0. We obtain the collapsing case by setting ε = 0.5× 10−5 which makes
the fundamental mode of Kp positive. On the other hand, the expanding case is given by
ε = −0.5×10−5, where the fundamental mode of Kp is negative. Intuitively, the fundamental
mode of Kp can be interpreted as its mean value over the spatial domain. This is illustrated
in Fig. 10.13 where we observe that the Kp corresponding to the collapsing case, named
case 1, has a positive mean value. Evidently, in the expanding case, case 2, we also confirm
the statement above since the fundamental mode for Kp is negative. We start our analysis
by firstly discussing the collapsing case and secondly the expanding case.

10.7.1 Collapsing case

Before presenting the evolution of the Kretschmann scalar, we describe briefly the behaviour
of the variables ψ∗ and the spatial Ricci scalar of the S2-factor. The evolution of these two
important geometric quantities is shown in Fig. 10.14. We observe that the fundamental
modes of both quantities blow up. Recalling that ψ = eψ∗ represents the norm of the Killing
vector along the S1-factor and (2)R corresponds to the Ricci scalar of the S2-factor, we can
infer that while the length of all the individual symmetry orbits along the S1-factor expand,
the S2-factor collapses because its curvature diverges. This behaviour was also observed by
Beyer in [28]. He identified such phenomenon as evidence that the perturbed spacetime
evolves towards a “cigar singularity”. This behaviour is significantly different from that
observed in Gowdy symmetric S1 × S2 spacetimes with zero cosmological constant discussed
in chapter 8. However, it may be the case that this type of singularity is due to some kind
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Figure 10.15: Evolution of K in the collapsing
case.

of geometric effect due to the chosen gauge or initial data family. This question goes beyond
the scope of this work and hence we leave it for a future research.

Now, we turn our attention to the behaviour of the Kretschmann scalar. When the
spacetime evolves towards the singularity this quantity blows up. This is clearly shown
in13 Fig. 10.15. However, what is not quite clear is how the harmonics will behave in this
case. To shed some light on this query, we plot some snapshots for the harmonics evolution
in Fig. 10.16. For a better appreciation of the different order of magnitude we show the
vertical axis in a semi-logarithmic scale. In this figure, we do not plot each mode separately;
instead, we just remove the fundamental mode from the Kretschmann scalar and plot the
resulting function composed of all the harmonics. Henceforth, we will refer to this function,
denoted by Kl, as oscillations of the Kretschmann scalar. In order to avoid any possible
misunderstanding, we want to clarify that the “steep” behaviour of the oscillations near π/4
and 3π/4 in Fig. 10.16 corresponds to an effect of the semi-logarithmic scale, hence the figure
does not describe the real way how the oscillations are.

In the figure, we observe that the oscillations of the Kretschmann scalar are amplified
when the spacetime approaches the singularity. However, apart of this, we do not observe
any particular region where a possible spike could emerge, in contrast to the case without
cosmological constant discussed in section 9.4.2, that is, the oscillations seem to remain
smooth along the evolution. Fig. 10.17 shows the evolution of Kl. Of course, it is also
possible that we observe this behaviour because the spacetime is still far away from the
singularity, hence any true spike has not yet emerged. Certainly, it is very difficult to answer
this question; it requires a more extensive analysis from both the analytical and numerical
points of view. This question goes beyond the scope of this work, thus we leave it as an open
problem.

10.7.2 Expanding case

Finally, we discuss the expanding behaviour of the perturbations of the Nariai spacetime.
Since this analysis is carried out in the light of the cosmic no-hair conjecture14 (CNH), we

13The difference between dark and light regions in the figure is due to the adaptive time integration RKF.
The darker a region is, the smaller the time step.

14See section 3.2.3 for a discussion of this conjecture.
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start by identifying the Kretschmann scalar of the de Sitter spacetime. It is well-known (see,
for instance, [113]) that this quantity is a constant value given by

Kde Sitter =
8Λ2

3
. (10.31)

According to the CNH, if perturbations of the Nariai spacetime develop an expanding
behaviour (K < KNariai), they should evolve towards a spacetime locally isometric to the de
Sitter spacetime. For simplicity, hereafter we will omit to say locally isometric and just say
that a spacetime times evolves towards the de Sitter spacetime. Therefore, it is expected that
their corresponding Kretschmann scalar should evolve asymptotically to Kde Sitter. This is
precisely shown in Fig. 10.18 where we have plotted the evolution of K. Notice that we have
added two lines to indicate the reference values of the Kretschmann scalars corresponding
to the Nariai and de Sitter spacetimes respectively. The figure shows that starting from a
value close to KNariai, the Kretschmann scalar evolves towards the de Sitter value Kde Sitter.
However, this plot cannot show how close K is from Kde Sitter. To address this question,
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and Kde Sitter.

we plot some snapshots of the evolution of Kl in Fig. 10.19 using the semi-logarithmic scale
in the vertical axis. In the figure, we observe that the oscillations of the Kretschmann
scalar are damped during the evolution. We show a continuous illustration of this process in
Fig. 10.20. Those pictures make evident the fact that K becomes homogeneous during the
evolution, i.e., the fundamental mode becomes the only one that rules the evolution of K.
Finally, Fig. 10.21 shows the evolution of this mode to confirm that it reaches the constant
value Kde Sitter. Naturally, this behaviour is also given in the homogeneous case. Clearly,
the above suggests that perturbations of the Nariai spacetime that exhibit an expanding
behaviour evolves towards the de Sitter spacetime. However, at this point we certainly
cannot ensure that those perturbations evolve towards the de Sitter spacetime as suggested
by the CNH. In order to study this question in more detail we analyse the behaviour of the
S2-factor. Particularly, we focus on studying the behaviour of its corresponding Ricci scalar.

It is well-known that in two dimensions the Riemann tensor (2)Rabcd is given by the
following expression (see [123])

(2)Rabcd =
(2)R

2
(γacγbd − γadγbc),

where γab represents the two-dimensional metric in S2. Thus, it is clear that all the geometric
information in the manifold S2 is encoded in the Ricci scalar. In the particular case where
(2)R is constant, the metric γab describes a two-sphere of constant radius; consequently,
the S2-factor turned out to be spherically symmetric. Further, it can be argued that the
four-dimensional spacetime turns homogeneous, then, if its Kretschmann scalar coincides
with Kde Sitter, yields that it is locally isometric to de Sitter spacetime. Therefore, in our
particular case, showing that the perturbations of the Nariai spacetime become spherically
symmetric during the evolution will be enough evidence to assert that the de Sitter spacetime
acts as a future attractor for those.

Following the argument above, we analyse the evolution of (2)R. Fig. 10.22 shows the
behaviour of the oscillations of this quantity. In there we observe that the amplitude of the
oscillations decay very rapidly during the evolution, implying (as expected) that the quantity
(2)R tends to be spatially independent. In fact, as is shown in Fig. 10.23, the amplitude
of the oscillations reach the order of machine accuracy which can be numerically considered
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as zero. Hence, this fact allow us to infer that the S2-factor turns (asymptotically) into a
two-sphere which entails the spherical symmetry of the perturbed spacetime. Additionally,
the evolution of the fundamental mode of this quantity is represented in Fig. 10.24. It can
be interpreted as an expansion of the mentioned sphere (as expected) when the perturbed
spacetime approaches towards the de Sitter spacetime.

We end this chapter by remarking that the above discussion provides enough evidence to
conclude that perturbations of the Nariai spacetimes become spherically symmetric. More-
over, considering the fact that the Kretschmann scalar corresponds to the Kde Sitter, we
conclude that these perturbations turn into homogeneous spacetime locally isometric to the
de Sitter spacetime as suggested by the CNH.
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Chapter 11

Discussion and future projects

Having described the ideas in which is based our analytic and numerical infrastructure in
Part II, and its applications to Gowdy spacetimes in Part III, we now summarize and discuss
the major results of this work. This chapter ends with a short review of some other possible
applications that we may consider as future projects.

11.1 Discussion of the analytical infrastructure

The purpose of this work was to introduce an analytic and numerical approach to the treat-
ment of the Cauchy problem of the vacuum EFE for spacetimes with spatial topologies S3

or S1 × S2 and symmetry group U(1). The general idea consisted of taking advantage of the
action of the symmetry group U(1) on those spacetimes and writing them as a principal fiber
bundle, which is trivial for S1 × S2 but not for S3. Thus, the Cauchy problem in a four-
dimensional problem was reduced to a three-dimensional initial value problem for a manifold
with spatial topology S2. Expressing all the fields in terms of the SWSH, it was possible to
avoid coordinate representations that suffer from coordinate singularities this kind of mani-
fold. We implemented the generalized wave map formalism to reduce the GES in the space of
orbits S = R×S2 to a system of quasilinear wave equations in terms of the generalized gauge
source functions with well-defined spin-weights. As a result, thanks to the fully tensorial
character of these equations, the system of evolution equations WGES given in Eq. (6.19)
could be solved by using a 2 + 1-pseudo-spectral method based on the SWSH. However, in
this thesis, we have applied our infrastructure for studying Gowdy symmetric spacetimes,
where thanks to the symmetry group U(1) × U(1), the vacuum EFE can be reduced to a
1 + 1-system of partial differential equations.

There are several results regarding the existence and uniqueness of solutions of the con-
straint equations in three-dimensional Cauchy surfaces; see [13] and references therein. All of
them depend on a prescribed mean curvature which is assumed to be either constant, near-
constant, or far-from-constant. For the first two cases, it is almost completely understood
under what conditions a solution of the constraint equations exists or not. In contrast, for
the latter case only a few results are known. Unfortunately, in our case, where we deal with
two-dimensional initial Cauchy surfaces, these results may not be extended directly. In other
words, even though we have obtained an elliptic representation of the constraints in the space
of orbits S based in the standard York-Lichnerowicz conformal decomposition, none of the
mentioned results in three-dimensions apply unless we solve the constraints in the original
spacetime and project the solution to the space of orbits. We have followed this approach in
chapter 9 (see also [35]). Therefore, in general, we do not know under what conditions the

111



Chapter 11. Discussion and future projects

solutions of the system of two elliptic equations Eqs. (6.38) and (6.39) exist. Certainly, this
question goes beyond of the scope of this work, hence we leave it as a future project.

Nevertheless, it may happen that, in some situations, solving the system of elliptic equa-
tions in the space of orbits may be easier than solving the traditional constraints in the
original spacetime. Particularly in this work, specifically in section 10.4.2, we were able to
solve the constraint equations analytically in the space of orbits to find perturbations of the
Nariai spacetime. To do so, following the work of Frauendiener [82], we introduced a spectral
method based on the Richarson’s iteration method and the SWSH for solving the constraints
in the axial symmetry case. Nevertheless, we emphasize that this algorithm can be easily
extended to the more general case of U(1) symmetric spacetimes, which clearly opens the
door to a large number of possible situations that could be studied using this approach.

In general, we conclude that our approach should be of interest to researchers working
on problems where spherical coordinates are a natural choice, since it yields a simple and
unified description of tensor fields without the undue complexity of the traditional vector
and tensor harmonics [1]. Furthermore, since the generalized wave map formalism provides
an elegant covariant way to write evolution equations over S2 keeping the gauge freedom,
we believe that it could be easily adapted to standard pseudo-spectral approaches (see, for
instance, [49,186]) for studying more complicated scenarios in 3+1-dimensions that implicitly
contains this topology. In other words, we believe that this work clearly illustrates how
numerical relativity could greatly benefit from this approach since it provides a natural way
to treat tensor fields over S2.

11.2 Discussion of the numerical infrastructure

The numerical implementation for solving the WGES on R× S2 was based on the method of
lines. Our choice to conduct the temporal integration was the Runge-Kutta-Fehlberg method
(except for convergence test). Because in this work we restricted ourselves to applications
of Gowdy symmetric spacetimes, the spatial derivatives over S2 were calculated by using the
AST (after expressing the frame derivatives in terms of the eth-operators) which provided an
efficient treatment of axially symmetric functions by reducing the complexity of the general
algorithm of the HWTs O(L3) (where L is the band limit of the functions on S2 in terms
of the spin weight spherical harmonics) to O(L2). Furthermore, because of the low memory
cost of the AST, we only had to compute the Wigner coefficients ∆l

mn only when the grid
resolution changes which reduced the number of operations per transform to just O(L log2 L).

Clearly, one of the advantages of our implementation is that the spatial derivatives are
straightforward computed in our pseudo-spectral method (PS) in contrast to how they would
have been calculated by using a finite differencing method (FD). Thus, as discussed in chap-
ter 7, the PDE system of equations yielded by the vacuum EFE is reduced to an ODE system
which can be solved it numerically by using any time integrator. However, in situations where
the functions develop spikes, i.e., regions where functions are not smooth, our implementation
dramatically loses accuracy with respect to a FD. In the context of numerical relativity, the
above implies that our numerical implementation is not suitable for studying extreme situ-
ations, like singularities or Cauchy horizons, where the spatial derivatives are not smooth.
On the other hand, our pseudo-spectral approach is most convenient for studying situations
where the gravity acts “smoothly” as for expansion of cosmological models or propagation of
gravitational waves, just to mention a few, because the spatial derivatives remain smooth all
the times.

The most natural way to enhance our implementation would be by using a multi-domain
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PS method; see, for instance, [45, 72] and references therein. The general idea will consist
of dividing the computational region into subdomains, each of them with its own set basis
functions and collocation points. Thus, it may be possible to make a multi-domain PS method
for treating not smooth functions. In addition, technical tricks to control the accuracy, such
as special forms of spectral filtering or more sophisticate “constraints damping terms”, could
be introduced to improve the implementation.

An important technical result of this work was the development of a module, written
in Python 2.7, for the implementation of the AST. It can be freely downloaded under
the GNU General Public License (GPL) at gravity.otago.ac.nz/wiki/uploads/People/

Axial_Spin_Weight_Functions.zip. This module allows objects to be defined that repre-
sent spin-weighted functions and that follow the basic operations among them. Hence, it can
be seen not only as a set of functions but also as a Python environment for working with
axial symmetric SWSH. Additionally, keeping in mind possible future projects that will be
mentioned later, we have generalized this module for the general SWSH.

11.3 Discussion of the applications

To analyse the consistency, accuracy and feasibility of our numerical infrastructure, in chap-
ter 8 we reproduced an inhomogeneous cosmological solution of the vacuum EFE with spa-
tial topology S3. In there, we conducted a detailed numerical analysis to identify the major
sources of potential errors. Further, we explored the behaviour of the constraints for different
gauges by choosing different generalized gauge source functions.

Later in chapter 9, motivated by the works of Garfinkle [90] and St̊ahl [183], we numeri-
cally explored the behaviour of Gowdy S1×S2 spacetimes using our infrastructure. In partic-
ular, studying the behaviour of the Kretschmann scalar and other geometrical quantities, we
observed that spikes could emerge at the polar regions. Since our numerical implementation
avoids problematic terms like cot θ in the evolution equations, we were able to compute the
Kretschmann scalar without any problem at the poles in contrast to the standard approach
based on coordinate frames. This advantage allows us to carefully explore the behaviour
of this quantity near to the poles. In fact, we found that the curvature associated with
the S2-factor diverges near the poles faster than in any other place (including the equator).
Moreover, the maxima of the Kretschmann scalar move towards the poles which leads us
to think that if some spikes develop during this evolution, they should appear first at the
poles. Following a different approach, Beyer [25] found similar numerical results for a certain
family of Gowdy S3 spacetimes, namely a class of solutions of the vacuum EFE close to the
family of λ-Taub-NUT spacetimes. These studies together with our findings provide evidence
that support St̊ahl’s prediction about the general raising of spikes (true spikes) at the polar
regions, which suggests that Fuchsian methods are not enough for studying the behaviour of
this sort of Gowdy spacetimes at the singularities. Therefore, we believe that more numerical
and analytical work is required in order to fully understand the behaviour of Gowdy space-
times with spatial topologies S1×S2 and S3, as has been already done in the last decades for
the T3 case.

As another application, based on the previous works [27,28], we investigated the underly-
ing mechanism that causes the non-linear instability of the Nariai spacetime and explored the
asymptotic behaviour of its perturbations. We introduced Gowdy perturbations of the Nariai
spacetime in terms of the Kretschmann scalar value and constructed initial data (analytically
and numerically) based on the scheme of the York-Lichnerowicz conformal decomposition for
S2 introduced in section 6.4. Additionally, we introduced the Nariai gauge that allowed us
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to write the evolution equations in a convenient form for the posterior analysis of the pertur-
bations. By means of the implementation (and analysis) of constraint damping terms into
the WGES it was possible to achieve stable numerical computations that allow us to draw
conclusions about the asymptotic behaviour of the perturbations.

One of the more important findings from our analysis was that in contrast to homo-
geneous perturbations (spatially independent), the non-linear terms in the inhomogeneous
perturbations (spatially independent) play a fundamental role in the “triggering” mechanism
of the expanding or collapsing behaviours. The reason lies in the fact that inhomogeneous
perturbations can develop an expanding or collapsing behaviour of the S2-factor of because
the contributions of the non-linear terms to the fundamental modes of the metric compo-
nents. In order to determine whether inhomogeneous perturbations develop an expanding or
collapsing behaviour, we just have to look at the resulting sign of the fundamental mode of
the perturbation of the Kretschmann scalar with respect to the SWSH basis. If initially it was
positive, the perturbed spacetime would experience a collapsing behaviour, whereas it would
undergo an expanding behaviour if it was negative. For the particular case where the funda-
mental mode is initially zero, we found that all the contributions from the non-linear terms to
the fundamental mode will generate homogeneous perturbations of the Kretschmann scalar
whose that will eventually trigger the expanding or collapsing behaviour of the S2-factor. In
other words, our analysis lead us to conclude that the Nariai spacetime is unstable and this
finding accords with the previous works of [27,28]. Therefore, we believe that our approach to
this issue constitutes a significant progress for better understanding of the underlying mecha-
nism. In addition to this, our approach also allowed us to cast lights in the question posed by
Beyer in [28] about the formation of multiple cosmological black holes for large perturbations.
After a systematic analytical and numerical analysis, we provided strong evidence suggesting
that such behaviour is not possible.

On the other hand, we studied the asymptotic behaviour of perturbations for the case
when the Kretschmann scalar blows up (the collapsing case) and when it tends to a constant
value (the expanding case). For the former case, we found that while the length of the
symmetry orbits along the S1-factor expands, the S2-factor collapses. This suggests that
the four-dimensional manifold with local topology S1 × S2 collapses in an inhomogeneous
way. This behaviour, also observed by Beyer in [28], can be identified as evidence that the
perturbed spacetime evolves towards a “cigar singularity”, in contrast to that observed for
Gowdy symmetric S1×S2 spacetimes with zero cosmological constant in chapter 9. However,
it may be the case that this type of singularity is due to some kind of geometric effect
because of the chosen gauge or initial data family. We leave this question for a future research.
Regarding the behaviour of the Kretschmann scalar, we did not observe any particular region
where possible spikes could emerge. We observed that the oscillations of the Kretschmann
scalar remain smooth during the evolution. However, it is highly likely that this behaviour
is observed because the spacetime is still far away from the singularity, hence it is natural
not observe any spike. Unfortunately, we are unable to answer this question since a more
extensive analysis from both the analytical and numerical points of view is required. Thus,
we also leave this other question as an open problem for a future project.

Finally, the expanding case was analysed in the light of the CNH. By means of numerical
experiments, we found evidence that suggests that any perturbation of the Nariai spacetime
that exhibits an expanding behaviour evolves towards the de Sitter spacetime. This was
obtained, firstly, by realizing that the numerical value of the Kretschmann scalar of pertur-
bations reach the corresponding value of the de Sitter spacetime, and, secondly, by studying
the evolution of curvature of the S2-factor which revealed that those perturbations become
spherically symmetric. Thus, we found that perturbations of the Nariai spacetime turn
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asymptotically homogeneous and locally isometric to the de Sitter spacetime as suggested by
the CNH.

11.4 Future projects

Next, we shall summarize some future research projects that were either left open as open
questions in this thesis or that emerge as an immediate application of our infrastructure.
However, before proceeding, we want to stress once again that we have built an analytical
and numerical infrastructure for treating the Cauchy problem for spacetimes with spatial
topologies S3 or S1 × S2 and symmetry group U(1). Hence, since we have only used this
infrastructure to study Gowdy symmetric spacetimes, the first immediate future project that
we have in mind is to consider more general scenarios with only U(1) as symmetry group.
For this reason, we have generalized the Python module for the general SWSH, i.e., no axial
symmetry, that uses a C-library linked with the original C-code given by Huffenberger and
Wandelt. As we already mentioned in section 7.6, this module can also be freely downloaded
at http://gravity.otago.ac.nz/wiki/index.php/People/Spin_Weight_Functions.zip.
All the following are some future projects that could be using either this module or the AST.

Inhomogeneous scalar field perturbations of the Nariai spacetime

The satisfactory results presented in chapter 10 suggest the suitability of the approach pro-
posed in this thesis to construct more general (inhomogeneous) cosmological models with
spatial topologies S3 and S1 × S2. Therefore, the main goal is to apply this infrastructure
to study more realistic cosmological models, thereby studying more systematically the col-
lapsing and expanding behaviour of these. We believe that this research will lead us to a
better understanding of the properties of solutions of the EFE, hence it will yield new insights
regarding the important questions about the origin, evolution and future of the universe.

In this work, it was possible to construct initial data for cosmological models from in-
homogeneous perturbations of the Nariai spacetime. However, the vacuum assumption is
too restrictive for considering those models as realistic. In fact, current measurements [121]
suggest that the early universe should be better described by a hot plasma, composed mainly
of certain scalar field known in the literature as dark energy. Thus, as a future project, we
propose to generalize the inhomogeneous perturbations to the case of cosmological models
filled with dark energy. In particular, motivated by the mentioned work of Bousso and Hawk-
ing [42–44], we will explore the behaviour of the Nariai spacetime under perturbations caused
by some scalar field. The crucial point here is to realize that the cosmological constant plays
the same role as the potential function associated with the scalar field1. Moreover, it will be
promising to explore the relationship between different kinds of potentials and the CNH as
it has been extensively done for homogeneous spacetimes (see, for instance, [31,165]).

Cosmological models in the Einstein-Vlasov setting

The next natural step in a systematic construction of more realistic (inhomogeneous) cos-
mological models is to consider the Einstein-Vlasov system. The well-known Vlasov equa-
tion [185] arises in kinetic theory to provide a statistical description of a set of particles. It
differs from other equations of kinetic theory because there is no direct interaction between
particles. In particular, no collisions among the particles are included in the model. Instead,

1Note that if we assume a constant scalar field with potential function equal to the cosmological constant,
then we retrieve the Nariai solution
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their interaction is mediated by the geometry of space time, thus the particles will be moving
freely along the geodesics ruled by the EFE. This yields the so-called Einstein-Vlasov system
(see [8, 153]). This system equations have been successfully implemented in the context of
both stellar dynamics and cosmological models. However, in many other situations (depend-
ing on the symmetries of the spacetimes and particles considered) an analytical treatment
of these equations is too complicated or virtually impossible, thus numerical infrastructures
dealing with such systems are required. Therefore, as a future project, we are interested in
applying our infrastructure to study the behaviour Gowdy symmetric (with spatial topology
S1 × S2 or S3) cosmological models in the Einstein-Vlasov setting.

Explorations in U(1)-symmetric cosmological spacetimes

As mentioned in section 3.1, thanks to the numerical evidence provided by [23], it has been
conjectured that polarized U(1)-symmetric spacetimes are in fact AVTD at the singularity.
However, it has to be pointed out that such numerical experiments were conducted for the T3

spatial topology. Hence, it is reasonable to explore this issue for other topologies, such as S3

or S1 × S2, and determine whether similar behaviour near the singularity is found. Similarly
as in the polarized case, the oscillatory behaviour of generic U(1)-symmetric spacetimes at the
singularity only has been numerically explored for the T3 case (see for example [91]), which
encourages us to implement our infrastructure to these sorts of scenario. However, as already
mentioned, this study will be only possible after a technical enhancing of our infrastructure by
using a multi-domain PS method. In fact, as was shown in [111], multi-domain methods have
proven to make a significant improvement in the study of singularities, a fact that motivates
us even more to implement it.

Simulations of binary black hole systems

The binary black hole system is well-known to be the prime source of gravitational waves. At
large distances from compact sources, the wave fronts of any radiation field become spherical,
a fact that naturally leads to any numerical simulation to spherical coordinate system. In fact,
spherical coordinates and spherical harmonics are standard analytic tools in the description
of radiation (see for example [1]). Nevertheless, as was shown along this work, the use of
spherical coordinates in numerical work yields the vexing problem of coordinate singularities
at the poles. FD approximations are mainly affected because they have no natural way of
enforcing the correct boundary conditions on their solutions, i.e., the polar singularities have
to be regularized by means of standard tricks (see, for instance, [45, 149]). Therefore, we
believe that our infrastructure could be implemented in order to improve current approaches
like the Spectral Einstein Code (SpEC) [117], widely used (and developed) by the research
community in this subject.

The Ricci flow on S3

We finalize this discussion by mentioning that our implementation can also be used to study
the Ricci flow in manifolds with topology S3. We are strongly convinced that it is a fascinating
area of research since the understanding Ricci flow was crucial for proving the so-called
Thurston’s geometrization conjecture [189]. The question that we would like to address here
is whether the Ricci Flow can be visualized by using numerical methods. For instance, it can
be shown that any metric with topology S2 converges to the round metric under Ricci flow
(normalized). However, the situation is unclear in higher dimensions. In particular, there are
many intriguing questions about the behaviour of the Ricci flow for manifolds with topology
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S3. For instance, to determine whether the flow evolves for infinite time without developing
singularities or not (see for instance [169]) is one of the major issues. In addition, from the
view point of the physics, the Ricci flow has been also used to find inequalities in general
relativity regarding the evolution of the surface area and the enclosed Hawking mass [173].
For a compilation of possible applications of the Ricci flow in physics, see [198] and references
therein. In short, we certainly believe that our infrastructure could serve to cast some light
on some of these questions.
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Appendix A

Tools of differential geometry

The theory of General Relativity is written in the language of differential geometry. Since the
aim of this document is to be as self-contained as possible, in this part we briefly introduce
the mathematical concepts in differential geometry that we will use in this thesis. However,
we remark that our purpose here is just to briefly review some fundamental definitions,
notations and conventions that are necessary for this work, and not to provide a detailed
presentation in formal differential geometry. For the reader interested in a more detailed and
formal discussion of such matter, we recommend [139, 184, 195] and references therein. We
shall base the following presentation on those books.

A.1 Differentiable manifolds

Let us start by defining a topological space. Let X be any set and τ denoting a certain
collection of subsets of X. The pair (X, τ) is a topological space if τ satisfies the following
requirements:

(i) The union of an arbitrary (maybe infinite) collection of subsets in τ is contained in τ ,
including both the empty set ∅ and X.

(ii) The intersection of a finite number of subsets from τ is contained τ .

Each element of τ is called an open set. Further, τ is said to be a topology on X. Now, let
us consider A an open set of X. Then, a collection of open sets B in τ is said to be an open
cover of A if the union of these sets contains A. A subcollection of B which also cover A is
referred to as a subcover. Finaly, the set A it is said to be compact if every open cover of A
has a finite subcover, i.e., a subcover consisting of only a finite number of sets.

first Now, we define a manifold M as a topological space satisfying the following two
properties. First, that there is a family of open neighbourhoods Ui together with continuous
one-to-one mappings fi : Ui 7 −→ Rn (with a continuous inverse). Second, the family of
open neighbourhoods covers M , i.e., ∪i=1Ui = M . According to the definition of a manifold
M there exist mappings φ : U → Rn, where U is an open region in M . If p is a point
in M , then φ(p) = (x1, ..., xn) will be a vector in Rn . Such mapping is represented by
{xµ}, where µ = 1, ..., n, is called a coordinate system. If two regions U and V have a non-
empty intersection U ∩ V = ∅, with coordinates xµ and x̃µ, then we can define an invertible
coordinate transformation xµ = x̃µ(xν) in U ∩ V . Unless otherwise explicitly stated, we
will assume that such coordinate transformations can be differentiated an arbitrary number
of times. Such coordinate transformations will be called smooth. If a manifold has smooth
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coordinate mappings, then the manifold is called a smooth manifold. Furthermore, a manifold
is called compact if it is compact in the topological sense.

A.2 Tensors, notation and conventions

A smooth curve γ(t) in M is defined as a map in an interval of the real line into M as
γ(t) : t ∈ R → M . A tangent vector u at certain point p ∈ M is a linear operator, which
assigns to each scalar function f : M → R a real number denoted by u(f). It can be viewed as
a directional derivative along a curve γ(t) through p. Furthermore, the directional derivatives
along the coordinate lines at p form a basis of n-dimensional vectors which are the tangent
vectors at p. This space is called the tangent space Tp. We can construct a vector field u(p)
in M by assigning to each point p ∈M a tangent vector u ∈ Tp so that the components of u
at p are differentiable functions of the local coordinates xµ.

A general basis (or frame) ∂µ is formed by µ = 0, ...n linearly independent vectors such
that any vector u ∈ Tp is a linear combination of these basis vectors. Symbolically, the above
can be written as u = uµ∂µ using the Einstein summation convention. Henceforth, we will
write either u or ua (or any Latin index instead of a) to denote a general vector, i.e., not
referred to a basis. On the other hand, we shall use uµ to denote its components with respect
to a certain frame which can be written as ∂µ or ∂aµ. The commutator [u, v] between two
vector fields u and v is defined by [u, v](f) = u(v(f)) − v(u(f)) for any differentiable scalar
function f . For a given frame ∂aµ the commutator

[∂µ, ∂ν ]a = Cσµν∂
a
σ, (A.2.1)

defines the structure coefficients Cσµν . We say that the frame ∂aµ is a coordinate when all the
Cσµν vanish. A one-form α, which we also denote by αa, acts on a vector ua and gives a real
number α(u) = αa(u

a). In order to write a form in component-form, we define a one-form
basis. We will denote the one-form basis by ωµa with µ = 0, ...n, defined by ωµa∂aν = δµν , where
δµν is the Kronecker-symbol. The vectorial space expanded by ωµa is called the dual space T ∗p
of the tangent space Tp. Then, any one-form σ ∈ T ∗p is a linear combination of the dual basis
as σa = σµω

µ
a . Besides, the action (contraction) of σ on some vector ua ∈ Tp can be expressed

in terms of their respective components with respect to the basis ωµa , ∂aµ as σau
a = σµu

µ.
Next, we define a tensor T of type (p, q) that we write as T a1...apb1...bq , as the multi-

linear function that maps p one-forms and q vectors into R at certain point of M . It can be
expressed by components of the basis of elements for vectors and one-forms as follows

T a1...apb1...bq := T µ...νρ...δ ∂a1µ ⊗ ...⊗ ∂
ap
ν ⊗ ωρb1 ⊗ ...⊗ ω

δ
bq ,

where T µ...νρ...δ correspond to the components of the tensor with respect to the frame {∂aµ}
and coframe {ωµa} respectively. The symbol ⊗ is known in the literature as the tensor product.
Hereafter, we will say that this tensor is p times contravariant and q times covariant. Besides,
we will refer to the Latin indices as abstract indices because they simply represent the number
of “slots” that a general tensor has, while the Greek indices will be called as component
indices. The symmetric part of a contravariant tensor of rank p is defined as

T(a1...ap) :=
1

p!

∑
π

Taπ(1)...aπ(p) ,

and the antisymmetric part by

T[a1...ap] :=
1

p!

∑
π

δπTaπ(1)...aπ(p) ,
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where the sum is taken over all the permutations, π, of 1, , ...p and δπ is +1 for even per-
mutations and −1 for odd. A totally antisymmetric contravariant tensor of type p, is called
a p-form. Finalliy, an assigment of a tensor for each point p in the manifold M is called a
tensor field.

A.3 The metric tensor and the connection coefficients

The scalar product between two vectors ua and vb in M , denoted by 〈ua , vb〉, is defined in
terms of a symmetric 2-covariant tensor, which for every pair of vectors gives a scalar. This
tensor is called the metric tensor in the manifold M and is defined as

〈va, ub〉 = 〈ub, va〉 := gab u
avb = gνµ u

νvµ .

In the framework of the general relativity a vector va is said to be timelike if gabv
avb < 0, null

if gabv
avb = 0 and spacelike if gabv

avb > 0. Furthermore, the number of timelike and spacelike
frame vectors is independent of the choice of the frame. Hence, the number of timelike and
spacelike frame vectors is called the signature of the metric. For the particular case when the
signature of the metric is such that the number of timelike frame vectors is one and the rest
are spacelike the metric is called Lorentzian metric.

The contravariant components gµν of the inverse of metric tensor gab are defined such
that gµνgνρ = δνρ . Further, it is defined the lowering or raising of indices as va = gabv

b and

va = gabvb respectively, which correspond to a change of one-form for its respective vector
and vice-versa.

The covariant derivative Dva in the direction of the vector va at a point p, maps an
arbitrary tensor into a tensor of the same type. If va is unspecified, the covariant derivative
D generates a tensor of type (r, s + 1) from a tensor of type (r, s). If we have a set of basis
vectors, {∂aµ} we will denote D∂µ by Dµ. The connection coefficients are defined as the
components of the directional derivative of the basis vectors as (see [184])

Dν∂
a
µ := Γανµ∂

a
α.

Hence, the connection coefficients Γαµν represent the α-component of the rate of change
of ∂aµ by a “displacement” in the direction of ∂aν . Then, if we have a vector field ua = uµ∂aµ
and a one-form va = vµω

µ
a using the Leibniz rule the equation above yields

Dνu
a = (∂aνu

µ + Γµρνu
ρ)∂aµ ,

Dνvb = (ωνb vµ − Γρµνvρ)ω
µ
b .

Naturallly, this operator can be generalized to tensors of type (q, r); see, for instance, [184].
Using the compatible metric condition Dνgµα = 0, the general form of the connection coeffi-
cients in any frame can be obtained by

Γαβγ =
1

2
gασ(∂γgσβ + ∂βgσγ − ∂σgβγ + Cγσβ + Cβσγ − Cσβγ), (A.3.1)

where we have used Cρµν := gραCαµν . Further, the connection coefficients are related to
the structure coefficients by Cαµν = 2Γα[νµ]. Note that just in the special case of the coordi-
nate frame the structure coefficients vanish and the connection coefficients are symmetric in
their lower indices.
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A.4 The Riemann and Ricci tensors

The Riemann tensor is a tensor of type (1, 3) that maps a one-form and three vectors into a
real number. The components of this tensor respect to some general frame are given by

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓρνβΓµρα − ΓρναΓµρβ − CραβΓµνρ . (A.4.1)

This tensor satisfies the following symmetry relations

Rabcd = −Rabdc, Ra[bcd] = 0, D[aReb]cd = 0. (A.4.2)

where the last two are known in the literature as the Bianchi identities. In addition, the
action on a one-form αa can be written as

Rabcdαd = DaDbαc −DbDaαc . (A.4.3)

The Ricci tensor is defined by Rbd := Rabad. Further, the Ricci scalar is defined by R :=
Raa and represents a measure of the curvature of the manifold M where it is referred. An
interesting geometric invariant quantity which will play an important role in this work is the
Kretschmann scalar defined by

K := RabcdRabcd. (A.4.4)

Finally, we list the conformal transformation formulas for the Ricci tensor and Ricci scalar.
Let us assume a 4-dimensional manifold M endowed with a metric gab and a scalar function
Ω such that we can define a new metric in M as g̃ab = Ω2gab (g̃ab = Ω−2gab). Then, we say
that we have defined a conformal rescaling between the two metrics. The explicit relation
between the two respective covariant derivatives D̃a and Da is

D̃bωa = Dbωa −W c
abωc, (A.4.5)

where

W c
ab =

1

Ω

(
2δc(aDb)Ω− gabgcdDdΩ

)
. (A.4.6)

Using this equation in Eq. (A.4.3), the relation between Ricci tensors can be obtained by
(see [195])

R̃ab = Rab − (n− 2)DaDblnΩ− gabgcdDcDdlnΩ

+(n− 2)(DalnΩ)(DblnΩ)− (n− 2)gabg
cd(DclnΩ)(DdlnΩ) . (A.4.7)

Further, from where the relation between Ricci scalars is obtained

R̃ =
1

Ω
(R+ 2(n− 1) DaDa lnΩ− (n− 2)(n− 1)gac(DalnΩ)(DclnΩ) ) . (A.4.8)

A.5 Lie derivative and isometries

Let us consider that M and N are two smooth manifolds and let f be a smooth map such
that f : M → N . This map induces the smooth map f∗ : TpM → Tf(p)N for a given p ∈M ,
called push forward, which is defined by

f∗ua(g) := ua(g ◦ f),
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for ua ∈ TpM and g a scalar function g : N → R. In addition, it is also induced the pull back
f∗ : T ∗f(p)N → T ∗pM defined by

〈f∗αa, ua〉 := 〈α, f∗ua〉,

for any αa ∈ T ∗f (p)N . Next, let us consider a vector field u = uµeaµ which induces the in-
finitesimal parameter transformation φt defined by x̃µ = φt(x

µ) = xµ+tuµ for t being a small
parameter. The Lie derivative of the covariant tensor T along the vector ua is written as1

LuT = lim
t→0

1

t
(φ∗tT − T ).

A useful relation is the Lie derivative for a two-covariant tensor (like the metric tensor) along
some vector ua that components are given by

LuTµν = DαTµνu
α + TανDµu

α + TµαDνu
α . (A.5.1)

In the following, we define a relevant concept to this work, the Killing vectors. Let us
consider a manifold endowed with a metric gab, and let φt be a one-parameter transformation
defined as above. Then, φt is an isometry if and only if φ∗t gab = gab. We call the vector field
ξa that generates the isometry φt as Killing vector. Furthermore, it can be proved that

Lξgab = 0. (A.5.2)

In addition, it can be easily proved that ξa = gabξ
b satisfies the so-called Killing equation

D(aξb) = 0. (A.5.3)

Clearly, the number of isometries correspond to the number of linearly independent Killing
vectors. The maximum number of Killing vectors in a n-dimensional manifold is (n+ 1)n/2.
Thus, in the particular case where n = 4, there may be up to ten of those vectors. A metric
corresponding to a manifold that admits the maximum number of Killing vectors is said to
be maximally symmetric.

Finally, we introduce the well-known totally antisymmetric Levi-Civita tensor associated
with the metric gab of dimension n by

εa1 ...an :=
√
|det(g)| ωa1 ∧ ... ∧ ωan (A.5.4)

where det(g) denotes the determinant of the metric gab and ∧ represents the antisymmetric
tensorial product (or exterior product) given by αb ∧ βa := α[b ⊗ βa]. Because this tensor is
usually used to define integration in manifolds (see [195]), it also receives the name of volume
element and is denoted by Volg := εa1 ...an .

A.6 Lie groups, Lie algebras and fiber bundles

A Lie group G is a differentiable manifold endowed with a group structure (in the usual sense
of the algebra) such that the group operations are differentiable. The dimension of a Lie
group G is defined to be the dimension of the manifold. Of particular interest in physical
applications are the matrix groups. Those are subgroups of the general linear group, denoted
by GL(n,C), formed by the set of all non-singular linear transformations in Cn. The elements

1In particular, for the spacial case where T a, LuT a = [u, T ]a.
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of this group are represented by n×n non-singular matrices with complex entries. The group
operation is the matrix multiplication, and the inverses of each element are given by the
inverse matrices. Some important subgroups of GL(n,C) (which are also Lie groups) for
this work are the unitary group U(n), the special group of rotations SO(n) and the special
linear group and the special unitary group SU(n). They are defined respectively as follows
(see [139]);

U(n) := {A ∈ GL(n,C) | AA† = A†A = I}, (A.6.1)

SO(n) := {A ∈ GL(n,R) | detA = 1 and AAT = ATA = I}, (A.6.2)

SU(n) := {A ∈ U(n) | detA = 1}, (A.6.3)

where † represents the Hermitian conjugation. Next, we define the action of a Lie group G
on a manifold M by the map σ : G×M →M ; (g, p)→ gp, which satisfies the following two
conditions: σ(e, p) = p for e being the identity of G, and σ(g1, σ(g2, p)) = σ(g1g2, p). The
group action σ is said to be transitive if for any p1, p2 ∈ M there exists an element g ∈ G
such that σ(g, p1) = p2. Furthermore, it is said to be free if every element different from
the identity of G has no fixed points in M , i.e., if there exists an element p ∈ M such that
σ(g, p) = p, then g must be the unit element e. The action is said to be effective if the unit
element e ∈ G is the only element that defines the trivial action on M . In other words, if
σ(g, p) = p for all p ∈ M then g must be the unit element e. Additionally, G is called an
isometry group or group of motion, if the pull back σ∗ preserves the metric g defined in M
at any point p, i.e., σ∗g = g. Finally, the orbit of p under the action σ is the subset of M
defined by

Gp = {σ(g, p)|g ∈ G}. (A.6.4)

If the action of G on M is transitive, the orbit of any p ∈ M is M itself. Now, we define
Lie algebra associated with a Lie group. Let a and g elements of the Lie group G. The
right-translation Ra : G → G and the left-translation La : G → G of g by a are defined by
Rag := ga and Lag = ag respectively. By definition, Ra and La are manifestly diffeomorphism
in G. Clearly, these maps induce La∗ : TgG → TagG and Ra∗ : TgG → TagG. Since
these translations lead to equivalent results, we will consider only the left-translation in the
following. Let u be a vector field on a Lie group G at the element g. Then, u is said to be a
left-invariant vector field if for any a ∈ G

La∗u(p) = u(ag). (A.6.5)

Let us denote the set of left-invariant vector fields on G by g. Further, Te will be the tangent
space defined at the identity of G. Thus, it can defined the map H : g→ Te by H(u) = u(e)
which is an isomorphism. It follows that the set of left-invariant vector fields is a vector space
isomorphic to TeG. The Lie bracket is a bilinear map g × g → g that satisfies the following
properties for all X,Y, Z ∈ g,

(i) [X,X] = 0,

(ii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The set of left-invariant vector fields endowed with the Lie bracket is called the Lie algebra
of a Lie group G. In particular, it can be proved that each element ξa of the Lie algebra
corresponds to the vector fields generated by the effective action of the isometry group (or
group of motion) that are, as we already mentioned before, the Killing vector (KVF).
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We finalize this section by briefly discussing the idea of fiber bundles. A simple idea of a
fiber bundle E over a manifold M (called the base manifold) can be obtained by imagining
another manifold F , the fiber, to be attached to each point of M in such a way that for suitable
regions where the coordinates xν are given on M and ξ on the fiber, the fiber bundle has
coordinates (xν , ξa), i.e., E is locally M ×F . On regions where two coordinate systems in M
apply, the corresponding coordinate transformations on E are given by the usual coordinate
transformations in M together with the fiber transformations ξ̃b = ξ̃b(ξa) for each p ∈ M .
These fiber transformations belong to a group of transformations on F called the structure
group of the bundle. This group denoted by G is a Lie group. For the particular case when the
structure group and the fiber can be identified as F ∼= G the bundle is known as a principal
fiber bundle. The map π : E → M ; (p, f) → p is called a projection onto the base manifold
M . A map σ : M → E such that for each point p in M gives a unique point σ(p) ∈ π−1(p) is
called a section. All the maps involved in the definitions must of course be suitably smooth.
If F is a vector space, the bundle is called a vector bundle. Finally, a frame bundle F (M) for
a base manifold M sets of all the possible bases of Tp(M) such that, the structure group is
the group of non-singular linear transformations GL(n,R).
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[2] M. Alcubierre, G. Allen, B. Brügmann, E. Seidel, and W. M. Suen. Towards an under-
standing of the stability properties of the 3+1 evolution equations in general relativity.
Physical Review D, 62(12):124011, 2000. (Cited on page 14.)

[3] D. Alic, W. Kastaun, and L. Rezzolla. Constraint damping of the conformal and
covariant formulation of the Z4 system in simulations of binary neutron stars. Physical
Review D, 88(6):064049, 2013. (Cited on page 17.)

[4] E. Ames, F. Beyer, J. Isenberg, and P. G. LeFloch. Quasilinear hyperbolic fuchsian
systems and AVTD behaviour in T2-symmetric vacuum spacetimes. Annales Henri
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