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Abstract

This thesis describes the equilibrium states (the KMS states) of dynamical

systems arising from local homeomorphisms. It has two main components.

First, we consider a local homeomorphism on a compact space and the

associated Hilbert bimodule. This Hilbert bimodule has both a Toeplitz

algebra and a Cuntz-Pimsner algebra, which is a quotient of the Toeplitz

algebra. Both algebras carry natural gauge actions of the circle, and hence

one can obtain natural dynamics by lifting these actions to actions of the

real numbers. We study KMS states of these dynamics at, above, and below

a certain critical value. For inverse temperature larger than the critical

value, we find a large simplex of KMS states on the Toeplitz algebra. For

the Cuntz-Pimsner algebra the KMS states all have inverse temperatures

below the critical value. Our results for the Cuntz-Pimsner algebra overlap

with recent work of Thomsen, but our proofs are quite different. At the

critical value, we build a KMS state of the Toeplitz algebra which factors

through the Cuntz-Pimsner algebra.

To understand KMS states below the critical value, we study the backward

shift on the infinite path space of an ordinary directed graph. Merging our

results for the Cuntz-Pimsner algebra of shifts with the recent work about

KMS states of the graph algebras, we show that Thomsen’s bounds on of

the possible inverse temperature of KMS states are sharp.

In the second component, we consider a family of ∗-commuting local home-

omorphisms on a compact space, and build a compactly aligned product

system of Hilbert bimodules (in the sense of Fowler). This product sys-

tem also has two interesting algebras, the Nica-Toeplitz algebra and the

Cuntz-Pimsner algebra. For these algebras the gauge action is an action of
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a higher-dimensional torus, and there are many possible dynamics obtained

by composing with different embeddings of the real line in the torus.

We use the techniques from the first component of the thesis to study the

KMS states for these dynamics. For large inverse temperature, we describe

the simplex of the KMS states on the Nica-Toeplitz algebra. To study KMS

states for smaller inverse temperature, we consider a preferred dynamics for

which there is a single critical inverse temperature, which we can normalise

to be 1. We then find a KMS1 state for the Nica-Toeplitz algebra which

factors through the Cuntz-Pimsner algebra. We then illustrate our results

by considering different backward shifts on the infinite path space of some

higher-rank graphs.
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Introduction

Given an action α of the real line R by automorphisms of a C∗-algebra A, the C∗-

dynamical system (A,R, α) provides an algebraic model for studying a physical system

in quantum statistical physics [5]. In this framework, the observables are the self-

adjoint elements of the C∗-algebra A, the states are positive linear functionals on A

with norm 1, and the time evolution is given by the action α. Work of Kubo, Martin

and Schwinger shows that equilibrium states of the physical system are exactly those

states on A which satisfy a certain commutation relation (the so called KMS condition).

This relation involves a real number β, which is interpreted as the inverse temperature

of the physical system.

The KMS condition makes sense for abstract dynamical systems and operator al-

gebraists study KMS states of dynamical systems regardless of applications in physics.

Many authors have studied KMS states in different contexts. For example: in systems

constructed from number theory [4, 32, 33, 34], in systems associated to graph algebras

[12, 15, 28, 29], in systems arising from groupoids [31, 39], and in topological systems

built from local homeomorphisms [56, 57].

In most of the contexts mentioned above, there are two main C∗-algebras: a Cuntz-

Pimsner type algebra and its Toeplitz extension. There has been profound progress in

characterising KMS states of Cuntz-Pimsner algebras in the literature [12, 13, 43, 56],

and interesting work of Exel, Laca and Neshveyev [15, 34] shows that Toeplitz algebras

are expected to have a much greater supply of KMS states.

This thesis focuses on characterising KMS states on Toeplitz algebras associated to

local homeomorphisms. It is organised in two main parts. The first part is allocated to

dynamical systems arising from a single local homeomorphism and their KMS states.

The result of this part is published in [1] and here we provided it as an Appendix

chapter (see Appendix A). In the second part, we study KMS states of dynamical

systems associated to a family of local homeomorphisms in the context of product

systems of Hilbert bimodules. This part occupies the main body of this thesis.
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The notion of a product system was initially introduced by Arveson as a continuous

product system of Hilbert spaces [2]. Then several authors generalised this to discrete

product systems in [11, 20, 22]. We follow Fowler’s extension [20] which is about discrete

product systems of Hilbert bimodules over semigroups [20]. Roughly speaking, for a

semigroup P with identity e, a product system of Hilbert bimodules over P is a semi-

group X =
⊔
p∈P Xp such that each Xp is a right Hilbert bimodule and x ⊗ y 7→ xy

implements an isomorphism from Xp ⊗Xq onto Xpq for all p, q ∈ P \ {e}.
For such a product system X, Fowler defined Toeplitz representations of X as

multiplicative maps whose restriction on each fibre Xp is a Toeplitz representation in

the sense of [21]. Then he associated the Toeplitz algebra T (X) as the universal algebra

for Toeplitz representations of X. He defined the Cuntz-Pimsner algebra O(X) as a

quotient of T (X). When (G,P ) is a quasi-lattice ordered group in the sense of Nica [40],

he imposed a covariance condition (Nica-covariance) on Toeplitz representations, and

defined the Nica-Toeplitz algebra NT (X)1 as the universal algebra for Nica-covariant

Toeplitz representations. He noticed that NT (X) is only tractable for certain class of

product systems called compactly aligned product systems. For such a product system,

he showed that

NT (X) = span{ψp(x)ψq(y)∗ : p, q ∈ P, x ∈ Xp, y ∈ Xq, }(1)

where ψ is the universal Nica-covariant representation.

Viewing Nk as an additive semigroup, there are many interesting examples for the

product systems over Nk in the literature. For these examples, by universal properties

of NT (X), and O(X), respectively we can get strongly continuous gauge actions of

k-torus Tk on these algebras. Then we can lift these actions to the actions of the real

line via the embedding t 7→ eitr = (eitr1 , eitr2 , . . . , eitrk) for some r ∈ (0,∞)k.

Well known examples of product systems over Nk are the ones constructed from

the higher-rank graph of Kumjian-Pask [30]. It is observed in [22, page 1492] that we

can view a k-graph Λ as a product system over Nk. Soon after Sims and Raeburn

showed that by putting particular combinatorial condition on the underlying higher-

ranks graph we can get a compactly aligned product system over the quasi-lattice

ordered group (Zk,Nk) [45]. They imposed a Nica-covariance condition by adding

an extra relation to the usual Cuntz-Krieger relations. They called the associated

Nica-Toeplitz algebras the Cuntz-Krieger-Toeplitz algebra T C∗(Λ). The Cuntz-Krieger

C∗(Λ) can be viewed as a quotient of T C∗(Λ). Thus the C∗-algebras of higher-rank

1In Fowler’s paper the Nica-Toeplitz algebra is denoted by Tcov(X).
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graphs and their KMS states can be a rich supply of test examples for analysing KMS

states of product systems. In particular there has been recently great progress in

analysing the KMS structure of these dynamics (for example [26, 28]).

There are also intriguing examples for Nica-Toeplitz algebras in number theory,

for example, the Toeplitz algebra T (N o N×) studied by Laca and Raeburn in [35].

It is observed in [7] that T (N o N×) and the associated additive and multiplicative

quotients are all Nica-Toeplitz algebras. Then the KMS structure of these algebras is

analysed by applying the technique developed in [35]. Following the same approach,

Hong, Larsen and Szymański characterized the KMS structure of a product system

over a general semigroup [24]. But the authors of [24] used the strong condition “finite

type product system” in their hypothesis. This condition requires the existence of a

finite orthonormal basis for all fibres in the product system.

In [53, 54], Solel used different notation to study the product systems over Nk.
He used the term “c.c. (completely contractive covariant) representation” for Fowler’s

Toeplitz representation (see [54, Defnition 2.3, Definition 3.1]) and defined the “doubly

commuting relation” ([54, Defnition 3.8])). He showed in [54, Lemma 3.11] that this

relation is equivalent to Fowler’s Nica-covariance relation and that the universal Nica-

covariant representation ψ satisfies his doubly commuting relation.

Here we are interested in the dynamical systems arising from local homeomor-

phisms. We first show that a family of surjective and commuting local homeomorphisms

h1, . . . , hk on a compact Hausdorff space Z induces a compactly aligned product system

X over Nk (see Chapter 2). Letting hm := hm1
1 ◦· · ·◦h

mk
k , each fibre Xm in this product

system is the graph correspondence associated to the topological graph (Z,Z, id, hm).

We know very well from our work in [1] what each fibre looks like. So we think about

generalizing the results of [1] from one Hilbert bimodule to a product system of Hilbert

bimodules.

Our approach is inspired by [28] which is again a refinement of original technique

introduced in [34]. So we first look for a characterization of KMS states of NT (X)

which makes it easier to recognise the KMS states. To do this, having looked at similar

results in the literature (for example [28, Proposition 3.1] and [24, Theorem 4.6]), we

noticed that it is crucial to express elements of the form ψn(y)∗ψm(x) in terms of usual

spanning elements ψp(s)ψq(t)
∗ in the algebra NT (X). For a general product system

over a semigroup, Fowler provided an approximation [20, Proposition 5.10], but this

is not enough because we need an exact formula; in the dynamics associated to a

higher-rank graph [28] this formula already exists as one of the Toeplitz-Cuntz-Krieger
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relations; in [24], since each fibre in the product system has an orthonormal basis, it is

easier to find such a formula (see [24, Lemma 4.7]).

To solve this problem, we impose an extra hypothesis of ∗-commutativity on the

local homeomorphisms. Two maps f, g : Z → Z, ∗-commute if for every z, z′ ∈ Z such

that f(z) = g(z′), there exists unique z′′ ∈ Z such that z = g(z′′) and z′ = f(z′′) (see

[3]). Recently, there have been great interest in studying C∗-algebras of ∗-commuting

maps and associated dynamics [16, 37, 55].

The ∗-commutativity hypothesis allows us to find Parseval frames for each fibre.

Given m ∈ Nk, since the fibre Xm is the graph correspondence associated to the local

homeomorphisms hm, there is a well-known Parseval frame {τi}di=0 for Xm which comes

from a partition of unity ([17, Proposition 8.2]). We observed that for n ∈ Nk with

m ∧ n = 0, the composition of elements of this Parseval frame with hn form another

Parseval frame for Xm. Then we prove

ψn(y)∗ψm(x) =
∑

0≤i,j≤d

ψm
(
〈y, τj ◦ hm〉 · τi

)
ψn
(
〈x, τi ◦ hn〉 · τj

)∗
,(2)

getting the formula we need. This formula is for fibres Xm and Xn with m ∧ n = 0.

However by using proper isomorphisms between fibres we can apply (2) and rewrite

ψn(y)∗ψm(x) in terms of elements of the for ψp(s)ψq(t)
∗ for general m,n ∈ Nk. Then

we use the formula (2) and provide a characterization of KMS states in Proposition

3.1.6.

In fact the equation (2) is a translation of Solel’s doubly commuting relation from

his notation to Fowler’s notation. The difficulty of this translation is that the doubly

commuting relation contains a flip map between fibres. Notice that the existence of

such a flip map is a consequence of definition of the product system. Solel used the

doubly commuting relation in his approach without any explicit formula for the flip

map. We find a nice formula for this flip map in Lemma 3.1.1(c) and therefore we can

translate the doubly commuting relation to get (2) (see Appendix A).

Let Λ be a k-graph and Ai(1 ≤ i ≤ k) be the associated vertex matrices. The

vectors that are subinvariant for all Ai in the sense of Perron-Frobenius theory [50], play

a very important role in analysing KMS states of T C∗(Λ). For dynamics determined

by r ∈ (0,∞)k, we follow the same idea and define a subinvariance relation using a

family of Ruelle operators. When β is large enough, that is β > βc for

βc := max
i
{r−1

j βci} and βci := lim sup
j→∞

(
j−1 ln

(
max
z∈Z
|h−ji (z)|

))
,

we describe all solutions of our subinvariance relation in Proposition 3.2.7. If in addi-

tion r has rationally independent coordinates, we show that there is a bijection between
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the simplex of KMSβ states on NT (X) and the probability measures satisfying our

subinvariance relation (Theorem 3.3.1). A rational independency condition on r is cru-

cial when we prove the surjectivity of our isomorphism in Theorem 3.3.1. So whenever

we need to get a probability measure (satisfying the subinvariance relation) from a

KMS sates we have to impose this hypothesis.

To study KMS states for smaller β, in order to have satisfactory results, we pay

careful attention in choosing r ∈ (0,∞)k. Following recent conventions in graph alge-

bras [26, 28, 59, 60], we consider a preferred dynamics where r := (βc1 , . . . , βck). Notice

that in this case βc = 1. We call βc = 1 the critical inverse temperature. At the critical

inverse temperature, we show that by taking limits of KMSβj states as the βj decrease

to 1, there is a KMS1 state on NT (X), and at least one such a state factors through

O(X) (Theorem 3.4.1).

Finally, we provide an example of ∗-commuting maps. Let Λ be a 1-coaligned k-

graph in the sense that for each pair of paths (µ, ν) with the same source there is a

unique pair of paths (ξ, η) such that ξµ = ην. It is observed in [37, Theorem 2.3] that

the shift maps on the infinite path space of Λ ∗-commute. Now writing X(Λ∞) for the

associated product system, we apply our result in the previous chapters to study the

KMS structure of the associated Nica-Toeplitz algebra NT (X(Λ∞)) and the Cuntz-

Pimsner algebra O(X(Λ∞)). We first prove that, as we expect from our results for

a 1-graph, the Cuntz-Pimsner algebra O(X(Λ∞)) is isomorphic to the Cuntz-Krieger

algebra C∗(Λ). We also prove that the Nica-Toeplitz algebra NT (X(Λ∞)) contains an

injective copy of T C∗(Λ) (Proposition 4.2.7). Furthermore, we prove that every KMS

state of T C∗(Λ) is the restriction of a KMS state of NT (X(Λ∞)) (Proposition 4.3.3).

Thesis outline

This thesis is broken up to 4 chapters and 2 appendices:

In Chapter 1, we provide an overview of product systems of Hilbert bimodules and

the associated dynamical systems. We present the basic definitions and notation and

discuss the properties of these dynamical systems in details. In Chapter 2, we show that

a family of commuting and surjective local homeomorphisms gives a compactly aligned

product system of Hilbert bimodules. Chapter 3 allocated to characterising KMS

states and ground states of dynamical systems arising from a family of ∗-commuting

and surjective local homeomorphisms. In Chapter 4, we discuss the shifts on the infinite

path space of 1-coaligned higer-rank graphs. We show the relationships between the
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KMS states of graph algebras and the KMS states of the C∗-algebras of the shifts.

In appendix A, we reconcile our results with those of Solel’s. We show that for the

dynamical system considered in Chapter 3, the universal Nica-covariant representation

satisfies Solel’s doubly commuting relation. Finally, we attach our published paper [1]

as Appendix B. This appendix presents our results about the KMS states of dynamical

systems associated to a single local homeomorphism.
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Chapter 1

Preliminaries

1.1 Hilbert bimodules

The following definitions are taken from chapter 2 of [46].

Given a complex vector space X and a C∗-algebra A, by a right action of A on X

we mean a pairing (x, a) 7→ x · a : X × A → X satisfying the consistency conditions:

(x+ x′) · a = x · a+ x′ · a; x · (aa′) = (x · a) · a′ and λ(x · a) = (λx) · a = x · (λa) for all

λ ∈ C, x, x′ ∈ X and a, a′ ∈ A.

Definition 1.1.1. Let A be a C∗-algebra and X be a complex vector space with a right

action of A on X. A right A-valued inner product on X is a function 〈·, ·〉A : X×X → A

which is linear in the second variable and satisfies:

(a) 〈x, y · a〉A = 〈x, y〉Aa,

(b) 〈x, y〉∗A = 〈y, x〉A,

(c) 〈x, y〉A is a positive element of A, and

(d) 〈x, x〉A = 0 implies that x = 0.

We may write 〈x, y〉 for 〈x, y〉A if it is clear from the context which C∗-algebra A

is meant.

Remark 1.1.2. Since 〈·, ·〉A is linear in second variable, we deduce that x = 0 implies

〈x, x〉A = 0. It also follows from condition (b) that 〈·, ·〉A is conjugate linear in the first

variable.
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It follows from [46, Corollary 2.7] that the formula ‖x‖A := ‖〈x, x〉A‖
1
2 defines a

norm on X. If X is complete in this norm we call it a right Hilbert A-module.

Suppose X is a right Hilbert A-module. An operator T : X → X is adjointable, if

there is an operator T ∗ : X → X such that
〈
T (x), y

〉
A

=
〈
x, T ∗(y)

〉
A

for all x, y ∈ X.

We denote by L(X) the set of all adjointable operators on X.

It follows from [46, Lemma 2.18] that every adjointable operator T on a right Hilbert

A-module X is a linear bounded operator. [46, Proposition 2.21] says that the adjoint

T ∗ is unique and the set L(X) is a C∗-algebra with respect to the operator norm, and

with the involution given by T 7→ T ∗.

Given x, y ∈ X, we define Θx,y : X → X by

Θx,y(z) = x · 〈y, z〉A.

Then Θx,y is adjointable and Θ∗x,y = Θy,x (see [46, page 18]). The set

K(X) := span{Θx,y : x, y ∈ X}.

is a C∗-algebra and we call it the algebra of compact operators on X.

Definition 1.1.3. Let A be a C∗-algebra. A right Hilbert A–A bimodule X (or a

correspondence over A) is a right Hilbert A-module X together with a homomorphism

ϕ : A → L(X). We view ϕ as implementing a left action of A on X and we usually

write a · x for ϕ(a)(x). We say X is essential if X = span{ϕ(a)x : a ∈ A, x ∈ X}.

Remark 1.1.4. Since ϕ(a) ∈ L(X) for all a ∈ A, it follows that 〈a·x, y〉A = 〈x, a∗ ·y〉A.

Now let x, y ∈ X and a, a′ ∈ A. The statements (b) and (c) of Definition 1.1.1 imply

that

〈a · (x · a′), y〉A = 〈x · a′, a∗ · y〉A = 〈a∗ · y, x · a′〉∗A =
(
〈a∗ · y, x〉Aa′

)∗
=
(
〈y, a · x〉Aa′

)∗
= 〈y, (a · x) · a′〉∗A = 〈(a · x) · a′, y〉A.

Thus a · (x · a′) = (a · x) · a′ and the actions of A on X are compatible.

Example 1.1.5. Let A be a C∗-algebra. The multiplication in A gives a right action

of A on itself. The formula 〈a, a′〉A = a∗a′ defines a right A-valued inner product on A.

To see this, first note that it is linear in the second variable. 2nd, conditions (a)−(c) of

Definition 1.1.1 are immediate. Third, to check (d), let 〈a, a′〉A = a∗a = 0. It follows

that ‖aa∗‖ = ‖a‖2 = 0. This implies a = 0. Thus 〈a, a′〉A = a∗a′ is a right A-valued

inner product on A. Since ‖a‖A = ‖a‖, A is complete in the norm ‖ · ‖A and therefore
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is a Hilbert A-module. Next define ϕ : A→ L(A) by ϕ(a)(a′) = aa′. To see that ϕ is

adjointable, observe that

〈ϕ(a)(a), a′′〉A = (aa′)∗a′′ = a′∗(a∗a′′) = 〈a′, a∗a′′〉A = 〈a′, ϕ(a∗)(a′′)〉A.

Thus ϕ(a) is adjointable and ϕ(a)∗ = ϕ(a∗). Clearly ϕ is a homomorphism. Thus A

is a right Hilbert A–A bimodule which we call the standard bimodule and denote by

AAA.

Example 1.1.6. Let A be a unital C∗-algebra with identity IA and suppose X is a

right Hilbert A–A bimodule. If ϕ(IA)x = x for all x ∈ X, then X is essential.

Definition 1.1.7. Let A be a C∗-algebra and X be a right Hilbert A–A bimodule. A

representation (ψ, π) of X in a C∗-algebra B consists of a linear map ψ : X → B and

a homomorphism π : A→ B such that

ψ(a · x · b) = π(a)ψ(x)π(b) and π(〈x, y〉A) = ψ(x)∗ψ(y).

for every x, y ∈ X and a, b ∈ A.

Remark 1.1.8. A representation (ψ, π) induces a homomorphism (ψ, π)(1) : K(X)→
T (X) such that (ψ, π)(1)(Θx,y) = ψ(x)ψ(y)∗ (see page 202 of [42]).

Definition 1.1.9. Suppose X is a right Hilbert A–A bimodule. Following [17, 23], we

refer to a sequence {xi}di=0 in X such that

d∑
i=0

xi · 〈xi, x〉A = x for all x ∈ X.(1.1)

as a finite Parseval frame for X. The formula (1.1) is known as the reconstruction

formula.

1.2 Internal tensor products of Hilbert bimodules

In this section, we show how we can define the internal tensor product X ⊗A Y for

right Hilbert A–A bimodules X, Y . We also show that X⊗AY has a right Hilbert A–A

bimodule structure.

We write X � Y for the algebraic tensor product of X and Y . We use X �A Y for

the quotient of X � Y by the subspace

N := span{(x · a)� y − x� (a · y) : x ∈ X, y ∈ Y, a ∈ A.}(1.2)

To avoid possible confusion, we temporary write x� y for the elements of X � Y and

x�A y for the elements X�AY . Then by definition each x�A y has the form x�y+N .
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Lemma 1.2.1. Let A be a C∗-algebra and let X, Y be two right Hilbert A–A bimodules.

Then there is a well defined right action (x�A y, a) 7→ (x�A y) · a : (X �A Y )×A→
X �A Y such that

(x�A y) · a = x�A y · a for all x�A y ∈ X �A Y , a ∈ A.

Proof. Fix a ∈ A. The map (x, y) 7→ x�Ay·a is a bilinear map from X×Y into X�AY .

Then the universal property of X � Y gives us a linear map La : X � Y → X �A Y
satisfying La(x � y) = x � y · a. Since La vanishes on N , it induces a linear map

L̃a : X�AY → X�AY such that L̃a(x�Ay) = x�Ay ·a. Now
(
x�Ay, a) 7→ L̃a(x�Ay)

is a well defined map from (X�AY )×A into X�AY . Write (x�A y) ·a := L̃a(x�A y).

To see that this map is a right action, let x �A y, x′ �A y′ ∈ X �A Y and a, a′ ∈ A.
Since L̃a is linear, it follows that

(x� y + x′ � y′) · a = La(x� y + x′ � y′) = L̃a(x� y) + L̃a(x
′ � y′)

= (x� y) · a+ (x′ � y′) · a.

We also have

(λ(x� y)) · a = L̃a(λ(x� y)) = λL̃a(x� y) = λ((x� y) · a).

A similar calculation shows (x� y) · (λa) = (λ(x� y)) · a.

Finally, we have

(x� y) · (aa′) = L̃aa′(x� y) = x� y · (aa′) = x� (y · a) · a′

= L̃a′(L̃a(x� y)) = ((x� y) · a)) · a′,

as required.

The next lemma shows that we can equip the space X �A Y with a right A-valued

inner product.

Proposition 1.2.2 ([36, Proposition 4.5]). Let A be a C∗-algebra and let X, Y be two

right Hilbert A–A bimodules. Suppose that ϕY : A→ L(Y ) is the homomorphism which

defines the left action of A on Y . Then there is a unique right A-valued inner product

on X �A Y such that

〈
x�A y, z �A w

〉
=
〈
y, ϕY

(
〈x, z〉

)
w
〉

for x�A y, z �A w ∈ X �A Y.(1.3)
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Let X ⊗A Y be the completion of X �A Y with respect to the inner product (1.3).

It then follows from [46, Lemma 2.16] that (1.3) is a right A-valued inner product on

X ⊗A Y as well. Thus X ⊗A Y is a right Hilbert A-module.

The next lemma shows that we can define a left action of A on X ⊗A Y .

Proposition 1.2.3 ([58, Proposition I.1]). Let A be a C∗-algebra and let X, Y be two

right Hilbert A–A bimodules. Suppose that ϕY : A→ L(Y ) is the homomorphism which

defines the left action of A on Y . Then for every S ∈ L(X), there is a unique operator

S ⊗ 1Y ∈ L(X ⊗A Y ) such that

S ⊗ 1Y (x⊗ y) = Sx⊗ y for x⊗ y ∈ X ⊗A Y.(1.4)

The map S → S ⊗ 1Y is a homomorphism of L(X) into L(X ⊗A Y ). In particular the

map a 7→ ϕX(a)⊗ 1Y determines a homomorphism of A into L(X ⊗A Y ).

We can view the homomorphism a 7→ ϕX(a)⊗ 1Y as a left action of A on X ⊗A Y .

Thus X ⊗A Y is a right Hilbert A–A bimodule. We call X ⊗A Y the balanced tensor

product of right Hilbert A–A bimodules X, Y .

For convenience, in the rest of thesis we keep x� y for the elements of X � Y and

we write x⊗ y for the elements of both X �A Y and X ⊗A Y .

1.2.1 Product systems of Hilbert bimodules

We use conventions of [20] for the basics of product systems of Hilbert bimodules. For

convenience, we use the following equivalent formulation from ([52, page 6]).

Definition 1.2.4. Suppose P is a multiplicative semigroup with identity e, and let A

be a C∗-algebra. For each p ∈ P let Xp be a right Hilbert A–A bimodule and suppose

that ϕp : A → L(Xp) is the homomorphism which defines the left action of A on Xp.

A product system over P of right Hilbert A–A bimodules (or a product system over P

with fibres Xp) is the disjoint union X :=
⊔
p∈P Xp such that:

(P1) The identity fibre Xe equals the standard bimodule AAA.

(P2) X is a semigroup and for each p, q ∈ P \{e} the map (x, y) 7→ xy : Xp×Xq → Xpq,

extends to an isomorphism σp,q : Xp ⊗A Xq → Xpq.

(P3) The multiplications Xe ×Xp → Xp and Xp ×Xe → Xp satisfy

ax = ϕp(a)z, xa = x · a for a ∈ Xe and x ∈ Xp.
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If each fibre Xp is essential, then we call X a product system over P of essential right

Hilbert A–A bimodules.

Let p, q ∈ P \ {e} and S ∈ L(Xp). Then the isomorphism σp,q : Xp ⊗A Xq → Xpq

together with Proposition 1.2.3 give us a homomorphism ιpqp : L(Xp)→ L(Xpq) defined

by

ιpqp (S) = σp,q ◦ (S ⊗ 1Xq) ◦ σ−1
p,q .

Definition 1.2.5. Suppose P is a subsemigroup of a group G such that P ∩P−1 = {e}.
Then p ≤ q ⇔ p−1q ∈ P defines a partial order on G. Following [40], we say (G,P )

is a quasi-lattice ordered group if for any two elements p, q ∈ G which have a common

upper bound in P there is a least upper bound p ∨ q ∈ P . We write p ∨ q = ∞ when

p, q ∈ G have no common upper bound.

Example 1.2.6. (Zk,Nk) is a quasi-lattice ordered group. Observe that for all m,n ∈
Nk, there is a least upper bound m ∨ n with ith coordinate (m ∨ n)i := max{mi, ni}.

Definition 1.2.7. Let (G,P ) be a quasi-lattice ordered group. A product system over

P of right Hilbert A–A bimodules is compactly aligned, if for all p, q ∈ P with p∨q <∞,

S ∈ K(Xp) and T ∈ K(Xq), we have ιp∨qp (S)ιp∨qq (T ) ∈ K(Xp∨q).

Proposition 1.2.8 ([20, Proposition 5.8 ]). Let (G,P ) be a quasi-lattice ordered group

and suppose that X is a compactly aligned product system over P of right Hilbert A–A

bimodules. Suppose that the left action of A on each fibre Xp is by compact operators.

Then X is compactly aligned.

1.3 C∗-algebras associated to product systems of

Hilbert bimodules

Definition 1.3.1. Let P be a multiplicative semigroup with identity e, and let X be

a product system over P of right Hilbert A–A bimodules. Let B be a C∗-algebra, and

let ψ be a function from X to B. Write ψp for the restriction of ψ to Xp. We call ψ a

Toeplitz representation of X if:

(T1) For each p ∈ P \{e}, ψp : Xp → B is linear, and ψe : A→ B is a homomorphism,

(T2) ψp(x)∗ψp(y) = ψe(〈x, y〉) for p ∈ P , and x, y ∈ Xp,

(T3) ψpq(xy) = ψp(x)ψq(y) for p, q ∈ P , x ∈ Xp, and y ∈ Xq.
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Remark 1.3.2. Conditions (T1) and (T2) imply that (ψp, ψe) is a Toeplitz represen-

tation for the fibre Xp (which is a right Hilbert A–A bimodule). Then Remark 1.1.8

gives us a homomorphism ψ(p) : K(Xp)→ B such that ψ(p)(Θx,y) = ψp(x)ψp(y)∗.

Fowler showed in [20, Proposition 2.8] that there exists a C∗-algebra T (X) and a

Toeplitz representation ω of X in T (X) such that:

(U1) For any other Toeplitz representation T of X in a C∗-algebra B, there exists a

unique homomorphism T∗ : T (X)→ B such that T∗ ◦ ω = T , and

(U2) T (X) is generated by {ω(x) : x ∈ X}.

It then follows that the pair (T (X), ω) is unique up to canonical isomorphism. We say

the pair (T (X), ω) is universal for the Toeplitz representations. The C∗-algebra T (X),

is called the Toeplitz algebra of X and the representation ω is known as the universal

Toeplitz representation of X. We keep ω for the universal Toeplitz representation of

X.

Definition 1.3.3. Let P be a semigroup with identity e, and let X be a product

system over P of right Hilbert A–A bimodules. A Toeplitz representation ψ of X is

Cuntz-Pimsner-covariant if

ψe(a) = ψ(p)(ϕp(a)) for all p ∈ P, a ∈ ϕ−1
p (K(Xp)).(1.5)

The Cuntz-Pimsner algebra O(X) is the quotient of T (X) by the ideal{
ω(a)− ω(p)(ϕp(a)) : p ∈ P, a ∈ ϕ−1

p (K(Xp))
}
.(1.6)

Let qO : T (X) → O(X) be the quotient map. It is observed in [20, Proposition 2.9]

that qO ◦ ω is a Cuntz-Pimsner-covariant representation of X in O(X). Moreover the

pair (O(X), qO ◦ ω) is universal for the Cuntz-Pimsner-covariant representations of X.

Let (G,P ) be a quasi-lattice ordered group and suppose that X is a product system

of essential right Hilbert A–A bimodules over P . Suppose that ψ is Toeplitz represen-

tation of X on a Hilbert space H. It follows from [20, Proposition 4.1] that there is a

unique action αψ : P → Endψe(A)′ such that

αψp (T )ψp(x) = ψp(x)T for all T ∈ ψe(A)′, x ∈ Xp, and(1.7)

αψp (1p)r = 0 for r ∈ (ψp(Xp)H)⊥,(1.8)

where 1p is the identity operator on Xp.
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Lemma 1.3.4. Let (G,P ) be a quasi-lattice ordered group and X be a product system

of essential right Hilbert A–A bimodules over P . Suppose that ψ is a Toeplitz represen-

tation on a Hilbert space H. Let p ∈ P and suppose that {xi}di=0 is a Parseval frame

for the fibre Xp. Let αψp (1p) be as in (1.8). Then

αψp (1p) =
d∑
i=0

ψp(xi)ψp(xi)
∗.

Proof. By uniqueness in [20, Proposition 4.1], it suffices to prove that

( d∑
i=0

ψp(xi)ψp(xi)
∗
)
ψp(x) = ψp(x) for all x ∈ Xp, and(1.9)

( d∑
i=0

ψp(xi)ψp(xi)
∗
)
r = 0 for all r ∈ (ψp(Xp)H)⊥ = 0.(1.10)

To see (1.9), let x ∈ Xp. We compute by applying the reconstruction formula for x:

( d∑
i=0

ψp(xi)ψp(xi)
∗
)
ψ(x) =

( d∑
i=0

ψp(xi)ψp(xi)
∗
)
ψ
( d∑
j=0

xj · 〈xj, x〉
)

=
∑

0≤i,j≤d

ψp(xi)ψp(xi)
∗ψ(xj)ψ0(〈xj, x〉) using (T3)

=
∑

0≤i,j≤d

ψp(xi)ψ0(〈xi, xj〉)ψ0(〈xj, x〉) using (T2)

=
∑

0≤i,j≤d

ψp(xi · 〈xi, xj〉)ψ0(〈xj, x〉).

Rearranging this and two applications of the reconstruction formula give

( d∑
i=0

ψp(xi)ψp(xi)
∗
)
ψ(x) =

d∑
j=0

ψp

( d∑
i=0

xi · 〈xi, xj〉
)
ψ0(〈xj, x〉) =

d∑
j=0

ψp(xj)ψ0(〈xj, x〉)

=
d∑
j=0

ψp(xj · 〈xj, x〉) = ψp(x).

This is precisely (1.9).

To check (1.10), fix r ∈ (ψp(Xp)H)⊥. Notice that for all r′ ∈ H we have

(( d∑
i=0

ψp(xi)ψp(xi)
∗
)
r
∣∣∣r′) =

d∑
i=0

(
r
∣∣∣ψp(xi)ψp(xi)∗r′) = 0.

It then follows
(∑d

i=0 ψp(xi)ψp(xi)
∗
)
r = 0 and we have proven (1.10).
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Definition 1.3.5. Let (G,P ) be a quasi-lattice ordered group and suppose that X is

a product system of essential right Hilbert A–A bimodules over P . Suppose that ψ is

Toeplitz representation of X on a Hilbert space H. We say ψ is Nica-covariant if for

every p, q ∈ P , we have

αψp (1p)α
ψ
q (1q) =

αψp (1p∨q) if p ∨ q <∞

0 otherwise.

Fowler showed in [20, Proposition 5.6] that the Nica-covariance condition can be

expressed in terms of compact operators. Then for the class of compactly-aligned

product systems, he extended the Nica-covariance condition for the representations

over C∗-algebras.

Definition 1.3.6. Let (G,P ) be a quasi-lattice ordered group and suppose that X

is a compactly aligned product system over P of right Hilbert A–A bimodules. A

Toeplitz representation ψ of X is Nica-covariant if for every p, q ∈ P , S ∈ K(Xp), and

T ∈ K(Xq), we have

ψ(p)(S)ψ(q)(T ) =

ψ(p∨q)(ιp∨qp (S)ιp∨qq (T )
)

if p ∨ q <∞

0 otherwise.

It follows from [20, Theorem 6.3] that there exists a C∗-algebra NT (X) and a

Nica-covariant representation ψ of X in NT (X) such that (NT (X), ψ) is universal for

the Nica-covariant representations of X. Moreover, we have

NT (X) = span{ψp(x)ψq(y)∗ : p, q ∈ P, x ∈ Xp, y ∈ Xq}.(1.11)

The C∗-algebra NT (X), is called the Nica-Toeplitz algebra of X. Throughout we will

keep ψ for the universal Nica-covariant representation of X.

The next lemma shows that NT (X) is a quotient of T (X).

Lemma 1.3.7. Let (G,P ) be a quasi-lattice ordered group, and let X be a compactly

aligned product system over P of right Hilbert A–A bimodules. Suppose J is the ideal

in T (X) such that

J :=
⋂
{ker θ∗ : θ is Nica-covariant representation of X},(1.12)

and let qNT : T (X)→ T (X)/J be the quotient map. Then
(
T (X)/J , qNT ◦ω

)
is uni-

versal for Nica-covariant representation, and is canonically isomorphic to (NT (X), ψ).
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Proof. Since qNT is a homomorphism and ω satisfies (T1)−(T3), it follows that qNT ◦ω
satisfies (T1)−(T3) as well. To see that qNT ◦ ω is Nica-covariant, let p, q ∈ P , S ∈
K(Xp), and T ∈ K(Xq). Notice that (qNT ◦ ω)(p) = qNT ◦ ω(p). Then

(qNT ◦ ω)(p)(S)(qNT ◦ ω)(q)(T ) = qNT
(
ω(p)(S)ω(q)(T )

)
.(1.13)

If p ∨ q <∞, since ω(p)(S)ω(q)(T )− ω(p∨q)(ιp∨qp (S)ιp∨qq (T )
)
∈ J , it follows that

qNT
(
ω(p)(S)ω(q)(T )

)
= qNT

(
ω(p∨q)(ιp∨qp (S)ιp∨qq (T )

))
.

Now (1.13) implies that

(qNT ◦ ω)(p)(S)(qNT ◦ ω)(q)(T ) = (qNT ◦ ω)(p∨q)(ιp∨qp (S)ιp∨qq (T )
)
.

Similarly, for p∨ q =∞, we have qNT
(
ω(p)(S)ω(q)(T )

)
= 0. Putting this in (1.13) gives

(qNT ◦ ω)(p)(S)(qNT ◦ ω)(q)(T ) = 0. Thus qNT ◦ ω is a Nica-covariant representation.

Since {ω(x) : x ∈ X} generates T (X), we have that {q(ω(x)) : x ∈ X} generates

T (X)/J .

To see (U1), suppose that T is another Nica-covariant representation of X in a

C∗-algebra B. Notice that T is in particular a Toeplitz representation of X. Then the

universal property of pair (T (X), ω) gives a unique homomorphism T∗ : T (X) → B

such that T∗ ◦ ω = T . Notice that T∗ vanishes on J because by definition J ⊂ kerT∗.

Thus there is a homomorphism T∗ : T (X)/J → B such that T∗(qNT ◦ ω) = T .

The Cuntz-Pimsner algebra O(X) is by definition a quotient of T (X). Since we

are interested in studying the C∗-algebra NT (X), it would be very helpful to explain

O(X) as a quotient of NT (X). The next lemma shows that, under some assumptions,

we can express O(X) as a quotient of NT (X).

Lemma 1.3.8. Let (G,P ) be a quasi-lattice ordered group, and let X be a compactly

aligned product system over P of right Hilbert A–A bimodules. Suppose that every

Cuntz-Pimsner-covariant representation of X is a Nica-covariant representation. Then

O(X) is the quotient of NT (X) by the ideal generated by{
ψe(a)− ψ(p)(ϕp(a)) : p ∈ P, a ∈ ϕ−1

p (K(Xp))
}
.(1.14)

Proof. Let

I :=
⋂{

kerπ∗ : π is a Cuntz-Pimsner-covariant representation of X
}
.(1.15)
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Following the same argument of Lemma 1.3.7, we can view O(X) as the quotient

of T (X) by the ideal I. Let J and qNT be the ideal and the quotient map as in

Lemma 1.3.7. It then follows qNT (b) = b+ J for all b ∈ T (X) and

qNT ◦ ω = ψ.

Since every Cuntz-Pimsner-covariant representation of X is also a Nica-covariant rep-

resentation, it follows that J ⊆ I. An application of the third isomorphism theorem

in algebra gives us a quotient map q : NT (X) → O(X) such that ker q = I/J . We

now have

I/J =
{
i+ J : i ∈ I

}
=
{
qNT (i) : i ∈ I

}
.(1.16)

An argument in set theory shows that I is the same as the ideal (1.6). Now using

elements (1.6) in (1.16) and applying qNT ◦ ω = ψ, we have

I/J =
〈
ψe(a)− ψ(p)(ϕp(a)) : p ∈ P, a ∈ ϕ−1

p (K(Xp))
〉
.

Thus we can consider O(X) as the quotient of NT (X), by the ideal〈
ψe(a)− ψ(p)(ϕp(a)) : p ∈ P, a ∈ ϕ−1

p (K(Xp))
〉
.

Proposition 1.3.9 ([20, Proposition 5.4]). Let (G,P ) be a quasi-lattice ordered group

such that every p, q ∈ P have a common upper bound. Let X be a compactly aligned

product system over P of right Hilbert A–A bimodules. Suppose that each fibre Xp is

essential and the left action of A on Xp is by compact operators. Then every Toeplitz

representation of X which is Cuntz-Pimsner-covariant is also Nica-covariant.

Remark 1.3.10. Let (G,P ) be a quasi-lattice ordered group and X be a compactly

aligned product system over P of right Hilbert A–A bimodules. In [52, Proposition

3.12], Sims and Yeend defined their Cuntz-Pimsner algebra NO(X) as a quotient of

NT (X). In general NO(X) and O(X) are different. But we can deduce from [52,

Remark 3.14, Proposition 5.1] that if

(a) each pair (p, q) in P , has an upper bound (and automatically a least upper

bound),

(b) for each p ∈ P the homomorphism ϕp : A→ L(Xp) is injective, and

(c) the Cuntz-Pimsner-covariance (1.5) implies the Nica-covariance,

then the two C∗-algebras NO(X) and O(X) coincide. In our set-up these conditions

are satisfied (see Remark 2.1.3). But we found it easier to work with O(X) and the

quotient map mentioned in Lemma 1.3.8.
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1.4 The Fock representation

We take the definition of Fock representation from [20, page 340].

Let P be a semigroup with identity e and suppose X is a product system over P of

right Hilbert A–A bimodules. Define r : X → P by r(x) := p for x ∈ Xp. Let
⊕

p∈P Xp

be the subset of
∏

p∈P Xp consisting of all elements (xp) such that
∑

p∈P 〈xp, xp〉A
converges in norm. Write ⊕xp for elements of

⊕
p∈P Xp. It follows from [20, page

340] that
⊕

p∈P Xp is a right Hilbert A–A bimodule with the right action given by

(⊕xp) · a := (⊕xp · a), the inner product by 〈⊕xp,⊕yp〉 :=
∑

p∈P 〈xp, yp〉, and the left

action by the map ⊕ϕp : A→ L(F (X)) defined by

⊕ϕp(⊕xp) = ⊕ϕp(xp) for ⊕ xp ∈ F (X).

We write F (X) :=
⊕

p∈P Xp and call it the Fock module.

Fowler shows in [20, page 340] that for x ∈ X there is an adjointable operator T (x)

such that

T (x)(⊕xp) = ⊕(xxp) for ⊕ xp ∈ F (X).

The adjoint T (x)∗ is zero on any summand Xp for which p /∈ r(x)P . When p ∈ r(x)P ,

there is an isomorphism σr(x),p−r(x) : Xr(x) ⊗A Xp−r(x) → Xp, and the adjoint T (x)∗ is

determined by the formula

T (x)∗
(
σr(x),p−r(x)(y ⊗ z)

)
= 〈x, y〉 · z.(1.17)

He also shows that T is a Toeplitz representation of X and calls it the Fock represen-

tation.

Remark 1.4.1. Let X be a compactly aligned product system over Nk of right Hilbert

A–A bimodules and suppose the left action of A on each fibre is by compact operators.

Then the homomorphism T∗ : NT (X)→ L(F (X)) induced from the Fock representa-

tion is faithful (see [24, Remark 4.8]).

1.5 Topological graphs

A topological graph E = (E0, E1, r, s) consists of two locally compact Hausdorff spaces,

a continuous map r : E1 → E0 and a local homeomorphism s : E1 → E0. The map

r is called the range map and s is called the source map. Given such a graph, let
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A := C0(E0). It is observed in [44, Chapter 9] that there is a right action of A on

Cc(E
1) and there is a well-defined right A-valued inner product on Cc(E

1) such that

(x · a)(z) = x(z)a(s(z)), and 〈x, y〉A(z) =
∑
s(w)=z

x(w)y(w).

It follows that the completion X(E) is a right Hilbert A-module. The formula

(a · x)(z) := a(r(z))x(z),

defines an action of A by adjointable operators on X(E) (see [44, Chapter 9]). Then

X(E) becomes a right Hilbert A–A bimodule. We call X(E) the graph correspondence

associated to the topological graph E.

In topological graphs of interest to us, the spaces E0 and E1 are always compact.

Then Cc(E
1) = C(E1). Since s is a local homeomorphism on the compact space E1,

D := maxz∈E0 |s−1(z)| <∞. Now we have

‖x‖2
A = sup

z∈E0

∣∣∣ ∑
s(w)=z

x(w)x(w)
∣∣∣ ≤ ‖x‖2

supD.

On the other hand, since E0 is compact, ‖x‖sup = |x(z0)| for some z0 ∈ E0. Then

‖x‖sup = |x(z0)|2 ≤
∑

s(w)=s(z0)

x(w)x(w) ≤ sup
z∈E0

∣∣∣ ∑
s(w)=z

x(w)x(w)
∣∣∣ = ‖x‖2

A.

Thus the norm ‖ · ‖A on X(E) is equivalent (as a vector-space norm) to the supre-

mum norm on C(E1). Thus there is no completion required here and it makes sense

to write X(E) = C(E1).

Example 1.5.1. Let Z be a locally compact Hausdorff space and id : Z → Z be

the identity map on Z. Let E be the topological graph (Z,Z, id, id). Then X(E) =

C(Z) = A. The actions of A on X(E) are by pointwise multiplication which are the

same as the actions in AAA. Notice that

〈x, y〉(z) =
∑

id(w)=z

x(w))y(w) = x(z)y(z).

This is precisely the inner product in the standard bimodule AAA. Thus X(E) =A AA.

1.6 Measures

All the measures we consider here are positive in the sense that they take values in

[0,∞). We write M(Z)+ for the set of finite regular Borel measures on Z. For us, a

probability measure is a Borel measure with total mass 1.
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Chapter 2

A product system associated to a

family of local homeomorphisms

In this chapter we show that a family of surjective and commuting local homeomor-

phisms h1, . . . , hk on a compact Hausdorff space Z induces a compactly aligned product

system of Hilbert bimodules over Nk. We also prove that the C∗-algebras of product

systems of Hilbert bimodules over Nk carry gauge actions of Tk.

2.0.1 Notations

We consider Nk as a monoid under addition with identity 0. We write Nk+ for the

nonzero elements of Nk. We use e1, . . . , ek for the standard generators and write ni for

i-th coordinate of n. We denote ≤ for the partial order in Nk defined by m ≤ n if and

only if mi ≤ ni for all 1 ≤ i ≤ k. We write m ∨ n for the coordinate-wise maximum of

m and n in the sense that (m∨ n)i := max{mi, ni}. Similarly we denote by m∧ n the

coordinate-wise minimum of m and n.

Let h1, . . . , hk be surjective and commuting local homeomorphisms on a compact

Hausdorff space Z. Then for m ∈ Nk we write hm := hm1
1 ◦ · · · ◦ hmkk and h−m :=(

hm1
1 ◦ · · · ◦ h

mk
k

)−1
.

2.1 Building a product system from local homeo-

morphisms

In [1, Lemma 5.2] we proved that for a local homeomorphism f and the associated

graph correspondence X(E), there is an isomorphism from X(E)⊗2 onto the graph
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correspondence associated to f ◦ f . The next lemma generalizes this to graph corre-

spondences of two different local homeomorphisms. There is also a similar result in the

dynamics arising from graph algebras (see [6, Proposition 2.2]).

Lemma 2.1.1. Let f, g be surjective local homeomorphisms on a compact Hausdorff

space Z. Let A := C(Z) and suppose X(E1), X(E2) and X(F ) are the graph cor-

respondences related to topological graphs E1 = (Z,Z, id, f), E2 = (Z,Z, id, g), and

F = (Z,Z, id, g ◦ f). Then there is an isomorphism σf,g from X(E1) ⊗A X(E2) onto

X(F ) such that

σf,g(x⊗ y)(z) = x(z)y(f(z)) for all z ∈ Z.(2.1)

Proof. Define the map σ : C(Z)× C(Z)→ C(Z) by

σ(x, y)(z) = x(z)y(f(z)) for all x, y ∈ C(Z).(2.2)

We first show that σ is bilinear and onto. Take c, c′ ∈ C and x, x′, y, y′ ∈ C(Z). Then

σ
(
cx+ c′x′, y

)
(z) = (cx+ c′x′)(z)y(f(z))

= cx(z)y(f(z)) + c′x′(z)y(f(z))

= cσ(x, y)(z) + c′σ(x, y)(z).

Similarly we have σ
(
x, cy + c′y′

)
= cσ(x, y) + c′σ(x, y′). So σ is bilinear. Taking y = 1

in (2.2) implies that σ is surjective. Now the universal property of the algebraic tensor

product � gives a unique surjective linear map σ̃ : C(Z) � C(Z) → C(Z) satisfying

σ̃(x�y)(z) = x(z)y(f(z)) for all x�y ∈ C(Z)�C(Z). Since σ̃ vanishes on the element

of the form (1.2), we can extend it to a surjective linear map σf,g : C(Z) �A C(Z) →
C(Z) such that σf,g(x⊗ y)(z) = x(z)y(f(z)) for all x⊗ y ∈ C(Z)�A C(Z).

Next we show that σf,g preserves the actions and the inner products. Let x ⊗ y ∈
C(Z)�A C(Z), a ∈ C(Z) and z ∈ Z. To check that σf,g preserves the right action, we

have

σf,g
(
x⊗ y · a

)
(z) = x(z)(y · a)(f(z))

= x(z)y(f(z))a(g ◦ f(z))

= σf,g(x⊗ y)(z)a(g ◦ f(z))

=
(
σf,g(x⊗ y) · a

)
(z).

Similarly for the left action, we have

σf,g
(
a · (x⊗ y)

)
(z) = (a · x)(z)y(f(z))
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= a(z)x(z)y(f(z))

= a(z)σf,g(x⊗ y)(z)

=
(
a · σf,g(x⊗ y)

)
(z).

To see that σf,g preserves the inner products, take x⊗y, x′⊗y′ ∈ C(Z)�AC(Z). Then

remembering that the range functions are identity and the source functions are f, g,

we have〈
σf,g(x⊗ y), σf,g(x

′ ⊗ y′)
〉

(z) =
∑

g◦f(w)=z

σf,g(x⊗ y)(w)σf,g(x
′ ⊗ y′)(w)

=
∑

g◦f(w)=z

x(w)y(f(w))x′(w)y′(f(w))

=
∑
g(v)=z

[ ∑
f(w)=v

x(w)x′(w)
]
y(f(w))y′(f(w))

=
∑
g(v)=z

〈x, x′〉(v)y(v)y′(v)

=
∑
g(v)=z

y(v)
(
〈x, x′〉 · y′

)
(v)

=
〈
y, 〈x, x′〉 · y′

〉
(z)

=
〈
x⊗ y, x′ ⊗ y′

〉
(z).(2.3)

Next a quick calculation shows that σf,g is an isometry. Take a typical element v =∑d
i=0 xi ⊗ yi ∈ C(Z)�A C(Z). We have∥∥∥σf,g(v)

∥∥∥2

=
〈
σf,g(v), σf,g(v)

〉
=
〈 d∑

i=0

σf,g(xi ⊗ yi),
d∑
j=0

σf,g(xj ⊗ yj)
〉

=
∑

0≤i,j≤d

〈
σf,g(xi ⊗ yi), σf,g(xj ⊗ yj)

〉
=

∑
0≤i,j≤d

〈
xi ⊗ yi, xj ⊗ yj

〉
by (2.3)

=
〈 d∑

i=0

xi ⊗ yi ,
d∑
j=0

xj ⊗ yj
〉

= ‖v‖2.

Thus σf,g is an isometry on C(Z)�AC(Z), and then it extends to an isomorphism σf,g

of X(E1)⊗A X(E2) onto X(F ) which satisfies (2.1).
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Corollary 2.1.2. Let h1, . . . , hk be surjective and commuting local homeomorphisms

on a compact Hausdorff space Z. For each m ∈ Nk, let Xm be the graph correspon-

dence associated to the topological graph (Z,Z, id, hm). Suppose X :=
⊔
m∈Nk Xm and

A := C(Z). Let σm,n : Xm ⊗A Xn → Xm+n be the isomorphism obtained by applying

Lemma 2.1.1 with the local homeomorphisms hm, hn. Then X is a compactly aligned

product system over Nk of essential right Hilbert A–A bimodules with the multiplication

given by

xy := σm,n(x⊗ y) for x ∈ Xm, y ∈ Yn,(2.4)

that is (xy)(z) = x(z)y(hm(z)) for all z ∈ Z. Furthermore, the left action of A on each

fibre Xm is by compact operators.

Proof. To see that X is a semigroup, let m,n, p ∈ Nk and take x ∈ Xm, x
′ ∈ Xn and

x′′ ∈ Xp. Then by applying the definition of multiplication, we have(
(xx′)x′′

)
(z) =

(
σm+n,p

(
σm,n(x⊗ x′)⊗ x′′

))
(z)

=
(
σm,n(x⊗ x′)

)
(z)x′′

(
hm+n(z)

)
= x(z)x′(hm(z))x′′

(
hm+n(z)

)
.

A similar computation shows(
x(x′x′′)

)
(z) =

(
σm,n+p

(
x⊗ σn,p(x′ ⊗ x′′)

))
(z)

= x(z)σn,p(x
′ ⊗ x′′)(hm(z))

= x(z)x′(hm(z))x′′
(
hm+n(z)

)
.

Thus (xx′)x′′ = x(x′x′′) and X is a semigroup. Next we check conditions (P1)−(P3)

of the Definition 1.2.4. (P1) follows from Example 1.5.1 which says that Xe =A AA.

(P2) is immediate by definition of X. To check (P3), let a ∈ A and x ∈ Xm. Then

ax(z) = σ0,m(a⊗ x)(z) = a(z)x(z) = (a · x)(z),

similarly

xa(z) = σm,0(x⊗ a)(z) = x(z)a(hm(z)) = (x · a)(z).

To see that the fibre Xm is essential, notice that A = C(Z) is unital with the

identity IC(Z) : Z → C defined by IC(Z)(z) = 1 for all z ∈ Z. Since the left action is by

pointwise multiplication, ϕm(IC(Z))x = x for all x ∈ Xm. Thus Xm is essential.
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To prove that the left action of A on the fibre Xm is by compact operators, let

{Uj}dj=0 be an open cover of Z such that hm|Uj is injective. Choose a partition of unity

{ρj} subordinate to {Uj} and define ξj :=
√
ρj. We claim that for each a ∈ A,

ϕm(a) =
d∑
j=0

Θa·ξj ,ξj .(2.5)

Take x ∈ Xm and z ∈ Z, we compute the right-hand side of (2.5)

( d∑
j=0

Θa·ξj ,ξj(x)
)

(z) =
d∑
j=0

(
(a · ξj) · 〈ξj, x〉

)
(z)

=
d∑
j=0

(a · ξj)(z)〈ξj, x〉(hm(z))

=
d∑
j=0

a(z)ξj(z)
∑

hm(w)=hm(z)

ξj(w)x(w).

Since hm is injective on each supp ξj,( d∑
j=0

Θa·ξj ,ξj(x)
)

(z) =
d∑
j=0

a(z)ξj(z)ξj(z)x(z)

= a(z)x(z)
d∑
j=0

|ξj(z)|2

= a(z)x(z),

which is equal to the left-hand side of (2.5), as we required.

Finally, it follows from [20, Proposition 5.8]that X is a compactly aligned product

system.

Remark 2.1.3. Let h1, . . . , hk be surjective and commuting local homeomorphisms

on a compact Hausdorff space Z and let X be the associated product system as in

Corollary 2.1.2. We aim to show that the two Cuntz-Pimsner algebra NO(X) and

O(X) coincide. We check the conditions (a)−(b) of Remark 1.3.10.

Condition (a) is clear because each pair in Nk has an upper bound. To prove

(b), notice that for each m ∈ Nk the homomorphism ϕm : A → L(Xm) is injective.

To see this, let ϕm(a) = ϕm(a′) for a, a′ ∈ A. Let IC(Z) be the identity in C(Z).

Then ϕm(a)(IC(Z)) = ϕm(a′)(IC(Z)). It follows that a(z) = a′(z) for all z ∈ Z and

therefore a = a′. To check (c), notice that X is a compactly aligned product system

of essential Hilbert A–A bimodule and the left action is by compact operators. Then
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Proposition 1.3.9 implies that every Cuntz-Pimsner covariant representation is a Nica-

covariant representation. Thus we have checked all conditions Remark 1.3.10, and

hence the two Cuntz-Pimsner algebra NO(X) and O(X) coincide.

2.2 The gauge action

By a strongly continuous action of a locally compact group G on a C∗-algebra A, we

mean a homomorphism g 7→ αg : G → Aut(A) such that g 7→ αg(a) is continuous for

each fixed a ∈ A.

It is well known that the Nica-Toeplitz algebra of a product system over Nk of right

Hilbert A–A bimodules carries an action of the k-torus Tk. But we could not find an

explicit reference for this. The next lemma shows this fact.

Lemma 2.2.1. Let A be a C∗-algebra and X be a compactly aligned product system

over Nk of right Hilbert A–A bimodules. Then there is a strongly continuous action

γ : Tk → Aut(NT (X)), called the gauge action, such that

γz(ψn(x)) = znψn(x) for all n ∈ Nk, z ∈ Tk, x ∈ Xn.

Proof. Fix z ∈ Tk and define θ : X → NT (X) by

θn(x) = znψn(x) for n ∈ Nk, x ∈ Xn.

We claim that θ is a Toeplitz representation of X. To see this, we check the conditions

(T1)−(T3) of Definition 1.3.1. That θ is a Toeplitz representation follows because ψ

is. Each θn is linear and θe is a homomorphism. We have

θn(x)∗θm(y) = znψn(x)∗znψn(y) = ψ0(〈x, y〉) = θ0(〈x, y〉).

and

θn(x)θm(y) = zn+mψn(x)ψm(y) = zn+mψn+m(xy) = θn+m(xy).

Thus conditions (T1)−(T3) of Definition 1.3.1 are satisfied.

To see that it is Nica-covariant, we consider θ(n) : K(Xn)→ NT (X). For x, x′ ∈ Xn,

we have

θ(n)(Θx,x′) = θn(x)θn(x′)∗ = znψn(x)znψn(x′)∗ = ψ(n)(Θx,x′).

Thus

θ(n)(S) = ψ(n)(S) for all S ∈ K(X).
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Now let S ∈ K(Xn), T ∈ K(Xm). Since ψ is Nica-covariant, we have

θ(n)(S)θ(m)(T ) = ψ(n)(S)ψ(m)(T )

= ψ(m∨n)
(
ιm∨nn (S)ιm∨nm (T )

)
= θ(n∨m)

(
ιm∨nn (S)ιm∨nm (T )

)
.

Now it follows from the universal property ofNT (X) that there is a homomorphism

γz : NT (X)→ NT (X) such that θ = γz ◦ ψ. This gives an explicit formula for γz on

the generators of NT (X):

γz ◦ ψn = θn = znψn.(2.6)

Notice that γz ◦ γz(ψn(x)) = γz ◦ γz(ψn(x)) = ψn(x). But the universal property of

NT (X) implies that the identity map on NT (X) is the only homomorphism with this

property. It then follows (γz)
−1 = γz and hence γz ∈ Aut(NT (X)).

Next let ITk be the identity element in Tk. Then

γITk
(ψn(x)) = (ITk)

nψn(x) = ψn(x).

Then γITk
is the identity map on NT (X). Finally, for z, w ∈ Tk, we have

γz ◦ γw(ψn) = (zw)nψn = γzw(ψn).

Thus γ is a homomorphism of Tk into the Aut(NT (X)).

To see that γ is strongly continuous, we must prove that z 7→ γz(b) is continuous

for all b ∈ NT (X). Fix ε > 0 and b. There is a linear combination c of generators in

NT (X) such that ‖b − c‖ < ε
3
. Equation (2.6) implies that, z 7→ γz(c) is continuous.

Then there exists some δ > 0 such that |z − w| < δ ⇒ ‖γw(c) − γz(c)‖ < ε
3
. Now for

|z − w| < δ we have

‖γw(b)− γz(b)‖ ≤ ‖γw(b− c)‖+ ‖γw(c)− γz(c)‖+ ‖γz(b− c)‖ < ε,

as we require.

Remark 2.2.2. Let q : NT (X) → O(X) be the quotient map as in Lemma 1.3.8.

Since the gauge action on NT (X) fixes the kernel of q, it then induces a natural gauge

action γ̃ of Tk on the quotient O(X).
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Chapter 3

KMS states on the C∗-algebras of

product systems associated to

∗-commuting local

homeomorphisms

In this chapter we consider a family of ∗-commuting local homeomorphisms and the

associated product system as in Corollary 2.1.2. We study KMS states and ground

states on the C∗-algebras of this product system. Our object here is to generalize the

results in [1] to our product system. When we have only one local homeomorphism,

the results here (except those associated to ground states) reduce to those in [1].

3.0.1 KMS states

A C∗-algebraic dynamical system is a triple (A,R, α) consisting of a C∗-algebra A, the

real line R and an action α : R → Aut(A). Given such a C∗-algebraic dynamical

system, we say an element a of A is analytic if t 7→ αt(a) is the restriction of an entire

function z 7→ αz(a) on C. It follows from [41, Sec. 8.12] that the analytic elements

form a dense subalgebra of A.

Definition 3.0.3. Let (A,R, α) be a C∗-algebraic dynamical system and φ be a state

of A. We say φ is a KMS state with inverse temperature β ∈ (0,∞) (or a KMSβ state)

of (A,α) if it satisfies the following KMS condition:

φ(ab) = φ(bαiβ(a)) for all analytic elements a, b.(3.1)
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It suffices to check the KMS condition on a set of analytic elements which span a dense

subspace of A (see [41, Proposition 8.12.4]).

We now look at the product system X associated to the local homeomorphisms

h1, . . . , hk as in Corollary 2.1.2. We have shown in Lemma 2.2.1 that the Nica-Toeplitz

algebra NT (X) carries a gauge action of Tk. We can lift this action to an action of R
on NT (X) as follows: Fix r ∈ (0,∞)k and embed R in Tk via the map

t 7→ eitr = (eitr1 , eitr2 , . . . , eitrk).

Then define α : R→ Aut(NT (X)) by αt = γeitr .

Considering the system (NT (X), α), notice that for each ψm(x)ψn(y) ∈ NT (X),

the function t 7→ αt
(
ψm(x)ψn(y)

)
= eitr·(m−n)ψm(x)ψn(y) on R extends to an entire

function on all of C. Thus each ψm(x)ψn(y) is an analytic element of NT (X). The

elements ψm(x)ψn(y) span a dense subalgebra of NT (X) as in (1.11). Thus it suffices

for us to check the KMS condition on these spanning elements.

Remark 3.0.4. We could get the action α directly (without passing through Tk) by

applying [24, Proposition 3.1] with the homomorphism N : ZK → (0,∞) defined by

N(n) = n · r =
∑k

i niri.

3.0.2 ∗-commuting local homeomorphisms

The notion of ∗-commuting maps was first introduced in [3] and then expanded by

Exel and Renault in [16, §10]. The next definition is taken from [16, §10].

Definition 3.0.5. Let f, g be commuting maps on a set Z. We say f, g ∗-commute,

if for every x, y ∈ Z satisfying f(x) = g(y), there exists a unique z ∈ Z such that

x = g(z) and y = f(z). The following digram illustrates this property beautifully.
z
�

y x

f(x) = g(y)

f

fg

g

We also say that a family of maps ∗-commute if any two of them ∗-commute.
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Lemma 3.0.6. Let f, g and h be ∗-commuting maps on a space Z. Then

(a) For i, j ∈ N, f i and gj ∗-commute,

(b) f and g ◦ h ∗-commute.

Proof. For part (a), see the proof of [16, Proposition 10.2].

To prove (b), we apply the method used in [16, Proposition 10.2]. Suppose u, v ∈ Z
satisfying f(u) = g ◦h(v). We have to show that there exists a unique z ∈ Z such that

u = g ◦ h(z) and v = f(z).(3.2)

Since f, g ∗-commute, it follows from f(u) = g ◦ h(v) that there exists a unique

w ∈ Z such that

u = g(w) and h(v) = f(w).(3.3)

Similarly, since h, f ∗-commute, the equation h(v) = f(w) gives a unique z ∈ Z

satisfying

v = f(z) and w = h(z).(3.4)

Now combining (3.3) and (3.4), we deduce that z satisfies (3.2).

To see the uniqueness, suppose z′ ∈ Z satisfies (3.2). Let w′ := h(z′). It follows

from (3.2) that

u = g(w′) and h(v) = h(f(z′)) = f(w′).

The uniqueness property in (3.3) implies that w = w′. Considering this with the fact

that z′ satisfies (3.2), we have

w = w′ = h(z′) and v = f(z′).

Now the uniqueness in (3.4) implies that z = z′.

Remark 3.0.7. There is another proof for part (b) of Lemma 3.0.6 in [55, Lemma 1.3].

Corollary 3.0.8. Let h1, . . . , hk be ∗-commuting local homeomorphisms on a space Z.

Fix m,n ∈ Nk such that m ∧ n = 0. Then hm and hn ∗-commute.

Proof. Remember that hm = hm1
1 ◦ · · · ◦ h

mk
k and hn = hn1

1 ◦ · · · ◦ h
nk
k . Since m∧ n = 0,

the local homeomorphisms appearing in hm = hm1
1 ◦ · · · ◦ h

mk
k do not appear in hn =

hn1
1 ◦ · · · ◦ h

nk
k . Now applying Lemma 3.0.6 finitely many times gives the proof.

Remark 3.0.9. The condition m∧n = 0 in Corollary 3.0.8 is crucial. When the local

homeomorphisms h1, . . . , hk ∗-commute, it does not imply that they ∗-commute with

themselves. Thus we can not deduce from Lemma 3.0.6 that hm and hn ∗-commute for

all m,n ∈ Nk.
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3.1 A characterization of KMS states

In this section we provide a characterization of KMSβ states on (NT (X), α) in Propo-

sition 3.1.6. The characterization formula (3.19) says that KMS states vanish on most

of the spanning elements of NT (X). Thus Proposition 3.1.6 enables us to recognise

KMS states easier. To prove this proposition, we first show that the ∗-commutativity

condition on h1, . . . , hk allows us to find interesting Parseval frames for each fibre in

X. Then we use these Parseval frames to find a formula which expresses elements of

the form ψn(y)∗ψm(x) as linear combinations of the elements ψm(s)ψn(t)∗ for suitable

s ∈ Xm, t ∈ Xn (Proposition 3.1.2(b)). This formula plays an important role in proving

that the KMS condition holds. We also provide two simple lemmas which are again

helpful when we discuss KMS condition.

Lemma 3.1.1. Let f, g be ∗-commuting local homeomorphisms on a compact Hausdorff

space Z. Suppose X(E1), X(E2) are the graph correspondences related to topological

graphs E1 = (Z,Z, id, f) and E2 = (Z,Z, id, g). Let {ρi}di=0 be a partition of unity such

that f |supp ρi , g|supp ρi are injective and suppose that τi :=
√
ρi. Then

(a) {τi}di=0,{τi ◦ g}di=0 are Parseval frames for X(E1),

(b) {τi}di=0,{τi ◦ f}di=0 are Parseval frames for X(E2), and

(c) there exists an isomorphism tf,g : X(E1)⊗AX(E2)→ X(E2)⊗AX(E1) such that

tf,g(τi ◦ g ⊗ τj) = τj ◦ f ⊗ τi for 0 ≤ i, j ≤ d.(3.5)

We will call this isomorphism the flip map.

Proof. Parts (a) and (b) are quite similar. We only prove (a). It follows from [17,

Proposition 8.2] that {τi}di=0 is a Parseval frame for X(E1). To see that {τi ◦ g}di=0 is

a Parseval frame for X(E1), we take x ∈ X(E1) and check the reconstruction formula:

d∑
i=0

(τi ◦ g) ·
〈
(τi ◦ g), x

〉
= x.

Take z ∈ Z. Using the definition of the left action and the inner product, we have

d∑
i=0

(τi ◦ g) ·
〈
(τi ◦ g), x

〉
(z) =

d∑
i=0

(τi ◦ g)(z)
〈
(τi ◦ g), x

〉
(f(z))

=
d∑
i=0

τi
(
g(z)

)[ ∑
f(w)=f(z)

τi(g(w))x(w).
]

(3.6)
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Suppose f(w) = f(z). Notice that the i-summand vanishes unless g(z), g(w) ∈ supp τi.

So suppose that g(z), g(w) ∈ supp τi. Then

f(w) = f(z)⇒ g ◦ f(z) = g ◦ f(w)

⇒ f ◦ g(z) = f ◦ g(w)

⇒ g(w) = g(z) (f is one-to-one on supp τi).

Now we consider the digram

�

f(z) g(z)

g(f(z)) = f(g(z))

f

fg

g

Notice that both w, z fit in the box. Then the ∗-commutativity of f, g implies that

w = z. Thus the interior sum in the last line of (3.6) will collapse to (τi ◦ g)(z)x(z)

and hence the reconstruction formula follows from

d∑
i=0

(τi ◦ g) · 〈(τi ◦ g), x〉(z) =
d∑
i=0

τi(g(z))τi(g(z))x(z)

= x(z)
d∑
i=0

τi(g(z))2

= x(z).

Next we look at part (c). Applying Lemma 2.1.1 implies that there are isomorphisms

σf,g : X(E1) ⊗A X(E2) → X(F ) and σg,f : X(E2) ⊗A X(E1) → X(F ). Now set

tf,g := σ−1
g,f ◦ σf,g. It is clear that tf,g is an isomorphism from X(E1) ⊗A X(E2) onto

X(E2)⊗A X(E1). To check (3.5), note that

σf,g(τi ◦ g ⊗ τj) = σg,f (τj ◦ f ⊗ τi).(3.7)

Thus tf,g(τi ◦ g ⊗ τj) = σ−1
g,f ◦ σf,g(τi ◦ g ⊗ τj) = τj ◦ f ⊗ τi, as required.

The next Proposition is an analogue of [20, Proposition 5.10] and [24, Lemma 4.7].

In fact Proposition 3.1.2 is more general because the formula of [20, Proposition 5.10]

is an approximation and [24, Lemma 4.7] holds only for product systems where each

fibre is required to have an orthonormal basis.
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Proposition 3.1.2. Let h1, . . . , hk be ∗-commuting and surjective local homeomor-

phisms on a compact Hausdorff space Z and let X be the associated product system as

in Corollary 2.1.2. Take m,n ∈ Nk such that m ∧ n = 0. Let {ρi}di=0 be a partition of

unity such that hm|supp ρi , h
n|supp ρi are injective and suppose that τi :=

√
ρi.

(a) Let σm,n : Xm⊗AXn → Xm+n and σn,m : Xn⊗AXm → Xm+n be the isomorphisms

induced by the multiplication in X. Then for all x⊗ y ∈ Xm ⊗A Xn, we have

σm,n(x⊗ y) =
∑

0≤i,j≤d

σn,m
(
τj ◦ hm ⊗ τi

)
·
〈〈
x, τi ◦ hn

〉
· τj , y

〉
.(3.8)

(b) Then for all x ∈ Xm, y ∈ Xn, we have

ψn(y)∗ψm(x) =
∑

0≤i,j≤d

ψm
(〈
y, τj ◦ hm

〉
· τi
)
ψn
(〈
x, τi ◦ hn

〉
· τj
)∗
.(3.9)

Proof. For part (a), it suffices to prove (3.8) for x ⊗ y ∈ Xm �A Xn. Notice that

Xm, Xn are graph correspondences associated to the topological graphs (Z,Z, id, hm)

and (Z,Z, id, hn). Since m ∧ n = 0, hm and hn are ∗-commuting. It then follows from

Lemma 3.1.1 that {τi◦hn}di=0 and {τj}dj=0 form Parseval frames for Xm, Xn respectively.

Also notice that the formula for multiplication in X implies that

σm,n(τi ◦ hn ⊗ τj) = σn,m(τj ◦ hm ⊗ τi).(3.10)

We use this to prove (3.8). So we must write x⊗y in terms of the elements {τi◦hn⊗τj}i,j.
To do this we start by writing the reconstruction formulas for the Parseval frames

{τi ◦ hn}di=0 and {τj}dj=0.

x⊗ y =
( d∑
i=0

τi ◦ hn ·
〈
τi ◦ hn, x

〉)
⊗
( d∑
j=0

τj · 〈τj, y〉
)
.

Since the tensors are balanced, we have

x⊗ y =
∑

0≤i,j≤d

(
τi ◦ hn ⊗

〈
τi ◦ hn, x

〉
· τj · 〈τj, y〉

)
.(3.11)

We then claim that〈
τi ◦ hn, x

〉
· τj · 〈τj, y〉 = τj ·

〈〈
x, τi ◦ hn

〉
· τj , y

〉
.(3.12)

To see the claim, we evaluate both sides of (3.12) on z ∈ Z. For the left-hand side we

have (〈
τi ◦ hn, x

〉
· τj · 〈τj, y〉

)
(z) =

〈
τi ◦ hn, x

〉
(z)τj(z)〈τj, y〉(hn(z))
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=
〈
τi ◦ hn, x

〉
(z)τj(z)

∑
hn(w)=hn(z)

τj(w)y(w)

=
〈
τi ◦ hn, x

〉
(z)τj(z)τj(z)y(z) (hn is injective on supp τj).

Similarly, we compute the right-hand side of (3.12):(
τj ·
〈〈
x, τi ◦ hn

〉
· τj , y

〉)
(z) = τj(z)

〈〈
x, τi ◦ hn

〉
· τj , y

〉
(hn(z))

= τj(z)
∑

hn(w)=hn(z)

〈
x, τi ◦ hn

〉
(w)τj(w)y(w)

= τj(z)
〈
τi ◦ hn, x

〉
(z)τj(z)y(z).

So we have proven the claim.

Now putting (3.12) in (3.11) gives

x⊗ y =
∑

0≤i,j≤d

(
τi ◦ hn ⊗ τj ·

〈〈
x, τi ◦ hn

〉
· τj , y

〉)
,

which express x⊗ y in terms of the elements {τi ◦ hn ⊗ τj}i,j.
Next we compute σm,n(x⊗ y) using (3.10). Notice that σm,n is an isomorphism of

correspondences. Then

σm,n(x⊗ y) =
∑

0≤i,j≤d

σm,n
(
τi ◦ hn ⊗ τj

)
·
〈〈
x, τi ◦ hn

〉
· τj , y

〉
.

Now applying (3.10) gives

σm,n(x⊗ y) =
∑

0≤i,j≤d

σn,m
(
τj ◦ hm ⊗ τi

)
·
〈〈
x, τi ◦ hn

〉
· τj , y

〉
,

as required.

For part (b), we use the Fock representation T of X. Remark 1.4.1 implies that the

induced homomorphism

T∗ : NT (X)→ L(F (X))

is an injection. Then by the universal property of ψ, it suffices for us to prove that

Tn(y)∗Tm(x) =
∑

0≤i,j≤d

Tm
(〈
y, τj ◦ hm

〉
· τi
)
Tn
(〈
x, τi ◦ hn

〉
· τj
)∗
.(3.13)

To do this, we evaluate both sides of (3.13) on an arbitrary s ∈ Xp where p ∈ Nk. An

application of the formula (1.17) for the adjoint shows that the right-hand side of (3.13)

vanishes unless p ≥ n. For the left hand-side, the definition of the Fock representation

says that
(
Tn(y)∗Tm(x)

)
(s) = Tn(y)∗

(
σm,p(x ⊗ s)

)
. Now equation (1.17) implies that
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the left hand side of (3.13) is zero unless m + p ≥ n. Since m ∧ n = 0, m + p ≥ n is

equivalent to p ≥ n. Thus both sides of (3.13) are zero unless p ≥ n. So we assume

p ≥ n from now.

It suffices to check (3.13) for s = σn,p−n(s′⊗ s′′) where s′⊗ s′′ ∈ Xn�AXp−n. To do

this we first compute the right-hand side of (3.13) by using the adjoint formula (1.17)

and the definition of the Fock representation:∑
0≤i,j≤d

Tm
(〈
y,τj ◦ hm

〉
· τi
)
Tn
(〈
x, τi ◦ hn

〉
· τj
)∗

(σn,p−n(s′ ⊗ s′′))

=
∑

0≤i,j≤d

Tm
(〈
y, τj ◦ hm

〉
· τi
)(〈〈

x, τi ◦ hn
〉
· τj , s′

〉
· s′′
)

=
∑

0≤i,j≤d

σm,p−n

(〈
y, τj ◦ hm

〉
· τi ⊗

〈〈
x, τi ◦ hn

〉
· τj , s′

〉
· s′′
)
.(3.14)

Next we evaluate the left-hand side of (3.13) at σn,p−n(s′ ⊗ s′′). For convenience,

let † := Tn(y)∗Tm(x)
(
σn,p−n(s′ ⊗ s′′)

)
. We start by applying the definition of the Fock

representation. Then

† = Tn(y)∗
(
σm,p

(
x⊗ σn,p−n(s′ ⊗ s′′)

))
.

The associativity of multiplication in X implies that

† = Tn(y)∗
(
σm+n,p−n

(
σm,n

(
x⊗ s′

)
⊗ s′′

))
.

In order to apply the adjoint formula (1.17), we must write σm,n(x⊗ s′) in terms of

the elements of Xn ⊗Xm. To do this, we apply part (a) for x⊗ s′ ∈ Xm ⊗AXn. Then

† =
∑

0≤i,j≤d

Tn(y)∗
(
σm+n,p−n

(
σn,m(τj ◦ hm ⊗ τi) ·

〈〈
x, τi ◦ hn

〉
· τj , s′

〉
⊗ s′′

))
.

Since the tensors are balanced, we have

† =
∑

0≤i,j≤d

Tn(y)∗
(
σm+n,p−n

(
σn,m(τj ◦ hm ⊗ τi)⊗

〈〈
x, τi ◦ hn

〉
· τj , s′

〉
· s′′
))
.

Another application of associativity of the multiplication in X gives

† =
∑

0≤i,j≤d

Tn(y)∗
(
σn,m+p−n

(
τj ◦ hm ⊗ σm,p−n

(
τi ⊗

〈〈
x, τi ◦ hn

〉
· τj , s′

〉
· s′′
))
.

Now, we can apply the adjoint formula (1.17)

† =
∑

0≤i,j≤d

〈
y, τj ◦ hm

〉
· σm,p−n

(
τi ⊗

〈〈
x, τi ◦ hn

〉
· τj , s′

〉
· s′′
))
.
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Since σm,p−n is an isomorphism of correspondences,

† =
∑

0≤i,j≤d

σm,p−n

(〈
y, τj ◦ hm

〉
· τi ⊗

〈〈
x, τi ◦ hn

〉
· τj , s′

〉
· s′′
))
.

This equals (3.14). Thus (3.13) holds for all n ∈ Nk and s ∈ Xn. Then it holds for all

elements of F (X). Now the injectivity of T∗ gives (3.9).

Remark 3.1.3. In [54], Solel studied the product systems over Nk via different no-

tations (see Appendix A). He used the notion doubly commuting representation [54,

(3.12)] as an alternative for Nica-covariance representation. Then he proved in [54,

Theorem 3.15] that the universal Nica-covariant representation ψ satisfies his doubly

commuting relation. The doubly commuting relation involves a flip map between fibres

of the product system. Since we have an explicit formula for the flip as in (3.5), we

can translate his results to our notation. In Appendix A, we reconcile our result with

[54, Theorem 3.15]. We show that ψ satisfies [54, Lemma 3.9(i)] by using our formula

(3.9) and the flip map (3.5).

Lemma 3.1.4. Let h1, . . . , hk be ∗-commuting and surjective local homeomorphisms

on a compact Hausdorff space Z and let X be the associated product system as in

Corollary 2.1.2. Suppose m,n, p, q ∈ Nk x ∈ Xm, y ∈ Xn, s ∈ Xp, and t ∈ Xq. Then

there exist {ξi,j}0≤i,j≤d ⊂ Xm+p−n∧p and {ηi,j}0≤i,j≤d ⊂ Xn+q−n∧p such that

ψm(x)ψn(y)∗ψp(s)ψq(t)
∗ =

∑
0≤i,j≤d

ψm+p−n∧p(ξi,j)ψn+q−n∧p(ηi,j)
∗.(3.15)

Proof. Let N := n − n ∧ p and P := p − n ∧ p. It suffices for us to prove (3.15) for

y = σn∧p,N(y′′ ⊗ y′) and s = σn∧p,P (s′′ ⊗ s′), where y′′ ⊗ y′ ∈ Xn∧p �A XN , s
′′ ⊗ s′ ∈

Xn∧p �A XP . Routine calculation shows that

ψn(y)∗ψp(s) = ψN(y′)∗ψn∧p(y
′′)∗ψn∧p(s

′′)ψP (s′)

= ψN(y′)∗ψ0

(
〈y′′, s′′〉

)
ψP (s′)

= ψN(y′)∗ψP
(
〈y′′, s′′〉 · s′

)
.(3.16)

Let {Ui}di=0 be an open cover of Z such that hN |Ui and hP |Ui are injective. Choose a

partition of unity {ρi}di=0 subordinate to {Ui}di=0 and define τi :=
√
ρi. Since N∧P = 0,

applying Proposition 3.1.2 to {τi}di=0 implies that

ψN(y′)∗ψP
(
〈y′′, s′′〉 · s′

)
=

∑
0≤i,j≤d

ψP
(
〈y′, τj ◦ hP 〉 · τi

)
ψN

(〈
〈y′′, s′′〉 · s′, τi ◦ hN

〉
· τj
)∗
.

(3.17)
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Combining equations (3.16) and (3.17), we have

ψm(x)ψn(y)∗ψp(s)ψq(t)
∗

= ψm(x)
[ ∑

0≤i,j≤d

ψP
(
〈y′, τj ◦ hP 〉 · τi

)
ψN

(〈
〈y′′, s′′〉 · s′, τi ◦ hN

〉
· τj
)∗]

ψq(t)
∗

=
∑

0≤i,j≤d

ψm+P

(
σm,P

(
x⊗ 〈y′, τj ◦ hP 〉·τi

))
ψq+N

(
σN,q

(
t⊗
〈
〈y′′, s′′〉·s′, τi ◦ hn

〉
·τj
))∗
.

Now labelling ξi,j := σm,P
(
x⊗〈y′, τj◦hP 〉·τi

)
and ηi,j := σN,q

(
t⊗
〈
〈y′′, s′′〉·s′, τi◦hn

〉
·τj
)

completes the proof of (3.15).

Lemma 3.1.5. Suppose m,n, p, q ∈ Nk satisfying m+ p = n+ q and n ∧ p = 0. Then

m−m ∧ q = n and q −m ∧ q = p.

Proof. We first prove m−m ∧ q = n. Fix 1 ≤ i ≤ k. Since n ∧ p = 0, either ni = 0 or

pi = 0.

If ni = 0, then m + p = n + q implies that mi ≤ qi and hence mi − (m ∧ q)i =

mi −mi = 0 = ni. If pi = 0, then mi ≥ qi and mi − (m ∧ q)i = mi − qi = ni − pi = ni.

Thus mi − (m ∧ q)i = ni for all i, as required.

To prove q−m∧q = p, it suffices to apply the construction of the previous paragraph

to the equality q + n = p+m.

Now we are ready to prove a generalization of [1, Proposition 3.1] to our product

system. There is also a similar Proposition for the higher-rank graph algebras (see [27,

Proposition 3.1]).

Proposition 3.1.6. Let h1, . . . , hk be ∗-commuting and surjective local homeomor-

phisms on a compact Hausdorff space Z and let X be the associated product system as

in Corollary 2.1.2. Suppose r ∈ (0,∞)k and α : R → Aut(NT (X)) is given in terms

of the gauge action by αt = γeitr . Let β > 0 and φ be a state on NT (X).

(a) If φ satisfies

φ
(
ψm(x)ψn(y)∗

)
= δm,ne

−βr·mφ ◦ ψ0(〈y, x〉) for x ∈ Xm, y ∈ Xn,(3.18)

then φ is a KMSβ state of (NT (X), α).

(b) If φ is a KMSβ state of (NT (X), α) and r ∈ (0,∞)k has rationally independent

coordinates, then φ satisfies (3.18).
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Proof of (a). Suppose state φ satisfies (3.18). To show that φ is a KMSβ state, it

suffices to check the KMS condition

φ(bc) = e−βr·(m−n)φ(cb)(3.19)

for elements b = ψm(x)ψn(y)∗ and c = ψp(s)ψq(t)
∗ from NT (X). Let M := m−m∧ q,

N := n− n ∧ p, P := p− n ∧ p and Q := q −m ∧ q. It is also enough to prove (3.19)

for elements of the form x = σm∧q,M(x′′ ⊗ x′), y = σn∧p,N(y′′ ⊗ y′), s = σn∧p,P (s′′ ⊗ s′)
and t = σm∧q,Q(t′′ ⊗ t′) where x′′ ⊗ x′ ∈ Xm∧q �A XM , y

′′ ⊗ y′ ∈ Xn∧p �A XN , s
′′ ⊗ s′ ∈

Xn∧p �A XP , and t′′ ⊗ t′ ∈ Xm∧q �A XQ. During the proof, we will need the following

equations occasionally

ψn(y)∗ψp(s) = ψN(y′)∗ψP
(
〈y′′, s′′〉 · s′

)
, and(3.20)

ψq(t)
∗ψm(x) = ψQ(t′)∗ψM

(
〈t′′, x′′〉 · x′

)
;(3.21)

they are obtained by a calculation similar to the one done to establish (3.16).

To prove (3.19), first note that Lemma 3.1.4 together with the equation (3.18) imply

that both of φ(bc) and φ(cb) vanish unless m+p = n+ q. So we assume this from now.

Next we claim that it suffices for us to check (3.19) for n∧ p = 0. To see this, suppose

we have proven the case n∧p = 0 and consider m,n, p, q such that m+p = n+q. Then

(3.20) implies that φ(bc) = φ
(
ψm(x)ψN(y′)∗ψP

(
〈y′′, s′′〉 · s′

)
ψq(t)

∗). Since N ∧ P = 0,

we are back into the other case. Thus

φ(bc) = e−βr·(m−N)φ
(
ψP
(
〈y′′, s′′〉 · s′

)
ψq(t)

∗ψm(x)ψN(y′)∗
)
.

Applying a similar calculation twice (by using (3.21) and (3.20)) gives:

φ(cb) = φ
(
ψp(s)ψQ(t′)∗ψM

(
〈t′′, x′′〉 · x′

)
ψn(y)∗

)
= e−βr·(p−Q)φ

(
ψM
(
〈t′′, x′′〉 · x′

)
ψn(y)∗ψp(s)ψQ(t′)∗

)
(since Q ∧M = 0)

= e−βr·(p−Q)φ
(
ψM
(
〈t′′, x′′〉 · x′

)
ψN(y′)∗ψP

(
〈y′′, s′′〉 · s′

)
ψQ(t′)∗

)
= e−βr·(p−Q+M−N)φ

(
ψP
(
〈y′′, s′′〉 · s′

)
ψQ(t′)∗ψM

(
〈t′′, x′′〉 · x′

)
ψN(y′)∗

)
.

Since m+ p = n+ q, we have e−βr·(m−N) = e−βr·(m−n)e−βr·(p−Q+M−N). Now (3.21) and

our calculations imply that φ(bc) = e−βr·(m−n)φ(cb). So it is enough to prove (3.19)

when n ∧ p = 0.

Now we assume that m+p = n+q and n∧p = 0. Let {Ui}di=0 be an open cover of Z

such that hn|Ui and hp|Ui are injective. Choose a partition of unity {ρi}di=0 subordinate
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to {Ui}di=0 and define τi :=
√
ρi. To compute φ(bc), we start by using (3.9) to rewrite

ψn(y)∗ψp(s) to get

φ(bc) = φ
(
ψm(x)ψn(y)∗ψp(s)ψq(t)

∗
)

= φ
(
ψm(x)

[ ∑
0≤i,j≤d

ψp
(
〈y, τj ◦ hp〉 · τi

)
ψn
(
〈s, τi ◦ hn〉 · τj

)∗]
ψq(t)

∗
)

=
∑

0≤i,j≤d

φ

(
ψm+p

(
σm,p

(
x⊗ 〈y, τj ◦ hp〉 · τi

))
ψq+n

(
σq,n

(
t⊗ 〈s, τi ◦ hn〉 · τj

))∗)
.

By our assumption (3.18), we get

φ(bc) = e−βr·(m+p)φ ◦ ψ0

( ∑
0≤i,j≤d

〈
σq,n

(
t⊗ 〈s, τi ◦ hn〉 · τj

)
, σm,p

(
x⊗ 〈y, τj ◦ hp〉·τi

)〉)
.

To calculate φ(cb), notice that φ(cb) = φ
(
ψp(s)ψQ(t′)∗ψM

(
〈t′′, x′′〉 · x′

)
ψn(y)∗

)
by

(3.21). Since m + p = n + q and n ∧ p = 0, Lemma 3.1.5 implies that Q = p and

M = n. Then φ(cb) = φ
(
ψp(s)ψp(t

′)∗ψn
(
〈t′′, x′′〉 · x′

)
ψn(y)∗

)
. Now we use the formula

(3.9) and the identity
(
ψ(ξ)ψ(η)

)∗
= ψ(η)∗ψ(ξ)∗ to rewrite ψp(t

′)∗ψn
(
〈t′′, x′′〉 · x′

)
.

φ(cb) = φ
(
ψp(s)

[ ∑
0≤i,j≤d

ψn
(
〈t′, τi ◦ hn〉 · τj

)
ψp(
〈
〈t′′, x′′〉 · x′, τj ◦ hp

〉
· τi
)∗]

ψn(y)∗
)

= φ

( ∑
0≤i,j≤d

ψp+n

(
σp,n

(
s⊗ 〈t′, τi ◦ hn〉·τj

))
ψn+p

(
σn,p

(
y ⊗

〈
〈t′′, x′′〉·x′, τj ◦ hp

〉
·τi
))∗)

Our assumption (3.18) implies that

φ(cb) = e−βr·(n+p)φ ◦ ψ0

( ∑
0≤i,j≤d

〈
σn,p

(
y ⊗

〈
〈t′′, x′′〉 · x′, τj ◦ hp

〉
· τi
)
,

σp,n

(
s⊗ 〈t′, τi ◦ hn〉 · τj

)〉)
.

Since m + p = m − n + n + p, it follows that e−βr·(m+p) = e−βr·(m−n+n+p). Now to

check KMS condition (3.19), it suffices to prove that

† :=
∑

0≤i,j≤d

〈
σq,n

(
t⊗ 〈s, τi ◦ hn〉 · τj

)
, σm,p

(
x⊗ 〈y, τj ◦ hp〉·τi

)〉
and

‡ :=
∑

0≤i,j≤d

〈
σn,p

(
y ⊗

〈
〈t′′, x′′〉 · x′, τj ◦ hp

〉
· τi
)
, σp,n

(
s⊗ 〈t′, τi ◦ hn〉 · τj

)〉
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are equal. To do this we compute †(z) and ‡(z) for z ∈ Z. Since the calculation for

‡(z) is easier, we compute it first. We start by applying the multiplication formula

(2.4) in X:

‡(z) =
∑

0≤i,j≤d

∑
hn+p(w)=z

σn,p

(
y ⊗

〈
〈t′′, x′′〉 · x′, τj ◦ hp

〉
· τi
)

(w)σp,n

(
s⊗ 〈t′, τi ◦ hn〉 · τj

)
(w)

=
∑

0≤i,j≤d

∑
hn+p(w)=z

y(w)
〈
〈t′′, x′′〉 · x′, τj ◦ hp

〉(
hn(w)

)
τi
(
hn(w)

)
s(w)〈t′, τi ◦ hn〉

(
hp(w)

)
τj
(
hp(w)

)
=

∑
hn+p(w)=z

y(w)s(w)
d∑
i=0

〈t′, τi◦hn〉
(
hp(w)

)
τi
(
hn(w)

)

d∑
j=0

τj
(
hp(w)

)〈
τj◦hp , 〈t′′, x′′〉 · x′

〉(
hn(w)

)
.

(3.22)

Since n∧p = 0, hn and hp are ∗-commuting. Now remembering that Xn, Xp are graph

correspondences associated to the topological graphs (Z,Z, id, hn) and (Z,Z, id, hp)

Lemma 3.1.1 implies that {τj ◦ hp}dj=0 and {τi ◦ hn}di=0 are Parseval frames for Xn, Xp

(respectively). We rearrange (3.22) by using the definition of the actions to apply the

reconstruction formulas for these Parseval frames:

‡(z) =
∑

hn+p(w)=z

y(w)s(w)
d∑
i=0

(
τi ◦ hn · 〈τi ◦ hn, t′〉

)
(w)

d∑
j=0

(
τj ◦ hp ·

〈
τj ◦ hp , 〈t′′, x′′〉 · x′

〉)
(w)

=
∑

hn+p(w)=z

y(w)s(w)t′(w)(〈t′′,x′′〉 ·x′)(w).

Next we compute †(z). Using the formula (2.4) for multiplication in X, we have

†(z) =
∑

0≤i,j≤d

∑
hm+p(w)=z

σq,n

(
t⊗ 〈s, τi ◦ hn〉 · τj

)
(w)σm,p

(
x⊗ 〈y, τj ◦ hp〉 · τi

)
(w)

=
∑

0≤i,j≤d

∑
hm+p(w)=z

t(w)〈s, τi ◦ hn〉(hq(w))τj(hq(w))x(w)〈y, τj ◦ hp〉(hm(w))τi(h
m(w))

=
∑

hm+p(w)=z

t(w)x(w)
d∑
i=0

〈s, τi ◦ hn〉(hq(w))τi(h
m(w))

d∑
j=0

τj(h
q(w))〈y, τj ◦ hp〉(hm(w)).

An application of Lemma 3.1.5 implies that q = m ∧ q + p and m = m ∧ q + n. Then

†(z) =
∑

hn+p+m∧q(w)=z

t(w)x(w)
d∑
i=0

〈
τi ◦ hn, s〉

(
hm∧q+p(w)

)
τi
(
hm∧q+n(w)

)
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d∑
j=0

τj
(
hm∧q+p(w)

)
〈y, τj ◦ hp〉

(
hm∧q+n(w)

)
.

We again rearrange this equation to apply the reconstruction formulas for the Parseval

frames {τi ◦ hn}di=0 and {τj ◦ hp}dj=0.

†(z) =
∑

hn+p+m∧q(w)=z

t(w)x(w)
∑

0≤i≤d

[
τi ◦ hn ·

〈
τi ◦ hn , s

〉](
hm∧q(w)

)
∑

0≤j≤d

[τj ◦ hp · 〈τj ◦ hp , y〉]
(
hm∧q(w)

)
=

∑
hn+p+m∧q(w)=z

t(w)x(w)s
(
hm∧q(w)

)
y
(
hm∧q(w)

)
.

Now writing t = σm∧q,Q(t′′ ⊗ t′), x = σm∧q,M(x′′ ⊗ x′) and splitting
∑

, we have

†(z) =
∑

hn+p+m∧q(w)=z

t′′(w)t′
(
hm∧q(w)

)
x′′(w)x′

(
hm∧q(w)

)
s
(
hm∧q(w)

)
y
(
hm∧q(w)

)
=

∑
hn+p(u)=z

s(u)x′(u)y(u)t′(u)
∑

hm∧q(w)=u

t′′(w)x′′(w)

=
∑

hn+p(u)=z

s(u)x′(u)y(u)t′(u)〈t′′, x′′〉(u)

Thus †(z) = ‡(z) and hence φ satisfies (3.19).

Proof of (b). Suppose φ is a KMSβ state on NT (X) and r has rationally independent

coordinates. To show that φ satisfies (3.18), let x ∈ Xm and y ∈ Xn. By two application

of the KMS condition, we have

φ
(
ψm(x)ψn(y)∗

)
= φ

(
ψn(y)∗αiβ(ψm(x))

)
= e−βr·mφ

(
ψn(y)∗ψm(x)

)
= e−βr·(m−n)φ

(
ψm(x)ψn(y)∗

)
.

Now since r has rationally independent coordinates and β > 0, both sides will vanish

for m 6= n. For m = n the KMS condition and (T2) of Definition1.3.1 imply that

φ
(
ψm(x)ψm(y)∗

)
= e−βr·mφ

(
ψm(y)∗ψm(x)

)
= e−βr·mφ

(
ψ0(〈y, x〉)

)
,

and φ satisfies (3.18).

42



3.2 KMS states and subinvariance relation

In this section we introduce a subinvariance relation involving a family of “Ruelle oper-

ators”. We characterize the solutions of this subinvariance relation in Proposition 3.2.7.

We also show that every KMSβ state for β ∈ (0,∞) gives a measure which satisfies our

subinvariance relation (Proposition 3.2.8).

Lemma 3.2.1. Let h1, . . . , hk be commuting and surjective local homeomorphisms on

a compact Hausdorff space Z. For i ∈ {1, . . . , k}, define Qi : C(Z)→ C(Z) by

Qi(a)(z) =
∑

hi(w)=z

a(w) for a ∈ C(Z).

(a) The functions Qi : C(Z)→ C(Z) are commuting linear bounded operators.

(b) For n ∈ Nk, set Qn := Qnk
k ◦ · · · ◦Q

n1
1 . Then

Qn(a)(z) =
∑

hn(w)=z

a(w) for a ∈ C(Z).(3.23)

(c) For each 1 ≤ i ≤ k, there is a unique adjoint operator Q∗i : C(Z)∗ → C(Z)∗ such

that

‖Q∗i ‖ = ‖Qi‖ and Q∗i (f) = f ◦Qi for f ∈ C(Z)∗.

Proof. To prove (a), take 1 ≤ i ≤ k and a ∈ C(Z). It is clear that Qi is linear. Notice

that

‖Qi(a)‖ = sup
z∈Z
|Qi(a)(z)| = sup

z∈Z

∣∣ ∑
hi(w)=z

a(w)
∣∣ ≤ max

z∈Z
|h−1
i (z)| sup

z∈Z
|a(z)|

= max
z∈Z
|h−1
i (z)|‖a‖.

Since hi is a local homeomorphism on the compact space Z, maxz∈Z |h−1
i (z)| <∞. It

then follows that Qi is bounded and ‖Qi‖ ≤ maxz∈Z |h−1
i (z)|.

For the commutativity, take 1 ≤ i, j ≤ k. We have(
QiQj(a)

)
(z) =

(
Qi

(
Qj(a)

))
(z) =

∑
hi(w)=z

(
Qj(a)

)
(w)

=
∑

hi(w)=z

∑
hj(u)=w

a(u) =
∑

hi◦hj(u)=z

a(u).(3.24)

Since hi, hj are commuting, (3.24) implies QiQj = QjQi.
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For part (b), notice that {Qi} are commuting and surjective local homeomorphisms.

Then (3.23) follows from (3.24).

Finally part (c) follows from [19, page 160 (Exercise 22)] or from [47, Theorem

4.10].

Definition 3.2.2. Let h1, . . . , hk be commuting and surjective local homeomorphisms

on a compact Hausdorff space Z. Let Q1, . . . , Qk be as in Lemma 3.2.1. For 1 ≤ i ≤ k,

we define Rei : C(Z)∗ → C(Z)∗ by Rei := Q∗i . Then Re1 , . . . , Rek are commuting,

linear bounded operators. We write R0 := idC(Z)∗ and for n ∈ Nk+, we use

Rn := Rnkek ◦ · · · ◦Rn1e1 .

The operators Re1 , . . . , Rek are sometimes called Ruelle operators (for example see [48,

(2.3)],[49, (3.1)],[14, (2.1)]).

Remark 3.2.3. A finite regular Borel measure ν on Z can be viewed as an element of

C(Z)∗ by

ν(a) :=

∫
a(z) dν(z) for a ∈ C(Z).

We can then calculate a formula for Rn(ν). Lemma 3.2.1(c) implies that Rn(ν) =

(Qn)∗(ν) = ν(Qn). It then follows∫
a d
(
Rn(ν)

)
=

∫ ∑
hn(w)=z

a(w) dν(z) for a ∈ C(Z).(3.25)

Remark 3.2.4. The operation R in (3.25) is an analogue for the operation R studied

in [1]. But here we define it as an operator on the whole of C(Z)∗, while in [1] it is

only defined on measures (which are positive elements of C(Z)∗).

Definition 3.2.5. Let h1, . . . , hk be commuting and surjective local homeomorphisms

on a compact Hausdorff space Z and suppose ν is a finite regular Borel measure on

Z. We say ν satisfies the subinvariance relation if for every subset K of {1, . . . , k}, we

have ∫
a d
(∏
i∈K

(1− e−βriRei)ν
)
≥ 0 for all positive a ∈ C(Z).(3.26)

Given J ⊆ K, we write eJ :=
∑

j∈J ej and we interpret Re∅ν = ν. The following

identity is helpful when we work with the subinvariance relation.(∏
i∈K

(1− e−βriRei)
)
ν =

∑
∅⊆J⊆K

(−1)|J |e−βr·eJReJν.(3.27)
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Remark 3.2.6. The subinvariance relation (3.26) is a generalization of the subinvari-

ance relation [1, (4.2)] where we have only one local homeomorphism. It also is a

variant of the subinvariance relation appearing in the analysis of KMS states of the

Toeplitz-Cuntz-Krieger algebras of higer-rank graphs [28, (Proposition 4.1 (a)].

The next Proposition characterizes the solutions of the subinvariance relation (3.26).

It is a generalization of [1, Proposition 4.2] and [28, Theoerem 6.1(a)].

Proposition 3.2.7. Let h1, . . . , hk be surjective and commuting local homeomorphisms

on a compact Hausdorff space Z. For each 1 ≤ i ≤ k, let

(3.28) βci := lim sup
j→∞

(
j−1 ln

(
max
z∈Z
|h−ji (z)|

))
.

Let r ∈ (0,∞)k, and suppose β ∈ (0,∞) satisfies βri > βci.

(a) The series
∑

n∈Nk e
−βr·n|h−n(z)| converges uniformly for z ∈ Z to a continuous

function fβ(z) ≥ 1.

(b) Suppose ε is a finite regular Borel measure on Z. Then the series
∑

n∈Nk e
−βr·nRnε

converges in norm in the dual space C(Z)∗ with sum µ, say. Then µ satisfies the

subinvariance relation (3.26) and we have ε =
(∏k

i=1

(
1 − e−βriRei

))
µ. Then µ

is a probability measure if and only if
∫
fβ dε = 1.

(c) Suppose µ is a probability measure which satisfies the subinvariance relation

(3.26). Then ε =
(∏k

i=1

(
1− e−βriRei

))
µ is a finite regular Borel measure satis-

fying
∑

n∈Nk e
−βr·nRnε = µ, and we have

∫
fβ dε = 1.

Before starting the proof, notice that we regard a sum indexed by Nk as an integral

over Nk with respect to the counting measure. All series here have positive summands.

Then by Tonelli’s theorem, we can consider a sum over Nk as iterated sums over N.

Moreover, if the iterated sums over N are convergent in one order, then the sum over

Nk converges as well (see for example [19, Theorem 7.27]).

We will need the following algebraic identities occasionally:

∑
m∈Nk

k∏
i=1

fi(mi) =
k∏
i=1

∑
mi∈N

fi(mi).(3.29)

Also notice that if figj = gjfi for all 1 ≤ i, j ≤ k, then

k∏
i=1

fi

k∏
j=1

gj =
k∏
l=1

flgl.(3.30)
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Proof of Proposition 3.2.7. For part (a), we first claim that for each 1 ≤ i ≤ k, there

exist 0 < δi ∈ R and Mi ∈ N such that

(3.31) l ∈ N, l ≥Mi ⇒ e−lβri max
z
|h−li (z)| < e−lδi for all z ∈ Z.

To see the claim, since βri > βci , applying the calculation of the first paragraph

in the proof of [1, Proposition 4.2] with the local homeomorphism hi gives δi and Mi

satisfying (3.31). Now we take M := (M1, . . . ,Mk) and calculate the N -th partial sum

for N ≥M . ∑
M≤n≤N

e−βr·n|h−n(z)| =
∑

M≤n≤N

e−βr·n
∣∣(hn1

1 ◦ · · · ◦ h
nk
k

)−1
(z)
∣∣

≤
∑

M≤n≤N

e−βr·n
( k∏
i=1

max
z

∣∣h−nii (z)
∣∣)

=
∑

M≤n≤N

k∏
i=1

(
e−βri·ni max

z

∣∣h−nii (z)
∣∣).

Using the identity (3.29) and the equation (3.31), we have

∑
M≤n≤N

e−βr·n|h−n(z)| ≤
k∏
i=1

∑
Mi≤ni≤Ni

(
e−βri·ni max

z

∣∣h−nii (z)
∣∣)

≤
k∏
i=1

∑
Mi≤ni≤Ni

e−δini .(3.32)

Now let N → ∞ in Nk. This means each Ni → ∞ for 1 ≤ i ≤ k. Since each sum∑∞
ni=Mi

eδini is convergent, it follows that
∑∞

n=M e−βr·n|h−n(z)| converges uniformly for

z ∈ Z.

Notice that hn = hnkk ◦ · · · ◦ h
n1
1 is a local homeomorphism on Z for all n ∈ Nk

(because each hi (1 ≤ i ≤ k) is). Then [8, Lemma 2.2] implies that z 7→ |h−n(z)|
is locally constant and hence is continuous. Thus fβ(z) :=

∑
n∈Nk e

−βn|h−n(z)| is the

uniform limit of a sequence of continuous functions, and is therefore continuous. The

term corresponding to n = 0 is 1, so fβ ≥ 1.

For part (b), take M and δi (1 ≤ i ≤ k) as in part (a). We want to show that∑
n≥M e−βr·nRnε converges in norm in the dual space C(Z)∗. To do this, we calculate

the N -th partial sum using formula (3.25) for the definition of Rn. Let g ∈ C(Z), we

have∣∣∣ ∑
M≤n≤N

e−βr·n
∫
g d(Rnε)

∣∣∣ =
∣∣∣ ∑
M≤n≤N

e−βr·n
∫ ∑

hn(w)=z

g(w) dε(z)
∣∣∣
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≤
∑

M≤n≤N

e−βr·n|h−n(z)| ‖ε‖C(Z)∗‖g‖∞

≤ ‖ε‖C(Z)∗‖g‖∞
k∏
i=1

∑
Mi≤ni≤Ni

e−δini by (3.32).(3.33)

Now when N → ∞, all the series
∑∞

ni=Mi
e−δini are convergent and hence the series∑∞

n=0 e
−βr·nRnε converges in the norm of C(Z)∗ to a measure µ, say.

Since ε is a measure on Z, it is a positive functional on C(Z). The formula (3.25)

for definition of Rn, says that µ is positive functional on C(Z) and therefore is a Borel

measure on Z by the Riesz-representation theorem.

To prove that µ satisfies the subinvariance relation (3.26), let K ⊂ {1, . . . , k}. We

first simplify the N -th partial sum
(∏

j∈K(1−e−βrjRej)
)∑

0≤n≤N e
−βr·nRn for N ∈ Nk.

We have,(∏
j∈K(1− e−βrjRej)

)∑
0≤n≤N

e−βr·nRn =
(∏
j∈K

(1− e−βrjRej)
)( ∑

0≤n≤N

k∏
i=1

e−βriniRniei

)

=
(∏
j∈K

(1− e−βrjRej)
)( k∏

i=1

Ni∑
ni=0

e−βriniRniei

)
by identity (3.29)

=
(∏
j∈K

(1− e−βrjRej)
)(∏

i∈K

Ni∑
ni=0

e−βriniRniei
∏

i∈{1,...,k}\K

Ni∑
ni=0

e−βriniRniei

)
by (3.30).

Relabelling the indices in products, we have(∏
j∈K

(1− e−βrjRej)
) ∑

0≤n≤N

e−βr·nRn

=
∏

i∈{1,...,k}\K

( Ni∑
ni=0

e−βriniRniei
)∏
j∈K

( Nj∑
nj=0

e−βrjnjRnjej −
Nj∑
nj=0

e−βrj(nj+1)R(nj+1)ej
)
.(3.34)

Now we can compute
(∏

j∈K(1− e−βrjRej)
)∑

n≥0 e
−βr·nRnε by applying (3.34) to

ε and letting N →∞. Notice that for each j ∈ K, we have

∞∑
nj=0

e−βrjnjRnjejε−
∞∑

nj=0

e−βrj(nj+1)R(nj+1)ejε = ε.

It then follows that(∏
j∈K

(1− e−βrjRej)
)∑
n≥0

e−βr·nRnε =
∏

i∈{1,...,k}\K

( ∞∑
ni=0

e−βriniRniei
)
ε.

The argument in the last paragraph of the proof of [1, Proposition 4.2(b)], shows that

applying each
∑∞

ni=0 e
−βriniRniei to a finite regular Borel measure gives a finite regular
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Borel measure. It then follows that
∏

j∈K(1 − e−βrjRej)
)∑

n≥0 e
−βr·nRnε is a finite

regular Borel measure. Thus∫
a d
(∏
i∈K

(1− e−βriRei)
∑

0≤n≤N

e−βr·nRnε
)
≥ 0 for all positive a ∈ C(Z).

Thus µ satisfies the subinvariance relation (3.26).

To prove that ε =
(∏k

i=1

(
1− e−βriRei

))
µ, it suffices to apply the argument of the

previous two paragraphs with K = {1, . . . , k}.
To see the relation between µ and fβ, we compute using (3.25):

µ(Z) =
∑
n∈Nk

e−βr·n(Rnε)(Z)

=
∑
n∈Nk

e−βr·n
∫

1 d(Rnε)

=
∑
n∈Nk

e−βr·n
∫
|h−n(z)| dε(z).

An application of Tonelli’s theorem implies that

µ(Z) =

∫ ∑
n∈Nk

(e−βr·n|h−n(z)|) dε(z) =

∫
fβ dε.

Since Z is compact and fβ is continuous on Z, µ(Z) =
∫
fβ dε < ∞. Also µ is a

probability measure if and only if
∫
fβ dε = 1.

We now look at (c). First note that the measure ε is obtained by finitely many

times applications of the bounded operators Rei(1 ≤ i ≤ k) on the measure µ. Since

µ is a finite measure, ε is a finite measure as well. The subinvariance relation (3.26)

says that ε is a positive measure. An application of the Riesz-representation theorem

implies that ε is a Borel measure on Z. Since ε is finite, it is regular as well (see [19,

Theorem 7.8]).

To check ∑
n∈Nk

e−βr·nRnε = µ,(3.35)

we calculate the N -th partial sum using the identity (3.29):

∑
0≤n≤N

e−βr·nRnε =
( ∑

0≤n≤N

e−βr·nRn

k∏
i=1

(
1− e−βriRei

))
µ

=
( ∑

0≤n≤N

k∏
i=1

e−βriniRniei
(
1− e−βriRei

))
µ
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=
( k∏
i=1

Ni∑
ni=0

(
e−βriniRniei − e−βri(ni+1)R(ni+1)ei

))
µ.(3.36)

Let i ∈ {1, . . . , k} and Ni →∞. Applying each sum in the last line of (3.36) to µ, we

have
∞∑
ni=0

e−βriniReiniµ−
∞∑
ni=0

e−βri(ni+1)Rei(ni+1)µ = µ.

Taking the product over 1 ≤ i ≤ k, completes the proof of (3.35).

The next Proposition shows that every KMS states on (NT (X), α) gives a proba-

bility measure on Z satisfying the subinvariance relation (3.37). This proposition is an

extension of our result in [1, Proposition 4.1] for a single local homeomorphism. There

is also a similar result for the Toeplitz-Cuntz-Krieger algebra of a higher-rank graph

in [28, Proposition 4.1(a)].

Proposition 3.2.8. Let h1, . . . , hk be commuting and surjective local homeomorphisms

on a compact Hausdorff space Z and let X be the associated product system over Nk,

as in Corollary 2.1.2. Let r ∈ (0,∞)k and suppose that α : R→ Aut(NT (X)) is given

in terms of the gauge action by αt = γeitr . Suppose φ is a KMSβ state of (NT (X), α),

and µ is the probability measure on Z such that φ(ψ0(a)) =
∫
a dµ for all a ∈ C(Z).

Let K be a subset of {1, . . . , k} and write eJ :=
∑

j∈J ej for all J ⊆ K. Then∫
a dµ+

∑
∅(J⊆K

(−1)|J |e−βr·eJ
∫
a d
(
ReJµ

)
≥ 0 for all positive a ∈ C(Z).(3.37)

To prove the Proposition 3.2.8, we need the following simple lemma.

Lemma 3.2.9. Let h1, . . . , hk be ∗-commuting and surjective local homeomorphisms

on a compact Hausdorff space Z and let X be the associated product system as in

Corollary 2.1.2. Let T be the Fock representation of X. Take n ∈ Nk, and let {ρl}dl=0

be a partition of unity such that hn|supp ρl is injective for each l. Set τl :=
√
ρl. Then

the restriction of
∑d

l=0 Tn(τl)Tn(τl)
∗ to each m-summand Xm of the Fock module is the

identity map if m ≥ n, and is otherwise 0.

Proof. Let m ∈ Nk. If m � n, then the adjoint formula for the Fock representation

(1.17) implies that
∑d

l=0 Tn(τl)Tn(τl)
∗ vanishes on Xm. Now let m ≥ n. It suffices to

prove
d∑
l=0

Tn(τl)Tn(τl)
∗(x) = x,
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for x = σn,,m−n(x′ ⊗ x′′) where x′ ⊗ x′′ ∈ Xn �A Xm−n.

To see this, we compute by using the definition of the Fock representation and the

adjoint formula (1.17):

( d∑
l=0

Tn(τl)Tn(τl)
∗
)(
σn,m−n(x′ ⊗ x′′)

)
=

d∑
l=0

Tn(τl)
(
〈τl, x′〉 · x′′

)
=

d∑
l=0

σn,n−m
(
τl ⊗ 〈τl, x′〉 · x′′

)
.

Lemma 3.1.1(a) implies that {τl}dl=0 is a Parseval frame for the fibre Xm. Applying the

reconstruction formula for {τl}dl=0, we have

( d∑
l=0

Tn(τl)Tn(τl)
∗
)(
σn,m−n(x′ ⊗ x′′)

)
= σm,m−n

( d∑
l=0

τl · 〈τl, x′〉 ⊗ x′′
)

= σn,m−n
(
x′ ⊗ x′′

)
which is precisely x as required.

Proof of Proposition 3.2.8. Let a be a positive element of C(Z). If K = ∅, since a

is positive,
∫
a dµ ≥ 0. So we assume K 6= ∅. We apply the method of the proof of

[1, Proposition 4.1]. So we first write each integral in (3.37) in terms of elements of

NT (X) and then use the Fock representation to show that the sum of these integrals

is positive.

The first integral in (3.37) by assumption is∫
a dµ = φ

(
ψ0(a)

)
.(3.38)

Now consider J-summand. To write the integral
∫
a d
(
ReJµ

)
in terms of elements of

NT (X), let {UJ
l }dl=0 be an open cover of Z such that heJ |UJl is injective and choose

a partition of unity {ρJl }dl=0 subordinate to {UJ
l }dl=0. Define τJl :=

√
ρl. Remember

that the fibre XeJ in X is the graph correspondence (Z,Z, id, heJ ). Then applying the

calculation in the first two paragraphs of [1, Proposition 4.1], to XeJ shows that

∫
a d
(
ReJµ

)
= eβr·eJφ

( d∑
l=0

ψeJ (a · τJl )ψeJ (τJl )
∗
)

= eβr·eJφ
( d∑
l=0

ψ0(a)ψeJ (τJl )ψeJ (τJl )
∗
)
.(3.39)
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Putting (3.38) and (3.39) in the left-hand side of (3.37), we have∫
a dµ+

∑
∅(J⊆K

(−1)|J |e−βr·eJ
∫
a d
(
ReJµ

)
= φ(ψ0(a)) +

∑
∅(J⊆K

(−1)|J |φ
( d∑
l=0

ψ0(a)ψeJ (τJl )ψeJ (τJl )
∗
)

= φ
(
ψ0(a) +

∑
∅(J⊆K

(−1)|J |
d∑
l=0

ψ0(a)ψeJ (τJl )ψeJ (τJl )
∗
)
,(3.40)

which express the integrals in (3.37) in terms of elements of NT (X).

Next we show that the right-hand side of (3.40) is positive. Since φ is a state, it

suffices to show that

ψ0(a) +
∑

∅(J⊆K

(−1)|J |ψ0(a)
d∑
l=0

ψeJ (τJl )ψeJ (τJl )
∗ ≥ 0.(3.41)

To do this, we use the Fock representation T of X. We aim to prove(
T0(a) +

∑
∅(J⊆K

(−1)|J |T0(a)
d∑
l=0

TeJ (τJl )TeJ (τJl )
∗
)

(xn) ≥ 0(3.42)

for all xn ∈ Xn, n ∈ Nk.
Fix n ∈ Nk and xn ∈ Xn. Let I := {i | i ∈ K,ni 6= 0}. Applying Lemma 3.2.9 with

{τJl }dl=0 implies that the J-summands with n � eJ vanishes. Since n ≥ eJ is equivalent

to J ⊆ I, the outer sum in (3.42) reduces to(
T0(a) +

∑
∅(J⊆I

(−1)|J |T0(a)
d∑
l=0

TeJ (τJl )TeJ (τJl )
∗
)

(xn).

Now we compute using Lemma 3.2.9(
T0(a) +

∑
∅(J⊆I

(−1)|J |T0(a)
d∑
l=0

TeJ (τJl )TeJ (τJl )
∗
)

(xn)

= T0(a)(xn) +
∑
∅(J⊆I

(−1)|J |T0(a)(xn)

=
∑
∅⊂J⊆I

(−1)|J |T0(a)(xn).

This vanishes because the number of subsets with odd cardinality equals with the

number of subsets with even cardinality. Thus(
T0(a) +

∑
∅(J⊆K

(−1)|J |
d∑
l=0

TeJ (a · τJl )TeJ (τJl )
∗
)

(xn) ≥ 0.
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We now deduce that T0(a) +
∑

∅(J⊆K(−1)|J |
∑d

l=0 TeJ (a · τJl )TeJ (τJl )
∗

is a positive

operator on F (X). Since the induced homomorphism T∗ : NT (X) → L(F (X)) is an

injection (see Remark 1.4.1), it follows that

ψ0(a) +
∑

∅(J⊆K

(−1)|J |ψ0(a)
d∑
l=0

ψeJ (τJl )ψeJ (τJl )
∗ ≥ 0,

as required.

3.3 KMS states at large inverse temperatures

In this section we prove our main theorem which characterizes the KMSβ states of

(NT (X), α) for large β. We found a one-to-one correspondence between the KMS

states on (NT (X), α) and the probability measures on Z satisfying the subinvariance

relation (3.26). This theorem is a generalization of our result in [1, Theorem 6.1] for

dynamical system associated to a single local homeomorphism. There is also a similar

characterization in [27, Theorem 6.1] for the dynamics arising from higher-rank graphs.

As a corollary, we also obtain some results for the dynamical system (O(X), α̃).

Theorem 3.3.1. Let h1, . . . , hk be ∗-commuting and surjective local homeomorphisms

on a compact Hausdorff space Z. Let X be the associated product system over Nk, as

in Corollary 2.1.2. For 1 ≤ i ≤ k let βci be as in (3.28), and suppose that r ∈ (0,∞)k

satisfies βri > βci for all i. Let fβ be the function in Proposition 3.2.7(a) and define

α : R→ Aut(NT (X)) by αt = γeitr .

(a) Suppose that ε is a finite regular Borel measure on Z such that
∫
fβ dε = 1, and

take µ :=
∑

n∈Nk e
−βr·nRnε. Then there is a KMSβ state φε on (NT (X), α) such

that

φε
(
ψm(x)ψp(y)∗

)
=

0 if m 6= p

e−βr·m
∫
〈y, x〉 dµ if m = p.

(3.43)

(b) If in addition r has rationally independent coordinates, then the map ε 7→ φε is

an affine isomorphism of

Σβ :=

{
ε ∈M(Z)+ :

∫
fβ dε = 1

}
onto the simplex of KMSβ states of (NT (X), α). Given a state φ, let µ be the

probability measure such that φ(ψ0(a)) =
∫
a dµ for a ∈ C(Z). Then the inverse

of ε 7→ φε takes φ to ε :=
∏k

i=1(1− e−βriRei)µ.
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Proof of (a). Let ε be a finite regular Borel measure on Z. We follow the structure of

the proof of [1, Theorem 5.1]. Thus we aim to construct the KMS state φε by using

a representation θ of X on Hθ :=
⊕

n∈Nk L
2(Z,Rnε). Notice that here each Rn is a

bounded operator on C(Z)∗ while in [1, Theorem 5.1] the operation R was defined only

on measures (positive functionals). We write ξ = (⊕ξn) for the elements of the direct

sum. For m ∈ Nk and x ∈ Xm, we claim that there is a well-defined operator θm(x) on

Hθ such that

(θm(x)ξ)n(z) =

0 if n � m

x(z)ξn−m(hm(z)) if n ≥ m.
(3.44)

Let ξ = (⊕ξn) ∈
⊕

n∈Nk L
2(Z,Rnε). Then

‖θm(x)ξ‖2 =
∑
n∈Nk
‖(θm(x)ξ)n‖2

=
∑
n≥m

∫
|x(z)|2|ξn−m(hm(z))|2 d(Rnε)(z)

=
∑
n∈Nk

∫
|x(z)|2|ξn(hm(z))|2 d(Rn+mε)(z)

≤
∑
n∈Nk
‖x‖2

∞

∫ ∑
hm(w)=z

|ξn(hm(w))|2 d(Rnε)(z)

=
∑
n∈Nk
‖x‖2

∞

∫ ∑
hm(w)=z

|ξn(z)|2 d(Rnε)(z)

≤
∑
n∈Nk
‖x‖2

∞cm

∫
|ξn(z)|2 d(Rnε)(z) (where cm = maxz |h−m(z)|)

= cm‖x‖2
∞‖ξ‖2.(3.45)

Thus θm(x) ∈ B(Hθ).

Next we apply a similar calculation to compute the adjoint θ(x)∗. Take η ∈ Hθ,

then (
θm(x)ξ

∣∣ η) =
∑
n∈Nk

((
θm(x)ξ

)
n

∣∣∣ ηn)
=
∑
n∈Nk

∫
(θm(x)ξ)n(z)ηn(z) d(Rnε)(z)

=
∑
n≥m

∫
x(z)ξn−m(hm(z))ηn(z) d(Rnε)(z)

=
∑
n∈Nk

∫
x(z)ξn(hm(z))ηn+m(z) d(Rn+mε)(z)
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=
∑
n∈Nk

∫ ∑
hm(w)=z

x(w)ξn(hm(w))ηn+m(w) d(Rnε)(z)

=
∑
n∈Nk

∫
ξn(z)

∑
hm(w)=z

x(w)ηn+m(w) d(Rnε)(z).

Thus θm(x)∗ satisfies

(3.46)
(
θm(x)∗η

)
n
(z) =

∑
hm(w)=z

x(w)ηn+m(w) for η ∈ Hθ.

Next we claim that θ is a Toeplitz representation of X. We check conditions

(T1)−(T3) of Definition 1.3.1. For (T1), since each θm : Xm → B(Hθ) is clearly

linear, we need only check that θ0 : A → B(Hθ) is a homomorphism on A = C(Z)

here. Since the multiplication in A is pointwise multiplication, for a, a′ ∈ A, we have(
θ0(aa′)ξ

)
n
(z) = a(z)a′(z)ξn(z) = a(z)

(
θ0(a′)ξ

)
n
(z) =

(
θ0(a)θ0(a′)ξ

)
n
(z).

Thus θ0 : A→ B(Hθ) is a homomorphism.

To check (T2), fix m and x1, x2 ∈ Xm. Then(
θ0(〈x1, x2〉)ξ

)
n
(z) = 〈x1, x2〉(z)ξn(z)

=
∑

hm(w)=z

x1(w)x2(w)ξn(z)

=
∑

hm(w)=z

x1(w)x2(w)ξn(hm(w)).

Since (θm(x2)ξ)n+m(w) = x2(w)ξn(hm(w)),(
θ0(〈x1, x2〉)ξ

)
n
(z) =

∑
hm(w)=z

x1(w)(θm(x2)ξ)n+m(w).

Now formula (3.46) implies that(
θ0(〈x1, x2〉)ξ

)
n
(z) =

(
θm(x1)∗θm(x2)ξ

)
n
(z).

Thus θ0(〈x1, x2〉) = θm(x1)∗θm(x2), giving (T2).

For (T3), let x ∈ Xm and y ∈ Xp. If n � m + p, then
(
θm+p(xy)ξ

)
n
(z) = 0. Also

we have (
θm(x)θp(y)ξ

)
n
(z) = x(z)

(
θp(y)ξ

)
n−m

(
hm(z)

)
,

which vanishes for n − m � p. So we assume n ≥ m + p. Using the definition of

multiplication in X, we have(
θm+p(xy)ξ

)
n
(z) =

(
θm+p

(
σm,p(x⊗ y)

)
ξ
)
n
(z)
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=
(
σm,p(x⊗ y)

)
(z)ξn−(m+p)

(
hm+p(z)

)
= x(z)y

(
hm(z)

)
ξn−(m+p)

(
hm+p(z)

)
= x(z)

(
θp(y)ξ

)
n−m(z)

(
hm(z)

)
=
(
θm(x)θp(y)ξ

)
n
(z).

This complete our proof of (T3).

Next we show that θ is Nica-covariant. Let 1m be the identity operator on the fibre

Xm and αθ : Nk → End θ0(A)′ be the action as in [20, Proposition 4.1]. Since each fibre

Xm is essential and θ is a representation on the Hilbert space Hθ, we must show that

αθm(1m)αθp(1p) =

αθm∨p(1m∨p) if m ∨ p <∞

0 otherwise.
(3.47)

for all m, p ∈ Nk. To do this, fix m, p ∈ Nk. Clearly m ∨ p < ∞. So we check

αθm(1m)αθp(1p) = αθm∨p(1m∨p). Choose a partition of unity {ρj : 1 ≤ j ≤ d} for Z such

that hm∨p is injective on each supp ρj and take τj :=
√
ρj ∈ Xm. Notice that {τj}dj=0

can be viewed as a Parseval frame for the fibres Xm, Xp and Xm∨p. Now to check

(3.47), Lemma 1.3.4 implies that it suffices to prove that

( d∑
i=1

θm(τi)θm(τi)
∗
)( d∑

j=1

θp(τj)θp(τj)
∗
)

=
( d∑
l=1

θm∨p(τl)θm∨p(τl)
∗
)
.(3.48)

To see this, let ξ ∈ Hθ and z ∈ Z. We evaluate both sides of (3.48) at ξ:

For the right-hand side of (3.48), notice that the definition of θm∨p implies that((∑d
l=1 θm∨p(τl)θm∨p(τl)

∗)ξ)
n

vanishes unless n ≥ m∨ p. So we assume n ≥ m∨ p and

compute using the definition of θm∨p and the adjoint formula (3.46):

(( d∑
l=1

θm∨p(τl)θm∨p(τl)
∗
)
ξ
)
n
(z) =

d∑
l=1

(
θm∨p(τl)

(
θm∨p(τl)

∗ξ
))

n
(z)

=
d∑
l=1

(
τl(z)

(
θm∨p(τl)

∗ξ
)
n−m∨p

(
hm∨p(z)

))
=

d∑
l=1

(
τl(z)

∑
hm∨p(w)=hm∨p(z)

τl(w)ξn(w)
)
.

Since hm∨p is injective on each supp τl, we have

(( d∑
l=1

θm∨p(τl)θm∨p(τl)
∗
)
ξ
)
n
(z) =

d∑
l=1

(
τl(z)τl(z)ξn(z)

)
= ξn(z)

d∑
l=1

∣∣τl(z)
∣∣2 = ξn(z).
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Thus

(( d∑
l=1

θm∨p(τl)θm∨p(τl)
∗
)
ξ
)
n

=

ξn if n ≥ m ∨ p

0 otherwise.
(3.49)

For the left-hand side of (3.48), notice that {τi}di=0 is a Parseval frame for Xm and

hm is injective on each supp τi. Then applying the same calculation of the previous

paragraph (using formula for θm(τi) and θm(τi)
∗), we have

(( d∑
i=1

θm(τi)θm(τi)
∗

d∑
j=1

θp(τj)θp(τj)
∗
)
ξ
)
n

=


((∑d

j=1 θp(τj)θp(τj)
∗)ξ)

n
if n ≥ m

0 otherwise.

Now suppose n ≥ m. Again since {τj}dj=0 is a Parseval frame for Xp and hp is injective

on each supp τj. A similar computation for
((∑d

j=1 θp(τj)θp(τj)
∗)ξ)

n
, implies that

(( d∑
i=1

θm(τi)θm(τi)
∗

d∑
j=1

θp(τj)θp(τj)
∗
)
ξ
)
n

=

ξn if n ≥ m ∨ p

0 otherwise.
(3.50)

Comparing (3.49) and (3.50) gives (3.48), and hence θ is a Nica-covariant representa-

tion.

Now the universal property of NT (X) ([20, Theorem 6.3]), gives us a homomor-

phism θ∗ : NT (X)→ B(Hθ) such that θ∗ ◦ ψ = θ.

For each q ∈ Nk, we choose a finite partition {Zq,i : 1 ≤ i ≤ Iq} of Z by Borel

sets such that hq is one-to-one on each Zq,i.
1 We take Z0,1 = Z and write I0 = 1. Let

χq,i = χZq,i , and define ξq,i ∈
⊕

n∈Nk L
2(Z,Rnε) by

ξq,in =

0 if n 6= q

χq,i if n = q.

We now define φε : NT (X)→ C by

(3.51) φε(b) =
∑
q∈Nk

Iq∑
i=1

e−βr·q
(
θ∗(b)ξ

q,i
∣∣ ξq,i) for b ∈ NT (X),

To see φε is well-defined, we need to show that the series converges. Notice that

elements of C∗-algebras can be written as a linear combination of positive elements,

1To see that there is such a partition, notice that since hq is a local homeomorphism on Z, there

is an open cover {Ul}dl=0 of Z such that each hq|Ul
is injective. Now set V0 := U0 and for each l let

Vl := Ul \ ∪l−1
j=0Vj . Clearly {Vl}dl=0 is a Borel partition of Z. Since this partition is dependent on q,

we relabel it as {Zq,i}
Iq
i=1.
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and a positive element b satisfies b ≤ ‖b‖1. Thus it suffices for us to show that the

series defining φε(1) is convergent. By definition φε(1) is

∑
q∈Nk

Iq∑
i=1

e−βr·q
(
χZq,i

∣∣χZq,i) =
∑
q∈Nk

Iq∑
i=1

e−βr·q
∫
χZq,i(z)χZq,i(z) d(Rqε)(z)

=
∑
q∈Nk

Iq∑
i=1

e−βr·qRqε(Zq,i).

Since {Zq,i}i is a partition of Z, we have

∑
q∈Nk

Iq∑
i=1

e−βr·q
(
χZq,i

∣∣χZq,i) =
∑
q∈Nk

e−βr·qRqε(Z).

By Proposition 3.2.7(b), the sum
∑

q∈Nk e
−βr·qRqε converges to a measure µ. Since∫

fβ dε = 1, µ is a probability measure. Then

∑
q∈Nk

Iq∑
i=1

e−βr·q
(
χZq,i

∣∣χZq,i) = µ(Z) = 1.

Thus φε(1) = 1, and the formula (3.51) gives us a well-defined state on T (X(E)).

To see that φε satisfies (3.43), take x ∈ Xm, y ∈ Xp and b = ψm(x)ψp(y)∗. Since

ξq,i is zero in all except the qth summand of
⊕

n∈Nk L
2(Z,Rnε),

θ∗(b)ξ
q,i = θ∗(ψm(x)ψp(y)∗)ξq,i = θm(x)θp(y)∗ξq,i

is zero in all but the (q − p+m)th summand. Thus(
θ∗(b)ξ

q,i
∣∣ ξq,i) = 0 for all q, i whenever p 6= m,

and φε satisfies (3.43) when p 6= m. Then we assume p = m. If q � m, then

θm(x)θm(y)∗ξq,i = 0. Now suppose q ≥ m. Since hq is injective on Zq,i, it follows that

hm is injective on each Zq,i . Then(
θm(x)θm(y)∗ξq,i

∣∣ ξq,i) =

∫ (
x(z)

∑
hm(w)=hm(z)

y(w)χq,i(w)
)
χq,i(z) d(Rqε)(z)

=

∫
x(z)y(z)χq,i(z) d(Rqε)(z).

Since the Zq,i partition Z, summing over i, we have

Iq∑
i=1

(
θ∗(ψm(x)ψm(y)∗)ξq,i

∣∣ ξq,i) =

∫
x(z)y(z) d(Rqε)(z).
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Now using the formula (3.25) for Rm, we have

φε
(
ψm(x)ψm(y)∗

)
=
∑
q≥m

e−βr·q
∫
x(z)y(z) d(Rqε)(z)(3.52)

=
∑
q≥m

e−βr·q
∫ ∑

hm(w)=z

x(w)y(w) d(Rq−mε)(z)

=
∑
q∈Nk

e−βr·(m+q)

∫
〈y, x〉(z) d(Rqε)(z)

= e−βr·m
∫
〈y, x〉 d

(∑
q∈Nk

e−βqRqε
)
.

Recall that
∑

q∈Nk e
−βr·qRqε = µ. Then

φε
(
ψm(x)ψm(y)∗

)
= e−βr·m

∫
〈y, x〉 dµ.

Thus φε satisfies (3.43).

To see that φε is a KMSβ state, we apply Proposition 3.1.6 with m = p = 0 and

x = y = a′ ∈ A to get

φε
(
ψ0(a′a′∗)

)
= φε

(
ψ0(a′)ψ0(a′)∗

)
=

∫
〈a′, a′∗〉A dµ =

∫
a′a′∗ dµ.

This implies that φε(ψ0(a)) =
∫
a dµ for all positive a ∈ A and so for all elements of

A. It then follows that φε
(
ψ0

(
〈y, x〉

))
=
∫
〈y, x〉 dµ. Now

φε
(
ψm(x)ψn(y)∗

)
= δm,ne

−βr·mφε
(
ψ0

(
〈y, x〉

))
,

and the Proposition 3.1.6(a) says that φε is a KMSβ state.

Proof of Theorem 3.3.1 (b). Now assume that r has rationally independent coordi-

nates. We first claim that Σβ is a compact subset of C(Z)∗ in the weak∗ norm. Then to

prove that ε 7→ φε is an isomorphism, it suffices to show that it is injective, surjective,

and continuous.

For the claim, we show that Σβ is a closed subset of the compact unit ball of C(Z)∗.

Let ε ∈ Σβ. Recall that fβ = |fβ| ≥ 1. Thus

‖ε‖C(Z)∗ = sup
|f |≤1,
f∈C(Z)

|
∫
f dε| ≤ sup

|f |≤1,
f∈C(Z)

∫
|f | dε ≤

∫
fβ dε = 1.

Then Σβ is a subset of the unit ball in C(Z)∗. To check that it is closed, take a sequence

{εj}∞j=1 ⊆ Σβ and ε ∈ C(Z)∗ such that εj → ε in weak∗ topology. Since

ε(f) = lim
j→∞

εj(f) ≥ 0 for all positive f ∈ C(Z),
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the Riesz-representation theorem implies that ε ∈M(Z)+. Also note that∫
fβ dε = lim

j→∞

∫
fβ dεj = 1.

Then ε ∈ Σβ and that Σβ is closed, as required.

For the surjectivity of ε 7→ φε, let φ be a KMSβ state, and let µ be the probability

measure such that φ
(
ψ0(a)

)
=
∫
a dµ for a ∈ C(Z). Since r has rationally independent

coordinates, Proposition 3.1.6 implies that φ satisfies

φ
(
ψm(x)ψn(y)∗

)
= δm,ne

−βr·mφ
(
ψ0

(
〈y, x〉

))
= e−βr·m

∫
〈y, x〉 dµ.(3.53)

On the other hand, since µ satisfies subinvariance relation (3.26) (by Proposition 3.2.8),

Proposition 3.2.7(c) implies that ε :=
(∏k

i=1

(
1−e−βriRei

))
µ belongs to Σβ and satisfies∑

n∈Nk e
−βr·nRnε = µ. Now applying part (a) to ε gives a KMSβ state φε such that

φε
(
ψm(x)ψn(y)∗

)
=

0 if m 6= n

e−βr·m
∫
〈y, x〉 dµ if m = n.

(3.54)

Comparing equations (3.54) and (3.53), we have φ = φε. This shows that ε 7→ φε is

surjective.

To show the injectivity of ε 7→ φε, let φε1 = φε2 be two KMSβ states. Suppose µ1, µ2

are probability measures such that φε1 ◦ ψ0(a) =
∫
a dµ1 and φε2 ◦ ψ0(a) =

∫
a dµ2 for

all a ∈ A. Then µ1 = µ2. Now the construction of the previous paragraph shows that

ε1 =
( k∏
i=1

(
1− e−βriRei

))
µ1 =

( k∏
i=1

(
1− e−βriRei

))
µ2 = ε2.

Thus ε 7→ φε is one-to-one.

Finally, to check the continuity of ε 7→ φε, suppose εj → ε in Σβ. Let µ :=∑
n∈Nk e

−βr·nRnε and µj :=
∑

n∈Nk e
−βr·nRnεj. Remember from the calculation (3.33)

that ∥∥∥ ∑
n∈Nk

e−βr·nRnε
∥∥∥
C(Z)∗

≤ ‖ε‖C(Z)∗ .

It then follows µj → µ in weak∗ topology. Now the formula (3.43) for φε shows that

φεj → φε in weak∗ topology.

The next Corollary is a generalization of [1, Corollary 5.3] to the dynamical system

(O(X), α).
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Corollary 3.3.2. Let h1, . . . , hk be ∗-commuting and surjective local homeomorphisms

on a compact Hausdorff space Z. Let X be the associated product system over Nk, as

in Corollary 2.1.2. For each 1 ≤ i ≤ k, take βci as in (3.28) and suppose r ∈ (0,∞)k

has rationally independent coordinates. Define α̃ : R → Aut
(
O(X)

)
in terms of the

gauge action γ̃ by α̃t = γ̃eitr . If there is a KMSβ state of (O(X), α̃), then there exists

an 1 ≤ i ≤ k such that βri ≤ βci.

Proof. Suppose φ is a KMSβ state of (O(X), α̃). Aiming for a contradiction suppose

that βri > βci for all 1 ≤ i ≤ k. Let q : NT (X) → O(X) be the quotient map as

in Lemma 1.3.8. Then φ ◦ q is a KMSβ state for the system
(
NT (X), α

)
considered

in Theorem 3.3.1. Since r has rationally independent coordinates part (b) of Theo-

rem 3.3.1 gives a measure ε on Z such that
∫
fβ dε = 1 and φ ◦ q = φε. Since fβ ≥ 1,∫

fβ dε = 1 implies that ε(Z) > 0.

We temporarily set K := {1, . . . , k} and take an open cover {Ul : 1 ≤ l ≤ d} of Z

such that heJ |Ul is injective for all J ⊂ K and 1 ≤ l ≤ d. By applying [46, Lemma 4.32],

we can find open cover {Vl : 1 ≤ l ≤ d} for Z such that Vl ⊂ Ul. Since ε(Z) > 0, there

exists at least one l satisfying ε(Vl) > 0. Then we can find a function f ∈ C(Z) such

that f(z) 6= 0 for some z ∈ Vl (see [47, Lemma 2.12], for example).

Next for each J ⊂ K, take fJ := f ∈ XeJ and view |f |2 as an element of A = C(Z).

We aim to set up a contradiction by showing that

b := ψ0(|f |2) +
∑

∅(J⊆K

(−1)|J |ψJ(fJ)ψJ(fJ)∗

belongs to ker q while φε = φ ◦ q does not vanish on it. Since the left action of |f |2 on

each fibre XeJ is implemented by the finite-rank operator ΘfJ ,fJ , a routine calculation

for b shows that

b = ψ0(|f |2) +
∑

∅(J⊆K

(−1)|J |ψ(eJ )
(
ΘfJ ,fJ

)
=

∑
∅(J⊆K

(−1)(|J |+1)ψ0(|f |2) +
∑

∅(J⊆K

(−1)|J |ψ(eJ )
(
ϕeJ (|fJ |2)

)
=

∑
∅(J⊆K

(−1)|J |
(
ψ0(|f |2)− ψ(J)

(
ϕeJ (|f |2)

))
.

Thus b belong to ker q (because each summand does).

Next we compute φε(b) using the measure µ in part (b) of Theorem 3.3.1:

φε(b) =

∫
|f |2(z) dµ(z) +

∑
∅(J⊆K

(−1)|J |e−βr·eJ
∫ 〈

fJ , fJ
〉
(z) dµ(z)
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=

∫
|f |2(z) dµ(z) +

∑
∅(J⊆K

(−1)|J |e−βr·eJ
∫ ∑

heJ (w)=z

|f |2(w) dµ(z).

Using definition of R at equation (3.25) and the notation Re∅µ = µ, we have

φε(b) =

∫
|f |2(z) dµ(z) +

∑
∅(J⊆K

(−1)|J |e−βr·eJ
∫
|f |2(z) d(ReJµ)(z)

=
∑

∅⊆J⊆K

(−1)|J |e−βr·eJ
∫
|f |2(z) d(ReJµ)(z).

This is precisely
∫
|f |2(z) dε(z). It follows that φε(b) > 0, and we have a contradiction.

Thus there should be at least one 1 ≤ i ≤ k satisfying βri ≤ βci .
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3.4 KMS states at the critical inverse temperature

In Theorem 3.3.1, we first chose an r ∈ Nk and then characterised KMS states of the

dynamical system
(
NT (X), α

)
for β satisfying

β > r−1
i βci for all 1 ≤ i ≤ k.(3.55)

Thus the range of possible inverse temperature is dependent on the choice of r ∈ Nk.
When r is a multiple of (βc1 , . . . , βck), following the recent conventions for the higher

rank graph algebras (see [26, 28, 59, 60]), we call the common value βc := r−1
i βci the

critical inverse temperature. In particular, we are interested in r := (βc1 , . . . , βck) which

gives the critical inverse temperature βc = 1. In this case, we refer to the associated

dynamics α : t 7→ γeitr as the preferred dynamics.

In the next theorem, we consider the preferred dynamics α and discuss the KMS

states at the critical inverse temperature. Theorem 3.4.1 is a generalization of [1,

Theorem 6.1] and the proof follows a similar method.

Theorem 3.4.1. Let h1, . . . , hk be ∗-commuting and surjective local homeomorphisms

on a compact Hausdorff space Z. Let X be the associated product system over Nk as in

Corollary 2.1.2. For each 1 ≤ i ≤ k, let βci be as in (3.28) and set r := (βc1 , . . . , βck).

Define α : R→ Aut
(
NT (X)

)
and α̃ : R→ Aut

(
O(X)

)
in terms of the gauge actions

by αt = γeitr and α̃t = γ̃eitr . Then there is a KMS1 state on
(
NT (X), α

)
, and at least

one such state factors through a KMS1 state of
(
O(X), α̃

)
.

To prove this, we need the next lemma from [1].

Lemma 3.4.2 ([1], Lemma 6.2). Suppose (A,R, α) is a dynamical system, and J is

an ideal in A generated by a set P of positive elements which are fixed by α. If φ is

a KMSβ state of (A,α) and φ(p) = 0 for all p ∈ P , then φ factors through a state of

A/J .

Proof of Theorem 3.4.1. Choose a decreasing sequence {βj}j∈N such that βj → 1 and

a probability measure ν on Z. Then Kj :=
∫
fβj dν belongs to [1,∞), and εj := K−1

j ν

satisfies
∫
fβj dεj = 1. Thus for each j, part (a) of Theorem 3.3.1 gives a KMSβj state

φεj on
(
NT (X), α

)
. Since {φεj}j is a sequence in the compact unit ball of C(Z)∗, by

passing to a subsequence and relabelling, we may assume that φεj → φ for some state

φ. Now [5, Proposition 5.3.23] implies that φ is a KMS1 state.

To show that at least one such state factors through
(
O(X), α̃

)
, we apply the

construction of the previous paragraph to a particular sequence of measures εj. Take
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one of the local homeomorphisms, for example h1. Since for all d ∈ N, z 7→ |h−d1 (z)|
is continuous (see [8, Lemma 2.2]), applying Proposition 2.3 of [18] gives u ∈ Z such

that2

|h−d1 (u)| ≥ edβc1 for all d ∈ N.(3.56)

Now let δu be the unit point mass at u, and take εj = fβj(u)−1δu. The argument of

the first paragraph gives a sequence of KMSβj states on
(
NT (X), α

)
which converges

to a KMS1 state φ of
(
NT (X), α

)
in the weak* topology.

We aim to show that φ factors through
(
O(X), α̃

)
. By Lemma 3.4.2, it suffices for

us to prove that the generators of the kernel of the quotient map q : NT (X)→ O(X)

are all positive, are fixed by α, and belong to kerφ. Remember from Lemma 1.3.8 that

ker q =
〈
ψ0(a)− ψ(n)(ϕn(a)) : n ∈ Nk, a ∈ ϕ−1

n (K(Xn))
〉
.

Fix n ∈ Nk and a ∈ ϕ−1
n (K(Xn)). Let {Un

l }
Ln
l=0 be an open cover of Z such that

hn|Unl is injective. Choose a partition of unity {ρnl } subordinate to {Un
l } and define

τnl :=
√
ρnl . The argument of the last paragraph in the proof of Corollary 2.1.2 shows

that ϕn(a) =
∑Ln

l=0 Θa·τnl ,τ
n
l

. Then

ψ0(a)− ψ(n)(ϕn(a)) = ψ0(a)− ψ(n)
( Ln∑
l=0

Θa·τnl ,τ
n
l

)
= ψ0(a)−

Ln∑
l=0

ψn(a · τnl )ψn(τnl )∗

= ψ0(a)
(

1−
Ln∑
l=0

ψn(τnl )ψn(τnl )∗
)
.

Thus the generators of ker q are of the form of
(
1−
∑Ln

l=0 ψn(τnl )ψn(τnl )∗
)
. Clearly they

are fixed by α.

Next we show that theses generators are positive. Writing T for the Fock repre-

sentation, Lemma 3.2.9 says that
(∑Ln

l=0 Tn(τnl )Tn(τnl )∗
)
(x) is either zero or x for all

x ∈ X. Therefore,

1−
Ln∑
l=0

Tn(τnl )Tn(τnl )∗

is positive in L(F (X)). Since the induced homomorphism T∗ : NT (X)→ L(F (X)) is

injective, it follows that each generator
(
1−
∑Ln

l=0 ψn(τnl )ψn(τnl )∗
)

is positive inNT (X).

2As we mentioned in the proof of [1, Theorem 6.1], the results of [18] are mainly about metric

spaces. But it seems that the argument for Proposition 2.3 in [18] does not need this hypothesis.

63



Now it remains to prove that

φ
( Ln∑
l=0

ψn(τnl )ψn(τnl )∗
)

= 1.(3.57)

Let µj be the measure
∑

m∈Nk e
βjr·mRmεj of Theorem 3.3.1(a). We compute using the

formula (3.43) for φεj :

φ
( Ln∑
l=0

ψn(τnl )ψn(τnl )∗
)

= lim
j→∞

φεj

( Ln∑
l=0

ψn(τnl )ψn(τnl )∗
)

= lim
j→∞

e−βjr·n
∫ Ln∑

l=0

〈
τnl , τ

n
l

〉
dµj(z).

Since hn is injective on supp τnl , we have

Ln∑
l=0

〈
τnl , τ

n
l

〉
(z) =

Ln∑
l=0

∑
hn(w)=z

τnl (w)τnl (w) =
∑

hn(w)=z

Ln∑
l=0

∣∣τnl (w)
∣∣2 =

∑
hn(w)=z

1 =
∣∣h−n(z)

∣∣.
Thus

e−βjr·n
∫ Ln∑

l=0

〈
τnl , τ

n
l

〉
dµj(z) = e−βjr·n

∫ ∣∣h−n(z)
∣∣ dµj(z)

=
∑
m∈Nk

e−βjr·(n+m)

∫ ∣∣h−n(z)
∣∣ d(Rmεj)(z).

Using formula (3.25) for Rm, we have

e−βjr·n
∫ Ln∑

l=0

〈
τnl , τ

n
l

〉
dµj(z) =

∑
m∈Nk

e−βjr·(n+m)

∫ ∑
hm(w)=z

∣∣h−n(w)
∣∣ dεj(z).

Remember εj = fβj(u)−1δu. Then

e−βjr·n
∫ Ln∑

l=0

〈
τnl , τ

n
l

〉
dµj(z) =

∑
m∈Nk

e−βjr·(m+n)
∣∣h−(m+n)(u)

∣∣fβj(u)−1

=
∑
m≥n

e−βjr·m
∣∣h−m(u)

∣∣fβj(u)−1.

Since fβj(u) =
∑

m∈Nk e
−βjr·m

∣∣h−m(u)
∣∣,

eβjr·n
∫ Ln∑

l=0

〈
τnl , τ

n
l

〉
dµj(z) =

(fβj(u)−
∑

m<n e
−βjr·m

∣∣h−m(u)
∣∣

fβj(u)

)
.
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Now to prove (3.57), it suffices to show that fβj(u) → ∞ as j → ∞. Fix j. Since

the inverse image
∣∣h−m(u)

∣∣ ≥ ∣∣h−m1(u)
∣∣, we have

fβj(u) ≥
∑
m∈Nk

e−βjr·m
∣∣h−m1

1 (u)
∣∣.

Recall that r = (βc1 , . . . , βck). Since
∑

m∈Nk e
−βjr·m =

∏k
i=1

∑
mi∈N e

−βjrimi , we have

fβj(u) ≥
[ ∑
m1∈N

e−βjβc1m1
∣∣h−m1

1 (u)
∣∣] k∏

i=2

∑
mi∈N

(e−βjβcimi).

It follows from the equation (3.56) that

fβj(u) ≥
[ ∑
m1∈N

(e−βjβc1+βc1 )m1

] k∏
i=2

∑
mi∈N

(e−βjβci )mi .

Since βj > 1, all series in the right-hand side are convergent geometric series. Com-

puting these series, we have

fβj(u) ≥
( 1

1− e−βjβc1+βc1

) k∏
i=2

( 1

1− e−βjβci
)

for all j.

Now if j →∞, the right hand side goes to infinity. Thus fβj(u)→∞, as required.

3.5 Ground states and KMS∞ states

In this section we describe the ground states and KMS∞ states of (NT (X), α). We

first provide a characterization for the ground states in Lemma 3.5.4. Then in Propo-

sition 3.5.5 we prove that there is a bijection between the simplex of the probability

measures on Z and the ground states of (NT (X), α). We also show that every ground

state on (NT (X), α) is a KMS∞ state.

The following definition and remarks have been taken from [35, page 19].

Definition 3.5.1. Let (A,R, α) be a dynamical system. Following [10], we say a state

φ is a KMS∞ state if it is the weak∗ limit of a sequence of KMSβi states as βi →∞. A

state φ is said to be a ground state, if the entire functions z 7→ φ(aαz(b)) are bounded

on the upper half-plan for all analytic elements a, b.

Remark 3.5.2. Here we distinguish between ground states and the KMS∞ states. But

in older literature (for example in [5, 41]), there was not such a distinction. Considering

our set-up, it follows from [10, Theorem 5.3.23] that every KMS∞ state is a ground

state. But a ground state need not be a KMS∞ state (see for example [10, page 447]

or [35, Theoerem 7.1]).
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Remark 3.5.3. Given a dynamical system (A,R, α), [41, Proposition 8.12.4]) implies

that it suffices to check the ground state condition on a set of analytic elements which

span a dense subspace of A. Note that the definition of ground states in [41] is slightly

different: A state φ is said to be ground state if all the functions z 7→ φ(aαz(b)) are

bounded by ‖a‖‖b‖. But it is shown in the proof of (2)⇒ (5) in [5, Proposition 5.3.19]

that an entire function which is bounded on the upper half-plane is bounded by the

sup norm of its restriction to the real axis.

Fortunately, in the dynamical system (NT (X), α), the sup norm of the restriction

of the functions z 7→ φ(aαz(b)) to the real line is bounded by ‖a‖‖b‖. To see this, let

a := ψm(x)ψn(y), b := ψp(s)ψq(t) and φ be a state of NT (X). Notice that for each

t ∈ R ∣∣φ(aαt(b))
∣∣ ≤ ‖φ‖∥∥bαt(a)

∥∥ ≤ ‖a‖‖b‖.
Since φ is bounded linear functional, we can extend this to all of NT (X). Thus any

ground state in our set-up is a ground state of [41]. Now [41, Proposition 8.12.4] implies

that it is enough to check the ground state condition on a set of analytic elements which

span a dense subspace of NT (X).

The following lemma is a generalisation of [28, Proposition 3.1(c)] and [27, Propo-

sition 2.1(b)] in the dynamical systems of graph algebras.

Lemma 3.5.4. Let h1, . . . , hk be ∗-commuting and surjective local homeomorphisms

on a compact Hausdorff space Z and let X be the associated product system as in

Corollary 2.1.2. Suppose r ∈ (0,∞)k and α : R → Aut(NT (X)) is given in terms of

the gauge action by αt = γeitr . Suppose β > 0 and let φ be a state on NT (X). Then

φ is a ground state of (NT (X), α) if and only if

φ
(
ψm(x)ψn(y)∗

)
= 0 whenever r ·m > 0 or r · n > 0.(3.58)

Proof. First notice that for every state φ, a+ ib ∈ C and m,n, p, q ∈ Nk, the definition

of α implies that

φ
(
ψm(x)ψn(y)∗αa+ib

(
ψp(s)ψq(t)

∗)) =
∣∣∣ei(a+ib)r·(p−q)φ

(
ψm(x)ψn(y)∗ψp(s)ψq(t)

∗
)∣∣∣

= e−br·(p−q)
∣∣∣φ(ψm(x)ψn(y)∗ψp(s)ψq(t)

∗
)∣∣∣.(3.59)

Now suppose φ is a ground state. Then∣∣∣φ(ψm(x)αa+ib

(
ψn(y)∗

))∣∣∣ = ebr·n
∣∣∣φ(ψm(x)ψn(y)∗

)∣∣∣,
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is bounded on the upper half plane b > 0. Thus φ
(
ψm(x)ψn(y)∗

)
= 0 whenever

r · n > 0. Since φ
(
ψn(y)ψm(x)∗

)
= φ

(
ψm(x)ψn(y)∗

)
, a symmetric calculation shows

that φ
(
ψn(y)ψm(x)∗

)
= 0 whenever r ·m > 0.

Next suppose that φ satisfies (3.58). It follows from Lemma 3.1.4 that there exist

{ξi,j}0≤i,j≤d ⊂ Xm+p−n∧p and {ηi,j}0≤i,j≤d ⊂ Xq+n−n∧p such that

ψm(x)ψn(y)∗ψp(s)ψq(t)
∗ =

∑
0≤i,j≤d

ψm+p−n∧p(ξi,j)ψq+n−n∧p(ηi,j)
∗.

Putting this in (3.59), we have

φ
(
ψm(x)ψn(y)∗αa+ib

(
ψp(s)ψq(t)

∗)) = e−br·(p−q)
∣∣∣φ( ∑

0≤i,j≤d

ψm+p−n∧p(ξi,j)ψq+n−n∧p(ηi,j)
∗
)∣∣∣.

The assumption (3.58) implies that the right-hand side is zero (consequently is bounded)

unless

r · (m+ p− n ∧ p) = 0 = r · (q + n− n ∧ p).

So suppose r · (m + p − n ∧ p) = 0 = r · (q + n − n ∧ p). Since r ∈ (0,∞)k, it follows

that

m+ p− n ∧ p = 0 = q + n− n ∧ p.

Then

φ
(
ψm(x)ψn(y)∗αa+ib

(
ψp(s)ψq(t)

∗)) = e−br·(p−q)
∣∣∣ ∑

0≤i,j≤d

φ
(
ψ0

(
〈ηi,j, ξi,j〉

))∣∣∣.
Notice that q and n − n ∧ p are both positive. Then q + n − n ∧ p = 0 implies that

q = 0. Now we have

φ
(
ψm(x)ψn(y)∗αa+ib

(
ψp(s)ψq(t)

∗)) = e−br·p
∣∣∣ ∑

0≤i,j≤d

φ
(
ψ0

(
〈ηi,j, ξi,j〉

))∣∣∣.
Thus φ is bounded on the upper half plane b > 0, and hence it is a ground state.

The next Proposition is an extension of [28, Proposition 8.1] and [27, Proposi-

tion 5.1] from dynamical systems of graph algebras to the dynamical system (NT (X), α).

Proposition 3.5.5. Let h1, . . . , hk be ∗-commuting and surjective local homeomor-

phisms on a compact Hausdorff space Z and let X be the associated product system as

in Corollary 2.1.2. Suppose r ∈ (0,∞)k and α : R → Aut(NT (X)) is given in terms

of the gauge action by αt = γeitr . For each probability measure ε on Z there is a unique

KMS∞ state φε such that
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φε
(
ψm(x)ψn(y)∗

)
=


∫
〈y, x〉 dε if m = n = 0

0 otherwise.
(3.60)

The map ε 7→ φε is an affine isomorphism of the simplex of probability measures on Z

onto the ground states of (NT (X), α), and that every ground state of (NT (X), α) is

a KMS∞ state.

Proof. Suppose ε is a probability measure on Z. For each 1 ≤ i ≤ k, let βci be as

in (3.28). Choose a sequence {βj}j∈N such that βj → ∞ and each βj > maxi r
−1
i βci .

For each βj, let fβj(z) be the function in Proposition 3.28 (a) and set Kj :=
∫
fβj dε.

Then Kj belongs to [1,∞), and εj := K−1
j ε satisfies

∫
fβj dεj = 1. Now part (a) of

Theorem 3.3.1 gives a KMSβj state φεj on
(
NT (X), α

)
. Since {φεj}j is a sequence in

the compact unit ball of C(Z)∗, by passing to a subsequence and relabelling, we may

assume that φεj → φε. Then φε is by definition a KMS∞ state.

We now show that φε satisfies (3.60). For each φεj , we have

φεj
(
ψm(x)ψn(y)∗

)
= δm,ne

−βjr·n
∫
〈y, x〉 dεj for all m,n ∈ Nk.

Thus φεj
(
ψm(x)ψn(y)∗

)
= 0 for m 6= n and hence φε

(
ψm(x)ψn(y)∗

)
= 0 if m 6= n. So

we suppose that m = n. If n 6= 0, then r ∈ (0,∞)k implies that e−βjr·n → 0, and again

φε
(
ψm(x)ψn(y)∗

)
= limj→∞ φεj

(
ψm(x)ψn(y)∗

)
= 0. So we assume that m = n = 0.

Fix z ∈ Z and let fβj(z) =
∑

p∈Nk e
−βjr·p|h−p(z)| as in Proposition 3.2.7(a). We

first show that fβj(z)→ 1 as j →∞. For each p ∈ Nk let

g(p) =

1 if p = 0

0 if p 6= 0 .

Clearly e−βjr·p|h−p(z)| → g(p) as j →∞. Since for each j, e−βjr·p|h−p(z)| is dominated

by e−β0r·p|h−p(z)|, the dominated convergence theorem implies that

fβj(z) =
∑
p∈Nk

e−βjr·p|h−p(z)| →
∑
p∈Nk

g(p) = 1,

as j →∞. Also notice that each fβj is dominated by fβ0 and ε is a probability measure.

Then another application of dominated convergence theorem implies that

Kj =

∫
fβj dε→

∫
1 dε = 1
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as j →∞.

We now compute using the formula (3.43) for φεj :

φε
(
ψm(x)ψn(y)∗

)
= lim

j→∞
φεj
(
ψm(x)ψn(y)∗

)
= lim

j→∞

∫
〈y, x〉 dεj.

Since εj = K−1
j ε,

φε
(
ψm(x)ψn(y)∗

)
= lim

j→∞
Kj
−1

∫
〈y, x〉(z) dε(z) =

∫
〈y, x〉(z) dε(z).

Thus φ satisfies (3.60). Since φε
(
ψm(x)ψn(y)∗

)
vanishes for all m 6= 0 or n 6= 0, it also

does for r ·m 6= 0 or r · n 6= 0. Then Lemma 3.5.4 says that φε is a ground state.

Next let φ be a ground state and suppose that ε is the probability measure satisfying

φ(ψ0(a)) =
∫
a dε for all a ∈ A. Then the formulas (3.58) and (3.60) for φ and φε imply

that φ = φε. Thus ε 7→ φε maps the simplex of the probability measures of Z onto the

ground states, and it is clearly affine and injective. Since each φε is by construction a

KMS∞ state, it follows that every ground state is a KMS∞ state.
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Chapter 4

The shifts on the infinite path

spaces of 1-coaligned higher rank

graphs

In this chapter we consider a special type of k-graph called 1-coaligned k-graph. The

shift maps on the infinite path space of this kind of graph ∗-commute. So by Corol-

lary 2.1.2 we have a product system over Nk. We study the relationships between

the C∗-algebras associated to this product system and the C∗-algebras of the k-graph.

Then we use our results in Chapter 3 and some others from the literature to compare

the KMS states of these C∗-algebras.

4.1 Basics of Higher-rank graphs

Most of the following definitions have been taken from [44, Chapter 10] and [30].

A countable category C consists of two countable sets C0 and C∗, two functions

rC, sC : C∗ → C0, a partially defined product (f, g) 7→ fg from

{(f, g) ∈ C∗ × C∗ : sC(f) = rC(g)}

to C∗, and an injective map id : C0 → C∗, which satisfies

(a) rC(fg) = rC(f) and sC(fg) = sC(g),

(b) (fg)h = f(gh) when sC(f) = rC(g) and sC(g) = rC(h),

(c) rC(id(v)) = v = sC(id(v)) for all v ∈ C0, and
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(d) id(v)f = f and g id(v) = g when rC(f) = v and sC(g) = v.

The elements of C0 are called the objects of the category, the elements of C∗ are

called the morphisms of the category, rC is the range map, sC is the source map, the

operation (f, g) 7→ fg is called composition, and id(v) is called the identity morphism

on the object v. When it is clear from the context we may write r, s for rC, sC.

Example 4.1.1. Let k ∈ N. We can view Nk as morphisms of a countable category

with a single object {v}. For each m,n ∈ Nk, we can define r(n) := v, s(n) := v,

mn := m+ n, and id(v) := 0.

Suppose that C and D are two countable categories. A functor F : C → D is a pair

of maps F 0 : C0 → D0 and F ∗ : C∗ → D∗ such that

(a) F 0(rC(f) = rC(F
∗(f)) and F 0(sC(f) = sC(F

∗(f)) for all f ∈ C∗,

(b) F ∗(fg) = F ∗(g)F ∗(f) for all (f, g) ∈ C∗ × C∗, and

(c) id(F 0(v) = id(F 0(v)) for all v ∈ C0.

Definition 4.1.2. Let k ∈ N \ {0}. A k-graph (Λ, d) consists of a countable category

Λ and a functor d from Λ to Nk (view Nk as the category of Example 4.1.1) satisfying

the factorization property :

For all λ ∈ Λ∗ and m,n ∈ Nk such that d∗(λ) = m+ n, there exist unique elements

µ ∈ Λ∗ and ν ∈ Λ∗ such that λ = µν.

Since the category Nk has only one object, the map d0 of the functor d is trivial. So

we write d for both d∗ and d0 and call it the degree map. We usually use Λ for (Λ, d).

Let Λ be a k-graph. For any n ∈ Nk, we define Λn := {λ ∈ Λ∗ : d(λ) = n} and we

say Λ is a finite k-graph if Λn is finite for all n ∈ Nk. We say Λ has no sinks if for

every v ∈ Λ0 and every n ∈ Nk, there is a λ ∈ Λ∗ such that s(λ) = v and d(λ) = n.

Similarly, Λ has no sources if for every v ∈ Λ0 and every n ∈ Nk, there is a λ ∈ Λ∗

such that r(λ) = v and d(λ) = n.

For µ, ν ∈ Λ, we write Λmin(µ, ν) for the set of (ξ, η) ∈ Λ × Λ such that µξ = νη

and d(µξ) = d(µ) ∨ d(ν).

Given v, w ∈ Λ0, vΛnw denotes the {λ ∈ Λn : r(λ) = v and s(λ) = w}. For

1 ≤ i ≤ k, let Ai be the matrix in MΛ0(N) with entries Ai(v, w) = |vΛeiw|. We call

the Ai(1 ≤ i ≤ k) the vertex matrices. Notice that (AiAj)(v, w) = |vΛei+ejw|. Then

the factorisation property in Λ implies that AiAj = AjAi, and therefore we can define

An :=
∏k

i=1A
ni
i for all n ∈ Nk.
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Example 4.1.3. Let Ωk be the category with objects Ω0
k = Nk, morphisms Ω∗k :

{(m,n) ∈ Nk × Nk : m ≤ n}, range and source maps r(m,n) = m, s(m,n) = n,

identity morphisms id(m) = (m,m), and the composition (m,n)(n, p) = (m, p). If we

equip the category Ωk with the degree map d(m,n) = n −m, then (Ωk, d) becomes a

k-graph.

Let (Λ1, d1) and (Λ2, d2) be two k-graphs. A k-graph morphism is a functor F

form the category Λ1 to the category Λ2 preserving the degree maps, in the sense that

d2 ◦ F = d1.

For a k-graph Λ, we refer to the infinite path space of Λ as

Λ∞ := {z : Ωk → Λ : z is a k-graph morphism}.

For p ∈ Nk, we define the shift map σp : Λ∞ → Λ∞ by σp(z)(m,n) = z(m + p, n + p)

for all z ∈ Λ∞ and (m,n) ∈ Ωk. Clearly σp ◦σq = σp+q = σq ◦σp. Notice that for every

z ∈ Λ∞ and p ∈ Nk we have

z = z(0, p)σp(z).(4.1)

For each λ ∈ Λ, let

Z(λ) := {z ∈ Λ∞ : z(0, d(λ)) = λ}.

Endow Λ∞ with the topology generated by the collection {Z(λ) : λ ∈ Λ}. For finite

Λ, [30, Lemma 2.6] shows that Λ∞ is compact in this topology. For each p ∈ Nk, [30,

Remark 2.5] implies that the shift map σp is a local homeomorphism on Λ∞.

4.1.1 C∗-algebras associated to higher rank graphs

Definition 4.1.4. Let Λ be a finite k-graph. Following [27, 45], we say a collection

of partial isometries {Sλ : λ ∈ Λ} in a C∗-algebra B forms a Toeplitz-Cuntz-Krieger

Λ-family if

(TCK1) {Sv : v ∈ Λ0} is a collection of mutually orthogonal projections,

(TCK2) SλSµ = Sλµ whenever s(λ) = r(µ),

(TCK3) S∗λSλ = Ss(λ) for all λ,

(TCK4) for all v ∈ Λ0 and n ∈ Nk, we have

Sv ≥
∑
λ∈vΛn

SλS
∗
λ,
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(TCK5) for all µ, ν ∈ Λ, we have

S∗µSν =
∑

(ξ,η)∈Λmin(µ,ν)

SξS
∗
η .

They form a Cuntz-Krieger Λ-family if they also satisfy

(CK) Sv =
∑

λ∈vΛn SλS
∗
λ for all v ∈ Λ0 and n ∈ Nk.

We interpret any empty sums as 0.

Remark 4.1.5. Conditions (TCK1)−(TCK3) and (CK) implies (TCK5) (see [30,

Lemma 3.1]). Then to see that a family of partial isometries is a Toeplitz-Cuntz-

Krieger Λ-family, we can either check (TCK1)−(TCK5) or check (TCK1)−(TCK4)

together with (CK).

The next lemma shows that it suffices to check (TCK5) for a subset of {Sλ : λ ∈ Λ}.

Lemma 4.1.6. Let Λ be a finite k-graph. Suppose that {Sλ : λ ∈ Λ} is a collection of

partial isometries in a C∗-algebra B which satisfies (TCK1)−(TCK3). Suppose that

for all µ, ν ∈ Λ with d(µ) ∧ d(ν) = 0 we have S∗µSν =
∑

(ξ,η)∈Λmin(µ,ν) SξS
∗
η . Then

{Sλ : λ ∈ Λ} satisfies (TCK5).

Proof. Fix µ, ν ∈ Λ. By the factorisation property we can write µ = µ′µ′′ and ν = ν ′ν ′′

such that

d(µ′) = d(ν ′) = d(µ)∧d(ν), d(µ′′) = d(µ)− d(µ) ∧ d(ν), and

d(ν ′′) = d(ν)− d(µ) ∧ d(ν).(4.2)

Now using (TCK1)−(TCK3) and the identity Sr(λ)Sλ = Sλ, we have

S∗µSν = S∗µ′′S
∗
µ′Sν′Sν′′

= S∗µ′′δµ′,ν′Ss(µ′)Sν′′

= δµ′,ν′S
∗
µ′′Sr(µ′′)Sν′′ since s(µ′) = r(µ′′)

= δµ′,ν′S
∗
µ′′Sν′′ .

Since d(µ′′) ∧ d(ν ′′) = 0, applying (TCK5) for µ′′, ν ′′ gives

S∗µSν =δµ′,ν′
∑

(ξ,η)∈Λmin(µ′′,ν′′)

SξS
∗
η .(4.3)
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Next we aim to show that(
µ′ = ν ′ and (ξ, η) ∈ Λmin(µ′′, ν ′′)

)
⇐⇒ (ξ, η) ∈ Λmin(µ, ν).(4.4)

Suppose µ′ = ν ′ and (ξ, η) ∈ Λmin(µ′′, ν ′′). Then µ′′ξ = ν ′′η implies that µξ = νη. Since

d(µ′′) ∧ d(ν ′′) = 0, it follows from d(µ′′ξ) = d(µ′′) ∨ d(ν ′′) that d(µ′′ξ) = d(µ′′) + d(ν ′′)

and hence d(ξ) = d(ν ′′). Now (4.2) implies that

d(µξ) = d(µ) + d(ν ′′) = d(µ) + d(ν)− d(µ) ∧ d(ν) = d(µ) ∨ d(ν).

Thus (ξ, η) ∈ Λmin(µ, ν).

Next let (ξ, η) ∈ Λmin(µ, ν). Since µξ = νη, the factorization property implies that

µ′ = ν ′. Notice that

d(µ′′ξ) = d(µξ)− d(µ′) = d(µ) ∨ d(ν)− d(µ′) = d(µ) + d(ν)− d(µ) ∧ d(ν)− d(µ′).

Now (4.2) implies that

d(µ′′ξ) = [d(µ)− d(µ) ∧ d(ν)] + [d(ν)− d(µ′)] = d(µ′′) + d(ν ′′).

Thus (ξ, η) ∈ Λmin(µ′′, ν ′′).

Next we finish off by putting (4.4) in (4.3). We have

S∗µSν =
∑

(ξ,η)∈Λmin(µ,ν)

SξS
∗
η ,

which is precisely (TCK5) for µ, ν.

Kumjian and Pask showed in [30] that for a finite k-graph Λ, there is a C∗-algebra

C∗(Λ) and a Cuntz-Krieger Λ-family {tλ : λ ∈ Λ} on C∗(Λ) such that

(U1) For any other Cuntz-Krieger Λ-family {Tλ : λ ∈ Λ} in a C∗-algebra B, there

exists a unique homomorphism πT : C∗(Λ)→ B such that πT (tλ) = Tλ.

(U2) C∗(Λ) is generated by {tλ : λ ∈ Λ}.

We say the pair (C∗(Λ), tλ) is universal for Cuntz-Krieger Λ-families. The C∗-

algebra C∗(Λ) is called the C∗-algebra of Λ and the family {tλ : λ ∈ Λ} is called a

universal Cuntz-Krieger Λ-family.

The universal property shows that there exists a strongly continuous gauge action

γ̃ : Tk → Aut(C∗(Λ)) such that γ̃z(tλ) = zd(λ)tλ (in multi-indexed notation, so that
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zn =
∏k

i=1 z
ni
i for z = (z1 . . . , zk) ∈ Tk and n ∈ Zk). It also follows from [30, Lemma 3.1]

that

C∗(Λ) = span{tλt∗µ : s(λ) = s(µ)}.

Raeburn and Sims showed in [45, Corollary 7.5] that there exists a C∗-algebra

T C∗(Λ) and a Toeplitz-Cuntz-Krieger Λ-family {sλ : λ ∈ Λ} on T C∗(Λ) such that

(T C∗(Λ), sλ) is universal for Toeplitz-Cuntz-Krieger Λ-families. We call T C∗(Λ) the

Toeplitz-Cuntz-Krieger algebra and call {sλ : λ ∈ Λ} a universal Toeplitz-Cuntz-Krieger

Λ-families.

The universal property shows that there is a strongly continuous gauge action

γ : Tk → Aut(T C∗(Λ)) such that γz(sλ) = zd(λ)sλ (using multi-indexed notation).

Furthermore, by a standard argument and using (TCK5), we can show that

T C∗(Λ) = span{sλs∗µ : λ, s(λ) = s(µ)}.

(see [51, Lemma 3.1.2, Proposition 3.2.1]).

Remark 4.1.7. We can lift the gauge actions of T C∗(Λ) and C∗(Λ) to actions of R
via the maps t 7→ γeitr (and t 7→ γ̃eitr) for some r ∈ (0,∞)k. Notice that for each

sλs
∗
µ ∈ T C∗(Λ), the function t 7→ γeitr

(
sλs
∗
µ

)
= eitr·(d(µ)−d(ν)sλs

∗
µ on R extends to an

entire function on all of C. Thus sλs
∗
µ is an analytic element of T C∗(Λ). The elements

sλs
∗
µ span a dense subalgebra of T C∗(Λ). So when we study the KMS states of the

system (T C∗(Λ), γeitr), it suffices to check KMS condition on these elements. Similarly,

we can show that {tλt∗µ : s(λ) = s(µ)} spans a dense subspace of analytic elements of

the system (C∗(Λ), γ̃eitr).

The next lemma shows that we can view C∗(Λ) as a quotient of T C∗(Λ).

Lemma 4.1.8. Let Λ be a finite k-graph. Suppose I is the ideal in T C∗(Λ) generated

by {
sv =

∑
λ∈vΛn

sλs
∗
λ, v ∈ Λ0, n ∈ Nk

}
,

and let q : T C∗(Λ) → T C∗(Λ)/I be the quotient map. Then
(
T C∗(Λ)/I, q(sλ)

)
is

universal for Cuntz-Krieger Λ-families, and is canonically isomorphic to (C∗(Λ), tλ).

Proof. Since q is a homomorphism and {sλ : λ ∈ Λ} satisfy (TCK1)−(TCK3), the

family {q(sλ) : λ ∈ Λ} satisfies (TCK1)−(TCK3) as well. Clearly {q(sλ) : λ ∈ Λ}
satisfies (CK). Since {sλ : λ ∈ Λ} generates T C∗(Λ), we have that {q(sλ) : λ ∈ Λ}
generates T C∗(Λ)/I.

76



To see (U2), suppose that {Tλ : λ ∈ Λ} is another Cuntz-Krieger Λ-family, in a C∗-

algebra B. Notice that {Tλ : λ ∈ Λ} is in particular a Toeplitz-Cuntz-Krieger Λ-family.

Then the universal property of the pair (T C∗(Λ), sλ) gives a unique homomorphism

πT : T C∗(Λ) → B such that πT (sλ) = Tλ. Notice that {Tλ : λ ∈ Λ} satisfies (CK).

Then we can descends πT to a homomorphism of T C∗(Λ)/I such that πT (q(sλ)) = Tλ

for all λ ∈ Λ.

4.2 1-coaligned higher rank graphs and the associ-

ated C∗-algebras

Definition 4.2.1 ([37, Definition 2.2]). A k-graph Λ is 1-coaligned if for all 1 ≤ i 6= j ≤
k and (λ, µ) ∈ Λei × Λej with s(λ) = s(µ) there exists a unique pair (η, ζ) ∈ Λej × Λei

such that ηλ = ζµ.

It is observed in [37, Theorem 2.3] that a k-graph Λ is 1-coaligned if and only

the shift maps σe1 , . . . , σek on the infinite path space Λ∞ ∗-commute. Let Λ be a

1-coaligned k-graph and let X(Λ∞) be the product system associated to σe1 , . . . , σek

as in Corollary 2.1.2. We write NT (X(Λ∞)) and O(X(Λ∞)) for the Nica-Toeplitz

algebra and the Cuntz-Pimsner algebra of X(Λ∞). In this section, we show that the

Cuntz-Pimsner algebra O(X(Λ∞)) is isomorphic to the Cuntz-Krieger algebra C∗(Λ)

and the Nica-Toeplitz algebraNT (X(Λ∞)) contains an isomorphic copy of the Toeplitz

Cuntz-Krieger algebra T C∗(Λ).

The next lemma is contained in [37, Theorem 2.3]; since [37, Theorem 2.3] has not

been published, we provide a brief proof here.

Lemma 4.2.2. Let Λ be a finite 1-coaligned k-graph. Suppose 0 ≤ i 6= j ≤ k. Then

the shift maps σei and σej ∗-commute.

Proof. Let w, z ∈ Λ∞ such that

σei(z) = σej(w).(4.5)

It follows from (4.1) that z = z(0, ei)σ
ei(z) and w = w(0, ej)σ

ej(w). Now equation

(4.5) implies that z(0, ei) and w(0, ej) have the same sources. Since Λ is 1-coaligned

there exists a unique pair (η, ζ) ∈ Λej×Λei such that ηz(0, ei) = ζw(0, ej). Let λ be the

element of Λei+ej identified by ηz(0, ei) (or ζw(0, ej)), then u := λσei(z) ∈ Λ∞ satisfies

σej(u) = z and σei(u) = w.
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Since λ is determined uniquely, so is u. Thus σei and σej ∗-commute.

Notation 4.2.3. Let Λ be a finite 1-coaligned k-graph with no sinks. Then the shift

maps σe1 , . . . , σek are surjective ∗-commuting maps. As we mentioned before, we write

X(Λ∞) for the product system associated to σe1 , . . . , σek . We use ψ for the universal

Nica-covariant representation. We write Xm(Λ∞) for the fibre associated to m ∈ Nk.
We write ϕm for the left action of A on the fibre Xm(Λ∞). Recall that the multiplication

formula in X(Λ∞) is1

xy(z) = x(z)y(σm(z)) for x ∈ Xm, y ∈ Xn, z ∈ Λ∞.

In this section we work with four C∗-algebras: NT (X(Λ∞)),O(X(Λ∞)), T C∗(Λ), and

C∗(Λ). All of these C∗-algebras carry a gauge action of Tk. To avoid possible clash

of notation, we continue to write γ and γ̃ for the gauge actions on NT (X(Λ∞)) and

O(X(Λ∞)), respectively. We write γ| and γ̃| for the actions on T C∗(Λ) and C∗(Λ),

respectively.

Lemma 4.2.4. Let Λ be a finite 1-coaligned k-graph with no sources. Suppose λ ∈ Λm

and µ ∈ Λn such that m ∧ n = 0 and s(λ) = s(µ). Then there exists a unique pair

(η, ξ) ∈ Λ× Λ such that ηλ = ξµ.

Proof. We first show that there is such a pair (η, ξ) ∈ Λ × Λ. Since Λ has no source,

there exists z ∈ Λ∞ such that z(0, 0) = s(λ). Let w′ := µz and w′′ := λz. Notice

that σn(w′) = z = σm(w′′). Since m ∧ n = 0, Corollary 3.0.8 implies that σm and

σn are ∗-commuting. Then there exists unique w ∈ Λ∞ such that w′ = σm(w) and

w′′ = σn(w). Now let η := w(0, n) and ξ := w(0,m). Clearly ηλ = ξµ. The uniqueness

of pair (η, ξ) follows from the uniqueness of w.

Remark 4.2.5. We could have proved the Lemma 4.2.4 for a finite 1-coaligned k-graph

with sources by the way of induction. But all the k-graphs that we work with have no

sources and with this hypothesis the proof of Lemma 4.2.4 is easier.

Lemma 4.2.6. Let Λ be a finite k-graph and suppose m,n ∈ Nk. Then the collection

{χZ(µ)}µ∈Λm+n is a partition of unity such that σm|suppχZ(µ)
and σn|suppχZ(µ)

are injective

for all µ ∈ Λm+n.

1In previous chapters we wrote the multiplication in terms of isomorphisms between fibres. For

example xy(z) = σ(x⊗ y)(z). Unfortunately in this chapter we use letter σ for shifts. Thus here we

do not use σ when writing products.
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Proof. Fix m,n ∈ Nk. Remark 2.5 in [30] says that, the sets {Z(µ) : d(µ) = m + n}
form a partition of Λ∞. Then {χZ(µ)}µ∈Λm+n is a partition of unity. Fix µ ∈ Λm+n. To

see that σm|suppχZ(µ)
is injective, let σm(w) = σm(z) for w, z ∈ suppχZ(µ). Notice that

w(0,m) = µ(0,m) = z(0,m). On the other hand, (4.1) implies that w = w(0,m)σm(w)

and z = z(0,m)σm(z). Comparing these equations, we deduce that w = z. Thus

σm|suppχZ(µ)
is injective. A similar argument shows that σn|suppχZ(µ)

is injective as

well.

Proposition 4.2.7. Let Λ be a finite 1-coaligned k-graph with no sinks or sources. For

each λ ∈ Λ, let Sλ := ψd(λ)(χZ(λ)). Then

(a) The elements {Sλ}λ∈Λ form a Toeplitz-Cuntz-Krieger Λ-family in NT (X(Λ∞)).

Then the corresponding homomorphism πS : T C∗(Λ)→ NT (X(Λ∞)) is injective

and intertwines the respective gauge actions of Tk (in the sense that πS ◦ γ| =

γ ◦ πS).

(b) Let q : NT (X(Λ∞)) → O(X(Λ∞)) be the quotient map as in Lemma 1.3.8.

Then {q ◦ Sλ}λ∈Λ is a Cuntz-Krieger Λ-family in O(X(Λ∞)). The corresponding

homomorphism πq◦S : C∗(Λ) → O(X(Λ∞)) is an isomorphism and intertwines

the respective gauge actions of Tk.

Proof of (a). Let λ ∈ Λ. Notice that χZ(λ) ∈ Xd(λ)(Λ
∞). We will need the next formula

is our proof: 〈
χZ(λ), χZ(λ)

〉
(z) =

∑
σd(λ)(w)=z

χZ(λ)(w)χZ(λ)(w)

=
∣∣∣{w : σd(λ)(w) = z and w ∈ Z(λ)

}∣∣∣
=

0 if z /∈ Z
(
s(λ)

)
1 if z ∈ Z

(
s(λ)

)
= χZ(s(λ))(z).(4.6)

Next we show that Sλ is a partial isometry:

SλS
∗
λSλ = ψd(λ)

(
χZ(λ)

)
ψd(λ)

(
χZ(λ)

)∗
ψd(λ)

(
χZ(λ)

)
= ψd(λ)

(
χZ(λ)

)
ψ0

(〈
χZ(λ), χZ(λ)

〉)
= ψd(λ)

(
χZ(λ) · χZ(s(λ))

)
by (4.6).

Now the calculation

χZ(λ) · χZ(s(λ))(z) = χZ(λ)(z)χZ(s(λ))

(
σd(λ)(z)

)
= χZ(λ)(z) for z ∈ Λ∞,
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implies SλS
∗
λSλ = ψd(λ)(χZ(λ)) = Sλ. Thus Sλ is a partial isometry.

Next we aim to check properties (TCK1)−(TCK5). To see (TCK1), let v ∈ Λ0.

Since ψ0 is a homomorphism, we have

S∗v = ψd(v)

(
χZ(v)

)∗
= ψ0

(
χZ(v)

)∗
= ψ0(χZ(v)

∗) = ψ0(χZ(v)) = Sv.

Similarly,

SvSv = ψ0

(
χZ(v)

)
ψ0

(
χZ(v)

)
= ψ0

(
χZ(v)χZ(v)

)
= ψ0

(
χZ(v)

)
= Sv.

So Sv is a projection. Now let v, w ∈ Λ0. We have

SvSw = ψ0

(
χZ(v)

)
ψ0

(
χZ(w)

)
= ψ0

(
(χZ(v))(χZ(w))

)
= δw,vψ0

(
χZ(v)

)
= δw,vSv,

which implies that the collection {Sv : v ∈ Λ0} are mutually orthogonal projections.

To check (TCK2), let λ, µ ∈ Λ such that s(λ) = r(µ). We have

SλSµ = ψd(λ)

(
χZ(λ)

)
ψd(µ)

(
χZ(µ)

)
= ψd(λµ)

((
χZ(λ)

)(
χZ(µ)

))
.

The multiplication formula in X(Λ∞) for χZ(λ) ∈ Xd(λ)(Λ
∞) and χZ(µ) ∈ Xd(µ)(Λ

∞)

implies that ((
χZ(λ)

)(
χZ(µ)

))
(z) = χZ(λ)(z)χZ(µ)

(
σd(λ)(z)

)
= χZ(λµ)(z).

Then SλSµ = ψd(λµ)

(
χZ(λµ)

)
= Sλµ.

To check (TCK3), let λ ∈ Λ. A routine calculation shows that

S∗λSλ = ψd(λ)

(
χZ(λ)

)∗
ψd(λ)

(
χZ(λ)

)
= ψ0

(〈
χZ(λ), χZ(λ)

〉)
= χZ(s(λ)) by (4.6)

= Ss(λ).

We will need (TCK5) for the proof of (TCK4). So we first check (TCK5). Lemma 4.1.6

says that it suffices to prove (TCK5) for µ, ν ∈ Λ with d(µ) ∧ d(ν) = 0. For conve-

nience, let m := d(ν) and n := d(µ). Let {χZ(ξ)}ξ∈Λm+n be the partition of unity from

lemma 4.2.6. Applying Proposition 3.1.2 to {χZ(ξ)}ξ∈Λm+n gives

S∗µSν = ψn(χZ(µ))
∗ψm(χZ(ν))

=
∑

ξ∈Λm, η∈Λn

ψ0

(〈
χZ(µ), χZ(η) ◦ σm

〉)
ψm(χZ(ξ))ψn(χZ(η))

∗ψ0

(〈
χZ(ξ) ◦ σn, χZ(ν)

〉)
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=
∑

ξ∈Λm, η∈Λn

ψm
(〈
χZ(µ), χZ(η) ◦ σm

〉
· χZ(ξ)

)
ψn
(〈
χZ(ξ) ◦ σn, χZ(ν)

〉
· χZ(η)

)∗
(4.7)

We now consider a summand for fixed ξ and η. We have(〈
χZ(µ), χZ(η) ◦ σm

〉
· χZ(ξ)

)
(z) =

〈
χZ(µ), χZ(η) ◦ σm

〉
(z)χZ(ξ)(z)

= χZ(ξ)(z)
∑

σn(w)=z

χZ(µ)(w)χZ(η)

(
σm(w)

)

=

1 if z ∈ Z(ξ), and µξ = αη for some α ∈ Λm

0 otherwise

=

χZ(ξ) if µξ = αη for some α ∈ Λm

0 otherwise.

Similarly(〈
χZ(ξ) ◦ σn, χZ(ν)

〉
· χZ(η)

)
(z) =

〈
χZ(ξ) ◦ σn, χZ(ν)

〉
(z)χZ(η)(z)

= χZ(η)(z)
∑

σm(w)=z

χZ(ξ)

(
σn(w)

)
χZ(ν)(w)

=

1 if z ∈ Z(η), and νη = βξ for some β ∈ Λn

0 otherwise

=

χZ(η) if νη = βξ for some β ∈ Λn

0 otherwise.

It then follows that the ξ-η summand vanishes unless

µξ = αη and νη = βξ.

This means ξ and η must have the same source. Since Λ is 1-coaligned and d(ξ)∧d(η) =

0 (note that d(ξ) = m and d(η) = n), Lemma 4.2.4 implies that α = ν and β = µ.

Thus the sum in (4.7) collapses to

S∗µSν =
∑

(ξ,η)∈Λmin(µ,ν)

ψm
(
χZ(ξ)

)
ψn
(
χZ(η)

)∗
=

∑
(ξ,η)∈Λmin(µ,ν)

SξS
∗
η ,

which completes our proof of (TCK5).

To see (TCK4), let v ∈ Λ0 and n ∈ Nk. Suppose that λ, µ ∈ vΛn and λ 6= µ. It

follows from d(Λ) = d(µ) that Λmin(λ, µ) = ∅. Now (TCK5) implies that

Sλ(S
∗
λSµ)S∗µ = 0.
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Thus SλS
∗
λ ⊥ SµS

∗
µ. It follows from [44, Corollary A.3] that

∑
λ∈vΛn SλS

∗
λ is a projec-

tion. Thus to check Sv ≥
∑

λ∈vΛn SλS
∗
λ, it suffices to prove

Sv

( ∑
λ∈vΛn

SλS
∗
λ

)
=
∑
λ∈vΛn

SλS
∗
λ =

( ∑
λ∈vΛn

SλS
∗
λ

)
Sv.(4.8)

For the first equality, we have

Sv
∑
λ∈vΛn

SλS
∗
λ =

∑
λ∈vΛn

SvSλS
∗
λ

=
∑
λ∈vΛn

ψ0

(
χZ(v)

)
ψd(λ)

(
χZ(λ)

)
ψd(λ)

(
χZ(λ)

)∗
.

Since r(λ) = v, a quick calculation shows that the left action of χZ(v) on χZ(λ) is χZ(λ).

It then follows

Sv
∑
λ∈vΛn

SλS
∗
λ =

∑
λ∈vΛn

ψd(λ)

(
χZ(λ)

)
ψd(λ)

(
χZ(λ)

)∗
=
∑
λ∈vΛn

SλS
∗
λ.

Similarly, the second equation in (4.8) follows from( ∑
λ∈vΛn

SλS
∗
λ

)
Sv =

∑
λ∈vΛn

SλS
∗
λSv

=
∑
λ∈vΛn

ψd(λ)

(
χZ(λ)

)
ψd(λ)

(
χZ(λ)

)∗
ψ0

(
χZ(v)

)
.

Since r(λ) = v, we again have χZ(v) · χZ(λ) = χZ(λ). Then( ∑
λ∈vΛn

SλS
∗
λ

)
Sv =

∑
λ∈vΛn

ψd(λ)

(
χZ(λ)

)
ψd(λ)

(
χZ(λ)

)∗
=
∑
λ∈vΛn

SλS
∗
λ.

We now have proved (TCK4) and therefore the collection {Sλ}λ∈Λ forms a Toeplitz-

Cuntz-Krieger Λ-family in NT (X(Λ∞)).

To see that the corresponding homomorphism πS is injective, by [45, Theorem 8.1],

it suffices to check

Sv 6=
∑
λ∈vΛn

SλS
∗
λ

for all v ∈ Λ0 and n ∈ Nk+. To do this, we use the Fock representation T of X(Λ∞).

Notice that the homomorphism T∗ : NT (X(Λ∞))→ L(F (X(Λ∞))) satisfies

T∗

(
Sv −

∑
λ∈vΛn

SλS
∗
λ

)
= T∗

(
ψ0(χZ(v))−

∑
λ∈vΛn

ψd(λ)(χZ(λ))ψd(λ)(χZ(λ))
∗
)

= T0(χZ(v))−
∑
λ∈vΛn

Td(λ)(χZ(λ))Td(λ)(χZ(λ))
∗.
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Now the adjoint formula (1.17) for the Fock representation says that Td(λ)(χZ(λ))
∗

vanishes on the 0-summand in Fock module F (X(Λ∞)). Notice that Λ has no sources,

and then the injectivity of T0 implies that T0(χZ(v)) 6= 0. Thus

T0(χZ(v)) 6=
∑
λ∈vΛn

Td(λ)(χZ(λ))Td(λ)(χZ(λ))
∗.

Another application of the injectivity of T∗ gives Sv 6=
∑

λ∈vΛn SλS
∗
λ.

Finally, since the gauge actions in T C∗(Λ) and NT (X(Λ∞)) satisfy γ|z(sλ) =

zd(λ)sλ and γz(ψm(x)) = zmψm(x), we have πS ◦ γ| = γ ◦ πS.

Proof of (b). By Remark 4.1.5, we must check the conditions (TCK1)−(TCK3) and

(CK). Since the quotient map q is a C∗-homomorphism, and the family {Sλ}λ∈Λ satisfies

(TCK1)−(TCK3), so does {q◦Sλ}λ∈Λ. To check (CK), notice that q◦ψ is the universal

Cuntz-Pimsner-covariant representation of X(Λ∞). For convenience let ρ := q◦ψ (then

the restriction ρ on each fibre Xn is ρn = q ◦ ψn). Let µ ∈ Λn, n ∈ Nk. We first show

that the left action of χZ(µ) on the fibre Xn is by the finite rank operator ΘχZ(µ),χZ(µ)
.

To see this take x ∈ Xn(Λ∞) and z ∈ Λ∞. We have(
ΘχZ(µ),χZ(µ)

(x)
)

(z) =
(
χZ(µ) ·

〈
χZ(µ), x

〉)
(z)

= χZ(µ)(z)
〈
χZ(µ), x

〉
(σn(z))

= χZ(µ)(z)
∑

σn(w)=σn(z)

χZ(µ)(w)x(w),

and this vanishes unless z, w ∈ Z(µ). Since µ ∈ Λn, w, z ∈ Z(µ), the equation

σn(w) = σn(z) has unique solution z and therefore the sum collapses to χZ(µ)(z)x(z).

Thus (
ΘχZ(µ),χZ(µ)

(x)
)

(z) = χZ(µ)(z)x(z),(4.9)

which equals the left action of χZ(µ) on x ∈ Xn.

Next we check (CK). Let v ∈ Λ0 and n ∈ Nk. Then a routine calculation shows

that ∑
λ∈vΛn

(q ◦ Sλ)(q ◦ Sλ)∗ =
∑
λ∈vΛn

ρd(λ)(χZ(λ))ρd(λ)(χZ(λ))
∗

=
∑
λ∈vΛn

ρ(d(λ))
(
ΘχZ(λ),χZ(λ)

)
=
∑
λ∈vΛn

ρ(d(λ))
(
ϕd(λ)(χZ(λ))

)
by (4.9).
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Since ρ is Cuntz-Pimsner-covariant,∑
λ∈vΛn

(q ◦ Sλ)(q ◦ Sλ)∗ =
∑
λ∈vΛn

ρ0(χZ(λ)) = ρ0

( ∑
λ∈vΛn

χZ(λ)

)
= q ◦ ψ0

(
χZ(v)

)
= q ◦ (Sv)

Thus (CK) holds and the collection {q ◦ Sλ}λ∈Λ forms a Cuntz-Krieger Λ-family in

O(X(Λ∞)). This gives a homomorphism πq◦S : C∗(Λ)→ O(X(Λ∞)).

Since the gauge actions in C∗(Λ) and O(X(Λ∞)) satisfy γ̃|z(sλ) = zd(λ)sλ and

γ̃z(ρm(x)) = zmρm(x), we have πq◦S ◦ γ̃| = γ̃ ◦ πq◦S. Thus πq◦S intertwines the gauge

actions. Notice that Λ has no source. Since ρ0 is injective (see for example [52, Lemma

3.15]), ρ0

(
χZ(v)

)
6= 0 for all v ∈ Λ0. Then the gauge-invariant uniqueness theorem (see

[30, Theorem 3.4]) implies that πq◦S is injective.

To show that πq◦S is surjective, note that O(X(Λ∞)) is generated by ρ(X(Λ∞)).

We know from the Stone-Weierstrass theorem that the set {χZ(λ) : λ ∈ Λ} spans a

dense ∗-subalgebra of C(Λ∞). Since the norm of X(Λ∞) is equivalent to ‖ · ‖∞ (see

argument in the end of the Section 1.5), the elements {χZ(λ) : λ ∈ Λ} span a dense

subspace of X(Λ∞). Thus it is enough for us to show that ρm(χZ(µ)) lies in the range

of πq◦S for all m,n ∈ Nk and µ ∈ Λn.

We first check this for m = 0 and all µ ∈ Λn. Since ρ is Cuntz-Pimsner-covariant,

a routine calculation shows that

ρ0(χZ(µ)) = ρ(d(µ))
(
ϕd(µ)(χZ(µ))

)
= ρ(d(µ))

(
ΘχZ(µ),χZ(µ)

)
using (4.9)

= ρd(µ)(χZ(µ))ρd(µ)(χZ(µ))
∗

= (q ◦ Sµ)(q ◦ Sµ)∗,(4.10)

which belongs to the range of πq◦S.

Now let m 6= 0 and take µ ∈ Λn. Notice that χZ(µ) =
∑

ν∈s(µ)Λm χZ(µν). Each

ν-summand is the pointwise multiplication of χ
Z
(
µν(0,m

) and χ
Z
(
µν(m,m+n)

)◦ σm. This

is exactly the right action of χ
Z
(
µν(m,m+n)

) on χ
Z
(
µν(0,m)

) ∈ Xm(Λ∞). It follows

ρm(χZ(µ)) = ρm

( ∑
ν∈s(µ)Λm

χ
Z
(
µν(0,m)

) · χ
Z
(
µν(m,m+n)

))
=

∑
ν∈s(µ)Λm

ρm

(
χ
Z
(
µν(0,m)

))ρ0

(
χ
Z
(
µν(m,m+n)

))
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=
∑

ν∈s(µ)Λm

(q ◦ Sµν(0,m))ρ0

(
χ
Z
(
µν(m,m+n)

)),
which lies in the range of πq◦S by (4.10), as required.

4.3 KMS states on the Toeplitz algebras

In this section we want to see the relationship between KMS states of the C∗-algebras

T C∗(Λ) and NT (X(Λ∞)). The KMS states of T C∗(Λ) is described thoroughly in [27,

Theorem 6.1]. We apply Theorem 3.3.1 to characterise KMS states of NT (X(Λ∞)).

It follows from [1, Proposition 7.3] that for the shift maps σei(1 ≤ i ≤ k) on Λ∞,

each βci in Theorem 3.3.1 is exactly ln ρ(Ai) used in [27, Theorem 6.1]. Thus the

range of possible inverse temperatures studied in Theorem 3.3.1 is the same as that of

[27, Theorem 6.1]. Now when we view T C∗(Λ) as a C∗-subalgebra of NT (X(Λ∞)),

restricting KMS states of NT (X(Λ∞)) gives KMS states of T C∗(Λ) with the same

inverse temperature. We expect from our results in [1, Corollary 7.6] to see that for

the common inverse temperatures described in Theorem 3.3.1 and [27, Theorem 6.1]

all KMS states of T C∗(Λ) arise as restrictions of KMS states of NT (X(Λ∞)). We

achieve this objective in Proposition 4.3.3.

We keep our notation in Theorem 3.3.1 to emphasise the parallels with [27, The-

orem 6.1]. Then we have a clash when we try to use both descriptions at the same

time. So we write δ for the measure ε in Theorem 3.3.1, and choose ε for the vec-

tors in [1,∞)Λ0
appearing in [27, Theorem 6.1]. We also choose α for the action of

NT (X(Λ∞)) and write α| for the action of T C∗(Λ). Otherwise, we use the notation

of Theorem 3.3.1.

Proposition 4.3.1. Suppose that Λ is a finite 1-coaligned k-graph with no sources and

no sinks. Let Ai be the vertex matrices of Λ. Suppose that r ∈ (0,∞)k satisfies βri >

ln ρ(Ai) for 1 ≤ i ≤ k. Let α : R → Aut(NT (X(Λ∞)) and α| : R → Aut(T C∗(Λ))

be given in terms of the gauge actions by αt = γeitr and α|t = γ|eitr . Let δ be a finite

regular Borel measure on Λ∞ such that
∫
fβ dδ = 1. Define ε = (εv) ∈ [0,∞)Λ0

by

εv = δ(Z(v)) and take y = (yv) ∈ [0,∞)Λ0
as in [27, Theorem 6.1]. Then y · ε = 1,

and the restriction of the state φδ of Theorem 3.3.1 to (T C∗(Λ), α|) is the state φε of

[27, Theorem 6.1].

Proof. We first compute the function fβ ∈ C(Λ∞). For z ∈ Λ∞, we have

fβ(z) =
∑
n∈Nk

e−βr·n|σ−n(z)|
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=
∑
n∈Nk

e−βr·n|Λnr(z)|

=
∑
n∈Nk

e−βr·n
(∑
v∈Λ0

|Λnv|χZ(v)(z)
)
.

Recall that yv =
∑

µ∈Λv e
−βr·d(µ). By applying the Tunelli theorem, we have

1 =

∫
fβ dδ =

∑
n∈Nk

e−βr·n
∑
v∈Λ0

|Λnv|δ(Z(v)) =
∑
v∈Λ0

yvεv = y · ε.(4.11)

To see that φδ restricts to φε, it suffices to compute both of them on the elements

SλS
∗
ν . Equation (3.43) together with [27, (6.1)] imply that φδ(SλS

∗
ν) = 0 = φε(SλS

∗
ν)

for d(λ) 6= d(ν). So we assume d(λ) = d(ν) = p say. It then follows from (3.43) that

φδ(SλS
∗
ν) = φδ

(
ψp(Z(λ))ψp(Z(ν))∗

)
= e−βr·p

∫ 〈
χZ(ν), χZ(λ)

〉
dµ,(4.12)

where µ =
∑

n∈Nk e−βr·nRnδ. Applying the inner product formula in the fibre Xp, we

have 〈
χZ(ν), χZ(λ)

〉
(z) =

∑
σp(w)=z

χZ(ν)(w)χZ(λ)(w) = δλ,ν
∑

σp(w)=z

χZ(λ)(w).

It then follows that 〈χZ(ν), χZ(λ)〉 = δλ,νχZ(s(λ)). Putting this in (4.12), we have

φδ(SλS
∗
ν) = δλ,νe

−βr·pµ
(
Z(s(λ))

)
(4.13)

Next we compute µ(Z(v)) for v ∈ Λ0. Notice that for each n, we have

(Rnδ)(Z(v)) =

∫
χZ(v) d(Rnδ)(z) =

∫ ∑
σn(w)=z

χZ(v)(w) dδ(z).

We also have∑
σn(w)=z

χZ(v)(w) = |vΛnr(z)| = An(v, r(z)) =
∑
u∈Λ0

An(v, u)χZ(u)(z).

Thus

(Rnδ)(Z(v)) =

∫ ∑
u∈Λ0

An(v, u)χZ(u)(z) dδ(z) =
∑
u∈Λ0

An(v, u)δ(Z(u)),

and

µ(Z(v)) =
∑
n∈Nk

e−βr·n
∑
u∈Λ0

An(v, u)δ(Z(v))

=
∑
n∈Nk

e−βr·n
∑
u∈Λ0

An(v, u)εv
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=
∑
n∈Nk

e−βr·n(Anε)v =
( k∏
i=1

(1− e−βriAi)−1ε
)
v
.

Now we put this into (4.13), and write down

(4.14) φδ(SλS
∗
ν) = δλ,νe

−βr·p
( k∏
i=1

(1− e−βriAi)−1ε
)
s(λ)

,

which in the notation of [27, Theorem 6.1] is δλ,νe
−βr·pms(λ). Now [27, (6.1)] implies

that φδ(SλS
∗
ν) = φε(SλS

∗
ν), as required.

Corollary 4.3.2. Suppose that Λ is a finite 1-coaligned k-graph with no sources and

no sinks. Let Ai be the vertex matrices of Λ. Suppose that r ∈ (0,∞)k satisfies βri >

ln ρ(Ai) for 1 ≤ i ≤ k and let α : R → Aut(NT (X(Λ∞)) and α| : R → Aut(T C∗(Λ))

be given in terms of the gauge actions by αt = γeitr and α|t = γ|eitr Suppose that δ1, δ2

are regular Borel measures on Λ∞ satisfying
∫
fβ dδi = 1. Then φδ1|T C∗(Λ) = φδ2|T C∗(Λ)

if and only if δ1(Z(v)) = δ2(Z(v)) for all v ∈ Λ0.

Proof. Let δ1, δ2 be two regular Borel measures on Λ∞ such that
∫
fβ dδi = 1. Suppose

φδ1 |T C∗(Λ) = φδ2 |T C∗(Λ). Proposition 4.3.1 implies that for the corresponding εi ∈
[0,∞)Λ0

(where εi(v) = δi(Z(v)) for all v ∈ Λ0) we have φε1 = φε2 . Now the injectivity

of the map ε 7→ φε from [27, Theorem 6.1(c)] gives ε1 = ε2. But this says precisely

that δ1, δ2 agree on each Z(v).

For the other direction, let δ1(Z(v)) = δ2(Z(v)) for all v ∈ Λ0. Then the correspond-

ing εi are equal, and the formula (4.14) implies that φδ1 , φδ2 agree on T C∗(Λ).

Proposition 4.3.3. Suppose that Λ is a finite 1-coaligned k-graph with no sources and

no sinks. Let Ai be the vertex matrices of Λ. Suppose that r ∈ (0,∞)k satisfies βri >

ln ρ(Ai) for 1 ≤ i ≤ k and let α : R → Aut(NT (X(Λ∞)) and α| : R → Aut(T C∗(Λ))

be given in terms of the gauge actions by αt = γeitr and α|t = γ|eitr . Then every KMSβ

state of (T C∗(Λ), α|) is the restriction of a KMSβ state of NT (X(Λ∞), α).

Before starting the proof, we first describe a standard way of construction of mea-

sures on Λ∞. We need the notion of inverse limit (see for example [9, Section 1, 2]):

Let P be a directed partially ordered set. An inverse system of compact spaces

({Yp}, {rp,q})p,q∈P consists of a family {Yp}p∈P of compact spaces such that for any

p, q ∈ P , p ≤ q there exists a surjection rp,q : Yq → Yp such that

(a) rp,p : Yp → Yp is the identity map, and
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(b) rp,q ◦ rq,s = rp,s whenever p ≤ q ≤ s and p, q, s ∈ P .

The inverse limit

lim
←−

(Yp, rp,q)

is the set of all collections {yp : yp ∈ Yp, p ∈ P} such that for p ≤ q, rp,q(yq) = yp. It

follows that for each yp ∈ Yp there exists y ∈ lim
←−

(Yp, rp,q) with pth coordinate yp. Thus

we can define the canonical maps πp : lim
←−

(Yp, rp,q)→ Yp, by πp(y) = yp.

The next lemma shows how we can construct measures on the inverse limits.

Lemma 4.3.4 ([25, Lemma 5.2]). Let P be a directed partially ordered set with the

smallest element 0. For p, q ∈ P , let Yp be a compact space and rp,q : Yq → Yp be a

surjection. Let lim
←−

(Yp, rp,q) be the inverse limit of the system ({Yp}, {rp,q})p,q∈P and let

πp be the canonical map from lim
←−

(Yp, rp,q) to Yp. Suppose that we have Borel measure

δp on Yp such that δ0 is finite and∫
(f ◦ rp,q) dδq =

∫
f dδp for p ≤ q and f ∈ C(Yp).(4.15)

Then there is a unique finite Borel measure δ on lim
←−

(Yp, rp,q) such that∫
(f ◦ πp) dδ =

∫
f dδp for f ∈ C(Xp).

Remark 4.3.5. Given a finite k-graph Λ, let D := (1, . . . , 1) and M := {lD : l ∈ N}.
For each m,n ∈ M such that m ≤ n, define rm,n : Λn → Λm by rm,n(λ) = λ(0,m).

Clearly M is a directed partially ordered set, and each rm,n is a surjection. The

argument of [30, Remark 2.2] shows that, by factorisation property, Λ∞ can be viewed

as the inverse limit of the system ({Λm}, {rm,n})m,n∈M .

Proof of Proposition 4.3.3. Suppose φ is a KMSβ state of (T C∗(Λ), α). Then [27,

Theorem 6.1(c)] implies that there is a vector ε ∈ [0,∞)Λ0
such that y · ε = 1 and

φ = φε. If δ is a measure on Λ∞ such that δ(Z(v)) = εv for all v ∈ Λ0 and
∫
fβ dδ = 1,

then Proposition 4.3.1 implies that φδ|T C∗(Λ) = φε. So it suffices to show that there is

such a measure.

To see this, we view Λ∞ as the inverse limit described in Remark 4.3.5, and then

we apply Lemma 4.3.4. So we must construct a sequence of measures δm on Λm

satisfying (4.15). Let D be as in Remark 4.3.5. We recursively choose weights {wη :

η ∈ Λ with d(η) = lD for some l ≥ 1} such that∑
λ∈vΛD

wλ = εv,
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and ∑
λ∈s(µ)ΛD

wµλ = wµ,(4.16)

for all v ∈ Λ0 and µ ∈ ΛlD (l ≥ 1). Then we set δ0 := ε and δm(µ) = wµ for all µ ∈ ΛlD.

Next we check (4.15) for these measures. Let m ∈ M . Since the characteristic

functions of singletons span C(Λm), it is enough to prove (4.15) for f = χ{µ} and

µ ∈ Λm. First notice that

χ{µ} ◦ rm,m+D =
∑

λ∈s(µ)ΛD

χ{µλ}.

Then we have∫
χ{µ} ◦ rm,m+D dδm+D =

∫ ∑
λ∈s(µ)ΛD

χ{µλ} dδm+D

=
∑

λ∈s(µ)ΛD

δm+D(µλ)

= δm(µ) using (4.16)

=

∫
χ{µ} dδm.(4.17)

Since for each n ∈M with m ≤ n, we have

rm,n = rm,m+D ◦ rm+D,m+2D ◦ · · · ◦ rn−D,n,

applying the calculation (4.17) finitely many times gives∫
χ{µ} ◦ rm,m+n dδm+n =

∫
χ{µ} dδm.

This is precisely (4.15).

Now Lemma 4.3.4 implies that there is a unique measure δ on Λ∞ such that∫
χ{v} ◦ π0 dδ =

∫
χ{v} dδ0 for v ∈ Λ0.

Notice that
∫
χ{v} ◦ π0 dδ = δ(Z(v)) and

∫
χ{v} dδ0 = δ0(v) = εv. It also follows from

the calculation (4.11) that
∫
fβ dδ = y · ε = 1. Thus δ has required properties.
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Appendix A

Realising the universal

Nica-covariant representation as a

doubly commuting representation

In this appendix we use our results from previous chapters and show that the universal

Nica-covariant representation ψ satisfies the doubly commuting relation [54, Lemma

3.9 (i)]. We first need to understand the notations.

Let A be a C∗-algebra and Y be a right Hilbert A–A bimodule. Suppose that π is

representation of A on B(H) for a Hilbert space H.

Let Y � H be the algebraic tensor product of Y and H. It follows from [46,

Proposition 2.6] that the formula(
y � r

∣∣y′ � r′) =
(
r
∣∣π(〈y, y′〉)r′

)
for y � r, y′ � r′ ∈ Y �H,

defines a semi-definite inner product on Y �H. Notice that(
y · a� r − y � π(a)r

∣∣y′ � r′) =
(
r
∣∣π(〈y · a, y′〉)r′

)
−
(
π(a)r

∣∣π(〈y, y′〉)r′
)

=
(
r
∣∣π(〈y · a, y′〉)r′

)
−
(
r
∣∣π(a∗〈y, y′〉)r′

)
=
(
r
∣∣π(〈y · a, y′〉)r′

)
−
(
r
∣∣π(〈y · a, y′〉)r′

)
= 0.

Now let Y ⊗π H be the completion1 of Y �H with respect to this semi-definite inner

product (see [46, Lemma 2.16]). Since the completing process requires modding out

element of length 0, in the completion we have y · a⊗ r − y ⊗ π(a)r.

1Completion with respect to semi-definite inner products are sometimes called Hausdorff comple-

tion (for example [54, page 92]).

97



Let S ∈ L(Y ) and U ∈ π(A)′. A similar proof to that of [46, Proposition 2.66]

shows that there is a well-defined bound operator S ⊗ U on Y ⊗π H such that

S ⊗ U(y ⊗ r) = S(y)⊗ U(r) for y ⊗ r ∈ Y ⊗π H.

Muhly and Solel showed in [38, Lemma 3.4– 3.6] that there is a well-defined map

π̃ : Y ⊗π H → H such that

π̃(y ⊗ r) = π(y)r for all y ⊗ r ∈ Y ⊗π H.

The map π̃ is called a contraction.

Let X be a product system of right Hilbert A–A bimodules over Nk and θ be

a Toeplitz representation of X on B(H) for a Hilbert space H. It follows that for

each m ∈ Nk and fibre Xm, there is a contraction θ̃m : Xm ⊗θ0 H → H such that

θ̃m(x⊗ r) = θm(y)r for all x⊗ r ∈ Xm ⊗θ0 H.

Let Im, IH be the identity maps on Xm and H respectively. Suppose that tei,ej is the

flip map between fibres Xei and Xej as in Lemma 3.1.1. A representation θ is doubly

commuting representation if for every 1 ≤ i 6= j ≤ k, we have

θ̃∗ej θ̃ei = (Iej ⊗θ̃ei)(tei,ej ⊗ IH)(Iei ⊗θ̃∗ej).

Suppose θ is a doubly commuting representation and let tm,n be the flip map between

fibres Xm and Xn. Write Nk+ for non zero elements of Nk, and suppose m,n ∈ Nk+
satisfying m ∧ n = 0. [54, Lemma 3.9(i)] implies that

(In⊗θ̃m)(tm,n ⊗ IH)(Im⊗θ̃n
∗
) = θ̃n

∗
θ̃m.(A.1)

Now we want to show that the universal Nica-covariant representation ψ satisfies

(A.1). It follows from [54, Remark 3.12] that we can consider ψ as a representation on

a C∗-algebra H.

Proposition A.0.6. Let h1, . . . , hk be ∗-commuting and surjective local homeomor-

phisms on a compact Hausdorff space Z and let X be the associated product system as

in Corollary 2.1.2. Take m,n ∈ Nk+ such that m ∧ n = 0. Then

(In⊗ψ̃m)(tm,n ⊗ IH)(Im⊗ψ̃n
∗
) = ψ̃n

∗
ψ̃m(A.2)

We first need to calculate the adjoint ψ̃n
∗

: H → Xn ⊗ψ0 H. The next lemma gives

a formula for ψ̃n
∗

in terms of a general Parseval frame of Xn.
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Lemma A.0.7. Let {ηj}dj=0 be a Parseval frame for the fibre Xn. Then

ψ̃n
∗
(r) =

d∑
j=0

ηj ⊗ ψn(ηj)
∗r for r ∈ H.(A.3)

Proof. Fix r ∈ H and let y ⊗ s ∈ Xn ⊗ψ0 H. We compute:

( d∑
j=0

ηj ⊗ ψn(ηj)
∗r
∣∣∣y ⊗ s) =

d∑
j=0

(
(ψn(ηj)

∗r
∣∣∣ψ0〈ηj, y〉s

)
=
(
r
∣∣∣ d∑
j=0

ψn(ηj)
(
ψ0〈ηj, y〉s

))
=
(
r
∣∣∣ d∑
j=0

ψn
(
ηj · 〈ηj, y〉

)
s
)

=
(
r
∣∣∣ψn(y)s

)
.

This is precisely
(
r
∣∣∣ψ̃n(y ⊗ s)

)
. Thus ψ̃n

∗
(r) =

∑d
j=0 ηj ⊗ ψn(ηj)

∗r.

Proof of Proposition A.0.6. Let x ⊗ r ∈ Xm ⊗ψ0 H. We evaluate both sides of (A.2)

on x ⊗ r. To do this we will need to have Parseval frames for fibres Xm, Xn. Let

{ρi}di=0 be a partition of unity such that hm|supp ρi , h
n|supp ρi are injective and suppose

that τi :=
√
ρi. Notice that {τi}di=0 forms a Parseval frame for both fibres Xm, Xn.

Also since m ∧ n = 0, {τi ◦ hn}di=0 and {τi ◦ hm}di=0 are Parseval frame for the fibres

Xm, Xn, respectively.

We start computing the left-hand side of (A.2) by applying the adjoint formula

(A.3) with Parseval frame {τj}dj=0 ⊂ Xn. For convenience, set

† := (In⊗ψ̃m)(tm,n ⊗ IH)(Im⊗ψ̃n
∗
).

We have

†(x⊗ r) = (In⊗ψ̃m)(tm,n ⊗ IH)
(
x⊗

d∑
j=0

τj ⊗ ψn(τj)
∗r
)
.

Writing the reconstruction formula for the Parseval frame {τi ◦ hn}di=0 ⊂ Xm gives

†(x⊗ r) =
d∑
j=0

(In⊗ψ̃m)(tm,n ⊗ IH)
(( d∑

i=0

τi ◦ hn ·
〈
τi ◦ hn, x

〉)
⊗ τj ⊗ ψn(τj)

∗r
)

=
∑

0≤i,j≤d

(In⊗ψ̃m)(tm,n ⊗ IH)
(
τi ◦ hn ⊗

〈
τi ◦ hn, x

〉
· τj ⊗ ψn(τj)

∗r
)
.
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Applying the reconstruction formula for the Parseval frame {τl}dl=0 ⊂ Xn, we have

†(x⊗r) =
∑

0≤i,j≤d

(In⊗ψ̃m)(tm,n⊗IH)
(
τi◦hn⊗

( d∑
l=0

τl ·
〈
τl,
〈
τi◦hn, x

〉
·τj
〉)
⊗ψn(τj)

∗r
)
.

Now we continue by using the flip map (3.5)

†(x⊗ r) =
∑

0≤i,j,l≤d

(In⊗ψ̃m)(tm,n ⊗ IH)
(
τi ◦ hn ⊗ τl ⊗ ψ0

(〈
τl,
〈
τi ◦ hn, x

〉
· τj
〉)
ψn(τj)

∗r
)

=
∑

0≤i,j,l≤d

(In⊗ψ̃m)
(
τl ◦ hm ⊗ τi ⊗ ψn

(
τj ·
〈〈
τi ◦ hn, x

〉
· τj, τl

〉)∗
r
)

=
∑

0≤i,l≤d

(In⊗ψ̃m)
(
τl ◦ hm ⊗ τi ⊗ ψn

( d∑
j=0

τj ·
〈
τj,
〈
x, τi ◦ hn

〉
· τl
〉)∗

r
)
.

The reconstruction formula for frame {τj}dj=0 ⊂ Xn implies that

†(x⊗ r) =
∑

0≤i,l≤d

τl ◦ hm ⊗ ψm(τi)ψn
(〈
x, τi ◦ hn

〉
· τl
)∗
r.(A.4)

Next we compute the right-hand side (A.2) by applying the adjoint formula (A.3)

with the Parseval frame {τl ◦ hm}dl=0 ⊂ Xn.

ψ̃n
∗
ψ̃m(x⊗ r) = ψ̃n

∗
ψm(x)r =

d∑
l=0

τl ◦ hm ⊗ ψn(τl ◦ hm)∗ψm(x)r.

Applying our formula (3.9) implies that

ψ̃n
∗
ψ̃m(x⊗ r) =

d∑
l=0

τl ◦ hm ⊗
( ∑

0≤i,j≤d

ψm
(〈
τl ◦ hm, τj ◦ hm

〉
· τi
)
ψn
(
〈x, τi ◦ hn〉 · τj

)∗)
r

=
∑

0≤i,j,l≤d

τl ◦ hm ⊗ ψ0

(
〈τl ◦ hm, τj ◦ hm

〉)
ψm(τi)ψn

(
〈x, τi ◦ hn〉 · τj

)∗
r

=
∑

0≤i,j,l≤d

τl ◦ hm · 〈τl ◦ hm, τj ◦ hm
〉
⊗ ψm(τi)ψn

(
〈x, τi ◦ hn〉 · τj

)∗
r.

Now applying reconstruction formula for the Parseval frame {τl ◦ hm}dl=0 ⊂ Xn gives

ψ̃n
∗
ψ̃m(x⊗ r) =

∑
0≤i,j≤d

τj ◦ hm ⊗ ψm(τi)ψn
(
〈x, τi ◦ hn〉 · τj

)∗
r.(A.5)

Comparing (A.5) and (A.4) completes our proof of (A.2).
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For every Hilbert bimodule over a C∗-algebra, there are natural gauge actions of the
circle on the associated Toeplitz algebra and Cuntz–Pimsner algebra, and hence natural
dynamics obtained by lifting these gauge actions to actions of the real line. We study
the KMS states of these dynamics for a family of bimodules associated to local home-
omorphisms on compact spaces. For inverse temperatures larger than a certain critical
value, we find a large simplex of KMS states on the Toeplitz algebra, and we show that
all KMS states on the Cuntz–Pimsner algebra have inverse temperature at most this
critical value. We illustrate our results by considering the backward shift on the one-
sided path space of a finite graph, where we can use recent results about KMS states
on graph algebras to see what happens below the critical value. Our results about KMS
states on the Cuntz–Pimsner algebra of the shift show that recent constraints on the
range of inverse temperatures obtained by Thomsen are sharp.

Keywords: Toeplitz algebra; Cuntz–Pimsner algebra; gauge action; KMS state.

Mathematics Subject Classification 2010: 46L35

1. Introduction

We consider actions α of the real line R by automorphisms of a C∗-algebra A.
When α describes the time evolution in a model of a physical system, the states of
the system are given by positive functionals of norm 1. The equilibrium states are
the states on A that satisfy a commutation relation called the KMS condition. This
condition makes sense for every dynamical system of the form (A,R, α), irrespective
of its origin, and studying the KMS states of such systems often yields interesting
information. This is certainly the case, for example, for the number-theoretic Hecke
algebra of Bost and Connes [2] and its generalizations [21, 22], for systems involving
gauge actions on graph algebras [8, 11, 18, 15], and for systems associated to local
homeomorphisms of the sort arising in topological dynamics [34, 35].
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Many of the systems studied in the papers mentioned above, and especially
those associated to directed graphs, have natural analogs involving Toeplitz alge-
bras in which crucial defining equations are relaxed to inequalities. Work of Exel,
Laca and Neshveyev [11, 23] has shown that there is often a much richer supply
of KMS states on these Toeplitz algebras, and this has been extended in recent
years to various systems arising in number theory [25, 24, 6]. These papers contain
detailed constructions of the KMS states on the various Toeplitz algebras, and re-
examination of the techniques has led to similar constructions in a wide range of
examples, including graph algebras [15, 16]. In this paper, we use similar techniques
to construct KMS states on systems of interest in topological dynamics.

We consider a surjective local homeomorphism h : Z → Z on a compact Haus-
dorff space Z, and an associated C∗-algebra that has been variously described as an
Exel crossed product [10], a groupoid algebra [34], or as both a groupoid algebra and
a Cuntz–Pimsner algebra [7] (for a precise statement, see [17, Theorem 3.3]). Here,
we view it as the C∗-algebra O(X(E)) of a topological graph E, and then we use
the graph-based formalism of Katsura [19] in calculations. The algebra O(X(E))
carries a canonical gauge action of the circle T, which we lift to an action α of R.
We are interested in the KMS states on (O(X(E)),R, α) and its Toeplitz analog
(T (X(E)),R, α).

Several authors have shown that there is a bijection between the KMS states
on (O(X(E)),R, α) and the probability measures on Z that satisfy an invariance
relation (for example, [30, Theorem 3.3; 10, Theorem 9.6; 34, Theorem 6.2]). To
find KMS states, one then has to find invariant measures, and existence has been
demonstrated using a functional-analytic analog of the Perron–Frobenius theory
(for example, in [30; 34, Sec. 6.2]). Here, we show that, for β larger than a critical
value βc, there is a bijection between the KMSβ states on (T (X(E)),R, α) and the
probability measures on Z which satisfy an inequality that we call the subinvari-
ance relation. We then describe a construction of all the measures satisfying the
subinvariance relation, and give a spatial construction of the corresponding KMS
states. Putting these constructions together gives a parametrization of the KMSβ

states of (T (X(E)),R, α) by a concretely-described simplex of measures on Z for
every β > βc (Theorem 5.1).

Our critical value βc is an exponential bound for the number of preimages of
points under iteration of the map h, and has previously appeared in the dynamics
literature (for example, [12, 34]). In particular, Thomsen has shown that βc is an
upper bound for the inverse temperatures of KMS states on O(X(E)) [34, The-
orem 6.8]. So it seems likely that our results on T (X(E)) are sharp. At βc, we
can show by taking limits of states on T (X(E)) that there exist KMSβc states on
(O(X(E)), α) (Theorem 6.1).

Our approach is inspired by the analysis of KMS states on the Toeplitz–Cuntz–
Krieger algebra T C∗(E) of a finite directed graph E in [15]. The usual description
of C∗(E) and T C∗(E) using a graph correspondence over the finite-dimensional
algebra C(E0) [31, Sec. 8] does not quite fit our present analysis, though there are
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striking similarities. However, we can also realize C∗(E) in the present setup as
the Cuntz–Pimsner algebra O(X(E∞)) associated to the shift σ on the infinite-
path space E∞ [5, Theorem 5.1]. We can therefore test our results by reconciling
them with the known results for C∗(E). When E is irreducible in the sense that its
vertex matrix A is irreducible, there is a unique KMS state on (C∗(E), α), and its
inverse temperature is given in terms of the spectral radius of A by β = ln ρ(A).
We confirm that, for the local homeomorphism σ : E∞ → E∞, our βc is indeed
ln ρ(A) (Proposition 7.3).

Our computation of βc for shifts works for arbitrary matrices of nonnegative
integers, so we also consider the reducible case, where there is an interesting variety
of examples [16]. In [34, Theorem 6.8], Thomsen also provides a lower bound for the
set of possible inverse temperatures of KMS states of C∗(E). The examples in [16]
show that Thomsen’s bounds are sharp, and that many values in between can be
attained as well (see Sec. 8). Thus we think that graph algebras could provide an
interesting supply of fresh examples for the study of KMS states in dynamics. This
should be true also for the study of KMS states on Toeplitz algebras, although there
is a curious wrinkle: the Toeplitz algebra T C∗(E) embeds in T (X(E∞)), but as
a proper subalgebra (see Proposition 7.1). Nevertheless, our new results are again
compatible with those of [15, 16], and indeed every KMS state of (T C∗(E), α) is
the restriction of a KMS state of (T (X(E∞)), α) (Corollary 7.6).

We begin with a short section on notation and conventions. We then look for
a characterization of KMS states which will allow us to recognize them easily.
This characterization could be of independent interest, because it works for the
Toeplitz algebras of quite general Hilbert bimodules (Proposition 3.1). In Sec. 4,
we discuss our subinvariance relation, which involves a measure-theoretic analog
of a Ruelle operator. Importantly, we describe all solutions of this subinvariance
relation (Proposition 4.2). In Sec. 5, we prove our main theorem about KMS states
on the Toeplitz algebra, and then in Sec. 6 we discuss KMS states at the critical
inverse temperature. Sections 7 and 8 contain our results about shifts on the path
spaces of graphs.

2. Notation and Conventions

2.1. Toeplitz algebras of Hilbert bimodules

Suppose that X is a Hilbert bimodule over a C∗-algebra A, by which we mean
that X is a right Hilbert A-module X with a left action of A implemented by a
homomorphism ϕ : A→ L(X) (in other words, X is a correspondence over A). For
m ≥ 0, we write X⊗m for the internal tensor product X ⊗A X ⊗A · · · ⊗A X of m
copies of X , which is also a Hilbert bimodule over A. A representation (ψ, π) of
a Hilbert bimodule in a C∗-algebra C consists of a linear map ψ : X → C and a
homomorphism π : A→ C such that

ψ(a · x · b) = π(a)ψ(x)π(b) and π(〈x, y〉) = ψ(x)∗ψ(y)

1450066-3



2nd Reading

August 21, 2014 14:2 WSPC/S0129-167X 133-IJM 1450066

Z. Afsar, A. an Huef & I. Raeburn

for every x, y ∈ X and a, b ∈ B. For each m ≥ 1, there is a representation (ψ⊗m, π)
of X⊗m such that

ψ⊗m(x1 ⊗A x2 ⊗A · · · ⊗A xm) = ψ(x1)ψ(x2) · · ·ψ(xm).

For m = 0, we set X⊗0 := A and ψ⊗0 := π.
The Toeplitz algebra T (X) is generated by a universal representation ofX , which

in this paper we always denote by (ψ, π). Proposition 1.3 of [14] says that there is
such an algebra T (X), and that it carries a gauge action γ : T → Aut T (X) char-
acterized by γz(ψ(x)) = zψ(x) and γz(π(a)) = π(a). By [14, Lemma 2.4], we have

T (X) = span{ψ⊗m(x)ψ⊗n(y)∗ : m,n ∈ N}.
If (θ, ρ) is a representation of X in a C∗-algebra C, we write θ × ρ for the repre-
sentation of T (X) in C such that (θ × ρ) ◦ ψ = θ and (θ × ρ) ◦ π = ρ.

For x, y ∈ X , we write Θx,y for the adjointable operator onX given by Θx,y(z) =
x · 〈y, z〉, and K(X) := span{Θx,y : x, y ∈ X} ⊂ L(X). The representation (ψ, π)
induces a homomorphism (ψ, π)(1) : K(X) → T (X) such that (ψ, π)(1)(Θx,y) =
ψ(x)ψ(y)∗. The Cuntz–Pimsner algebra O(X) of [29] is then the quotient of T (X)
by the ideal generated by{

π(a)− (ψ, π)(1)(ϕ(a)) : a ∈ A satisfies ϕ(a) ∈ K(X)
}
.

(Other definitions of the Cuntz–Pimsner algebra have been used in the literature,
but for the bimodules considered here we have φ(A) ⊂ K(X), and all the definitions
give the same algebra.)

2.2. Measures

We will construct KMS states from Borel measures on compact Hausdorff spaces
Z. All the measures we consider are regular Borel measures and are positive in the
sense that they take values in [0,∞); indeed, they are all finite measures and hence
are automatically regular (by [13, Theorem 7.8], for example). We write M(Z)+
for the set of finite Borel measures on Z. Some of our measures will be defined
by integrals, or as linear functionals on C(Z), from which the Riesz representation
theorem [13, Corollary 7.6] gives us an (automatically regular) Borel measure. For
us, a probability measure is simply a Borel measure with total mass 1.

2.3. Topological graphs

A topological graph E = (E0, E1, r, s) consists of two locally compact Hausdorff
spaces, a continuous map r : E1 → E0 and a local homeomorphism s : E1 → E0.
For paths in E, we use the convention of [31], so that a path of length 2, for example,
is a pair ef with e, f ∈ E1 and s(e) = r(f). We mention this because in his first
paper [19], Katsura used a different convention, and one has to be careful when
consulting the literature because there are other conventions out there. Each such
graph E has a Hilbert bimodule X(E) described in [31, Chap. 9]. It is usually a
completion of Cc(E1), but here the spaces E0 and E1 are always compact, and then
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no completion is necessary because the norm on X(E) is equivalent (as a vector-
space norm) to the usual supremum norm on C(E1) = X(E). For reference, we
recall that the module actions are given by (a · x · b)(z) = a(r(z))x(z)b(s(z)) for
a, b ∈ C(E0) and the inner product by 〈x, y〉(z) =

∑
s(w)=z x(w)y(w).

2.4. KMS states

We use the same conventions for KMS states as other recent papers, such as [25,
26, 15], for example. Suppose that (A,R, α) is a C∗-algebraic dynamical system.
An element a of A is analytic if t 
→ αt(a) is the restriction of an entire function
z 
→ αz(a) on C. A state φ of (A,R, α) is a KMS state with inverse temperature β
(or a KMSβ state) if φ(ab) = φ(bαiβ(a)) for all analytic elements a, b. Crucially, it
suffices to check this condition for a, b in a family F of analytic elements which span
a dense subspace of B, and it is usually easy to find a good supply of such elements.

3. A Characterization of KMS States

The following result is similar to [15, Proposition 2.1(a); 27, Proposition 4.1], but is
substantially more general. (We have learned that Mitch Hawkins has independently
proved a similar result for the bimodules X(E) of topological graphs.)

Proposition 3.1. Suppose that X is a Hilbert bimodule over a C∗-algebra A, and
α : R→ AutA is given in terms of the gauge action γ by αt = γeit . Suppose β > 0
and φ is a state on T (X). Then φ is a KMSβ state of (T (X), α) if and only if φ ◦π
is a trace on A and

φ(ψ⊗l(x)ψ⊗m(y)∗) =

{
0 if m �= l,

e−βmφ ◦ π(〈y, x〉A) if m = l.
(3.1)

Proof. First suppose that φ is a KMSβ state. For a ∈ A, αt(π(a)) = π(a) for all
t ∈ R, and hence for all t ∈ C. Thus the KMS relation says that φ ◦ π is a trace.
Two applications of the KMS relation give

φ(ψ⊗l(x)ψ⊗m(y)∗) = φ(ψ⊗m(y)∗αiβ(ψ⊗l(x)))

= e−βlφ(ψ⊗m(y)∗ψ⊗l(x))

= e−β(l−m)φ(ψ⊗l(x)ψ⊗m(y)∗),

which because β > 0 implies that both sides vanish for m �= l. Now for m = l, the
Toeplitz relation for (ψ, π) implies that

φ
(
ψ⊗m(x)ψ⊗m(y)∗

)
= e−βmφ

(
ψ⊗m(y)∗ψ⊗m(x)

)
= e−βmφ

(
π(〈y, x〉A)

)
,

and φ satisfies (3.1).
Next we suppose that φ ◦ π is a trace and that φ satisfies (3.1). It suffices for us

to prove that

φ(bc) = e−β(l−m)φ(cb) (3.2)
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for b = ψ⊗l(x)ψ⊗m(y)∗ and c = ψ⊗n(s)ψ⊗p(t)∗, where x, y, s and t are elementary
tensors. (When b and/or c lie in π(A), this is relatively straightforward because
φ ◦ π is a trace and α fixes π(A).) Formula (3.1) implies that both sides of (3.2)
vanish unless l + n = m + p, and hence we assume this from now on. We also
assume that m ≤ n. To see that this suffices, suppose that we have dealt with the
case m ≤ n, and consider m > n. Then φ(a) = φ(a∗) implies that

φ(bc) = φ(c∗b∗) = φ
(
ψ⊗p(t)ψ⊗n(s)∗ψ⊗m(y)ψ⊗l(x)∗

)
,

and we are back in the other case. Thus

φ(bc) = e−β(p−n)φ
(
ψ⊗m(y)ψ⊗l(x)∗ψ⊗p(t)ψ⊗n(s)∗

)
= e−β(p−n)φ(b∗c∗) = e−β(p−n)φ(cb);

since l+ n = m+ p, we have p− n = l−m, and we have (3.2). So it does suffice to
prove (3.2) when m ≤ n.

So we assume that l+n = m+ p and m ≤ n. Then we also have p ≥ l. Since we
are dealing with elementary tensors, we may write s = s′ ⊗ s′′ ∈ X⊗m ⊗X⊗(n−m)

and t = t′ ⊗ t′′ ∈ X⊗l ⊗X⊗(p−l). (If m = n then p = l and we can dispense with
this step.) Now we compute, remembering that p = l + (n−m):

φ(bc) = φ
(
ψ⊗l(x)ψ⊗m(y)∗ψ⊗m(s′)ψ⊗(n−m)(s′′)ψ⊗p(t)∗

)
= φ

(
ψ⊗l(x)π(〈y, s′〉)ψ⊗(n−m)(s′′)ψ⊗p(t)∗

)
= φ

(
ψ⊗l(x)ψ⊗(n−m)(〈y, s′〉 · s′′)ψ⊗p(t)∗

)
= e−βpφ ◦ π

(〈
t′ ⊗ t′′, x⊗ (〈y, s′〉 · s′′)

〉)
(using (3.1))

= e−βpφ ◦ π
(〈
t′′, 〈t′, x〉 · (〈y, s′〉 · s′′)

〉)
.

A similar computation (but using the slightly less obvious identity ψ(ξ)∗π(a) =
ψ(a∗ · ξ)∗ ) gives:

φ(cb) = φ
(
ψ⊗n(s)ψ⊗(p−l)(t′′)∗ψ⊗l(t′)∗ψ⊗l(x)ψ⊗m(y)∗

)
= φ

(
ψ⊗n(s)ψ⊗(p−l)(t′′)∗π(〈t′, x〉)ψ⊗m(y)∗

)
= φ

(
ψ⊗n(s)ψ⊗(p−l)(〈x, t′〉 · t′′)∗ψ⊗m(y)∗

)
= e−βnφ ◦ π

(〈
y ⊗ (〈x, t′〉 · t′′), s′ ⊗ s′′

〉)
= e−βnφ ◦ π

(〈
〈x, t′〉 · t′′, 〈y, s′〉 · s′′

〉)
.

Since the left action is by adjointable operators, we have

〈
〈x, t′〉 · t′′, 〈y, s′〉 · s′′

〉
=
〈
t′′, 〈t′, x〉 · (〈y, s′〉 · s′′)

〉
,

and we deduce from our two calculations that eβpφ(bc) = eβnφ(cb). Since n− p =
m− l, this is precisely (3.2).
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4. KMS States and the Subinvariance Relation

Suppose ν is a finite regular Borel measure on a compact Hausdorff space Z and
h : Z → Z is a surjective local homeomorphism. Define f : C(Z)→ C by

f(a) =
∫ ∑

h(w)=z

a(w) dν(z) for a ∈ C(Z).

Then f is a positive linear functional on C(Z), and hence the Riesz representation
theorem (for example, [13, Theorem 7.2]) says there is a unique finite regular Borel
measure Rν on Z such that∫

a d(Rν) = f(a) =
∫ ∑

h(w)=z

a(w) dν(z) for a ∈ C(Z). (4.1)

The operation R on measures is affine and positive, and satisfies ‖Rν‖ ≤ c1‖ν‖
for the dual norm on C(Z)∗, where c1 := maxz∈Z |h−1(z)|. Similar operations
appear throughout the analysis of KMS states in dynamics (for example, in [34,
Theorem 6.2]), and are sometimes described as “Ruelle operators”.

Proposition 4.1. Suppose that h : Z → Z is a surjective local homeomorphism on
a compact Hausdorff space Z. Let E be the topological graph (Z,Z, id, h) and X(E)
the graph correspondence. Define α : R → Aut T (X(E)) in terms of the gauge
action by αt = γeit . Suppose that φ is a KMSβ state on (T (X(E)), α), and µ is the
probability measure on Z such that φ(π(a)) =

∫
a dµ for all a ∈ C(Z). Then the

measure Rµ satisfies∫
a d(Rµ) ≤ eβ

∫
a dµ for all positive a in C(Z). (4.2)

Proof. Suppose that a ∈ C(Z) and a ≥ 0. We begin by writing the integrand∑
h(w)=z a(w) in (4.1) in terms of the inner product in X(E). Let {Ui}ki=0 be an

open cover of Z such that h|Ui is injective, and choose a partition of unity {ρi}
subordinate to {Ui}. Define ξi ∈ X(E) by ξi =

√
ρi. Then

∑
h(w)=z

a(w) =
∑

h(w)=z

k∑
i=0

ξi(w)2a(w) =
k∑

i=0

∑
h(w)=z

ξi(w)2a(w)

=
k∑

i=0

∑
h(w)=z

ξi(w)(a · ξi)(w) =
k∑

i=0

〈ξi, a · ξi〉(z).

Thus ∫
a d(Rµ) =

∫ ∑
h(w)=z

a(w) dµ(z) =
∫ k∑

i=0

〈ξi, a · ξi〉(z) dµ(z)

= φ

(
π

(
k∑

i=0

〈ξi, a · ξi〉
))

=
k∑

i=0

φ(ψ(ξi)∗ψ(a · ξi)).

1450066-7



2nd Reading

August 21, 2014 14:2 WSPC/S0129-167X 133-IJM 1450066

Z. Afsar, A. an Huef & I. Raeburn

Now, since φ is a KMSβ state, we have

∫
a d(Rµ) =

k∑
i=0

eβφ(ψ(a · ξi)ψ(ξi)∗). (4.3)

Our next task is to compare the operator
∑k

i=0 ψ(a · ξi)ψ(ξi)∗ appearing on the
right-hand side of (4.3) with π(a). For this, we use the Fock representation (T, ϕ∞)
of T (X(E)) from [14, Example 1.4]. As a right A-module, F (X(E)) is the Hilbert
module direct sum

⊕∞
n=0X(E)⊗n, with the left action of A by diagonal operators

giving a homomorphism ϕ∞ : A→ L(F (X(E))). The homomorphism T : X(E)→
L(F (X(E))) sends x ∈ X(E) to the creation operator T (x) : y 
→ x ⊗A y, and
T × ϕ∞ is an injection on T (X(E)) [14, Corollary 2.2].

Let n ≥ 1 and x = x1 ⊗ · · · ⊗ xn ∈ X(E)⊗n. Then

k∑
i=0

T (a · ξi)T (ξi)∗(x) =
k∑

i=0

T (a · ξi)
(
〈ξi, x1〉 · x2 ⊗ · · · ⊗ xn

)

=
k∑

i=0

(
a · ξi · 〈ξi, x1〉

)
⊗ x2 ⊗ · · · ⊗ xn.

Since h|Ui is injective and supp ξi ⊂ Ui, we have

(ξi · 〈ξi, x1〉)(z) = ξi(z)〈ξi, x1〉(h(z))

= ξi(z)
∑

h(w)=h(z)

ξi(w)x1(w) = ξi(z)2x1(z).

Thus
k∑

i=0

T (a · ξi)T (ξi)∗(x) =
k∑

i=0

a · (ξ2i x1 ⊗ x2 ⊗ · · · ⊗ xn) = a · x = ϕ∞(a)(x).

Thus
∑k

i=0 T (a · ξi)T (ξi)∗ = ϕ∞(a) as operators on X(E)⊗n for n ≥ 1. Since each
T (a · ξi)T (ξi)∗ vanishes on C(Z) = X(E)⊗0 and a is positive, we have

k∑
i=0

T (a · ξi)T (ξi)∗ ≤ ϕ∞(a) in L(F (X(E)));

since the homomorphism T × ϕ∞ is faithful, we deduce that

k∑
i=0

ψ(a · ξi)ψ(ξi)∗ ≤ π(a) in T (X(E)). (4.4)

To finish off, we apply φ to (4.4):

φ

(
k∑

i=0

ψ(a · ξi)ψ(ξi)∗
)
≤ φ(π(a)) =

∫
a dµ.
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On the other hand, (4.3) implies that

φ

(
k∑

i=0

ψ(a · ξi)ψ(ξi)∗
)

= e−β

∫
a d(Rµ),

and the result follows from the last two displays.

When Z is a finite set and A is a nonnegative matrix, µ is a vector in [0,∞)Z ,
and the relation (4.2) in the form Aµ ≤ eβµ says that µ is a subinvariant vector
for A in the sense of Perron–Frobenius theory [33, Chap. 1]. Subinvariant vectors
played an important role in the analysis of KMS states on the Toeplitz algebras of
graphs in [15, Sec. 2], and (4.2) will play a similar role in our analysis. So we shall
refer to (4.2) as the subinvariance relation.

We now show how to construct the probability measures which satisfy the subin-
variance relation. Proposition 4.2 is an analog for our operation R on measures
of [15, Theorem 3.1(a)], which is about the subinvariance relation for the vertex
matrix of a finite directed graph. Here, the powers Rn are defined inductively by
Rn+1ν = R(Rnν), and then we have

∫
a d(Rnν) =

∫ ∑
hn(w)=z

a(w) dν(z) for a ∈ C(Z). (4.5)

Proposition 4.2. Suppose that h : Z → Z is a surjective local homeomorphism on
a compact Hausdorff space Z. Let

βc := lim sup
n→∞

(
n−1 ln

(
max
z∈Z
|h−n(z)|

))
, (4.6)

and suppose that β > βc.

(a) The series
∑∞

n=0 e
−βn|h−n(z)| converges uniformly for z ∈ Z to a continuous

function fβ(z), which satisfies

fβ(z)−
∑

h(w)=z

e−βfβ(w) = 1 for all z ∈ Z. (4.7)

(b) Suppose that ε is a finite regular Borel measure on Z. Then the series∑∞
n=0 e

−βnRnε converges in norm in the dual space C(Z)∗ with sum µ, say.
Then µ satisfies the subinvariance relation (4.2), and we have ε = µ− e−βRµ.
Then µ is a probability measure if and only if

∫
fβ dε = 1.

(c) Suppose that µ is a probability measure which satisfies the subinvariance rela-
tion (4.2). Then ε = µ− e−βRµ is a finite regular Borel measure satisfying∫
fβ dε=1, and we have µ =

∑∞
n=0 e

−βnRnε.
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Remark 4.3. Part (b) applies when ε = 0, and gives µ = 0. However, it is implicit
in part (c) that ε is not zero (because

∫
fβ dε = 1), and hence µ �= e−βRµ. Thus

part (c) implies that the invariance relation Rµ = eβµ has no solutionsa for β > βc.

Proof of Proposition 4.2. We first claim that there exist δ > 0 and K ∈ N such
that

m ≥ K ⇒ e−βm|h−m(z)| < e−δm for all z ∈ Z. (4.8)

Write cn := maxz∈Z |h−n(z)|, so that β > βc means β > lim supn−1 ln cn. Then for
large n, we have β > supm≥nm

−1 ln cm. Thus there exist δ > 0 and K such that

m ≥ K ⇒ β − δ > m−1 ln cm ⇒ cm < eβm−δm

⇒ e−βm|h−m(z)| < e−δm for all z ∈ Z.

This proves our claim.
Take δ as in (4.8). Then comparing the series

∑
e−βn|h−n(z)| with

∑
e−δn

shows that the series
∑∞

n=0 e
−βn|h−n(z)| converges uniformly for z ∈ Z. Since

h is a local homeomorphism on a compact space, each z 
→ |h−1(z)| is locally
constant (by [5, Lemma 2.2], for example), and hence continuous. Thus fβ(z) :=∑∞

n=0 e
−βn|h−n(z)| is the uniform limit of a sequence of continuous functions,

and is therefore continuous. To see (4.7), we note that because all the series
converge absolutely, we can interchange the order of sums in the following
calculation:

fβ(z)−
∑

h(w)=z

e−βfβ(w)

=
∞∑

n=0

e−βn|h−n(z)| −
∑

h(w)=z

e−β

( ∞∑
m=0

e−βm|h−m(w)|
)

=
∞∑

n=0

e−βn|h−n(z)| −
∞∑

m=0

e−β(m+1)


 ∑

h(w)=z

|h−m(w)|




=
∞∑

n=0

e−βn|h−n(z)| −
∞∑

m=0

e−β(m+1)|h−(m+1)(z)|

= e−β0|h−0(z)| = 1.

We have now proved (a).

aThe analog of Proposition 4.1 for the Cuntz–Pimsner algebra will say that the measure µ satisfies
the invariance relation. Thus Proposition 4.2(c) will imply that there are no KMSβ states on
O(X(E)) for β > βc. This is consistent with [34, Theorem 6.8] and our Corollary 5.3.
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Next, we look at the series in (b). Take δ,K satisfying (4.8). Then for N > M ≥
K and g ∈ C(Z) we calculate using (4.5):∣∣∣∣∣

N∑
n=M+1

e−βn

∫
g d(Rnε)

∣∣∣∣∣ =
∣∣∣∣∣∣

N∑
n=M+1

e−βn

∫ ∑
hn(w)=z

g(w) dε(z)

∣∣∣∣∣∣
≤

N∑
n=M+1

e−βn|h−n(z)| ‖ε‖C(Z)∗‖g‖∞

≤
N∑

n=M+1

e−δn‖ε‖C(Z)∗‖g‖∞.

Thus the series
∑∞

n=0 e
−βnRnε converges in the norm of C(Z)∗, as asserted in (b).

Since the operation R is affine and norm-continuous on positive measures, the sum
µ :=

∑∞
n=0 e

−βnRnε satisfies

µ− e−βRµ =
∞∑

n=0

e−βnRnε−
∞∑

n=0

e−β(n+1)Rn+1ε = ε;

since ε is a (positive) measure, this implies that µ satisfies the subinvariance relation.
The Riesz representation theorem implies that µ is a regular Borel measure, and

µ(Z) =
∞∑

n=0

e−βn(Rnε)(Z) =
∞∑

n=0

e−βn

∫
1 d(Rnε)

=
∞∑

n=0

e−βn

∫
|h−n(z)| dε(z),

which by the monotone convergence theorem is
∫
fβ dε. Thus µ is finite, and it is a

probability measure if and only if
∫
fβ dε = 1.

For part (c), we first note that the subinvariance relation implies that ε is a
positive measure, and it is finite because µ is. Next we compute:∫

fβ dε =
∫
fβ dµ− e−β

∫
fβ d(Rµ)

=
∫
fβ(z) dµ(z)− e−β

∫ ∑
h(w)=z

fβ(w) dµ(z)

=
∫ fβ(z)−

∑
h(w)=z

e−βfβ(w)


 dµ(z),

which by (4.7) is µ(Z) = 1. Finally, we have
∞∑

n=0

e−βnRnε =
∞∑

n=0

e−βnRn(µ− e−βRµ)

=
∞∑

n=0

e−βnRnµ−
∞∑

n=0

e−β(n+1)Rn+1µ = µ.

1450066-11



2nd Reading

August 21, 2014 14:2 WSPC/S0129-167X 133-IJM 1450066

Z. Afsar, A. an Huef & I. Raeburn

5. KMS States on the Toeplitz Algebra

Our main theorem is the following analog of [15, Theorem 3.1].

Theorem 5.1. Suppose that h : Z → Z is a surjective local homeomorphism on a
compact Hausdorff space Z, E is the topological graph (Z,Z, id, h), and X(E) is the
graph correspondence. Define α : R → Aut T (X(E)) in terms of the gauge action
by αt = γeit . Take βc as in (4.6), suppose that β > βc, and let fβ be the function
in Proposition 4.2(a).

(a) Suppose that ε is a finite regular Borel measure on Z such that
∫
fβ dε = 1,

and take µ =
∑∞

n=0 e
−βnRnε. Then there is a KMSβ state φε on (T (X(E)), α)

such that

φε

(
ψ⊗l(x)ψ⊗m(y)∗

)
=




0 if l �= m,

e−βm

∫
〈y, x〉 dµ if l = m.

(5.1)

(b) The map ε 
→ φε is an affine isomorphism of

Σβ :=
{
ε ∈M(Z)+ :

∫
fβ dε = 1

}

onto the simplex of KMSβ states of (T (X(E)), α). The inverse takes a state φ to
ε := µ− e−βRµ, where µ is the probability measure such that φ(π(a)) =

∫
a dµ

for a ∈ C(Z).

In the proof of this theorem, we will need to do some computations in the
Toeplitz algebra, and the following observation will help.

Lemma 5.2. For n ≥ 1 we consider the topological graph Fn = (Z,Z, id, hn). Then
there is an isomorphism ρn of X(E)⊗n onto X(Fn) such that

ρn(x1 ⊗ x2 ⊗ · · · ⊗ xn)(z) = x1(z)x2(h(z)) · · ·xn(hn−1(z)).

Proof. We prove this by induction on n. It is trivially true for n = 1 — indeed,
we have E = F1, and ρ1 is the identity. Suppose that there is such an isomorphism
ρn and define ρn+1(x1 ⊗ x)(z) = x1(z)ρn(x)(h(z)). Routine calculations show that
ρn+1 is a bimodule homomorphism. We next show that ρn+1 preserves the inner
products. Let x1 ⊗ x and y1 ⊗ y be elementary tensors in X(E) ⊗C(Z) X(E)⊗n.
Then for z ∈ Z we have〈

ρn+1(x1 ⊗ x), ρn+1(y1 ⊗ y)
〉
(z)

=
∑

hn+1(w)=z

x1(w)ρn(x)(h(w))y1(w)ρn(y)(h(w))

=
∑

hn(v)=z

∑
h(w)=v

x1(w)ρn(x)(h(w))y1(w)ρn(y)(h(w))
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=
∑

hn(v)=z

ρn(x)(v)


 ∑

h(w)=v

x1(w)y1(w)


 ρn(y)(v)

=
∑

hn(v)=z

ρn(x)(v)
(
〈x1, y1〉 · ρn(y))(v)

= 〈ρn(x), 〈x1, y1〉 · ρn(y)〉(z)

= 〈x1 ⊗ ρn(x), y1 ⊗ ρn(y)〉(z).

Since the range of ρn+1 contains C(Z) (take x = 1), we deduce that ρn+1 is an
isomorphism of Hilbert bimodules.

Proof of Theorem 5.1. We aim to construct the KMS state φε using a represen-
tationb (θ, ρ) of X(E) on Hθ,ρ :=

⊕∞
n=0 L

2(Z,Rnε). We write elements of the direct
sum as sequences ξ = (ξn). For a ∈ C(Z), we take ρ to be the direct sum of the
representations ρn of C(Z) on L2(Z,Rnε) given by (ρn(a)ξn)(z) = a(z)ξn(z). Next
we claim that for each x ∈ X there is a bounded operator θ(x) on Hθ,ρ such that

(θ(x)ξ)n+1(z) = x(z)ξn(h(z)) for n ≥ 0 and (θ(x)ξ)0 = 0.

To justify the claim, we take ξ = (ξn) ∈
⊕∞

n=0 L
2(Z,Rnε) and compute:

‖θ(x)ξ‖2 =
∞∑

n=0

‖(θ(x)ξ)n+1‖2

=
∞∑

n=0

∫
|x(z)|2|ξn(h(z))|2 d(Rn+1ε)(z)

≤
∞∑

n=0

‖x‖2∞
∫ ∑

h(w)=z

|ξn(h(w))|2 d(Rnε)(z)

=
∞∑

n=0

‖x‖2∞
∫ ∑

h(w)=z

|ξn(z)|2 d(Rnε)(z)

≤
∞∑

n=0

‖x‖2∞c1
∫
|ξn(z)|2 d(Rnε)(z) (where c1 = maxz |h−1(z)|)

= c1‖x‖2∞‖ξ‖2.

A similar calculation shows that the adjoint θ(x)∗ satisfies

(θ(x)∗η)n(z) =
∑

h(w)=z

x(w)ηn+1(w) for η ∈ Hθ,ρ. (5.2)

bAs in our previous papers, this construction was motivated by the one in the proof of [23,
Theorem 2.1], which suggests that we should take a representation, here the representation Mε

of A = C(Z) by multiplication operators on L2(Z, ε), and work in the induced representation
F (X(E))-IndT

A Mε of T = T (X(E)), where F (X(E)) is the Fock bimodule. However, this requires
many identifications, and it seems clearer to write down a concrete Hilbert space.
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Next we claim that (θ, ρ) is a representation of X(E). It is easy to check that
θ(a · x) = ρ(a)θ(x), and almost as easy to see that θ(x · a) = θ(x)ρ(a): for ξ = (ξn)
we have (θ(x · a)ξ)0 = 0 = (θ(x)(ρ(a)ξ))0 , and for n ≥ 1

(θ(x · a)ξ)n(z) = (x(z)a(h(z)))ξn−1(h(z)) = x(z)(ρ(a)ξ)n−1(h(z))

=
(
θ(x)(ρ(a)ξ)

)
n
(z).

For n ≥ 0, we have

(ρ(〈x, y〉)ξ)n(z) = 〈x, y〉(z)ξn(z) =
∑

h(w)=z

x(w)y(w)ξn(z)

=
∑

h(w)=z

x(w)y(w)ξn(h(w)) =
∑

h(w)=z

x(w)(θ(y)ξ)n+1(w)

= (θ(x)∗θ(y)ξ)n(z) (using (5.2)).

Now the universal property of T (X(E)) gives a homomorphism θ×ρ : T (X(E))→
B(Hθ,ρ) such that (θ × ρ) ◦ ψ = θ and (θ × ρ) ◦ π = ρ.

For each k ≥ 1, we choose a finite partition {Zk,i : 1 ≤ i ≤ Ik} of Z by Borel
sets such that hk is one-to-one on each Zk,i. We write also I0 = 1 and Z0,1 = Z.
Let χk,i = χZk,i

, and define ξk,i ∈
⊕∞

n=0 L
2(Z,Rnε) by

ξk,i
n =

{
0 if n �= k,

χk,i if n = k.

We aim to define our state φε : T (X(E))→ C by

φε(b) =
∞∑

k=0

Ik∑
i=1

e−βk
(
θ × ρ(b)ξk,i | ξk,i

)
for b ∈ T (X(E)), (5.3)

but of course we have to show that the series converges. It suffices to do this for
positive b, and then since b ≤ ‖b‖1 it suffices to prove that the series for φε(1)
converges. Since for each k the Zk,i partition Z, we have

∞∑
k=0

Ik∑
i=1

e−βk
(
χZk,i

|χZk,i

)
=

∞∑
k=0

Ik∑
i=1

e−βkRkε(Zk,i) =
∞∑

k=0

e−βkRkε(Z).

Proposition 4.2 implies that this converges with sum µ(Z) = 1. Thus the formula
(5.3) gives us a well-defined state on T (X(E)).

We now prove that this state satisfies (5.1). So we take x ∈ X(Fl) = X⊗l,
y ∈ X(Fm) = X⊗m and b = ψ⊗l(x)ψ⊗m(y)∗. Since ξk,i is zero in all except the kth
summand of

⊕∞
n=0 L

2(Z,Rnε),

θ × ρ(b)ξk,i = θ⊗l(x)θ⊗m(y)∗ξk,i

is zero in all but the (k −m+ l)th summand. Thus

(θ × ρ(b)ξk,i | ξk,i) = 0 for all k, i whenever l �= m,

and φε certainly satisfies (5.1) when l �= m. So we suppose that l = m ≥ 0.
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Next, note that θ⊗m(x)θ⊗m(y)∗ξk,i = 0 if k < m. For k ≥ m, we know that hk

is injective on Zk,i, and hence so is hm. Thus w, z ∈ Zk,i and hm(w) = hm(z) imply
w = z, and (

θ⊗m(x)θ⊗m(y)∗ξk,i | ξk,i
)

=
∫ x(z) ∑

hm(w)=hm(z)

y(w)χk,i(w)


χk,i(z) d(Rkε)(z)

=
∫
x(z)y(z)χk,i(z) d(Rkε)(z).

Since the Zk,i partition Z, summing over i gives
Ik∑

i=1

(
θ × ρ(ψ⊗m(x)ψ⊗m(y)∗)ξk,i | ξk,i

)
=
∫
x(z)y(z) d(Rkε)(z).

Thus from (4.5) and the formula for the inner product on X(E)⊗m = X(Fm) we
have

φε

(
ψ⊗m(x)ψ⊗m(y)∗

)
=

∞∑
k=m

e−βk

∫
x(z)y(z)d(Rkε)(z)

=
∞∑

k=m

e−βk

∫ ∑
hm(w)=z

x(w)y(w) d(Rk−mε)(z)

=
∞∑

k=0

e−β(m+k)

∫
〈y, x〉(z) d(Rkε)(z)

= e−βm

∫
〈y, x〉 d

( ∞∑
k=0

e−βkRkε

)

by Proposition 4.2(b)

= e−βm

∫
〈y, x〉 dµ. (5.4)

This is (5.1). Applying (5.1) with m = 0 shows that φε(π(a)) =
∫
a dµ, which

says that the last integral in (5.4) is φε ◦ π(〈y, x〉). Thus φε satisfies (3.1), and
Proposition 3.1 implies that φε is a KMSβ state. We have now proved part (a).

Now suppose that φ is a KMSβ state, and let µ be the probability measure
such that φ ◦ π(a) =

∫
a dµ for a ∈ C(Z). Then Proposition 4.1 implies that µ

satisfies the subinvariance relation Rµ ≤ eβµ, and hence Proposition 4.2(c) implies
that ε := µ− e−βRµ is a positive measure which belongs to Σβ and satisfies (1 −
e−βR)−1ε = µ. Thus formulas (3.1) and (5.1) imply that φ = φε. This shows that
ε 
→ φε is surjective. Since applying the construction of this paragraph to the state
φε gives us ε = µ− e−βRµ back, it also shows that ε 
→ φε is one-to-one.

Thus ε 
→ φε maps Σβ onto the set of KMSβ states, and it is affine and contin-
uous for the respective weak* topologies. So we have proved our theorem.
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The next Corollary is contained in [34, Theorem 6.8] (here the function F of
that theorem is identically 1 — see Remark 6.3), but the proof in [34] is quite
different.

Corollary 5.3. Take h : Z → Z and E as in Theorem 5.1, and define α : R →
AutO(X(E)) in terms of the gauge action γ by αt = γeit . If there is a KMS state
of (O(X(E)), α) with inverse temperature β, then β ≤ βc.

Proof. Suppose β > βc and there is a KMSβ state φ of (O(X(E)), α). Denote
by q the quotient map of T (X(E)) onto O(X(E)). Then φ ◦ q is a KMSβ state
of the system (T (X(E)), α) considered in Theorem 5.1. Thus there is a measure
ε on Z such that

∫
fβ dε = 1 and φ ◦ q = φε. Notice in particular that ε(Z) > 0.

We can find a finite open cover {Uj : 1 ≤ j ≤ I} of Z by sets such that h|Uj is a
homeomorphism, and we can find open sets {Vj : 1 ≤ j ≤ I} which still cover Z but
have Vj ⊂ Uj (see [32, Lemma 4.32], for example). Since ε(Z) > 0, there exists j
such that ε(Vj) > 0. Now choose a function f ∈ Cc(Z) such that f(z) �= 0 for z ∈ Vj

and supp f ⊂ Uj . Then the left action of |f |2 ∈ C(Z) on X(E) is implemented by
the finite-rank operator Θf,f , and hence

π(|f |2)− ψ(f)ψ(f)∗ = π(|f |2)− (ψ, π)(1)(Θf,f)

= π(|f |2)− (ψ, π)(1)(ϕ(|f |2))

belongs to the kernel of the quotient map q. But with µ as in Theorem 5.1(b), we
have

φε(π(|f |2)− ψ(f)ψ(f)∗) =
∫
|f |2 dµ− e−β

∫ ∑
h(w)=z

|f |2(w) dµ

=
∫
|f |2 d(µ− e−βRµ) =

∫
|f |2 dε > 0.

Thus φε does not vanish on ker q, and we have a contradiction. Thus β ≤ βc.

Example 5.4. Suppose thatA ∈Md(Z) is an integer matrix withN := | detA|> 1.
Then there is a covering map σA : Td → Td such that σA(e2πix) = e2πiAx for x ∈ Rd.
The inverse image of each z ∈ Td has N elements, and hence |σ−n

A (z)| = Nn for all
z. Thus

1
n

ln
(

max
z∈Td

|σ−n
A (z)|

)
=

1
n

lnNn = lnN for all n,

and βc = lnN . Suppose β > lnN and ν is a probability measure on Td. The
function fβ is the constant function

fβ ≡
∞∑

n=0

e−βnNn =
1

1−Ne−β
,
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and hence the measure ε := (1 − Ne−β)ν satisfies
∫
fβ dε = 1. Thus with E =

(Td,Td, id, σA), Theorem 5.1 gives a KMSβ state φε on (T (X(E)), α) such that

φε

(
ψ⊗k(x)ψ⊗l(y)∗

)
= δk,le

−βk
∞∑

j=0

e−βj

∫
〈y, x〉 d(Rjε) (5.5)

for x ∈ X⊗k, y ∈ X⊗l. We claim that φε is the KMS state ψβ,ν described in
[26, Proposition 6.1].

The algebra T (ML) in [26] is associated to an Exel system (C(Td), σ∗
A, L), in

which σ∗
A is the endomorphism f 
→ f ◦ σA and L is a “transfer operator” defined

by L(f)(z) = N−1
∑

σA(w)=z f(w). The bimodule ML is a copy of C(Td) with
operations a · m · b = amσ∗

A(b) and inner product 〈m,n〉 = L(m∗n). The map
m 
→ N−1/2m is an isomorphism of ML onto X(E), and this isomorphism induces
isomorphisms of T (ML) onto T (X(E)) and of the system (T (ML), σ) in [26] onto
our (T (X(E)), α). In the presentation of T (ML) used in [26], we need to consider
elements {umv

k : m ∈ Z
d, k ∈ N}; such an element umv

k lies in ψ⊗k(M⊗k
L ). The

isomorphism of M⊗k
L onto X(E)⊗k = X(Fk) takes umv

k to the function N−k/2γm :
z 
→ N−k/2zm, and the inner product on X(Fk) is given in terms of L by 〈y, x〉 =
NkLk(yx). For a ∈ C(Td), we have∫

a d(Rjε) =
∫ ∑

σj
A(w)=z

a(w) dε(z) =
∫
N jLj(a)(z) dε(z).

Putting this into (5.5) gives

φε(umv
kv∗lu∗n) = δk,le

−βk
∞∑

j=0

e−βj

∫
N jLj

(
NkLk

(
N−k/2γnN

−k/2γm

))
dε

= δk,l

∞∑
j=k

e−βjN j−k

∫
Lj(γm−n) dε.

The calculation in the third paragraph of the proof of [26, Proposition 3.1] (applied
to Aj rather than A), shows that with B := At we have

Lj(γm−n) =

{
0 unless m− n ∈ BjZd,

γB−j(m−n) if m− n ∈ Bj
Z

d.

Thus

φε(umv
kv∗lu∗n) = δk,l

∑
{j≥k : m−n∈BjZd}

e−βjN j−k

∫
γB−j(m−n) dε

= δk,l

∑
{j≥k : m−n∈BjZd}

e−βjN j−k

∫
zB−j(m−n)(1−Ne−β) dν(z).

Thus φε is the state ψβ,ν described in [26, Proposition 6.1], as claimed.
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6. KMS States at the Critical Inverse Temperature

Theorem 6.1. Suppose that h : Z → Z is a surjective local homeomorphism on a
compact Hausdorff space Z, E is the topological graph (Z,Z, id, h), and X(E) is the
graph correspondence. Define α : R→ Aut T (X(E)) and ᾱ : R→ AutO(X(E)) in
terms of the gauge actions by αt = γeit and ᾱt = γ̄eit . Take βc as in (4.6). Then
there exists a KMSβc state on (T (X(E)), α), and at least one such state factors
through a KMSβc state of (O(X(E), ᾱ)).

For the proof we need a variant on [25, Lemma 10.3; 15, Lemma 2.2], where the
generating sets P were required to consist of projections. We thank the referee for
providing this one, which is much stronger than we need.

Lemma 6.2. Suppose (A,R, α) is a dynamical system, and J is an ideal in A

generated by a set P of positive elements which are fixed by α. If φ is a KMSβ state
of (A,α) and φ(p) = 0 for all p ∈ P, then φ factors through a state of A/J .

Proof. Consider p ∈ P , and let a, b be analytic elements for α. Since elements
of the form apb span a dense subspace of J , it suffices to show that φ(apb) = 0.
Since ap is analytic for α with αiβ(ap) = αiβ(a)p, the KMS condition and the
Cauchy–Schwarz inequality give

0 ≤ |φ(apb)|2 = |φ(bαiβ(a)p)|2

≤ φ(bαiβ(a)αiβ(a)∗b∗)φ(p2)

≤ φ(bαiβ(a)αiβ(a)∗b∗)‖p‖φ(p) = 0,

and hence φ(apb) = 0, as required.

Proof of Theorem 6.1. Choose a decreasing sequence {βn} such that βn → βc

and a probability measure ν on Z. Then Kn :=
∫
fβn dν belongs to [1,∞), and

εn := K−1
n ν satisfies

∫
fβn dεn = 1. Thus for each n, Theorem 5.1 gives us a

KMSβn state φεn on (T (X(E)), α). By passing to a subsequence, we may assume
that {φεn} converges in the weak* topology to a state φ, and [3, Proposition 5.3.23]
implies that φ is a KMSβc state.

To find a KMSβc state which factors through O(X(E)), we apply the construc-
tion of the previous paragraph to a particular sequence of measures εn. Since each
z 
→ |h−n(z)| is continuous [5, Lemma 2.2], Proposition 2.3 of [12] impliesc that
there exists p ∈ Z such that

|h−n(p)| ≥ enβc for all n ∈ N. (6.1)

Now we let δp be the unit point mass at p, and take εn := fβn(p)−1δp. The argument
of the first paragraph yields a KMSβc state φ on (T (X(E)), α) which is a weak*
limit of the KMSβn states φεn .

cStrictly speaking, [12] requires throughout that their space is metric, but their argument for this
proposition does not seem to use this.
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Next we choose a partition of unity {ρi : 1 ≤ i ≤ k} for Z such that h is injective
on each supp ρi, and take ξi :=

√
ρ

i
∈ X(E) as in the proof of Proposition 4.1.

Temporarily, we write φA for the homomorphism of A = C(Z) into L(X(E)) given
by the left action. A calculation like the one in the second paragraph of the proof
of Proposition 4.1 shows that for every a ∈ A, φA(a) is the finite-rank operator∑k

i=1 Θa·ξi,ξi . Thus the kernel of the quotient map q : T (X(E)) → O(X(E)) is
generated by the elements

π(a)− (ψ, π)(1)
(

k∑
i=1

Θa·ξi,ξi

)
= π(a)−

k∑
i=1

ψ(a · ξi)ψ(ξi)∗

= π(a)

(
1−

k∑
i=1

ψ(ξi)ψ(ξi)∗
)
,

and hence also by the single element 1 −
∑k

i=1 ψ(ξi)ψ(ξi)∗. Equation 4.4 implies
that this single generator is positive in T (X(E)), so if we can show that
φ
(∑k

i=1 ψ(ξi)ψ(ξi)∗
)

= 1, then it will follow from Lemma 6.2 that φ factors through
O(X(E)).

We therefore calculate φ
(∑k

i=1 ψ(ξi)ψ(ξi)∗
)
. We write µn for the measure∑∞

j=0 e
−βnjRjεn of Theorem 5.1(b). Then (5.1) implies that

φ

(
k∑

i=1

ψ(ξi)ψ(ξi)∗
)

= lim
n→∞

k∑
i=1

φεn

(
ψ(ξi)ψ(ξi)∗

)

= lim
n→∞

e−βn

∫ k∑
i=1

〈ξi, ξi〉 dµn. (6.2)

Since h is injective on each supp ξi, we have

k∑
i=1

〈ξi, ξi〉(z) =
k∑

i=1

∑
h(w)=z

ξi(w)ξi(w) =
∑

h(w)=z

k∑
i=1

|ξi(w)|2

=
∑

h(w)=z

1 = |h−1(z)|.

Thus

e−βn

∫ k∑
i=1

〈ξi, ξi〉 dµn = e−βn

∫
|h−1(z)| dµn(z)

=
∞∑

j=0

e−βne−βnj

∫
|h−1(z)| d(Rjεn)(z)

=
∞∑

j=0

e−βn(j+1)

∫ ∑
hj(w)=z

|h−1(w)| dεn(z).
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Since εn is a point mass, we have

e−βn

∫ k∑
i=1

〈ξi, ξi〉 dµn =
∞∑

j=0

e−βn(j+1)|h−(j+1)(p)|fβn(p)−1

=
∞∑

j=1

e−βnj |h−j(p)|fβn(p)−1.

Since fβn(p) =
∑∞

j=0 e
−βnj |h−j(p)|, we deduce that

e−βn

∫ k∑
i=1

〈ξi, ξi〉 dµn =
fβn(p)− 1
fβn(p)

. (6.3)

We now need to take the limit of (6.3) as n → ∞. Since we chose the point p
to satisfy (6.1), we have

fβn(p) =
∞∑

j=0

e−βnj |h−j(p)| ≥
∞∑

j=0

(
e−(βn−βc)

)j
.

Since e−(βn−βc) → 1 as n→∞, for fixed J we have
J∑

j=0

(
e−(βn−βc)

)j → J + 1 as n→∞,

and fβn(p)→∞ as n→∞. Thus (6.3) converges to 1 as n→∞, and (6.2) implies
that

φ

(
k∑

i=1

ψ(ξi)ψ(ξi)∗
)

= 1,

as required.

Remark 6.3. Theorem 6.1, and in particular the existence of KMS states on
(O(X(E)), ᾱ) at the inverse temperature βc, overlaps with work of Thomsen [34].
His results concern KMS states on the C∗-algebra of a Deaconu–Renault groupoid,
but his Theorem 3.1 identifies his reduced groupoid algebra C∗

r (Γh) as an Exel
crossed product D�α,L N. In our setting, where the space Z is compact Hausdorff,
his D is C(Z), his endomorphism α is given by α(f) = f ◦ h, and his transfer opera-
tor L is given by L(f)(z) = |h−1(z)|−1

∑
h(w)=z f(w); Thomsen’s Exel crossed prod-

uct is the Cuntz–Pimsner bimodule of a Hilbert bimodule ML [4, Proposition 3.10].
The bimodule is not quite the same as our X(E), but the map U : X(E) → ML

given by (Uf)(z) = |h−1(h(z))|1/2f(z) is an isomorphism of X(E) onto ML (see
[5, Sec. 6]). So our O(X(E)) is naturally isomorphic to the C∗-algebra C∗

r (Γh) in
[34]. This isomorphism carries the gauge action γ : T → AutO(X(E)) into the
gauge action τ used in [34, Sec. 6], and hence our action ᾱ is the action αF of [34]
for the function F ≡ 1 (see the top of [34, p. 414]).

For F ≡ 1, the sequences Aφ
F (k) and Bφ

F (k) in [34, Sec. 6] are given by Aφ
F (k) =

k = Bφ
F (k), and hence the numbers Aφ

F = limk→∞ k−1Aφ
F (k) and Bφ

F are both 1.
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The number hm(φ) in [34, Sec. 6] is our βc. Thus [34, Theorem 6.12] implies that our
system (O(X(E)), ᾱ) has a KMSβc state. Our approach through T (X(E)) seems
quite different.

7. The Shift on the Path Space of a Graph

In this section we consider a finite directed graph E = (E0, E1, r, s) with no sinks
or sources. In the conventions of [31], we write E∞ for the set of infinite paths
z= z1z2 · · · with s(zi) = r(zi+1). The cylinder sets

Z(µ) = {z ∈ E∞ : zi = µi for i ≤ |µ|}

form a basis of compact open sets for a compact Hausdorff topology on E∞. The
shift σ : E∞ → E∞ is defined by σ(z) = z2z3 · · ·. Then σ is a local homeo-
morphism — indeed, for each edge e ∈ E1, σ is a homeomorphism of Z(e) onto
Z(s(e)) — and is a surjection if and only if E has no sinks. Shifts on path spaces
were used extensively in the early papers on graph algebras, and in particular in
the construction of the groupoid model [20]. Here, we shall use them to illustrate
our results and those of Thomsen [34].

We consider the topological graph (E∞, E∞, id, σ), and write X(E∞) for the
associated Hilbert bimodule over C(E∞). The Cuntz–Pimsner algebra O(X(E∞))
is isomorphic to the graph C∗-algebra C∗(E) (this is essentially a result from [5] —
see the end of the proof below). The relationship between the Toeplitz algebra
T (X(E∞)) and the Toeplitz algebra T C∗(E) is more complicated.

Proposition 7.1. Suppose that E is a finite directed graph. Then the elements
Se := ψ(χZ(e)) and Pv := π(χZ(v)) of T (X(E∞)) form a Toeplitz–Cuntz–Krieger
family. The corresponding homomorphism πS,P of T C∗(E) into T (X(E∞)) is
injective, and q ◦ π factors through an isomorphism of C∗(E) onto O(X(E∞)).
Both isomorphisms intertwine the respective gauge actions of T.

Proof. Since the χZ(v) are mutually orthogonal projections in C(E∞), the {Pv :
v ∈ E0} are mutually orthogonal projections in T (X(E∞)). For e, f ∈ E1, we have

S∗
eSf = ψ(χZ(e))∗ψ(χZ(f)) = π

(
〈χZ(e), χZ(f)〉

)
.

A calculation shows that 〈χZ(e), χZ(f)〉 vanishes unless e = f , and then equals
χZ(s(e)); this implies that S∗

eSe = Ps(e), and that the range projections SeS
∗
e and

SfS
∗
f are mutually orthogonal. Since the left action satisfies χZ(v) · χZ(e) = χZ(e)

when v = r(e), we have PvSeS
∗
e = SeS

∗
e when v = r(e), and Pv ≥

∑
r(e)=v SeS

∗
e .

Thus (S, P ) is a Toeplitz–Cuntz–Krieger family. Since the adjoints ψ(x)∗ vanish on
the 0-summand in the Fock module and the representation π is faithful there, Pv �=∑

r(e)=v SeS
∗
e as operators on the Fock module F (X(E∞)). Thus [14, Corollary 4.2]

implies that πS,P is faithful. Since the gauge actions satisfy γz(se) = zse and
γz(ψ(f)) = zψ(f), we have πS,P ◦ γ = γ ◦ πS,P .
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The left action of χZ(µ) in X(E∞) is the finite rank operator ΘχZ(µ),χZ(µ) , and
hence we have

q ◦ π(χZ(µ)) = q ◦ (π, ψ)(1)(ΘχZ(µ),χZ(µ))

= q
(
ψ⊗|µ|(χZ(µ))ψ⊗|µ|(χZ(µ))∗

)
= q(SµS

∗
µ). (7.1)

Thus every q ◦π(χZ(µ)) belongs to C∗(q(Se), q(Pv)), and q ◦ π(C(E∞)) is contained
in C∗(q(Se), q(Pv)). Since χZ(v) =

∑
r(e)=v χZ(e) in C(E∞), the calculation (7.1)

shows that (q ◦ S, q ◦ P ) is a Cuntz–Krieger family in O(X(E)), and the induced
homomorphism πq◦S,q◦P : C∗(E) → O(X(E∞)) carries the action studied in [15]
to the one we use here. This homomorphism intertwines the gauge actions, and
an application of the gauge-invariant uniqueness theorem shows that πq◦S,q◦P is
an isomorphism of C∗(E) onto O(X(E∞)). (The details are in [5, Theorem 5.1],
modulo some scaling factors which come in because the inner product in [5] is
defined using a transfer operator L which has been normalized so that L(1) = 1
(see the discussion in [5, Sec. 9]). With our conventions, L(1) would be the function
z 
→ |σ−1(z)|. Theorem 5.1 of [5] extends an earlier theorem of Exel for Cuntz–
Krieger algebras [9, Theorem 6.2].)

Remark 7.2. While Proposition 7.1 implies that the Toeplitz algebra T (X(E∞))
contains a faithful copy of T C∗(E), Corollary 7.5 implies that T (X(E∞)) is sub-
stantially larger than T C∗(E): for example, there seems to be no way to get
π(χZ(µ)) in C∗(S, P ).

Since the injections of Proposition 7.1 intertwine the gauge actions, they also
intertwine the dynamics studied in [15] with those studied here (and there seems
little danger in calling them all α). Thus applying our results to the local homeo-
morphism σ gives us KMS states on (T C∗(E), α) and (C∗(E), α), and we should
check that our results are compatible with those of [15].

When E is strongly connected, the system (C∗(E), α) has a unique KMS state,
and its inverse temperature is the natural logarithm of the spectral radius ρ(A)
of the vertex matrix A of E [15, Theorem 4.3] (see also [8, 18]). So Theorem 6.1
implies that, for strongly connected E, our critical inverse temperature βc must be
ln ρ(A). Of course, we should be able to see this directly, and in fact it is true for all
finite directed graphs. (The restriction to graphs with cycles in the next proposition
merely excludes the trivial cases in which E∞ is empty and ρ(A) = 0.)

Proposition 7.3. Suppose that E is a finite directed graph with at least one cycle.
Let A denote the vertex matrix of E, and let σ denote the shift on the infinite-path
space E∞. Then

1
N

ln
(

max
z∈E∞

|σ−N (z)|
)
→ ln ρ(A) as N →∞.
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Proof. (Again, we thank the referee for providing this elegant proof.) We first
claim that for any E0 ×E0 matrix B, the operator norm on �2(E0) is bounded by

max
v,w∈E0

|B(v, w)| ≤ ‖B‖ ≤ |E0|3/2 max
v,w∈E0

|B(v, w)|.

Indeed, the left-hand inequality is easy, and the right-hand one follows quickly from
estimates using the inequalities ‖x‖2 ≤ ‖x‖1 ≤ |E0|1/2‖x‖2 relating the �2 and �1

norms.
Now we use that

max
z∈E∞

|σ−N (z)| = max
w∈E0

∑
v∈E0

AN (v, w)

to estimate

|E0|−3/2‖AN‖ ≤ max
v,w∈E0

AN (v, w) ≤ max
w∈E0

∑
v∈E0

AN (v, w)

= max
z∈E∞

|σ−N (z)| ≤ |E0| max
v,w∈E0

AN (v, w) ≤ |E0| ‖AN‖.

From this we get

1
N

ln
(
|E0|−3/2‖AN‖

)
≤ 1
N

ln
(

max
z∈E∞

|σ−N (z)|
)
≤ 1
N

ln
(
|E0| ‖AN‖

)
,

and the result follows from the spectral radius formula.

Proposition 7.3 implies that, for the shifts σ on E∞, the range β > βc in
Theorem 5.1 is the same as the range β > ln ρ(A) in [15, Theorem 3.1]. When
we view T C∗(E) as a C∗-subalgebra of T (X(E∞)), restricting KMS states of
(T (X(E∞)), α) gives KMS states of (T C∗(E), α) with the same inverse temper-
ature. Since we know from [15, Theorem 3.1] exactly what the KMS states of
(T C∗(E), α) are, it is natural to ask which ones arise as the restrictions of states
of (T (X(E∞)), α).

We chose notation in Sec. 5 to emphasize the parallels with [15, Sec. 3], and
hence we have a clash when we try to use both descriptions at the same time. So
we write δ for the measure ε in Theorem 5.1, and keep ε for the vectors in [1,∞)E0

appearing in [15, Theorem 3.1]. Otherwise we keep the notation of Theorem 5.1.

Proposition 7.4. Suppose that E is a finite directed graph with at least one cycle,
and A is the vertex matrix of E. Suppose that β > ln ρ(A), and that δ is a regular
Borel measure on E∞ satisfying

∫
fβ dδ = 1. Define ε = (εv) ∈ [0,∞)E0

by εv =
δ(Z(v)). Take y = (yv) ∈ [1,∞)E0

as in [15, Theorem 3.1]. Then y · ε = 1, and the
restriction of the KMSβ state φδ of Theorem 5.1 to (T C∗(E), α) is the state φε of
[15, Theorem 3.1].
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Proof. We begin by computing the function fβ ∈ C(E∞). For z ∈ E∞, we have

fβ(z) =
∞∑

n=0

e−βn|σ−n(z)| =
∞∑

n=0

e−βn|Enr(z)|

=
∞∑

n=0

e−βn

(∑
v∈E0

|Env|χZ(v)(z)

)
.

Since yv =
∑

µ∈E∗v e
−β|µ|, an application of the monotone convergence theorem

shows that

1 =
∫
fβ dδ =

∞∑
n=0

e−βn
∑

v∈E0

|Env|δ(Z(v)) =
∑

v∈E0

yvεv = y · ε. (7.2)

To see that φδ restricts to φε, it suffices to compute them both on elements
SλS

∗
ν . Since Sλ = ψ⊗|λ|(χZ(λ)) belongs to X(E∞)⊗|λ|, Eqs. (5.1) and [15, (3.1)]

imply that φδ(SλS
∗
ν ) = 0 = φε(SλS

∗
ν ) when |λ| �= |ν|. So we suppose |λ| = |ν| = n,

say. Then (5.1) implies that

φδ(SλS
∗
ν ) = e−βn

∫ 〈
χZ(ν), χZ(λ)

〉
dµ,

where µ =
∑∞

k=0 e
−βkRkδ. Viewing X(E∞)⊗n as X(Fn), as in Lemma 5.2, we can

compute

〈χZ(ν), χZ(λ)〉(z) =
∑

σn(w)=z

χZ(ν)(w)χZ(λ)(w) = δλ,ν

∑
σn(w)=z

χZ(λ)(w),

and deduce that 〈χZ(ν), χZ(λ)〉 = δλ,νχZ(s(λ)). Thus

φδ(SλS
∗
ν) = δλ,νe

−βnµ(Z(s(λ))). (7.3)

So we want to compute µ(Z(v)) for v ∈ E0. For each k, we have

(Rkδ)(Z(v)) =
∫
χZ(v) d(Rkδ)(z) =

∫ ∑
σk(w)=z

χZ(v)(w) dδ(z).

We have ∑
σk(w)=z

χZ(v)(w) = |vEkr(z)| = Ak(v, r(z)) =
∑

u∈E0

Ak(v, u)χZ(u)(z).

Thus

(Rkδ)(Z(v)) =
∫ ∑

u∈E0

Ak(v, u)χZ(u) dδ =
∑

u∈E0

Ak(v, u)δ(Z(u)),

1450066-24



2nd Reading

August 21, 2014 14:2 WSPC/S0129-167X 133-IJM 1450066

KMS states on C∗-algebras associated to local homeomorphisms

and

µ(Z(v)) =
∞∑

k=0

e−βk
∑

u∈E0

Ak(v, u)δ(Z(v))

=
∞∑

k=0

e−βk(Anε)v =
(
(1− e−βA)−1ε

)
v
.

Now we go back to (7.3), and write down

φδ(SλS
∗
ν ) = δλ,νe

−βn
(
(1 − e−βA)−1ε

)
s(λ)

, (7.4)

which in the notation of [15, Theorem 3.1(b)] is δλ,νe
−βnms(λ). It follows from this

and [15, (3.1)] that φδ(SλS
∗
ν ) = φε(SλS

∗
ν), as required.

Proposition 7.4 implies that the system (T (X(E∞)), α) has many more KMS
states than (T C∗(E), α).

Corollary 7.5. Suppose that β > ln ρ(A), and that δ1, δ2 are regular Borel mea-
sures on E∞ satisfying

∫
fβ dδi = 1. Then φδ1 |T C∗(E) = φδ2 |T C∗(E) if and only if

δ1(Z(v)) = δ2(Z(v)) for all v ∈ E0.

Proof. Suppose that δ1 and δ2 are as described, and φδ1 |T C∗(E) = φδ2 |T C∗(E).
Then Proposition 7.4 implies that corresponding εi have φε1 = φε2 , and the injec-
tivity of the map ε 
→ φε from [15, Theorem 3.1(c)] says that ε1 = ε2. But this says
precisely that δ1 and δ2 agree on each Z(v).

On the other hand, if δ1(Z(v)) = δ2(Z(v)) for all v ∈ E0, then the corresponding
εi are equal, and the formula (7.4) implies that φδ1 and φδ2 agree on T C∗(E).

Corollary 7.6. Suppose that β > ln ρ(A). Then every KMSβ state of (T C∗(E), α)
is the restriction of a KMSβ state of (T (X(E∞)), α).

Proof. Suppose that φ is a KMSβ state on (T C∗(E), α). Then [15, Theorem 3.1]
implies that there is a vector ε ∈ [1,∞)E0

such that y · ε = 1 and φ = φε. If δ
is a measure on E∞ such that δ(Z(v)) = εv for all v ∈ E0 and

∫
fβ dδ = 1, then

Proposition 7.4 implies that φδ|T C∗(E) = φε. So it suffices to show that there is
such a measure δ.

We can construct measures on E∞ by viewing it as an inverse limit lim←−(En, rn),
where rn : En+1 → En takes ν = ν1ν2 · · · νnνn+1 to ν1ν2 · · · νn. Then any family
of measures δn on En such that δn+1(Z(ν) ∩ En+1) = δn(Z(ν)) for |ν| = n gives
a measure δ on E∞ such that δ(Z(ν)) = δn(Z(ν)) for |ν| = n (see, for example,
[1, Lemma 6.1]). We can construct such a sequence by taking δ0 = ε, inductively
choosing weights we such that

∑
r(e)=v we = εv, recursively choosing {wνe ∈ [0,∞) :

νe ∈ En+1} such that
∑

r(e)=s(ν) wνe = wν , and setting δn+1(νe) = wνe. Now the

calculation (7.2) shows that
∫
fβ dδ = y · ε = 1, and hence δ has the required

properties.
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8. KMS States Below the Critical Inverse Temperature

In Remark 6.3, we showed that our critical inverse temperature βc is the same as the
one found by Thomsen [34]. He only considers states of the Cuntz–Pimsner system
(O(X(E)), ᾱ), and we agree that this system has no KMSβ states with β > βc.
However, he leaves open the possibility that there are KMSβ states with β < βc.
Indeed, he considers also the number

βl := lim sup
N→∞

(
N−1 ln

(
min
z∈Z
|h−N(z)|

))
, (8.1)

and then [34, Theorem 6.8] implies that the KMS states of (O(X(E∞)), ᾱ) all have
inverse temperatures in the interval [βl, βc]. Since (O(X(E∞)), ᾱ) = (C∗(E), α),
we can use examples from [16] to see that Thomsen’s bounds are best possible.

More precisely, consider the dumbbell graphs

with m loops at vertex v and n loops at vertex w. (So in the above picture, we have
m = 2 and n = 3. This graph was discussed in [16, Example 6.2], and the one with
m = 3 and n = 2 in [16, Example 6.1].) The vertex matrix A of such a graph E is
upper triangular and has spectrum {m,n}. For m ≥ n, the system (C∗(E), α) has
a single KMSlnm state, and this is the only KMS state.

Now we suppose that m < n. Then ρ(A) = n, and (C∗(E), α) has two KMS
states. The first is denoted by ψ{w} in [16], and has inverse temperature lnn. The
second factors through the quotient map of C∗(E) onto the C∗-algebra of the graph
with vertex v andm loops, which is a Cuntz–algebraOm. It has inverse temperature
lnm. For this graph, we have βc = ln ρ(A) = lnn. To compute βl, we let z ∈ E∞.
Then

|σ−N (z)| = |EN r(z)| =



mN if r(z) = v,

nN +
N−1∑
j=0

njmN−1−j if r(z) = w.

Since m < n, the minimum is attained when r(z) = v, and minz∈E∞ |σ−N (z)| =
mn, giving βl = lnm. Thus for this graph, the possible inverse temperatures are
precisely the end-points of Thomsen’s interval.

Remark 8.1. By adding appropriate strongly connected components between w

and v in this last example, we can construct examples for which there are KMS
states with inverse temperatures between βl and βc. However, there are number-
theoretic constraints on the possible inverse temperatures (see [28], [16, Sec. 7]).
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