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Abstract 

Stroke is a leading cause of death and lasting disability in adults. The extent of 

recovery is mediated in part by the patient’s environment both before and after stroke. 

Institutionalisation or loss of work, leisure activities or social contact constitutes a loss 

of enrichment and impairs recovery, as well as increasing the risk of depression and 

anxiety. Previous animal studies have not examined the effect of a period of pre-stroke 

enrichment followed by post-stroke loss of enrichment. Therefore, we aimed to model 

this situation using three different levels of enrichment after stroke: Continued 

‘normal’ environmental enrichment (EE), de-enrichment (DE), or enhanced 

enrichment (EEE). Further, we aimed to assess the possible interaction of medial 

prefrontal cortex (mPFC) lesions and changes in environment and stress on recognition 

learning and microglial activation, as a marker for inflammation. 

 

Adult male C57BL/6J mice were housed for three months in an enriched environment 

prior to receiving photothrombotic lesions to the mPFC. Immediately after stroke, 

animals were placed into one of the three environmental conditions: EE, DE, or EEE. 

Behavioural testing was carried out at one and four weeks post-stroke and included 

grid walking and cylinder tests to measure motor skills, open field to measure activity 

levels and anxiety, elevated plus maze and light-dark box to measure anxiety, and 

novel object and object location recognition to measure learning and memory. 

Following testing, animals were sacrificed and their brains analysed for stroke volume 

and secondary degeneration through microglial activation. 

 

DE animals had smaller lesion volumes one week after stroke. Stroke and housing 

conditions had mixed effects on activity levels and anxiety, and had no effect on object 

memory. Similar to what we have shown previously, stroke EE and stroke EEE groups 

showed delayed spatial memory impairment at four weeks. Stroke decreased IBA1-

positive microglial staining in several brain regions, except for some dense cores seen 

in the thalamus and median eminence. EE and EEE reduced staining in stroke animals 

in several areas, including the thalamus and median eminence, which was associated 

with spatial memory impairment, and may indicate secondary neuronal degeneration in 

spatial memory circuits. Interestingly, the stroke DE group showed no impairment in 

spatial memory seen at 4-weeks post-stroke. In addition, these animals also showed no 

decrease in IBA1 staining in the thalamus, indicating that IBA1 activation may be 
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mitigating the secondary neuronal cell loss associated with the spatial memory 

impairments. 

 

In human patients secondary neuronal loss is common and can lead to delayed 

cognitive decline. This loss may contribute to post-stroke depression and anxiety. The 

negative effects of early enrichment may be caused by an increase in stress in the 

enrichment groups, combined with disruption to the hypothalamic-pituitary-adrenal 

(HPA) axis caused by mPFC damage. These results may indicate that de-enrichment is 

protective early after stroke, and that treatment is best delayed for some hours or days 

to maximise recovery and minimise delayed impairments. 
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1. General Introduction 

1.1 Stroke Background 

Stroke, or cerebrovascular disease, is the third leading cause of death in New Zealand 

after heart disease and all forms of cancer, and accounts for around 10% of deaths 

annually (Ministry of Health, 2011). In 2011, stroke killed approximately 2700 people 

and caused nearly 38,000 disability-adjusted life years (DALYs), which is a combined 

measure of life expectancy and disability (Ministry of Health, 2013). Stroke is a 

neuropathological complication that predominantly affects the aged. However, it 

should be noted that stroke can affect anyone at any time and approximately 10% of 

deaths caused by stroke are of people under the age of 65, and this age group accounts 

for 25% of the disability years. Although death rates have decreased over the last 30 

years, an ageing population combined with higher stroke survival rates means that the 

number of stroke sufferers requiring care increases every year (Stroke Foundation of 

New Zealand, 2010). In 2013, there were 45,000 stroke survivors in New Zealand and 

stroke care cost the government approximately $450 million (National Health 

Committee, 2013). 

 

In New Zealand, there is an increased incidence of strokes in Pacific Island and Maori 

populations (Feigin et al., 2006). In addition, the age at which stroke occurs is 

significantly lower in these groups than New Zealand Europeans, which creates a 

further burden on patients, their families, and the health system (Feigin et al., 2006; 

Ministry of Health, 2011). Furthermore, access to and funding for rehabilitation 

facilities is less available to stroke patients under 65, which creates a bias against 

Pacific and Maori populations (Fink et al., 2006). 

 

1.2 Types of Strokes 

There are three main types of stroke: Ischemic, haemorrhagic, and transient ischemic 

attack (TIA). Of these three types, ischemic stroke accounts for roughly 80% of all 

strokes (Feigin et al., 2010). This involves a blockage to an artery caused by either 

plaque build-up at the site where the infarct occurs, or when a piece of plaque becomes 

detached from a coronary vessel and moves through the circulatory system until it 

blocks a smaller vessel within the brain. As a consequence to this blockage, tissue 

“downstream” from the blockage receives insufficient blood flow and may die due to 

oxygen and glucose deprivation. The second type of stroke is cerebral haemorrhage, 
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which makes up around 15% of strokes and involves a rupture of a blood vessel and 

bleeding into the surrounding area. This puts surrounding tissue under pressure, 

damaging a larger area than ischemic stroke. Mortality rates for this type of stroke 

range from 30-50%, with much higher rates of impairment and dependence among 

survivors (Sahni & Weinberger, 2007; Suarez et al., 2006). The third type of stroke is 

TIA. These are the result of a temporary blood flow blockage and may have similar 

symptoms to a permanent stroke but resolve in less than 24 hours (Stroke Foundation 

of New Zealand, 2010). TIAs may result in further strokes and have also been shown 

to increase the risk of developing dementia (Pendlebury et al., 2011).  

 

Disabilities caused by stroke include problems with motor skills, speech and language, 

vision, cognitive skills and emotional problems such as depression and anxiety. The 

type of symptom depends on the location and severity of the stroke, and can include 

one or more problems as listed above (Dobkin, 2008). Following a stroke, patients’ 

living situations may change. The extent of disability will determine the type of care 

patients need after stroke. People can remain at home, be sent to an institutionalised 

aged care facility or be hospitalised. This change in situation, combined with the 

physical or cognitive disability, results in major disruption to the patient’s life. Soon 

after a stroke, 16% to 20% of patients are institutionalised (Hackett & Anderson, 2006; 

Lloyd-Jones et al., 2010). After six months, this number drops to around 5% (Hackett 

& Anderson, 2006). Ability to participate in social and outdoor activities, perform 

interests and a shorter stay in hospital are all associated with higher scores on a health-

related quality of life survey (Almborg, et al., 2010). Even in the medium term, while 

degree of disability and neurological symptoms remain stable over 6-12 months, up to 

66% of patients report a decrease in overall life satisfaction, as well as problems with 

physical and social functioning and depression (Suenkeler et al., 2002). 

There is a clear need to better understand and treat this disease in order to reduce the 

amount of suffering of those with disability and the cost associated with treating stroke 

survivors. 
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2. Consequences of Stroke 

2.1 Anxiety 

In addition to the motor problems commonly experienced, other neurological problems 

such as anxiety, depression and cognitive impairment occur frequently after stroke. 

Approximately half of all stroke patients experience periods of anxiety or depression, 

or both, following a stroke (Bergersen, et al., 2010). Rates of anxiety stay constant, and 

may even rise between one and six months post-stroke (Campbell Burton et al., 2012). 

Struggling with daily tasks was found to make patients almost three times more likely 

to have a mood disorder (Hackett & Anderson, 2006). Delayed cerebral atrophy 

increased the risk of anxiety and depression after stroke (Astrom, 1996). Another 

similar study found that post-stroke anxiety was associated with cortical infarcts, while 

having anxiety and depression together was associated with subcortical basal ganglia 

infarcts (Starkstein et al., 1990). 

 

Anxiety is increased in animal models of stroke. When mice received 17 minute 

transient bilateral common carotid artery occlusion (BCCAo), they spent less time in 

the middle of an open field test and spent less time in the open arms of an elevated-

plus maze (EPM) (Soares et al., 2013). These are commonly used behavioural 

measures of anxiety in rodents. Occlusion of the right middle cerebral artery (MCAo) 

for 60 minutes also decreased the amount of time mice spent in the middle region of 

the open field test, although there was no difference in the time spent in the open 

sections of the elevated zero maze (O’Keefe et al., 2014). Thirty minute left, but not 

right, MCAo caused a decrease in the amount of time mice spent in the open arms of 

the EPM (Kronenburg et al., 2012). Conversely, one study found that after using the 

vasoconstricter endothelin-1 to impair blood flow in the anterior cerebral artery, rats 

showed decreased anxiety in the elevated plus maze (Endepols et al., 2014). 

 

2.2 Depression 

Low levels of self-efficacy (the ability to deal with challenges – both general and 

stroke related) and perceived social support, as well as presence of pre-stroke 

depression all increase the risk of developing post-stroke depression (PSD) (Lewin et 

al., 2013). PSD is associated with speech and language dysfunction, cognitive 

impairment, and reduced social activities (De Ryck et al., 2014), as well as higher rates 

of morbidity and mortality (Williams et al., 2004). 
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Post-stroke depression has also been modelled in animals. Latency to float and the 

total time spent floating in the forced swim test, sucrose consumption in the home 

cage, and escape behaviours in the shuttle avoidance task are often used as measures of 

helplessness and anhedonia, which are thought to be animal equivalents of depressive 

symptoms (Bogdanova et al., 2013; Duman 2010). MCAo stroke increases depressive 

behaviours in these tasks (Kronenburg et al., 2012; Boyko et al., 2013; Sun & Alkon, 

2013; Boyko et al., 2013). Depressive symptoms have also been reported in rats 

following permanent BCCAo (Lee et al., 2014). 

 

2.3 Cognition 

Cognitive impairment is another common effect of stroke. A large study in South 

London found that three months after stroke, 22% of people had cognitive impairment 

(Douiri et al., 2013). This deficit remained at similar levels over a long period of time 

– 22% after five years and 21% after 14 years. Another study found rates of 38%, and 

that impairment was positively associated with stroke severity, age, and cerebral 

atrophy (Ankolekar et al., 2014). Problems with cognition were related to worse 

outcomes in several measures of functional recovery including physical disability, 

dependency, mood and quality of life (Ankolekar et al., 2014). In first-time stroke 

patients under 50, cognitive impairment following stroke can be as high as 50% 

(Schaapsmeerders et al., 2013). One study found that although stroke patients had 

lower cognitive function at baseline compared with healthy controls, they did not 

decline more than controls (except for verbal memory) unless they had a further stroke 

(Sachdev et al., 2014). However stroke patients did have a higher risk of developing 

dementia. Stroke patients who develop dementia are more likely to have another stroke 

than those who don’t (Sibolt et al., 2013). While motor and sensory deficits generally 

appear very rapidly after stroke, patents often develop cognitive impairments months 

and even years afterwards (Loeb et al., 1992). Common aspects of cognition affected 

by stroke are processing speed, working memory, attention, verbal communication, 

and executive function (Schaapsmeerders et al., 2013; Pinter & Brainin, 2012). Among 

these specific deficits, executive function and working memory most strongly correlate 

with post-stroke depression (Hommel et al., 2013).  
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Stroke causes cognitive deficits in animal models. Temporary anterior cerebral artery 

occlusion (ACAo) impairs rats’ performance in the spontaneous alternation task – a 

measure of spatial learning and memory (Endepols et al., 2014). BCCAo stroke has 

been found to impair the spatial memory of mice in the Morris water maze (MWM) at 

days 7 and 14 following stroke, but performance improved by 28 days (Soares et al., 

2013). Only five minutes of BCCAo causes gerbils to have impairments in the win-

shift and win-stay task, another spatial memory task (Farrell et al., 2001). Further, 

vasoconstrictive infarcts to the peri-ventricular white matter caused deficits in the 

novel object recognition memory task both one and four weeks following stroke (Blasi 

et al., 2014). 

 

The most common animal model of stroke, the MCAo, also causes learning and 

memory deficits. Spatial memory is impaired in the MWM following both 60 minute 

(Truong et al., 2012; Li et al., 2013) and 90 minute occlusion (Ryan et al., 2006). Other 

spatial memory tasks in which performance is impaired include the Barnes circular 

maze (Ryan et al., 2006). MWM deficits tend to be absent or mild early (1-3 weeks) 

after stroke (Li et al., 2013; Bouet et al., 2007), then develop over the following 4-8 

weeks (Ryan et al., 2006; Truong et al., 2012; Li et al., 2013). 

 

However, as with the depression and anxiety studies, mixed results have been found 

with MCAo studies – Bouet and colleagues (2007) found no impairment in the MWM 

after a 60 minute occlusion. As with white matter strokes mentioned above, 

recognition memory is impaired by MCAo (Truong et al., 2012). Learning tasks are 

also impaired by MCAo, including passive avoidance (Bouet et al., 2007; Willing et 

al., 2002) and various reinforced lever-pressing tasks (Linden et al., 2014; Linden et 

al., 2015).  

 

The evidence from animal models of stroke and human patients is in agreement – 

stroke causes increased risk of anxiety, depression, and impairment in a wide range of 

cognitive tasks. 

3. Consequences of Prefrontal Cortex Stroke 

3.1 Anxiety 

While generally not causing gross motor impairments, stroke to the pre-frontal cortex 
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(PFC) affects anxiety, depression and cognitive skills, as well as impairing executive 

function. The relationship between anxiety and PFC stroke has been studied much less 

than depression, but some studies show anxiety can also be related to PFC lesions. 

Stroke patients with anxiety are more likely than those without to have infarcts in the 

right PFC (Tang et al., 2012). Vietnam veterans who suffered injuries to the right 

orbitofrontal cortex were more likely to have anxiety and depression compared with 

veterans that suffered injuries in different brain areas (Grafman et al., 1986).  

 

Animal studies into the effects of PFC lesions on anxiety have also shown mixed 

findings. Electrolytic lesions to the medial prefrontal cortex (mPFC) increased the 

anxiety of rats (Blanco et al., 2009). However, others have reported no change or a 

decrease in anxiety after photothrombosis (Zhou, 2013), excitotoxic lesions (Lacroix et 

al., 1998) electrolytic lesions (Maaswinkel et al., 1996), cytotoxic lesions (Deacon et 

al., 2003), or injections of a vasoconstrictor (Hewlett et al., 2014). Anxiety can vary 

within studies, and groups have found conflicting results between different anxiety 

tests such as the EPM, open field, successive alleys, black-white alley or 

hyponeophagia (Lacroix et al., 1998; Maaswinkel et al., 1996; Deacon et al., 2003). 

 

Lesions to the mPFC don’t seem to have reliable effects on anxiety. Clearly the effect 

of stroke on anxiety depends on the type, location and extent of the lesion as well as 

the behavioural tests used. 

 

3.2 Depression 

Stroke to the PFC seems to be associated with PSD more than other areas. A large 

cohort study found that patients with frontal lobe stroke were around twice as likely to 

develop PSD than those with strokes elsewhere (Shi et al., 2014). PSD is associated 

with larger lesions in areas of the mPFC including the anterior cingulate cortex (ACC), 

subgenual cortex, amygdala and subiculum (Terroni et al., 2011). As well as cortical 

areas, PSD has been linked to subcortical PFC circuits, with lesions to areas including 

the striatum, globus pallidus, and thalamus resulting in an increased likelihood of 

developing PSD (Tang et al., 2011). Lesions to inferior frontal regions have been 

found to be more likely than other frontal regions to be associated with PSD (Singh et 

al., 2000). 
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Animal studies of PFC damage find mixed effects on depressive symptoms. Impact 

injuries (a model of traumatic head injury) to the PFC can cause depressive symptoms 

in the forced swim and sucrose consumption tests (Moritz et al., 2014), while other 

studies have found that electrolytic or photothrombotic lesions have no effect on 

activity levels in the open field (Maaswinkel et al., 1996). Activity levels in the open 

field are often used as an animal indicator of depression (Krsiak & Janku, 1971; Shao 

et al., 2015). On the other hand, PFC lesions have been found to cause an increase in 

activity in the open field (Lacroix et al., 1998; Deacon et al., 2003; Zhou et al., 2015), 

as do strokes to the ACC (Hewlett et al., 2014). 

 

3.3 Cognition 

Strokes targeting the PFC can cause spatial memory deficits, although these tend to be 

less obvious impairments than those caused by larger artery occlusion strokes. 

Vasoconstrictive lesions to the ACC of rats resulted in an impairment in spatial 

memory as observed in the MWM (Hewlett et al., 2014). Similarly, traumatic brain 

injury (TBI) to the mPFC has been shown to impair performance in the Barnes maze 

(Moritz et al., 2014). Consistent with these findings, we have recently shown using the 

photothrombosis model of stroke that damage to the mPFC caused a delayed 

impairment in spatial memory in the object location recognition (OLR) test, with 

impairments observed at 4-weeks but not 1-weeks post-stroke (Zhou, 2013). On the 

other hand, Deacon and colleagues (2003) found no impairments in the spatial Y-maze, 

spontaneous alternation T-maze, or multi-trial passive avoidance following cytotoxic 

lesions. Further, studies by Maaswinkel’s group (1996) found that not only did animals 

with pre-limbic electrolytic lesions show no initial deficit when learning the MWM, 

they actually adjusted faster than shams when the platform position was changed.  

 

3.4 Executive Function 

The effects of PFC stroke on executive function have been extensively investigated. 

The PFC is responsible for executive functions or “higher” cognitive processes such as 

planning, impulse control, attention, language, sensory integration, and memory 

formation and retrieval (Wood & Grafman, 2003). Frontal lobe lesions can damage one 

or several of these functions, depending on where the lesion occurs. Most of the 

studies below have used groups of patients with PFC lesions caused by stroke as well 
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as tumour or injury.  

 

Patients with frontal lobe lesions show deficits in planning and strategy application in 

the Modified Six Elements test, which is a combination of several problem solving 

tasks (Gouveia et al., 2007). Similar planning and predicting deficits have been found 

using various problem solving and real-world planning tasks following lesions to the 

right PFC (Goel et al., 2013; Gomex-Balderrain et al., 2004) and also the left 

dorsolateral PFC (Colvin et al., 2001). Patients with frontal lobe dementia or focal 

frontal lobe lesions made more moves, broke rules more often, and took longer to 

complete the Tower of London task than age- and education-matched controls (Carlin 

et al. 2000). 

 

Frontal lobe damage can impair the ability to inhibit incorrect responses. Kopp and 

colleagues (2013) found that patients with lesions to the right inferior frontal gyrus had 

impaired inhibitory control in the frontal assessment battery (a combination of several 

cognitive tasks). Damage to the right middle frontal gyrus impaired conceptualisation 

and mental flexibility.  

 

PFC damage can impair attention and reaction speed in simple reaction time tasks 

(Dimitrov et al., 2003; Lee et al., 1999). Different areas seem to be responsible for 

different components of attention: Lesions to superomedial regions slowed reaction 

time, while lesions to left lateral areas increased errors (Alexander et al., 2005). 

Similarly, in the Stroop interference task, left dorsolateral frontal lesions caused slower 

responses and more errors than more posterior lesions or healthy controls, but only 

bilateral superior medial lesions impaired performance in the incongruent condition 

(Stuss et al., 2001). PFC lesions can also impair the ability to attend to novel stimuli. 

Daffner and colleagues (2000) found a reduced P3 wave response to novel stimuli 

following frontal lobe stroke, which was strongly associated with a reduced viewing 

time of a novel stimulus. Frontal lesions can also impair memory – patients recalled 

less items in both free and cued recall, with lesions to the left frontal lobe resulting in 

poorer performance than right-sided lesions (Dimitrov et al., 1999). 

 

Although executive function is more easily measured in humans, PFC stroke damages 

executive function in animals as well. Following unilateral frontal cortex lesions, rats 

had a decision-making deficit when choosing a high-reward high-effort path, 
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compared with a low-reward low-effort path in a T-maze task (Croxson et al., 2014). 

This deficit was more marked when the high-reward high-effort arm of the maze was 

contralateral to the lesion, possibly indicating damage to areas responsible for cost-

reward processing (Croxson et al., 2014). Cordova and colleagues (2014) found that 

rats with vasoconstrictive mPFC lesions had a reduced ability to shift attention 

between stimuli in different dimensions (odour, material and texture) in a conditioned 

reward-finding task. 

 

Overall, temporary or permanent MCAo seems to produce more reliable behavioural 

symptoms of anxiety and depression than smaller, targeted injuries to the PFC, which 

seem able to increase, decrease, or have no effect on anxiety and depression, and more 

subtle effects on cognition. This may be due to the variable methods used to induce 

stroke, the different areas and volumes damaged within the PFC, as well as the much 

smaller volume damaged compared with MCAo. This may also be due to the much 

larger number of studies using artery occlusion compared with more recent techniques 

such as photothrombosis.  

 

4. Photothrombosis as a Model of Stroke 

MCAo and other artery occlusion stroke models produce large infarcts that are more 

similar to fatal or malignant human stroke than the average human infarct (Carmichael, 

2005). As a consequence, when animals develop impairments - and in particular 

cognitive impairments - this does not mimic what usually occurs in humans. Therefore 

in order to move forward, animal models of stroke that model both the size and 

location of the stroke and development of the desired impairment (for instance, motor 

or cognition) need to be established. This will be critical if we are to develop drug 

treatments that are to translate into the clinic.  

 

Human strokes are commonly smaller (Carmichael, 2005; Lyden et al., 1994; Lindgren 

et al., 1994), with volumes of 28-80 mm
3
. A photothrombotic stroke volume of 1.3-5 

mm
3
 (Zhou, 2013; Zhao et al., 2015) is more appropriate for comparison than larger 

MCAo volumes, which can range from 9 ± 2 mm
3
 for a 15 minute occlusion up to 69 ± 

2 mm
3 

for a 60 minute occlusion (McColl et al., 2004). 

 



 
11 

Following photothrombosis, the infarct volume rapidly evolves to reach its maximum 

volume by 24 hours post-stroke (Chen et al., 2007; Braun et al., 1996). However, small 

regions of ongoing apoptosis can still be observed 1 -3 days post-stroke induction, and 

secondary apoptosis can occur up to four weeks post-stroke (Braun et al., 1996). 

5. Current Stroke Treatments 

5.1 Drug Treatments 

Currently the only drug treatment for ischaemic stroke approved by the Food and Drug 

Administration (FDA, U.S.A.) is the recombinant tissue plasminogen activator (rt-PA) 

alteplase. Although this drug can be effective at breaking up clots and restoring blood 

flow, it is only effective when administered within three to four hours after stroke (de 

los Rios la Rosa et al., 2012). Often strokes are not recognised soon enough to enable 

patients to meet this time limit – only 25% arrive at an emergency department within 

4.5 hours and of these, only 6.4% are eligible for rt-PA treatment (de los Rios la Rosa 

et al., 2012). Despite the trial of hundreds of different drugs for early neuroprotection, 

none have yet made it into the clinic. More recently, trials show newer thrombolytic 

drugs may be more effective and possibly extend this window (e.g. tenecteplase, 

Parsons et al., 2012). Promising new treatments are being evaluated for patients with 

occlusions in larger arteries who do not respond to alteplase such as endovascular clot 

retrieval (Smith & Schwamm, 2015), but along with alteplase this is only suitable in 

the hours immediately following stroke. Therefore, there is a need for therapies that 

enhance recovery in the days and weeks after stroke. 

 

At the moment, the most effective drug treatments for post-stroke disorders seem to be 

those that target depression and anxiety such as antidepressants. Duloxetine, 

citalopram and sertraline have been shown to be effective in reducing depression and 

anxiety following stroke (Karaiskos et al., 2012). A meta-analysis of Fluoxetine 

treatment post-stroke showed that it reduced the incidence of depression (but not the 

severity) as well as improving recovery of neurological function and independence (Yi 

et al., 2010). Antidepressant treatment seems to have beneficial effects beyond anxiety 

and depression. Three months of Fluoxetine treatment beginning 5-10 days after stroke 

enhanced performance in the Fugl-Meyer motor scale (Chollet et al., 2011). Fluoxetine 

or Nortriptyline can both improve recovery on the Rankin disability scale independent 

of the effects of the drugs on depression (Mikami et al., 2011). A review of selective 
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serotonin reuptake inhibitor (SSRI) treatment in stroke recovery concluded that 

treatment reduced dependency and disability scores, as well as neurological deficit, 

depression and anxiety (Mead et al., 2012). 

 

5.2 Physical Therapy 

As motor deficits are one of the most common results of stroke, physical therapy is 

widely used to aid recovery of motor function. Reviews of physical therapy concluded 

that intensive, repetitive task-oriented and task-specific training is most effective 

(Veerbeek et al., 2014; Dobkin 2008). Current best practice is to begin physical 

therapy as soon as possible – even hours – after stroke (Stroke Foundation of New 

Zealand, 2010). As well as conventional physical therapy, there is emerging evidence 

that robotic physical therapy has further benefits, and electrical stimulation of the 

affected limb, rocking chair therapy, and the Sensori-Motor Active Rehabilitation 

Training (SMART) Arm system have all shown promise in initial trials (Hayward et 

al., 2010). Virtual reality training also has shown some positive results compared with 

conventional therapy (Henderson et al., 2007). Physical therapy alone may help 

recovery in other areas, such as cognitive skills. One study by Liu-Ambrose & Eng 

(2015) found that six months of exercise and recreation (two sessions of exercise and 

one of recreation per week) improved performance in selective attention and conflict 

resolution in the Stroop test, working memory and functional capacity among stroke 

patients compared with standard-care controls. Six months of aerobic and resistance 

training has been shown to improve several areas of cognition (using the Montreal 

Cognitive Assessment) in stroke patients (Marzolini et al., 2013). Areas improved 

include attention and concentration, and visuospatial and executive function. There 

was a reduction in the percentage of patients meeting threshold for mild cognitive 

impairment (MCI) (Marzolini et al., 2013). One patient showed a large improvement 

in speech ability after having upper limb mirror therapy (Arya & Pandian, 2014). 

 

When exercises are augmented with cognitive or social aspects, they are more 

effective than exercise alone. Using an exercycle with a virtual reality cycle tour 

reduced the risk of progression to MCI by 23% compared with a standard rowing 

machine (Anderson-Hanley et al., 2012). Active video gaming with motion-sensor 

controls for one hour per day, four days per week for five weeks caused a larger 

improvement in motor performance than no intervention (Fritz et al., 2013). Weekly 
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dancing sessions of 30 to 60 minutes improved performance in several cognitive tests, 

(Hokkanen et al., 2008; Kattenstroth et al., 2013), as well as posture and reaction 

times, tactile tests and subjective well being (Kattenstroth et al., 2013). Patients with 

the lowest scores before therapy benefited the most (Kattenstroth et al., 2013). 

 

5.3 Cognitive Therapy 

Many post-stroke therapies target cognitive symptoms of stroke. Similarly to physical 

therapies, the most successful of these target specific symptoms rather than cognition 

as a whole. A recent review concluded that there was insufficient evidence of positive 

results of post-stroke interventions on cognitive functioning (Gillen et al., 2015). 

However, a review by Xu and colleagues (2013) found positive outcomes for treatment 

of attention deficits with repetitive drills and exercises targeting the specific type of 

attention problem, as well as for treatment of visuoperceptual deficits using driving 

simulators. The review found more limited evidence for treatment of memory and 

executive function, although training components of executive function such as 

attention or working memory could help. Another review had similar findings, with 

some effective treatments for focal injuries causing impairments such as neglect and 

aphasia, but not for any more “diffuse” impairments (Cumming et al., 2013). 

Currently, there don’t seem to be any effective treatments for executive dysfunction 

(Chung et al., 2013). In addition to practicing specific cognitive skills to address 

deficits, there is some evidence that transcranial direct current stimulation (TDCS) in 

combination with practice can improve performance in auditory and visual tasks more 

than practice only (Park et al., 2013).  

 

5.4 Enrichment 

Several kinds of enrichment activities have been used to improve recovery in human 

patients. Stroke patients who listened to music daily for two months showed 

improvements in verbal memory and focused attention compared with those who 

listened to audio books and controls, and improved mood compared with controls 

(Sarkamo et al., 2008). A combination of two exercise and one group leisure sessions 

(e.g. bowling or cooking) per week for six months improved attention, working 

memory, functional capacity and conflict resolution (Liu-Ambrose & Eng, 2015). Post-

stroke apathy was reduced with problem-solving therapy (Mikami et al., 2013). 
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A study by Janssen and colleagues (2013) used a comprehensive enrichment program. 

Patients in a rehabilitation hospital were exposed to an environment that included 

communal enrichments like internet access, newspapers, board games and active video 

games. Patients also had individual enrichment packages of music, books, puzzles, 

games, and family members brought hobbies and activities that patients had previously 

enjoyed. Staff actively encouraged participation in activities and use of the materials. 

Enrichment increased the amount of patients’ activity, both cognitive and social, and 

decreased likelihood of inactivity and sleep during waking hours compared with 

control participants housed in standard care. A follow-up study showed that 

enrichment patients reported more social interaction and motor, sensory and cognitive 

stimulation, increased feelings of control and less boredom (White et al., 2015). 

 

While there are a number of promising treatments for specific impairments in mood, 

movement and cognition following stroke, it is clear that there is no holistic therapy 

that has benefits across all areas. There is a need for a method or methods of treatment 

that address multiple deficits. One possibility may be housing in environmental 

enrichment (EE) that includes physical activity, social contact and cognitive activities. 

 

6. Inflammation after Stroke 

6.1 General Inflammation 

Following stroke, a cascade of pro-inflammatory signals occurs in the brain. In 

response to cellular damage around the infarct, reactive microglia, macrophages and 

leukocytes are recruited into the brain and generate inflammatory mediators (Lo et al., 

2003). These include inducible nitric oxide synthase (iNOS), cyclooxygenase 2 

(COX2), interleukin 1 (IL-1) and monocyte chemoattractant protein 1 (MCP1), which 

can have negative effects on lesion volume (Lo et al., 2003). When genes encoding 

these proteins were knocked out or reduced in mouse studies, the size of ischemia was 

reduced (Lo et al., 2003). Activity of immediate early genes is upregulated within 

minutes of injury, followed by chemokine and cytokine release over the next 12-24 

hours (Lo et al., 2003, see Figure 1.1). 
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Figure 1.1 Approximate timeline of post-stroke inflammation. 

 

Inflammatory cytokines can have beneficial or detrimental effects in animal stroke 

studies. For example, when a tumour necrosis factor alpha (TNF-α) binding protein 

was administered to rats following permanent MCAo, infarct size was reduced 

(Nawashiro et al., 1997). However, when the TNF-α receptor was completely knocked  

 

out in mice, infarct size increased and functional recovery decreased (Bruce et al., 

1996; Scherbel et al., 1999). Similarly, when vascular endothelial growth factor 

(VEGF) was administered to rats 48 hours after embolic ischemia, angiogenesis and 

neurological recovery were enhanced, whereas if VEGF was administered only one 

hour post-stroke, blood-brain barrier (BBB) leakage and infarct size were increased 

(Zhang et al., 2000).  

 

In human stroke patients, inflammation seems to be associated with negative stroke 

outcomes. Increased levels of IL-6, C-reactive protein (CRP) and serum amyloid A 

(SAA) are associated with increased risk of death among hospitalised stroke patients 

(Rallidis et al., 2006). Stroke patients with higher levels of IL-6 and vascular cell 

adhesion molecule 1 (VCAM-1) are more likely to suffer further vascular disease, 

including death (Castillo et al., 2009). Interestingly, chronic inflammation may also 

contribute to stroke risk. High levels of CRP have been associated with increased risk 

of first-time stroke in post-menopausal women (Kaplan et al., 2008). No other 

individual inflammatory markers were significantly associated with stroke, but as the 

number of elevated markers present increased, so did the risk of stroke. 

 

6.2 The Effect of Stroke on Microglia  

In the healthy brain, microglia play an important role in regulating the extracellular 

environment, clearing debris and maintaining synapses (Beynon & Walker 2012). 

These cells have a ramified appearance – a structure of branching arms extending from 
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a central soma. After injury, pro-inflammatory cytokines as well as free radicals induce 

microglia to change their shape. Ramified, or inactive, cells change to a hyper-ramified 

appearance where processes thicken, then becoming reactive, where processes shorten 

and widen further. Even further activation can cause microglia to become amoeboid in 

shape and become phagocytic (Beynon & Walker 2012). In the healthy brain, 

microglia can still change shape, particularly in response to chronic stress, which 

increases the amount of secondary branching. 

 

In the first few days after stroke, inflamed microglia (stained with the radioactive 

marker PK11195) have been found adjacent to the lesion as seen in magnetic 

resonance imaging (MRI) in humans, with very little overlap into the lesion itself 

(Gerhard et al., 2005). From 9 to 28 days post-stroke, the PK11195 positive area 

increased and began to overlap with the MRI lesion. By 150 days post-stroke, 

PK11195 binding was present not only around the infarct but in connected areas in the 

ipsi- and contra-lateral hemispheres. This shows that inflammation continues for some 

time after stroke and can affect remote regions. 

 

Microglia can have a protective effect following stroke. An interesting study by 

Neumann and colleagues (2006) investigated the actions of microglia at the cellular 

level. Using hippocampal slice cultures, and oxygen and glucose deprivation, they 

showed that applying microglia directly to the slice at 24 or 48 hours post-stroke 

increased neuronal survival. They then imaged the cells and saw that the microglia 

migrated into the slice and formed close contacts with neurons. When microglia were 

treated with anisomycine (a protein-synthesis inhibitor) or minocycline (a monocyte 

inhibitor) their protective effect was reduced (Neumann et al., 2006). The protective 

effect of microglia is linked to insulin-like growth factor 1 (IGF-1). When microglia 

proliferation was stimulated in mice by macrophage colony stimulating factor 

(MCSF), they increased in number and increased release of IGF-1 (Lalancette-Hebert 

et al., 2007). When proliferating microglia were ablated after MCAo, there was a 

decrease in IGF-1 levels, and an increase in inflammatory cytokines, apoptotic cells 

and lesion size (Lalancette-Hebert et al., 2007). Other beneficial actions of microglia 

include releasing TNF-α (Lambertsen et al., 2009), phagocytosing neutrophils 

(Neumann et al., 2006) as well as apoptotic tissue, which may limit secondary damage 

and aid remodelling following cerebral haemorrhage (Zhao et al., 2007). Microglia in 

the subventricular zone (SVZ) release IGF-1 following stroke, which promotes 
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neurogenesis (Thored et al., 2009). Microglial activation can encourage angiogenesis, 

which is associated with increased blood flow and functional recovery (Baron et al., 

2014). Grafted microglia in a damaged spinal cord release growth factors and induce 

axonal regeneration (Rabchevsky and Streit, 1997). 

 

Microglia can also have negative effects after stroke. High levels of microglial staining 

(PK11195 in vivo and the activated microglial stain OX42 post-mortem) show that 

activation is high in areas showing reduced staining for neurons (NeuN), particularly 

for OX42 (Baron et al., 2014). Fluoxetine treatment following MCAo has been found 

to suppress microglial activation, inflammatory markers, and neutrophil infiltration, 

and reduce infarct volume, motor impairment and neurological deficits (Lim et al., 

2009). The antibiotic minocycline has also been used to inhibit microglia, which had 

protective effects in rats (Yrjanheikki et al., 1999), and improved neurological 

outcome in humans (Fagan et al., 2010). Inhibition using the poly(ADP-ribose) 

polymerase inhibitor PJ34 reduced cell death in the hippocampus by 84% (Hamby et 

al., 2007). 

 

The explanation for the dual role of microglia remains to be fully realised. It has been 

postulated that resident microglia (M1 microglia, see Figure 1.2) are beneficial and 

help to protect the brain, whereas infiltrating microglia (M2 microglia) and 

macrophages have negative effects (Ritzel et al., 2015; Evans et al., 2014). Stress may 

play a crucial role in regulating microglia and influencing differential M1 or M2 

phenotype. This is discussed in Discussion section 3.3.3. However, much work is still 

required to fully define the actions of these cells for all neuropathological conditions 

including stroke.  
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Figure 1.2 Schematic diagram of differential activation of M1 and M2 Microglia. 

Adapted from Nakagawa and Chiba, 2014. 

 

7. Secondary Neuronal Loss 

Stroke can cause neuronal damage in areas not immediately affected by ischemia (also 

called diaschisis). In one study by Kraemer and colleagues (2004), ten human patients 

with MCAo stroke underwent MRI. All patients experienced shrinkage of brain tissue 

in the peri-infarct region, as well as contralateral homolog areas and the striatum and 

thalamus (Kraemer et al., 2004). Atrophy has also been found in the posterior cingulate 

cortex six months following stroke, which was associated with increased apathy 

(Matsuoka et al., 2014). Cerebral atrophy after stroke is associated with depression and 

anxiety (Astrom, 1996). 

Remote damage occurs in the thalamus following stroke. MCAo caused neuronal 

degeneration in the ventroposterior nucleus (VPN) of the thalamus, even though there 

was no reduction in blood flow in this area (Rupalla et al., 1998). Three days after 

stroke, calcium accumulation (an indicator of energy failure) and deafferentation of 

corticothalamic axons occurs, before neuronal damage (Nagasawa & Kogure, 1990; 

Iizuka et al., 1990). Seven days post-stroke, neurons shrink, and 14 days post more 

than half of the neurons in the VPN may be dead (Dihne et al., 2002). Secondary 

degeneration has also been found in the nucleus reticularis thalami (RTN) after 

photothrombotic stroke (Block et al., 2005). Remote thalamic damage after MCAo is 

associated with spatial learning deficit (Kumon et al., 1996). 
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Secondary neuronal loss occurs at a delay in several other brain areas after stroke, 

including the hippocampus (Butler et al., 2002) and substantia nigra pars reticulata 

(SNr) (Block et al., 2005) and may contribute to the delayed development of post-

stroke impairments. 

 

8. The Effects of Components of Enrichment on Stroke Recovery 

An enriched environment is one that provides increased opportunity for cognitive, 

social or physical stimulation compared with a standard environment 

(Nithianantharajah & Hannan 2006). In animal studies, environmental enrichment (EE; 

or as sometimes referred to, enriched conditions) refers to a type of living condition 

where animals (usually rats or mice) are kept in large arenas or cages, in groups of 8-

12 animals with objects that are changed on a regular basis (daily or weekly, 

depending on the study). These objects often include running wheels, toys, tunnels, 

cardboard huts, or other objects with which the animals can interact (Nithianantharajah 

& Hannan 2006). These conditions are in contrast to standard housing conditions (SC), 

where animals are housed in smaller cages, in smaller groups (3-6 animals) with no 

objects. 

 

8.1 Exercise and Stroke Recovery 

Even when a running wheel is not included in an enrichment protocol, enrichment is 

associated with increased activity levels, with the level of physical activity positively 

correlated with the degree of recovery (Xie et al., 2013). Gerbils with access to a 

running wheel ran approximately 880 meters per day in the week preceding 

experimental stroke, and that this improved their post-stroke survival to 90-100%, 

compared with 21-40% of animals kept in conventional cages (Stummer et al., 1994). 

Further, post-mortem studies on these gerbils showed decreased cell death in the 

cortex, striatum, and most areas of the hippocampus. 

 

8.1.1 Pre-Stroke Exercise 

Pre-stroke exercise reduces infarct volume (Ding et al., 2006) and cell death (Davis et 

al., 2007; Liebelt et al., 2010; Stummer et al., 1994) after stroke. Trophic factors such 
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as brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), IGF-I and 

VEGF have been found to be increased following exercise (Will et al., 2004; Zhang et 

al., 2011). Exercise increases expression of genes involved in synaptic plasticity and 

synaptic trafficking (e.g. synaptotagmin), signal transduction pathways (e.g. CaM-KII) 

and transcription regulators (e.g. CREB), as well as genes involved in the 

glutamatergic system (Molteni et al., 2002). On the other hand, genes associated with 

the gamma-Aminobutyric acid (GABA) system (e.g. GABAA receptor) were 

downregulated (Molteni et al., 2002). Both voluntary and forced exercise provide 

neuroprotection, and at least two or three weeks of exercise training before stroke is 

enough to give benefits in infarct volume, molecular factors involved in 

neuroprotection, and functional outcomes.  

 

In human studies, pre-stroke exercise can reduce the risk of stroke as well as reducing 

the severity of disability if a stroke occurs. A recent meta-analysis showed that pre-

stroke exercise increased physical activity and reduced the risk of infarction by 25% 

and haemorrhage by 33% (Reimers et al., 2009). Interestingly, for both types of stroke, 

this effect was larger for men than women (Reimers et al., 2009), indicating a sex bias, 

and highlights the need to examine both sexes in future studies. Another meta-analysis 

found that moderate physical activity caused an 11% reduction in the risk of stroke 

outcome (incidence or mortality) over low activity, and high activity caused a 19% 

reduction (Diep et al., 2010). One study of 673 stroke patients found that those who 

reported higher amounts of pre-stroke exercise experienced lower levels of impairment 

(Stroud et al., 2009).  

 

8.1.2 Post-stroke Exercise 

Exercise is known to have a multitude of beneficial effects after stroke, such as 

improved cerebral metabolic capacity (Dornbos et al., 2013; Schubert, 2005), 

improved angiogenesis (Zhang et al., 2011) and BBB stability (Davis et al., 2007; Ding 

et al., 2006), which all contribute to improved functional recovery. 

 

Post-stroke exercise has also been found to increase survival rates and body weight, 

reduce infarct volume, and improve neurological deficit score in aged rats (Zhang et 

al., 2012). Interestingly, rats that exercised at a lower intensity (both walking speed 

and duration) showed more improvements relative to the no exercise group than those 
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that exercised at a moderate intensity (Zhang et al., 2012). Mild exercise five days per 

week for five weeks following an endothelin-1 (ET-1) injection in the sensorimotor 

cortex of aged rats increased recovery of sensorimotor performance in the Adhesive 

Removal Test. The number of proliferating cells staining positive for 

Bromodeoxyuridine (BrdU) in the ipsilateral cortex also increased (Leasure & Grider, 

2010). 

 

Post-stroke exercise in human patients can aid recovery. When chronic stroke patients 

completed three months of high-intensity treadmill exercise, peak exercise capacity 

and sustained walking capacity improved, whereas with conventional care they did not 

(Globas et al., 2012). Maximum walking speed and balance, as well as a mental health 

subscale of the Medical Outcomes Study improved more in the exercise group. 

Another study found that increased exercise dose improved recovery of walking speed 

(Scrivener et al., 2012). Six months of increasing treadmill exercise post-stroke 

improved cardiovascular fitness and mobility more than stretching and low-intensity 

walking (Macko et al., 2005). A meta-analysis of various exercise treatments including 

cardiorespiratory training as well as specific task-related training concluded that the 

main benefits of exercise are improvements in mobility and a resulting decrease in 

disability and dependence (Saunders et al., 2013). Another positive effect was 

improvement in balance. There was not enough evidence to make conclusions about 

quality of life or mood outcomes. 

 

Exercise before or after stroke has broad positive effects on stroke risk and recovery, 

and even without a running wheel, due to enrichment causing increased activity, is an 

important component of enrichment. 

8.2 Social Housing 

Social housing is another component of enrichment that can have positive effects on 

behavioural recovery independent of exercise or enrichment. Social housing has 

similar beneficial effects to enrichment on social and spatial memory, and reduces 

anxiety in naive animals (Monteiro et al., 2013; Ravenelle et al., 2013). After stroke, 

social housing can improve motor recovery as much as enrichment (Risedal et al., 

2002; Dahlqvist et al., 2003). Social housing increases neurogenesis in the olfactory 

bulb (Monteiro et al., 2013) and increases NGF gene expression in the hippocampus 

(Dahlqvist et al., 2003). Oxytocin is increased by social housing, and this has been 
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shown to reduce infarct size and oxidative stress (Karelina et al., 2011), suppress the 

hypothalamic-pituitary-adrenal (HPA) axis induced release of corticosterone (CORT) 

and increase the speed of healing (DeVries et al., 2007). 

 

A person’s social environment can influence their risk of having a stroke. Having 

lower numbers of close contacts and a smaller social network increased a person’s 

relative risk of stroke by 4.1 and 2.7 times respectively (Gafarov et al., 2013). Isolation 

was also correlated with higher rates of smoking, hypertension, use of cardiovascular 

medications and depression (Rutledge et al., 2008). High levels of social support 

decreased the risk of stroke in both high and low alcohol consumption groups of 

Japanese men (Ikehara et al., 2009). Psychosocial distress as assessed by interviews 

was found to increase the risk of a stroke incident or stroke mortality (Henderson et al., 

2013). Low scores in a social network index were associated with higher levels of the 

inflammatory markers IL-6, CRP, and soluble intercellular adhesion molecule 

(sICAM-1) (Loucks et al., 2006). Social factors can also influence a person’s ability to 

identify a stroke. Higher perceived emotional support and frequent social contacts 

increased knowledge of stroke warning signs (Barger, 2012).  

 

Social factors are important in post-stroke recovery. Pre-stroke social isolation has 

been associated with increased risk of a post-stroke outcome event (another stroke or 

death (Boden-Albala et al., 2005)). Having more baseline (17 days post-stroke) social 

ties and emotional support improved cognitive recovery at 6 months post-stroke 

(Glymour et al., 2008). Socially inactive patients were less satisfied with life and self-

care ability than moderately and highly socially active patients (Boosman et al., 2011). 

Post-stroke disability and depression are associated with reduced social activity 

(Carod-Artal et al., 2000). Perceived social support reduces the relative risk of PSD 

(Lewin et al., 2013), while living alone following stroke increases risk of PSD while 

also decreasing the likelihood of antidepressant use. (Eriksson et al., 2004).  

 

8.3 Cognitive and Sensorimotor Components 

The third key component of EE is the opportunity for animals to interact with a variety 

of changing objects. This allows constant interaction with new objects and learning of 

their physical properties and location within the cage. This component is seen as 

similar to task specific training, and both treatments had similar effects on learning and 
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formation of long-term memory. They both also had positive molecular effects on the 

brain, including increased protein synthesis and increased acetylcholinesterase (AChE) 

activity in the cortex (Rosenzweig & Bennett, 1996). Enrichment objects are almost 

always used in conjunction with social housing and sometimes exercise, so the effects 

of objects alone on individually housed animals are difficult to separate. One study by 

Monteiro and colleagues (2013) found that adding enrichment objects to individually 

housed mice increased neurogenesis in the dentate gyrus (DG) and the olfactory bulb. 

 

In human stroke therapy, specific training is often used to target specific sensorimotor 

or cognitive deficits, such as the walking training mentioned above in section 8.1.2, or 

constraint-induced movement therapy (CIMT) for upper limb impairment (Kwakkel et 

al., 2015). In addition to the treatments mentioned above in section 5.3, prism glasses 

can be successfully used to treat hemineglect by shifting the visual field (Shiraishi et 

al., 2008). Virtual reality training has been used to improve hand dexterity, but this 

only worked for very specific tasks and was difficult to implement with elderly 

patients (Merians et al., 2002). Speech therapy improves communication deficits 

(Bhogal et al., 2003), and specific memory and attention training can improve 

performance on closely related tasks (Barker-Collo et al., 2009). Goal management 

training for patients with frontal lobe damage (mainly from stroke) improved 

performance in a sustained attention task and the tower test (Levine et al., 2011). 

Working memory training, strategy training, and use of a pager system have all been 

moderately effective in improving performance in specific related tasks (Poulin et al., 

2012). 

 

These therapies are all effective at improving performance in related tasks, but often 

do not generalise to broader cognitive impairment or daily activities (Cumming et al., 

2013). Cross-over can occur – Meinzer and colleagues (2012) found that CIMT 

improved aphasia as well as motor impairment, and upper limb therapy was found in 

one case to markedly improve communication deficits (Arya & Pandian, 2014). 

 

8.4 Comparisons Between Enrichment Components 

Given the separate effects of exercise, social housing and enrichment objects, several 

studies have attempted to compare the effects on stroke recovery of these different 

elements. Enrichment appears superior to social housing when applied before stroke. 
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Four weeks of pre-stroke enrichment in rats improved performance on several motor 

tests and the MWM compared with socially housed animals (Xie et al., 2013). 

Following permanent MCAo, rats enriched post-stroke outperformed individually 

housed animals with free access to exercise wheels on multiple motor tests over three 

months of testing post-stroke (Johansson & Ohlsson, 1996). Socially housed animals 

also outperformed individual animals in some of the tests. There were no group 

differences in infarct size (Johansson & Ohlsson, 1996). A similar study with an 

impoverished housing group (individually housed with no objects or running wheel) 

found similar results – enriched animals outperformed individually housed animals in 

motor tasks, and the social group outperformed the deprived group (Risedal et al., 

2002). Enriched and socially housed animals had higher levels of nerve growth factor-

induced genes A and B (NGFI-A and NGFI-B) in the peri-infarct and the CA1 region 

of the hippocampus than individually housed animals, which was positively correlated 

to motor performance (Dahlqvist et al 2003). 

 

Although training in specific tasks such as the skilled reaching task can have similar 

benefits to enrichment (Rosenzweig & Bennett, 1996), a comprehensive review by 

Will and colleagues (2004) concluded that when compared with each other across a 

variety of behavioural, cellular and molecular tests, training was found to be more 

effective than exercise, and enrichment more effective than both. The above results 

also show that enrichment is superior to social housing alone, and that social housing 

is more effective than exercise. 

 

9. Effects of Enrichment on Aspects of Stroke Recovery 

9.1 Lesion Volume 

Enrichment that includes all the factors mentioned in the previous section affects a 

variety of measures of stroke recovery, including lesion volume, cellular and molecular 

recovery, and motor and behavioural recovery. The effects of enrichment on lesion size 

are mixed. Most commonly, studies have found no difference in infarct size after 

transient MCAo in rats with two weeks (Hirata et al., 2011) or four weeks (Dahlqvist 

et al., 2004) of post-stroke enrichment. Similar results exist for permanent MCAo in 

rats with 8 weeks (Matsumori et al., 2006) or 13 weeks (Johansson & Ohlsson, 1996) 

post-stroke enrichment. There was no difference between infarct sizes when comparing 
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animals enriched pre- and post-stroke with only post-stroke, or with only individual 

housing (Ohlsson & Johansson, 1995). 

 

One study did find a reduction in infarct size after post-stroke enrichment in rats that 

had undergone permanent MCAo (Bucchold et al., 2007). The reduction was 

correlated with improvement of functional impairments, especially in aged animals. 

However, a meta-analysis of 19 enrichment studies concluded that despite these mixed 

effects, enrichment resulted in an 8% increase in infarct size (Janssen et al., 2010). It is 

possible that placing animals into enriched housing very soon after stroke could 

increase neuronal activity and exacerbate excitotoxic neuronal loss in the infarct. This 

does not seem to be the case here, with studies allowing animals to recover for at least 

24 hours before differential housing (Bucchold et al., 2007; Johansson & Ohlsson, 

1996). 

 

Similarly to cell death in the infarct, there are mixed results for cell death elsewhere. 

Enrichment has been found to increase cell death in the hippocampus of gerbils after 

five minutes of transient MCAo (Farrell et al., 2001), while retinal cell death was 

reduced by enrichment after BCCAo (Kiss et al., 2013). 

 

9.2 Cellular Effects of Enrichment 

Enrichment encourages cellular remodelling after stroke. Following stroke, dendritic 

spine density in the peri-infarct area decreases (Brown et al., 2008). EE and skilled 

reach training enhances dendritic growth in the peri-infarct area, as well as other brain 

areas, and is associated with functional recovery (Auriat et al., 2010). Similar results 

have been found with axon growth – EE encourages axon growth from peri-infarct 

areas into lesioned areas, and this is also associated with behavioural recovery 

(Papadopoulos et al., 2009). Two weeks of pre-stroke enrichment increased synapse 

density in the peri-infarct area (Hirata et al., 2011). Post-stroke EE increased synapse 

density in the parietal cortex and hippocampus, which was associated with improved 

performance in the MWM (Xu et al., 2009). Eight weeks of enrichment in naive rats 

caused an increase in neural activity in the barrel cortex in response to whisker 

movement (Alwis & Rajan 2013). 
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Enrichment increases neurogenesis. Eight weeks of EE after MCAo caused an increase 

in neurogenesis and neuronal differentiation in both sham and stroke rats in the dentate 

gyrus (Matsumori et al., 2006). This effect occurred even in enriched animals housed 

individually (Monteiro et al., 2013). EE increased neurogenesis in the subventricular 

zone of rats after MCAo and also improved survival and migration of transplanted 

stem cells (Hicks et al., 2007). This effect is not only present in rodents – Salvanes and 

colleagues (2013) found that enrichment increased neurogenesis in the forebrain of 

juvenile Atlantic salmon. 

 

Astrocytes show mixed responses to enrichment. EE in intact animals can increase the 

number and mean size of astrocytes in the occipital cortex (Sirevaag & Greenough, 

1991) and the dentate gyrus (Diniz et al., 2010; Williamson et al., 2012). After 

permanent MCAo in rats, four weeks of EE caused an increase in proliferating 

astrocytes in the peri-infarct cortex and an increase in proliferating oligodendrocytes in 

intact cortex (Komitova et al., 2006). EE causes astrocyte growth and remodelling 

around synapses, and seems to be involved in cortical remodelling in the peri-infarct 

area (Nilsson & Pekny, 2007).  

 

On the other hand, decreased glial fibrillary acidic protein (GFAP) labelling has been 

found in the ipsilateral cortex of rats after two weeks of post-stroke enrichment (Auriat 

et al., 2010). 30 days after stroke, enriched animals had fewer proliferating astrocytes 

and smaller glial scar volumes, which were correlated with functional recovery in aged 

and young rats (Bucchold et al., 2007). EE reduced the number and size of 

hypertrophied astrocytes in the hippocampi of aged rats (Soffie et al., 1999). The role 

of astrocytes in stroke recovery is complex, and they seem to have both positive (e.g. 

supporting cortical remapping) and negative effects (e.g. gliosis and scar formation). 

Enrichment has positive effects on neurogenesis and cellular remodelling, and seems 

to encourage cellular recovery, despite mixed effects on astrocytes. Despite all of this, 

timing and intensity of enrichment appears to be a major factor, which still needs to be 

addressed further, especially with respect to strokes within different brain regions. 
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9.3 Molecular Effects of Enrichment 

9.3.1 Inflammation 

Enrichment reduces the release of inflammatory cytokines. In naive animals, EE from 

30 days to 5 months of age in mice reduced pro-oxidative factors and inflammatory 

mediators and increased anti-oxidative factors (Herring et al., 2010). EE reduces the 

expression of TNF-α and IL-1β, and subordinate animals in social housing have 

reduced production of cytokines and T cells (Singhal et al., 2014). Seven weeks of EE 

in rats reduced the inflammatory response to lipopolysaccharide (LPS) injection in the 

hippocampus (Williamson et al., 2012). Four months of EE in mice reduced 

inflammation caused by influenza infection, and improved performance in the MWM. 

(Jurgens & Johnson, 2012). 

 

Microglia can be variously affected by enrichment, depending on the area of the brain. 

EE can cause increased microglia expression in the DG (Williamson et al., 2012), 

decreased newborn microglia in the amygdala (Ehninger et al., 2011), and no 

difference in the cortex or striatum (Auriat et al., 2010). One study found that while EE 

did not cause an increase in microglia, wheel running did in some cortical layers 

(Ehninger & Kempermann, 2003). Exercise is thought to reduce inflammation in a 

variety of ways including regulation of microglia and hippocampal T cells, and 

reduced secretion of adipokines. 

 

9.3.2 Neurotrophins 

Neurotrophins are essential to the maintenance of healthy neurons and networks, and 

are involved in plasticity and in injury response (Allen & Dawbarn, 2006). After 

striatal stroke in mice, endothelial cells in the striatum produced BDNF, and migrating 

neuroblasts expressed the p75NTR BDNF receptor (Grade et al., 2013). Treatment 

with BDNF can improve recovery from stroke in rats (Schabitz et al., 2004). BDNF 

levels are increased by enrichment in the hippocampus in both naive (Williamson et 

al., 2012) and stroke animals (MacLellan et al., 2011; Gobbo & O’Mara, 2004) and in 

the motor cortex, which is associated with improved recovery (MacLellan et al., 2011). 

On the other hand, pre-stroke enrichment was found to have no effect on BDNF levels 

in the peri-infarct cortex, even though enriched animals showed more neurological 

recovery. Enrichment also increases VEGF, which had antidepressant effects (Huang et 

al., 2012), and NGFI-A and NGFI-B, which were higher in the peri-infarct and the 
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CA1 region of the hippocampus and were correlated with improved functional 

recovery from stroke (Dahlqvist et al., 2003). 

 

9.4 Behavioural effects of Enrichment 

9.4.1 Motor deficits 

Enrichment improves motor recovery after stroke. Various studies have found that 

post-stroke enrichment improves performance on the rotating rod test (Ravenelle et al., 

2013), inclined plane, limb placement and beam traversal tests (Johansson & Ohlsson, 

1996). Enrichment combined with daily reach training improves upper limb deficits 

after stroke (Biernaskie et al., 2004) and functional recovery in the staircase and 

cylinder tasks (MacLellan et al., 2011). Aged rats show faster and more complete 

recovery from MCAo when housed in EE (Bucchold et al., 2007). Enrichment is also 

effective in improving motor recovery after cortical impact injury (Moritz et al., 2014). 

A meta-analysis of the effect of post-stroke EE on sensorimotor function found 

consistent positive effects on several motor tasks such as the rotating pole, limb 

placement, horizontal beam and ladder tests, with enriched animals scoring 0.9 

standard deviations higher than controls (Janssen et al., 2010). 

 

9.4.2 Learning and Memory 

Enrichment improves spatial memory performance of naive animals in the MWM 

(Frick et al., 2003; Diniz et al., 2010) and the radial arm water maze (Sampedro-

Piquero et al., 2013). EE is protective of MWM performance after chronic cerebral 

hypoperfusion (Zhu et al., 2011), as well as MCAo (Dahlqvist et al., 2004; Xu et al., 

2009). Janssen and colleagues’ review (2010) concluded that EE animals showed a 

25.1% increase in performance in the MWM compared with standard housing controls. 

Benefits in spatial memory are also seen in the T maze (Farrell et al., 2001) and the 

radial arm water maze (Sampedro-Piquero et al., 2013). Both young and aged mice 

housed in EE from birth performed better than standard housed animals in an episodic-

like memory test that had aspects of object and spatial recognition (Diniz et al., 2010). 

One month of enrichment also improved performance in the novel object test in 

healthy adult mice (Doulames et al., 2013). Pre- and post-stroke enrichment improved 

performance in odour discrimination and object exploration (Gobbo & O’Mara, 2004). 

Social memory persistence was improved by object enrichment among individually 
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housed mice (Monteiro et al., 2013). These studies show that enrichment is beneficial 

in a wide range of learning and memory tasks in different stroke models as well as 

healthy animals. 

 

9.4.3 Depression and Anxiety 

There is some evidence that EE can improve symptoms of depression. Five weeks of 

EE reduced learned helplessness (LH) behaviour in young animals bred for high LH 

(Richter et al., 2013). Further, in mice exposed to seven days of EE there was 

increased sucrose preference and mobility on the tail suspension test compared with 

standard housed animals (Huang et al., 2012). This effect remained even when mice 

were subjected to chronic stress, which worsened symptoms in standard housed 

animals (Huang et al., 2012). After stroke, EE restored saccharine preference to pre-

stroke levels (Branchi et al., 2013). Enrichment also moderated the effects of 

fluoxetine treatment – fluoxetine improved depressive symptoms in EE animals, but 

worsened symptoms in an induced-stress environment (Branchi et al., 2013).  

 

EE has been shown to have mixed effects on anxiety behaviours. EE reduced anxious 

behaviour in both high and low anxiety rat strains (Ravenelle et al., 2013). Two months 

of enrichment for three hours per day reduced anxiety in the elevated zero maze, which 

was associated with a decrease in COX activity in brain regions associated with 

anxiety such as the infralimbic cortex, paraventricular nucleus of the hypothalamus 

(PVN), basolateral amygdala, and the ventral hippocampus (Sampedro-Piquero et al., 

2013). On the other hand, Moritz and colleagues (2014) found that EE had no effect on 

depressive or anxious symptoms after cortical impact injury. Overall, enrichment has 

beneficial effects on depressive symptoms, but mixed effects on anxiety. 

 

Despite mixed results for some measures such as astrocytes, microglia, and anxiety, 

enrichment has positive effects on a large variety of cellular, molecular and 

behavioural measures of stroke recovery, and should be considered a reliable treatment 

for stroke in animal models. The timing (before and/or after stroke) as well as the 

length of enrichment changes the extent of this recovery, and is an important factor in 

evaluating the effects of enrichment. 
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10. Timing of Enrichment 

10.1 Environmental Preconditioning  

Pre-stroke exercise has been extensively studied and provides many benefits (see 

section 8.1.1). Enrichment is more commonly used after stroke, but several studies 

have seen benefits from environmental preconditioning. One month of enrichment 

before stroke reduced the inflammatory mediators iNOS, neuronal nitric oxide 

synthase (nNOS), and altered the phospho-ERK1/2 and malondialdehyde (MDA) 

signalling pathways and improved motor performance (Yu et al., 2013), and spatial 

memory (Xie et al., 2013). 

 

Continuous enrichment starting before and continuing after stroke can be equally as 

effective as post-stroke EE in improving motor recovery (Ohlsson and Johansson, 

1995). However, EE before stroke may be more important, as pre-stroke EE reduced 

motor deficits as much as continuous pre- and post-stroke EE, and both were better 

than post-stroke EE only (Held et al., 1985). 

 

10.2 Post-stroke Enrichment 

In general, earlier enrichment seems to be more beneficial. Enrichment beginning at 

five days post-stroke caused large improvements in several motor tasks and increases 

in dendritic branching (Biernaskie et al., 2004). Beginning at 14 days had only modest 

effects, and at 35 days there were no differences. However, immediate intervention can 

have negative effects. Rats with access to a running wheel from days 0-6 after fluid 

percussion injury did not show an increase in exercise-induced BDNF levels, and 

animals showed significant impairment in the MWM, while those with access to the 

running wheel on days 14-20 showed elevated BDNF levels and improved 

performance in the MWM (Griesbach et al., 2004). Studies giving animals a 24 or 48 

hour recovery period after stroke before re-entering enrichment have reported greater 

benefits of EE in motor and cognitive tasks (Ohlsson & Johansson, 1995; Gobbo & 

O’Mara, 2004). Allred and colleagues (2014) reported that the intervention needs to be 

timed to the progression of brain changes that occur after injury. In the first one to two 

weeks, there is an increase in synaptic remodelling, migration of new cells, dendritic 

growth and other repair processes (Allred et al., 2014), and this is a good time for 

interventions. After this window, it may be more difficult for cells to create new 

connections. 
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11. Environmental Impoverishment 

Although standard housing may be impoverished in terms of objects, because it mostly 

involves social housing, it is not completely empty of stimulation. Impoverishment 

usually refers to individual housing with no objects and no access to a running wheel. 

In many studies of social housing or enrichment, animals are also housed in isolation. 

Some of the disadvantages of individual housing compared with social housing have 

been discussed above (section 8.2 and 8.4), for both animal experiments and human 

patients after stroke. 

 

Social isolation can have dramatic negative effects on mammalian development. For 

example, macaques isolated from birth had severely impaired socialisation ability 

(Harlow, 1965). Post-weaning isolation of male rats increased anxious behaviour and 

startle reflex (Weiss et al., 2004). In addition, isolation caused an increase in both basal 

adrenocorticotropic hormone (ACTH) and stress-triggered ACTH release in males 

(Weiss et al., 2004). Experimental isolation is more often in adulthood, or after stroke 

for periods of a few weeks, but this can still have negative effects on health and 

recovery. Environmental impoverishment for 30 days can reduce cortical thickness 

(Diamond et al., 1972). As little as seven days of impoverishment can reduce 

neurogenesis in the olfactory bulb, and decrease performance in a food-finding task 

(Monteiro et al., 2013). Mice in impoverished housing showed a decline in spatial 

memory in the Y-maze, and failed to improve in the novel object recognition (NOR) 

task compared with socially housed and enriched animals (Doulames et al., 2013). 

 

Impoverishment has negative effects on stroke recovery. Individual housing before and 

after MCAo increased infarct size and edema at 24 and 72 hours after stroke. This lead 

to a lowered survival rate of 40% seven days after stroke, compared with 100% of 

socially housed mice (Karelina et al., 2009). Two weeks of impoverishment after 

MCAo impaired performance in an inclined plane test and neurological severity score 

test compared with enrichment, and lowered synapse density in the peri-infarct area 

(Hirata et al., 2011). In one study that induced retinal hypoperfusion, two weeks of 

post-stroke social isolation increased lesion size compared with standard housing and 

enrichment (Kiss et al., 2013). This effect was more pronounced in female mice, 

suggesting that they are more susceptible to isolation. A study by O’Keefe and 

colleagues (2014) found that mice isolated immediately after stroke showed increased 
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neural atrophy and glial scarring and decreased BDNF expression compared with mice 

housed in pairs. Isolated mice also showed increased depressive behaviours in the 

forced swim test 13 days post-stroke, although this effect was gone by 33 days post-

stroke 

 

Changing environments can also have negative effects. Mice switched between 

enrichment and impoverishment had smaller cerebellums and lower brain weights than 

mice kept constantly in either environment (Klippel, 1978). When mice were switched 

from enrichment to de-enrichment they increased voluntary cocaine consumption, 

losing the protective effect of enrichment on cocaine consumption seen in 

continuously enriched animals (Nader et al., 2012). This was associated with increased 

levels of corticotropin releasing factor (CRF) mRNA in the bed nucleus of the stria 

terminalis (BNST), an area involved in anxiety response (see introduction section 

12.4). Administration of the CRF antagonist antalamin blocked the increase in cocaine 

consumption, indicating that the stress of de-enrichment was causing the increased 

drug sensitivity (Nader et al., 2012). 

 

Just as social housing confers many benefits on recovery, impoverishment increases 

stress responses, and impairs several cellular, molecular and behavioural measures of 

recovery. Despite the different combinations of enrichment and/or impoverishment 

before and after stroke, to our knowledge no one has examined a long period of pre-

stroke enrichment followed by de-enrichment immediately after stroke that would 

more closely match the situation seen by human stroke patients. 

 

12. Stress and Stroke 

12.1 Modelling Stress in an Animal Model of Stroke 

Several studies have used chronic mild stress (CMS) in combination with MCAo to 

induce post-stroke depression. This usually involves combinations of different mild 

stressors such as periods of food and water deprivation, overnight illumination, and 

forced swims (Wang et al., 2009). This combination causes depressive behaviours in 

the sucrose consumption test, the open field, and the forced swim test (Shao et al., 

2015; Wang et al., 2009; Yan et al., 2013). Repeated restraint is also widely used to 

model stress (Neigh et al., 2009; Blanco et al., 2009; Faraji, Ejaredar et al., 2011; 
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Faraji, Metz & Sutherland, 2011). These methods do not mimic what happens in 

humans, where it is the combination of neurological effects of stroke with post-stroke 

disability and a change in living environment that causes stress (Stuller et al., 2012). 

Given the effects of impoverished housing on stress and the HPA axis mentioned in the 

section above, we think that this is a more realistic model of post-stroke stress. 

 

12.2 General Effects of Stress 

Chronic stress increases microglial activation in naïve animals. Rats exposed to stress 

showed increased microglial and neural activation in the PFC, as well as impairments 

in spatial working memory (Hinwood et al., 2012). Minocycline treatment suppressed 

microglial activation and reduced neuronal activation and the memory impairments 

(Hinwood et al., 2012). Chronic stress increases the amount of microglial secondary 

branching towards hyper-ramification and activation (Beynon & Walker, 2012; Walker 

et al., 2013). In hand with increased microglial activation, stress increases 

inflammatory cytokine release (Walker et al., 2013). This can have negative effects on 

neurogenesis, plasticity and memory (Yirmiya & Goshen, 2011) and may contribute to 

depression (Anisman & Merali, 2002). Rats given chronic mild stress and CORT 

injections showed dendritic atrophy and loss of synapses in CA3, CA1 and granule 

cells of the hippocampus, which was associated with spatial memory impairments 

(Sousa et al., 2000). These changes reversed after ending stress and CORT treatment 

(Sousa et al., 2000). Elevated glucocorticoid levels can reduce BDNF levels, which 

could hinder cellular recovery and plasticity in the peri-infarct area (McKlveen et al., 

2015). 

 

12.3 Effects of Stress on Stroke Recovery 

Stress is common in human stroke patients (Walker et al., 2014), with around 66% of 

patients reporting high psychological distress soon after stroke (Hilari et al., 2010). 

Stress, activation of the HPA axis and increased concentrations of ACTH, and CORT 

or cortisol affect the immune response to stroke and subsequent recovery. 

 

12.3.1 Pre-stroke stress 

Chronic stress is a risk factor for developing stroke, and pre-stroke stress impairs 

recovery. Among middle aged men, presence of severe psychological stress increased 
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the risk of stroke by 2.1 times (Harmsen et al., 1990). A review by Stuller and 

colleagues (2012) concluded that the level of glucocorticoid release is important. Low 

levels of glucocorticoids can suppress cytokine release, but high levels, especially 

early after stroke, increase the release of inflammatory cytokines, which are associated 

with increased neuronal death and worse functional outcome (Stuller et al., 2012). 

Chronic social stress (being placed in the home cage of and fighting with a large, 

aggressive male mouse) or CORT injections before stroke increased infarct size and 

impaired passive avoidance retention in mice (Sugo et al., 2002). These differences 

were reversed after treatment with a glucocorticoid receptor antagonist (Sugo et al., 

2002). Daily restraint stress for 16 days before hippocampal stroke impaired spatial 

cognition, but rats injected with CORT daily for the same period were not impaired 

(Faraji, Ejaredar et al., 2011). This shows stress has its effects not only through CORT 

expression. Three weeks of daily restraint stress before cerebral hypoperfusion induced 

by cardiac arrest in mice increased neuronal damage, microglial activation and anxious 

behaviour (Neigh et al., 2009). Minocycline treatment (which reduces microglial 

activation) reduced these effects (Neigh et al., 2009). 

 

12.3.2 Post-stroke stress 

Post-stroke stress also has negative effects on recovery. In stroke patients, there is a 

large surge of ACTH and cortisol soon after stroke, and cortisol remains high for some 

days (Fassbender et al., 1994). High levels of ACTH were associated with larger 

infarct volume, acute post-stroke confusion and worse functional outcome (Fassbender 

et al., 1994). MCAo followed by chronic mild stress increased levels of CRF, IL-1β 

and TNF-α in the hippocampus of rats (Wang et al., 2013). Glucocorticoid receptors in 

microglia and astrocytes increased from days 3 to 7 post-stroke to over 200% of 

baseline levels (Hwang et al., 2006). Microglial activation is important after stroke as 

increased activation can have negative effects, but decreased activation has detrimental 

effects as well. After motor cortex photothrombotic stroke, ionized calcium-binding 

adapter molecule 1 (IBA1) staining was increased, and there was some neuronal death 

in the thalamus (Jones et al., 2015). Four weeks of stress post-stroke decreased 

microglial levels, which was associated with further neuronal loss in the thalamus.  

Stress generally impairs behavioural recovery, including motor function (Stuller et al., 

2012). Chronic mild stress following MCAo is used as a model of post-stroke 

depression – animals show lower locomotor activity, less frequent rearing, and a lower 
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preference for a sucrose solution (Wang et al., 2009). Acute stress after mPFC lesions 

increases anxious behaviour in the elevated T-maze (Blanco et al., 2009). On the other 

hand, mild restraint stress after hippocampal stroke has been found not to affect lesion 

size, and to actually reduce spatial deficits in the MWM (Faraji, Metz & Sutherland, 

2011). The authors speculate that a low level of stress may be beneficial to recovery, or 

that spatial memory may be improved by stress while other functions are not. 

 

Post-stroke stress contributes to poorer functional outcomes. At the cellular level this is 

represented through neuronal loss, increased CORT and changes in microglial 

activation at sites distant to the infarct. Minimising stress both before and after stroke 

seems to be key to improving recovery. However, like most aspects of post-stroke 

recovery, establishing a time for starting treatment that may induce stress needs to be 

further investigated. 

 

12.4 Stress and the mPFC 

Medial prefrontal cortex stroke is associated with a variety of mood and cognitive 

problems in humans and animals (see section 3). One of the reasons for this is the role 

of the mPFC in regulating the HPA axis. The mPFC has mineralocorticoid (MR) and 

glucocorticoid (GR) receptors. These sense systemic CORT and CRH levels and are 

involved in a feedback loop to regulate the HPA axis (McKlveen et al., 2015). For 

example, when crystalline CORT was directly applied to the mPFC, blood ACTH and 

CORT after stress was lowered (Diorio et al., 1993). The mPFC can have inhibitory or 

excitatory effects on the HPA, via a pathway from the anterior BNST to the PVN 

(Radley & Sawchenko, 2011). For example, stress-induced salivary cortisol levels 

were inversely correlated with rate of glucose metabolism in the rostral mPFC, 

indicating that this area has an inhibitory effect on cortisol release (Kern et al., 2008). 

 

Excessive stress can have adverse effects on the mPFC. Six hours per day of restraint 

stress for three weeks in rats decreased dendritic spine volume and surface area, 

reduced the number of large spines and increased the number of small spines (Radley, 

Rocher et al., 2008). Stress impairs many executive functions controlled by the mPFC 

such as set-shifting, decision making and planning, and increases habitual behaviour 

(McKlveen et al., 2015). In both humans and animals, these behavioural changes are 

accompanied by atrophy and lower activation in the mPFC (McKlveen et al., 2015). In 
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lesion studies, this could cause a cycle of damage where mPFC lesion reduces HPA 

inhibition, which increases stress response and further damages cells in the mPFC and 

related stress-sensitive areas such as the hippocampus. 

 

Damage to the mPFC can disrupt normal stress regulation. Lesions to the mPFC 

(including cingulate gyrus, pre-limbic and infra-limbic areas) caused an increased 

adrenal response to immobilisation stress (Ondicova et al., 2012). Cingulate gyrus 

lesions increased blood levels of ACTH and CORT after acute restraint stress 

compared with shams (Diorio et al., 1993). mPFC lesions increased c-fos mRNA (an 

indicator of neuronal activation) in the PVN and increased ACTH blood concentration 

(Figueiredo et al., 2003). Ablation of noradrenergic innervation of the dorsal mPFC 

from the locus ceruleus reduced restraint-induced Fos and CRH mRNA in the PVN, 

and reduced acute secretion of ACTH and CORT (Radley et al., 2008). 

 

mPFC damage has stress-related behavioural effects as well as HPA changes. Chronic 

mild stress combined with social subordination and left ACC stroke increased anxious 

behaviours in rats (Hewlett et al., 2014). ACC stroke alone did not change basal CORT 

levels, but did increase suppression of the HPA in the dexamethasone test (a test of 

negative feedback in the HPA axis) which indicates increased stress sensitivity, and 

caused adrenal hypertrophy (Hewlett et al., 2014). mPFC patients reported higher 

feelings of stress after a social stress test than healthy controls or patients with brain 

damage in other areas (Buchanan et al., 2010). Greater volume of mPFC damage was 

associated with increased cortisol response in women, but lower cortisol response and 

higher heart rate in men. It seems that mPFC regulation of stress response is different 

in men and women (Buchanan et al., 2010). 

 

The mPFC has an important role in regulating stress. Damage to this area disrupts 

stress regulation, which can further exacerbate stress caused by environmental factors 

after stroke. Dysregulation of the stress response has negative effects on stroke 

recovery, including cellular recovery in the mPFC itself. 
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12.5 Enrichment and Stress 

Enrichment appears not to change levels of stress hormones, but reduces an animal’s 

response to these hormones. In a large study of EE, social housing, and individual 

housing, there were no differences in levels of plasma CORT concentration, 

glucocorticoid receptor expression in the hippocampus or CRH mRNA in the 

paraventricular nucleus (Dahlqvist et al., 2003). Social housing did not change 

glucocorticoid concentrations, but did reduce the expression of inflammatory 

cytokines (Karelina et al., 2009). Enrichment in rats increased interleukin-11 (IL-11) 

and caused microglia to move towards M2a type, which act to reduce inflammation 

(Pusic et al., 2014). EE decreased the response to amphetamine treatment and stress-

induced CORT, which was associated with reduced anxiety (Ravenelle et al., 2013). 

Enrichment after chronic mild stress combined with fluoxetine increased neuronal 

proliferation in the hippocampus (Tanti et al., 2013).  

 

Enrichment seems to have beneficial effects on behavioural changes caused by stress. 

EE protects against stress-induced memory impairments (Wright & Conrad, 2008) and 

depressive symptoms (Huang et al., 2012). Fluoxetine treatment worsened depressive 

symptoms after chronic stress, but when stress was followed by EE, fluoxetine reduced 

depressive symptoms (Branchi et al., 2013). Social housing can cause stress among 

submissive animals after confrontation, but animals housed socially after these 

conflicts showed behavioural improvements and lower arousal than those housed 

individually (Singhal et al., 2014). Conversely, one month of EE in mice increased 

behavioural responses to acute (von Frey fiber) and chronic injury (formalin injection). 

This may indicate a sensitisation to pain or inflammation (Shum et al., 2007). 

Generally, stress seems to have negative effects, but can be neutral or positive in small 

amounts. Enrichment is usually protective against the negative effects of stress. This 

may be because enrichment itself is a mild stressor which inoculates against more 

serious stress events in the future (Crofton et al., 2015) 

 

13. Summary 

A patient’s environment, both before and after a stroke, has a large impact on their 

resilience and recovery. Disability caused by stroke can result in a loss of enrichment 

in the patient’s environment, as they are housebound or institutionalised. This can be 
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associated with symptoms of depression and anxiety, and poorer outcomes (Campbell 

Burton et al., 2012). Impoverishment has a wide range of negative effects on stroke 

recovery including increased infarct sizes, impaired behavioural scores, increased 

stress, and worsened cellular and molecular recovery. An enriched environment 

following stroke, including cognitive and social activities, can improve activity levels 

in human patients (Janssen et al., 2013). EE has a wide range of positive effects on 

stroke recovery including improved cellular recovery, reduced inflammation, reduced 

stress, and improved behavioural scores. 

 

Our study aimed to more closely approximate the situation that many human stroke 

patients encounter, that is, an enriched environment pre-stroke followed by a change in 

post-stroke environment that is impoverished or enriched to varying degrees. We 

assessed the effect of changes in post-stroke environment on lesion volume and 

measured microglial activation as a measure of inflammation in various brain regions. 

We also assessed functional recovery in a variety of behavioural tasks, as well as 

behavioural models of mouse anxiety and depression. We expected that DE would 

increase infarct volume, increase remote inflammation and worsen behavioural 

recovery due to increased stress and loss of the benefits of enrichment. 
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1. Animals and Housing 

Male C57BL/6J mice aged 2-3 months and weighing 28-32 g were obtained from the 

Hercus Taieri Resource Unit, University of Otago. All procedures described in the 

study were approved by the University of Otago Animal Ethics Committee. Animals 

were housed in groups of ten in mildly enriched conditions on a 12:12-hour day-night 

cycle at 22 ± 2 °C for three months prior to stroke. Animals had ad libitum access to 

standard chow and water. During the three-month period where we maintained the 

mice in mild enrichment conditions, we used open-topped cages (430 x 280 mm and 

100 mm high) with wire lattice lids. Cages were provided with shredded paper along 

with toys and objects that were changed weekly. These objects included plastic cups, 

trucks, plastic and rubber balls, plastic and wooden ice cream sticks, polystyrene balls 

and stars, and plastic and cardboard tubes and shelters (Figure 2.1). The cages 

themselves were changed weekly, with new bedding material.  

 

 

 

 

Figure 2.1. Example of cage with enrichment objects. Other objects were used 

such as cardboard, wooden and polystyrene objects, and other toys such as balls 

and cups. 
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Because of the large number of animals (n=15-20 per treatment group), the procedures 

of stroke, differential housing and behavioural testing were split into two rounds. The 

first half of the animals received stroke after three months of enrichment, and the 

second half received stroke after approximately five months of enrichment. There were 

some minor behavioural differences between rounds one and two (see Appendix A), 

but these were generally due to small sample sizes in individual rounds (see 

Discussion section 4.1). 

 

Immediately following sham or stroke surgery (see below), animals were split into 

three separate housing groups, and after 3-4 days of post-surgical monitoring 

transferred to the Behavioural Phenotyping Unit (BPU), University of Otago. The 

groups of ten animals from pre-stroke housing were randomly split into two groups of 

five animals and each group of five went into a different housing condition. Some 

groups continued in the mildly enriched housing with weekly object changes (EE), 

some groups started enhanced environmental enrichment (EEE) with object changes 

three to four times per week, while the third group was housed in a de-enriched 

environment (DE) where animals were housed individually with no toys or objects. 

 

Upon moving all mice to the BPU, all groups were transferred from open-top cages to 

individually ventilated cages (310 x 140 mm and 120 high; Tecniplast, Italy). In the EE 

and EEE groups these smaller cages necessitated a change from groups of five animals 

to two groups – one of three animals and one of two animals. It should be noted that 

moving mice from open-top caging into individually ventilated cages (IVC) acts as a 

mild stressor to the animals. Moving the animals from large groups into smaller groups 

can have similar effects. These changes in conditions mean that all mice are subjected 

to mild stress, which mimics what happens to human patients. In the BPU, all animals 

were maintained on a reversed 12:12-hour day-night cycle. These housing conditions 

continued for five weeks throughout behavioural testing until the animals were 

sacrificed. Figure 2.1 shows the design and timeline of animal housing. 
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Figure 2.2. Schematic diagram of experimental design and timeline. n-numbers 

refer to the number of mice in each group. The size of the coloured blocks 

represents the number of animals in each cage, pre-stroke being 10, post-stroke 

recovery 5 for EE and EEE and 1 for DE, and during behaviour testing 2 or 3 for 

EE and EEE and 1 for DE. EE = environmental enrichment; EEE = enhanced 

environmental enrichment; DE = de-enriched environment; HTRU = Hercus Taieri 

Resource Unit; BPU = Behavioural Phenotyping Unit.  

 

2. Photothrombotic Stroke 

Focal ischemia in the medial prefrontal cortex (mPFC) was induced using the 

photothrombosis model (Clarkson et al., 2010). In this procedure, animals were 

initially anaesthetised with 4 % isoflurane in an oxygen/air mix in a closed plexiglass 

container (VetEquip; U.S.A.) before being transferred to a stereotaxic frame (Model: 

9000RR-B-U, KOPF; California, U.S.A.). At this time, the anaesthetic (delivered via a 

nose-cone) was reduced and maintained between 1.5 - 2.5 % isoflurane during the 

course of the surgical procedures. Body temperature was monitored and maintained at 

36.9 ± 0.2 °C using a rectal thermometer attached to a homeothermic blanket (Harvard 

Apparatus; Massachusetts, Unites States of America).  
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Once steady-state anaesthesia had been reached in the animals, the top of the head was 

shaved with an electric razor (Remington). The animal’s eyes were protected from the 

light and from drying out using Vaseline (Unilever). The shaved area was then 

sterilised using a cotton bud with hibitane (30 % chlorhexadine in 70 % ethanol). A 

midline incision 10 – 15 mm long was made in the scalp to expose the skull. Using a 

sterile cotton bud, the periosteum was cleared from the top of the skull, and the skull 

dried to minimise light scatter. Bregma was located and marked on the skull with a 

marker. A 3300 KW cold light source attached to a 20 x objective with a 2 mm 

aperture (Olympus KL1500 LCD; New Zealand) was attached to the stereotaxic frame 

and centred 1.2 mm anterior to bregma on the midline and lowered until it just touched 

the skull. Rose Bengal dye (200 μl of a 10 mg/ml solution in saline) was injected 

intraperitoneally (i.p.) into the mouse. After waiting five minutes for uptake into the 

blood, the brain was illuminated for a period of 22 minutes. This illumination time was 

chosen based on prior studies conducted by Ms Lisa Zhou (Honors and now PhD 

candidate in the laboratory of Dr Clarkson), which she demonstrated resulted in 

reliable infarction to the mPFC (Zhou et al., 2015). 

 

Following illumination, the light was switched off and the scalp was closed with 

surgical glue and the animals were placed in an individual cage on a heating pad to 

recover from anaesthesia, before being randomly assigned to one of the housing 

conditions. Animals were kept in the surgery room for 2-4 days for post-surgical 

monitoring. 

3. Behavioural Testing 

All behavioural testing was carried out during the animals’ night phase (when mice are 

more active (Aoki et al., 2014)) in the BPU, University of Otago. Animals were 

transferred to the testing room just prior to testing, which was carried out under white 

fluorescent lights. The lighting was under moderate lux conditions to allow cameras to 

operate effectively and to allow anxiety-related behaviour under light exposure, while 

not being to bright to avoid excessive anxiety and disturbance of animals’ daily 

rhythms. All arenas were cleaned with 10 % ethanol between each trial. During each 

trial, the experimenter stood behind a curtain to avoid influencing the animals’ 

behaviour. The grid-walking and cylinder tests were carried out one week prior to 

stroke and one week post-stroke to ensure there was no effect of stroke on simple 
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motor behaviour that would confound further tests of activity such as the open field 

test. The open field, novel object recognition, object location recognition, elevated plus 

maze and light-dark box tests were carried out at one and four weeks post-stroke to 

determine whether any deterioration or recovery occurred in activity levels, anxiety, or 

memory over the weeks following stroke. 

 

3.1 Grid-walking 

The grid-walking test measures forelimb and hindlimb motor performance (Clarkson 

et al., 2010). It was carried out one week prior to surgery to obtain baseline 

measurements, as well as one and four weeks following stroke to test whether or not 

the strokes had any effect on motor performance. Animals were placed on a wire grid 

measuring 200 x 320 mm with 12 mm grid squares and dark opaque plastic walls 

suspended 500 mm above the ground for five minutes. A mirror was placed underneath 

the grid to enable a video camera to record the underside of the grid. Videos were 

analysed by hand for the total number of steps taken and the number of foot faults by 

an observer blind to the experimental conditions. A foot fault was defined as a step 

where a limb slipped through the grid or where the wrist was placed on the grid wire 

instead of the paw. The number of foot faults was expressed as a percentage of total 

steps taken.  

 

3.2 Cylinder Test 

The cylinder test measures the use of each forelimb and is a test of motor asymmetry 

(Clarkson et al., 2010) and indicates that a stroke has affected one side of the brain 

more than the other. Similar to the grid-walking test, the cylinder test was carried out 

one week prior to surgery to obtain baseline measurements, and one week following 

stroke to measure the effect of stroke on motor performance. Immediately following 

the grid-walking task, mice were placed in an upright clear plexiglass cylinder (100 

mm diameter x 150 mm high) for five minutes. A mirror was placed behind the 

cylinder to allow the video camera to see all movements of the animal. Paper towels 

were placed underneath the cylinder to allow cleaning between animals. As mice rear 

up to a standing position to explore the cylinder, they use their right, left or both 

forelimbs to press on the cylinder for support. Videos were analysed by hand by an 

observer blind to the experimental conditions for the amount of time each forelimb 
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was used during rearing. This was expressed as the percentage of time spent using the 

left relative to the right forelimb, and is a measure of forelimb asymmetry. 

 

3.3 Open Field 

The open field test involves observing how an animal behaves in a large box with no 

objects, possibly revealing anxiety related behaviours and abnormal activity levels 

(Shao et al., 2015). Animals were placed in a 400 x 400 mm white opaque Plexiglas 

arena with sides 200 mm tall for ten minutes. Activity was recorded with overhead 

cameras and analysed using TopScan software (CleverSys Inc; Virginia, U.S.A.). 

Several different variables were measured. These included distance travelled (both 

total as well as assessment of individual one-minute sections), and the number of 

activity bursts that occur at various speed thresholds, which can be a measure of hyper- 

or hypo-activity. Several different threshold speeds were considered, and 200 mm/s 

was chosen as the speed showing the least variance and the largest differences between 

groups (See Appendix D Figure A18). Another measure was the amount of time spent 

in the middle of the arena vs. around the outside, which is often used as a measure of 

anxiety – more anxious animals spend less time in the open middle section. In 

TopScan, the arena was divided up into a 4 x 4 grid of even-sized squares. The middle 

zone was made up of the four middle squares and the outside zone was made up of the 

12 squares around the border (see Figure 2.3.). 

 

 

Figure 2.3. Open field grid arrangement for TopScan analysis. The middle zone 

(red) measured 200 x 200 mm. 
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3.4 Elevated Plus Maze 

The elevated plus maze is a measure of anxiety related behaviour – animals that spend 

less time out on the open arms are thought to be more anxious (Ravenelle et al., 2013). 

The maze consisted of a plus-shaped maze made of white opaque plastic. Two of the 

arms were open with a small vertical lip, and two of the arms were enclosed with walls 

measuring 150 mm high. The arms were all the same length and measured 650 mm 

from the middle. The whole maze was elevated 600 mm above the ground on a metal 

base (see Figure 2.4.). Animals were placed in the maze with their heads in the middle 

of the intersection of all four arms, facing the open arm away from the investigator, 

and could immediately choose which arm to move into. Trials lasted for three minutes 

and activity was recorded with overhead cameras and later analysed by hand. Variables 

measured included the percentage of time spent in the open arms and the number of 

entries into the open arms. An entry into an open arm was defined as when more than 

50% of the animal’s body entered the arm.  

 

 

Figure 2.4. Diagram of elevated plus maze arena (Steinman & Trainor, 2010). 

 

3.5 Light-Dark Box 

Like the elevated plus maze, the light-dark box (LDB) is used as a test of anxiety – 

animals that spend less time in the light half are thought to be more anxious (Campos 

et al., 2013). The light-dark box consisted of a rectangular arena 460 x 270 mm and 

270 mm high, split into two by a wall with a small opening in the centre at the bottom 
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for animals to move through. Slightly less than half of the arena, including the dividing 

wall and lid, was made of black opaque plastic, measuring 190 mm long x 270 x 270. 

Slightly more than half (270 mm cube) including the lid was made of clear plastic, and 

was illuminated by the room lights. The mouse was initially placed in the light half of 

the arena, and its activity recorded for five minutes by an overhead camera and later 

analysed using TopScan. Variables measured were the percentage of time spent in the 

light half of the arena, and the number of times the animal moved between the light 

and dark sections. Due to the absence of grid-walking and cylinder testing in the 

second round, the light-dark box test was included for the second round of strokes and 

behavioural testing only, so approximately half of all animals were tested in this arena. 

 

3.6 Novel Object Recognition 

The novel object recognition test measures time spent with a new and old object, and 

is a measure of visual recognition memory (Grayson et al., 2015). One day after the 

open field test, animals were put back into the same arena for ten minutes, this time 

with two identical objects. Objects were placed in two corners of the arena, 80 x 80 

mm away from the two back corners (see Figure 2.5. A). This constituted the 

habituation phase, and provided time for the animals to investigate and become 

familiar with each of the objects. Mice were then placed back in their home cages for 

approximately one hour (the retention period). During the retention period objects 

were removed, cleaned and then one of the objects from the habituation phase was 

substituted with a new object and along with the other original object introduced back 

into the arena in the same locations (see Figure 2.5. B). Animals were then re-

introduced into the arena for a 3 minute test period. During week one behavioural 

testing, the familiar objects used were two identical yellow soft drink cans and the 

novel object was a red plastic rectangular prism with a base of approximately the same 

size as the soft drink cans (see Figure 2.6.). During week four testing, the familiar 

objects were ceramic bear salt-shakers of a similar size to the week one objects, and 

the novel objects were ceramic figures of different colour and shape but a similar size 

to the familiar objects. 
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A)                                                                   B) 

           

Figure 2.5. Novel object recognition arena arrangements. On the left are the two 

cans in the habituation period. On the right are the familiar object and the novel 

object in the test period. Photos courtesy of Lisa Zhou. 

 

 

 

 

Figure 2.6. The objects used in the novel object and object location recognition 

tasks. The soft drink can and the ceramic bear were the familiar objects used in 

both tasks. The red plastic rectangle and the ceramic girl were the novel objects 

(Photo courtesy of Lisa Zhou). 
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Activity was recorded with overhead cameras and videos were analysed using 

TopScan. Measured variables included time spent sniffing (investigating) each object 

and the number of times an object was sniffed. To analyse sniffing, a zone was created 

in TopScan around the objects measuring 20 mm in width. When the animal was 

sniffing in this area it was deemed to be investigating the object. The accuracy of this 

method was checked by analysing some videos by hand (see Appendix E Tables A1 

and A2). 

 

3.7 Object Location Recognition 

The object location test measures time spent with familiar objects in a familiar or new 

location, and is a test of spatial memory (Luine, 2015). One day after the novel object 

test, animals were again placed back into the same arena for ten minutes with the two 

original familiar objects from the novel object test. Objects were in the same position 

as for the novel object test (see Figure 2.7. A). This was the habituation phase for the 

object location recognition test. Animals were again placed back in their home cages 

for approximately one hour. One of the familiar objects was moved to a new location 

(the bottom right-hand corner 80 x 80 mm out from the corner) and the animals were 

then reintroduced to the arena for three minutes (see Figure 2.7. B). The object 

location recognition test was carried out at one and four weeks post-stroke. The objects 

used were the same as the familiar objects in the novel object recognition task – soft 

drink cans during week one testing and ceramic bear salt shakers during week four 

testing.  

 

This test period was later analysed using TopScan in the same way as in the novel 

object recognition test. Activity was recorded with overhead cameras. Similarly to the 

novel object recognition test, the measured variables were the time spent sniffing each 

object and the number of times each object was sniffed. 
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A)                                                                       B) 

                

Figure 2.7. Object location recognition arena arrangement. On the left are the 

two familiar objects during the habituation period. On the right, one of the objects 

has been moved to the unfamiliar location. Photos courtesy of Lisa Zhou. 

 

4. Tissue Processing 

4.1 Cardiac Perfusion 

Animals were sacrificed following the completion of either week one or week four of 

behavioural testing. Mice were given an anaesthetic overdose of pentobarbital (100 μl 

i.p. of a 75 mg/ml solution). While still breathing, the animals were placed in a supine 

position with their forelimbs and one hindlimb taped to an absorbent mat in a fume 

hood. To ensure the mouse was fully unconscious, a foot-pinch was used to test the 

pain reflex.  

 

An incision was made with scissors in the medial abdomen immediately posterior to 

the sternum. Lateral incisions were made along the bottom of the ribcage on both 

sides. Further incisions were made through the diaphragm and the sternum to expose 

the chest cavity. Incisions were also made laterally and connective tissue cleared away 

in order to provide access to the heart. A further small incision was made in the right 

atrium to allow the blood and perfusate to drain following circulation through the 

body. A 25-gauge needle attached to a 1 ml syringe and a pressurised perfusion system 

(Perfusion One, Leica Biosystems, Germany) was inserted into the left ventricle, and 

approximately 10 ml of a 0.125 M phosphate-buffered saline (PBS) was injected at a 
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constant pressure, followed by approximately 30 ml of an ice-cold 4 % 

paraformaldehyde fixative solution. The mouse was then decapitated with scissors and 

skin and muscle cleared to expose the skull. The skull was then carefully removed 

using scissors and forceps, the optic nerves severed and the whole brain removed. The 

brain was then stored in 4 % paraformaldehyde for approximately one hour before 

being transferred into a 30 % sucrose solution in PBS to protect the brain prior to 

freezing and sectioning. Brains were left in sucrose solution for at least two days or 

until brains had sunk indicating they were ready to be cut.  

 

4.2 Brain Tissue Sectioning 

Brains were sectioned with a freezing microtome at -20 °C (Leica Jung, RM2025). 

Before mounting, the cerebellum was removed giving a flat surface at the posterior 

part of the brain to mount onto the freezing stage. The stage of the microtome was 

covered with a layer of 30 % sucrose and two brains at a time were placed onto the 

stage with the anterior surface facing the blade. The stage was then turned on to cool 

down and further sucrose solution was added around the base of the brains to secure 

them to the stage, and a polystyrene cover was placed over the brains to insulate them 

for approximately five minutes until they were completely frozen. The blade was set at 

45° and a small amount of cryoprotectant solution was applied to the blade to protect 

the sections during the cutting process. Coronal (40 μm thick) sections were cut and 

carefully collected from the blade using a paintbrush and placed into wells containing 

cryoprotectant (1 % Polyvinylpyrrolidone (PVP-40), 30 % sucrose, 0.9 % NaCl, 30% 

Ethylene glycol in 0.1M phosphate buffer) in a 24-well plate (Falcon, U.S.A.). Twelve 

wells were used for each brain (two brains per 24-well plate), and sections were placed 

sequentially into these wells, so that each well contained every 12
th

 section. The 

sections were then stored at -4 °C until mounting or staining. 

 

4.3 Cresyl Violet Staining 

Tissue was taken from two non-consecutive wells to ensure an even distribution of 

sections throughout the brain, for instance wells 1 & 7 for each brain. This ensures an 

accurate measure of lesion size. Sections were transferred into a shallow glass dish 

containing Tris-buffered saline (TBS; 0.05 M Tris and 0.15 M saline in dH2O) then 

using a paintbrush gently mounted on microscope slides subbed with a gelatine 



 
52 

solution (0.2 % gelatine and 0.025% Chromium Potassium Sulfate (KCr(SO4)2) in 

dH2O) and allowed to dry overnight. The following day, slides were taken through 

ascending ethanol concentrations (50, 70, 95 and 100 % ethanol). This process 

partially dissolves the fatty cell membranes and allows the Cresyl violet to enter the 

cell bodies to stain the Nissl substance. Slides were then taken back through 

descending ethanol concentrations, dH20, then immersed in a Cresyl violet solution 

(0.1 % Cresyl violet dissolved in 250 ml of a 0.07 % acetic acid solution) for ten 

minutes. Slides were rinsed quickly in 0.07 % acetic acid solution to clear away excess 

stain then taken back through ascending ethanol solutions to dehydrate the sections 

before two Xylene baths and coverslipping with dibutyl phthalate in Xylene (DPX). 

 

Photos were taken of each section to quantify lesion size. A montaging microscope 

(Olympus BX61, Japan) connected to a computer running the Volocity imaging 

program (PerkinElmer, USA) was used to take digital images of each section and 

exported TIFF files. These files were then opened in the ImageJ processing software 

(National Institutes of Health, USA) and the drawing tool used to define the edges of 

the infarct and calculate the area. 

 

4.4 IBA1 Chromagen Staining 

IBA1 is protein expressed by microglia, and as its expression is increased in response 

to microglial activation, is often used as a marker of inflammation (Walker et al., 

2013). Tissue was taken from one well per brain, placed into net wells using a small 

paint brush and washed in TBS (3 x 10 min). Where possible, tissue was left in the net 

wells and transferred to another well plate containing a different solution, in order to 

reduce damage caused by handling with the brush. Following this the sections were 

quenched in glycine (0.76 % in 0.1 M phosphate buffer) for 10 min. Glycine blocks 

formaldehydes left from fixation and prevents their reaction with peroxidases used 

later in the procedure. Sections were washed in TBS (3 x 10 min) then placed into an 

endogenous peroxidase blocking solution (8 ml methanol, 11.4 ml TBS and 600 μl 30 

% H2O2). This solution prevents non-specific peroxidases from reacting with the 

diaminobenzidine (DAB) used later in the procedure and increasing the background 

staining. Sections were again washed in TBS (3 x 10 min) then placed into incubation 

in the primary antibody solution (rabbit anti-IBA1, Wako Pure Chemical Industries 
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Ltd., Japan; diluted 1:10,000 in a TBS/0.3 % triton/0.25 % bovine serum albumin 

(BSA) solution with 2 % normal goat serum) for approximately 40 hours at 4 °C on an 

orbital shaker. The primary antibody concentration of 1:10,000 was determined 

following a titration series that we carried out that ranged from 1:1,000 to 1:10,000. 

 

Following the primary antibody incubation, sections were washed for 10 min in 4x 

TBS and then 2 x 10 min in 1x TBS before incubation in the secondary antibody 

solution (biotinylated goat anti-rabbit IgG, Vector Laboratories, U.S.A.; diluted 1:400 

in a TBS/0.1 % triton/0.2 % BSA solution) for approximately 70 min. Sections were 

then washed in TBS (3 x 10 min) and then incubated in A/B solution (1 % A and 1 % B 

in TBS/triton/BSA, prepared 30-40 min in advance to allow the avidin to bind with the 

biotinylated enzyme, Vectastain ABC kit, Vector Laboratories, U.S.A.) for 

approximately 70 min. The avidin proteins bind to the biotin on the secondary 

antibody and so the IBA1 molecules are connected with the biotinylated enzyme 

complex. After another 3 x 10 min wash in TBS, sections were incubated in a DAB 

solution (1 x 10 mg tablet dissolved in 20 ml 0.1 M phosphate buffer (PB), syringe 

filtered then 6.8 μl of 30 % H202 added) for 7-10 minutes. DAB is oxidised by the 

biotinylated enzyme and forms a brown stain wherever IBA1 is present. During the 

reaction process sections were wet-mounted on glass-slides and DAB staining checked 

using a light microscope. Once a desired level of DAB staining had been reached, 

sections were washed in dH20 (3 x 10 mins), transferred to TBS and mounted on 22 x 

60 mm gelatine subbed microscope slides and left to dry overnight. Sections were then 

dehydrated in ascending concentrations of ethanol for 1 minute each (50, 75, 95, 100, 

100 %) followed by 2 x 1-minute incubations in xylene before being coverslipped with 

DPX. 

 

4.5 IBA1 Analysis 

IBA1 staining was first analysed in a semi-quantitative way. Sections were examined 

using a montaging microscope, and staining intensity and location recorded on maps of 

the brain taken from the Mouse Brain Atlas (Franklin & Paxinos, 2007). The intensity 

of staining in various areas of interest was rated on a scale of 0-3: 0 being no staining; 

1 for occasional stained cells, very low density; 2 for moderate even staining of low to 

medium density; and 3 for dense heavy staining. A representative example of each 
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staining intensity can be seen in Figure 2.8. Each animal received a score for a 

particular brain region and these scores were used to calculate group averages. The 

regions of interest included the secondary motor cortex (M2), sensory cortex (SC), 

lateral ventricles (LVs), the arcuate nucleus and median emminence of the ventral third 

ventricle (v3V), hippocampus (Hipp.), substantia nigra pars reticulata (SNr), 

retrosplenial cortex (RSC), and thalamus (Thal.). The M2 region was analysed as it 

was the primary location within the mPFC damaged by the stroke. Other regions were 

chosen because of their connections to the mPFC (SC, Hipp., Thal., RSC (van Eden et 

al., 1992)), involvement in spatial memory (RSC, Hipp., Thal. (Mendez-Couz et al., 

2015)), neurogenesis (LV (Pan et al., 2013)), the HPA axis (v3V (Smythe et al., 1996)) 

or because of observed staining patterns (v3V, SNr, Thal.). Many of these areas 

spanned several sections and had a variety of staining intensities, so an overall score 

was given for the maximum amount of staining observed in an area, even if there were 

other parts of that area that had less staining.  

 

The second method used to analyse IBA1 staining was a cell count. Photographs were 

taken using a montaging microscope. The number of IBA1 positive cells was counted 

by hand using the cell counter plugin in the Fiji version of ImageJ image processing 

software. Cells were counted when there was a clear cell body and at least one process 

extending from the nucleus, or in the case of more amoeboid cells when there was a 

large cell body and the area of the cell was distinct from any neighbouring or 

overlapping cells. Cell counts were taken from selected sections only – one per animal 

per brain region. This was because of the large number of animals. Sections used were 

those that were intact, from as close as possible to certain measurements. These 

measurements are shown in part A of Figures 3.16, 3.18, 3.19 and 3.20 of the Results 

section, as well as in Appendix B. 

 

The third method used to analyse IBA1 staining was thresholding. Again using Fiji 

ImageJ, an image was converted into 8-bit grayscale, then the threshold adjusted to the 

correct level. As images had differing levels of background staining, this level was 

different for each image, and was determined by the investigator as the highest level 

before artefacts and non-cellular stains were included. The software reports the number 

of pixels in the image that are darker than the threshold. 
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A)      B) 

       

C)      D) 

       

Figure 2.8. Photomicrograph examples of each IBA1 staining intensity observed. 

A) 0 – no staining. B) 1 – low density, occasional cells. C) 2 – moderate density. 

B) 3 – high density. 

 

Due to the time-consuming nature of the cell-counting and thresholding methods, and 

the large number of animals used and brain regions studied, these methods were 

restricted to the v3V region in all animals. We chose this site for the most thorough 

analysis due to the involvement of this area in the HPA axis (Smythe et al., 1996; 

Spinedi et al., 1991; Owens et al., 1991) and the observation of dense IBA1-positive 

staining. The other regions mentioned above were analysed only in the qualitative 

manner, except for 2-5 animals randomly chosen from each treatment group, which 

also received cell counting and thresholding in all brain areas. This was in order to 

assess the accuracy of the qualitative method. 
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5. Statistical Analysis 

Experimental groups were in a two (stroke and sham) by three (de-enrichment, 

enrichment, enhanced enrichment) design, so two-way analysis of variance (ANOVA) 

was used to compare the main effects of stroke and housing, and the interaction of 

these variables. Multiple pair-wise comparisons were used to compare individual 

groups (e.g. sham de-enriched vs. stroke de-enriched). The same statistical tests were 

used to compare results between weeks one and four post-stroke, and also between 

rounds one and two of testing. All data are reported as mean ± standard error of the 

mean (SEM), and the two-tailed minimum level of significance is p<0.05.  

 

Sample-sizes (n) were not equal due to the timing of tests and the withdrawal of some 

animals. In round one, all sham groups had n=5, and all stroke groups had n=10. In 

round two, all sham groups had n=10, and stroke groups n=10. Unfortunately, five 

animals from the stroke EE group and one from the stroke EEE group had to be 

removed from the study. The stroke EE animals were fighting excessively and were 

placed into individual housing to prevent further injury. This confounded the housing 

conditions. The animal from the stroke EEE group died due to stroke. This meant that 

in round two these groups had n=5 and n=9, respectively.  

 

Tests carried out only in round one (grid-walking and cylinder) and only in round two 

(light-dark box) had lower n-values. It was decided after we had completed the first 

round of testing that inclusion of the LDB would add value, which meant only mice 

that were tested during the second round took part in this test. With the inclusion of the 

LDB testing for the second cohort of animals, we also decided not to test these mice on 

the grid-walking and cylinder tasks, so as not to over-test the animals. Our group has 

previously published that an n=6-8 is sufficient to observe significant impairment on 

this task (Clarkson et al., 2010, 2011). For histology, some tissue was sent elsewhere 

for analysis. The values for each test are shown in Table 2.1. 
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Table 2.1. Sample sizes (n) for each test 

Test   sham-DE sham-EE sham-EEE stroke-DE stroke-EE stroke-EEE 

Behaviour Grid-walk 5 5 5 10 10 10 

 

Cylinder 5 5 5 10 10 10 

 

OF 15 15 15 20 15 19 

 

EPM 15 15 15 20 15 19 

 

NOR 15 15 15 20 15 19 

 

OLR 15 15 15 20 15 19 

 

LDB 10 10 10 10 5 9 

Histology Cresyl violet N/A N/A N/A 9 11 7 

 

IBA1 10 10 10 15 11 13 
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1. Behavioural Tests 

For most behavioural tests, results have been combined between the two rounds of 

testing. The exceptions are the grid-walking and upright cylinder tests as they were 

only performed in the first round, and the light-dark box, as this was only performed in 

the second round. As explained below, and shown in Appendix A, there were some 

differences between round one and round two of behavioural testing. The possible 

reasons for these differences are explored in the discussion section 4.1. Despite these 

differences, results from both rounds have been combined for analysis. 

 

1.1 Grid-walking Test 

Performance in the grid-walking test is a measure of motor coordination. Although all 

animals experienced the same housing conditions prior to stroke, data for the pre-

stroke grid-walking and cylinder tests has been separated into the post-stroke groups in 

order to make within-group comparisons across the testing period. 

 

One week before stroke, sham DE animals (6.33 ± 0.25) made fewer foot faults than 

both sham EEE (8.29 ± 0.72, p<0.05,) and stroke DE (8.41 ± 0.64. p<0.01) animals. 

There was an interaction effect (two-way ANOVA, p<0.05). Since all animals received 

the same housing treatment pre-stroke, and experimenters were at this stage blind to 

the assignment of animals into groups, we must conclude that this difference is an 

anomaly and possibly due to remarkably low variance within the sham DE group. 

 

One week after stroke, stroke animals made more foot faults than shams (two-way 

ANOVA, p<0.001, Figure 3.1 B), and there was a main effect of housing, (p<0.05), 

with DE animals making more foot faults. Among shams, DE mice (9.84 ± 0.22) made 

more foot faults than either EE (7.53 ± 0.84, p<0.05) or EEE mice (8.06 ± 0.68, 

p<0.05). Stroke EE (10.04 ± 0.43) and stroke EEE (10.27 ± 0.28) showed increased 

foot faults compared with their sham counterparts (p<0.05 and p<0.01 respectively). 

These data indicate that mPFC stroke has caused a slight impairment in motor skills. It 

also seems that DE among shams has worsened motor performance. 
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Four weeks after stroke, there was an interaction effect (two-way ANOVA, p<0.01, 

Figure 3.1 C), due to EEE increasing foot faults among shams, while decreasing faults 

among stroke groups. There was a main effect of stroke where sham DE mice (6.25 ± 

0.29) made less foot faults than stroke DE mice (8.27 ± 0.28, p<0.001). Among stroke 

animals, the EEE group (6.38 ± 0.36) made less foot faults than either DE (p<0.001) or 

EE (8.78 ± 0.65, p<0.01) groups. These data indicate that motor skills have recovered 

more in the stroke EEE group than the stroke DE or stroke EE groups. 

 

Overall, foot faults increased from pre-stroke to one week post-stroke (two-way 

ANOVA, p<0.001, Figure 3.1 B). Multiple comparisons showed that this was also true 

for the sham DE mice (p<0.001) and stroke EEE mice (p<0.01). Stroke DE and stroke 

EE groups showed a similar trend.  

 

The number of foot faults then decreased overall from one to four weeks post-stroke 

(two-way ANOVA, p < 0.001). Multiple comparisons showed that this was true for the 

sham DE mice (p<0.001) as well as the stroke DE (p<0.001) and stroke EEE mice 

(p<0.001). The stroke EE mice showed a similar trend, although not significant. There 

were no differences between the number of faults pre-stroke and at four weeks post-

stroke, indicating that any motor effects of stroke had disappeared after four weeks. 

Overall, these data show that our stroke has caused a small temporary impairment in 

motor skills at one week post-stroke, which has then recovered by four weeks post-

stroke. Among shams, the de-enriched animals showed the same pattern. 
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A) 

 

 

 

 

B)               C) 

 

             Week 1                                                              Week 4 

 

 

Figure 3.1. A) The percentage of foot faults made relative to total steps taken in 

the grid-walking task. The time periods refer to one week pre-stroke and weeks 

one and four post-stroke. B) and C) A closer look at weeks 1 and 4 post-stroke. * 

= p<0.05, ** = p<0.01, *** = p<0.001. δ = significantly different from pre-stroke, 

Δ = significantly different from week 1. 
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1.2 Cylinder Test 

Similarly to the grid-walking test, the cylinder test data has been separated into the 

post-stroke groups in order to make within-group comparisons.  

 

Pre-stroke, sham DE mice (9.52 ± 1.41 %) favoured their left forepaw more than 

stroke DE mice (1.02 ± 2.79 %, p<0.05, Figure 3.2 A). Among shams, DE mice 

favoured their left forepaw more than EEE mice (0.87 ± 3.59, p<0.05). Similarly to the 

grid-walking test, there should be no difference between groups as they all received the 

same treatment pre-stroke. Again, the variance of the sham DE group is much lower 

than the other groups, which may account for this result. 

 

One week post-stroke, there were no differences found (Figure 3.2 B). Four weeks 

after stroke, there were still no differences (Figure 3.2 C). There were no differences 

found between time points. These results indicate that stroke, as well as housing 

condition, had no effect on the preference of either forepaw. 
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A) 

 

 

 

B)      C) 

    

           Week 1              Week 4 

 

 

 

Figure 3.2. A) The percentage increase of time spent using the left forepaw 

compared with the right in the cylinder test. The time periods refer to one week 

pre-stroke and weeks one and four post-stroke. B) and C) A closer look at weeks 

1 and 4 post-stroke. 
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1.3 Open Field 

Abnormal activity levels in the open field can be indicators of dysfunction. Low 

activity levels are seen as an animal correlate of depression (e.g. Shao et al., 2015). We 

used three measures of activity in the open field: Total distance travelled in the ten-

minute trial, distance travelled in each of ten one-minute blocks, and the number of 

high-speed bursts. 

 

1.3.1 Total Distance Travelled 

One week post-stroke, sham DE mice (33788 ± 1168 mm) travelled further than sham 

EE mice (26831 ± 2555 mm, p<0.05, Figure 3.3 A). Overall, there were no significant 

main effects of stroke or housing, and no significant interaction effect (two-way 

ANOVA). 

 

Four weeks post-stroke, there was an interaction effect (two-way ANOVA, p<0.001) 

where EE animals travelled further than EEE animals among the stroke groups, but 

less far among sham groups. There were no main effects. Stroke EEE animals (23942 

± 1346 mm) travelled further than sham EEE animals (14843 ± 1572 mm, p<0.001, 

Figure 3.3 B). Among the sham mice, the EEE animals travelled less than both the DE 

(20106 ± 1803 mm, p<0.05) and EE animals (22673 ± 2665 mm, p<0.05). Among the 

stroke mice, the EEE animals travelled further than the EE animals (17854 ± 1603 

mm, p<0.01). 

 

Overall, animals travelled less in week four than week one (two-way ANOVA, 

p<0.001, Figure 3.3 B). All individual groups travelled significantly less in week four, 

except the sham EE animals (sham DE p<0.001, sham EEE p<0.001, stroke DE 

p<0.001, stroke EE p<0.01, stroke EEE p<0.01).  

 

The results for round one and two comparisons are shown in Appendix A. Overall, 

there was no difference between rounds. In week one the stroke EE group travelled 

further in round two than round one (p<0.05); in week four, there were no differences 

(see Appendix A Figure A1 A). 
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A) Week 1 

  

 

B) Week 4 

  

 

 

Figure 3.3. Total distance travelled in the open field test. A) Week one post-

stroke. B) Week four post-stroke. * = p<0.05, ** = p<0.01, *** = p<0.001, Δ = 

significantly different from week one. 
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1.3.2 Distance Travelled – 60-second Blocks 

To compare changes in activity across the ten-minute trial, data were split into ten 60-

second blocks. Animals tended to travel more at the beginning of the test, and then less 

as time went on. Two-way ANOVAs were carried out for each block. In week one, 

there was a main effect of stroke only in block four – stroke animals travelled further 

than shams (p<0.01, Figure 3.4 A). There were main effects of housing in blocks four 

(p<0.05), seven (p<0.01) and ten (p<0.01). Multiple pair-wise comparisons were also 

carried out for each block. DE sham animals travelled significantly more than EE 

shams in blocks one (p<0.05), two (p<0.05) and four (p<0.05), which is consistent 

with the difference seen in the total distance travelled. 

 

In week four, interaction effects were found in blocks 1 (two-way ANOVA, p<0.001, 

Figure 3.4 B), 2 (p<0.01), 4 (p<0.001) and 9 (p<0.001). These were consistent with the 

interaction effect found in the total distance analysis – among shams, EE mice 

travelled further than EEE mice, whereas in stroke animals, this effect was reversed. 

Stroke animals travelled further than shams only in block five (p<0.05). There were 

multiple significant results which agree with those found in the total distance travelled. 

 

Overall, animals travelled less in week four than week one in each of the 60-second 

blocks (two-way ANOVA, p<0.001). Multiple comparisons for each time block are 

shown in Figure 3.5. For most of the groups, mice travelled further in week one in 

almost all blocks. However, animals in the sham EE group only travelled more in week 

one in two out of ten blocks. This is consistent with the results for total distance 

travelled where the sham EE group travelled the same distance in weeks one and four. 

 

Round one and two comparisons are shown in Appendix A. Figure A2. In week one, 

the stroke EE animals travelled more in round two in nine out of ten blocks (Appendix 

A Figure A2 D), but other groups showed only occasional differences. In week four, 

there were only occasional differences between rounds (Appendix A Figure A3). 
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A) Week 1 

 

 

B) Week 4 

 

 

 

 

Figure 3.4. Distance travelled in the open field divided into 60-second blocks. 

The data from week one post-stroke are shown in A), and week four in B). The 

letters I, S and H above each block indicates the significance levels of the 

interaction and main effects of stroke and housing respectively, for a 2-way 

ANOVA carried out separately for each time block. Significance levels are: * = 

p<0.05, ** = p<0.01, *** = p<0.001. 
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A)      B) 

  

 

C)      D) 

  

 

E)      F) 

  

 

 

Figure 3.5. Distance travelled by each group in 60-second blocks. Each graph 

shows the data from weeks one and four for one experimental group. A) sham 

DE; B) stroke DE; C) sham EE; D) stroke EE; E) sham EEE; D) stroke EEE. 

Stars above each 60-second block indicate significance level of the t-test 

comparing week one and four for that block. * = p<0.05, ** = p<0.01, *** = 

p<0.001. 
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1.3.3. High-Speed Bursts 

The number of high-speed bursts in the open field can be another indicator of 

abnormal activity levels. In week one, stroke animals made more high-speed bursts 

(p<0.05, two-way ANOVA, Figure 3.6 A). Stroke EE mice (45.3 ± 8.6) made more 

high-speed bursts than sham EE mice (23.7 ± 4.6, p<0.05). 

 

In week four, there was a significant interaction effect where EE decreased bursts in 

sham animals, but increased bursts in stroke animals (two-way ANOVA, p<0.05, 

Figure 3.6 B). Stroke EEE animals (23.6 ± 2.6) made more bursts than sham EEE 

animals (10.9 ± 2.2, p<0.01,). Within the stroke groups, EEE animals made more 

bursts than DE animals (16.2 ± 1.6, p<0.05). 

 

Overall, mice made less high-speed bursts in week four than in week one (two-way 

ANOVA, p<0.001, Figure 3.1.3 B). Multiple comparisons showed that four out of the 

six groups made significantly less bursts in week four: Sham DE (p<0.001), sham EEE 

(p<0.001), stroke DE (p<0.001), and stroke EE (p<0.05). 

 

There were some differences between round one and round two. In week one, animals 

made more bursts in round two (two-way ANOVA, p<0.05, Appendix A Figure A4. A). 

In week four, there were no significant differences. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

 

Figure 3.6. The mean number of high-speed bursts over 200 mm/s performed in 

the open field. * = p<0.05, ** = p<0.01, *** = p<0.001. Δ = significantly 

different from week one. 
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1.3.4 Time Spent in Middle of Arena 

The percentage of time animals spent in the middle of the open field is a measure of 

anxiety. In week one, stroke EE animals (16.9 ± 2.2 %) spent more time in the middle 

than stroke DE animals (11.5 ± 1.2 % p<0.05, Figure 3.7 A). There were no significant 

ANOVA results. In week four, there were no significant differences. 

 

Animals spent less time in the middle of the arena in week four than week one (two-

way ANOVA, p<0.001, Figure 3.7 B). Multiple comparisons revealed that only sham 

EEE animals spent less time in the middle in week four (8.8 ± 1.7 %) than week one 

(15.6 ± 1.6 %, p<0.01, Figure 3.7. B). 

 

In week one, animals spent less time in the middle in round two (two-way ANOVA, 

p<0.001, Appendix A Figure A5), however only the stroke DE group showed this 

effect (p<0.05). In week four, there was no main effect of round. The sham EE group 

spent less time in the middle in round two (p<0.05, Appendix A Figure A5 B). 
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A) Week 1 

 
 

B) Week 4 

 

 
 

Figure 3.7. The mean percentage of time spent in the middle of the arena in A) week one and 

B) week four of the open field test. * = p<0.05. Δ = significantly different from week one. 
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1.4. Elevated Plus Maze 

Two measures were used in the elevated plus maze – the percentage of time spent in 

the open arms, and the number of times an animal entered the open arms. More 

anxious animals spend less time in the open arms and make fewer entries to the open 

arms. 

 

1.4.1. Time Spent in the Open Arms 

There was an interaction effect where DE had no effect in shams but increased time in 

the open arms in stroke animals (two-way ANOVA, p<0.05, Figure 3.8 A). There was 

a main effect where stroke animals spent more time in the open arms than shams, 

(p<0.001). Stroke DE animals (28.39 ± 3.58 %) spent more time in the open arms than 

sham DE animals (12.36 ±  2.04 %, p<0.01). Among stroke groups, DE animals spent 

more time in the open arms than EE animals (15.98 ± 1.89 %, p<0.01). 

 

In week four, stroke DE mice (13.31 ± 1.51 %) spent less time in the open arms than 

sham DE mice (5.92 ± 1.93 %, p<0.01, Figure 3.8 B). There were no significant effects 

in the ANOVA. 

 

Animals spent less time in the open arms in week four than week one (two-way 

ANOVA, p<0.001, Figure 3.8 B). Four individual groups showed this same change: 

sham DE (p<0.05), stroke DE (p<0.001), stroke EE (p<0.05) and stroke EEE (p<0.01, 

Figure 3.8. B). 

 

Overall in week one, there was no difference in time spent in the open arms between 

round one and round two, but the sham EE group did spend more time in the open 

arms in round two than round one (p<0.01, Appendix A Figure A6 A). In week four, 

animals spent less time in the open arms in round two (two-way ANOVA, p<0.001, 

Appendix A Figure A6 B). This effect seems to be due to large differences between 

rounds one and two in both EEE groups – sham and stroke (p<0.001 and p<0.05, 

respectively). 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure 3.8. The percentage of time spent in the open arms of the elevated plus 

maze. ** = p<0.01. Δ = significantly different from week one. 
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1.4.2. Open Arm Entries 

In week one, stroke animals made more open arm entries than shams (two-way 

ANOVA, p<0.01, Figure 3.9 A). Stroke DE animals (7.70 ± 0.65) made more entries 

than sham DE (5.53 ± 0.62, p<0.05) animals. This is consistent with the results for 

time spent in the open arms. In week four, there were no differences found, similarly to 

the results for time spent in the open arms. These results indicate that while stroke and 

DE may cause decreased anxiety one week after stroke, these effects are reduced by 

four weeks after stroke. 

 

Overall, animals made less entries in week four compared with week one (two-way 

ANOVA, p<0.001, Figure 3.9 B). Multiple comparisons showed that all groups 

decreased their number of entries from week one to four (sham DE p<0.001; sham EE 

p<0.01; sham EEE p<0.05; stroke DE p<0.001; stroke EE p<0.01; stroke EEE p<0.01). 

 

In week one, animals made more entries into the open arm in round one than round 

two (two-way ANOVA, p<0.05, Appendix A Figure A7 A). Individual groups to make 

more entries in round one were sham DE (p<0.01) and sham EEE (p<0.001). On the 

other hand, the stroke DE group made more entries in round two (p<0.05). In week 

four, animals also made more entries into the open arm in round one (two-way 

ANOVA, p<0.05). Individual groups that made more entries in round one were sham 

EEE (p<0.01) and stroke EEE (p<0.05, Appendix A Figure A7 B). These results, 

combined with the round one and four comparisons of time spent in the open arms, 

indicates that animals in round two of testing had higher anxiety levels, especially by 

week four, and especially in EEE groups. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure 3.9. The number of entries made into the open arms of the elevated plus 

maze. * = p<0.05. Δ = significantly different from week one. 
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1.5 Light-Dark Box 

The light dark box measures anxious behaviour. More anxious animals spend less time 

in the light section and make fewer entrances into the light section. 

 

1.5.1 Time Spent in the Light 

In week one, stroke animals spent less time in the light section (two-way ANOVA, 

p<0.01, Figure 3.10 A). Multiple comparisons revealed that sham EEE mice (36.20 ± 

2.74 %) spent more time in the light than stroke EEE mice (26.39 ± 3.09 %, p<0.05). 

These results indicate that stroke increases anxiety, which is the opposite of the results 

in the elevated plus maze.  

 

In week four, there were no differences found (Figure 3.10 B). There were no data for 

stroke EE mice as the light-dark box test was only carried out in round two, and these 

animals were removed due to injuries.  

 

In week four, animals spent less time in the light section than in week one (p<0.01). 

The sham DE group spent less time in the light section in week four (p<0.05, Figure 

3.10 B). 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure 3.10. The percentage of time spent in the light section of the arena of the 

light-dark box test. * = p<0.05. Δ = significantly different from week one.  
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1.5.2 Entries into the Light Section 

In week one, stroke animals made fewer entries to the light than shams (two-way 

ANOVA, p<0.01, Figure 3.11 A), and there was a main effect of housing where EEE 

reduced the number of entries (p<0.05). Stroke EEE animals (7.11 ± 0.77) made fewer 

entries than sham EEE animals (13.30 ± 1.27, p<0.001). Among stroke groups, EEE 

animals made fewer entries than both DE (11.20 ± 0.93, p<0.01) and EE animals 

(13.00 ± 1.30, p<0.001). In week four, there were no significant differences. 

 

Overall, there were no differences between weeks one and four. The stroke EEE group 

increased the number of entries into the light in week four (p<0.05, Figure 3.11 B). 

These results, combined with the amount of time spent in the light section, indicate 

that while stroke increases anxiety one week after stroke, especially in EEE animals, 

this effect is absent by four weeks after stroke. This contrasts with the results of the 

EPM, in which stroke decreased anxious behaviour, at both one and four weeks post-

stroke. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure 3.11. The number of entries made into the light section of the arena of the 

light-dark box test. ** = p<0.01, *** = p<0.001. Δ = significantly different from 

week one.  
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1.6. Novel Object Recognition 

The novel object recognition task assesses visual recognition memory. In the test run, 

animals that recognise the new object spend more time investigating it than the 

familiar object. In week one, all animals spent more time sniffing the novel object, 

indicating that all groups recognised it as new (Figure 3.12 A). There was a main effect 

of housing (two-way ANOVA, p<0.001). Sham EEE mice (74.34 ± 2.39 %) preferred 

the novel object more than the sham EE mice (60.58 ± 5.11 %, p<0.05).  

 

In week four, all groups recognised the novel object. Two-way ANOVA showed a main 

effect of housing (p<0.001, Figure 3.12 B). Stroke EE animals (84.65 ± 2.47 %) 

preferred the novel object more than the sham EE animals (68.88 ± 5.21 %, p<0.05). 

 

Overall, animals spent more time investigating the novel object in week four than in 

week one (two-way ANOVA, p<0.001, Figure 3.12 B). Individual comparisons 

showed this was true for the sham EE animals (p<0.01). This may indicate an 

improvement in recognition memory. 

 

There were no significant differences between rounds one and two in either week one 

or week four (Appendix A Figures A8 A and B). 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure 3.12. The percentage of time spent investigating both the familiar object 

and the novel object. * = p<0.05. ** = p<0.01. *** = p<0.001. Vertical asterisks 

indicate significantly different from time spent sniffing familiar object. Δ = 

significantly different from week one. The dotted lines at 50% indicate the 

amount of time expected if neither object was preferred. 
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1.7. Object Location Recognition 

The object location recognition task measures the amount of time animals spend 

investigating a moved familiar object. This is a measure of simple spatial memory 

performance. In week one, all groups spent more time investigating the moved object 

than the familiar object (Figure 3.13 A). This shows that all groups recognised that the 

moved object was in a new location. Two-way ANOVA revealed a main effect of 

housing (p<0.001). Stroke EEE animals (71.30 ± 3.75 %) preferred the moved object 

more than the sham EEE animals (57.79 ± 4.88 %, p<0.05). 

 

In week four, two-way ANOVA showed a main effect of housing where EE and EEE 

decreased the time spent sniffing the moved object (p<0.01, Figure 3.2). Not all groups 

spent more time investigating the moved object. Among shams, DE and EE animals 

spent more time with the moved object (p<0.05 and p<0.05, respectively), but EEE 

animals did not (60.08 ± 4.72 % time with the moved object). Among stroke animals, 

sham DE mice preferred the moved object (p<0.05), but EE (54.03 ± 6.41 %) and EEE 

mice (58.18 ± 3.34 %) did not. This indicates that these groups did not recognise that 

the object had been moved. 

 

There were no overall differences between week one and week four. The stroke EEE 

group spent less time investigating the moved object in week four than week one 

(p<0.05, Figure 3.13 B). Although some of these differences between the time spent 

sniffing in weeks one and week four were not significant, the stroke EEE group and 

the stroke EE group did recognise the moved object at week one, then failed to do so at 

week four, indicating that there may be some deterioration of spatial memory over the 

four weeks following stroke. 

 

In week one, animals in round two spent more time investigating the moved object 

than those in round one (two-way ANOVA, p<0.001, Appendix A Figure A9 A). Only 

the sham DE group showed the same relationship in multiple comparisons (p<0.05). In 

week four, there were no differences found between rounds one and two. 
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A) Week 1 

 

B) Week 4 

 

 

 

Figure 3.13. The percentage of time spent investigating both the familiar object 

and the moved object in the object location recognition test. * = p<0.05. ** = 

p<0.01. *** = p<0.001. Vertical asterisks indicate significantly different from 

time spent sniffing familiar object. Δ = significantly different from week one. The 

dotted lines at 50% indicate the amount of time expected if neither object was 

preferred. 
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2. Histology 

2.1 Stroke Volume 

A representative diagram of infarct volume is shown in Figure 3.14. Lesions damaged 

the pre-motor, or secondary motor cortex (M2) and the (ACC). There were no 

differences between the stroke volumes of the left and right hemispheres at either one 

or four weeks post-stroke so the volumes were combined for further analysis. One 

week after surgery, DE animals (1.95 ± 0.24 mm
3
) had significantly smaller strokes 

than EE (3.36 ± 0.21, p<0.001) and EEE (3.20 ± 0.36, p<0.001) animals (Figure 3.15 

A). There was no difference between EE and EEE groups. Four weeks after stroke 

there were no differences in total volume between the three groups (Figure 3.15 B). 

 

There was a significant interaction (two-way ANOVA, p<0.001,, Figure 3.15 C) where 

stroke volume decreased from weeks one to four among EE and EEE groups but not 

the DE group. There was a main effect of time where stroke volume decreased from 

weeks one to four (p<0.001), a main effect of housing (p<0.001). There were 

significant decreases from weeks one to four for the EE (p<0.001) and EEE (p<0.01) 

groups but not the DE group. This shows that immediately following stroke, DE 

protected against increased infarct size, but by four weeks post-stroke both enrichment 

groups had decreased infarct sizes to the same amount. 
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A)            B) 

 

C)             D) 

 

E)             F) 

 

G)              H) 

 

Figure 3.14. A), C), E) and G) Representative photomicrographs of Cresyl violet 

stains showing stroke location and size in an EE animal one week after stroke. 

Blue lines show the damaged area of the left hemisphere. Red lines show the 

damaged area of the right hemisphere. The infarct volume is 3.00 mm
3
. B), D), F) 

and H) show the locations in a mouse brain atlas (Franklin & Paxinos, 2007). 
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A) Week One              B) Week Four 

  

 

 

C) 

  

 

 

Figure 3.15. Infarct volume analysis. A) the infarct volume in each hemisphere at 

one week post-stroke. *** = p<0.001. B) the infarct volume at four weeks post-

stroke. Δ = significantly different from week one. C) shows data from both 

hemispheres combined for each group at both time periods. 
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2.2 IBA1 

IBA1 is a marker of microglial activation and inflammation. Staining results from four 

brain regions are presented here – the v3V, M2, Thalamus and SNr. These regions were 

selected because they showed the most variation between sham and stroke animals. 

Results for the other four regions (S1, Hipp, RSC and LV) were more homogenous and 

are shown in Appendix B.  

 

The cell count method may have been more accurate than the thresholding method. 

There are two main reasons for this. Firstly, as the cell count was done by hand, the 

different levels of background staining had no effect on results. Thresholding, while 

still corrected for different levels of background staining, may have been more affected 

by these differences. Secondly, images analysed were darker in the corners than in the 

centre. This meant that a balance was needed between false positive darker 

background pixels in the corners, and false negative lighter microglial pixels in the 

centre. Although every effort was made to ensure this balance was consistent across all 

images, there may have been some variability. 

 

2.2.1 Ventral Third Ventricle 

The results of the IBA1 qualitative analysis are shown in Table 3.1. Shams show even, 

moderate staining in most areas, with dense IBA1 positive cells in the v3V, and among 

de-enriched animals, in the SNr. Among stroke animals it is clear that around the 

lateral ventricles, in the SNr and in the thalamus there is only sparse IBA1 staining, 

and less staining than shams in the v3V. The only region in which stroke animals have 

denser staining than shams is the secondary motor cortex (M2) where the infarct was 

present. 

 

There was a significant interaction (two-way ANOVA, p<0.05, Figure 3.16 E) where 

EE and EEE decreased staining in stroke groups but not sham groups. There was a 

main effect of stroke where stroke animals had less staining than shams (p<0.001). 

Stroke EE animals (1.82 ± 0.23) had less staining than sham EE animals (2.80 ± 1.33, 

p<0.01). Stroke EEE animals (2.23 ± 0.17) had less staining than sham EEE animals 

(3.00 ± 0.00, p<0.001). Among stroke animals, the EE group had less staining than the 

DE group (2.53 ± 0.13, p<0.01).  
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Table 3.1. Quantitative analysis of the amount of staining in various areas. M2 

refers to the secondary motor cortex, and S1 the primary somatosensory cortex. 

The dense staining in the M2 area among stroke animals is due to the infarct itself. 

  
Sham 

  
Stroke 

 Brain Regions DE EE EEE DE EE EEE 

M2 ++ ++ ++ +++ +++ +++ 

S1 ++ ++ ++ ++ ++ ++ 

LV ++ ++ ++ + + + 

v3V +++ +++ +++ +++ ++ ++ 

Hipp. ++ ++ + + + + 

SNr +++ ++ ++ + - + 

RSC ++ ++ ++ ++ ++ ++ 

Thal. ++ ++ ++ ++ + + 

 

- No staining 
+ Occasional cells 

++ Medium density 
+++ High density 

 

 

Cell counting data showed that overall, stroke animals had fewer IBA1 positive cells 

(two-way ANOVA, p<0.001). Stroke reduced the number of cells for DE animals 

(146.6 ± 10.4 and 112.5 ± 11.3 cells for sham and stroke, respectively; p<0.05), EE 

animals (145.5 ± 4.6 and 90.8 ± 9.9, p<0.001) and EEE animals (158.8 ± 11.1 and 84.2 

± 45.2, p<0.001, Figure 3.16 C). 

 

Thresholding data showed an interaction effect (two-way ANOVA, p<0.05, Figure 

3.16 D) where EE and EEE increased staining in shams but decreased staining in 

stroke animals. There was a main effect where stroke animals showed reduced staining 

(p<0.001). Stroke reduced the number of above-threshold pixels in the EE (286223 ± 

60718 and 122310 ± 20166 for sham and stroke, respectively; p<0.05) and EEE groups 

(365522 ± 46139 and 152565 ± 32005, p<0.001). Among shams, EEE animals had 

more staining than DE animals (212076 ± 42847, p<0.05). 
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There were no significant differences between weeks one and four for the qualitative 

data (Figure 3.16. F). Figure 3.17. shows the same comparison for A) cell count data 

and B) threshold data. For the cell count data, there was a significant interaction effect 

(two-way ANOVA, p<0.01) where stroke EEE animals had lower staining than stroke 

EE animals at one week, but more at four weeks. At week one, EEE animals (43.2 ± 

9.1) had fewer positive cells than EE animals (101.8 ± 19.0, p<0.05). EEE mice 

showed increased cell counts from week one (43.2 ± 9.1) to four (113.4 ± 12.4, 

p<0.01). Thresholding data showed that the EEE group increased staining from week 

one (43193 ± 8862) to four (207251 ± 36235, p<0.05). Overall, animals had increased 

staining at four weeks (p<0.01). 
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A)      B) 

       

C)      D) 

  

E)      F) 

 

 

Figure 3.16. Analysis of IBA1 positive staining around the ventral third ventricle. 

A) The region of interest (Diagram from Franklin & Paxinos (2007)). B) A 

representative photograph of staining in the area. The scale bar indicates 100 μm. 

(Additional photographs can be found in Appendix C). C) Cell count data. D) 

Thresholding data. E) Qualitative analysis. F) Comparison of stroke animals at 

weeks one and four. De-enriched animals were not included as there was 

incomplete data due to removal of some animals from the study. * = p<0.05, ** = 

p<0.01, *** = p<0.001.  
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While these methods differ in specific significant results, the trend is the same – for EE 

animals, there is no change from weeks one to four post-stroke, whereas EEE animals 

show an increase from one to four weeks. Table 3.2. shows this comparison for the 

qualitative data for all brain regions. At a glance, enrichment groups either have no 

change or a decrease in the amount of IBA1 staining, while EEE groups have either no 

change or an increase in staining (with the exception of the secondary motor cortex). 

 

 

A)              B) 

 

 

Figure 3.17. IBA1 staining in the v3V at weeks one and four post-stroke. A) Cell 

count data. B) Thresholding data. * = p<0.05, ** = p<0.01. 

 

 

Table 3.2. Qualitative data showing the change in staining from week one to 

week four post-stroke for the EE and EEE groups. 
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2.2.2. Secondary Motor Cortex 

The secondary motor cortex was the only region where stroke animals showed higher 

levels of staining than shams, due to the stroke being in this area. Overall, stroke 

animals had more intense staining (two-way ANOVA, p<0.001, Figure 3.18. E). Stroke 

animals had more staining than shams in DE housing (2.00 ± 0.00 and 2.80 ± 0.14 for 

sham and stroke, respectively; p<0.001), EE housing (2.00 ± 0.00 and 2.73 ± 0.14, 

p<0.001) and EEE housing (1.80 ± 0.13 and 2.54 ± 0.14, p<0.001). 

 

Cell counting showed that while stroke animals had more variability in the number of 

stained cells, means were comparable to shams (Figure 3.18. C). Thresholding showed 

that stroke animals had more staining than shams (Figure 3.18. D). These results 

combined may indicate that following stroke, the number of activated microglia does 

not increase, but these cells become more activated, expressing more IBA1 and 

possibly increasing in size. Due to the small number of animals used for cell counting 

and thresholding, statistics were not performed on these data. 

 

Figure 3.18. F shows the comparison between animals sacrificed at weeks one and four 

post-stroke. There were no significant differences. 
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A)       B) 

    

C)               D) 

 

E)      F) 

  

 

 

Figure 3.18. Analysis of IBA1 positive staining in the secondary motor cortex. A) 

The region of interest (Diagram from Franklin & Paxinos (2007)). B) A 

representative photograph of staining in the area. This photo comes from a stroke 

animal. The scale bar indicates 100 μm (Additional photographs can be found in 

Appendix C).  C) Cell count data. D) Thresholding data. E) Qualitative analysis. 

F) Comparison between weeks one and four post-stroke. *** = p<0.001. 
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2.2.3. Thalamus 

In the thalamus, stroke animals showed less staining than shams (two-way ANOVA, 

p<0.01), and there was a main effect of housing where EE and EEE reduced staining 

(p<0.05). Stroke EE animals (0.82 ± 0.33) showed less staining than sham EE animals 

(1.90 ± 0.18, p<0.05) and stroke EEE animals (0.78 ± 0.26) showed less staining than 

sham EEE animals (1.70 ± 0.30, p<0.05, Figure 3.19 E). Among stroke animals, the 

DE group (1.80 ± 0.28) showed more staining than either the EE (p<0.05) or EEE 

groups (p<0.05).  

 

Cell count and thresholding data show the same trends as qualitative data – lower 

average staining among stroke animals. Stroke animals are more variable, with several 

animals showing high IBA1 levels. These outliers may be due to some stroke animals 

having dense clusters of stained cells in the thalamus. One of these clusters is shown in 

Figure 3.19. B. Generally, around the clusters there is a low level of staining, whereas 

the sham animals have an even, moderate distribution of stained cells. 

 

In the week one and four comparison, there was a significant interaction effect (two-

way ANOVA, p<0.01, Figure 3.19 F) where stroke EE animals had more microglial 

activation than stroke EEE animals at one week, but less at four weeks. There was a 

main effect where staining in the thalamus decreased from one to four weeks post-

stroke (p<0.05). For the EE group, staining decreased from week one (1.80 ± 0.37) to 

four (0.00 ± 0.00, p<0.05). 
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A)         B) 

   

C)      D) 

 

E)      F) 

 

 

 

Figure 3.19. Analysis of IBA1 positive staining in the thalamus. A) The region of 

interest (Diagram from Franklin & Paxinos (2007)). B) A representative 

photograph of staining in the area. This photo shows a cluster of stained cells in a 

stroke animal. The scale bar indicates 100 μm (Additional photographs can be 

found in Appendix C). C) Cell count data. D) Thresholding data. E) Qualitative 

analysis. F) Comparison between weeks one and four post-stroke. * = p<0.05. 
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2.2.4. Substantia Nigra pars Reticulata 

There was a main effect where stroke animals had less staining (two-way ANOVA, 

p<0.001, Figure 3.20 E), and there was a main effect of housing where EE decreased 

staining (p<0.01,). Stroke decreased the amount of IBA1 staining in DE animals (2.60 

± 0.16 and 1.20 ± 0.24, sham and stroke respectively, p<0.001), EE animals (1.80 ± 

0.25 and 0.27 ± 0.14, p<0.001), and EEE animals (0.27 ± 0.14 and 0.85 ± 0.25, 

p<0.01). EE animals had less staining than DE animals in both shams (p<0.05) and 

strokes (p<0.05). 

 

Cell counts and thresholding showed similar trends, with stroke animals again showing 

decreased staining (Figure 3.20 C and D), however there do not seem to be lower 

scores for EE animals. 

 

There was an overall increase in staining from one to four weeks post-stroke (two-way 

ANOVA, p<0.05, Figure 3.20 F). Multiple comparisons revealed that EEE animals had 

higher staining at week four (1.25 ± 0.26) than week one (0.20 ± 0.20, p<0.05), and 

that at week four, EEE animals had more staining than EE animals (0.33 ± 0.21, 

p<0.05). 
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A)           B) 

     

C)      D) 

 

E)      F) 

 

 

 

Figure 3.20. Analysis of IBA1 positive staining in the substantia nigra pars 

reticulata. A) The region of interest (Diagram from Franklin & Paxinos (2007)). 

B) A representative photograph of staining in the area. The scale bar indicates 100 

μm (Additional photographs can be found in Appendix C). C) Cell count data. D) 

Thresholding data. E) Qualitative analysis. F) Comparison between weeks one 

and four post-stroke. * = p<0.05, ** = p<0.01, *** = p<0.001. 
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1. Brief Summary of Results 

We found that mPFC stroke had several effects on histology and behaviour. Stroke 

decreased IBA1 staining in several brain regions (except for some dense cores in the 

thalamus and v3V). Stroke caused motor impairment and increased the number of 

bursts one week post, but not at four weeks post. Stroke had mixed effects on anxiety 

in different tests, and had no effect on object memory. Consistent with our previous 

observation in the laboratory, we observed a delayed impairment in spatial memory in 

some of the stroke groups. Overall, initial impairment at one week post-stroke had 

resolved by four weeks post-stroke. The interesting exception to this was delayed 

spatial impairment at four weeks but not one week post-stroke. 

 

Housing conditions also affected histology and behaviour. EE and EEE increased 

stroke volume one week after stroke, but not at four weeks. EE and EEE reduced IBA1 

staining compared with DE in several regions. EE and EEE animals showed 

deterioration in spatial memory from one to four weeks post-stroke. 

 

2. Discussion of Results 

2.1 Stroke Volume 

Average stroke volumes ranged from 1.19 mm
3
 to 3.36 mm

3
. This is similar to what 

has been found previously with similar photothrombotic lesions (Clarkson et al., 2013; 

Zhou et al., 2015; Zhao et al., 2005). 

 

De resulted in smaller infarct volumes one week post-stroke compared with EE and 

EEE. By four weeks post-stroke the infarct sizes of the EE and EEE groups had 

decreased to be the same as the DE animals. This is consistent with the finding of 

Janssen and colleagues’ (2010) meta-analysis that enrichment increases infarct volume, 

although we saw a considerably larger difference than the average 8% they reported. 

Interestingly, DE appears to have a protective effect on lesion volume early (one-week) 

post-stroke. This effect correlates with the effect of DE on microglial activation, which 

is further discussed in section 2.2 of the Discussion. However, DE does not decrease 

stroke volume from one to four weeks post-stroke. This indicates that DE has impaired 



 
101 

recovery over this time period compared with EE and EEE. This is a novel finding, as 

previous studies directly comparing enrichment with impoverished housing have found 

no difference in infarct size (Dahlqvist et al., 2004; Hirata et al., 2011; Olsson et al., 

1995). 

 

This larger infarct size may indicate that EE and EEE early (less than one week) after 

stroke have negative effects on recovery, while having positive effects later on. Our 

animals were placed into EE or EEE very soon (approximately 30 minutes) after 

recovering from surgery. This may have caused added activity and stress that adversely 

affected early recovery. Previous studies that have not found differences in stroke 

volume have used longer post-stroke recovery periods from one to four days before 

placing animals in EE (Dahlqvist et al., 2004; Hirata et al., 2011; Olsson et al., 1995). 

DE animals were placed immediately into individual housing, and this may have 

allowed them faster recovery of the infarct volume. 

 

This finding may be relevant to the timing of intervention following stroke in human 

patients. Recently there has been a move towards beginning treatment early after 

stroke, especially when treating motor deficits (The AVERT Trial Collaboration group, 

2015). This has shown mixed results where intervention within 24 hours has caused 

slight decreases in favourable outcomes (The AVERT Trial Collaboration group, 

2015), while intervention within 48 hours has shown improved outcomes (Liu et al., 

2014). It may be that the stress of suffering a stroke has a negative effect on treatment 

outcomes (Walker et al., 2014). There is an increase in circulating ACTH and cortisol 

soon after stroke that lasts for several days and is associated with larger infarct volume 

and worse functional outcomes (Fassbender et al., 1994). This supports the idea that 

de-enrichment has positive effects on infarct size through a reduction in stress soon 

after stroke. This idea is further explored in section 3.3 of the Discussion. It may be 

that early interventions could be more effective when targeted to those patients with 

lower levels of stress hormones. 
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2.2 IBA1-positive Microglia 

2.2.1 Effects of Stroke on Microglia 

Generally, stroke decreased the amount of IBA1 positive staining, except in the 

secondary motor cortex around the infarct. An increase in IBA1 staining immediately 

around the infarct is commonly found after stroke or other brain injury (Gerhard et al., 

2005; Jones et al., 2015). Even in areas containing dense cores of staining such as the 

v3V and thalamus, stroke resulted in an overall decrease in the number and staining 

intensity of microglia. In the secondary motor cortex, even though there was dense 

staining immediately adjacent to the infarct, there was a decrease in microglia in 

nearby areas. These are unusual results, as microglial staining is generally either 

unchanged globally or increased in certain areas connected to the damaged region such 

as ipsilateral striatum (Planas et al., 1996) and cortex (Planas et al., 1996; Gerhard et 

al., 2005). In the thalamus, despite a general decrease in staining among stroke groups, 

in some stroke animals we found dense cores of activated microglia. This is consistent 

with other studies that have found activated microglia in the thalamus between two and 

four weeks after MCAo (Rupalla et al., 1998) and four weeks after motor cortex 

photothrombosis (Jones et al., 2015). Dense areas of inflammation may indicate that 

stroke is causing secondary degeneration in areas remote from the lesion site. 

Conversely, loss of a standard level of activation may be detrimental to recovery. 

 

Stroke may be reducing activation through a change in inflammatory signalling 

molecules. These findings challenge the dogma that stroke would increase 

inflammatory signalling systemically in the brain. Perhaps in areas not adjacent or 

connected to the infarct these molecules have the opposite effect, or perhaps there is a 

reactionary dampening mechanism that prevents immune over-activation which is in 

effect by one or four weeks post-stroke. 

 

2.2.2 Effects of Housing on Microglia 

In shams, EEE increased staining in the v3V. In some of the other areas we looked at 

(M2, S1, Thal., Hipp., RSC, LV), housing had no effect on the IBA1 staining of shams. 

This is consistent with previous results where enrichment either caused no difference 

in microglia (Ehninger & Kempermann, 2003), or increased expression (Williamson et 

al., 2012). However, in the SNr, EE decreased staining compared with DE. This 
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matches the pattern seen in stroke animals, indicating that in the SNr, EE is having the 

same dampening effect in shams as in stroke animals. 

 

In stroke animals, EE and EEE decreased staining relative to DE in the v3V, 

hippocampus, SNr, and thalamus. In other areas, housing had no effect on staining. De-

enrichment seems to have mitigated the reduction of staining caused by stroke. The DE 

results are consistent with previous studies showing that social isolation increases 

microglial staining after stroke (Karelina et al., 2009) and after global ischemia caused 

by cardiac arrest (Weil et al., 2008). The reduction of staining in EE and EEE animals 

is unusual, as enrichment has been previously found to have no effect on microglial 

expression after stroke (Auriat et al., 2010). As mentioned above, microglial activation 

can have beneficial effects. It seems that EE and EEE have exacerbated the reduction 

of activation caused by stroke. The reduction in microglial activation in stroke EE and 

stroke EEE groups may be detrimental to recovery, and seems to coincide with larger 

stroke volumes one week after stroke. It is not clear why EE and EEE reduce IBA1 

expression. It may be through causing low-level chronic stress, as this combined with 

photothrombosis can cause similar staining patterns to ours (Jones et al., 2015. This is 

further discussed in section 3.3.3. 

In most brain regions, IBA1 staining stayed constant from one to four weeks post-

stroke in stroke EE and stroke EEE animals. This is consistent with the results of 

Rupalla and colleagues (1998) who showed no change from 15 to 30 days post-stroke. 

However, in the v3V, thalamus, SNr, and lateral ventricles, IBA1 staining decreased or 

did not change from weeks one to four in stroke EE animals, but increased from weeks 

one to four in stroke EEE animals. This may indicate a delayed inflammatory effect in 

enhanced enrichment animals. This seems especially likely in the thalamus, where 

some stroke animals developed dense cores of IBA1 positive microglia. However, the 

DE group also developed these dense cores, so it doesn’t seem to be the effects of EEE 

that are causing this. The increase in staining in EEE animals may also indicate a 

recovery of normal microglial levels following an early post-stroke decrease. It has 

previously been reported that microglial activation can be neuroprotective in some 

circumstances (Neumann et al., 2006; Lalancette-Hebert et al., 2007). It may be that 

EE and EEE caused a decrease in beneficial activation that contributed to neuronal 

loss, and that EEE was better than EE in recovering this activation at four weeks. 

Future studies could examine neuronal loss in the peri-infarct area as well as the 
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thalamus to investigate this idea.  

 

Based on the IBA1 staining and infarct volume analysis, it would appear that 

activation of microglia are having a protective effect acutely (week one post-stroke), 

yet with prolonged activation, impairing the resolution of the stroke by four weeks. 

This may account for differences in behavioural assessments observed and discussed 

below.  

 

2.3 Behavioural Results 

2.3.1 Motor Impairments 

Among sham animals, the DE group showed impaired motor performance on the grid-

walking task one week post-stroke, indicating that DE without stroke may be harmful. 

This is consistent with studies of impoverishment and stroke (Hirata et al., 2011). 

Stroke impaired motor performance on the grid-walking task one week post-stroke, 

especially in EEE animals. Motor performance had recovered to pre-stroke levels by 

week four, especially in the EEE animals, who performed better than either the stroke 

DE and stroke EE groups at four weeks. This is consistent with the positive effect on 

motor recovery found in many enrichment studies (e.g. Janssen et al., 2010; Biernaskie 

et al., 2004). The increased stimulation of EEE relative to EE may have contributed to 

both the larger increase in motor impairment at week one (Zhang et al., 2012), and the 

larger improvement at week four. 

 

While photothrombotic stroke in the motor or sensorimotor cortex usually causes 

motor impairments (e.g. Lee et al., 2007; Clarkson et al., 2013), this is less likely when 

the infarct is medial or anterior to these areas, as in this study. Motor skills were intact 

following lesions to either the medial wall of the mPFC (Deacon et al., 2003), or the 

ACC (Hewlett et al., 2014). Further, we recently reported using this model without any 

changes in environment that stroke had no effect on gross motor function when 

assessed on the grid-walking task (Zhou et al., 2015). Conversely, cortical impact 

injury to the mPFC has been shown to result in gross motor deficits (Moritz et al., 

2014). This indicates that the degree by which the stroke impacts on secondary motor 

regions dictates whether or not gross motor impairments, albeit transient, would be 
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observed. 

 

The pattern of motor impairment generally corresponds to the pattern of infarct 

volume. In stroke EE and stroke EEE groups, animals had larger infarct volumes and 

motor impairments were observed at week one. As these strokes resolved over the 

four-week period, we saw an improvement in motor performance. This may indicate 

that larger stroke volumes extended further into the pre-motor cortex causing this 

impairment in motor function. However, the stroke DE group had a smaller stroke 

volume at week one but still showed motor impairments. In addition, the sham DE 

animals showed the same pattern of impairment as the stroke animals. It may be that 

among EE and EEE animals, larger stroke volume contributed to motor impairments, 

while in sham DE and stroke DE animals, housing conditions caused the impairments. 

Impoverishment has previously been found to worsen motor impairments after stroke 

(Hirata et al., 2011). 

 

The stroke EEE group showed increased IBA1 staining from weeks one to four in the 

v3V, thalamus, SNr, and lateral ventricles, while the stroke EE group did not. This 

coincides with a decrease in foot faults in the grid-walking test in the stroke EEE 

group, but not the stroke EE group. This may indicate that a return towards normal 

IBA1 levels (similar to shams) by four weeks post-stroke is beneficial for motor 

recovery, especially in motor-related areas such as the thalamus and SNr. 

 

2.3.2 Activity Levels 

Stroke had mixed effects on activity levels in the open field, increasing high-speed 

bursts at week one (especially in EE animals) but not changing the total distance 

travelled. The increase in speed bursts is consistent with the increase in activity found 

in several studies (Zhou et al., 2015; Deacon et al., 2003; Hewlett et al., 2014). This 

does not seem to support the findings that PFC stroke can cause depressive symptoms 

in the forced swim and sucrose consumption tests (Moritz et al., 2014). The increase in 

speed bursts without an increase in total distance travelled may indicate increased 

impulsivity in lesioned animals, which is consistent with the idea that the secondary 

motor cortex is responsible for action selection (Sul et al., 2011) and initiation 

(Murakami et al., 2014). At week four, stroke increased both speed bursts and total 
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distance travelled among EEE animals. Again this is consistent with the above findings 

that stroke can increase activity levels. This effect seems to have grown stronger 

among EEE animals from week one to four. This may be partly due to the reduction of 

motor impairment seen over the same time frame, or the worsening of impulsivity due 

to pre-motor lesion. However, the lesion size decreased over this time period, 

indicating that some recovery occurred in the pre-motor cortex. 

 

Housing had no significant effects on activity levels at week one. At week four, 

enhanced enrichment decreased activity (both distance travelled and high-speed bursts) 

among shams, but increased activity in stroke animals. The explanation for this is 

unclear. It may be that among stroke animals, EEE worsens recovery of the secondary 

motor cortex (although there is no difference in lesion volume between EE and EEE 

groups) and enhances the effects of the lesion, increasing impulsivity and activity 

levels.  

 

Changes in IBA1 staining may relate to changes in activity levels. As activity levels 

(both distance travelled and high-speed bursts) increase in stroke EEE animals from 

one to four weeks compared with stroke EE animals, there is a coinciding increase in 

IBA1 staining in some areas related to motor function such as the SNr and the 

thalamus. This may indicate that a return towards normal IBA1 levels (similar to 

shams) by four weeks post-stroke is beneficial for motor recovery, and that in the 

stroke EE group, the further decrease or failure to increase may hinder motor recovery. 

 

2.3.3 Anxiety 

There were mixed results in tests of anxiety. Stroke had no effect on anxious behaviour 

at weeks one or four in the open field, but decreased anxiety in the elevated plus maze, 

and increased anxiety in the light-dark box. This is consistent with the literature which 

shows increased (Blanco et al., 2009) and decreased (Deacon et al., 2003) anxiety, as 

well as no difference (Zhou, 2013). Other studies have also seen mixed results between 

different anxiety tests (Lacroix et al., 1998; Maaswinkel et al., 1996). 
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Housing had no effect on the anxiety of shams but had mixed effects on stroke 

animals. De-enrichment increased anxiety among stroke animals in week one of the 

open field, but strongly decreased anxiety in week one of the EPM, and had no effect 

in the LDB. Stroke EE and Stroke EEE groups showed the same levels of anxiety, 

except in week one of the LDB, where the EEE animals made less entries into the light 

section than all other groups. De-enrichment among stroke animals increased anxious 

behaviour in the open field in week one, which is consistent with previous isolation 

experiments (Weiss et al., 2004). However, stroke DE animals showed greatly 

decreased anxious behaviour in the EPM in week one. There was no effect of standard 

EE. This is counter to previous results, which generally find that enrichment reduces 

anxiety (Ravenelle et al., 2013; Sampedro-Piquero et al., 2013), although not always 

after brain injury (Moritz et al., 2014). Increased or decreased anxiety in one test 

without the same effect in other tests is difficult to explain. It may be that groups are 

reacting to different stimuli in different ways (height exposure in the EPM, and light or 

openness exposure in the LDB and open field). The LDB and open field results are 

more similar, which supports this idea. In any case, the effects of stroke and housing 

are largely absent by week four post-stroke in all tests of anxiety. 

 

In week one of the EPM, stroke DE animals spend more time in the open arm than 

other stroke groups. They also had much smaller lesion volumes than EE or EEE 

groups. In week four, there was no difference between stroke groups in either time 

spent in open arm or lesion volume. It seems that among stroke groups, increased 

lesion volume coincides with more time spent in the open arm, possibly indicating 

lower anxiety. 

 

2.3.4 Visual Recognition Memory 

mPFC stroke had little effect on object memory in the novel object test, which is 

consistent with some other results using larger infarcts (Markowitz et al., 2011). 

However, this contradicts results after vasoconstrictive lesions to the peri-ventricular 

white matter (Blasi et al., 2014). The one exception was among EE animals, where 

stroke actually improved performance at week four. This is similar to findings that 

lesions to the sensory cortex increase novel object preference (Liguz-Lecznar et al., 

2014). 
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Housing also had minimal effects - in week one, EE improved performance among 

shams. When analysed together, the animals improved performance from weeks one to 

four, although stroke EE was the only individual group to do this. This is consistent 

with the results of Doulames and colleagues (2013), who found that social and 

enriched groups improved NOR performance over one month of differential housing, 

while individually housed animals did not. EE has been shown to improve object 

exploration and episodic memory in animals (Gobbo & O’Mara, 2004; Diniz et al., 

2010). 

 

2.3.5 Spatial Memory 

One week after stroke, both stroke and sham animals recognised the moved object. 

These results are consistent with Deacon and colleagues’ (2003) findings that mPFC 

lesions did not affect spatial memory, although other groups have found deficits 

(Moritz et al., 2014). Animals showing stroke-induced spatial memory deficits one or 

two days post-stroke have been shown to recover to sham levels by three and four days 

post (Hewlett et al., 2014), which supports our finding after one week.  

However, by four weeks, stroke EE and stroke EEE groups did not recognise the 

moved object. This indicates that among these groups, there is a deterioration in spatial 

memory over four weeks after stroke. These results confirm earlier findings of our 

group using the same stroke model with standard housing (Zhou et al., 2015). A similar 

decline in the alternating Y maze from two to seven weeks after stroke was found 

following MCAo in mice by Doyle and colleagues (2015). Our results contradict 

several studies that show that enrichment improves spatial memory performance in 

naive animals (Frick et al., 2003; Diniz et al., 2010) as well as after MCAo (Dahlqvist 

et al., 2004; Xu et al., 2009) and chronic cerebral hypoperfusion (Zhu et al., 2011). 

 

Interestingly, stroke DE animals did not show any impairment at four weeks, 

suggesting that de-enrichment was protective. Again, this contradicts previous studies 

that have found negative effects of impoverishment on spatial tasks (Monteiro et al., 

2013; Doulames et al., 2013). It is likely that the effects of housing on stroke volume 

are connected to the spatial memory results. In week one, animals have larger stroke 

volumes and can recognise the moved object. In week four, their stroke volumes have 

reduced to the same size as DE mice but they now fail to recognise the moved object. 
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Although this seems counter-intuitive, this may indicate that having a larger lesion at 

week one post-stroke causes delayed secondary degeneration. This may impair spatial 

memory performance at week four post-stroke, even though the initial stroke region 

has recovered somewhat. This could also explain why DE protects against spatial 

impairment at four weeks post, as the DE animals had much lower lesion volumes one 

week post, and possibly less secondary degeneration as a result. 

 

IBA1 staining may also be related to performance in the OLR. EE and EEE animals 

show lower staining than DE animals in the thalamus and hippocampus. Normally, this 

can indicate inflammation, but as mentioned above, staining is much lower than sham 

levels, and may be harmful. A moderate level of microglial activation may be 

protective of neuronal loss in these areas, and shield the DE animals from secondary 

degeneration and spatial impairments. 

 

3. General Discussion 

3.1 Microglia 

The observation of lower microglial levels in stroke EE and stroke EEE animals, 

especially in the thalamus, combined with the decline in spatial memory from two to 

five weeks after stroke in these groups, may indicate that a moderate level of 

microglial activation is beneficial, and that decreased activation to well below sham 

levels may be harmful. 

 

There are many studies showing the positive effects of microglial activation. Microglia 

can become alternatively activated (M2) and release growth factors such as BDNF, 

TNF-α and IGF-1, while releasing less inflammatory cytokines (Gomes-Leal, 2012; 

Lalancette-Hebert et al., 2007; Lambertsen et al., 2009). While inflammatory cytokines 

are important in removing debris acutely after stroke, prolonged increases in cytokine 

levels is detrimental to recovery (Gomes-Leal, 2012). M2 microglia also increase 

neurogenesis (Thored et al., 2009), phagycytose neutrophils and increase neuronal 

survival following oxygen and glucose deprivation (Neumann et al., 2006), and clear 

apoptotic tissue (Zhao et al., 2007). These and other positive effects mentioned in 

chapter 1 section 6.2 may be lost when microglial activity is reduced. 
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There is an association between decreased microglia and impaired spatial memory in 

stroke EE and EEE groups. Despite this, the observation of dense cores of activated 

microglia in the thalamus and v3V in stroke animals may indicate inflammation that 

could be a sign of secondary neuronal degeneration. 

 

3.2 Remote Inflammation 

As mentioned in section 7 of chapter 1, after stroke, secondary neuronal loss can affect 

brain areas distal but connected to the infarct, such as the thalamus, hippocampus and 

SNr. Microglial activation is often seen as a sign that neuronal damage is occurring. 

 

3.2.1 Thalamus 

Neuronal loss in the thalamus is frequently seen after MCAo (Rupalla et al., 1998; 

Dihne et al., 2002) as well as photothombotic stroke (Block et al., 2005). Microglial 

activation is associated with neuronal loss in this area (Block et al., 2005) and occurs 

before signs of apoptosis and neuronal death (Rupalla et al., 1998). Secondary damage 

in the thalamus after stroke is associated with spatial learning deficits (Block et al., 

2005; Kumon et al., 1996). Influx of B-lymphocytes (which is partly mediated by 

microglia) is associated with spatial memory decline, which is prevented when treated 

with a B-lymphocyte-blocking antibody, and also prevented in B-lymphocyte knockout 

mouse strains (Doyle et al., 2015). 

 

The dense areas of activated microglia we saw in the thalamus may be signs of 

neuronal stress in this area. However, these were most commonly seen in DE animals, 

who did not have spatial memory impairments. It may be that DE animals experience a 

moderate inflammatory response that is beneficial, whereas EE and EEE animals have 

less activation and more neuronal damage. 

 

3.2.2 Ventral Third Ventricle 

Similarly to the thalamus, we saw an overall decrease in IBA1 staining among stroke 

animals in the v3V, especially in EE and EEE groups. We also observed areas of dense 
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activated microglia in all groups, including shams. As in the thalamus, this may 

indicate inflammation and the potential for neuronal damage, but because of the higher 

levels of staining in shams, this does not seem to be the case. Inflammation in this area 

(particularly the median eminence) may indicate disruption to the neuroendocrine 

system. This is a possibility, as the mPFC has connections to the hypothalamus and 

both areas are involved in the regulation of the HPA axis and stress response (Ulrich-

Lai & Herman, 2009). Damage to the mPFC may disrupt this system, especially if 

animals experience stress during the post-stroke period. 

 

3.3 Stress 

3.3.1 Causes of Stress 

The surgery and stroke may have induced stress in the animals. Certainly, human 

patients experience stress after stroke (Walker et al., 2014), but the symptoms to 

animals in this study were minimal. The process of recovering from anaesthesia and 

reintegrating back into a housing group after surgery may have contributed more stress 

than the strokes. Our animals had a relatively short recovery period after surgery – 

approximately 30 minutes before being placed into their new differential housing. 

Therefore, animals quickly had to interact with others very soon after stroke, possibly 

involving fighting. Due to the lack of symptoms caused by our stroke method and 

location, animals are able to quickly re-enter group housing. However, among EE and 

EEE groups, this may have increased stress, compared with the DE animals that were 

placed in individual housing immediately after surgery. This may explain the increased 

lesion volume of the EE and EEE groups two weeks post-stroke. 

 

Although some studies show that EE reduces stress responses (e.g. Ravenelle et al., 

2013; Wright & Conrad, 2008), and some show no changes (Dahlqvist et al., 2003), 

there is evidence that enrichment can have negative effects on stress regulation. Social 

housing causes stress among subordinate animals (Singhal et al., 2014), and EE 

worsens response to acute and chronic injury (Shum et al., 2007). Stress may also 

counter the positive effects of enrichment such as reducing BDNF levels (McKlveen et 

al., 2015). 
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In intact animals, EE is a mild stressor that can have positive effects (Crofton et al., 

2015). In our study, several factors may have combined to increase stress compared 

with what is generally found in enrichment studies, possibly preventing enrichment 

from having positive effects, and contributing to the spatial memory decline. EEE and 

EE groups had more disturbances to the cage environment than DE groups. As well as 

the weekly change of flooring and bedding material, food and water, and behavioural 

testing that all groups experienced, there was a weekly object change for the EE group 

and four changes each week for the EEE group. Cage changes, new objects and 

handling can cause increases in plasma CORT and heart rate for over 30 minutes 

(Balcombe et al., 2004). Several days after stroke, animals were moved from open-

topped breeder cages in groups of five, to smaller IVC housing in groups of two or 

three. IVC housing is known to increase stress (Shan et al., 2014) and adrenal weights 

(David et al., 2013) in rodents. Transfer into IVC cages caused an increase in fecal 

immunoglobulin A (IgA, a marker of stress) concentrations, which took six weeks to 

return to normal (Bundgaard et al., 2012). Animals switched between DE and EE had 

lower brain weights than those in consistent environments (Klippel et al., 1978). 

Although there were only two or three animals per cage in EE and EEE groups, the 

enrichment objects took up a reasonable amount of space, which may have caused 

stress. High social density can increase CORT and negatively affect weight gain, 

behaviour and the immune system (Laber et al., 2008). 

 

Although impoverishment can cause stress through isolation and lack of enrichment, 

the combination of all these factors may have combined to increase stress in the 

enrichment groups more than the DE group, and thus prevented positive effects of 

enrichment, and possibly had negative effects on spatial memory. 

 

3.3.2 Stress and the mPFC 

In section 12.4 of chapter 1, the relationship of the mPFC to stress regulation is 

discussed. The mPFC is connected to the PVN (Radley & Sawchenko, 2011) and helps 

to regulate the release of CRH and CORT in response to stress (McKlveen et al., 2015; 

Diorio et al., 1993). Damage to the mPFC disrupts this regulation, increasing ACTH 

and CORT release in response to stress (Ondicova et al., 2012; Figueiredo et al., 2003). 

The cingulate gyrus and secondary motor cortex (both damaged by our lesion) have 
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further connections to the mediodorsal nucleus of the thalamus and the basolateral 

nucleus of the amygdala, which are involved in the fear response circuit (Matyas et al., 

2014). ACC stroke caused adrenal hypertrophy and enhanced suppression of the HPA 

axis, and when combined with chronic mild stress, increased novelty-induced 

defecation in the EPM (Hewlett et al., 2014). In addition to the effects of the lesion, the 

mild stress of enrichment may have caused further disruption of the HPA axis. These 

factors may have combined to prevent EE and EEE from having beneficial effects.  

 

3.3.3 Stress and Microglia 

Most commonly, stress increases microglial activation after stroke. Chronic stress 

increased the staining intensity and number of microglia in the mPFC and 

hippocampus, among other areas (Tynan et al., 2010; Hinwood et al., 2012), which 

was associated with impaired spatial memory (Hinwood et al., 2012). Stress before 

cardiac arrest and resuscitation increased microglial activation, hippocampal neuronal 

damage, and anxiety (Neigh et al., 2009). When microglia were blocked with 

minocycline, the damage and anxiety were prevented (Neigh et al., 2009). Stress, 

through changes in CORT and NE concentration, causes remodelling of microglia and 

increases microglial release of inflammatory cytokines (Walker et al., 2013). In 

contrast, Jones and colleagues (2015) found that after motor cortex photothrombosis 

microglial activation was significantly increased. Chronic stress reduced microglial 

activation and exacerbated neuronal loss in the thalamus and hippocampus after motor 

cortex photothrombosis. This is similar to our findings, although in our study stroke 

decreased microglial activation. If our enrichment protocol caused chronic stress, this 

may have had a similar effect and dampened the microglial response to stroke. The 

idea that microglia are protective of neuronal loss (Jones et al., 2015) is supported by 

the correlation we saw between the decrease in IBA1 staining in EE and EEE groups 

in several brain regions with the delayed spatial impairments. 

 

4. Limitations 

4.1 Differences Between Rounds One and Two 

Due to the number of animals used in this study and the time required to carry out 

surgery, behavioural tests and perfusions, all procedures were carried out using two 
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cohorts of mice eight weeks apart. This meant that the second group was two months 

older and had experienced two months more EE prior to stroke. Since animals had 

already experienced three months of enrichment, we do not think that this extra two 

months has affected our data. The rationale for housing the mice in enriched 

environments for at least three months was that we believed that this is long enough to 

fully change the intrinsic memory of the cells, that is, changes in epigenetics caused by 

the enrichment. Epigenetic changes, once triggered, can last from weaning into 

adulthood (Branchi et al., 2011), and even from one generation to the next (Kiyono et 

al., 1985). Therefore the additional two months of housing for the second cohort is 

unlikely to have any further effects on this. In support of this hypothesis, enrichment 

has previously been shown to induce long-lasting epigenetic changes, such as 

increasing histone acetylation at multiple sites including on the BDNF gene in both 

young and aged animals (Branchi et al., 2011; Morse et al., 2015), genes involved in 

regulating LTP, and several gene sites in the hippocampus (Arai & Feig, 2011).  

 

A difference that may have affected our results between the two cohorts of mice is the 

presence of a female experimenter during round one of behavioural testing. During 

round two of testing only one male experimenter was present. The presence of one 

male experimenter was recently shown to increase stress and anxiety-related 

behaviours in the open field, compared with one female experimenter, or one male and 

one female (Sorge et al., 2014). This is consistent with our open field results, with 

animals from multiple groups spending less time in the middle in round two. Animals 

also spent less time in the open arm of the EPM in week four, round two, especially 

animals in the EEE groups. This also indicates anxiety and supports the idea that EEE 

causes stress. The combination of increased stress from housing and acute stress from 

a male experimenter may have caused the increased anxiety in the EPM. 

 

4.2 Missing Data 

In round two, five animals in the stroke EE group were placed into individual housing 

four days after stroke due to excessive fighting and injuries. This meant their data 

could not be used. Because the remaining stroke EE animals were sacrificed at one 

week post-stroke, there were no stroke EE week four data in round two. 
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4.3 Behavioural Tests 

There may have been a factor biasing object preference in the NOR and OLR tests. 

Figure A19, Appendix G shows the combined habituation data from NOR and OLR 

from weeks one and four. Although some groups did not show a preference, overall in 

round one animals spent more time investigating object one, and in round two they 

spent more time with object two.  

 

This bias doesn’t seem to have had an effect on the NOR task, as there is no difference 

between rounds one and two in the test round (Appendix B, Figure A8). However, in 

the OLR test, there is a trend for animals in round two to have a higher preference for 

the moved object than those in round one (Appendix B, Figure A9). This is consistent 

with the object bias seen in the habituation phase, as the moved object was on the same 

side as object two. Despite this bias towards object two, stroke EEE animals in round 

two do not spend more time with the moved object at week four, which indicates that 

there is a real effect on spatial memory. Despite these potential biases these NOR and 

OLR results agree with previous work by our group (Zhou et al., 2015) as well as a 

drug study also completed by Zhou & Clarkson (Zhou & Clarkson, personal 

communication, 2015). It is likely that this variation is due to natural variation among 

small numbers of animals in each group, and when combined the data is normalised 

and there is no overall bias. 

 

5. Future Directions 

The obvious next step is to examine whether EE and EEE cause stress. A likely 

candidate here for assessment would be to measure changes in CORT levels in the 

blood across the test period and assess whether this is related to behavioural changes 

and microglial activation. This would answer some key questions, such as whether our 

enrichment paradigm increases CORT either chronically or acutely after a further 

stressor. We would also confirm what effect mPFC stroke combined with enrichment 

has on CORT levels, and if this is related to changes in microglial activation. 

 

We used a microglial stain to check for inflammation that may indicate neuronal loss. 

As there is marked controversy surrounding microglial activation as being protective 
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or detrimental (Cherry et al., 2014; Gomes-Leal, 2012), further stains should also be 

undertaken. It would be useful to use another antibody that directly targets neurons 

(such as NeuN), or markers of neuronal injury such as astroglial activation (GFAP), 

inflammatory cytokines (IL-1b or TNF-α) or apoptosis (cleaved caspase-3). Would 

changes in these markers be associated with increases or decreases in microglial 

staining, showing that reductions in microglia can be detrimental or beneficial? Based 

on the data that we have collected, we predict that loss of IBA1 labelling is detrimental 

and contributes to the delayed impairment in spatial memory. Would changes in these 

other markers that we outline above also be associated with behavioural changes such 

as delayed spatial impairment? Quantifying the number of amoeboid cells could also 

be a useful addition to our study, as this can distinguish between anterograde and 

retrograde degeneration (Sorensen et al., 1996). 

 

Using additional spatial memory tests would further confirm our results in the OLR 

task. Would we see the same pattern of decline in tests such as the MWM, or radial 

arm water maze? And would the deficit also occur in spatial working memory in an 

alternating Y maze? These are studies that have been proposed and Lisa Zhou in the 

laboratory of Dr Clarkson is establishing some of these for her PhD.  

 

The implementation of EE and EEE could be changed to moderate the potential 

induction of stress. Using larger, non-IVC cages may reduce stress and allow the 

positive effects of enrichment to be seen. Animals could also be given one or two days 

to recover alone after stroke, before differential housing, which may reduce the 

increase of infarct volume caused by EE and EEE, as well as reduce secondary 

degeneration. 

 

6. Concluding Remarks 

We have found that enrichment causes an increase in stroke volume one week after 

stroke that is associated with motor impairments one week after stroke and delayed 

impairment in spatial memory four weeks after stroke. Microglial activation was 

decreased by stroke, and also by enrichment, and this may be connected to increased 

lesion volume and secondary neuronal degeneration. It should be noted however, that 
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these effects might be specific for strokes that affect or disrupt the HPA axis. If we 

were to combine enrichment with a motor cortex stroke, then these same effects 

associated with changes in IBA1 staining, stress and enrichment may not be the same.  

 

Our results indicate that very early post-stroke enrichment has negative effects on 

recovery, and can cause delayed impairments. This may be caused by an increase in 

stress in the enrichment groups. High-intensity intervention within 24 hours of stroke, 

while often used in human stroke rehabilitation (especially to treat motor 

impairments), increases the chance of a negative outcome (The AVERT Trial 

Collaboration group, 2015). It seems that it may be better to delay intervention for a 

period of hours or days to maximise recovery. The best time to begin intervention is 

still a matter of study, and it may be that it varies depending on stroke severity and 

location, and other individual variables. 

 

Delayed cognitive decline due to secondary neuronal loss is common after stroke, and 

post-stroke depression and anxiety may also be affected by neuronal loss. Optimising 

treatment schedules to minimise secondary degeneration could help to reduce 

impairment and give independence back to stroke survivors, as well as reducing the 

burden on the health system. 
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Appendix A. Round One and Two Comparisons 

 

A) Week 1 

 

B) Week 4 
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Figure A1. Total distance travelled in the open field test. * = p<0.05. 
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A)      B) 

  

C)      D) 

  

E)      F) 

  

 

 

Figure A2. Distance travelled in the open field one week after stroke. Each graph 

shows the data from rounds one and two for one experimental group. A) sham 

DE; B) stroke DE; C) sham EE; D) stroke EE; E) sham EEE; F) stroke EEE. Stars 

above each 60-second block indicate significance level of the t-test comparing 

round one and four for that block. * = p<0.05, ** = p<0.01, *** = p<0.001. Two-

way ANOVAs revealed significant main effects of round in experimental groups 

sham DE (p<0.05), stroke EE (p<0.001) and stroke EEE (p<0.001) (A, D and F, 

respectively). 
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A)      B) 

  

C)      D) 
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Figure A3. Distance travelled in the open field in week four in 60-second blocks. Each graph 

shows the data from rounds one and two for one experimental group. A) sham DE; B) stroke 

DE; C) sham EE; D) stroke EE; E) sham EEE; F) stroke EEE. Stars above each 60-second 

block indicate significance level of the t-test comparing round one and four for that block. * = 

p<0.05, ** = p<0.01, *** = p<0.001.
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A) Week 1 

 

B) Week 4 

 

 

 

Figure A4. The number of high-speed bursts made in the open field test. ** = 

p<0.01. 
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A) Week 1 

 

B) Week 4 

 

 

 

Figure A5. The percentage of time spent in the middle of the open field arena. * 

= p<0.05. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure A6. The percentage of time spent in the open arms of the elevated plus 

maze. * = p<0.05, ** = p<0.01, *** = p<0.001. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure A7. The number of entries made into the open arms of the elevated plus 

maze. * = p<0.05, ** = p<0.01, *** = p<0.001. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure A8. The percentage of time spent sniffing the novel object in the NOR 

test. 
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A) Week 1 

 

 

B) Week 4 

 

 

 

Figure A9. The percentage of time spent sniffing the moved object in the OLR 

test. * = p<0.05.  

T
im

e
 s

p
e
n
t 
s
n
iff

in
g
 (

%
)

Sha
m

 D
E

Sha
m

 E
E

Sha
m

 E
EE

S
tro

ke
 D

E

S
tro

ke
 E

E

Stro
ke

 E
EE

0

20

40

60

80

100

*

Sha
m

 D
E

Sha
m

 E
E

Sha
m

 E
EE

S
tro

ke
 D

E

Stro
ke

 E
E

Stro
ke

 E
EE

0

20

40

60

80

100

T
im

e
 s

p
e
n
t 
s
n
iff

in
g
 (

%
)

Total distance travelled R1 vs R2

Sha
m

 D
E

Sha
m

 E
E

Sha
m

 E
EE

S
tro

ke
 D

E

S
tro

ke
 E

E

Stro
ke

 E
EE

0

10000

20000

30000

40000

D
is

ta
n
c
e
 T

ra
v
e
lle

d
 (

m
m

)

Round 1

Round 2



 
153 

Appendix B. IBA1 Staining in Other Brain Regions 

A)          B) 

    

C)              D) 

   

E)      F) 

   

  

 

Figure A10 Analysis of IBA1 positive staining in the primary sensory cortex. A) 

The region of interest (Diagram from Franklin & Paxinos (2007)). B) A 

representative photograph of staining in the area. The scale bar indicates 100 μm. 

C) Cell count data. D) Thresholding data. E) Qualitative analysis. * = p<0.05.  

Sha
m

 D
E

Sha
m

 E
E

Sha
m

 E
EE

S
tro

ke
 D

E

S
tro

ke
 E

E

S
tro

ke
 E

EE

0

100

200

300

N
u
m

b
e
r 

o
f 
c
e
lls

Sha
m

 D
E

Sha
m

 E
E

Sha
m

 E
EE

S
tro

ke
 D

E

S
tro

ke
 E

E

S
tro

ke
 E

E
E

-50000

0

50000

100000

150000

200000
N

u
m

b
e
r 

o
f 
P

ix
e
ls

 O
v
e
r 

T
h
re

s
h
o
ld

Sham  Stroke

0

1

2

3

S
ta

in
in

g
 D

e
n
s
ity

*

Week One Week Four
0

1

2

3

S
ta

in
in

g
 D

e
n
s
ity

Qual S1

Sham  Stroke

0

1

2

3

4

De-enrichment

Enrichment

Enhanced Enrichment

S
ta

in
in

g
 D

e
n
s
ity

Main effect: Housing *

*



 
154 

A)         B) 

 

C)      D) 

  

E)      F) 

   

 

 

Figure A11. Analysis of IBA1 positive staining adjacent to the lateral ventricles. 

A) The region of interest (Diagram from Franklin & Paxinos (2007)). B) A 

representative photograph of staining in the area. The scale bar indicates 100 μm. 

C) Cell count data. D) Thresholding data. E) Qualitative analysis. * = p<0.05. 
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A)         B) 

   

C)      D) 

 

E)      F) 

 

 

 

Figure A12. Analysis of IBA1 positive staining in the hippocampus. A) The region 

of interest (Diagram from Franklin & Paxinos (2007)). B) A representative 

photograph of staining in the area. The scale bar indicates 100 μm. C) Cell count 

data. D) Thresholding data. E) Qualitative analysis. * = p<0.05, ** = p<0.01. 
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A)         B) 

   

C)      D) 

 

E)      F) 

 

 

 

Figure A13. Analysis of IBA1 positive staining in the retrosplenial cortex. A) The 

region of interest (Diagram from Franklin & Paxinos (2007)). B) A representative 

photograph of staining in the area. The scale bar indicates 100 μm. C) Cell count 

data. D) Thresholding data. E) Qualitative analysis. 
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Appendix C. IBA1 Staining Supplementary Photographs 

 

A)               B) 

  

C)               D) 

  

E)               F) 

  

 

Figure A14. Representative staining from the v3V. A), C) and E) are from sham 

DE, sham EE and sham EEE animals, respectively. B), D) and F) are from stroke 

DE, stroke EE and stroke EEE animals, respectively. 
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A)               B) 

  

C)               D) 

  

E)               F) 

  

 

Figure A15. Representative staining from M2. A), C) and E) are from sham DE, 

sham EE and sham EEE animals, respectively. B), D) and F) are from stroke DE, 

stroke EE and stroke EEE animals, respectively.  
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A)               B) 

  

C)               D) 

  

E)               F) 

  

 

Figure A16. Representative staining from the thalamus. A), C) and E) are from 

sham DE, sham EE and sham EEE animals, respectively. B), D) and F) are from 

stroke DE, stroke EE and stroke EEE animals, respectively. 
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A)               B) 

  

C)               D) 

  

E)               F) 

  

 

Figure A17. Representative staining from the SNr. A), C) and E) are from sham 

DE, sham EE and sham EEE animals, respectively. B), D) and F) are from stroke 

DE, stroke EE and stroke EEE animals, respectively. 
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Appendix D. High-speed burst analysis 

 

A)      B) 

 

 

C)      D) 

 

 

 

Figure A18. The number of high-speed bursts made over different speed 

thresholds in the open field. A) 150 mm/s. B) 200 mm/s. C) 250 mm/s. D) 300 

mm/s. These data are from testing round one only, at week one post stroke, and 

are shown to give an indication of numbers and variation. A threshold of 200 

mm/s was selected for further analysis as it showed larger differences between 

groups than 150 mm/s without potential floor effects of higher speeds. 
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Appendix E. TopScan Analysis 

 

Table A1. Comparison of TopScan analysis with analysis by hand for the novel 

object task at Week 1. Animals were chosen pseudo-randomly. 

 

 

 

 

 

 

 

 

 

 

 

Table A2. Comparison of TopScan analysis with analysis by hand for the object 

location recognition task at Week 1. Animals were chosen pseudo-randomly. 

 

 

 

 

 

 

 

 

 

 

Time spent sniffing object 1 

Animal TopScan By hand 

4.2 # 1 0.92 0.72 

5.1 # 2 2.68 2.62 

2.1 # 1 3.68 3.32 

4.1 # 1 0.36 0.32 

2.2 # 1 0.96 0.8 

2.2 # 4 2.24 1.96 

 

Time spent sniffing object 1 

Animal TopScan By hand 

4.2 # 2 5.52 5.4 

5.1 # 5 8.24 7.12 

5.2 # 4 2.16 1.76 

2.1 # 4 4.64 4.14 

2.2 # 2 4.56 5.2 

3.1 # 5 5.04 4.36 
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Appendix F. NOR and OLR Habituation 

 

  

 

Figure A19. The time spent sniffing each object in the habituation phase. Data 

from both NOR and OLR has been combined to examine whether or not animals 

preferred either of the objects in the habituation phase. *** = p < 0.001; vertical 

asterisks indicate significantly different from Object 2. 
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