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Abstract

This thesis describes the equilibrium states (the KMS states) of dynamical

systems arising from local homeomorphisms. It has two main components.

First, we consider a local homeomorphism on a compact space and the
associated Hilbert bimodule. This Hilbert bimodule has both a Toeplitz
algebra and a Cuntz-Pimsner algebra, which is a quotient of the Toeplitz
algebra. Both algebras carry natural gauge actions of the circle, and hence
one can obtain natural dynamics by lifting these actions to actions of the
real numbers. We study KMS states of these dynamics at, above, and below
a certain critical value. For inverse temperature larger than the critical
value, we find a large simplex of KMS states on the Toeplitz algebra. For
the Cuntz-Pimsner algebra the KMS states all have inverse temperatures
below the critical value. Our results for the Cuntz-Pimsner algebra overlap
with recent work of Thomsen, but our proofs are quite different. At the
critical value, we build a KMS state of the Toeplitz algebra which factors
through the Cuntz-Pimsner algebra.

To understand KMS states below the critical value, we study the backward
shift on the infinite path space of an ordinary directed graph. Merging our
results for the Cuntz-Pimsner algebra of shifts with the recent work about
KMS states of the graph algebras, we show that Thomsen’s bounds on of

the possible inverse temperature of KMS states are sharp.

In the second component, we consider a family of x-commuting local home-
omorphisms on a compact space, and build a compactly aligned product
system of Hilbert bimodules (in the sense of Fowler). This product sys-
tem also has two interesting algebras, the Nica-Toeplitz algebra and the

Cuntz-Pimsner algebra. For these algebras the gauge action is an action of
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a higher-dimensional torus, and there are many possible dynamics obtained

by composing with different embeddings of the real line in the torus.

We use the techniques from the first component of the thesis to study the
KMS states for these dynamics. For large inverse temperature, we describe
the simplex of the KMS states on the Nica-Toeplitz algebra. To study KMS
states for smaller inverse temperature, we consider a preferred dynamics for
which there is a single critical inverse temperature, which we can normalise
to be 1. We then find a KMS; state for the Nica-Toeplitz algebra which
factors through the Cuntz-Pimsner algebra. We then illustrate our results
by considering different backward shifts on the infinite path space of some

higher-rank graphs.
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Introduction

Given an action a of the real line R by automorphisms of a C*-algebra A, the C*-
dynamical system (A, R, ) provides an algebraic model for studying a physical system
in quantum statistical physics [5]. In this framework, the observables are the self-
adjoint elements of the C*-algebra A, the states are positive linear functionals on A
with norm 1, and the time evolution is given by the action . Work of Kubo, Martin
and Schwinger shows that equilibrium states of the physical system are exactly those
states on A which satisfy a certain commutation relation (the so called KMS condition).
This relation involves a real number /3, which is interpreted as the inverse temperature

of the physical system.

The KMS condition makes sense for abstract dynamical systems and operator al-
gebraists study KMS states of dynamical systems regardless of applications in physics.
Many authors have studied KMS states in different contexts. For example: in systems
constructed from number theory [4, 32, 33, 34], in systems associated to graph algebras
[12, 15, 28, 29], in systems arising from groupoids [31, 39], and in topological systems
built from local homeomorphisms [56, 57].

In most of the contexts mentioned above, there are two main C*-algebras: a Cuntz-
Pimsner type algebra and its Toeplitz extension. There has been profound progress in
characterising KMS states of Cuntz-Pimsner algebras in the literature [12, 13, 43, 56],
and interesting work of Exel, Laca and Neshveyev [15, 34] shows that Toeplitz algebras

are expected to have a much greater supply of KMS states.

This thesis focuses on characterising KMS states on Toeplitz algebras associated to
local homeomorphisms. It is organised in two main parts. The first part is allocated to
dynamical systems arising from a single local homeomorphism and their KMS states.
The result of this part is published in [1] and here we provided it as an Appendix
chapter (see Appendix A). In the second part, we study KMS states of dynamical
systems associated to a family of local homeomorphisms in the context of product

systems of Hilbert bimodules. This part occupies the main body of this thesis.



The notion of a product system was initially introduced by Arveson as a continuous
product system of Hilbert spaces [2]. Then several authors generalised this to discrete
product systems in [11, 20, 22]. We follow Fowler’s extension [20] which is about discrete
product systems of Hilbert bimodules over semigroups [20]. Roughly speaking, for a
semigroup P with identity e, a product system of Hilbert bimodules over P is a semi-
group X = |_|peP X, such that each X, is a right Hilbert bimodule and z ® y — xy
implements an isomorphism from X, ® X, onto X, for all p,q € P\ {e}.

For such a product system X, Fowler defined Toeplitz representations of X as
multiplicative maps whose restriction on each fibre X, is a Toeplitz representation in
the sense of [21]. Then he associated the Toeplitz algebra T (X) as the universal algebra
for Toeplitz representations of X. He defined the Cuntz-Pimsner algebra O(X) as a
quotient of 7(X). When (G, P) is a quasi-lattice ordered group in the sense of Nica [40],
he imposed a covariance condition (Nica-covariance) on Toeplitz representations, and
defined the Nica-Toeplitz algebra N'T(X)! as the universal algebra for Nica-covariant
Toeplitz representations. He noticed that N7 (X) is only tractable for certain class of
product systems called compactly aligned product systems. For such a product system,
he showed that

(1) NT(X) = Spﬁ{wp(x)d’q(y)* :p,q€ P x € Xpa?/ S Xqv}

where 1 is the universal Nica-covariant representation.

Viewing N* as an additive semigroup, there are many interesting examples for the
product systems over N* in the literature. For these examples, by universal properties
of NT(X), and O(X), respectively we can get strongly continuous gauge actions of
k-torus T* on these algebras. Then we can lift these actions to the actions of the real
line via the embedding t + €' = (eit™ itz i) for some 7 € (0, 00)".

Well known examples of product systems over N* are the ones constructed from
the higher-rank graph of Kumjian-Pask [30]. It is observed in [22, page 1492] that we
can view a k-graph A as a product system over N¥. Soon after Sims and Raeburn
showed that by putting particular combinatorial condition on the underlying higher-
ranks graph we can get a compactly aligned product system over the quasi-lattice
ordered group (Z* ,N¥) [45]. They imposed a Nica-covariance condition by adding
an extra relation to the usual Cuntz-Krieger relations. They called the associated
Nica-Toeplitz algebras the Cuntz-Krieger-Toeplitz algebra 7 C*(A). The Cuntz-Krieger
C*(A) can be viewed as a quotient of 7TC*(A). Thus the C*-algebras of higher-rank

In Fowler’s paper the Nica-Toeplitz algebra is denoted by Teov (X).



graphs and their KMS states can be a rich supply of test examples for analysing KMS
states of product systems. In particular there has been recently great progress in

analysing the KMS structure of these dynamics (for example [26, 28]).

There are also intriguing examples for Nica-Toeplitz algebras in number theory,
for example, the Toeplitz algebra T (N x N*) studied by Laca and Raeburn in [35].
It is observed in [7] that 7T(N x N*) and the associated additive and multiplicative
quotients are all Nica-Toeplitz algebras. Then the KMS structure of these algebras is
analysed by applying the technique developed in [35]. Following the same approach,
Hong, Larsen and Szymanski characterized the KMS structure of a product system
over a general semigroup [24]. But the authors of [24] used the strong condition “finite
type product system” in their hypothesis. This condition requires the existence of a

finite orthonormal basis for all fibres in the product system.

In [53, 54], Solel used different notation to study the product systems over N*.
He used the term “c.c. (completely contractive covariant) representation” for Fowler’s
Toeplitz representation (see [54, Defnition 2.3, Definition 3.1]) and defined the “doubly
commuting relation” ([54, Defnition 3.8])). He showed in [54, Lemma 3.11] that this
relation is equivalent to Fowler’s Nica-covariance relation and that the universal Nica-

covariant representation v satisfies his doubly commuting relation.

Here we are interested in the dynamical systems arising from local homeomor-
phisms. We first show that a family of surjective and commuting local homeomorphisms
hy,...,h; on acompact Hausdorff space Z induces a compactly aligned product system
X over N* (see Chapter 2). Letting h™ := h{" o---oh;™, each fibre X,, in this product
system is the graph correspondence associated to the topological graph (Z, Z,id, h™).
We know very well from our work in [1] what each fibre looks like. So we think about
generalizing the results of [1] from one Hilbert bimodule to a product system of Hilbert

bimodules.

Our approach is inspired by [28] which is again a refinement of original technique
introduced in [34]. So we first look for a characterization of KMS states of N'T(X)
which makes it easier to recognise the KMS states. To do this, having looked at similar
results in the literature (for example [28, Proposition 3.1] and [24, Theorem 4.6]), we
noticed that it is crucial to express elements of the form v, (y)*iy,(x) in terms of usual
spanning elements v, (s)1,(t)* in the algebra N'T(X). For a general product system
over a semigroup, Fowler provided an approximation [20, Proposition 5.10], but this
is not enough because we need an exact formula; in the dynamics associated to a

higher-rank graph [28] this formula already exists as one of the Toeplitz-Cuntz-Krieger
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relations; in [24], since each fibre in the product system has an orthonormal basis, it is
easier to find such a formula (see [24, Lemma 4.7]).

To solve this problem, we impose an extra hypothesis of x-commutativity on the
local homeomorphisms. Two maps f,g: Z — Z, x-commute if for every z, 2’ € Z such
that f(z) = g(2’), there exists unique z” € Z such that z = ¢g(2”) and 2’ = f(z") (see
[3]). Recently, there have been great interest in studying C*-algebras of *-commuting
maps and associated dynamics [16, 37, 55].

The *-commutativity hypothesis allows us to find Parseval frames for each fibre.
Given m € NF, since the fibre X,, is the graph correspondence associated to the local
homeomorphisms h™, there is a well-known Parseval frame {; fzo for X,,, which comes
from a partition of unity ([17, Proposition 8.2]). We observed that for n € N*¥ with
m A n = 0, the composition of elements of this Parseval frame with A" form another
Parseval frame for X,,. Then we prove
(2) Un@) (@) = D V(g7 0 B7) - 7)o@ 70 B - )

0<i,j<d
getting the formula we need. This formula is for fibres X,, and X, with m An = 0.
However by using proper isomorphisms between fibres we can apply (2) and rewrite
Un(y)* () in terms of elements of the for 1, (s),(t)* for general m,n € N*. Then
we use the formula (2) and provide a characterization of KMS states in Proposition
3.1.6.

In fact the equation (2) is a translation of Solel’s doubly commuting relation from
his notation to Fowler’s notation. The difficulty of this translation is that the doubly
commuting relation contains a flip map between fibres. Notice that the existence of
such a flip map is a consequence of definition of the product system. Solel used the
doubly commuting relation in his approach without any explicit formula for the flip
map. We find a nice formula for this flip map in Lemma 3.1.1(c) and therefore we can
translate the doubly commuting relation to get (2) (see Appendix A).

Let A be a k-graph and A;(1 < i < k) be the associated vertex matrices. The
vectors that are subinvariant for all A; in the sense of Perron-Frobenius theory [50], play
a very important role in analysing KMS states of 7C*(A). For dynamics determined
by r € (0,00)k, we follow the same idea and define a subinvariance relation using a

family of Ruelle operators. When [ is large enough, that is g > (. for

Be = miax{rj_lﬂci} and 3, = limsup (j ' In (I?Eazx h; 7 (2)])),

Jj—o0
we describe all solutions of our subinvariance relation in Proposition 3.2.7. If in addi-

tion r has rationally independent coordinates, we show that there is a bijection between
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the simplex of KMSj states on N'T(X) and the probability measures satisfying our
subinvariance relation (Theorem 3.3.1). A rational independency condition on 7 is cru-
cial when we prove the surjectivity of our isomorphism in Theorem 3.3.1. So whenever
we need to get a probability measure (satisfying the subinvariance relation) from a
KMS sates we have to impose this hypothesis.

To study KMS states for smaller £, in order to have satisfactory results, we pay
careful attention in choosing r € (0, 00)*. Following recent conventions in graph alge-
bras [26, 28, 59, 60], we consider a preferred dynamics where r := (f3,, ..., 5., ). Notice
that in this case 8. = 1. We call 5. = 1 the critical inverse temperature. At the critical
inverse temperature, we show that by taking limits of KMSg, states as the 3; decrease
to 1, there is a KMS; state on N'T(X), and at least one such a state factors through
O(X) (Theorem 3.4.1).

Finally, we provide an example of x-commuting maps. Let A be a 1-coaligned k-
graph in the sense that for each pair of paths (u,r) with the same source there is a
unique pair of paths (£, n) such that {u = nv. It is observed in [37, Theorem 2.3] that
the shift maps on the infinite path space of A x-commute. Now writing X (A>) for the
associated product system, we apply our result in the previous chapters to study the
KMS structure of the associated Nica-Toeplitz algebra N'T (X (A>)) and the Cuntz-
Pimsner algebra O(X(A*)). We first prove that, as we expect from our results for
a 1-graph, the Cuntz-Pimsner algebra O(X(A*)) is isomorphic to the Cuntz-Krieger
algebra C*(A). We also prove that the Nica-Toeplitz algebra N7 (X (A*>)) contains an
injective copy of TC*(A) (Proposition 4.2.7). Furthermore, we prove that every KMS
state of TC*(A) is the restriction of a KMS state of N'T (X (A>)) (Proposition 4.3.3).

Thesis outline

This thesis is broken up to 4 chapters and 2 appendices:

In Chapter 1, we provide an overview of product systems of Hilbert bimodules and
the associated dynamical systems. We present the basic definitions and notation and
discuss the properties of these dynamical systems in details. In Chapter 2, we show that
a family of commuting and surjective local homeomorphisms gives a compactly aligned
product system of Hilbert bimodules. Chapter 3 allocated to characterising KMS
states and ground states of dynamical systems arising from a family of x-commuting
and surjective local homeomorphisms. In Chapter 4, we discuss the shifts on the infinite

path space of 1-coaligned higer-rank graphs. We show the relationships between the
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KMS states of graph algebras and the KMS states of the C*-algebras of the shifts.

In appendix A, we reconcile our results with those of Solel’s. We show that for the
dynamical system considered in Chapter 3, the universal Nica-covariant representation
satisfies Solel’s doubly commuting relation. Finally, we attach our published paper [1]
as Appendix B. This appendix presents our results about the KMS states of dynamical

systems associated to a single local homeomorphism.



Chapter 1

Preliminaries

1.1 Hilbert bimodules

The following definitions are taken from chapter 2 of [46].

Given a complex vector space X and a C*-algebra A, by a right action of A on X
we mean a pairing (z,a) — x-a : X x A — X satisfying the consistency conditions:
(x+2)-a=z-a+2"-a;z-(ad)=(z-a)-a and N(z-a) = (Ax)-a =z - (\a) for all

AeC, z,2 € X and a,d € A.

Definition 1.1.1. Let A be a C*-algebra and X be a complex vector space with a right
action of A on X. A right A-valued inner product on X is a function (-,)4 : X x X — A

which is linear in the second variable and satisfies:
(&) (x,y-a)s = (z,y)aaq,
(b) {z,9)% = {y, ) a,
(¢) (z,y)a is a positive element of A, and
(d) (z,z)4 =0 implies that = = 0.

We may write (x,y) for (z,y)a if it is clear from the context which C*-algebra A

1S meant.

Remark 1.1.2. Since (-, ) 4 is linear in second variable, we deduce that x = 0 implies
(x,x)4 = 0. It also follows from condition (b) that (-,-) 4 is conjugate linear in the first

variable.



It follows from [46, Corollary 2.7] that the formula ||z||4 = |[(z,z)4? defines a
norm on X. If X is complete in this norm we call it a right Hilbert A-module.

Suppose X is a right Hilbert A-module. An operator T': X — X is adjointable, if
there is an operator 7% : X — X such that (T'(z),y) , = (z,T*(y)) , for all z,y € X.
We denote by £(X) the set of all adjointable operators on X.

It follows from [46, Lemma 2.18] that every adjointable operator T" on a right Hilbert
A-module X is a linear bounded operator. [46, Proposition 2.21] says that the adjoint
T* is unique and the set £(X) is a C*-algebra with respect to the operator norm, and
with the involution given by 7'+ T™.

Given z,y € X, we define ©,, : X — X by

Ouy(2) =2 (y,2)a-
Then ©,,, is adjointable and ©;, , = ©,, (see [46, page 18]). The set
K(X):=span{©,, : z,y € X}.
is a C*-algebra and we call it the algebra of compact operators on X.

Definition 1.1.3. Let A be a C*-algebra. A right Hilbert A-A bimodule X (or a
correspondence over A) is a right Hilbert A-module X together with a homomorphism
v : A— L(X). We view p as implementing a left action of A on X and we usually
write a - « for p(a)(z). We say X is essential if X = span{yp(a)x :a € A,z € X}.

Remark 1.1.4. Since p(a) € L(X) for all a € A, it follows that (a-z,y) a4 = (z,a*-y) 4.
Now let z,y € X and a,a’ € A. The statements (b) and (c) of Definition 1.1.1 imply
that

(a-(z-d),y)a=(x-d,a" - yha=(a"y,z-d)=((a" -y, x)ad)”
= ((y,a-2)ad’)" = (y, (a-x)-d')}y = ((a-2) - d,y)a.

Thus a- (x-a’) = (a-x)-a’ and the actions of A on X are compatible.

Example 1.1.5. Let A be a C*-algebra. The multiplication in A gives a right action
of A on itself. The formula (a,a’) 4 = a*a’ defines a right A-valued inner product on A.
To see this, first note that it is linear in the second variable. 2nd, conditions (a)—(c) of
Definition 1.1.1 are immediate. Third, to check (d), let (a,a’)4 = a*a = 0. It follows
that ||aa*|| = ||a||* = 0. This implies @ = 0. Thus (a,a’)4 = a*d’ is a right A-valued

inner product on A. Since ||a|l4 = ||a||, A is complete in the norm || - |4 and therefore
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is a Hilbert A-module. Next define ¢ : A — L(A) by ¢(a)(a’) = ad’. To see that ¢ is

adjointable, observe that

(pla)(a),a")a = (aa')"a" = a™(a"a") = (d,a"a") 4 = (d’, p(a”)(a")) 2.
Thus ¢(a) is adjointable and ¢(a)* = ¢(a*). Clearly ¢ is a homomorphism. Thus A

is a right Hilbert A-A bimodule which we call the standard bimodule and denote by
AAa.

Example 1.1.6. Let A be a unital C*-algebra with identity 14 and suppose X is a
right Hilbert A-A bimodule. If ¢(I4)z = x for all z € X, then X is essential.

Definition 1.1.7. Let A be a C*-algebra and X be a right Hilbert A—A bimodule. A
representation (¢, ) of X in a C*-algebra B consists of a linear map ¢ : X — B and

a homomorphism 7 : A — B such that

Pla-x-b) =m(a)p(x)m(b) and w((z,y) ) = P(2) P (y).
for every x,y € X and a,b € A.

Remark 1.1.8. A representation (1, ) induces a homomorphism (¢, 7)) : K(X) —
T (X) such that (¢, 7)1 (0,,) = ¥(z)(y)* (see page 202 of [42]).

Definition 1.1.9. Suppose X is a right Hilbert A—A bimodule. Following [17, 23], we

refer to a sequence {z;}¢, in X such that

d
(1.1) Zmi-@i,x)/;:x for all z € X.
=0
as a finite Parseval frame for X. The formula (1.1) is known as the reconstruction

formula.

1.2 Internal tensor products of Hilbert bimodules

In this section, we show how we can define the internal tensor product X ®, Y for
right Hilbert A-A bimodules X,Y. We also show that X ® 4 Y has a right Hilbert A-A
bimodule structure.

We write X ©® Y for the algebraic tensor product of X and Y. We use X ©®4 Y for
the quotient of X ® Y by the subspace

(1.2) N:=span{(z-a)Oy—20(a-y):z € X,yeY,ac A}

To avoid possible confusion, we temporary write x ® y for the elements of X ® Y and

x® 4y for the elements X ®4Y. Then by definition each x ® 4y has the form z©y+ N.

9



Lemma 1.2.1. Let A be a C*-algebra and let X, Y be two right Hilbert A—A bimodules.
Then there is a well defined right action (x ®ay,a) — (xOay)-a: (X ©aY) x A —
X ®4Y such that

(x@ay)-a=x@ay-a foralz@aye X OaY, a€ A

Proof. Fixa € A. The map (x,y) — x®4y-a is a bilinear map from X xY into X ©,Y.
Then the universal property of X ® Y gives us a linear map L, : X OY — X 0O, Y
satisfying L,(x ® y) = * ® y - a. Since L, vanishes on N, it induces a linear map
Lo XO4Y — X©®4Y such that L,(x®4y) = £O4y-a. Now (z®ay,a) — Lo(z®4y)
is a well defined map from (X ®,4Y) x A into X ©4Y. Write (x@4%) a := Lo(zOay).
To see that this map is a right action, let x ©®4 4,2’ ©4 4y € X ©4 Y and a,a’ € A.

Since L, is linear, it follows that

(rOy+2' 0y) a=Li(x@y+2 0y) = La(r ©y) + La(z' ©¢)
=(xoy) -a+ (2 OY)-a.

We also have
Az ©y)-a= LAz ©y) = Aa(z ©y) = A(z O y) - ).

A similar calculation shows (z ©y) - (Aa) = (A(z © y)) - a.

Finally, we have

(z©y) - (ad) = Luw(r©y) =2 0y-(ad) =2 O (y-a)-d
= Lo (La(z 0 y)) = (£ ©y) -a)) - d,

as required. N

The next lemma shows that we can equip the space X ®4 Y with a right A-valued

inner product.

Proposition 1.2.2 ([36, Proposition 4.5]). Let A be a C*-algebra and let X, Y be two
right Hilbert A=A bimodules. Suppose that py : A — L(Y') is the homomorphism which
defines the left action of A on'Y . Then there is a unique right A-valued inner product
on X ©®©4Y such that

(1.3) (xOay,z0aw) = (y, oy ((z,2))w) forzOay,z0swe X O4Y.
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Let X ®4 Y be the completion of X ®4 Y with respect to the inner product (1.3).
It then follows from [46, Lemma 2.16] that (1.3) is a right A-valued inner product on
X ®4Y as well. Thus X ®,4 Y is a right Hilbert A-module.

The next lemma shows that we can define a left action of A on X ®4 Y.

Proposition 1.2.3 ([58, Proposition 1.1]). Let A be a C*-algebra and let X,Y be two
right Hilbert A-A bimodules. Suppose that py : A — L(Y') is the homomorphism which
defines the left action of A on'Y'. Then for every S € L(X), there is a unique operator
S®1ly € L(X ®4Y) such that

(1.4) SRly(z®y)=5Sr®y for r@ye X ®,4Y.

The map S — S ® 1y is a homomorphism of L(X) into L(X ®4Y). In particular the
map a — px(a) ® 1y determines a homomorphism of A into L(X ®4Y).

We can view the homomorphism a — @x(a) ® 1y as a left action of A on X ®,4 Y.
Thus X ®4 Y is a right Hilbert A-A bimodule. We call X ®4 Y the balanced tensor
product of right Hilbert A-A bimodules X, Y.

For convenience, in the rest of thesis we keep x ® y for the elements of X ® Y and

we write £ ® y for the elements of both X ®4 Y and X ®, Y.

1.2.1 Product systems of Hilbert bimodules

We use conventions of [20] for the basics of product systems of Hilbert bimodules. For

convenience, we use the following equivalent formulation from ([52, page 6]).

Definition 1.2.4. Suppose P is a multiplicative semigroup with identity e, and let A
be a C*-algebra. For each p € P let X, be a right Hilbert A-A bimodule and suppose
that ¢, : A — L£(X,) is the homomorphism which defines the left action of A on X,.
A product system over P of right Hilbert A-A bimodules (or a product system over P

with fibres X)) is the disjoint union X := | | _p X, such that:

(P1) The identity fibre X, equals the standard bimodule 4A4.

(P2) X is asemigroup and for each p,q € P\{e} the map (z,y) — 2y : X, xX, = X

pq»
extends to an isomorphism o, , : X, ®4 X, = X,.

(P3) The multiplications X, x X, = X, and X, x X, — X, satisfy
ar = py(a)z, za=x-a for a € X, and x € X,,.

11



If each fibre X, is essential, then we call X a product system over P of essential right
Hilbert A-A bimodules.

Let p,q € P\ {e} and S € £(X,). Then the isomorphism o,, : X, ®4 X, = X,
together with Proposition 1.2.3 give us a homomorphism b7 : £(X,) — L£(X},) defined
by

B(S) =0pq0(S®1x,)00,,

p,q-

Definition 1.2.5. Suppose P is a subsemigroup of a group G such that PNP~1 = {e}.
Then p < q & p~'q € P defines a partial order on G. Following [40], we say (G, P)
is a quasi-lattice ordered group if for any two elements p,q € G which have a common
upper bound in P there is a least upper bound pV g € P. We write pV ¢ = oo when

p,q € G have no common upper bound.

Example 1.2.6. (Z* N*) is a quasi-lattice ordered group. Observe that for all m,n €

N*, there is a least upper bound m V n with ith coordinate (m V n); := max{m;, n;}.

Definition 1.2.7. Let (G, P) be a quasi-lattice ordered group. A product system over
P of right Hilbert A—A bimodules is compactly aligned, if for all p, ¢ € P with pVq < oo,
S € K(Xp) and T € K(X,), we have (5V9(S)lVU(T) € K(Xpvq)-

p

Proposition 1.2.8 (|20, Proposition 5.8 |). Let (G, P) be a quasi-lattice ordered group
and suppose that X is a compactly aligned product system over P of right Hilbert A-A
bimodules. Suppose that the left action of A on each fibre X, is by compact operators.
Then X is compactly aligned.

1.3 (*-algebras associated to product systems of

Hilbert bimodules

Definition 1.3.1. Let P be a multiplicative semigroup with identity e, and let X be
a product system over P of right Hilbert A—A bimodules. Let B be a C*-algebra, and
let ¢ be a function from X to B. Write 9, for the restriction of ¢ to X,. We call ¢ a

Toeplitz representation of X if:

(T1) For each p € P\{e}, ¢, : X, — B is linear, and 1. : A — B is a homomorphism,
(T2) () 6p(y) = ({2 3)) for p € P, and 2, € X,,

(T3) Ypg(zy) = p(w)1hy(y) for p,q € P,z € X, and y € X,.

12



Remark 1.3.2. Conditions (T1) and (T2) imply that (t,,.) is a Toeplitz represen-
tation for the fibre X, (which is a right Hilbert A-A bimodule). Then Remark 1.1.8
gives us a homomorphism 1) : K(X,) — B such that ¢/ (0, ) = ¥,(x)1,(y)*.

Fowler showed in [20, Proposition 2.8] that there exists a C*-algebra 7 (X) and a
Toeplitz representation w of X in 7(X) such that:

(Ul) For any other Toeplitz representation 7" of X in a C*-algebra B, there exists a
unique homomorphism 7} : 7(X) — B such that T, ow = T', and

(U2) T(X) is generated by {w(z): z € X}.

It then follows that the pair (7(X),w) is unique up to canonical isomorphism. We say
the pair (7 (X),w) is universal for the Toeplitz representations. The C*-algebra T (X),
is called the Toeplitz algebra of X and the representation w is known as the universal

Toeplitz representation of X. We keep w for the universal Toeplitz representation of

X.

Definition 1.3.3. Let P be a semigroup with identity e, and let X be a product
system over P of right Hilbert A-A bimodules. A Toeplitz representation ¢ of X is

Cuntz-Pimsner-covariant if
(1.5) Ye(a) = P (p,(a)) forallpe€ Pac e, H(K(X,)).

The Cuntz-Pimsner algebra O(X) is the quotient of 7(X) by the ideal
(1.6) {w(@) = o (pp(@)) 1 p € Poa € o, (K(X,)) }.

Let go : T(X) — O(X) be the quotient map. It is observed in [20, Proposition 2.9]
that go o w is a Cuntz-Pimsner-covariant representation of X in O(X). Moreover the
pair (O(X), go ow) is universal for the Cuntz-Pimsner-covariant representations of X.

Let (G, P) be a quasi-lattice ordered group and suppose that X is a product system
of essential right Hilbert A—A bimodules over P. Suppose that v is Toeplitz represen-
tation of X on a Hilbert space H. It follows from [20, Proposition 4.1] that there is a
unique action ¥ : P — End ¢ (A)" such that

(1.7) ol (T)p(x) = 1y(2)T for all T € the(A), x € X,, and

(1.8) oz;f(lp)r =0forre (wp(Xp)’H)L,
where 1, is the identity operator on X,,.
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Lemma 1.3.4. Let (G, P) be a quasi-lattice ordered group and X be a product system
of essential right Hilbert A—A bimodules over P. Suppose that 1 is a Toeplitz represen-
tation on a Hilbert space H. Let p € P and suppose that {z;}¢_, is a Parseval frame
for the fibre X,. Let a%(1,) be as in (1.8). Then

d

O‘g(lp) = Z Up(i) ()"

1=0

Proof. By uniqueness in [20, Proposition 4.1], it suffices to prove that

(1.9) (pr(xi)wp(xi)*>wp(x) = 1,(z) for all x € X, and
(1.10) (Zzﬂp(asi)wp(%)*)r =0 for all 7 € (Y,(X,)H)* = 0.

To see (1.9), let x € X,. We compute by applying the reconstruction formula for x:

(3 oot = (5 o) S o)

> @)y (@) (@) vo((z5, 7)) using (T3)

0<i,j<d

= Z wp wO l’z,xj>)w0(<l'j,$>> using (TQ)
0<14,j<d

= D= Wyl G ))o((ay,2)).
0<14,5<d

Rearranging this and two applications of the reconstruction formula give

(Z%) (i) 1y (i) ) Z@%(Zl’z' Liy T >¢0( (zj, 2 Z@Z}p (@j)tho((zj, x))

Vp(z) - (75, 7)) = ().

I
Q.
I Mg
o

This is precisely (1.9).
To check (1.10), fix r € (¢,(X,)H)*. Notice that for all 7' € H we have

((Zdzwp(%)t/)p(xi)*)?n T/> (

It then follows (Zfzo 1/)p(xi)1/zp(xi)*)r = 0 and we have proven (1.10). O

M:“

Ul () 7) = 0.

Il
o

7
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Definition 1.3.5. Let (G, P) be a quasi-lattice ordered group and suppose that X is
a product system of essential right Hilbert A-A bimodules over P. Suppose that v is
Toeplitz representation of X on a Hilbert space H. We say v is Nica-covariant if for

every p,q € P, we have

¥ (1pvg) ifpVg < oo

0 otherwise.

Fowler showed in [20, Proposition 5.6] that the Nica-covariance condition can be
expressed in terms of compact operators. Then for the class of compactly-aligned
product systems, he extended the Nica-covariance condition for the representations

over C*-algebras.

Definition 1.3.6. Let (G, P) be a quasi-lattice ordered group and suppose that X
is a compactly aligned product system over P of right Hilbert A-A bimodules. A
Toeplitz representation ¢ of X is Nica-covariant if for every p,q € P, S € K(X,), and
T € K(X,), we have

¢(P)(S)¢(q)<T) — v (Lqu(S)Lqu(T)) ifpVg<oo

0 otherwise.

It follows from [20, Theorem 6.3] that there exists a C*-algebra N'T(X) and a
Nica-covariant representation ¢ of X in N'T(X) such that (N7 (X), ) is universal for

the Nica-covariant representations of X. Moreover, we have
(1.11) NT(X) = span{vy(2)¢y(y)" : p,q € Px € Xp,y € Xy}

The C*-algebra N'T(X), is called the Nica-Toeplitz algebra of X. Throughout we will
keep 1) for the universal Nica-covariant representation of X.
The next lemma shows that A7 (X) is a quotient of 7 (X).

Lemma 1.3.7. Let (G, P) be a quasi-lattice ordered group, and let X be a compactly
aligned product system over P of right Hilbert A—A bimodules. Suppose [J is the ideal
in T(X) such that

(1.12) J = ﬂ{ker 0. : 0 is Nica-covariant representation of X},

and let g = T(X) — T(X)/J be the quotient map. Then (T(X)/j, qNTow) is uni-

versal for Nica-covariant representation, and is canonically isomorphic to (N'T (X), ).
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Proof. Since qy7 is a homomorphism and w satisfies (T1)—(T3), it follows that gy7ow
satisfies (T1)—(T3) as well. To see that gy o w is Nica-covariant, let p,q € P, S €
K(X,), and T € K(X,). Notice that (gy1 o w)® = grrr o w®. Then

(1.13) (an7 0 w)P(S) (g7 0 w) T) = qurr (WP () (T)).

If pV ¢ < o0, since w® (S)w@(T) — wPVD (2V4(S)2V(T)) € T, it follows that

avr (@ (S)WO(T)) = quer (w0 (1279(8)5(T)) ).

Now (1.13) implies that

(awr o) P(S){ax 0 @)D (T) = (ax 0 w) P (129(S)25V(T)).

Similarly, for pV ¢ = oo, we have qNT(w(p)(S)w(Q) (T)) = (0. Putting this in (1.13) gives
(qv7 0 )P (S) (gnr 0 W)@ (T) = 0. Thus qa7 o w is a Nica-covariant representation.
Since {w(z) : © € X} generates T(X), we have that {g(w(x)) : € X} generates
T(X)/T.

To see (U1), suppose that T is another Nica-covariant representation of X in a
C*-algebra B. Notice that T is in particular a Toeplitz representation of X. Then the
universal property of pair (7 (X),w) gives a unique homomorphism 7, : 7(X) — B
such that T, o w = T. Notice that T, vanishes on J because by definition J C ker T,.
Thus there is a homomorphism 7} : 7(X)/J — B such that T,(gn7ow) =T. O

The Cuntz-Pimsner algebra O(X) is by definition a quotient of 7(X). Since we
are interested in studying the C*-algebra N'T (X)), it would be very helpful to explain
O(X) as a quotient of N'T(X). The next lemma shows that, under some assumptions,

we can express O(X) as a quotient of N'T(X).

Lemma 1.3.8. Let (G, P) be a quasi-lattice ordered group, and let X be a compactly
aligned product system over P of right Hilbert A—A bimodules. Suppose that every
Cluntz- Pimsner-covariant representation of X is a Nica-covariant representation. Then

O(X) is the quotient of NT(X) by the ideal generated by

(1.14) {te(@) = 0P(pp() 1 p € Poa € g, (K(X) |-
Proof. Let

(1.15) 1= ﬂ { ker 7, : 7 is a Cuntz-Pimsner-covariant representation of X }
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Following the same argument of Lemma 1.3.7, we can view O(X) as the quotient
of T(X) by the ideal Z. Let J and gy be the ideal and the quotient map as in
Lemma 1.3.7. It then follows gn7(b) = b+ J for all b € T(X) and

anT 0w =1,

Since every Cuntz-Pimsner-covariant representation of X is also a Nica-covariant rep-
resentation, it follows that J C Z. An application of the third isomorphism theorem
in algebra gives us a quotient map ¢ : N7 (X) — O(X) such that kerq = Z/7. We

now have
(1.16) 7)T ={i+TJ:ie€l} = {quvr(i):ieL}.

An argument in set theory shows that Z is the same as the ideal (1.6). Now using

elements (1.6) in (1.16) and applying gy o w = 1, we have

I/7 = (Yela) = 6P(py () 1 p € Pa € o, (K(X,)).
Thus we can consider O(X) as the quotient of N'T(X), by the ideal

(bela) = ¥ (py())  p € Poa € 9, (K(X,))). s

Proposition 1.3.9 ([20, Proposition 5.4]). Let (G, P) be a quasi-lattice ordered group
such that every p,q € P have a common upper bound. Let X be a compactly aligned
product system over P of right Hilbert A-A bimodules. Suppose that each fibre X, is
essential and the left action of A on X, is by compact operators. Then every Toeplitz

representation of X which is Cuntz-Pimsner-covariant is also Nica-covariant.

Remark 1.3.10. Let (G, P) be a quasi-lattice ordered group and X be a compactly
aligned product system over P of right Hilbert A-A bimodules. In [52, Proposition
3.12], Sims and Yeend defined their Cuntz-Pimsner algebra NO(X) as a quotient of
NT(X). In general NO(X) and O(X) are different. But we can deduce from [52,
Remark 3.14, Proposition 5.1] that if

(a) each pair (p,q) in P, has an upper bound (and automatically a least upper
bound),

(b) for each p € P the homomorphism ¢, : A — £(X,) is injective, and

(c) the Cuntz-Pimsner-covariance (1.5) implies the Nica-covariance,

then the two C*-algebras NO(X) and O(X) coincide. In our set-up these conditions
are satisfied (see Remark 2.1.3). But we found it easier to work with O(X) and the

quotient map mentioned in Lemma 1.3.8.
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1.4 The Fock representation

We take the definition of Fock representation from [20, page 340].

Let P be a semigroup with identity e and suppose X is a product system over P of
right Hilbert A-A bimodules. Define r : X — P by r(z) :=p for x € X,. Let @,cp X
be the subset of []
converges in norm. Write ©z, for elements of ®p6 p Xp. It follows from [20, page
340] that @,cp X, is a right Hilbert A-A bimodule with the right action given by
(®zp) - a := (B - a), the inner product by (B, BYp) = > cp{(Tp, Yp), and the left
action by the map @y, : A — L(F(X)) defined by

pep Xp consisting of all elements (z,) such that > p(xy, )4

Bpp(Bx,) = Bpy(x,) for @ x, € F(X).

We write F(X) := @,.p X, and call it the Fock module.
Fowler shows in [20, page 340] that for x € X there is an adjointable operator T'(x)
such that

T(z)(®x,) = ®(zxy,) for @z, € F(X).

The adjoint T'(x)" is zero on any summand X, for which p ¢ r(z)P. When p € r(z)P,
there is an isomorphism o, (z) p—r(z) © Xr(z) ®4 Xp—r(z) = Xp, and the adjoint T'(z)" is

determined by the formula

(117) T(x)*(ar(x),p—r(x)(y ® Z)) = <$7y> 2

He also shows that 7' is a Toeplitz representation of X and calls it the Fock represen-

tation.

Remark 1.4.1. Let X be a compactly aligned product system over N* of right Hilbert
A—A bimodules and suppose the left action of A on each fibre is by compact operators.
Then the homomorphism 7, : NT(X) — L(F(X)) induced from the Fock representa-
tion is faithful (see [24, Remark 4.8]).

1.5 Topological graphs

A topological graph E = (E°, E',r, s) consists of two locally compact Hausdorff spaces,
a continuous map r : E'* — EY and a local homeomorphism s : E' — EY. The map

r is called the range map and s is called the source map. Given such a graph, let
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A = Cy(E®). Tt is observed in [44, Chapter 9] that there is a right action of A on
C.(E') and there is a well-defined right A-valued inner product on C.(E") such that

(- a)(2) = 2(=)a(s(2)), and (z,y)a(z) = Y a(w)y(w).

s(w)==z

It follows that the completion X (FE) is a right Hilbert A-module. The formula

(a-2)(2) = al(r(z))z(2),
defines an action of A by adjointable operators on X (E) (see [44, Chapter 9]). Then
X (E) becomes a right Hilbert A-A bimodule. We call X (F) the graph correspondence
associated to the topological graph E.
In topological graphs of interest to us, the spaces E° and E' are always compact.
Then C.(E') = C(E'). Since s is a local homeomorphism on the compact space E’,
D :=max,cpo [s7!(2)| < co. Now we have

> a(we(w)| < llz]2,D.

s(w)=z

)% = sup
2€E0

On the other hand, since EY is compact, ||2|lsup = |2(20)| for some zo € E°. Then

l2llswp = l2(20)]* < Y w(w)z(w) < sup | Y- Wfﬁ(w)‘ = [lIl%.

s(w)=s(z0) 2€E0 T )=z

Thus the norm || - || 4 on X (E) is equivalent (as a vector-space norm) to the supre-
mum norm on C(E'). Thus there is no completion required here and it makes sense
to write X(F) = C(E").

Example 1.5.1. Let Z be a locally compact Hausdorff space and id : Z — Z be
the identity map on Z. Let E be the topological graph (Z, Z,id,id). Then X(F) =
C(Z) = A. The actions of A on X (F) are by pointwise multiplication which are the
same as the actions in 4A4. Notice that

(@y)z) = Y w(w)y(w)=a(=)y(2).

id(w)=z

This is precisely the inner product in the standard bimodule 4A4. Thus X(E) =4 A4.

1.6 Measures

All the measures we consider here are positive in the sense that they take values in
[0,00). We write M (Z), for the set of finite regular Borel measures on Z. For us, a

probability measure is a Borel measure with total mass 1.
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Chapter 2

A product system associated to a

family of local homeomorphisms

In this chapter we show that a family of surjective and commuting local homeomor-
phisms hq, ..., hy on a compact Hausdorff space Z induces a compactly aligned product
system of Hilbert bimodules over N¥. We also prove that the C*-algebras of product

systems of Hilbert bimodules over N¥ carry gauge actions of T*.

2.0.1 Notations

We consider N¥ as a monoid under addition with identity 0. We write N’j for the
nonzero elements of N¥. We use e1, .. ., e, for the standard generators and write n, for
i-th coordinate of n. We denote < for the partial order in N* defined by m < n if and
only if m; < n; for all 1 <7 < k. We write m V n for the coordinate-wise maximum of
m and n in the sense that (m V n); := max{m;,n;}. Similarly we denote by m An the
coordinate-wise minimum of m and n.

Let hq, ..., hi be surjective and commuting local homeomorphisms on a compact
Hausdorff space Z. Then for m € N¥ we write h™ := h{"™ o --- o h'* and h™™ :=

(7 oo h) ™

2.1 Building a product system from local homeo-

morphisms

In [1, Lemma 5.2] we proved that for a local homeomorphism f and the associated

graph correspondence X (F), there is an isomorphism from X (FE)®? onto the graph
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correspondence associated to f o f. The next lemma generalizes this to graph corre-
spondences of two different local homeomorphisms. There is also a similar result in the

dynamics arising from graph algebras (see [6, Proposition 2.2]).

Lemma 2.1.1. Let f, g be surjective local homeomorphisms on a compact Hausdorff
space Z. Let A := C(Z) and suppose X(Ey), X(FEy) and X(F) are the graph cor-
respondences related to topological graphs Ey = (Z,Z,id, f), Ey = (Z,Z,id,g), and
F = (Z,Z,id,go f). Then there is an isomorphism o4 from X(E) ®a X (Es) onto
X(F) such that

(2.1) 015 ®y)(2) = 2(2)y(f()) for all = € Z.

Proof. Define the map o : C(Z) x C(Z) — C(Z) by

(2.2) o(x,y)(z) = x(2)y(f(2)) for all z,y € C(Z).

We first show that o is bilinear and onto. Take ¢,¢ € C and z,2',y,y" € C(Z). Then

o(cx+ 2, y)(2) = (cx + ') (2)y(f(2))
= cx(2)y(f(2)) + 7' (2)y(f(2))
= co(z,y)(z) + do(z,y)(2).

Similarly we have J(x, cy + c’y') =co(z,y)+ do(x,y’). So o is bilinear. Taking y =1
in (2.2) implies that o is surjective. Now the universal property of the algebraic tensor
product ® gives a unique surjective linear map ¢ : C(Z) ® C(Z) — C(Z) satistying
d(zoy)(z) =2(2)y(f(2)) forall 20y € C(Z)®C(Z). Since & vanishes on the element
of the form (1.2), we can extend it to a surjective linear map oy, : C(Z) ©4 C(Z) —
C(Z) such that oy 4(z @ y)(2) = z(2)y(f(2)) for all z @y € C(Z) ©®a C(Z).

Next we show that o, preserves the actions and the inner products. Let 2 ® y €
C(Z)©aC(Z),a € C(Z) and z € Z. To check that o, preserves the right action, we

have

0rg(z®y-a)(z) = 2(2)(y - a)(f(2))

Similarly for the left action, we have
org(a- (z®y))(2) = (a-2)(2)y(f(2))
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To see that oy, preserves the inner products, take t @y, 2’ @y € C(Z)©4C(Z). Then
remembering that the range functions are identity and the source functions are f,g,

we have

(010w @y),0r(@ 01N = Y Tpy(e @ y)W)ase(a’ @) (w)

gof(w)=z

= > a(wyF)e W)y (fw)

gof (w)=z

— Z [ Z x(w)xl(w)}?J(f(w))y,(f(w))

gw)=z f(w)=v

— Z (z, 2"y (v)y(v)y (v)

g(v)=2

= > ) ({@.2) - y)(v)

g(v)=2

= (y, (z,2") - y')(2)
(2.3) = (z@y,2 @y)(2).

Next a quick calculation shows that o, is an isometry. Take a typical element v =
Zf:o r; @y, € C(Z) ©4 C(Z). We have

2

= <O'f,g(v)70-fﬁg(v)>
= <Zd:Uf,g(fL°i ®yz')azd:‘7fvg(xj ®yj)>

= Z <0‘f7g(1i®yi)7af,g(xj®yj>>

0<i,j<d

- Z <f”z‘®%a%®yj> by (2.3)

0<i,j<d

d d
= <Z$i®yiazxj®yj>
i=0 Jj=0

7.

Haf,g(v)

= [lv

Thus oy, is an isometry on C'(Z) ®4 C(Z), and then it extends to an isomorphism oy,
of X(FE1) ®4 X(FE5) onto X (F) which satisfies (2.1). O
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Corollary 2.1.2. Let hy,..., h; be surjective and commuting local homeomorphisms
on a compact Hausdorff space Z. For each m € NF, let X,, be the graph correspon-
X,, and
A:=C(Z). Let opmn @ Xip @4 Xn = Xinin be the isomorphism obtained by applying

dence associated to the topological graph (Z,Z,id, h™). Suppose X := | |

meNFk

Lemma 2.1.1 with the local homeomorphisms h™ h"™. Then X is a compactly aligned
product system over NF of essential right Hilbert A-A bimodules with the multiplication
given by

(2.4) Y = Oma(r®y) forx € X,y €Y,

that is (zy)(2) = x(2)y(h™(2)) for all z € Z. Furthermore, the left action of A on each

fibre X, is by compact operators.

Proof. To see that X is a semigroup, let m,n,p € N* and take x € X,,,2’ € X,, and
2" € X,. Then by applying the definition of multiplication, we have

(@2)2")(2) = (omsns(Omn(e ©2') 2 2") ) )
= (Omn(z @ 2")) (2)2" (R™"(2))
= z(2)2 (W™ (2))a" (R""(2)).

A similar computation shows

(22" (2) = (Fmnsn (2 ® Gupla’ @ 2") ) (2)
= z(2)ony(a’ @ 2")(h"(2))
= z(2)2 (W™ (2))z" (R""(2)).
Thus (zz')z"” = x(2'2") and X is a semigroup. Next we check conditions (P1)—(P3)

of the Definition 1.2.4. (P1) follows from Example 1.5.1 which says that X, =4 A4.
(P2) is immediate by definition of X. To check (P3), let a € A and = € X,,,. Then

ax(z) = oom(a ® z)(2) = a(2)z(2) = (a - 2)(2),

similarly

zra(z) = omo(r ®a)(2) = z(2)a(h™(2)) = (z - a)(2).

To see that the fibre X, is essential, notice that A = C(Z) is unital with the
identity Lo(z) : Z — C defined by I z)(2) = 1 for all z € Z. Since the left action is by

pointwise multiplication, ¢, (I¢(z))x = x for all x € X,,. Thus X, is essential.
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To prove that the left action of A on the fibre X, is by compact operators, let
{U;}_y be an open cover of Z such that h"™ |y, is injective. Choose a partition of unity

{p;} subordinate to {U;} and define &; := ,/p;. We claim that for each a € A,

d
(25) wm(a) = Z @a-ﬁj{j-
7=0

Take = € X, and z € Z, we compute the right-hand side of (2.5)

@@“% (2))(2)

I
AM&

<
Il
o

((a- &) (& 2))(2)

I
M=

(a-&)(2)(& 2)(h™(2))

.
(=)

S|

a2)6(z) Y Gwz(w),

<
I
o
>
:
&
|
>
:
O

Since h™ is injective on each supp§;,

d

(X 0ue @) () = Y al2)8 ()5 Fa()

Jj=0

= a(z)z(2) Z 1&(2)*
= a(z)x(2),

which is equal to the left-hand side of (2.5), as we required.
Finally, it follows from [20, Proposition 5.8]that X is a compactly aligned product
system. O

Remark 2.1.3. Let hq,..., hy be surjective and commuting local homeomorphisms
on a compact Hausdorff space Z and let X be the associated product system as in
Corollary 2.1.2. We aim to show that the two Cuntz-Pimsner algebra NO(X) and
O(X) coincide. We check the conditions (a)—(b) of Remark 1.3.10.

Condition (a) is clear because each pair in N* has an upper bound. To prove
(b), notice that for each m € N* the homomorphism ¢,, : A — L£(X,,) is injective.
To see this, let ¢,,(a) = pn(d’) for a,a’ € A. Let Iz be the identity in C(Z).
Then ¢ (a)(Iczy) = em(a’)(Uez)). It follows that a(z) = a/(z) for all z € Z and
therefore a = a’. To check (c), notice that X is a compactly aligned product system

of essential Hilbert A-A bimodule and the left action is by compact operators. Then
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Proposition 1.3.9 implies that every Cuntz-Pimsner covariant representation is a Nica-
covariant representation. Thus we have checked all conditions Remark 1.3.10, and
hence the two Cuntz-Pimsner algebra NO(X) and O(X) coincide.

2.2 The gauge action

By a strongly continuous action of a locally compact group G on a C*-algebra A, we
mean a homomorphism ¢g — «, : G — Aut(A) such that g — a,(a) is continuous for
each fixed a € A.

It is well known that the Nica-Toeplitz algebra of a product system over N¥ of right
Hilbert A-A bimodules carries an action of the k-torus T*. But we could not find an

explicit reference for this. The next lemma shows this fact.

Lemma 2.2.1. Let A be a C*-algebra and X be a compactly aligned product system
over N¥ of right Hilbert A-A bimodules. Then there is a strongly continuous action
v TF — Awt(NT (X)), called the gauge action, such that

Y. (Y (2)) = 2"y () for allm € N* 2 € TF 2 € X,,.
Proof. Fix z € T* and define § : X — N'T(X) by
0, (z) = 2", (x) for n € N* z € X,,.

We claim that 6 is a Toeplitz representation of X. To see this, we check the conditions
(T1)—(T3) of Definition 1.3.1. That @ is a Toeplitz representation follows because 9

is. Each 6, is linear and 6, is a homomorphism. We have

On () 0m(y) = 2" (x)"2"n(y) = Yo ((z, y)) = Oo((z, y)).
and
On ()0 (y) = Zn+mwn(aj)¢m(y) = Zn+mwn+m<xy) = Onym(7Y).

Thus conditions (T1)—(T3) of Definition 1.3.1 are satisfied.
To see that it is Nica-covariant, we consider 0 : K(X,,) = NT(X). For z,2' € X,,,

we have
9(")(@,3’36/) = On(x)Qn(x’)* = z”wn(:v)z_”wn(x’)* = w(")(@my).
Thus

0 (S) = ™(S) for all S € K(X).
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Now let S € K(X,,),T € K(X,,). Since ¢ is Nica-covariant, we have

0" (8)0(T) = ¢t (S)p™)(T)
= (G () (1))
= GV (,mV ()M (T)).

m

3

s3

Now it follows from the universal property of N'7T (X) that there is a homomorphism
v, : NT(X) = NT(X) such that § = v, o¢. This gives an explicit formula for v, on
the generators of N'T(X):

Notice that 7z o 7, (¥, () = v, © V(¥ (x)) = ¥, (x). But the universal property of
NT(X) implies that the identity map on N7 (X) is the only homomorphism with this
property. It then follows (7,)™' = 75 and hence v, € Aut(NT(X)).

Next let Itr be the identity element in T*. Then

Yk (Yn(2)) = (Ipr)"thn(2) = tn().

Then 71, is the identity map on N'7(X). Finally, for z,w € T, we have

Yz © 7w(1/)n) - (Zw)n¢n = 72w(¢n)

Thus 7 is a homomorphism of T* into the Aut(NT(X)).

To see that « is strongly continuous, we must prove that z +— 7,(b) is continuous
for all b € NT(X). Fix e > 0 and b. There is a linear combination ¢ of generators in
NT(X) such that ||b — ¢|| < §. Equation (2.6) implies that, z — 7.(c) is continuous.
Then there exists some 0 > 0 such that |z — w| < § = |[yw(c) —7:(c)]| < §. Now for

|z —w| < § we have

17 (8) = =) < Nl (b = )| + [l (e) =1z + [[7=(0 = ) <,
as we require. O

Remark 2.2.2. Let ¢ : NT(X) — O(X) be the quotient map as in Lemma 1.3.8.
Since the gauge action on N'T (X)) fixes the kernel of ¢, it then induces a natural gauge
action 7 of T* on the quotient O(X).
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Chapter 3

KMS states on the C*-algebras of
product systems associated to
x-commuting local

homeomorphisms

In this chapter we consider a family of *-commuting local homeomorphisms and the
associated product system as in Corollary 2.1.2. We study KMS states and ground
states on the C*-algebras of this product system. Our object here is to generalize the
results in [1] to our product system. When we have only one local homeomorphism,

the results here (except those associated to ground states) reduce to those in [1].

3.0.1 KMS states

A C*-algebraic dynamical system is a triple (A, R, «) consisting of a C*-algebra A, the
real line R and an action a : R — Aut(A). Given such a C*-algebraic dynamical
system, we say an element a of A is analytic if t — oy (a) is the restriction of an entire
function z — a.(a) on C. It follows from [41, Sec. 8.12] that the analytic elements

form a dense subalgebra of A.

Definition 3.0.3. Let (A, R, ) be a C*-algebraic dynamical system and ¢ be a state
of A. We say ¢ is a KMS state with inverse temperature 5 € (0,00) (or a KMSy state)
of (A, «) if it satisfies the following KMS condition:

(3.1) o(ab) = ¢(bays(a)) for all analytic elements a, b.

29



It suffices to check the KMS condition on a set of analytic elements which span a dense
subspace of A (see [41, Proposition 8.12.4]).

We now look at the product system X associated to the local homeomorphisms
hi,...,h asin Corollary 2.1.2. We have shown in Lemma 2.2.1 that the Nica-Toeplitz
algebra N'T(X) carries a gauge action of T*. We can lift this action to an action of R
on NT(X) as follows: Fix r € (0,00)" and embed R in T* via the map

itr itryitre ity
L™ = (e e etTE).

Then define o : R — Aut(N'T (X)) by a = 7eir.

Considering the system (N7 (X), «), notice that for each ¢,,(x)¥,(y) € NT(X),
the function ¢ — oy (Y (2)n(y)) = €M=", (2)1b,(y) on R extends to an entire
function on all of C. Thus each ¢, (x)1,(y) is an analytic element of N'T(X). The
elements 1., ()1, (y) span a dense subalgebra of N7 (X) as in (1.11). Thus it suffices

for us to check the KMS condition on these spanning elements.

Remark 3.0.4. We could get the action « directly (without passing through T*) by
applying [24, Proposition 3.1] with the homomorphism N : ZX — (0, 00) defined by
N(n)=n-r=3"Fnmr.

3.0.2 x-commuting local homeomorphisms

The notion of *-commuting maps was first introduced in [3] and then expanded by
Exel and Renault in [16, §10]. The next definition is taken from [16, §10].

Definition 3.0.5. Let f, g be commuting maps on a set Z. We say f, g x-commute,
if for every x,y € Z satisfying f(z) = g(y), there exists a unique z € Z such that
r = g(z) and y = f(2). The following digram illustrates this property beautifully.

N
N

We also say that a family of maps x-commute if any two of them *-commute.
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Lemma 3.0.6. Let f,g and h be x-commuting maps on a space Z. Then

(a) Fori,j € N, f' and ¢’ *-commute,

(b) f and g o h x-commute.

Proof. For part (a), see the proof of [16, Proposition 10.2].
To prove (b), we apply the method used in [16, Proposition 10.2]. Suppose u,v € Z
satisfying f(u) = goh(v). We have to show that there exists a unique z € Z such that

(3.2) u=goh(z)and v = f(2).

Since f, g *-commute, it follows from f(u) = g o h(v) that there exists a unique
w € Z such that

(3.3) u=g(w) and h(v) = f(w).

Similarly, since h, f x-commute, the equation h(v) = f(w) gives a unique z € Z
satisfying

(3.4) v=f(z) and w = h(z).

Now combining (3.3) and (3.4), we deduce that z satisfies (3.2).
To see the uniqueness, suppose 2’ € Z satisfies (3.2). Let w’ := h(2’). It follows
from (3.2) that

u=g(w') and h(v) = h(f(z')) = f(w').
The uniqueness property in (3.3) implies that w = w’. Considering this with the fact
that 2’ satisfies (3.2), we have
w=w"=h(z) and v = f(2).
Now the uniqueness in (3.4) implies that z = 2’. O
Remark 3.0.7. There is another proof for part (b) of Lemma 3.0.6 in [55, Lemma 1.3].

Corollary 3.0.8. Let hy, ..., hy be x-commuting local homeomorphisms on a space Z.
Fiz m,n € N* such that m An =0. Then h™ and h" *-commute.

Proof. Remember that "™ = hi" o---ohy"™ and h" = hj* o---ohy*. Since m An =0,
the local homeomorphisms appearing in A™ = A" o --- o h]"* do not appear in h" =

hi* o --- o hp*. Now applying Lemma 3.0.6 finitely many times gives the proof. O

Remark 3.0.9. The condition m An = 0 in Corollary 3.0.8 is crucial. When the local
homeomorphisms hq, ..., hy *-commute, it does not imply that they x-commute with
themselves. Thus we can not deduce from Lemma 3.0.6 that A and h"™ x-commute for

all m,n € N¥.
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3.1 A characterization of KMS states

In this section we provide a characterization of KMSg states on (N'T(X), «) in Propo-
sition 3.1.6. The characterization formula (3.19) says that KMS states vanish on most
of the spanning elements of N7 (X). Thus Proposition 3.1.6 enables us to recognise
KMS states easier. To prove this proposition, we first show that the x-commutativity
condition on hq, ..., hy allows us to find interesting Parseval frames for each fibre in
X. Then we use these Parseval frames to find a formula which expresses elements of
the form 1, (y)*¥,(x) as linear combinations of the elements 1, (s)1,(t)* for suitable
s € X, t € X, (Proposition 3.1.2(b)). This formula plays an important role in proving
that the KMS condition holds. We also provide two simple lemmas which are again

helpful when we discuss KMS condition.

Lemma 3.1.1. Let f, g be x-commuting local homeomorphisms on a compact Hausdorff
space Z. Suppose X(E1), X(Es) are the graph correspondences related to topological
graphs By = (Z,Z,id, f) and Ey = (Z,Z,1d, g). Let {p;}_, be a partition of unity such
that flsupp pis 9lsuppp: @€ injective and suppose that 7, :== \/p;. Then

(a) {m:}¢ o, {7i0 g}l are Parseval frames for X (E,),

(b) {7}y, {mi o 1% are Parseval frames for X (Es), and

(c) there exists an isomorphism ts, : X(E1) @4 X (Es) — X(Ey) ®4 X (E1) such that
(3.5) trg(riog®Tj) =710 f@T for 0 <i,j<d.
We will call this isomorphism the flip map.

Proof. Parts (a) and (b) are quite similar. We only prove (a). It follows from [17,
Proposition 8.2] that {7;}&, is a Parseval frame for X(FE;). To see that {r; o g}, is

a Parseval frame for X (F;), we take x € X (FE;) and check the reconstruction formula:

d

Z(Ti 0g) - <(TZ o g),x> = .

=0

Take z € Z. Using the definition of the left action and the inner product, we have

S (ro9)- ((mi0g).2)(x) = 3 (0 9)(:)(7i 0 9).2)( (=)
(3. =Y nl) Y Aw)ew)]
i=0 Fw)=f(2)



Suppose f(w) = f(z). Notice that the i-summand vanishes unless g(z), g(w) € supp 7;.
So suppose that g(z), g(w) € supp7;. Then

fw) = f(z) = go f(z) =go f(w)
= fog(z) = fog(w)
= g(w) = g(z) (f is one-to-one on supp 7;).
Now we consider the digram
0
/ X
f(2) 9(z)

Notice that both w, 2z fit in the box. Then the x-commutativity of f, ¢ implies that
w = z. Thus the interior sum in the last line of (3.6) will collapse to (7; o g)(2)z(z2)

and hence the reconstruction formula follows from

S (mo9)- ((r:09).2)(2) = 3 nlglrmle(=)e(2)
—a(2) Y mg(2))°

= z(2).

Next we look at part (¢). Applying Lemma 2.1.1 implies that there are isomorphisms
Org @ X(E1) @4 X(Ey) = X(F) and 045 @ X(Ey) ®4 X(E1) - X(F). Now set
trg = a;} o or4. It is clear that t;, is an isomorphism from X (E;) ®4 X (E>) onto
X(Es) ®4 X(E1). To check (3.5), note that

(3.7) Org(Tiog®mj) =044(1j0 fRT).
Thus ts4(r,09® 75) = a;} 0 054(Ti0g®T;) =T7;0 f ®T;, as required. O

The next Proposition is an analogue of [20, Proposition 5.10] and [24, Lemma 4.7].
In fact Proposition 3.1.2 is more general because the formula of [20, Proposition 5.10]
is an approximation and [24, Lemma 4.7] holds only for product systems where each

fibre is required to have an orthonormal basis.
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Proposition 3.1.2. Let hy, ..., hy be x-commuting and surjective local homeomor-
phisms on a compact Hausdorff space Z and let X be the associated product system as
in Corollary 2.1.2. Take m,n € N* such that m An = 0. Let {p:}%_, be a partition of

unity such that K™ |supp oy " |suppp; are injective and suppose that 7; == \/p;.

(a) Let Oy Xin®@a Xy = Xpnn and 0y 0 Xpn @4 Xy — Xongn be the isomorphisms
induced by the multiplication in X. Then for all z @ y € X,, ®4 X,,, we have

(3.8) O (T @ y) = Z o‘mm(Tj oh™® Ti) . <<x, T; O h”> “Tj y>.

0<i,j<d

(b) Then for all x € X,,,y € X,,, we have

(3.9) Un() (@) = > Uu((y, 70 ™) 7)n ((z, 70 h") - 7).

0<i,j<d

Proof. For part (a), it suffices to prove (3.8) for x ® y € X,, ®4 X,,. Notice that
Xm, X, are graph correspondences associated to the topological graphs (Z, Z,id, h™)
and (Z, Z,id, h™). Since m An =0, h™ and h" are *-commuting. It then follows from
Lemma 3.1.1 that {r;0h"}¢_; and {7; };l:o form Parseval frames for X,,,, X,, respectively.

Also notice that the formula for multiplication in X implies that
(3.10) Tmn(Ti 0" @ T) = Op (1 0 A" @ T3).

We use this to prove (3.8). So we must write z®y in terms of the elements {7,0h"®7;}; ;.
To do this we start by writing the reconstruction formulas for the Parseval frames

{r; o h”}fzo and {Tj}?zo.

TRy = (inoh”~<noh”,x>> ® (in-(q,y)).

Since the tensors are balanced, we have

(3.11) TRy = Z (Tioh"®<Tiohn,x>.Tj.<7j,y>>.

0<i,j<d

We then claim that
(3.12) (rioh™ ) - 7j- (15,y) = 7; - <<x, o h™) Ty, y>-

To see the claim, we evaluate both sides of (3.12) on z € Z. For the left-hand side we

have

(ot a7 75, 2) = (0 B, 2) (T3, ) (7 (2)
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= (1; 0 A", 2)(2)7;(2) 7j(w)y(w)

hn(w)=hn(2)

(
= (i 0 h", ) (2)7;(2)75(2)y(2) (h™ is injective on supp ;).
Similarly, we compute the right-hand side of (3.12):

(- ((mmon™) 73, ) (2) = () (w70 B) - 75, 4 ) (07 (2))
=7(2) Y (wmmoh)(w)m(w)y(w)

hn(w)=h"(z)

= 75(2)(m; 0 B", 2)(2)7;(2)y(2).

So we have proven the claim.
Now putting (3.12) in (3.11) gives

TRY = Z <7—Z~oh"®7—j.<<x,noh”>.7’j,y>>,

0<i,j<d
which express z ® y in terms of the elements {r; o h" ® 7;}; ;.
Next we compute 0, ,(x ® y) using (3.10). Notice that o,,,, is an isomorphism of
correspondences. Then

Tmn(T®Y) = Z amm(n oh" ®Tj) . <<x,n o h"> - Ty, y>

0<i,j<d
Now applying (3.10) gives
Omn(T®Y) = Z O'mm(Tj oh™® TZ') . <<x, T; 0 h”> - Ty, y>,
0<i,j<d

as required.
For part (b), we use the Fock representation 7" of X. Remark 1.4.1 implies that the

induced homomorphism

T.:NT(X) = L(F(X))
is an injection. Then by the universal property of ¢, it suffices for us to prove that
(3.13) T.(y) Th(z) = Z Tm(<y7 T; 0 hm> . Ti)Tn(<I’, T; O h”> . Tj)*.
0<i,j<d

To do this, we evaluate both sides of (3.13) on an arbitrary s € X, where p € N*. An
application of the formula (1.17) for the adjoint shows that the right-hand side of (3.13)
vanishes unless p > n. For the left hand-side, the definition of the Fock representation

says that (T,,(y)*Tn(2))(s) = Tn(y)* (omp(z @ 5)). Now equation (1.17) implies that
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the left hand side of (3.13) is zero unless m +p > n. Since m An =0, m+p > n is
equivalent to p > n. Thus both sides of (3.13) are zero unless p > n. So we assume
p > n from now.

It suffices to check (3.13) for s = 0, (s’ ® §”) where &' ® " € X,, ©®4 X,_,. To do
this we first compute the right-hand side of (3.13) by using the adjoint formula (1.17)

and the definition of the Fock representation:

> Tu({piry o b7} m)Ta(( 70 1) - 1) (Gpals 957)

0<i,j<d
= Z Tm(<y, T; 0 hm> . Ti) (<<x,n o h”> T, s/> . s”)
0<i,j<d
(3.14) = Z am,p_n<<y,7'j o hm> T ® <<x,7'i o hn> Ty, 5’> . s//>.

0<i,j<d

Next we evaluate the left-hand side of (3.13) at 0,,,_,(s' ® s”). For convenience,
let T :=T,(y)"Tn(x) (Jnyp_n(s’ ® s”)). We start by applying the definition of the Fock

representation. Then

t=To(0)" (9mp (2@ a8 ©5)) ).

The associativity of multiplication in X implies that

T="T.(y) <0m+n,p—n (Um,n (96 ® s’) ® s”)).

In order to apply the adjoint formula (1.17), we must write 0y, ,(x ® s') in terms of

the elements of X,, ® X,,. To do this, we apply part (a) for z ® s’ € X,, ®4 X,,. Then
T = Z Tn(y)* (Um-i-n,p—n (Un,m(Tj oh™® Ti) ’ <<IL’, Ti © hn> “Th S/> ® SH>>-
0<i,j<d
Since the tensors are balanced, we have
t= 3 L) (ominpn(onm(mohm @m) @ ((smoh)y 7, s) - s")).
0<i,j<d
Another application of associativity of the multiplication in X gives
f= > T <“”7m+p—n <Tj ™ & Ompn <Ti © <<x’ Tioh") 7, S/> ' SN))'
0<i,j<d
Now, we can apply the adjoint formula (1.17)

T= Z <y,Tj Ohm>-0m,p_n<n® <<m,ﬂ Oh"> Ty, s’> . s")).

0<i,j<d

36



Since 0y, -y is an isomorphism of correspondences,
T= Z Om,p—n<<y>7—j © hm> T ® <<x>7—i © hn> “Tj S/> ) 3H>>-
0<i,j<d
This equals (3.14). Thus (3.13) holds for all n € N¥ and s € X,,. Then it holds for all
elements of F/(X). Now the injectivity of T} gives (3.9).
[

Remark 3.1.3. In [54], Solel studied the product systems over N* via different no-
tations (see Appendix A). He used the notion doubly commuting representation [54,
(3.12)] as an alternative for Nica-covariance representation. Then he proved in [54,
Theorem 3.15] that the universal Nica-covariant representation 1 satisfies his doubly
commuting relation. The doubly commuting relation involves a flip map between fibres
of the product system. Since we have an explicit formula for the flip as in (3.5), we
can translate his results to our notation. In Appendix A, we reconcile our result with
[54, Theorem 3.15]. We show that 1) satisfies [54, Lemma 3.9(i)] by using our formula
(3.9) and the flip map (3.5).

Lemma 3.1.4. Let hy,..., h; be x-commuting and surjective local homeomorphisms
on a compact Hausdorff space Z and let X be the associated product system as in
Corollary 2.1.2. Suppose m,n,p,q € N* v € X,,,, y € X,,, s € X, and t € X,. Then
there exist {&; j o<ij<d C Ximtp—nnp and {0 ;}o<ij<d C Xntqnnp Such that

(3.15) U (@) V()06 (1) = Y Yrmrpnnp (66 Wnqmnnp ()"

0<i,j<d

Proof. Let N :=n—nApand P :=p—nAp. It suffices for us to prove (3.15) for
Y= 0ppnN (Y @Y) and s = opp,p(s” ® §'), where vy’ @ ¥ € Xppp ©a Xy, 8" @ ' €

Xnap ©4 Xp. Routine calculation shows that

Un(y) Vp(s) = ON(Y) Yrnp(y") Punp(s”)1bp(s")
= Un (Y)Y (Y, s"))vp(s)

(3.16) =on ()Y (Y, s") - §).
Let {U;}&, be an open cover of Z such that kY|, and hP|y; are injective. Choose a
partition of unity {p;}_, subordinate to {U;}{_, and define 7; := /p;. Since NAP =0,
applying Proposition 3.1.2 to {r;}¢, implies that
(3.17)
on () op (s ) = 30 wp(Wm ok m)ow () S mo kY ) )

0<i,j<d
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Combining equations (3.16) and (3.17), we have

Vi (2)Un(y) Up(8)1h(1)"
= V() [ Z wp(<y’,7'j ohf’y. Ti)¢N(<<y”, sy -8 1o hN> . 7-]-) *} Py (1)

0<i,j<d

*

— Z ¢m+P(0m,P<$ ® <?J/77'j o hP>'T¢>>¢q+N (gqu<t ® <<y”7 s"y-s' 10 h”> -Tj)).
0<4,5<d

Now labelling &; ; := Um,p($®<y,, TjOhP>'7'i) and n; j == on g <t®<<y”, s")-8, Tiohn>.7j>
completes the proof of (3.15). O

Lemma 3.1.5. Suppose m,n,p,q € N* satisfyingm +p=n-+q andn Ap=0. Then
m—mAqg=n and ¢g—mANAq=p.

Proof. We first prove m —m A g=mn. Fix 1 <1i < k. Since n Ap = 0, either n;, =0 or
pi = 0.

If n; = 0, then m + p = n + ¢ implies that m; < ¢; and hence m; — (m A q); =
m; —m; =0 =mn;. If p, =0, then m; > ¢; and m; — (m A q); = m; — ¢ = n; — p; = n;.
Thus m; — (m A q); = n; for all i, as required.

To prove g—mAq = p, it suffices to apply the construction of the previous paragraph

to the equality g +n = p +m. O

Now we are ready to prove a generalization of [1, Proposition 3.1] to our product
system. There is also a similar Proposition for the higher-rank graph algebras (see [27,

Proposition 3.1]).

Proposition 3.1.6. Let hy,..., hy be x-commuting and surjective local homeomor-
phisms on a compact Hausdorff space Z and let X be the associated product system as
in Corollary 2.1.2. Suppose r € (0,00)* and o : R — Aut(NT (X)) is given in terms
of the gauge action by ay = Yeer. Let 8> 0 and ¢ be a state on N'T(X).

(a) If ¢ satisfies
(3.18) O (U (2)0n(Y)*) = Omne™ "™ 0 Yo ((y, 2)) for x € X,y € X,
then ¢ is a KMSg state of (NT(X), «).

(b) If ¢ is a KMSy state of (N'T(X),a) and r € (0,00)* has rationally independent
coordinates, then ¢ satisfies (3.18).
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Proof of (a). Suppose state ¢ satisfies (3.18). To show that ¢ is a KMSs state, it
suffices to check the KMS condition

(3.19) d(be) = e M= g (cb)

for elements b = ¢y, (2),(y)* and ¢ = ¥, (s)1,(t)* from N'T(X). Let M :=m—mAg,
N:=n—-nAp, P:=p—nApand Q:=q—mAq. It is also enough to prove (3.19)
for elements of the form = = gpgm (2" @ ), ¥y = Tppp N (Y @Y'), s = Tpppp(s’ @ §)
and t = gpngo(t”" @ t') where 2" ®@ 2’ € Xpng ©a Xan, v @Y € Xopp ©a Xy, 5" @ 6" €
Xonp ©a Xp, and t" @ t' € X0y ©®4 Xg. During the proof, we will need the following

equations occasionally

(3.20) Un(y) Yp(s) = Un(y) U ((y", ") - §), and

(3.21) V() () = @/)Q(t')*wM((t",x"> . a:’);

they are obtained by a calculation similar to the one done to establish (3.16).

To prove (3.19), first note that Lemma 3.1.4 together with the equation (3.18) imply
that both of ¢(bc) and ¢(cb) vanish unless m+p = n+¢. So we assume this from now.
Next we claim that it suffices for us to check (3.19) for n A p = 0. To see this, suppose

we have proven the case n Ap = 0 and consider m, n, p, ¢ such that m+p = n+¢q. Then
(3.20) implies that ¢(bc) = (Y (x)n (y')*p ((y", ") - 8 )y(t)*). Since N A P =0,

we are back into the other case. Thus
gb(bc) — e—ﬁr(m—N)gb(wP«y//, 8”) . 5l)¢q<t)*wm(x)¢N(y,)*>-
Applying a similar calculation twice (by using (3.21) and (3.20)) gives:

6(ch) = & (U ()t var ((¢', ") - ') uly)")
_ 6—Br~(p—Q)¢<¢M(<t”’ ") - $,)¢n(y)*¢p(5)¢Q(t/)*> (since Q@ A M = 0)

_ €_BT'(p_Q+M_N)¢<¢p(<y”7 S//> ) 8/) wQ(t/>*¢M(<t//7 x//) . x/) wN(y,)*)

Since m 4 p = n + ¢, we have e 7 (m=N) = g=fr-(m=n)e=fr-(p=Q+M=N) Now (3.21) and
our calculations imply that ¢(bc) = e (™™ p(ch). So it is enough to prove (3.19)
when n A p = 0.

Now we assume that m+p =n+qand nAp = 0. Let {U;}&, be an open cover of Z

such that h"|y, and hP|p; are injective. Choose a partition of unity {p;}%, subordinate
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to {U;}{, and define 7; := ,/p;. To compute ¢(bc), we start by using (3.9) to rewrite
Un(y)"p(s) to get

0(6) = (U () () Gy 5)24 1))
= o(vn@)] D el o m) m)n(ls. 7o h) - 7) Juale))

0<i,j<d

= Y (e (a2 0 07 5) Y (a0 (5707 7)) ).

0<i,j<d
By our assumption (3.18), we get

$(be) = =P+ g o wo( > <aq,n (t ® (s, 70 h") - Tj>  Omp (3: ® (y,7j 0 hp>.n> >> :

0<i,j<d

To calculate ¢(ch), notice that ¢(ch) = ¢(¢p(s)¢Q(t')*¢M(<t", ) ~J;’)1/Jn(y)*> by
(3.21). Since m+p = n+ ¢ and n A p = 0, Lemma 3.1.5 implies that () = p and
M = n. Then ¢(cb) = ¢>(wp(s)wp(t’)*wn((t”, x’) - x’)¢n(y)*). Now we use the formula

(3.9) and the identity (()¥(n))” = ¥ (n)*Y(£)* to rewrite ¥, (') ¥, ((t", ") - 2').
o(cb) = ¢<¢p(8) [ Z wn((t',n oh") - Tj)wp(<(t”, "y -2 1o hp> . Tl)*] 1/1n<3/)*>

0<4,5<d

o 3 (s mery )

0<14,j<d
’l/}n+p (O-n,p (y X <<t//7 13”) -LE’I, 7; 0 hp> 'TZ-> ) *)

Our assumption (3.18) implies that
d(ch) = =g o %( > (oup(y@ (2" a0 b))

0<i,j<d
Opn (s @ (', 7 0h™) - Tj> >> )

Since m + p = m —n + n + p, it follows that e 7 (m+pP) = o=fr(m=ntn+p) Now to

check KMS condition (3.19), it suffices to prove that

= 8 ({0 tumom) ) a0 o))
0<i,5<d
and

I:= Z <Un7p <y ® <<t”7 :13”) ) x,v 7j © hp> ’ Ti) 1 Opn <S ® <t,’ i © h”> ‘ Tj>>

0<i,j<d
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are equal. To do this we compute {(z) and f(z) for z € Z. Since the calculation for
I(z) is easier, we compute it first. We start by applying the multiplication formula
(2.4) in X:

Z Z an(y ® t” " xl Tjo hp> TZ) W)opn (s ® (t', 750 ™) ~Tj> (w)

0<i,5<d hn-‘rp

= Z Z t” ,xlly - T]ohp>(h" ))Tz(h”(w))

0<i,j<d h"tr(w)=

s(w)(t', 7 0 B") (WP (w))7; (B (w))
— Z i}t T,0h™) (RP (w)) 7 (h™ (w))
(3.22) o )
jZd;Tj(Ww)) (rjoh?, (t",2") - ') (h™(w)).

Since n Ap = 0, A" and h? are *-commuting. Now remembering that X,,, X, are graph
correspondences associated to the topological graphs (Z,Z,id,h") and (Z, Z,id, h?)
Lemma 3.1.1 implies that {7; o A?}9_; and {7; o h"}{_, are Parseval frames for X,,, X,
(respectively). We rearrange (3.22) by using the definition of the actions to apply the

reconstruction formulas for these Parseval frames:
d

fz)= ) yw)s(w)) (rioh® - (riohm,t'))(w)

hrtp (w)=2 1=0

Z o (o kP (", 2") - 2)) (w)

,]:

= Z (w)((#"2") -2) (w).

hntp(w)=z

Next we compute f(z). Using the formula (2.4) for multiplication in X, we have

1= Yot tnon) ) @ems(r o h) 7w

0<i,j<d hm+P(w)=

=) Z w)(s, 7 © h*) (ha(w))7; (h(w))z(w)(y, 7 © h*) (W™ (w))7i (K™ (w))

0<i,j<d hm+r(w

d

= Z t(w) Z s, 7 0 h)( N7 (h™ (w ZT] Ny, 75 0 BP) (R (w)).

hm+p (w)=z =0

An application of Lemma 3.1.5 implies that ¢ = m A ¢+ p and m = m A ¢+ n. Then
d

T(z) = Z t(w)x(w) (1,0 B, ) (K™ 9P (w))7; (K™ (w))

htptmAg(y)=2 =0

41



d
> 7 (R (w)) y, 75 0 W) (™A (w)).
7=0

We again rearrange this equation to apply the reconstruction formulas for the Parseval

frames {7; o h"}{_, and {7; 0 h*}9_,

)= >, twz(w) Y [noh™ - (noh", s)] (k™" (w))

hntPtmAg(y)=z 0<i<d

> rjohr-(rjohr, y)](hma(w))

0<j<d

= Y twaw)s(h™(w))y(hmra(w)).

RntPtmAG (1) =2

Now writing t = opngo(t”" @ t'), = opagm(2” ® 2') and splitting >, we have

T(z) = Z ' (w)t' (W (w)) 2" (w)z’ (K™ (w)) s (K™ (w))y (W (w))

hn+tp+mAq (w)—z

= Y sway(t(e) Y (w"(w)

hntp(u)=z hmN (w)=u

(W)t (w)(t", z") ()

htP(u)=z
Thus f(z) = f(z) and hence ¢ satisfies (3.19). O

Proof of (b). Suppose ¢ is a KMSg state on N7 (X) and r has rationally independent
coordinates. To show that ¢ satisfies (3.18), let x € X,,, and y € X,,. By two application
of the KMS condition, we have

O (Vi (2)Un(y)*) = (Vi (y)*ip(tbm(2)))
= e 7" (Y (y) P (2))
= e PTG (Y, (7)Y (y)").

Now since r has rationally independent coordinates and 8 > 0, both sides will vanish

for m # n. For m = n the KMS condition and (T2) of Definition1.3.1 imply that

S (W (@) (y)*) = €7D (Y (y) Y (2)) = e P (Y0({y, 7)),

and ¢ satisfies (3.18). O
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3.2 KMS states and subinvariance relation

In this section we introduce a subinvariance relation involving a family of “Ruelle oper-
ators”. We characterize the solutions of this subinvariance relation in Proposition 3.2.7.
We also show that every KMSg state for 5 € (0, 00) gives a measure which satisfies our

subinvariance relation (Proposition 3.2.8).

Lemma 3.2.1. Let hy, ..., hi be commuting and surjective local homeomorphisms on
a compact Hausdorff space Z. Fori € {1,...,k}, define Q; : C(Z) — C(Z) by

Qa)(z)= 3 alw) fora e C(2).

hi(w)=z
(a) The functions Q; : C(Z) — C(Z) are commuting linear bounded operators.

(b) Forn € N¥ set Q" :=Qp* o---0Q7*. Then

(3.23) Q"(a)(z) = Y _ a(w) fora€ C(Z).

hn(w)=z2

(c) For each 1 < i <k, there is a unique adjoint operator Qf : C(Z)* — C(Z)* such
that

Qi1 = [|Qill and Qi(f) = fo Qi for feC(Z)".

Proof. To prove (a), take 1 <i < k and a € C(Z). It is clear that (); is linear. Notice
that

) — ) — -1
120 = sup Q) =sup] 3 alw)] < gl Gl np o)

_ -1
= max |h; " (2)]]al

Since h; is a local homeomorphism on the compact space Z, max.cy |h; *(2)] < oo. It
then follows that Q; is bounded and ||Q;| < max.cz |h; ' (2)].
For the commutativity, take 1 <i,5 < k. We have

(QQi(0) () = (@(Qi(@) ) (2) = Y (@s(@)(w)

hi(w)=z

(3.24) = Z Z a(u) = a(u).

hi(w)=z hj(u)=w hiohj(u)=z

Since h;, h; are commuting, (3.24) implies Q,;Q; = Q;Q;.
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For part (b), notice that {Q;} are commuting and surjective local homeomorphisms.
Then (3.23) follows from (3.24).

Finally part (c) follows from [19, page 160 (Exercise 22)] or from [47, Theorem
4.10]. O

Definition 3.2.2. Let hq,..., h; be commuting and surjective local homeomorphisms
on a compact Hausdorff space Z. Let Q1, ..., Q) be as in Lemma 3.2.1. For 1 <i <k,
we define R : C(Z)* — C(Z)* by R% := QF. Then R*,..., R* are commuting,

linear bounded operators. We write R := idg(z)- and for n € Ni, we use
R" := R"™% o...0 R™.

The operators R, ..., R% are sometimes called Ruelle operators (for example see [48,
(2.3),[49, (3.1)],[14, (2.1)]).

Remark 3.2.3. A finite regular Borel measure v on Z can be viewed as an element of
C(Z)" by
via) = /a(z) dv(z) for a € C(Z).

We can then calculate a formula for R"(v). Lemma 3.2.1(c) implies that R"(v) =
(Q")*(v) = v(Q™). It then follows

(3.25) / ad(R"(v)) = / > a(w)dv(z) fora€ C(Z).
W (w)=

Remark 3.2.4. The operation R in (3.25) is an analogue for the operation R studied
in [1]. But here we define it as an operator on the whole of C'(Z)*, while in [1] it is

only defined on measures (which are positive elements of C'(Z)*).

Definition 3.2.5. Let hq, ..., h; be commuting and surjective local homeomorphisms

on a compact Hausdorff space Z and suppose v is a finite regular Borel measure on

Z. We say v satisfies the subinvariance relation if for every subset K of {1,...,k}, we
have
(3.26) / ad( I]a- e_B”Rei)V> > 0 for all positive a € C(Z).

ieK

Given J C K, we write e; := Zjej e; and we interpret R*°v = v. The following

identity is helpful when we work with the subinvariance relation.

(3.27) <H(1 - e_’B”Rei)>u = Z (—1)Mle=fres gesy,

€K gCJCK
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Remark 3.2.6. The subinvariance relation (3.26) is a generalization of the subinvari-
ance relation [1, (4.2)] where we have only one local homeomorphism. It also is a
variant of the subinvariance relation appearing in the analysis of KMS states of the

Toeplitz-Cuntz-Krieger algebras of higer-rank graphs [28, (Proposition 4.1 (a)].

The next Proposition characterizes the solutions of the subinvariance relation (3.26).

It is a generalization of [1, Proposition 4.2] and [28, Theoerem 6.1(a)].

Proposition 3.2.7. Let hy, ..., hy be surjective and commuting local homeomorphisms
on a compact Hausdorff space Z. For each 1 < i <k, let
(3.28) Be, := lim sup (jfl In (max ]h;](z)|))

j—o0 z€Z

Let v € (0,00)*, and suppose B € (0,00) satisfies Br; > f3,,.

(a) The series Y., € 77" (2)| converges uniformly for z € Z to a continuous
function fg(z) > 1.

(b) Suppose e is a finite reqular Borel measure on Z. Then the seriesy ., . e """ R"e

converges in norm in the dual space C(Z)*

with sum p, say. Then u satisfies the
subinvariance relation (3.26) and we have ¢ = (Hle (1 —ePriR%))pu. Then p

is a probability measure if and only if [ fzde = 1.

(c) Suppose p is a probability measure which satisfies the subinvariance relation
(3.26). Then e = (Hle (1 — e PriR%)) is a finite regular Borel measure satis-
fying Y-, cne e TR = p, and we have [ fzde = 1.

Before starting the proof, notice that we regard a sum indexed by N* as an integral
over N* with respect to the counting measure. All series here have positive summands.
Then by Tonelli’s theorem, we can consider a sum over N* as iterated sums over N.
Moreover, if the iterated sums over N are convergent in one order, then the sum over
N* converges as well (see for example [19, Theorem 7.27]).

We will need the following algebraic identities occasionally:

(3.29) S I Am) =11 D fitma).

meNk =1 i=1 m;eN

Also notice that if fig; = g;f; for all 1 <14, 7 <k, then

ko k A
(3.30) 115119 =11%9
1 =1

i=1  j=
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Proof of Proposition 3.2.7. For part (a), we first claim that for each 1 < i < k, there
exist 0 < ¢; € R and M; € N such that

(3.31) €N, > M; = e Primax|h7!(2)] <e ™ forall z€ Z.

To see the claim, since r; > f.,, applying the calculation of the first paragraph
in the proof of [1, Proposition 4.2] with the local homeomorphism h; gives ¢; and M;
satisfying (3.31). Now we take M := (M, ..., M) and calculate the N-th partial sum
for N > M.

Z e PrrhT(2)| = Z e_ﬁr'"| (Rt o---o hZ’“)_l(z)|

M<n<N M<n<N
k
< Z e_ﬂr'”(H max |h;"l(z)‘>
M<n<N -
k
- Z H (e*mi'”i max ‘h;"l(z)D
M<n<N i=1 ?

Using the identity (3.29) and the equation (3.31), we have

S e <[] Y (e max 1 (2)])

M<n<N i=1 M;<n;<N;

(3.32) gﬁ > e

1=1 M;<n;<N;

Now let N — oo in N*. This means each N; — oo for 1 < ¢ < k. Since each sum
> oy, €7 is convergent, it follows that Y7 ) e #""|h~"(z)| converges uniformly for
z€ 4.

Notice that h" = hi* o --- o h}* is a local homeomorphism on Z for all n € N*
(because each h; (1 < i < k) is). Then [8, Lemma 2.2] implies that z — |h~"(z2)|
is locally constant and hence is continuous. Thus fg(z) := >, € P"|h7"(2)| is the
uniform limit of a sequence of continuous functions, and is therefore continuous. The
term corresponding to n = 01is 1, so fz > 1.

For part (b), take M and ¢; (1 < i < k) as in part (a). We want to show that
> nsar € 7R converges in norm in the dual space C(Z)*. To do this, we calculate
the N-th partial sum using formula (3.25) for the definition of R". Let g € C(Z), we

have

e Prm "e)| = e Prm w) de(z
| e [gawa) =] Y /;a )de(:)]

M<n<N M<n<N
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< D )|

M<n<N

(3.33) by (3.32).

=1 M;<n;<N;

Now when N — o0, all the series Zflo: M, e~%m are convergent and hence the series
S e T Re converges in the norm of C'(Z)* to a measure p, say.

Since € is a measure on Z, it is a positive functional on C(Z). The formula (3.25)
for definition of R™, says that u is positive functional on C'(Z) and therefore is a Borel
measure on Z by the Riesz-representation theorem.

To prove that u satisfies the subinvariance relation (3.26), let K C {1,...,k}. We
first simplify the N-th partial sum (HjeK(l —e PriRe)) > 0<n<N e Prr R for N € N*,
We have,

(TLentt ) = o= (T enmn) (3 T[emm)

0<n<N jeK 0<n<N i=1
= ( [J—e?iRre) ) (H Z eﬂ””lR"lel) by identity (3.29)
JjEK =1 n;=
= (H(l _ efﬂTjRej ) (H Z efﬁrzannzez H Z eﬁrzannzez) by (3 30)
JjeEK €K ni= 16{1, ,k}\K n;=
Relabelling the indices in products, we have
( H(l — e’ﬁ”Rej)> Z e PrnRr
jeEK 0<n<N
Nj Nj
(3.34) H (Z e ,Bnannzm) H (Z e Prini priei Z e—ﬁra‘(nﬁl)R(nﬁl)@j)_
ie{l,...k}\K ni= jeK mn;=0 n;=0

Now we can compute (HjeK(l — e PriR%)) > ns0€ T R™e by applying (3.34) to
e and letting N — oo. Notice that for each j € K, we have

Z e Brini Rri¢ie — Z e Pri(n+1) pnj+e; o _ o
n;=0 n;=0
It then follows that
( H(l _ e—ﬂrj Re]-)) Z 6—67“-an€ _ H (Z —Brszmel>
jEK n>0 i€ {1, kYK ni=

The argument in the last paragraph of the proof of [1, Proposition 4.2(b)], shows that

applying each Zi:o e~Primi Rni¢i to a finite regular Borel measure gives a finite regular
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Borel measure. It then follows that [, (1 — e’BTjReJ')> > ons0€ PR is a finite

regular Borel measure. Thus
/ad( H(l — e PriRe) Z e‘ﬁr.ang) > 0 for all positive a € C(Z).
€K 0<n<N

Thus p satisfies the subinvariance relation (3.26).
To prove that € = (Hf:1 (1 — e‘ﬁriRei)),u, it suffices to apply the argument of the
previous two paragraphs with K = {1,... k}.

To see the relation between p and fz, we compute using (3.25):

pl(2) = 37 e (re)(2)

neNk
=y e [
neNk
—Zeﬁr”/Vz 2)| de(z)
neNk

An application of Tonelli’s theorem implies that

/Z O |>d5(2)=/f5d5.

neNk

Since Z is compact and fg is continuous on Z, u(Z) = [ fzde < oo. Also p is a
probability measure if and only if [ fzde = 1.

We now look at (¢). First note that the measure € is obtained by finitely many
times applications of the bounded operators R%(1 < i < k) on the measure p. Since
@ is a finite measure, € is a finite measure as well. The subinvariance relation (3.26)
says that ¢ is a positive measure. An application of the Riesz-representation theorem
implies that € is a Borel measure on Z. Since ¢ is finite, it is regular as well (see [19,
Theorem 7.8]).

To check

(3.35) > e RN = p,

neNk

we calculate the N-th partial sum using the identity (3.29):

Z e PrMRYe = < Z e”BT"R"H( e”B”Rei)>u

0<n<N 0<n<N

= < Z He‘ﬁ”""R”iei(l — e_B”Rei)>u

0<n<N i=1
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kN
(336) — <H Z (efﬁmniRniei o e*ﬁri(m+1)R(ni+1)ei)>u.
1=1 n;=0

Let i € {1,...,k} and N; — co. Applying each sum in the last line of (3.36) to u, we

have
Z e*ﬁriniReiniu _ Z e*ﬁn(nﬂrl)Rei(nﬂrl)u = L.
n;=0 n;=0
Taking the product over 1 < i < k, completes the proof of (3.35). ]

The next Proposition shows that every KMS states on (N7 (X), ) gives a proba-
bility measure on Z satisfying the subinvariance relation (3.37). This proposition is an
extension of our result in [1, Proposition 4.1] for a single local homeomorphism. There

is also a similar result for the Toeplitz-Cuntz-Krieger algebra of a higher-rank graph
in [28, Proposition 4.1(a)].

Proposition 3.2.8. Let hy, ..., hy be commuting and surjective local homeomorphisms
on a compact Hausdorff space Z and let X be the associated product system over NF,
as in Corollary 2.1.2. Let v € (0,00)* and suppose that o : R — Aut(N'T (X)) is given
in terms of the gauge action by oy = Yeirr. Suppose ¢ is a KMSg state of (NT(X), a),
and p is the probability measure on Z such that ¢(vo(a)) = [adu for all a € C(Z).
Let K be a subset of {1,...,k} and write ey ==} _._;e; for all J C K. Then

(3.37) /adu + Z (—1)Mle=Ares /ad(ReJu) > 0 for all positive a € C(Z).

BCJICK

To prove the Proposition 3.2.8, we need the following simple lemma.

Lemma 3.2.9. Let hy,...,hy be x-commuting and surjective local homeomorphisms
on a compact Hausdorff space Z and let X be the associated product system as in
Corollary 2.1.2. Let T be the Fock representation of X. Take n € N*  and let {p}{,
be a partition of unity such that h"|s.pp,, s injective for each l. Set 7 := \/p;. Then
the restriction of Zfzo To(m)Tn(m)* to each m-summand X, of the Fock module is the

identity map if m > n, and is otherwise 0.

Proof. Let m € N*. If m # n, then the adjoint formula for the Fock representation
(1.17) implies that S T,,(7)T,(n)* vanishes on X,,. Now let m > n. It suffices to

prove



for = 0y m—n(2’ ® ") where 2/ ® 2" € X, ©4 Xip—n.
To see this, we compute by using the definition of the Fock representation and the
adjoint formula (1.17):

d d

(Z Tn(Tl)Tn(Tl)*> <0n,m—n($/ ® x”)) — ZTn(Tz) ((r, ') - ")

=0 1=0

d
Zann m Tl® T, > I”)-
=0

Lemma 3.1.1(a) implies that {r;}?, is a Parseval frame for the fibre X,,. Applying the

reconstruction formula for {r;}¢,, we have

d

(Z Tn(Tl>Tn(Tl)*> (an,m,n(:c' ® x”)) = Omm—n ( Zd: 7, 2) ® x”)

=0

= Gnmen (l‘/ Q :E//)
which is precisely x as required. O

Proof of Proposition 3.2.8. Let a be a positive element of C(Z). If K = @, since a
is positive, [adu > 0. So we assume K # @. We apply the method of the proof of
[1, Proposition 4.1]. So we first write each integral in (3.37) in terms of elements of
NT(X) and then use the Fock representation to show that the sum of these integrals
is positive.

The first integral in (3.37) by assumption is

(3.38) [ adu=6(wula).

Now consider J-summand. To write the integral [ad (ReJ ,u) in terms of elements of
NT(X), let {U/}L, be an open cover of Z such that h®’ |y is injective and choose
a partition of unity {pj}{, subordinate to {U/}{ . Define 7/ := /p. Remember
that the fibre X, , in X is the graph correspondence (Z, Z,id, h®’). Then applying the
calculation in the first two paragraphs of [1, Proposition 4.1], to X, , shows that

/CL d(ReJM) = 66T'6]¢( i 77Z)8J (a : le>¢€J (TZJ)*>
=0
(3.39) = s (3 dula (o 7).
=0
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Putting (3.38) and (3.39) in the left-hand side of (3.37), we have

/ad,u—f— Z |J\ _Bre’/ad(Re",u)

gCJCK

d
= o(o(@) + > (~)M( D vol)e, (i), (7))

@CJCK 1=0
d
(3.40) = o(vol@)+ 3 (DY ol (1), (7)),
@CJCK 1=0

which express the integrals in (3.37) in terms of elements of N7 (X).
Next we show that the right-hand side of (3.40) is positive. Since ¢ is a state, it

suffices to show that

(3.41) Yo(a) + Y (=1)ly(a) Z% 77V, (1) > 0.

@CIJCK

To do this, we use the Fock representation 7" of X. We aim to prove

(3.42) (To(@+ 3= (D¥To(a) 3 Ty (7T, (7)) () = 0

@CICK
for all z,, € X,,,n € N*.
Fixn € N* and z, € X,,. Let I := {i|i € K,n; # 0}. Applying Lemma 3.2.9 with
{7/}, implies that the J-summands with n # e vanishes. Since n > e is equivalent
to J C I, the outer sum in (3.42) reduces to

(D@ + Y ()T YT, (7T, (7)) (@)

@CJCI 1=0

Now we compute using Lemma 3.2.9

() + > (Vo) YT 7 )*)(xn>
+ Z DTy (a) ()

cJC

= > (- )'”"To( )( n)-

@gCcJCI

This vanishes because the number of subsets with odd cardinality equals with the

number of subsets with even cardinality. Thus

(To(a)+ Y (- \JIZ (a- )T, (r )*>(xn)20.

@CICK
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We now deduce that Ty(a) + 3 5 jc (—1) ST, (a- 77T, (7)) is a positive
operator on F(X). Since the induced homomorphism T, : NT(X) — L(F(X)) is an
injection (see Remark 1.4.1), it follows that

Yo(a) + Z (-1 "W ZwEJ Tz weJ(Tz) >0,

BCICK

as required. N

3.3 KMS states at large inverse temperatures

In this section we prove our main theorem which characterizes the KMSs states of
(NT(X),«) for large 5. We found a one-to-one correspondence between the KMS
states on (N7 (X),a) and the probability measures on Z satisfying the subinvariance
relation (3.26). This theorem is a generalization of our result in [1, Theorem 6.1] for
dynamical system associated to a single local homeomorphism. There is also a similar
characterization in [27, Theorem 6.1] for the dynamics arising from higher-rank graphs.

As a corollary, we also obtain some results for the dynamical system (O(X), &).

Theorem 3.3.1. Let hq, ..., hy be x-commuting and surjective local homeomorphisms
on a compact Hausdorff space Z. Let X be the associated product system over N¥, as
in Corollary 2.1.2. For 1 <i <k let B, be as in (3.28), and suppose that r € (0, 00)*
satisfies Br; > B, for all i. Let fz be the function in Proposition 3.2.7(a) and define
a:R—= Aut(NT(X)) by ap = veirr.

(a) Suppose that € is a finite reqular Borel measure on Z such that f fade =1, and
take pn:= Y, e """ R"e. Then there is a KMSs state ¢. on (N'T(X), @) such
that

0 ifm#p

(3.43) Qbs(l/’m(l‘)wp(y)*) - fﬁr-m‘ﬂ Vd i
e y,x)du  if m=p.

(b) If in addition r has rationally independent coordinates, then the map € — ¢ is

an affine isomorphism of

2512{861\4 /fﬁd&?—l}

onto the simplex of KMSp states of (NT( ,a). Given a state ¢, let (1 be the
probability measure such that ¢(yo(a)) = [adp for a € C(Z). Then the inverse
of € = ¢. takes ¢ to e :=[[I_ (1 — e_B”ReZ) :
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Proof of (a). Let € be a finite regular Borel measure on Z. We follow the structure of
the proof of [1, Theorem 5.1]. Thus we aim to construct the KMS state ¢. by using
a representation 0 of X on Hy := @, L*(Z, R"). Notice that here each R" is a
bounded operator on C'(Z)* while in [1, Theorem 5.1] the operation R was defined only
on measures (positive functionals). We write £ = (®¢,,) for the elements of the direct
sum. For m € N*¥ and x € X,,, we claim that there is a well-defined operator 6,,(x) on

Hy such that
0 if n ;é m
z(2)n_m(h™(2)) if n>m.

Let £ = (®&,) € @D, en L*(Z, R"e). Then

16 (@)EN* =D 1B (2)E)all”

(3.44) (O (2)€)n(2) =

—Z/M|mmwmwwwm

—Z/M|mwnﬁwmx>

<me/§jmw DIFd(Re)(2)

neNFk

—me/23m|2mx>

neNk hm(w)=z

< Z ]2, cm/lfn ()P d(R™)(2) (where c,, = max, |h~™(2)])
(3.45) — ezl ]2

Thus 60,,,(x) € B(Hyp).
Next we apply a similar calculation to compute the adjoint 6(x)*. Take n € Hy,
mmzzawmn

then
nn)
neNk

—Z/ (=) d(R'<)(2)

neNk

—Z/ 2 (" (2))0a(2) d(R"€)(2)

n>m

—Z/ 6 (W™ (2) e (2) A(R™ ) (2)

neNk
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= / > (W) (™ (w)) iy (w) d(R"2) ()

neNk hm(w)==z

- Z /én(z) Z (W) Npgm(w) d(R"e)(2).

neNk h™(w)=z

Thus 6,,(x)* satisfies

(3.46) (Om(z)™n) (2) = (W) Npm(w)  for n € Hy.
hm(w)=z

Next we claim that 6 is a Toeplitz representation of X. We check conditions
(T1)—(T3) of Definition 1.3.1. For (T1), since each 6,, : X,, — B(Hy) is clearly
linear, we need only check that 6, : A — B(Hy) is a homomorphism on A = C(Z)

here. Since the multiplication in A is pointwise multiplication, for a,a’ € A, we have

(fo(aa)€),,(2) = a(2)d'(2)€a(2) = a(2)(0o(a)€),,(2) = (Bo(a)fo(a’)S), (2)-

Thus 6y : A — B(Hjp) is a homomorphism.
To check (T2), fix m and x1, 25 € X,,,. Then

(90(<$1,$2>)5)n(2’) = (@1, 22)(2)&n(2)
= Z me(w)fn(Z)

hm(w)=z

= Y m ) (w).

hm(w)=z

Since (0,,(22)E)nim(w) = xo(w)E, (R (w)),

(90(<$1,$2>)f)n(2): Z 21 (W) (0 (22)€)nm (W)

Now formula (3.46) implies that

(Oo((x1,22))€) (2) = (Om(21) Om(22)E), (2).

Thus Oy ({x1, 22)) = Op(21) 0 (22), giving (T2).
For (T3), let z € X,, and y € X,,. If n % m + p, then (Opip(zy)€) (2) = 0. Also

we have
(O (2)0,()€),,(2) = 2(2) (Bu(v)€),,_,, (F"(2)),
which vanishes for n — m z p. So we assume n > m + p. Using the definition of

multiplication in X, we have

(Orp(29)€) . (2) = (Omsp (Omap(z @ 9))E), (2)

54



—
S
—~
<
Iy

3
|

3
—~

I\
~—

—

>
3
—~
I\
~—
~—

This complete our proof of (T3).

Next we show that 6 is Nica-covariant. Let 1,, be the identity operator on the fibre
X, and o : N¥ — End 6y(A)’ be the action as in [20, Proposition 4.1]. Since each fibre
X, is essential and 0 is a representation on the Hilbert space Hy, we must show that
af o (Lnyp) ifmVp<oo

(3.47) a? (1,,)a8(1,) =

0 otherwise.

for all m,p € N¥. To do this, fix m,p € N¥. Clearly m V p < oo. So we check
o (Ln)ad(1,) = af ., (Lnyp). Choose a partition of unity {p; : 1 < j < d} for Z such
that ™7 is injective on each supp p; and take 7; := ,/p; € X,,,. Notice that {7;}9_,
can be viewed as a Parseval frame for the fibres X,,, X, and X,,,,. Now to check

(3.47), Lemma 1.3.4 implies that it suffices to prove that

(3.48) (iemmem(m*) (iepm)ep(m*) - (iemmﬁ)emm)*).

To see this, let € € Hy and z € Z. We evaluate both sides of (3.48) at &:
For the right-hand side of (3.48), notice that the definition of 6,,,, implies that
(( 27:1 Hmvp(n)ﬁmvp(ﬂ)*)f’)n vanishes unless n > m V p. So we assume n > mV p and

compute using the definition of 6,,,, and the adjoint formula (3.46):

(S thntatn)€) ) = 3 (B Bs(€))

n




Thus

ifn>mVp

(3.49) ((iemvp(n)emvp(n)*)g)n _ )&

0 otherwise.

For the left-hand side of (3.48), notice that {r;}%_, is a Parseval frame for X,,, and
h™ is injective on each supp 7;. Then applying the same calculation of the previous

paragraph (using formula for 6,,(7;) and 6,,(7;)*), we have

((Zd:‘)m(nwm(n)*i:ep(fj)ep(Tj)*>§> _ (X0 0p(m)0,(75)7)€),, ifn>m

i=1 =1 " 0 otherwise.

Now suppose n > m. Again since {7; };l:o is a Parseval frame for X, and h? is injective

on each supp 7;. A similar computation for (( Z;.lzl 0,(75)0,(75)*)€) , implies that

d d -
(3.50) (30 (mnlm) S O4lm b0 )e) =45 =T
i=1 j=1 " 0 otherwise.

Comparing (3.49) and (3.50) gives (3.48), and hence 6 is a Nica-covariant representa-
tion.

Now the universal property of N'T(X) ([20, Theorem 6.3]), gives us a homomor-
phism 6. : NT(X) — B(Hy) such that 6, o ¢ = 6.

For each ¢ € N*, we choose a finite partition {Z,; : 1 < i < I,} of Z by Borel
sets such that h? is one-to-one on each Z,;.! We take Zy; = Z and write [p = 1. Let

Xai = Xz,.» and define £ € @, e L*(Z, R"e) by

i _ 0 ifn#q
Xqi ifn=gq.
We now define ¢, : N'T(X) — C by
Iq
(3.51) Ge(b) = D Y e U0, (b)¢ | £4)  for b e NT(X),

qeNk i=1
To see ¢. is well-defined, we need to show that the series converges. Notice that

elements of C*-algebras can be written as a linear combination of positive elements,

ITo see that there is such a partition, notice that since k9 is a local homeomorphism on Z, there
is an open cover {U;}&, of Z such that each hd|y, is injective. Now set Vg := Uy and for each [ let
V=1, \Ué;%)Vj . Clearly {Vi}&, is a Borel partition of Z. Since this partition is dependent on g,

we relabel it as {Zw-}ilil.

o6



and a positive element b satisfies b < ||b||1. Thus it suffices for us to show that the

series defining ¢.(1) is convergent. By definition ¢.(1) is

33 e ) = 230 [ Gl (R G)

geNk i=1 geNk i=1

Iq
=Y > e IRIE(Z,,).

geNk i=1

Since {Z,;}; is a partition of Z, we have

Iq
Z Ze_ﬁr-q (XZW- XZ(“-) _ Z e—ﬁr-qng(Z)‘

geNk i=1 qENK

By Proposition 3.2.7(b), the sum quNk e Pr4RIe converges to a measure . Since

[ fazde =1, p is a probability measure. Then

Iq
Z Z G_Br.q (XZq,i

geNk i=1

XZq,i) = M(Z) =1

Thus ¢.(1) =1, and the formula (3.51) gives us a well-defined state on T (X (E)).
To see that ¢. satisfies (3.43), take z € X,,,, y € X, and b = ¢, ()¢, (y)*. Since
£7 is zero in all except the gth summand of @, . L*(Z, R™e),

9*(b)5q7i = 0. (wm(aj)wp(y)*)fq7i = 0m<x)9p(y)*€q’i

is zero in all but the (¢ — p + m)th summand. Thus
(&(b)fq’i | fq’i) =0 for all ¢,7 whenever p # m,

and ¢. satisfies (3.43) when p # m. Then we assume p = m. If ¢ #? m, then
O ()0 (y)*€2" = 0. Now suppose g > m. Since h? is injective on Z,;, it follows that

h™ is injective on each Z,,; . Then

(O ()01 ()67 [ €)= / () > vw)a() ) xel?) d(Re)(2)

h™(w)=h™(z)
[ s )

Since the Z,; partition Z, summing over ¢, we have

Iq

> (0. 0on(@)inl))e ) = [ GG AR )

=1
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Now using the formula (3.25) for R™, we have

(3.52) O (n(@omy)) = 3 e / Ri)(2)

q>m

—Zem/ > gl d(R ) ()

qg=m hm(w)=

— Z o~ Br-(m-+q) /<y7x>(z> d(R%)(z)

gENK
— e Brm /(y, ) d( Z e_ﬁqRan).
geNFk

Recall that > e PriR% = p. Then

6 (U (@) (9)7) = 7 / (. ) dp.

Thus ¢. satisfies (3.43).
To see that ¢, is a KMSg state, we apply Proposition 3.1.6 with m = p = 0 and
r=y=a € A to get

60 (e = ool (") = [ = [ ot

This implies that ¢-(¢g(a)) = [adpu for all positive a € A and so for all elements of
A. Tt then follows that ¢. (¢ ((y,z))) = [(y,z) du. Now

= (Vi () (y)") = Onne™ " b (Yo ((y: ),
and the Proposition 3.1.6(a) says that ¢. is a KMSg state. O

Proof of Theorem 3.3.1 (b). Now assume that r has rationally independent coordi-
nates. We first claim that 35 is a compact subset of C(Z)* in the weak* norm. Then to
prove that € — ¢, is an isomorphism, it suffices to show that it is injective, surjective,
and continuous.

For the claim, we show that 4 is a closed subset of the compact unit ball of C(Z)*.
Let € € ¥3. Recall that fz = |fg| > 1. Thus

lelle(zy = sup | [ fde| < sup /\f|d5</f5d5—1
e 6
Then X5 is a subset of the unit ball in C'(Z)*. To check that it is closed, take a sequence
{1321 € Yp and € € C(Z)* such that ¢; — ¢ in weak” topology. Since
e(f) = lim ¢;(f) > 0 for all positive f € C(Z),

j‘)OO
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the Riesz-representation theorem implies that ¢ € M(Z),. Also note that

/fgdé‘:}iglo/fﬁdEj:L

Then € € Y and that X3 is closed, as required.
For the surjectivity of € — ¢, let ¢ be a KMSgs state, and let p be the probability
measure such that ¢(¢0 ) [ adu for a € C(Z). Since r has rationally independent

coordinates, Proposition 3.1.6 implies that ¢ satisfies

(3.53) ¢(¢m($)wn(y)*) = 5m,n6_ﬂ%m¢(¢0<<ya x>)) = /(y, ) dp.

On the other hand, since p satisfies subinvariance relation (3.26) (by Proposition 3.2.8),
Proposition 3.2.7(c) implies that € := ( Hle (1—e~PriR%)) u belongs to X5 and satisfies
> ek € 7T R™e = p. Now applying part (a) to e gives a KMSg state ¢, such that

0 itm#n
(3.54) ¢e(¢m<x>¢n(y)*) -\ _ . i
e—Brm f(y, x)ydp if m=n.

Comparing equations (3.54) and (3.53), we have ¢ = ¢.. This shows that ¢ — ¢, is
surjective.

To show the injectivity of € — ¢, let ¢, = <b52 be two KMSg states. Suppose 1y 2
are probability measures such that ¢., o 1g(a) = [adu; and ¢., o o(a) = [ adus for
all a € A. Then p; = po. Now the construction of the previous paragraph shows that

k k
= H 1—e 5”Rel H 1—6 ’B”Rel ) = &9.
i=1 i=1

Thus € — ¢, is one-to-one.
Finally, to check the continuity of € — ¢., suppose €; — ¢ in ¥g. Let p =
S ek € MR and py =Y, € 77" R";. Remember from the calculation (3.33)

that
H Z e PrrRre

neNk

< *
oy < el

It then follows p; — p in weak* topology. Now the formula (3.43) for ¢. shows that
¢e; — ¢ in weak™ topology. O]

The next Corollary is a generalization of [1, Corollary 5.3] to the dynamical system

(O(X), ).
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Corollary 3.3.2. Let hy, ..., hi be x-commuting and surjective local homeomorphisms
on a compact Hausdorff space Z. Let X be the associated product system over N¥, as
in Corollary 2.1.2. For each 1 < i <k, take 3., as in (3.28) and suppose r € (0,00)"
has rationally independent coordinates. Define & : R — Aut (O(X)) in terms of the
gauge action 5 by &y = Feur. If there is a KMSg state of (O(X), &), then there exists
an 1 <1 <k such that fr; < B.,.

Proof. Suppose ¢ is a KMSg state of (O(X),&). Aiming for a contradiction suppose
that fr; > B, forall 1 <i < k. Let ¢ : NT(X) — O(X) be the quotient map as
in Lemma 1.3.8. Then ¢ o ¢ is a KMSy state for the system (N7 (X),a) considered
in Theorem 3.3.1. Since r has rationally independent coordinates part (b) of Theo-
rem 3.3.1 gives a measure £ on Z such that [ fsde =1 and ¢ o ¢ = ¢.. Since fz > 1,
[ fsde =1 implies that e(Z) > 0.

We temporarily set K := {1,...,k} and take an open cover {U; : 1 <1 < d} of Z
such that h®/ |y, is injective for all J C K and 1 <1 < d. By applying [46, Lemma 4.32],
we can find open cover {V; : 1 <1 < d} for Z such that V; C U;. Since £(Z) > 0, there
exists at least one [ satisfying ¢(V;) > 0. Then we can find a function f € C(Z) such
that f(z) # 0 for some z € V; (see [47, Lemma 2.12], for example).

Next for each J C K, take f; := f € X,, and view |f|? as an element of A = C(Z).

We aim to set up a contradiction by showing that

bi=wollfF) + D (D (f)dalfa)*

BCICK

belongs to ker ¢ while ¢. = ¢ o ¢ does not vanish on it. Since the left action of |f|? on
each fibre X, is implemented by the finite-rank operator Oy, ¢, a routine calculation
for b shows that

b=1o(lfP)+ D () (Oy,,)

@CJCK
= > OV + DD (DY (o, (1)
= > O (ol = v (e, (112)) ).

BCICK

Thus b belong to ker ¢ (because each summand does).

Next we compute ¢.(b) using the measure p in part (b) of Theorem 3.3.1:

b.(b) = / R du() + 3 (—)Vlesres / (. TN (=) du(2)

BCICK
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— [P )+ 3 et [ ST P w)dute).

PCICK hed (w)=z

Using definition of R at equation (3.25) and the notation R®°u = u, we have

6.(b) = / FRE () + 3 (~1)Vlebres / FP(2) d(R ) (2)

@CICK

= 3 oM [P dRe )

ICJCK

This is precisely [ |f]?(z) de(z). It follows that ¢.(b) > 0, and we have a contradiction.
Thus there should be at least one 1 <7 < k satisfying fr; < f... O
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3.4 KMS states at the critical inverse temperature

In Theorem 3.3.1, we first chose an r € N¥ and then characterised KMS states of the
dynamical system (N7 (X),a) for § satisfying

(3.55) B>r1p,, forall 1 <i<k.

Thus the range of possible inverse temperature is dependent on the choice of r € N*.
When r is a multiple of (3.,,..., ), following the recent conventions for the higher
rank graph algebras (see [26, 28, 59, 60]), we call the common value 3. := r; '3, the
critical inverse temperature. In particular, we are interested in r := (3,,, . . ., f,) which
gives the critical inverse temperature S. = 1. In this case, we refer to the associated
dynamics « : t — v.ier as the preferred dynamics.

In the next theorem, we consider the preferred dynamics a and discuss the KMS
states at the critical inverse temperature. Theorem 3.4.1 is a generalization of [1,

Theorem 6.1] and the proof follows a similar method.

Theorem 3.4.1. Let hq, ..., hy be x-commuting and surjective local homeomorphisms
on a compact Hausdorff space Z. Let X be the associated product system over NF as in
Corollary 2.1.2. For each 1 <i <k, let 5., be as in (3.28) and set r := (Beyy ..., Bey)-
Define o : R — Aut (NT(X)) and & : R — Aut (O(X)) in terms of the gauge actions
by iy = Yeirr and &y = Feirr. Then there is a KMS, state on (N'T(X), ), and at least
one such state factors through a KMS, state of (O(X),&).

To prove this, we need the next lemma from [1].

Lemma 3.4.2 ([1], Lemma 6.2). Suppose (A,R,«) is a dynamical system, and J is
an ideal in A generated by a set P of positive elements which are fixed by o. If ¢ is
a KMSs state of (A, «) and ¢(p) = 0 for all p € P, then ¢ factors through a state of
AllJ.

Proof of Theorem 3.4.1. Choose a decreasing sequence {f3;};en such that §; — 1 and
a probability measure v on Z. Then K := [ [f3, dv belongs to [1,00), and ¢; := Kj_lu
satisfies [ fs; de; = 1. Thus for each j, part (a) of Theorem 3.3.1 gives a KMSp, state
¢e; on (N T(X), a). Since {¢, }; is a sequence in the compact unit ball of C(Z)*, by
passing to a subsequence and relabelling, we may assume that ¢., — ¢ for some state
¢. Now [5, Proposition 5.3.23] implies that ¢ is a KMS; state.

To show that at least one such state factors through (O(X ),&), we apply the

construction of the previous paragraph to a particular sequence of measures ;. Take
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one of the local homeomorphisms, for example hi. Since for all d € N, z — |h7%(2)]
is continuous (see [8, Lemma 2.2]), applying Proposition 2.3 of [18] gives u € Z such
that?

(3.56) |h7%(w)| > e for all d € N.

Now let 0, be the unit point mass at u, and take ¢; = fg, (u)7'6,. The argument of
the first paragraph gives a sequence of KMSg, states on (N T(X), a) which converges
to a KMS; state ¢ of (M7T(X), ) in the weak* topology.

We aim to show that ¢ factors through (O(X), d). By Lemma 3.4.2, it suffices for
us to prove that the generators of the kernel of the quotient map ¢ : NT(X) — O(X)

are all positive, are fixed by «, and belong to ker ¢. Remember from Lemma 1.3.8 that

kerg = (Yo(a) = ) (pa(a)) 1 n € N0 € 4,1 (K(X,)).

Fix n € N* and a € ¢;'(K(X,)). Let {Ur}, be an open cover of Z such that
h™|y» is injective. Choose a partition of unity {pj'} subordinate to {U]'} and define
7' := +/p;. The argument of the last paragraph in the proof of Corollary 2.1.2 shows
that on(a) = ZL:"o Ou.rprn. Then

(@) = 6 (0(@) = (@) = 0 (3 Ourpiy
= to(a) — Zn Un(a - 7" ) ()"

= to(a) (1 - 5 Ul in (1))

Thus the generators of ker g are of the form of (1— S W (1) (7)) Clearly they
are fixed by «.

Next we show that theses generators are positive. Writing 7' for the Fock repre-
sentation, Lemma 3.2.9 says that (ZlL:”O T (7)o (17)*) () is either zero or x for all
x € X. Therefore,

Ly
1— Z To(m)Tu(T")"
=0

is positive in L(F(X)). Since the induced homomorphism T : N'T(X) — L(F (X)) is
injective, it follows that each generator (1—ZZL:”0 (77U (17)*) is positive in N7 (X).

2As we mentioned in the proof of [1, Theorem 6.1], the results of [18] are mainly about metric

spaces. But it seems that the argument for Proposition 2.3 in [18] does not need this hypothesis.
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Now it remains to prove that

(3.57) ¢(§jwn<n">¢n<n“>*) =L
=0

Let 417 be the measure Y, i "™ R™e; of Theorem 3.3.1(a). We compute using the
formula (3.43) for ¢.,:

Ln Ly
O Dl mn(m)") = lim 6, (3 a7’
1=0 . =0
= thglo e firm / ZZ; <7'1n7 Tzn>dﬂj(z)-

Since h" is injective on supp 7;*, we have

L, Ln Ly
Sz = " Y g =Y Y |rw = Y 1=
=0 =0 h"(w)=z h™(w)=z =0 h™(w)=z
Thus
Ly,

= Y et / h"(2)| d(R™e,)(2).

meNF

Using formula (3.25) for R™, we have

Ly
e_ﬁjm/z (', 7i") dpi(z) =
1=0

Remember ¢; = f3,(u)~'d,. Then

Z e_ﬁfr'('”rm)/ Z |h " (w)| dej(2).

meNk hm(w)=z

Ly,
eprn [S o (ardn(z) = 3 e ) £ ()
=0

meNFk

=) e BT ()] fa, (w)

m>n

Since fs,(u) =3, cnr € P [T (W),

B /i <7-l", Tl"> dui(z) = (fﬂj (w) - Zm;;(;;)ﬁﬂmw_m(u”)
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Now to prove (3.57), it suffices to show that fg (u) — oo as j — oo. Fix j. Since
the inverse image [~ (u)| > [h™™ (u)|, we have

fo,(w) = > e BT AT (u)]

meNFk

Recall that 7 = (B, ..., B). Since > e imm = Hle D men €T we have

f,BJ [ Z e ﬁJﬁclml hy ml } H Z —B;8e¢; mz

m1EN =2 m;EN

It follows from the equation (3.56) that

o, () = [ D (e Pt ml] H S (e by

m1€EN =2 m;EN
Since [3; > 1, all series in the right-hand side are convergent geometric series. Com-
puting these series, we have
k
1 1 .
1 — efﬁjxgcl +6¢1 ) H (1 — 67/83'/3%) for all ‘7

=2

fﬁj(u) > (

Now if j — oo, the right hand side goes to infinity. Thus fg, (u) — 0o, as required. [

3.5 Ground states and KMS,, states

In this section we describe the ground states and KMS,, states of (NT(X),a). We
first provide a characterization for the ground states in Lemma 3.5.4. Then in Propo-
sition 3.5.5 we prove that there is a bijection between the simplex of the probability
measures on Z and the ground states of (N7 (X), «). We also show that every ground
state on (N'T(X), a) is a KMS,, state.

The following definition and remarks have been taken from [35, page 19].

Definition 3.5.1. Let (A4, R, «) be a dynamical system. Following [10], we say a state
¢ is a KMS. state if it is the weak® limit of a sequence of KMSg, states as 3; — co. A
state ¢ is said to be a ground state, if the entire functions z — ¢(ac, (b)) are bounded

on the upper half-plan for all analytic elements a, b.

Remark 3.5.2. Here we distinguish between ground states and the KMS,, states. But
in older literature (for example in [5, 41]), there was not such a distinction. Considering
our set-up, it follows from [10, Theorem 5.3.23] that every KMS,, state is a ground
state. But a ground state need not be a KMS,, state (see for example [10, page 447]
or [35, Theoerem 7.1]).
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Remark 3.5.3. Given a dynamical system (A, R, «), [41, Proposition 8.12.4]) implies
that it suffices to check the ground state condition on a set of analytic elements which
span a dense subspace of A. Note that the definition of ground states in [41] is slightly
different: A state ¢ is said to be ground state if all the functions z — ¢(aa, (b)) are
bounded by ||al|||b||. But it is shown in the proof of (2) = (5) in [5, Proposition 5.3.19]
that an entire function which is bounded on the upper half-plane is bounded by the
sup norm of its restriction to the real axis.

Fortunately, in the dynamical system (N7 (X), @), the sup norm of the restriction
of the functions z — ¢(aa, (b)) to the real line is bounded by ||al|||b]|. To see this, let
a = Y ()n(y),b = 1,(s)1h,(t) and ¢ be a state of NT(X). Notice that for each
teR

|6(acu(0)] < llo]l[|ben(a)]| < llallllb]-

Since ¢ is bounded linear functional, we can extend this to all of AT (X). Thus any
ground state in our set-up is a ground state of [41]. Now [41, Proposition 8.12.4] implies
that it is enough to check the ground state condition on a set of analytic elements which

span a dense subspace of N7 (X).

The following lemma is a generalisation of [28, Proposition 3.1(c)] and [27, Propo-

sition 2.1(b)] in the dynamical systems of graph algebras.

Lemma 3.5.4. Let hy, ..., hy be x-commuting and surjective local homeomorphisms
on a compact Hausdorff space Z and let X be the associated product system as in
Corollary 2.1.2. Suppose r € (0,00)* and o : R — Aut(N'T (X)) is given in terms of
the gauge action by oy = Yeirr. Suppose B > 0 and let ¢ be a state on N'T(X). Then
¢ is a ground state of (N'T(X), ) if and only if

(3.58) ¢ (U (2)0n(y)*) = 0 whenever r-m >0 orr-n > 0.

Proof. First notice that for every state ¢, a +ib € C and m, n, p, ¢ € N*, the definition

of a implies that

¢ (wm (@) (Y)" Xartiv (wp(5>¢q (t)*)> = |eflerPrmag <¢m (@) (y) p(s) ¥y (t)*>
(3.59) = 006 (@) (1) iy ()2 (1)) |

Now suppose ¢ is a ground state. Then

‘gb(ﬂ)ﬂl () arin (Vn (1)) ’ _ b

& (Y (2)¥n(y))

Y
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is bounded on the upper half plane b > 0. Thus ¢(¢m(2),(y)*) = 0 whenever
r-n > 0. Since gb(@/}n(y)wm(x)*) = gb(@/}m(x)@/)n(y)*), a symmetric calculation shows
that aﬁ(wn(y)@bm(x)*) = 0 whenever r-m > 0.

Next suppose that ¢ satisfies (3.58). It follows from Lemma 3.1.4 that there exist

{& i Yo<ij<da C Xomtp—nnp a0d {m;i;}o<ij<a € Xgtn—nnp such that

¢m<x)¢n(y)*¢p(s>¢q(t)*: Z ¢m+p—n/\p(5i,j)¢q+n—n/\p("7i,j)>k'

0<i,j<d

Putting this in (3.59), we have

¢ <¢m($)¢n (y)* Qarin (@Z’p(s)@bq(t)*)) — ¢—br(—9)

¢< Z wm-"—p—n/\p(gi,j)¢Q+N—n/\p(77i7j)*) ‘

0<i,j<d
The assumption (3.58) implies that the right-hand side is zero (consequently is bounded)
unless
r-(m+p—mnAp)=0=r-(¢g+n—nAp).
So suppose - (m+p—nAp)=0=r-(¢+n—nAp). Since r € (0,00)", it follows
that
m+p—nAp=0=qg+n—nAp.

Then
(Vo (90 Qi (1 (5104 ()7) ) = €070 37 0w i) |

Notice that ¢ and n —n A p are both positive. Then ¢ +n —n A p = 0 implies that

q = 0. Now we have
8 (U @) 1) 0t ((5)0(0)) ) = 77| 37 0w )]

Thus ¢ is bounded on the upper half plane b > 0, and hence it is a ground state. [

The next Proposition is an extension of [28, Proposition 8.1] and [27, Proposi-

tion 5.1] from dynamical systems of graph algebras to the dynamical system (N7 (X), ).

Proposition 3.5.5. Let hy,...,hy be x-commuting and surjective local homeomor-
phisms on a compact Hausdorff space Z and let X be the associated product system as
in Corollary 2.1.2. Suppose r € (0,00)F and o : R — Aut(N'T (X)) is given in terms
of the gauge action by oy = ~eier. For each probability measure € on Z there is a unique
KMS,, state ¢. such that
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[{y,z)de ifm=n=0

0 otherwise.

(3.60) Ge (Y (@)thn(y)") =

The map € — ¢. is an affine isomorphism of the simplex of probability measures on Z
onto the ground states of (NT(X), ), and that every ground state of (NT(X), ) is
a KMS,, state.

Proof. Suppose ¢ is a probability measure on Z. For each 1 < i < k, let 3., be as
in (3.28). Choose a sequence {;},en such that 3; — oo and each B; > max;r; ' 3,,.
For each 3}, let fg () be the function in Proposition 3.28 (a) and set K; := [ fg, de.
Then K belongs to [1,00), and ¢; := Kj_le satisfies [ fs, de; = 1. Now part (a) of
Theorem 3.3.1 gives a KMSp, state ¢.; on (N T(X), a). Since {¢, }; is a sequence in
the compact unit ball of C'(Z)*, by passing to a subsequence and relabelling, we may
assume that ¢.;, — ¢.. Then ¢. is by definition a KMS,, state.

We now show that ¢. satisfies (3.60). For each ¢.,, we have

Oe, (Y (2)Un(y)*) = e P77 / (y,x) de; for all m,n € NF.

Thus ¢, (Vm(2)¥n(y)*) = 0 for m # n and hence ¢, (¢ (2)¢,(y)*) = 0 if m # n. So
we suppose that m = n. If n # 0, then r € (0, 00)* implies that e=%"" — 0, and again

o (@bm(:v)wn(y)*) = lim;_,o &, (¢m(x)wn(y)*) = 0. So we assume that m =n = 0.
Fix 2 € Z and let f3,(z) = > e PimP|h7P(z)| as in Proposition 3.2.7(a). We
first show that fs (z) — 1 as j — co. For each p € N let

1 ifp=0
0 ifp#0.

g(p) =

Clearly e=%"P|h7P(z)| — g(p) as j — oo. Since for each j, e #"P|h7P(2)| is dominated

by e #o"P|h=P(z)|, the dominated convergence theorem implies that

f,(z) =D e = Y glp) = 1,

peENFK peENFK

as j — oo. Also notice that each fs, is dominated by fs, and € is a probability measure.

Then another application of dominated convergence theorem implies that

Kj:/f,gjdsé/lde:l
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as j — oQ.

We now compute using the formula (3.43) for ¢ :

Oc (U (2)1n(y)7) = lim G, (Vm(w)in(y)")

= lim [ (y,x)de;.

Jj—00

. _ g1
Since €; = K e,

6 (tm(a)ny)") = im ;71 [ (. )(2) ) = [ ()2 (o)

Thus ¢ satisfies (3.60). Since ¢ (¢ (2)1n(y)*) vanishes for all m # 0 or n # 0, it also
does for r-m # 0 or r - n # 0. Then Lemma 3.5.4 says that ¢. is a ground state.
Next let ¢ be a ground state and suppose that ¢ is the probability measure satisfying
P(Yo(a)) = [ ade for all a € A. Then the formulas (3.58) and (3.60) for ¢ and ¢, imply
that ¢ = ¢.. Thus € — ¢. maps the simplex of the probability measures of Z onto the
ground states, and it is clearly affine and injective. Since each ¢. is by construction a
KMS,, state, it follows that every ground state is a KMS,, state. O
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Chapter 4

The shifts on the infinite path
spaces of 1-coaligned higher rank

graphs

In this chapter we consider a special type of k-graph called 1-coaligned k-graph. The
shift maps on the infinite path space of this kind of graph x-commute. So by Corol-
lary 2.1.2 we have a product system over N*. We study the relationships between
the C*-algebras associated to this product system and the C*-algebras of the k-graph.
Then we use our results in Chapter 3 and some others from the literature to compare

the KMS states of these C*-algebras.

4.1 Basics of Higher-rank graphs

Most of the following definitions have been taken from [44, Chapter 10] and [30].
A countable category C consists of two countable sets C° and C*, two functions

e, se o C* — C°, a partially defined product (f,g) — fg from

{(f:9) € C" xC":se(f) = rel9)}
to C*, and an injective map id : C° — C*, which satisfies
(a) re(fg) =re(f) and se(fg) = sc(9),
(b) (fg)h = f(gh) when sc(f) =re(g) and sc(g) = re(h),
(¢) re(id(v)) = v = se(id(v)) for all v € €O, and
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(d) id(v)f = f and gid(v) = g when r¢(f) = v and s¢(g) = v.

The elements of C° are called the objects of the category, the elements of C* are
called the morphisms of the category, r¢ is the range map, sc is the source map, the
operation (f,g) — fg is called composition, and id(v) is called the identity morphism

on the object v. When it is clear from the context we may write r, s for 7¢, sc.

Example 4.1.1. Let £ € N. We can view N¥ as morphisms of a countable category
with a single object {v}. For each m,n € N¥ we can define r(n) := v, s(n) := v,

mn :=m + n, and id(v) := 0.

Suppose that C and D are two countable categories. A functor F : C — D is a pair
of maps F?:C° — D° and F* : C* — D* such that

(a) FO(re(f) = re(F*(f)) and F®(sc(f) = sc(F*(f)) for all f € C*,
(b) F*(fg) = F*(g)F*(f) for all (f,g) € C* x C*, and
(¢) id(F°(v) = id(F°(v)) for all v € C°.

Definition 4.1.2. Let &k € N\ {0}. A k-graph (A, d) consists of a countable category
A and a functor d from A to N* (view N* as the category of Example 4.1.1) satisfying
the factorization property:

For all A € A* and m,n € N* such that d*()\) = m + n, there exist unique elements
i e A and v € A* such that A = puv.

Since the category N* has only one object, the map d° of the functor d is trivial. So
we write d for both d* and d° and call it the degree map. We usually use A for (A, d).

Let A be a k-graph. For any n € N we define A" := {\ € A* : d(\) = n} and we
say A is a finite k-graph if A" is finite for all n € N¥. We say A has no sinks if for
every v € A® and every n € N*| there is a A € A* such that s(\) = v and d(\) = n.
Similarly, A has no sources if for every v € A? and every n € N¥, there is a A € A*
such that 7(\) = v and d(\) = n.

For p,v € A, we write A™"(u, v) for the set of (£,1) € A x A such that ué = vn
and d(u€) = d() v d(v).

Given v,w € A’ vA™w denotes the {A € A" : r(\) = v and s(\) = w}. For
1 <i <k, let A; be the matrix in Myo(N) with entries A;(v,w) = [vA%w|. We call
the A;(1 < i < k) the vertex matrices. Notice that (A;A;)(v,w) = |[vA%T%w|. Then
the factorisation property in A implies that A;A; = A;A;, and therefore we can define
A =T[5, A% for all n € N,
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Example 4.1.3. Let  be the category with objects Q2 = N* morphisms € :
{(m,n) € N¥ x N¥ : m < n}, range and source maps r(m,n) = m,s(m,n) = n,
identity morphisms id(m) = (m, m), and the composition (m,n)(n,p) = (m,p). If we
equip the category {2 with the degree map d(m,n) = n — m, then (€, d) becomes a
k-graph.

Let (A1,dy) and (Ag,dy) be two k-graphs. A k-graph morphism is a functor F
form the category A; to the category A, preserving the degree maps, in the sense that
dyo F = dj.

For a k-graph A, we refer to the infinite path space of A as

A* :={z:Qp — A: zis a k-graph morphism}.

For p € N*, we define the shift map o? : A — A by o?(z)(m,n) = z(m + p,n + p)
for all z € A and (m,n) € Q. Clearly 0?0 0? = g7 = g%00P. Notice that for every

z € A*® and p € N¥ we have
(4.1) z = 2(0,p)o?(z).
For each A € A, let
Z(A\) :={z€ A*:2(0,d(N\)) = A}.

Endow A* with the topology generated by the collection {Z(X) : A € A}. For finite
A, [30, Lemma 2.6] shows that A is compact in this topology. For each p € N¥, [30,

Remark 2.5] implies that the shift map o? is a local homeomorphism on A>°.

4.1.1 (*-algebras associated to higher rank graphs

Definition 4.1.4. Let A be a finite k-graph. Following [27, 45], we say a collection

of partial isometries {S) : A € A} in a C*-algebra B forms a Toeplitz-Cuntz-Krieger
A-family if

(TCK1) {S,:v € A%} is a collection of mutually orthogonal projections,
(TCK2) S\S,, = S), whenever s(\) = r(u),
(TCK3) SxSx = Sy for all A,

(TCK4) for all v € A° and n € N¥, we have

Sv Z Z S)\S:kv

AEVAT
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(TCK5) for all u,v € A, we have

SiS,= >SS

(&meAm™in(u,v)

They form a Cuntz-Krieger A-family if they also satisfy
(CK) Sy =3 \conn 5255 for all v € A” and n € N*.
We interpret any empty sums as 0.

Remark 4.1.5. Conditions (TCK1)—(TCK3) and (CK) implies (TCK5) (see [30,
Lemma 3.1]). Then to see that a family of partial isometries is a Toeplitz-Cuntz-
Krieger A-family, we can either check (TCK1)—(TCKb5) or check (TCK1)—(TCK4)
together with (CK).

The next lemma shows that it suffices to check (TCK5) for a subset of {Sy : A € A}.

Lemma 4.1.6. Let A be a finite k-graph. Suppose that {Sy : A € A} is a collection of
partial isometries in a C*-algebra B which satisfies (TCK1)—(TCK3). Suppose that
for all p,v € A with d(p) A d(v) = 0 we have S;.S, = 37 cpming,,) S¢S, Then
{S\ : X\ € A} satisfies (TCK5).

Proof. Fix pu,v € A. By the factorisation property we can write yu = 'y’ and v = v'v/"
such that

A(u) = ') = d()Ad(v), () = d() — d(u) A d(v), and
(4.2) d(W") =dv) —d(u) ANd(v).

Now using (TCK1)—(TCK3) and the identity S,)S) = Sx, we have

S8, = S5 S Sy
= SOyt S(ur) S
= O w1 S5 Sr(uny S since s(u') = r(u”)
G S S

Since d(p") A d(V") = 0, applying (TCKS5) for p”,v" gives

(4.3) SiS, =0 >SS

(5’77) EAmin (“/I ,l///)
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Next we aim to show that

(4.4) (1= v and (€,5) € A" 1)) = (€,1) € A" (g v).

Suppose ¢/ = v and (£,n) € A™®(y”,v"). Then "¢ = /"1 implies that ué = vn. Since
d(p”) Ad(v") =0, it follows from d(u"&) = d(p”) vV d(v") that d(u"E) = d(p”) + d(v")
and hence d(§) = d(v"). Now (4.2) implies that

d(p€) = d(p) +d(v") = d(p) + d(v) = d(p) Ad(v) = d(u) V d(v).

Thus (§,7) € A™(,v).
Next let (£,17) € A™2(u,v). Since ué = vn, the factorization property implies that
' = v'. Notice that

d(p"§) = d(p&) — d(p') = d(p) v d(v) — d(p') = d(p) + d(v) — d(p) A d(v) — d(i).

Now (4.2) implies that

d(p"§) = ld(p) — d(p) N d(w)] + [d(v) — d(i)] = d(u") + d(v").

Thus (£,m) € A™(u”,v").
Next we finish off by putting (4.4) in (4.3). We have

SiSy= >SS
(&m)eAmin(u,v)
which is precisely (TCK5) for p,v. H

Kumjian and Pask showed in [30] that for a finite k-graph A, there is a C*-algebra
C*(A) and a Cuntz-Krieger A-family {t) : A € A} on C*(A) such that

(Ul) For any other Cuntz-Krieger A-family {7\ : A € A} in a C*-algebra B, there

exists a unique homomorphism 7y : C*(A) — B such that 7p(t)) = 7).
(U2) C*(A) is generated by {t) : A € A}.

We say the pair (C*(A),ty) is universal for Cuntz-Krieger A-families. The C*-
algebra C*(A) is called the C*-algebra of A and the family {t) : A € A} is called a
universal Cuntz-Krieger A-family.

The universal property shows that there exists a strongly continuous gauge action

7 TF — Aut(C*(A)) such that 7.(ty) = 2ty (in multi-indexed notation, so that
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2t =T[5, 2" for z = (..., 2) € T and n € Z¥). It also follows from [30, Lemma 3.1
that
C*(A) = span{t,t), : s(A) = s(p)}.

Raeburn and Sims showed in [45, Corollary 7.5] that there exists a C*-algebra
TC*(A) and a Toeplitz-Cuntz-Krieger A-family {s) : A € A} on TC*(A) such that
(TC*(A), sy) is universal for Toeplitz-Cuntz-Krieger A-families. We call TC*(A) the
Toeplitz-Cuntz-Krieger algebra and call {sy : A € A} a universal Toeplitz-Cuntz-Krieger
A-families.

The universal property shows that there is a strongly continuous gauge action
v @ TF — Aut(TC*(A)) such that v,(sy) = 2¢Ms, (using multi-indexed notation).

Furthermore, by a standard argument and using (T'C'K5), we can show that
TC*(A) =span{sys, : A, s(A) = s(u)}.
(see [51, Lemma 3.1.2, Proposition 3.2.1]).

Remark 4.1.7. We can lift the gauge actions of TC*(A) and C*(A) to actions of R
via the maps t — 7eur (and t — Feur) for some r € (0,00)%. Notice that for each
sxsy, € TC*(A), the function ¢ +— eir (s)\s;) = em'(d(“)*d(”)s,\sz on R extends to an
entire function on all of C. Thus sysj, is an analytic element of 7C*(A). The elements
sxsy, span a dense subalgebra of TC*(A). So when we study the KMS states of the
system (T C*(A), veier ), it suffices to check KMS condition on these elements. Similarly,
we can show that {£xt) : s(A\) = s(u)} spans a dense subspace of analytic elements of

the system (C*(A), Jeitr).
The next lemma shows that we can view C*(A) as a quotient of 7C*(A).

Lemma 4.1.8. Let A be a finite k-graph. Suppose T is the ideal in TC*(A) generated

by
{Sv = Z SAS\, U € Ao,n € Nk},

A€VA™
and let ¢ : TC*(A) — TC*(A)/Z be the quotient map. Then (TC*(A)/Z,q(sy)) is

universal for Cuntz-Krieger A-families, and is canonically isomorphic to (C*(A),ty).

Proof. Since ¢ is a homomorphism and {s) : A € A} satisfy (TCK1)—(TCK3), the
family {q(s)) : A € A} satisfies (TCK1)—(TCK3) as well. Clearly {q(s)) : A € A}
satisfies (CK). Since {s) : A € A} generates TC*(A), we have that {q(s)) : A € A}
generates TC*(A)/Z.
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To see (U2), suppose that {7 : A € A} is another Cuntz-Krieger A-family, in a C*-
algebra B. Notice that {T) : A € A} is in particular a Toeplitz-Cuntz-Krieger A-family.
Then the universal property of the pair (7TC*(A), s)) gives a unique homomorphism
mr : TC*(A) — B such that mp(sy) = T). Notice that {T) : A € A} satisfies (CK).
Then we can descends 77 to a homomorphism of 7C*(A)/Z such that mr(q(sy)) = Ta
for all A € A. O

4.2 1-coaligned higher rank graphs and the associ-
ated (C*-algebras

Definition 4.2.1 ([37, Definition 2.2]). A k-graph A is 1-coaligned if for all 1 <1i # j <
kand (A p) € A% x A% with s(\) = s(u) there exists a unique pair (n,() € A% x A
such that nA = (p.

It is observed in [37, Theorem 2.3] that a k-graph A is 1-coaligned if and only
the shift maps ¢¢,...,0% on the infinite path space A* x-commute. Let A be a
1-coaligned k-graph and let X (A*) be the product system associated to o®,... %
as in Corollary 2.1.2. We write NT(X(A*)) and O(X(A>)) for the Nica-Toeplitz
algebra and the Cuntz-Pimsner algebra of X (A>). In this section, we show that the
Cuntz-Pimsner algebra O(X(A*)) is isomorphic to the Cuntz-Krieger algebra C*(A)
and the Nica-Toeplitz algebra N'T (X (A>)) contains an isomorphic copy of the Toeplitz
Cuntz-Krieger algebra TC*(A).

The next lemma is contained in [37, Theorem 2.3|; since [37, Theorem 2.3] has not

been published, we provide a brief proof here.

Lemma 4.2.2. Let A be a finite 1-coaligned k-graph. Suppose 0 < i # j < k. Then

the shift maps o and 0% x-commute.
Proof. Let w, z € A* such that
(4.5) 0% (z) = 0% (w).

It follows from (4.1) that z = 2(0,e;)0%(2) and w = w(0,e;)0% (w). Now equation
(4.5) implies that z(0,e;) and w(0, e;) have the same sources. Since A is 1-coaligned
there exists a unique pair (1, () € A% x A* such that 17z(0,e;) = Cw(0,e;). Let A be the
element of A%™¢ identified by nz(0,¢;) (or Cw(0,¢;)), then u := A% (z) € A satisfies

0% (u) = z and 0% (u) = w.
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Since A is determined uniquely, so is u. Thus ¢% and ¢ *-commute. O

Notation 4.2.3. Let A be a finite 1-coaligned k-graph with no sinks. Then the shift
maps 0, ..., 0% are surjective x-commuting maps. As we mentioned before, we write
X (A®) for the product system associated to o°!,...,c%. We use 9 for the universal
Nica-covariant representation. We write X,,(A°) for the fibre associated to m € NF,
We write ¢, for the left action of A on the fibre X,,(A>). Recall that the multiplication

formula in X (A>) is
xy(z) = x(2)y(c™(2)) for x € X,y € Xp, 2 € A,

In this section we work with four C*-algebras: N'T (X (A>®)), O(X(A>)), TC*(A), and
C*(A). All of these C*-algebras carry a gauge action of T*. To avoid possible clash
of notation, we continue to write v and 4 for the gauge actions on N7 (X (A*)) and
O(X(A>)), respectively. We write v and 4| for the actions on TC*(A) and C*(A),

respectively.

Lemma 4.2.4. Let A be a finite 1-coaligned k-graph with no sources. Suppose X € A™
and p € A" such that m An = 0 and s(\) = s(u). Then there ezists a unique pair
(n,&) € A x A such that n\ = &p.

Proof. We first show that there is such a pair (n,£) € A x A. Since A has no source,
there exists z € A* such that z(0,0) = s(\). Let w' := pz and w” := Az. Notice
that o"(w') = z = ¢™(w"). Since m A n = 0, Corollary 3.0.8 implies that ¢ and
o™ are x-commuting. Then there exists unique w € A* such that v’ = ¢™(w) and
w” = o™(w). Now let n := w(0,n) and & := w(0,m). Clearly n\ = {u. The uniqueness

of pair (n, ) follows from the uniqueness of w. ]

Remark 4.2.5. We could have proved the Lemma 4.2.4 for a finite 1-coaligned k-graph
with sources by the way of induction. But all the k-graphs that we work with have no

sources and with this hypothesis the proof of Lemma 4.2.4 is easier.

Lemma 4.2.6. Let A be a finite k-graph and suppose m,n € N¥. Then the collection
{X2() bueam+n s a partition of unity such that o™ |suppx .y @1 0" |supp x5, @T€ Njective
for all up € A™*™.

In previous chapters we wrote the multiplication in terms of isomorphisms between fibres. For
example zy(z) = o(x ® y)(z). Unfortunately in this chapter we use letter o for shifts. Thus here we

do not use o when writing products.
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Proof. Fix m,n € N¥. Remark 2.5 in [30] says that, the sets {Z(u) : d(p) = m + n}
form a partition of A*. Then {Xxz(.)}eam+n is a partition of unity. Fix u € A™*". To

see that 0™ |suppy ., 1 injective, let o™ (w) = o™ (2) for w, z € supp xz(,). Notice that

(w)
w(0,m) = u(0,m) = z(0,m). On the other hand, (4.1) implies that w = w(0, m)c™ (w)
and z = z(0,m)c™(z). Comparing these equations, we deduce that w = z. Thus
a™|

SuppXz() 15 injective. A similar argument shows that o |SUPPXZ(M) 1S 1njective as

well. ]

Proposition 4.2.7. Let A be a finite 1-coaligned k-graph with no sinks or sources. For
each X € A, let Sy := Yap(xzn). Then
(a) The elements {Sx}rea form a Toeplitz-Cuntz-Krieger A-family in N'T (X (A™)).
Then the corresponding homomorphism wg : TC*(A) — NT (X (A>)) is injective
and intertwines the respective gauge actions of T* (in the sense that mg o =
yoTg).
(b) Let ¢ : NT(X(A®)) — O(X(A>®)) be the quotient map as in Lemma 1.5.8.
Then {qo Sx}xea is a Cuntz-Krieger A-family in O(X (A>)). The corresponding
homomorphism s @ C*(A) — O(X(A>)) is an isomorphism and intertwines

the respective gauge actions of TF.

Proof of (a). Let A € A. Notice that xz) € X4 (A>). We will need the next formula

is our proof:

(X200 Xz0)(2) = Z Xz (W) Xz (w)

o) (w)=z

{w : ad()‘)(w) =zand w € Z()\)H

0 ifz¢ Z(s(\))
1 if z € Z(s(N))
(4.6) = Xz (2)-
Next we show that Sy is a partial isometry:
S,\Sf\SA = ¢d(A) (XZ(,\))@Dd(,\) (XZ(/\)) *%Ud(A) (XZ(,\))
= tag (Xzn) Yo ((Xz0, X2)
= a() (XZ(A) 'XZ(S(A))) by (4.6).
Now the calculation
Xz - Xzs00) (2) = X200 (2)xz(s00) (0N (2)) = xz00(2) for 2z € A,
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implies SxS3Sx = Ya(Xz(n)) = Sa. Thus Sy is a partial isometry.
Next we aim to check properties (TCK1)—(TCK5). To see (TCK1), let v € A°.

Since 1)y is a homomorphism, we have

St = Yaw) (X2(0)) = Yo(X20))" = Yo(Xz20)") = Yo(X2()) = So-

Similarly,

S’USU - wO(XZ(v))wO (XZ(’U)) 1/}0 (XZ(U Xz v)) 1/10 (XZ(U ) - Sv'

So S, is a projection. Now let v, w € A°. We have

SUS wO (XZ )wO (XZ w)) ¢0(( )(XZ(U)))) = w,va(XZ(v)) = 611),1151)’

which implies that the collection {5, : v € A°} are mutually orthogonal projections.
To check (TCK2), let A\, € A such that s(A) = r(u). We have

SxSy = Yaey (Xz) Yaw) (Xz(w) = Yaow ((xw)) (sz)))-

The multiplication formula in X(A™) for xz) € Xao(A™®) and xz € Xa (A™)
implies that

((Oezm) (ezn) ) (2) = Xz (2)xz0 (0" (=)

= Xz0w) (2)-

Then S35, = Yapn (Xz00m)) = S
To check (TCK3), let A € A. A routine calculation shows that

S5 = Yaoy (Xz0n) Waoy (Xzv)
= o ({xz0): xz200))
= XZ(s(0) by (4.6)
= S,

We will need (TCKS5) for the proof of (TCK4). So we first check (TCK5). Lemma 4.1.6
says that it suffices to prove (TCKS5) for p,v € A with d(u) A d(v) = 0. For conve-
nience, let m := d(v) and n := d(;). Let {xz() }eeam+n be the partition of unity from
lemma 4.2.6. Applying Proposition 3.1.2 to {xz() }eeam+n gives

S;S ¢n(XZ ) Y (Xz l/)
— Z @Z)O(<XZ(M XZ(n) © O'm>)1/)m(XZ )wn(XZ ¢0(<XZ &) oc" y XZ(v )>)

EeEA™ neAn
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@7 = D al((xze Xz © ™) - Xzi0) ¥n ((X2(0) © " X200)) - Xz(m))

EeEA™ neA”
We now consider a summand for fixed £ and 7. We have
(X2 Xz 0 ™) - X200 (2) = (X0 X0 © 7" ) (DD (2)

= Xz(e)(2) X2 (W) X z() (0™ (w))

(w)=2
1 if z € Z(§), and pu& = an for some aw € A™

0 otherwise

Xz if p§ = an for some a € A™
0 otherwise.

Similarly

<<Xz<s> 00", Xzw)) - sz)) (2) = (Xz(6) © 0" X2))(2)Xz() (2)

= xz(2) D Xz (0" (W) Xz (w)

o™ (w)=z
1 if z € Z(n), and vn = B for some f € A™

0 otherwise

Xz if vy = B¢ for some f € A™
0 otherwise.

It then follows that the &-n summand vanishes unless

pé = an and vn = B€.
This means £ and 1 must have the same source. Since A is 1-coaligned and d(§)Ad(n) =
0 (note that d(§) = m and d(n) = n), Lemma 4.2.4 implies that & = v and § = pu.
Thus the sum in (4.7) collapses to
SpSu= > Un(xz©)alxzm)”

(&meAmin(p,v)
= >, S5
(EmeA™in (u,v)
which completes our proof of (TCK?5).
To see (TCK4), let v € A” and n € N¥. Suppose that A, € vA™ and X # pu. It
follows from d(A) = d(p) that A™*(\, ) = (). Now (TCK5) implies that

S\(555,)57 = 0.
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Thus S\S5 L S,.S;;. It follows from [44, Corollary A.3] that ), . SxS} is a projec-
tion. Thus to check S, > Z)\euA" S\S5, it suffices to prove

(4.8) sv( 3 sks;) DI :( 3 sw;)sv

AEvA™ AEvA™ AEVA™

For the first equality, we have

So Y SiSi= > S5\

AEVAT AEVAT

= Z o (XZ(’U) ) @/Jd(,\) (XZ(,\) ) ¢d(A) (XZ(,\)) "

AEVAT

Since 7(\) = v, a quick calculation shows that the left action of x 7y on xze is xz)-
It then follows

Sy Z S)\S3 = Z Yy (Xz00)Yaoy (xzoy) ™ = Z S)S3.

AEVAT AEvA™ AEvA™

Similarly, the second equation in (4.8) follows from

(X 885)s= 2 8isi8,

AEVA™ AEVAT

Z Yaoy (xz00) Yaey (xzon) %o (X2(0)) -

AEVAT

Since 7(A) = v, we again have xzw) - Xz = Xz Then

( Z SASi)‘g” - Z ¢d(A)(XZ(A) XZ(A) Z S)\S3.

AEVA™ AEVAT AEVAT

We now have proved (TCK4) and therefore the collection {Sy},ea forms a Toeplitz-
Cuntz-Krieger A-family in N7 (X (A>)).
To see that the corresponding homomorphism 7g is injective, by [45, Theorem 8.1],

it suffices to check

Su# Y S\Sh

AcvA™
for all v € A” and n € N*. To do this, we use the Fock representation 7" of X (A*).
Notice that the homomorphism T : N'T (X (A>®)) — L(F(X(A>))) satisfies

T, (Sv - Z SAS§> =T. <¢0(XZ(U)) - Z %(A)(XZ(A))%(A)(XZ(,\))*>

AEVA™ AEvA™

- > Tuy Tuxy (Xz()"

AEVAT
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Now the adjoint formula (1.17) for the Fock representation says that Tun)(xzo))*
vanishes on the 0-summand in Fock module F'(X(A*)). Notice that A has no sources,

and then the injectivity of Ty implies that To(xz(v)) # 0. Thus

To(xzw) # D Taoy(xzo) Tuy (X2

AEVAT

Another application of the injectivity of T} gives S, # > can SAS5.-
Finally, since the gauge actions in 7C*(A) and NT(X(A*)) satisfy 7 (sr) =
d(x

2 W sy and 7, (Y () = 2™ (), we have mg oy =y o mg. O

Proof of (b). By Remark 4.1.5, we must check the conditions (TCK1)—(TCK3) and

(CK). Since the quotient map ¢ is a C*-homomorphism, and the family {S)} e satisfies

(TCK1)—(TCK3), so does {goSx}rea. To check (CK), notice that go is the universal

Cuntz-Pimsner-covariant representation of X (A*). For convenience let p := got) (then

the restriction p on each fibre X,, is p, = qo,). Let u € A", n € N¥. We first show

that the left action of xz(,) on the fibre X,, is by the finite rank operator ©
To see this take z € X,,(A*) and z € A>*°. We have

(Exsmin @) (2) = (i (X200, 7) ) (2)
= Xz (2) (XG0 ) (0"(2))

= Xzw(2) Z Xz (w)z(w),

o (w)=0c"(2)

XZ(u)XZ(p)"

and this vanishes unless z,w € Z(u). Since p € A", w,z € Z(u), the equation

o"(w) = 0"(z) has unique solution z and therefore the sum collapses to x z(.)(2)z(2).
Thus

(4.9) (©xsimnin (@) (2) = Xz (2)2(2),

which equals the left action of xz(,) on x € X,,.
Next we check (CK). Let v € A and n € N*¥. Then a routine calculation shows
that

Z (g0 Sx)(goSy)* Z Pd(x pacn (Xz(n)"

AEVAT AEVAT
(d(N)
= Z p (@ XZ()\ Xz(A))
AEVAT
= > 2" (pam(xzm)) by (4.9).
AEVAT
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Since p is Cuntz-Pimsner-covariant,

> (@oS@e s = D mlezm) =l D xaw)

AEVAT AEVA™ AEVAT

=q oy (XZ@)) =qo(Sy)

Thus (CK) holds and the collection {q o Sy}rea forms a Cuntz-Krieger A-family in
O(X(A>)). This gives a homomorphism 7,5 : C*(A) = O(X(A*>)).

Since the gauge actions in C*(A) and O(X(A*®)) satisfy _(sx) = 2/Ws, and
Y:(pm(x)) = 2™ pm(x), we have myog 0 4] = 7 0 Tgos. Thus mges intertwines the gauge
actions. Notice that A has no source. Since py is injective (see for example [52, Lemma
3.15]), po <X Z@)) # 0 for all v € A°. Then the gauge-invariant uniqueness theorem (see
[30, Theorem 3.4]) implies that 7, is injective.

To show that m,s is surjective, note that O(X(A>)) is generated by p(X(A>)).
We know from the Stone-Weierstrass theorem that the set {xzn) : A € A} spans a
dense *-subalgebra of C'(A*). Since the norm of X (A>) is equivalent to || - || (see
argument in the end of the Section 1.5), the elements {xz) : A € A} span a dense
subspace of X (A*). Thus it is enough for us to show that p,,(xz(.) lies in the range
of myes for all m,n € N* and p € A™.

We first check this for m = 0 and all u € A™. Since p is Cuntz-Pimsner-covariant,
a routine calculation shows that

po(xz) = P (@atw (X2(0))

= pldr) (© using (4.9)

XZ(H)’XZ(H))
= Pa(u) (X2 Pd() (Xzw)"
(4.10) = (qoSu)(qgo Sy,

which belongs to the range of myg.
Now let m # 0 and take u € A™. Notice that Xz() = D_,cqam Xz(u)- Each

v-summand is the pointwise multiplication of XZ( oo™, This

,Lw((),m) and XZ(;w(m,m—l—n))

is exactly the right action of X, ( nx, (uv (O,m)) € X,n(A>®). It follows

m/(m,m-l-n)) 0

pm<XZ(,u)> = pm< Z XZ (;W(Onn)) ' XZ (ul/(m,m-ﬁ-n)))
ves(u)A™

= > pm<Xz(W(o,m))>p 0<Xz(,w(m,m+n))>

ves(p)A™
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= Z (C] o S;w((),m))po (XZ (uy(m,m-‘rn)) > ’

ves(u)A™

which lies in the range of 7 g by (4.10), as required. O

4.3 KMS states on the Toeplitz algebras

In this section we want to see the relationship between KMS states of the C*-algebras
TC*(A) and NT (X (A>)). The KMS states of TC*(A) is described thoroughly in [27,
Theorem 6.1]. We apply Theorem 3.3.1 to characterise KMS states of N'T (X (A>)).
It follows from [1, Proposition 7.3] that for the shift maps o%(1 < i < k) on A,
each f., in Theorem 3.3.1 is exactly Inp(A;) used in [27, Theorem 6.1]. Thus the
range of possible inverse temperatures studied in Theorem 3.3.1 is the same as that of
[27, Theorem 6.1]. Now when we view 7C*(A) as a C*-subalgebra of N'T (X (A>)),
restricting KMS states of N7 (X (A>)) gives KMS states of 7C*(A) with the same
inverse temperature. We expect from our results in [1, Corollary 7.6] to see that for
the common inverse temperatures described in Theorem 3.3.1 and [27, Theorem 6.1]
all KMS states of TC*(A) arise as restrictions of KMS states of N'T(X(A>)). We
achieve this objective in Proposition 4.3.3.

We keep our notation in Theorem 3.3.1 to emphasise the parallels with [27, The-
orem 6.1]. Then we have a clash when we try to use both descriptions at the same
time. So we write 0 for the measure ¢ in Theorem 3.3.1, and choose ¢ for the vec-
tors in [1,00)
NT(X(A®)) and write oy for the action of TC*(A). Otherwise, we use the notation
of Theorem 3.3.1.

appearing in [27, Theorem 6.1]. We also choose « for the action of

Proposition 4.3.1. Suppose that A is a finite 1-coaligned k-graph with no sources and
no sinks. Let A; be the vertex matrices of A. Suppose that r € (0,00)* satisfies Br; >
Inp(A;) for 1 <i < k. Let o : R = Aut(NT(X(A®)) and oy : R — Aut(TC*(A))
be given in terms of the gauge actions by ay = Yeirr and ), = 7| i, Let 0 be a finite
regular Borel measure on A> such that [ fsdé = 1. Define ¢ = (g,) € [0,00)2" by
£y = 0(Z(v)) and take y = (y,) € [0,00)2" as in [27, Theorem 6.1]. Then y-& = 1,
and the restriction of the state ¢5 of Theorem 3.3.1 to (TC*(A), ) is the state ¢. of
[27, Theorem 6.1].

Proof. We first compute the function fz € C(A*). For z € A>, we have

fo(z) =Y e o(2)|

neNk
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— Z eiﬂr'"|/\"r(z)

neNk
=2 ffm( > |A”U|XZ(v>(Z))-
neNk veEAY

Recall that y, = > e e~ Prd) By applying the Tunelli theorem, we have
@) 1= [pds= 3 e Y AEZ @) = 3 ne —y e
neNk veAD veAD

To see that ¢s restricts to ¢, it suffices to compute both of them on the elements
S)\S%. Equation (3.43) together with [27, (6.1)] imply that ¢5(SxS)) = 0 = ¢.(S)S})
for d(\) # d(v). So we assume d(\) = d(v) = p say. It then follows from (3.43) that

@12) o550 = 8s(6ZONZ0N)) = e [z i

where 1 =3\ e Prm RS, Applying the inner product formula in the fibre X,, we

have

<Xz(u), Z XZ(I/ XZ()\) _5)\1/ Z XZ(/\)

oP(w)=2 oP(w)=z

It then follows that (Xz(), Xz(\) = OrpXz(s(r))- Putting this in (4.12), we have
(4.13) ¢5(SxSy) = drwe P u(Z(s(N)))

Next we compute u(Z(v)) for v € A°. Notice that for each n, we have
(FO)(Z0) =[xz dROE) = [ 30 e w)d5(2)
o (w)=z

We also have

D Xzw(w) = [oA"r(2)] = A" (v,r(2) = > A (v, u)xza(2).
on(w)=z u€A0
Thus
(9)(2(0) = [ 3 40,0z (2)d5(2) = 3 A, 0)3(Z(w),
ueA0 wEAO
and

v) =Y ey A v, u)d(Z(v))

neNk u€AO
= E e hrm E A" (v, u)e,
neNk u€AO
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k

= Z e T (Ane), = (H(l - e_’BriAi)_lzf) .

neNk i=1 !
Now we put this into (4.13), and write down

k

4.14 ds5(S\S)) =0 Ve_ﬁr'p< 1—ePrij, _15> :
(4.14) R ( e).
which in the notation of [27, Theorem 6.1] is 8,7 Pmy). Now [27, (6.1)] implies
that ¢5(S\S%) = ¢-(S\S}), as required.

[l

Corollary 4.3.2. Suppose that A is a finite 1-coaligned k-graph with no sources and
no sinks. Let A; be the vertex matrices of A. Suppose that r € (0,00)* satisfies fr; >
Inp(A;) for 1 <i <k andlet o : R = Aut(NT(X(A®)) and oy : R — Aut(TC*(A))
be given in terms of the gauge actions by i = Yeirr and o, = | i, Suppose that 01, 0o
are reqular Borel measures on A™ satisfying [ fsdd; = 1. Then ¢s,|7c=(n) = b, |71
if and only if 6,(Z(v)) = 0o(Z(v)) for all v € A°.

Proof. Let 61,82 be two regular Borel measures on A such that [ fzdd; = 1. Suppose
G5, |Tc+(a) = @s|TC#(n)- Proposition 4.3.1 implies that for the corresponding e; €
[0,00)A" (where £;(v) = 6;(Z(v)) for all v € A°) we have ¢., = ¢.,. Now the injectivity
of the map ¢ — ¢. from [27, Theorem 6.1(c)] gives 1 = 2. But this says precisely
that 61, d agree on each Z(v).

For the other direction, let §;(Z(v)) = d2(Z(v)) for all v € A°. Then the correspond-
ing ¢; are equal, and the formula (4.14) implies that ¢s,, 5, agree on TC*(A). O

Proposition 4.3.3. Suppose that A is a finite 1-coaligned k-graph with no sources and
no sinks. Let A; be the vertex matrices of A. Suppose that r € (0,00)* satisfies Br; >
Inp(A;) for 1 <i <k andlet o : R = Aut(NT (X (A®)) and oy : R — Aut(TC*(A))
be given in terms of the gauge actions by oy = Yeur and o, = | ... Then every KMSg
state of (TC*(A), o) is the restriction of a KMSs state of NT (X (A>), ).

Before starting the proof, we first describe a standard way of construction of mea-
sures on A®°. We need the notion of inverse limit (see for example [9, Section 1, 2]):

Let P be a directed partially ordered set. An inverse system of compact spaces
({Y,},{rp.g})pqep consists of a family {Y,},ep of compact spaces such that for any

p,q € P, p < q there exists a surjection r,, : Y, — Y}, such that
(a) 1p, 1Y, = Y, is the identity map, and
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(b) 7pq07gs =1ps Whenever p < ¢ <sand p,q,s € P.

The inverse limit
@(YEN Tpg)
is the set of all collections {y, : y, € Y,,p € P} such that for p < ¢, 7, ,(y,) = yp. It
follows that for each y, € Y, there exists y € lim(Y,,r,,) with pth coordinate y,. Thus
%
we can define the canonical maps m, : Um(Y,,rp4) = Yy, by m,(y) = yp.
—

The next lemma shows how we can construct measures on the inverse limits.

Lemma 4.3.4 ([25, Lemma 5.2]). Let P be a directed partially ordered set with the

smallest element 0. For p,q € P, let'Y, be a compact space and rpq : Yo — Y, be a

surjection. Let im(Y,,r,,) be the inverse limit of the system ({Y,},{7p.q})pqep and let
—

mp be the canonical map from 1}31(}/],,7”17’(1) to Y,. Suppose that we have Borel measure

0, on 'Y, such that &, is finite and

(4.15) /(forpvq)d&] = /fdép forp < q and f € C(Y,).

Then there is a unique finite Borel measure 6 on im(Y,,r,,) such that
—

[tromyas= [ sas, for s e Cx,)

Remark 4.3.5. Given a finite k-graph A, let D := (1,...,1) and M := {lD : [ € N}.
For each m,n € M such that m < n, define r,,,,, : A" — A™ by rpm.(A) = A(0,m).
Clearly M is a directed partially ordered set, and each 7,,, is a surjection. The
argument of [30, Remark 2.2] shows that, by factorisation property, A can be viewed

as the inverse limit of the system ({A™}, {rmn})mnenr-

Proof of Proposition 4.3.3. Suppose ¢ is a KMSz state of (TC*(A),«). Then [27,
Theorem 6.1(c)] implies that there is a vector ¢ € [0,00)"” such that y - & = 1 and
¢ = ¢. If 6 is a measure on A such that 6(Z(v)) = ¢, for all v € A” and [ fzdd =1,
then Proposition 4.3.1 implies that ¢s|7c«n) = ¢-. So it suffices to show that there is
such a measure.

To see this, we view A* as the inverse limit described in Remark 4.3.5, and then
we apply Lemma 4.3.4. So we must construct a sequence of measures 9,, on A™
satisfying (4.15). Let D be as in Remark 4.3.5. We recursively choose weights {w, :
n € A with d(n) = 1D for some | > 1} such that

E Wy = &y,

AEvAD
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and

(4.16) Z Wy = Wy,

AEs(u)AP

for all v € A% and p € AP (I > 1). Then we set dy := € and 8,,,() = w,, for all u € AP,

Next we check (4.15) for these measures. Let m € M. Since the characteristic
functions of singletons span C'(A™), it is enough to prove (4.15) for f = xy,; and
€ A™. First notice that

X{u} © T"mm+D = Z X{ur}-
Aes(u)AP

Then we have

/X{M} O T'm,m+D d5m+D = / Z X{u\} d5m+D

Aes(u)AP

= Z 5m+D(M)‘)

Aes(p)AP

= Om(p) using (4.16)
(4.17) = /X{u} A0y,
Since for each n € M with m < n, we have
T = Tmm+D © TmtDmt2D © =+ O Tn_Dop,

applying the calculation (4.17) finitely many times gives

/X{,u} O T'm,m+n d5m+n = /X{M} d5m

This is precisely (4.15).

Now Lemma 4.3.4 implies that there is a unique measure 6 on A* such that

/X{v} omydd = /x{v} ddy for v € A°.

Notice that [ x{m 0 modd = 6(Z(v)) and [ xqy ddo = do(v) = €,. It also follows from
the calculation (4.11) that [ fsdd =y -e = 1. Thus ¢ has required properties. n
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Appendix A

Realising the universal
Nica-covariant representation as a

doubly commuting representation

In this appendix we use our results from previous chapters and show that the universal
Nica-covariant representation v satisfies the doubly commuting relation [54, Lemma
3.9 (i)]. We first need to understand the notations.

Let A be a C*-algebra and Y be a right Hilbert A—A bimodule. Suppose that 7 is
representation of A on B(H) for a Hilbert space H.

Let Y ® H be the algebraic tensor product of Y and H. It follows from [46,
Proposition 2.6] that the formula

(orly or) = (rlx(y,y)r) foryory oreY oH,

defines a semi-definite inner product on Y ® H. Notice that

(y-aor—yor(@rlyor) = (rlv((y-a, z/))r’) - (W(a)r 7T(<y y’))?“’)
Nr') = (rlm(a*(y, y))r)

7T(<y r’) (7”‘7'(' y-a,y') )

I
o~~~
T3 3 =3

N

—~

—~

NS

ﬁ

Now let Y ®, H be the completion! of Y ® H with respect to this semi-definite inner
product (see [46, Lemma 2.16]). Since the completing process requires modding out

element of length 0, in the completion we have y-a ® r —y ® w(a)r.

LCompletion with respect to semi-definite inner products are sometimes called Hausdorff comple-

tion (for example [54, page 92]).
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Let S € L(Y) and U € w(A). A similar proof to that of [46, Proposition 2.66]
shows that there is a well-defined bound operator S ® U on Y ®, H such that

SeUyer)=Sy)eU(r)fory®reY @, H.

Mubhly and Solel showed in [38, Lemma 3.4- 3.6] that there is a well-defined map
7:Y ®; H — H such that

Ty@r)=n(y)rforaly@reY @, H.

The map 7 is called a contraction.

Let X be a product system of right Hilbert A-A bimodules over N* and 6 be
a Toeplitz representation of X on B(#H) for a Hilbert space H. It follows that for
each m € NF and fibre X,,, there is a contraction ém ¢ X ®g, H — H such that
GNm(:U Q1) =0 (y)r for all z@1r € X,, ®q, H.

Let L, I3 be the identity maps on X, and H respectively. Suppose that t., ., is the
flip map between fibres X, and X.; as in Lemma 3.1.1. A representation 6 is doubly

commuting representation if for every 1 <1 # j < k, we have
9; 061‘ - (Iej ®03i)(t6i7€j ® IH)(I% ®0;)

Suppose 6 is a doubly commuting representation and let ¢,, , be the flip map between
fibres X, and X,,. Write N’i for non zero elements of N*, and suppose m,n € N’i

satisfying m An = 0. [54, Lemma 3.9(i)] implies that

~ sk~

(A.1) (L @) (o @ 111 ) (Ly @65, ) = 6y, Oy

Now we want to show that the universal Nica-covariant representation v satisfies
(A.1). Tt follows from [54, Remark 3.12] that we can consider 1) as a representation on

a C*-algebra H.

Proposition A.0.6. Let hy,...,hy be x-commuting and surjective local homeomor-
phisms on a compact Hausdorff space Z and let X be the associated product system as

i Corollary 2.1.2. Take m,n € N’i such that m An =0. Then
(A.2) (Ln @) (b ® L) (L @8 ) = U P

We first need to calculate the adjoint 1//1\;* : H — X, Qg H. The next lemma gives

a formula for %* in terms of a general Parseval frame of X,,.
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Lemma A.0.7. Let {n; ?:0 be a Parseval frame for the fibre X,,. Then
~ % d
(A.3) U (1) =0 ® Pu(n)'r forr € H.
=0
Proof. Fix r € H and let y ® s € X,, ®y, H. We compute:

yos) = Z ((walmyr

j=0

= (7“ i Un(n;) (¢0<77j7 y)s))

<i7h‘ ® P (n;)*r ¢o<ﬁjay>8>

Ualy ® 5)). Thus ¥, (r) = X0 05 @ va(n)*r. O

This is precisely (7“

Proof of Proposition A.0.6. Let x ® r € X, ®y, H. We evaluate both sides of (A.2)
on r ®r. To do this we will need to have Parseval frames for fibres X,,, X,,. Let
{pi}%_, be a partition of unity such that h™|supp p;» 2" |supp p; are injective and suppose
that 7 := \/p;. Notice that {7;}?, forms a Parseval frame for both fibres X,,, X,,.
Also since m An = 0, {r; 0 h"}L, and {; o h™}L, are Parseval frame for the fibres
X, X,, respectively.

We start computing the left-hand side of (A.2) by applying the adjoint formula

(A.3) with Parseval frame {Tj};-lzo C X,,. For convenience, set

= (I @) (bn © L) (L @t ).

We have ;
Hz @ 1) = (I, @Um) (tmn @ 1) (z @ 37 @ dalny)r).

J=0

Writing the reconstruction formula for the Parseval frame {7; o h"}¢_, C X,, gives

fz®r)=

M-

I
o

(5 @) (b @ 1) ((i Tioh" - (rioh", $>> ®7;® %(Tj)*r>

J

— (In ®@Zm)(tm,n X IH) (7‘2- o h" ® <7-7Z o hn’ 1‘> T ® ¢n(Tj)*r> .

0<i,j<d

IA
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Applying the reconstruction formula for the Parseval frame {7}, C X,,, we have

Tx@r) = Z (In®Jm)(tm7n®IH)<Tioh”®(Ed:ﬂ-<n,<7’ioh”,x>~7'j>> ®¢n(rj)*r>.

0<i,j<d 1=0

Now we continue by using the flip map (3.5)

Tlx®r)= Z (I, ®Izm)(tm,n ® 1gy) (Ti oh"®T® ¢0<<Tz, (T, 0 h"™, z) - Tj>)¢n<7j)*7’)

0<i,j1<d
= Z (L, ®1Zm) (Tl oh™® T ® Y, (7-]- . <<7’Z o h", m> - Ty, Tl>>*7“>
0<i,jl<d
d
— Z (L, ®?Zm)<7l oh" T ® w"(ZTJ . <7-j7 <x,7'i o h”> . Tl>> r).
0<i,l<d j=0

The reconstruction formula for frame {7; ;l:O C X, implies that

(A.4) Hlx®r) = Z 710 W™ @ Yy (173) 00 (&, 73 0 W) - 7).

0<i4,1<d

Next we compute the right-hand side (A.2) by applying the adjoint formula (A.3)
with the Parseval frame {r; 0 h™}¢  C X,,.

d
wn*&m(x ®r) = wn*wm@)r = Z T 0 h™ @ (1 0 K™) Y ()7
=0

Applying our formula (3.9) implies that

d
%—Z}\;*Jm(x ® ’I") — ZTZ o h™ ® ( Z wm(<7_l o) hm,Tj o hm> . Tz)¢n(<xa T; © hn> . 7—]-)*)7’
=0

0<i,j<d

= Z Ti © hm & 1/)0(<Tl o hm,Tj o hm>)1/}m(7',)¢n(<(lf,7'z o hn> : Tj)*T

0<i,5,l<d

= > moh™ - (moh™ 70 k™) @ (T ) ((z, i 0 h") 7).

0<i,j,l<d

Now applying reconstruction formula for the Parseval frame {r; o h™}¢ , C X,, gives

(A.5) %*Jm(x Q7)) = Z 750 W™ @ Uy (7:) 0 ((m, 7 0 W) - Tj)*T.

0<i,j<d

Comparing (A.5) and (A.4) completes our proof of (A.2). O
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Appendix B

KMS states on ('*-algebras
associated to a local

homeomorphism

In this appendix we provide our result about KMS states on dynamical systems asso-
ciated to a single local homeomorphism. This work is published in Internat. J. Math.
Vol. 25, No. 7 (2014) 1450066 (28 pages).
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For every Hilbert bimodule over a C*-algebra, there are natural gauge actions of the
circle on the associated Toeplitz algebra and Cuntz—Pimsner algebra, and hence natural
dynamics obtained by lifting these gauge actions to actions of the real line. We study
the KMS states of these dynamics for a family of bimodules associated to local home-
omorphisms on compact spaces. For inverse temperatures larger than a certain critical
value, we find a large simplex of KMS states on the Toeplitz algebra, and we show that
all KMS states on the Cuntz—Pimsner algebra have inverse temperature at most this
critical value. We illustrate our results by considering the backward shift on the one-
sided path space of a finite graph, where we can use recent results about KMS states
on graph algebras to see what happens below the critical value. Our results about KMS
states on the Cuntz—Pimsner algebra of the shift show that recent constraints on the
range of inverse temperatures obtained by Thomsen are sharp.

Keywords: Toeplitz algebra; Cuntz—Pimsner algebra; gauge action; KMS state.

Mathematics Subject Classification 2010: 46L35

1. Introduction

We consider actions « of the real line R by automorphisms of a C*-algebra A.
When « describes the time evolution in a model of a physical system, the states of
the system are given by positive functionals of norm 1. The equilibrium states are
the states on A that satisfy a commutation relation called the KMS condition. This
condition makes sense for every dynamical system of the form (4, R, «), irrespective
of its origin, and studying the KMS states of such systems often yields interesting
information. This is certainly the case, for example, for the number-theoretic Hecke
algebra of Bost and Connes [2] and its generalizations [21, 22], for systems involving
gauge actions on graph algebras [8, 11, 18, 15], and for systems associated to local
homeomorphisms of the sort arising in topological dynamics [34, 35].
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Many of the systems studied in the papers mentioned above, and especially
those associated to directed graphs, have natural analogs involving Toeplitz alge-
bras in which crucial defining equations are relaxed to inequalities. Work of Exel,
Laca and Neshveyev [11, 23] has shown that there is often a much richer supply
of KMS states on these Toeplitz algebras, and this has been extended in recent
years to various systems arising in number theory [25, 24, 6]. These papers contain
detailed constructions of the KMS states on the various Toeplitz algebras, and re-
examination of the techniques has led to similar constructions in a wide range of
examples, including graph algebras [15, 16]. In this paper, we use similar techniques
to construct KMS states on systems of interest in topological dynamics.

We consider a surjective local homeomorphism h : Z — Z on a compact Haus-
dorff space Z, and an associated C*-algebra that has been variously described as an
Exel crossed product [10], a groupoid algebra [34], or as both a groupoid algebra and
a Cuntz—Pimsner algebra [7] (for a precise statement, see [17, Theorem 3.3]). Here,
we view it as the C*-algebra O(X (F)) of a topological graph E, and then we use
the graph-based formalism of Katsura [19] in calculations. The algebra O(X(E))
carries a canonical gauge action of the circle T, which we lift to an action « of R.
We are interested in the KMS states on (O(X(E)),R, «) and its Toeplitz analog
(T(X(E)),R, ).

Several authors have shown that there is a bijection between the KMS states
on (O(X(F)),R,a) and the probability measures on Z that satisfy an invariance
relation (for example, [30, Theorem 3.3; 10, Theorem 9.6; 34, Theorem 6.2]). To
find KMS states, one then has to find invariant measures, and existence has been
demonstrated using a functional-analytic analog of the Perron-Frobenius theory
(for example, in [30; 34, Sec. 6.2]). Here, we show that, for § larger than a critical
value ., there is a bijection between the KMSg states on (7 (X (E)),R, «) and the
probability measures on Z which satisfy an inequality that we call the subinvari-
ance relation. We then describe a construction of all the measures satisfying the
subinvariance relation, and give a spatial construction of the corresponding KMS
states. Putting these constructions together gives a parametrization of the KMSg
states of (7 (X (F)),R, ) by a concretely-described simplex of measures on Z for
every 3 > (. (Theorem 5.1).

Our critical value 3. is an exponential bound for the number of preimages of
points under iteration of the map h, and has previously appeared in the dynamics
literature (for example, [12, 34]). In particular, Thomsen has shown that g, is an
upper bound for the inverse temperatures of KMS states on O(X(E)) [34, The-
orem 6.8]. So it seems likely that our results on 7 (X (E)) are sharp. At (., we
can show by taking limits of states on 7 (X (E)) that there exist KMSg, states on
(O(X(E)),®) (Theorem 6.1).

Our approach is inspired by the analysis of KMS states on the Toeplitz—Cuntz—
Krieger algebra 7 C*(FE) of a finite directed graph F in [15]. The usual description
of C*(E) and 7C*(FE) using a graph correspondence over the finite-dimensional
algebra C'(E) [31, Sec. 8] does not quite fit our present analysis, though there are
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striking similarities. However, we can also realize C*(F) in the present setup as
the Cuntz-Pimsner algebra O(X(E*°)) associated to the shift ¢ on the infinite-
path space E> [5, Theorem 5.1]. We can therefore test our results by reconciling
them with the known results for C*(E). When FE is irreducible in the sense that its
vertex matrix A is irreducible, there is a unique KMS state on (C*(E), «), and its
inverse temperature is given in terms of the spectral radius of A by 5 = Inp(A).
We confirm that, for the local homeomorphism o : E* — E°°, our f. is indeed
In p(A) (Proposition 7.3).

Our computation of 5. for shifts works for arbitrary matrices of nonnegative
integers, so we also consider the reducible case, where there is an interesting variety
of examples [16]. In [34, Theorem 6.8], Thomsen also provides a lower bound for the
set of possible inverse temperatures of KMS states of C*(E). The examples in [16]
show that Thomsen’s bounds are sharp, and that many values in between can be
attained as well (see Sec. 8). Thus we think that graph algebras could provide an
interesting supply of fresh examples for the study of KMS states in dynamics. This
should be true also for the study of KMS states on Toeplitz algebras, although there
is a curious wrinkle: the Toeplitz algebra 7C*(E) embeds in 7 (X (E)), but as
a proper subalgebra (see Proposition 7.1). Nevertheless, our new results are again
compatible with those of [15, 16], and indeed every KMS state of (7C*(E), a) is
the restriction of a KMS state of (7 (X (E*°)),«) (Corollary 7.6).

We begin with a short section on notation and conventions. We then look for
a characterization of KMS states which will allow us to recognize them easily.
This characterization could be of independent interest, because it works for the
Toeplitz algebras of quite general Hilbert bimodules (Proposition 3.1). In Sec. 4,
we discuss our subinvariance relation, which involves a measure-theoretic analog
of a Ruelle operator. Importantly, we describe all solutions of this subinvariance
relation (Proposition 4.2). In Sec. 5, we prove our main theorem about KMS states
on the Toeplitz algebra, and then in Sec. 6 we discuss KMS states at the critical
inverse temperature. Sections 7 and 8 contain our results about shifts on the path
spaces of graphs.

2. Notation and Conventions
2.1. Toeplitz algebras of Hilbert bimodules

Suppose that X is a Hilbert bimodule over a C*-algebra A, by which we mean
that X is a right Hilbert A-module X with a left action of A implemented by a
homomorphism ¢ : A — £(X) (in other words, X is a correspondence over A). For
m > 0, we write X®™ for the internal tensor product X ®4 X ®4 ---®4 X of m
copies of X, which is also a Hilbert bimodule over A. A representation (¢, ) of
a Hilbert bimodule in a C*-algebra C' consists of a linear map ¢ : X — C and a
homomorphism 7 : A — C' such that

Yla-z-b) =m(a)y(x)r(b) and w((z,y)) = ¢(x) Y (y)
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for every z,y € X and a,b € B. For each m > 1, there is a representation ()®™ )
of X®™ such that

PE (1) @A L @4 - @A T) = V(@)Y (2) - ().
For m = 0, we set X®° := A and ¢®° := 7.
The Toeplitz algebra T (X) is generated by a universal representation of X', which
in this paper we always denote by (¢, ). Proposition 1.3 of [14] says that there is

such an algebra 7 (X), and that it carries a gauge action v : T — Aut 7 (X) char-

acterized by 7. (¢(x)) = z¢(z) and 7, (7(a)) = 7(a). By [14, Lemma 2.4], we have
T(X) =span{y®" (x)¢*" (y)" : m,n € N}.

If (0, p) is a representation of X in a C*-algebra C, we write 6 x p for the repre-

sentation of 7 (X) in C such that (0 x p) o) =0 and (0 x p)om = p.

For z,y € X, we write O, , for the adjointable operator on X given by 0, ,(2)
x-(y,z), and K(X) :=5pan{O,, : 2,y € X} C L(X). The representatlon (Y,
induces a homomorphism (¢, 1)V : K(X) — 7(X) such that (¢, 7)1 (0,.,)
Y(x)Y(y)*. The Cuntz—Pimsner algebra O(X) of [29] is then the quotient of T(
by the ideal generated by

{m(a) — (b, 7))V (p(a)) : a € A satisfies p(a) € K(X)}.

(Other definitions of the Cuntz—Pimsner algebra have been used in the literature,
but for the bimodules considered here we have ¢(A) C (X)), and all the definitions
give the same algebra.)

VII

X)

2.2. Measures

We will construct KMS states from Borel measures on compact Hausdorff spaces
Z. All the measures we consider are regular Borel measures and are positive in the
sense that they take values in [0, 00); indeed, they are all finite measures and hence
are automatically regular (by [13, Theorem 7.8], for example). We write M (Z)4+
for the set of finite Borel measures on Z. Some of our measures will be defined
by integrals, or as linear functionals on C'(Z), from which the Riesz representation
theorem [13, Corollary 7.6] gives us an (automatically regular) Borel measure. For
us, a probability measure is simply a Borel measure with total mass 1.

2.3. Topological graphs

A topological graph E = (E°, E',r,s) consists of two locally compact Hausdorff
spaces, a continuous map 7 : E' — E° and a local homeomorphism s : B! — E°.
For paths in E, we use the convention of [31], so that a path of length 2, for example,
is a pair ef with e, f € E' and s(e) = 7(f). We mention this because in his first
paper [19], Katsura used a different convention, and one has to be careful when
consulting the literature because there are other conventions out there. Each such
graph E has a Hilbert bimodule X (E) described in [31, Chap. 9]. It is usually a
completion of C,.(E'), but here the spaces E and E! are always compact, and then
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no completion is necessary because the norm on X (FE) is equivalent (as a vector-
space norm) to the usual supremum norm on C(E') = X(E). For reference, we
recall that the module actions are given by (a - x - b)(2) = a(r(z))z(z)b(s(z)) for
a,b € C(E®) and the inner product by (z,y)(z) = 2 s (w)=> T(w)y(w).

2.4. KMS states

We use the same conventions for KMS states as other recent papers, such as [25,
26, 15], for example. Suppose that (A, R, «) is a C*-algebraic dynamical system.
An element a of A is analytic if t — «ay(a) is the restriction of an entire function
z — a,(a) on C. A state ¢ of (A, R, ) is a KMS state with inverse temperature [3
(or a KMSg state) if ¢(ab) = ¢p(bag(a)) for all analytic elements a, b. Crucially, it
suffices to check this condition for a, b in a family F of analytic elements which span
a dense subspace of B, and it is usually easy to find a good supply of such elements.

3. A Characterization of KMS States

The following result is similar to [15, Proposition 2.1(a); 27, Proposition 4.1], but is
substantially more general. (We have learned that Mitch Hawkins has independently
proved a similar result for the bimodules X (E) of topological graphs.)

Proposition 3.1. Suppose that X is a Hilbert bimodule over a C*-algebra A, and
a: R — Aut A is given in terms of the gauge action v by oy = 7yie. Suppose >0
and ¢ is a state on T(X). Then ¢ is a KMSg state of (T (X), «) if and only if pom
s a trace on A and

B VB (1)) = 0 if m# 1,
(W= (@)™ (y)") {eﬁm(ﬁomywm Fm el (3.1)

Proof. First suppose that ¢ is a KMSg state. For a € A, ay(m(a)) = 7(a) for all
t € R, and hence for all ¢t € C. Thus the KMS relation says that ¢ o 7 is a trace.
Two applications of the KMS relation give
P(PE (@)™ (y)*) = SO (y) aip (v (x)))
= e o= (y) = (z))
= e Mg @)y (y)"),
which because § > 0 implies that both sides vanish for m # [. Now for m = [, the
Toeplitz relation for (1, ) implies that
P(EM (@)= (y)*) = e PP (PI ™ () I (2)) = e PP (w((y, x) a)),
and ¢ satisfies (3.1).

Next we suppose that ¢ o7 is a trace and that ¢ satisfies (3.1). It suffices for us
to prove that

p(be) = e P g(cb) (3.2)
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for b = Y@ (2)y®™ (y)* and ¢ = ®"(s)®P(t)*, where z, y, s and ¢ are elementary
tensors. (When b and/or ¢ lie in 7w(A), this is relatively straightforward because
¢om is a trace and « fixes w(A).) Formula (3.1) implies that both sides of (3.2)
vanish unless | + n = m + p, and hence we assume this from now on. We also
assume that m < n. To see that this suffices, suppose that we have dealt with the
case m < n, and consider m > n. Then ¢(a) = ¢(a*) implies that

d(be) = ¢(c*b*) = (VP (O)YE" (s)* VO™ () (2)7),

and we are back in the other case. Thus

$(be) = e PP (WE™ (y)p® () PEP ()= (5)7)
— e POMg(b*e*) = e BT (ch);
since [ +n = m+ p, we have p —n = [ —m, and we have (3.2). So it does suffice to
prove (3.2) when m < n.
So we assume that [ +n = m+p and m < n. Then we also have p > [. Since we
are dealing with elementary tensors, we may write s = ' ® s” € X®™ @ X®n-m)

andt =t ®t" € X® ® X®®P=1_ (If m = n then p = | and we can dispense with
this step.) Now we compute, remembering that p =1+ (n — m):

o(be) = G(Y®! (@)™ (y) O™ (s )P ()P (1))
= o (2)m((y, 8" )PP (") (8)")
= o ()= ((y, s > W@p(t)*)
=e Pyorn((t @tz ( s”)>) (using (3.1))
=e BP¢OW(<2€ Lt x) - ( >)

A similar computation (but using the slightly less obvious identity (&)*m(a) =
Y(a* - £)*) gives:

p(cb) = (& (s)p®@ P!

(WD) U (@) ())
= (v ()00
(9000

) ((t, )™ (1))
(,t) ") O™ (y)")

= ¢y (s )
= Mgon((y@ (o, t) 1), 5 @ "))
= e gom(((a,t) t"(y, '>~s )

Since the left action is by adjointable operators, we have

<<$,t/> : t/la <y75/> -8 = <t/l7 <tl7x> . (<y’31> : 5N)>a

and we deduce from our two calculations that e®P¢(bc) = e?"¢(cb). Since n — p =
m — [, this is precisely (3.2). m|
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4. KMS States and the Subinvariance Relation

Suppose v is a finite regular Borel measure on a compact Hausdorff space Z and
h:Z — Z is a surjective local homeomorphism. Define f : C(Z) — C by

/ Z w)dv(z) for a € C(Z).

h(w)=z

Then f is a positive linear functional on C(Z), and hence the Riesz representation
theorem (for example, [13, Theorem 7.2]) says there is a unique finite regular Borel
measure Rv on Z such that

/ad(Ru / Z w)dv(z) forae C(Z). (4.1)

h(w)=

The operation R on measures is affine and positive, and satisfies |Rv| < c¢1||v||
for the dual norm on C(Z)*, where ¢; := max.cz |h~!(z)|. Similar operations
appear throughout the analysis of KMS states in dynamics (for example, in [34,
Theorem 6.2]), and are sometimes described as “Ruelle operators”.

Proposition 4.1. Suppose that h : Z — Z is a surjective local homeomorphism on
a compact Hausdorff space Z. Let E be the topological graph (Z,Z,id, h) and X (E)
the graph correspondence. Define o : R — Auwt 7 (X (E)) in terms of the gauge
action by oy = eit. Suppose that ¢ is a KMSB state on (T (X (FE)), «), and p is the

probability measure on Z such that ¢(m(a)) = [adp for all a € C(Z). Then the
measure Ry satisfies
/ad(Ru) < eﬁ/adu for all positive a in C(Z). (4.2)

Proof. Suppose that a € C(Z) and a > 0. We begin by writing the integrand
2 oh(w)=- 0(w) in (4.1) in terms of the inner product in X(E). Let {U;}f_, be an
open cover of Z such that h|y, is injective, and choose a partition of unity {p;}
subordinate to {U;}. Define §; € X(E) by & = /pi;. Then

IPRICEES SR

N

2

£
I

h(w)=z h(w)—z i=0 =0 h(w)
k
=Z Y. Glw)a-&)w) =Y (Ga-&)(2).
=0 h(w)=z 1=0

Thus

k

/ad(Ru):/ Z a(w) dp /Z §iva-&)(2)du(z)
h(w)=z i=0
k k

=¢< (Z@,a & )) > o a-&)).

=0 =0

<.
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Now, since ¢ is a KMSg state, we have
k
Jadtrn =3 otva - gyuie)) (43)
i=0

Our next task is to compare the operator Zf:o P(a-&)Y(&)* appearing on the
right-hand side of (4.3) with m(a). For this, we use the Fock representation (T, poo)
of T(X(F)) from [14, Example 1.4]. As a right A-module, F'(X(F)) is the Hilbert
module direct sum .-, X (E)®™, with the left action of A by diagonal operators
giving a homomorphism ¢ : A — L(F(X(F))). The homomorphism T : X (E) —
L(F(X(E))) sends x € X(F) to the creation operator T(x) : y — x ®4 y, and
T X oo 1s an injection on 7 (X (E)) [14, Corollary 2.2].

Letn>land =21 ® - @z, € X(E)®". Then

k
D T(a-&)T(E) (@) =Y T(a-&) (G o) -22® - ® )
i=0

(a'fi'@i,m))®x2®~-~®xn.

< 1M 10

@
I
=)

Since h|y, is injective and supp &; C U;, we have
(& - (&, 21))(2) = & (2)(&, 21) (h(2))
=&)Y, Gw)mi(w) = &(2) 01 (2).

h(w)=h(z)
Thus

k k
S (- §)T(E) (@) = Y a- (€01 928+ 1) = a0 = e 0) )
1=0 1=0

Thus }
T(a-&)

]?:0 T(a-&)T(&)* = poo(a) as operators on X (E)®™ for n > 1. Since each
T(&;)* vanishes on O(Z) = X(E)®° and a is positive, we have

ZT "< ola) in L(F(X(E)));

since the homomorphism 7" X ¢, is faithful, we deduce that

Z“’ “<r(a) in T(X(E)). (4.4)

To finish off, we apply ¢ to (4.4):

(Zw &) ) < ¢(n(a)) :/ad,u.
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On the other hand, (4.3) implies that

k
2 (Zwa-a)w(si)*) [ ad(m).
i=0

and the result follows from the last two displays. |

When Z is a finite set and A is a nonnegative matrix, p is a vector in [0, 00)Z,

and the relation (4.2) in the form Au < e®u says that u is a subinvariant vector
for A in the sense of Perron—Frobenius theory [33, Chap. 1]. Subinvariant vectors
played an important role in the analysis of KMS states on the Toeplitz algebras of
graphs in [15, Sec. 2], and (4.2) will play a similar role in our analysis. So we shall
refer to (4.2) as the subinvariance relation.

We now show how to construct the probability measures which satisfy the subin-
variance relation. Proposition 4.2 is an analog for our operation R on measures
of [15, Theorem 3.1(a)], which is about the subinvariance relation for the vertex
matrix of a finite directed graph. Here, the powers R™ are defined inductively by
R""1y = R(R"v), and then we have

/ ad(R™) / S a(w)du(z) forae C(2). (4.5)

h(w)=z

Proposition 4.2. Suppose that h : Z — Z is a surjective local homeomorphism on
a compact Hausdorff space Z. Let

B := limsup (nil In (rzneazx |h*"(z)|>>7 (4.6)

n—oo

and suppose that 3 > fB..

(a) The series Y oo e P"|h="(2)| converges uniformly for z € Z to a continuous
function fz(z), which satisfies

fa(z) — Z e Pfs(w)=1 foralzeZ. (4.7)

h(w)==z

(b) Suppose that e is a finite reqular Borel measure on Z. Then the series
ZZOZO e PmR"e converges in norm in the dual space C(Z)* with sum u, say.
Then p satisfies the subinvariance relation (4.2), and we have ¢ = ju—e PRy,
Then p is a probability measure if and only if [ fzde = 1.

(¢) Suppose that p is a probability measure which satisfies the subinvariance rela-
tion (4.2). Then ¢ = u—e PRy is a finite regqular Borel measure satisfying
[ fade =1, and we have p =Y o ;e P"R"e.
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Remark 4.3. Part (b) applies when € = 0, and gives u = 0. However, it is implicit
in part (c) that e is not zero (because [ fsde = 1), and hence p # e ?Ryu. Thus
part (c) implies that the invariance relation Ry = €% has no solutions® for 3 > S..

Proof of Proposition 4.2. We first claim that there exist § > 0 and K € N such
that

m>K = e P "(2)| < e ™ forall z € Z. (4.8)

Write ¢, := max.¢cz |h~"(2)], so that 3 > 3. means 3 > limsupn~!In¢,. Then for
large n, we have 8 > sup,,>,, m~'1nc,,. Thus there exist § > 0 and K such that

m>K=08-0>m "lncn, = ¢y < ™M

= e LT ()| < e ™ forall z € Z.

This proves our claim.

Take § as in (4.8). Then comparing the series > e #"|h™"(2)| with > e~
shows that the series > 2 e #"|h~="(z)| converges uniformly for z € Z. Since
h is a local homeomorphism on a compact space, each z — |h~1(z)| is locally
constant (by [5, Lemma 2.2], for example), and hence continuous. Thus fg(z) :=
S e PR (2)| is the uniform limit of a sequence of continuous functions,
and is therefore continuous. To see (4.7), we note that because all the series
converge absolutely, we can interchange the order of sums in the following
calculation:

faz) = Y e fa(w)

h(w)=z
I S o Do)
n=0 h(w):z m=0
=N e nT ) = Y e D [N p ()
n=0 m=0 h(w)=z
=Y e ()| = Y e A D ()
n=0 m=0

= e R0 = 1.

We have now proved (a).

2The analog of Proposition 4.1 for the Cuntz—Pimsner algebra will say that the measure p satisfies
the invariance relation. Thus Proposition 4.2(c) will imply that there are no KMSg states on
O(X(E)) for 8 > (.. This is consistent with [34, Theorem 6.8] and our Corollary 5.3.
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Next, we look at the series in (b). Take 0, K satisfying (4.8). Then for N > M >
K and g € C(Z) we calculate using (4.5):

S e [qama|=| 3 o [ 3 st

n=M+1 n=M+1 hm(w)
< Z e ()] lellocz)-
n=M+1
N
> <
n=M+1

Thus the series Y -, e " R"e converges in the norm of C(Z)*, as asserted in (b).
Since the operation R is affine and norm-continuous on positive measures, the sum
pi= Y07 e PP R"e satisfies

—e ﬂRu Z e—Ban Z e—ﬁ(n—o—l)Rn—HE =
n=0

since ¢ is a (positive) measure, this implies that u satisfies the subinvariance relation.
The Riesz representation theorem implies that p is a regular Borel measure, and

:ieﬁn( Ze*ﬁn/m Re)
_Ze*ﬂ”/m z)| de(2),

which by the monotone convergence theorem is [ fgde. Thus f is finite, and it is a
probability measure if and only if [ fgde = 1.

For part (c), we first note that the subinvariance relation implies that ¢ is a
positive measure, and it is finite because p is. Next we compute:

/fﬁdEZ/fﬁdu—efﬁ/fﬂd(Ru)

~ [f@au) e [ 3 fatwautz)
h(w)==z
— [|#- X e Psstw) | aute.

h(w)=z
which by (4.7) is u(Z) = 1. Finally, we have
Z e PR = Z e PR (1 — e PRy)

n=0 n=0
00 oo
_ Z efﬁanu o Z 67ﬁ(n+1)Rn+1/14 = L. O
n=0
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5. KMS States on the Toeplitz Algebra

Our main theorem is the following analog of [15, Theorem 3.1].

Theorem 5.1. Suppose that h : Z — Z is a surjective local homeomorphism on a
compact Hausdorff space Z, E is the topological graph (Z, Z,id, h), and X (E) is the
graph correspondence. Define o : R — Aut 7 (X (E)) in terms of the gauge action
by ¢ = Yeir. Take B as in (4.6), suppose that B > (., and let fz be the function
in Proposition 4.2(a).

(a) Suppose that e is a finite regular Borel measure on Z such that [ fzde = 1,
and take p =Y oo e P"R"e. Then there is a KMSp state ¢. on (T (X (E)), )
such that

0 if l #m,
e’ﬁm/<y7x> dp if l =m.

(b) The map € — ¢ is an affine isomorphism of

$g = {5 e M(Z), : /fﬁde: 1}

onto the simplex of KMSg states of (T (X (E)), ). The inverse takes a state ¢ to
€= pu—e PRy, where pu is the probability measure such that ¢(m(a)) = [adp
forae C(2).

= (VE! (@)™ (y)*) = (5.1)

In the proof of this theorem, we will need to do some computations in the
Toeplitz algebra, and the following observation will help.

Lemma 5.2. Forn > 1 we consider the topological graph F,, = (Z, Z,id, h™). Then
there is an isomorphism p, of X (E)®" onto X (F,) such that

pul1 ® 2 @ -~ © 2,)(2) = &1 (2)ea(R(2)) - 2 (" (2)).

Proof. We prove this by induction on n. It is trivially true for n = 1 — indeed,
we have Ef = F, and p; is the identity. Suppose that there is such an isomorphism
prn, and define pp41 (21 ® x)(2) = z1(2)pn(x)(h(2)). Routine calculations show that
pn+1 18 a bimodule homomorphism. We next show that p,.1 preserves the inner
products. Let z; ® z and y1 ® y be elementary tensors in X (E) ®¢(z) X (E)®".
Then for z € Z we have

{pnt1(z1 @ ), prs1(y1 @ y))(2)
= Y z(w)pn(@)(h(w))yr (w)pa () (h(w))

hntl(w)=z

Yo Y w(wpa(@)(B(w))y(w)on(y)(h(w))

hn(v)=z h(w)=v
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= Z pn(x) (V) Z z1(w)yi(w) | pn(y)(v)

h"(v)=z h(w)=v
= Z pn(2)(0) ((21, 1) - pu(y))(v)
hn(v)=z

= (pn(2), (T1,91) - Pn(y))(2)
= (21 @ pu(7), 11 ® pn(y))(2)-

Since the range of p,41 contains C(Z) (take x = 1), we deduce that p,4q is an
isomorphism of Hilbert bimodules. O

Proof of Theorem 5.1. We aim to construct the KMS state ¢. using a represen-
tation® (0, p) of X (E) on Hy , := @, , L*(Z, R"<). We write elements of the direct
sum as sequences & = (&,). For a € C(Z), we take p to be the direct sum of the
representations p, of C(Z) on L*(Z, R"¢) given by (pn(a)&,)(2) = a(2)&n(2). Next
we claim that for each # € X there is a bounded operator §(x) on Hy , such that

(0(@)8)nt1(2) = 2(2)6n(h(2)) forn >0 and (9(z)¢)o = 0.
To justify the claim, we take & = (&,) € .-, L*(Z, R"¢) and compute:

10N = 3 10@)E )

n=0

-3 / 12(2)P[€a (h(2))|2 d(R™)(2)
n=0

<3 Jlall% / S e (h(w) P d(R ) (2)
n=0 h(w)=z

=3 el / S ()P d(R)(2)
n=0 h(w)=z

<D Nzl / [6n(2)]” d(R"€)(2)  (where ¢1 = max. [~ (2)])
n=0

= all=[I3 1&11*.

A similar calculation shows that the adjoint 0(x)

O ()= 3 T@ha(w) for y€ Hy, (5.2)
h(w)=z

* satisfies

bAs in our previous papers, this construction was motivated by the one in the proof of [23,
Theorem 2.1], which suggests that we should take a representation, here the representation M.
of A = C(Z) by multiplication operators on L2?(Z,¢), and work in the induced representation
F(X(E))-Ind} M. of T = T(X(E)), where F(X (E)) is the Fock bimodule. However, this requires
many identifications, and it seems clearer to write down a concrete Hilbert space.
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Next we claim that (6, p) is a representation of X (FE). It is easy to check that
O(a-z) = p(a)d(x), and almost as easy to see that O(x - a) = 0(z)p(a): for £ = (&,)
we have (6(z - a)f)o = 0= (0(x)(p(a)))o, and for n > 1

0z - 0))u(2) = (@(2)a(h(2)))En-1(h(2)) = 2(2)(p(@)€)n1 (h(2)
— (0@)(p(@)9)),, (2)-

For n > 0, we have

(P, 9))E)n(2) = (&, 9)(2)6n(2) = Y a(w)y(w)én(z)

h(w)=z

= Y aya(h(w) = Y z(w)(By)E)n+1(w)
h(w)

w)=z h(w)==z
— (0(@) 0W)E)a(z) (using (5.2)).
Now the universal property of 7 (X (E)) gives a homomorphism 6 x p: 7 (X (E)) —
B(Hy,,) such that (0 x p) ot =6 and (0 x p) om = p.
For each k > 1, we choose a finite partition {Zy; : 1 < i < I} of Z by Borel
sets such that h* is one-to-one on each Zy.i- We write also Ip = 1 and Zp; = Z.
Let Xk, = Xz, and define £" € @, L*(Z, R™e) by

ghii = 0 if n #k,
" Xki ifn=k.

We aim to define our state ¢. : 7 (X (E)) — C by

oo Ig

=D > e O x p(b)g™ M) for b e T(X(E)), (5.3)

k=0 i=1

but of course we have to show that the series converges. It suffices to do this for
positive b, and then since b < ||b]|1 it suffices to prove that the series for ¢.(1)
converges. Since for each k the Zj, ; partition Z, we have

oo Ig [SSI

Zze XZkl XZkz Zze_ﬂkRk Zk: Ze_ﬂkRk

k=0 1=1 k=0 1=1

Proposition 4.2 implies that this converges with sum p(Z) = 1. Thus the formula
(5.3) gives us a well-defined state on 7 (X (E)).

We now prove that this state satisfies (5.1). So we take z € X(F)) = X®,
y € X(Fp) = X% and b = @ (2)1)®™ (y)*. Since £¥7 is zero in all except the kth
summand of @, L*(Z, R"e),

0 x p(b)e" = 6% ()™ (y)* €M
is zero in all but the (k — m + [)th summand. Thus
(0 x p(b)eR| €M) =0 for all k,i whenever | # m,

and ¢. certainly satisfies (5.1) when [ # m. So we suppose that = m > 0.
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Next, note that 6™ (2)0®™ (y)*¢H = 0 if k < m. For k > m, we know that h*
is injective on Zy ;, and hence so is h™. Thus w, z € Zj; and A" (w) = h™(z) imply
w = z, and

(05 ()05 (y)" €5 | €)

- / w(2) Y p@eiw) | e d(Re)(2)

hm(w):hrn(z)

- / (g xei () d(RYe) (2).

Since the Z; ; partition Z, summing over ¢ gives

Iy

D (0% p(= (@)= (y) )R | €4) = /x(Z)ﬁd(Rka)(z)

i=1
Thus from (4.5) and the formula for the inner product on X (E)®™ = X (F,,) we
have

6 (0@ (1)) = 30 e [arT AR ) 2)
k=m

= Z e [ st dr )

hm(w)=
- Z e_ﬂ(m—i-k) /<y7 J)> (Z) d(Rké‘)(z)
k=0

= e’ﬁm/<y7x> d (i eﬁksz?)
k=0

by Proposition 4.2(b)

= e*ﬁm/<y7x> dy. (5.4)

This is (5.1). Applying (5.1) with m = 0 shows that ¢.(n( = [adu, which
says that the last integral in (5.4) is ¢. o 7((y,xz)). Thus gbs Satlsﬁes (3.1), and
Proposition 3.1 implies that ¢. is a KMSg state. We have now proved part (a).

Now Suppose that ¢ is a KMSg state, and let p be the probability measure
such that ¢ o w(a) = [adu for a € C(Z). Then Proposition 4.1 implies that p
satisfies the sublnvarlance relation Ry < e”p, and hence Proposition 4.2(c) implies
that € := u—e PRy is a positive measure which belongs to X5 and satisfies (1 —
e PR)"'e = p. Thus formulas (3.1) and (5.1) imply that ¢ = ¢.. This shows that
€ — ¢, is surjective. Since applying the construction of this paragraph to the state
¢. gives us € = u — e PRy back, it also shows that € — ¢, is one-to-one.

Thus € — ¢. maps X3 onto the set of KMSg states, and it is affine and contin-
uous for the respective weak* topologies. So we have proved our theorem. O
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The next Corollary is contained in [34, Theorem 6.8] (here the function F' of
that theorem is identically 1 — see Remark 6.3), but the proof in [34] is quite
different.

Corollary 5.3. Take h : Z — Z and E as in Theorem 5.1, and define o : R —
Aut O(X(E)) in terms of the gauge action vy by ay = Yeir. If there is a KMS state
of (O(X(E)),«) with inverse temperature 3, then 8 < (..

Proof. Suppose 8 > (. and there is a KMSg state ¢ of (O(X(E)),a). Denote
by ¢ the quotient map of 7 (X (E)) onto O(X(E)). Then ¢ o ¢ is a KMSg state
of the system (7 (X(E)),«) considered in Theorem 5.1. Thus there is a measure
e on Z such that [ fgde =1 and ¢ o ¢ = ¢.. Notice in particular that £(Z) > 0.
We can find a finite open cover {U; : 1 < j < I} of Z by sets such that h|y,; is a
homeomorphism, and we can find open sets {V; : 1 < j < I'} which still cover Z but
have V; C U; (see [32, Lemma 4.32], for example). Since e(Z) > 0, there exists j
such that (V) > 0. Now choose a function f € C.(Z) such that f(z) # 0 for z € V;
and supp f C U;. Then the left action of |f|? € C(Z) on X (E) is implemented by
the finite-rank operator Oy, , and hence

a(If12) = () = a(lf1?) = @.m) D (Oyp)
w(1£1%) = (¥, m) D (@ (1S 1))

belongs to the kernel of the quotient map ¢. But with p as in Theorem 5.1(b), we
have

o (x(|FP) — B((f)") = / P du— e / S A w) du

h(w)=z
= [1rPdgn—e PR = [17Pde >0
Thus ¢. does not vanish on ker ¢, and we have a contradiction. Thus § < f3.. O

Example 5.4. Suppose that A € My(Z) is an integer matrix with N := |det A| > 1.
Then there is a covering map o4 : T¢ — T¢ such that o 4 (e2™%) = €274 for € R,
The inverse image of each z € T? has N elements, and hence |0 ,"(2)| = N" for all
z. Thus

1 1
—In (max|a£"(z)|> =—InN"=InN forall n,
n z€eTd n

and B, = InN. Suppose > InN and v is a probability measure on T?. The
function fg is the constant function

1
— —Bnatn _
fo=2 "N = T

n=0

1450066-16



KMS states on C*-algebras associated to local homeomorphisms

and hence the measure ¢ := (1 — Ne #)v satisfies [ fzde = 1. Thus with E =
(T4, T4, id,04), Theorem 5.1 gives a KMSg state ¢. on (7 (X(FE)), «) such that

b (W (@)UP (4)") = brse™ ﬁ’fze % / ) d(Rie) (5.5)

for € X%, y € X®. We claim that ¢. is the KMS state 13, described in
(26, Proposition 6.1].

The algebra 7 (M) in [26] is associated to an Exel system (C(T?),0%, L), in
which ¢7% is the endomorphism f — f oo and L is a “transfer operator” defined
by L(f)(2) = N7'3,  (w=- f(w). The bimodule My, is a copy of C(T?) with
operations a - m - b = amoc’(b) and inner product (m,n) = L(m*n). The map
m +— N~%2m is an isomorphism of My onto X (E), and this isomorphism induces
isomorphisms of 7 (M) onto 7 (X (E)) and of the system (7 (My),o) in [26] onto
our (7(X(F)),a). In the presentation of 7 (M) used in [26], we need to consider
clements {u,v* : m € Z%, k € N}; such an element w,,v* lies in ¢®*¥(ME*). The
isomorphism of MP* onto X (E)®* = X (F},) takes u,,v* to the function N ~*/2,,
2+ N=*/22™ and the inner product on X (F}) is given in terms of L by (y,z) =
N*L¥(gzx). For a € C(T?), we have

/ad Rie) / Y a(w)de(z) :/NJ’LJ’(a)(z) de(2).
oy (w)=2
Putting this into (5.5) gives

e (umv* v ul) = Spie” Mzeiﬁ]/]\”ﬂ (NRLF(N=F/2, N7F/2,.)) de
7=0

= k.1 Z e PINI—F / L (Y —n) de.
j=k

The calculation in the third paragraph of the proof of [26, Proposition 3.1] (applied
to A’ rather than A), shows that with B := A’ we have

‘ 0 unless m — n € BIZ?,
L (ym—n) = . d
YB-i(m—n) ifm—ne BIZ".
Thus
O (umvkv*lu*) = 0 Z e_Bij_k/’yB—j(m_n) de

{j>k:m-necBizd}

= 0k, Z e PINI—F / zBij(m_")(l — Ne #)dv(z).

{j>k:m-necBizd}

Thus ¢, is the state 13, described in [26, Proposition 6.1], as claimed.
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6. KMS States at the Critical Inverse Temperature

Theorem 6.1. Suppose that h: Z — Z is a surjective local homeomorphism on a
compact Hausdorff space Z, E is the topological graph (Z, Z,id, h), and X (E) is the
graph correspondence. Define oo : R — Aut T (X (E)) and & : R — Awt O(X(E)) in
terms of the gauge actions by a; = Yeir and & = eir. Take B, as in (4.6). Then
there exists a KMSg, state on (T(X(F)),«), and at least one such state factors
through a KMSg, state of (O(X(E),@)).

For the proof we need a variant on [25, Lemma 10.3; 15, Lemma 2.2], where the
generating sets P were required to consist of projections. We thank the referee for
providing this one, which is much stronger than we need.

Lemma 6.2. Suppose (A,R,«a) is a dynamical system, and J is an ideal in A
generated by a set P of positive elements which are fized by «. If ¢ is a KMSg state
of (A, @) and ¢(p) = 0 for all p € P, then ¢ factors through a state of A/J.

Proof. Consider p € P, and let a,b be analytic elements for . Since elements
of the form apb span a dense subspace of J, it suffices to show that ¢(apb) = 0.
Since ap is analytic for a with a;s(ap) = a;s(a)p, the KMS condition and the
Cauchy—Schwarz inequality give

0 < |(apb)[* = |p(bais(a)p)|?
< ¢(baip(a)aip(a)*b*)p(p?)
< d(baig(a)aig(a)*d™)|pllé(p) = 0,
and hence ¢(apb) = 0, as required. O

Proof of Theorem 6.1. Choose a decreasing sequence {f,} such that 3, — .
and a probability measure v on Z. Then K,, := [ f3, dv belongs to [1,0), and
en = K, lv satisfies ffgn de, = 1. Thus for each n, Theorem 5.1 gives us a
KMSg, state ¢, on (7 (X(E)),a). By passing to a subsequence, we may assume
that {¢e, } converges in the weak™ topology to a state ¢, and [3, Proposition 5.3.23]
implies that ¢ is a KMSg_ state.

To find a KMSg, state which factors through O(X(E)), we apply the construc-
tion of the previous paragraph to a particular sequence of measures €,,. Since each
z +— |h™™(z)| is continuous [5, Lemma 2.2], Proposition 2.3 of [12] implies® that
there exists p € Z such that

|h""(p)| > €™ for all n € N. (6.1)

Now we let &, be the unit point mass at p, and take e, := f3, (p)'8,. The argument
of the first paragraph yields a KMSg, state ¢ on (7 (X (E)),«) which is a weak*
limit of the KMSg, states ¢, .

¢Strictly speaking, [12] requires throughout that their space is metric, but their argument for this
proposition does not seem to use this.
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Next we choose a partition of unity {p; : 1 <14 < k} for Z such that h is injective
on each supp p;, and take & := /p, € X(F) as in the proof of Proposition 4.1.
Temporarily, we write ¢4 for the homomorphism of A = C(Z) into L(X (E)) given
by the left action. A calculation like the one in the second paragraph of the proof
of Proposition 4.1 shows that for every a € A, ¢a(a) is the finite-rank operator
Zle Oa.¢;.¢;- Thus the kernel of the quotient map ¢ : 7(X(E)) — O(X(E)) is
generated by the elements

k k
m(a) — (¢,7T)(1) (Z @afz‘,»’fi) =m(a) — Z¢(a “E)v(&i)*

k
(a) (1 - ZW&W(&)*) ;

and hence also by the single element 1 — Zle Y(&)W(&)*. Equation 4.4 implies
that this single generator is positive in 7 (X(E)), so if we can show that
o( Zle ¥(&)1(&)*) = 1, then it will follow from Lemma 6.2 that ¢ factors through
O(X(E)).

We therefore calculate qb(Zf:l V(&) (&)*). We write g, for the measure
Yoo € P Rig, of Theorem 5.1(b). Then (5.1) implies that

k k
¢ (Zw(w(@-)*) = lim > oe, ($(6)¥(&)")

k
= Jtim e [ 3766 (62
i=1
Since h is injective on each supp¢;, we have
k k k
Z(fufi)(z) = Z Z &i(w)éi(w) = Z Z [&i(w)]?
i=1 i=1 h(w)=z h(w)=zi1=1
= > 1=[n(2)
h(w)=z

Thus

e*ﬁn/Z(fl,§>dun —eiﬁ”/|h 2)| dpn(2)
—Ze e fm/m o) d(Rie,)(2)
=N ) / S Ih W) den(2):

hi(w)=z
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Since €, is a point mass, we have

/ Z &) i = 3 e U G ) ()
=0

Z e P (p)| £5,(p) "

Since fg, (p) = Y72 e "I/ (p)|, we deduce that

- fs.(p) —1
4-1,;/ (&, &) dpy = Bn —
e iy &i) dpin . (6.3)
; f5.(p)
We now need to take the limit of (6.3) as n — oo. Since we chose the point p
to satisfy (6.1), we have
fﬁn Z e_ﬁnj |h J Z _(ﬁn Be)
j=0
Since e~ (Fn=Be) 1 as n — oo, for fixed J we have
J .
(e7 BBy  J4+1 asn — oo,
j=0

and fg, (p) — oo as n — oo. Thus (6.3) converges to 1 as n — oo, and (6.2) implies

that
k
¢ (Z ¢(§i)¢(f¢)*> =1,

as required. O

Remark 6.3. Theorem 6.1, and in particular the existence of KMS states on
(O(X(E)), @) at the inverse temperature (3., overlaps with work of Thomsen [34].
His results concern KMS states on the C*-algebra of a Deaconu—Renault groupoid,
but his Theorem 3.1 identifies his reduced groupoid algebra C}(T',) as an Exel
crossed product D x,, 1, N. In our setting, where the space Z is compact Hausdorft,
his D is C(Z), his endomorphism « is given by a(f) = f o h, and his transfer opera-
tor L is given by L(f)(2) = [h~"(2)| ™" 325, u)=- [ (w); Thomsen’s Exel crossed prod-
uct is the Cuntz—Pimsner bimodule of a Hilbert bimodule M, [4, Proposition 3.10].
The bimodule is not quite the same as our X (E), but the map U : X(E) — M|,
given by (Uf)(z) = |h='(h(2))|"/?f(z) is an isomorphism of X (FE) onto My (see
[5, Sec. 6]). So our O(X(FE)) is naturally isomorphic to the C*-algebra C*(T';) in
[34]. This isomorphism carries the gauge action v : T — Aut O(X(F)) into the
gauge action 7 used in [34, Sec. 6], and hence our action & is the action af" of [34]
for the function F' =1 (see the top of [34, p. 414]).

For F = 1, the sequences A?}(k) and B?(kz) in [34, Sec. 6] are given by A?}(k) =
k= Bf;(k:), and hence the numbers A‘f; = limg 00 k_lA?;(k) and Bil are both 1.
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The number h,,(¢) in [34, Sec. 6] is our .. Thus [34, Theorem 6.12] implies that our
system (O(X(E)),a) has a KMSg, state. Our approach through 7 (X (E)) seems
quite different.

7. The Shift on the Path Space of a Graph

In this section we consider a finite directed graph E = (E°, E',r,s) with no sinks
or sources. In the conventions of [31], we write E°° for the set of infinite paths
z=1z129 - with s(z;) = r(z;+1). The cylinder sets

Z(p)={2€ E>:z = p,; for i <|u|}

form a basis of compact open sets for a compact Hausdorff topology on E°°. The
shift o : E*® — E* is defined by o(z) = z2z3---. Then o is a local homeo-
morphism — indeed, for each edge e € E*', o is a homeomorphism of Z(e) onto
Z(s(e)) — and is a surjection if and only if £ has no sinks. Shifts on path spaces
were used extensively in the early papers on graph algebras, and in particular in
the construction of the groupoid model [20]. Here, we shall use them to illustrate
our results and those of Thomsen [34].

We consider the topological graph (E°°, E*°,id, o), and write X (E°) for the
associated Hilbert bimodule over C(E*). The Cuntz-Pimsner algebra O(X (E*))
is isomorphic to the graph C*-algebra C*(E) (this is essentially a result from [5] —
see the end of the proof below). The relationship between the Toeplitz algebra
7 (X (E*)) and the Toeplitz algebra TC*(F) is more complicated.

Proposition 7.1. Suppose that E is a finite directed graph. Then the elements
Se = Y(Xz(e)) and Py := w(x 7)) of T(X(E>)) form a Toeplitz—Cuntz-Krieger
family. The corresponding homomorphism ws p of TC*(E) into T(X(E™)) is
injective, and q o w factors through an isomorphism of C*(E) onto O(X(E)).
Both isomorphisms intertwine the respective gauge actions of T.

Proof. Since the x(,) are mutually orthogonal projections in C'(E*°), the {P, :
v € E°} are mutually orthogonal projections in 7 (X (E>)). For e, f € E', we have

8285 = ¥(xz(e) ¥ (xz(n) = T((Xz(e)s X2(1)))-

A calculation shows that (xz(),Xz(s)) vanishes unless e = f, and then equals
XZz(s(e)); this implies that S7S. = Py(), and that the range projections S.S; and
S¢S} are mutually orthogonal. Since the left action satisfies X z(v) - Xz(e) = Xz(e)
when v = r(e), we have P,S5.S5; = 5.S; when v = r(e), and P, > >, .—, SeS:.
Thus (S, P) is a Toeplitz—Cuntz-Krieger family. Since the adjoints ¢ (z)* vanish on
the 0-summand in the Fock module and the representation 7 is faithful there, P, #
2_r(e)=v eS¢ as operators on the Fock module F'(X (£°)). Thus [14, Corollary 4.2
implies that mg p is faithful. Since the gauge actions satisfy 7.(s.) = zs. and
Y= (¥(f)) = 2¢(f), we have mg,p oy =y oms p.
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The left action of x z(,) in X (£°°) is the finite rank operator © nd

hence we have

X2 () X2y &

qo 7T(XZ(;L)) =qo (7T, 1/})(1) (®Xz(,¢)7XZ(#))

= q(V®" (x2() " (X 2(0))7)
= (S,5%). (7.1)

Thus every qom(x z(,)) belongs to C*(q(Se), q(P,)), and go m(C(£°°)) is contained
in C*(q(Se), q(P)). Since Xz(v) = Do)y X2(e) In C(E), the calculation (7.1)
shows that (g o S,q o P) is a Cuntz—Krieger family in O(X (F)), and the induced
homomorphism 745,40p : C*(E) — O(X(E>)) carries the action studied in [15]
to the one we use here. This homomorphism intertwines the gauge actions, and
an application of the gauge-invariant uniqueness theorem shows that m4os 40P is
an isomorphism of C*(E) onto O(X (E*)). (The details are in [5, Theorem 5.1],
modulo some scaling factors which come in because the inner product in [5] is
defined using a transfer operator L which has been normalized so that L(1) = 1
(see the discussion in [5, Sec. 9]). With our conventions, L(1) would be the function
z + |o71(2)]. Theorem 5.1 of [5] extends an earlier theorem of Exel for Cuntz—
Krieger algebras [9, Theorem 6.2].) O

Remark 7.2. While Proposition 7.1 implies that the Toeplitz algebra 7 (X (E*°))
contains a faithful copy of 7C*(E), Corollary 7.5 implies that 7 (X (E*°)) is sub-
stantially larger than 7C*(E): for example, there seems to be no way to get

T(Xz(w) in C*(S, P).

Since the injections of Proposition 7.1 intertwine the gauge actions, they also
intertwine the dynamics studied in [15] with those studied here (and there seems
little danger in calling them all «). Thus applying our results to the local homeo-
morphism o gives us KMS states on (7C*(F), ) and (C*(E), «), and we should
check that our results are compatible with those of [15].

When E is strongly connected, the system (C*(E), ) has a unique KMS state,
and its inverse temperature is the natural logarithm of the spectral radius p(A)
of the vertex matrix A of E [15, Theorem 4.3] (see also [8, 18]). So Theorem 6.1
implies that, for strongly connected F, our critical inverse temperature 5. must be
In p(A). Of course, we should be able to see this directly, and in fact it is true for all
finite directed graphs. (The restriction to graphs with cycles in the next proposition
merely excludes the trivial cases in which E* is empty and p(A4) = 0.)

Proposition 7.3. Suppose that E is a finite directed graph with at least one cycle.
Let A denote the vertex matriz of E, and let o denote the shift on the infinite-path
space E*°. Then

zeEE>

%ln <max |0N(z)|> —Inp(4) as N — co.
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Proof. (Again, we thank the referee for providing this elegant proof.) We first
claim that for any E° x E° matrix B, the operator norm on ¢?(E°) is bounded by

max |B(v,w)| < ||B] < \EO|3/2 max | B(v,w)|.
v,weE° v,weE°
Indeed, the left-hand inequality is easy, and the right-hand one follows quickly from
estimates using the inequalities ||z||y < ||z|l1 < |E°|Y/?||z||2 relating the ¢ and ¢
norms.

Now we use that

_ N
g o™V = may ) AV
ve R0
to estimate
|E°|=3/2|| AN < _max AN (v, w) < max AN (v, w)
weE° we ko
ve KO
= max [0~V ()] < [E°] max AN (v,w) < |E°|[|AV].
ze v,we k0

From this we get
1
N 0| AN
i (1E224V]) < o (masx 0¥ ()]) < 1 (19 4]),
and the result follows from the spectral radius formula. |

Proposition 7.3 implies that, for the shifts ¢ on E*°, the range 8 > . in
Theorem 5.1 is the same as the range 5 > Inp(A) in [15, Theorem 3.1]. When
we view TC*(E) as a C*-subalgebra of 7 (X(E®)), restricting KMS states of
(T(X(E>)),«a) gives KMS states of (7C*(E),«) with the same inverse temper-
ature. Since we know from [15, Theorem 3.1] exactly what the KMS states of
(TC*(E),«) are, it is natural to ask which ones arise as the restrictions of states
of (T(X(E™)),a).

We chose notation in Sec. 5 to emphasize the parallels with [15, Sec. 3], and
hence we have a clash when we try to use both descriptions at the same time. So
we write d for the measure € in Theorem 5.1, and keep ¢ for the vectors in [1, oo)E0
appearing in [15, Theorem 3.1]. Otherwise we keep the notation of Theorem 5.1.

Proposition 7.4. Suppose that E is a finite directed graph with at least one cycle,
and A is the vertex matriz of E. Suppose that 3 > Inp(A), and that § is a regular
Borel measure on E* satisfying [ fadd = 1. Define e = (g,) € [O,OO)E0 by e, =
0(Z(v)). Take y = (yy) € [1,OO)EO as in [15, Theorem 3.1]. Then y-e =1, and the
restriction of the KMSg state ¢s of Theorem 5.1 to (TC*(E), @) is the state ¢. of
(15, Theorem 3.1].
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Proof. We begin by computing the function fg € C(E>). For z € E*, we have
z) = Z e o (2)| = Z e P E™r(2)
-3 (8 e
veE®

Since y, = > pEE Y e~Plrlan application of the monotone convergence theorem
shows that

1= /fg do = Ze‘ﬂ" Z |E"v|6(Z Z YpEv =Y - €. (7.2)
n=0 vEED vEE®

To see that ¢s restricts to ¢., it suffices to compute them both on elements
Sx\S;. Since Sy = @M (x(r)) belongs to X(E>)® Eqgs. (5.1) and [15, (3.1)]
imply that ¢5(SxS;) = 0 = ¢-(Sx\S};) when |A| # |v|. So we suppose |A| = |v| = n,
say. Then (5.1) implies that

#5(S\S;) = 67ﬁ"/<XZ(u),XZ(A)>dM,

where =Y ;2 e PRFRFS. Viewing X (E>)®" as X (F,), as in Lemma 5.2, we can
compute

(Xzwy xzo)(2) = D Xzw)Wxzo W) =6 Y Xz (W),

o (w)=z o™ (w)=z
and deduce that (xz@), Xz(\) = OxvXz(s(x))- Thus
d5(S\S5) = Ox e u(Z(s(N)))- (7.3)

So we want to compute u(Z(v)) for v € E°. For each k, we have

(R*6)(Z(v)) = / Xz d(RF6)(2) = / S X (w) do(2).

ok (w)=z
We have
D Xzw(w) = WEF(2)] = A¥(u,r(2)) = Y AM(0,u)xz()(2)-
ok (w)=z u€E°
Thus

(R* /ZA vuXZ(udé—ZAkvu (u)),

ueE° ueE°
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and

p(Z@) =3 e S A, u)d(Z(v)
k=0

ue E°
= e A, = (1—ePA)e),.
k=0

Now we go back to (7.3), and write down

05(SxS5) = dape (1 —ePA)e), (7.4)

()’
which in the notation of [15, Theorem 3.1(b)] is dx,,e™""myy). It follows from this
and [15, (3.1)] that ¢s(SAS};) = ¢<(SxS}), as required. O

Proposition 7.4 implies that the system (7 (X (E°°)), «) has many more KMS
states than (7C*(F), a).

Corollary 7.5. Suppose that 3 > Inp(A), and that 61, 02 are reqular Borel mea-

sures on E* satisfying [ fazdd; = 1. Then bs, |7+ (B) = PsslTCH () if and only if
51(Z(v)) = 62(Z(v)) for all v € E°.

Proof. Suppose that ¢; and Jy are as described, and ¢s, |7c+(p) = @5, |70+ (EB)-
Then Proposition 7.4 implies that corresponding ¢; have ¢, = ¢,, and the injec-
tivity of the map e — ¢, from [15, Theorem 3.1(c)] says that €; = e5. But this says
precisely that §; and d2 agree on each Z(v).

On the other hand, if §1(Z(v)) = d2(Z(v)) for all v € EY, then the corresponding
g; are equal, and the formula (7.4) implies that ¢s, and ¢s, agree on 7C*(E). O

Corollary 7.6. Suppose that 3 > Inp(A). Then every KMSg state of (TC*(E), «)
is the restriction of a KMSg state of (T (X(E*)), ).

Proof. Suppose that ¢ is a KMSg state on (7C*(E), «). Then [15, Theorem 3.1]
implies that there is a vector € € [1,oo)E0 such that y-e =1 and ¢ = ¢.. If §
is a measure on E™ such that §(Z(v)) = €, for all v € E® and [ fgdd = 1, then
Proposition 7.4 implies that ¢s|rc-(m) = ¢-. So it suffices to show that there is
such a measure §.

We can construct measures on E° by viewing it as an inverse limit im(E", r,,),
where 7, : E"1 — E™ takes v = vy - - UpVpt1 t0 V1V - -+ Uy, Then any family
of measures ¢, on E™ such that 6,41(Z(v) N E,y1) = 6,(Z(v)) for |v| = n gives
a measure 0 on E* such that §(Z(v)) = 6,(Z(v)) for |v| = n (see, for example,
[1, Lemma 6.1]). We can construct such a sequence by taking dy = £, inductively
choosing weights w, such that Zr(e):v We = &y, recursively choosing {w,. € [0,00) :
ve € E"1} such that Zr(e):s(l/) Wye = wy,, and setting d,11(re) = w,.. Now the

calculation (7.2) shows that [ fgdd = y-e = 1, and hence § has the required
properties. O
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8. KMS States Below the Critical Inverse Temperature

In Remark 6.3, we showed that our critical inverse temperature (3. is the same as the
one found by Thomsen [34]. He only considers states of the Cuntz—Pimsner system
(O(X(E)), @), and we agree that this system has no KMSg states with 8 > f..
However, he leaves open the possibility that there are KMSg states with g < f..
Indeed, he considers also the number

B == limsup (N_l In (min |h_N(z)|>>, (8.1)

N—oo z2€Z

and then [34, Theorem 6.8] implies that the KMS states of (O(X (E°)), @) all have

inverse temperatures in the interval [5;, 5.]. Since (O(X(E>)),a) = (C*(E), a),

we can use examples from [16] to see that Thomsen’s bounds are best possible.
More precisely, consider the dumbbell graphs

c—3

with m loops at vertex v and n loops at vertex w. (So in the above picture, we have
m = 2 and n = 3. This graph was discussed in [16, Example 6.2], and the one with
m =3 and n = 2 in [16, Example 6.1].) The vertex matrix A of such a graph FE is
upper triangular and has spectrum {m,n}. For m > n, the system (C*(E), «) has
a single KMSy, ,, state, and this is the only KMS state.

Now we suppose that m < n. Then p(4) = n, and (C*(E),a) has two KMS
states. The first is denoted by 1} in [16], and has inverse temperature Inn. The
second factors through the quotient map of C*(E) onto the C*-algebra of the graph
with vertex v and m loops, which is a Cuntz—algebra O,,. It has inverse temperature
Inm. For this graph, we have 8. = In p(A) = lnn. To compute 5, we let z € E>°.
Then

m if r(z) = v,
oM (2) = |EVr(2)| =

N-1
nV + g nImN 1 i r(2) = w.
J=0

Since m < n, the minimum is attained when r(z) = v, and min,cp~ |0~V (2)| =
m™, giving §; = Inm. Thus for this graph, the possible inverse temperatures are
precisely the end-points of Thomsen’s interval.

Remark 8.1. By adding appropriate strongly connected components between w
and v in this last example, we can construct examples for which there are KMS
states with inverse temperatures between (3; and (.. However, there are number-
theoretic constraints on the possible inverse temperatures (see [28], [16, Sec. 7]).
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