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Abstract 

Anti-Müllerian hormone (AMH) is a gonadal hormone that induces part of the male 

phenotype.  However, it is also present in the blood of both sexes, and is a putative 

local regulator of adult gonadal function.  This suggests that AMH, like other 

members of the TGFβ superfamily, is a pleiotropic regulator.  The TGFβ superfamily 

ligands share receptors and binding proteins (BPs), leading to context-dependent 

signaling. AMH is the only ligand with a unique type-2 receptor (AMHR2), but it 

shares type-1 receptors with other TGFβs.  Its ability to interact with other TGFβ 

superfamily members via common BPs is unknown.  This thesis investigated whether 

TGFβ-superfamily BPs can regulate the activity of AMH. 

 

A (BRE)2-Luc reporter gene assay was established to measure AMH signaling, at 

physiological levels of AMH.   The assay was optimized by varying key parameters, 

such as the cell type and the type of serum, and by refining the critical technical steps.  

P19 cells were selected in preference to DU145 and LNCaP cells, as they had superior 

growth characteristics and as the AMH-reporter assay had a higher signal-to-

background ratio. P19 cells express AMH type-1 receptors.  However, the expression 

of endogenous AMHR2 by P19 cells was minimal.  Transfection of AMHR2 was 

therefore essential to produce robust AMH signaling by P19 cells.  The receptor-

binding component of AMH (AMHC) and the physiological form of AMH (AMHN,C) 

both activated the reporter assay, with physiologically-relevant EC50s. 

 

The influence of fifteen TGFβ-superfamily BPs on AMH signaling was examined, 

using multiple screens.  The influence of each BP on the AMH dose-response curve 

was examined, along with their effect on an EC50-like concentration of AMH.  

AMHC and AMHN,C were both examined, enabling the influence of interactions on 

both the N and C terminal domains of AMH to be examined. The follistatins (FSs) 

had the greatest effect on AMH signaling, with their influence being maximal when 

AMH levels were low (adult circulating-like levels).  FS288 appeared to be more 

potent than FS315. 
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Brorin, decorin and FS-like 4 also caused a statistically significant change in the dose-

response curve.  The effect of these BPs were small and were only evident when the 

concentration of AMHC was low.  Little or no effect was observed when the 

concentration of AMH was close to or above the EC50.  Endoglin and chordin-like 2 

reduced the bottom (zero AMH) of the dose-response curve, but did not affect the 

reporter activity produced by AMH.  This suggests that endoglin and chordin-like 2 

influence the reporter assay through a mechanism that is unrelated to AMH.   

 

The assay was designed to detect AMH BPs, and different types of studies will be 

needed to identify how FS288, FS315, brorin, decorin and/or FS-like 4 affects the 

functions of AMH in vivo.  The other eight BPs tested appeared to have little or no 

effect on AMH signaling.  

 

AMH is partially secreted as an inactive precursor (proAMH), and the bioactivity of 

AMH in vivo may be influenced by when and where proAMH is cleaved to AMHN,C.  

BPs potentially influences this process, but none of the BPs examined in the Thesis 

affected the cleavage of proAMH by one of its putative cleavage enzymes, furin. 

 

AMH shares type-1 receptors and the intracellular signaling cascade with bone 

morphogenetic proteins (BMPs).  This raised the possibility that AMH does not 

always signal as an independent regulator.  In some contexts, AMH and BMP may 

interact to regulate gene expression.  Consistent with this, AMH and BMP exhibited 

redundant or co-operative activation of the reporter, depending on the concentrations 

of each ligand.  This question was largely outside of the scope of this thesis, and 

further testing of this hypothesis was not undertaken.  However, these preliminary 

observations lay a foundation for the future research directions outlined in Chapter 6.    

 

In summary, this thesis presents the first evidence that certain TGFβ-superfamily BPs 

may influence AMH signaling.  FS288 was the most significant of these, and may be 

most important when AMH levels are low, as in men and women.  In vivo 

experiments are needed to prove this.  BPs such as FS288 may integrate the biological 

actions of AMH with those of other TGFβ-superfamily ligands.  
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Chapter 1: General introduction 

1.1 Overview 

Anti-Müllerian hormone (AMH, also known as Müllerian inhibitory substance) is a 

gonadal hormone, which mediates part of the classical pathway for male sexual 

development.  AMH has been viewed as a classical hormone that has very few actions.  

However, AMH is a member of a large superfamily of cytokines, the transforming 

growth factor βs (TGFβs), which are amongst the most pleiotropic regulators known 

to Science.  AMH is present in the circulation of boys and adults of both sexes for 

reasons that are not explained by historical thinking.  The concentration of AMH in 

the circulation and in the gonads differs by orders of magnitude, depending on sex, 

age and tissue.  The TGFβ superfamily is able to signal at diverse concentrations, in a 

context dependent manner, as their signaling is modulated by binding proteins (BPs), 

and by other mechanisms.  This raises the possibility that BPs modulate AMH 

signaling, leading to context dependent signaling.  This thesis describes the first 

exploration of this issue, with its main objective being to test whether known TGFβ 

BPs can influence AMH signaling in an in vitro model. 

 

The thesis begins with an over-view of the classical biology of AMH, after which a 

broad overview of the TGFβ superfamily is presented.  This is followed by a 

discussion of why AMH signaling may be modulated by BPs. 
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1.2 Anti-Müllerian hormone  

1.2.1 AMH and male sexual differentiation 

In the early stages of fetal development, the gonads are bipotential.  Both sexes 

contain Müllerian and Wolffian ducts.  In female mammalian embryos, the Müllerian 

ducts differentiate into the oviducts, uterus, cervix, and the upper third of the vagina 

[1].  In human male embryos, the Müllerian duct regresses between the sixth and 

ninth week of gestation [2, 3], whereas the Wolffian ducts develop into the 

embryologic precursors of the vas deferens, epididymis and seminal vesicles [4]. 

 

The regression of the Müllerian ducts is triggered by AMH, which is secreted by 

Sertoli cells of the embryonic testes [5].  The AMH-induced regression of the 

Müllerian duct is the hallmark function of AMH.  This phenomenon is particularly 

well known, as it was one of the first examples of physiological cell death [6].  The 

role of AMH was first examined by experimental manipulation of embryos [7].  

However, the best evidence for its role today comes from rare males with null 

mutations in both alleles of either the AMH or the AMH type-2 receptor (AMHR2) 

genes.  These individuals exhibit retention of the Müllerian duct and undescended 

testis, a condition known as persistent Müllerian duct syndrome (PMDS) [4, 8, 9].  

 

The Sertoli cells continue to produce AMH after the regression of the Müllerian ducts, 

suggesting that AMH has biological functions beyond the regression of the Müllerian 

duct [10].  One of these functions is the regulation of testicular development and 

function.  The receptors for AMH are expressed by Leydig cells [11] with AMH 

being a determinant of the number of Leydig cells and the capacity of each Leydig 

cell to produce testosterone.  The multiple effects of AMH on Leydig cells tend to 
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cancel each other out, with the result that testosterone levels are largely independent 

of the level of AMH [12-14].  The biological purpose of this AMH regulation is 

currently unknown. 

1.2.2 AMH may have hormonal and local functions 

The existence of AMH was first deduced from the phenotype of Freemartin calves, 

which are female calves with a male twin [15].  Freemartin calves lack the internal 

female reproductive tract structures, and exhibit virilized ovaries [16].  This 

phenotype arises because blood-borne AMH from the male fetus has been transmitted 

to the female fetus, due to anastomosis of their placenta.  Consequently, AMH was 

originally thought to be a classical hormone.  However, AMH is not universally 

regarded as a hormone, as physiologically, the regression of the Müllerian duct 

appears to be due to diffusion of AMH from the adjacent testis.  The clearest evidence 

for this comes from humans with ovitestis.  These individuals often exhibit unilateral 

loss of the Müllerian duct adjacent to the testis-like gonad with development of the 

female reproductive tract occurring adjacent to their ovary-like gonad (reviewed in 

[10]).  Similarly, the regulation of Leydig cells by AMH is likely to be due to the 

local diffusion of AMH between neighboring Sertoli and Leydig cells. 

 

AMH expression has also been detected outside of the gonads, including the mature 

brain [17], the prostate [18] and the uterus [19].  These sources presumably mediate 

local phenomena, as AMH in the circulation is entirely of gonadal origin [20, 21].  

The functions of non-gonadal sources of AMH are almost entirely unknown, with the 

putative function being autocrine or paracrine protection of neurons against 

excitoxicity [22].  
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1.2.3 Circulating levels of AMH in males 

The secretion of AMH begins immediately after the testes become morphologically 

recognizable, which is around 40 days gestation in humans [23].  This is the first 

testicular secretion, which continues throughout the life cycle, but with age-specific 

variation.  Circulating AMH levels are close to maximum in the second trimester of 

pregnancy [23, 24].  The levels tend to decline slightly after that and briefly fall 

during the perinatal period.  Consequently, the median AMH level in cord blood of 

male babies is only 150 pM [21, 24].  Circulating levels of AMH increase rapidly 

after birth and by 3-months of age boys can have nM levels [21] (Figure1-1).  The 

levels of AMH are highest during late infancy between 6 months and 12 months of 

age, after then they gradually decline until puberty [25].  Circulating levels of AMH 

fall markedly during the pubertal transaction by an order of magnitude, giving adult 

male levels that range from 20-50 pM [26].  This is 3-4% of infant male levels [21] 

and 5 % of the level in boys [21, 25, 27].  The circulating AMH levels in men are 

stable until around 50 years old, after which they appear to gradually decline, but with 

significant variation between men [21, 26].  Some elderly men lack detectable levels 

of AMH [26]. 
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Figure 1-1. AMH levels in circulation  

AMH shows sexually dimorphic pattern in circulation. Male (blue) AMH levels are 

very high during infancy and childhood, and decline at puberty. Female (red) AMH is 

undetectable during infancy and early childhood. 

 

 

The levels of circulating AMH are highly variable in people of the same age and sex 

[21, 25].  For example, the range of circulating AMH levels in 5 to 6 year old boys is 

0.5-2 nM [28] with these differences being stable throughout childhood [21, 28]. 

 

1.2.4 Hormonal functions of AMH 

The reason why AMH levels are present throughout the life cycle of males is largely 

unknown.  The receptors for AMH are broadly distributed in developing tissues 

(Sections 1.6.6, 1.6.7), and putatively contribute the generation of sex biases.  To date, 

AMH has been implicated in the sexually dimorphic development of the lung [29] and 

the brain [17, 30].  The numbers of neurons in sexually dimorphic nuclei are regulated 

early in development and then undergo further changes at puberty.  The initial sex 
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bias in the bed nucleus of the stria terminalis, for example, is absent in the AMH 

knockout mouse strain, AMH-/-, mice, suggesting that AMH controls the 

developmental (“child”) version of the nucleus.  The subsequent pubertal changes are 

independent of AMH, and are presumably regulated by testosterone.  Some non-

reproductive behavior of mice, such as exploratory tendency, is dependent on AMH 

[30, 31].  In humans, the levels of AMH in 5 to 6 year old boys negatively associate 

with indexes of maturity, which is consistent with AMH having functions in humans 

[28]. 

 

The function of circulating AMH in adults is even less well studied, with no proven 

functions.  One issue here is whether the levels of circulating AMH are sufficient to 

active AMH receptors (Section 1.7, Chapters 3 & 4).  AMH levels in adult men 

correlate with the anatomical characteristics of their aorta, with AMH levels 

associating with various cardiovascular diseases [32].  This suggests that the 

cardiovascular system may be a target for adult AMH.  AMH levels associate with 

atherosclerosis in female primates [33], suggesting that the adult functions of AMH 

may be non-dimorphic. 

 

1.2.5 AMH and male germ cells 

In adult men, a portion of the AMH produced by the Sertoli cells is secreted to the 

lumen of the seminiferous tubules.  The concentration of AMH in these tubules and 

the epididymis appears to be very high, as the level of AMH in semen has been 

reported to vary between 3.5 pM - 0.5 nM.  These values are extremely variable, 

spanning the lower range of serum levels of adult men to the upper range of the serum 
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levels observed in boys [34-37].  The function of this AMH has not been extensively 

studied but historic studies suggest that it may enhance the survival of sperm [38, 39]. 

 

1.3 Female actions of AMH 

Historically, AMH appeared to be male-specific.  However, the ovary also produces 

AMH, and the majority of current research into AMH relates to its ovarian function.  

Before discussing the role of AMH in the ovary, the formation of the ovary is briefly 

described. 

 

1.3.1 Function of ovary 

Granulosa cells surround each functional oocyte in an ovary: forming what is known 

as an ovarian follicle (Figure 1-2).  At birth, a female baby has 1 million oocytes. The 

number of oocytes decreases during childhood and by menarche, young women have 

between 300,000 and 1,000,000 oocytes [40, 41].  During each ovarian cycle, 

multiple follicles begin to mature (see below) and then regress or progress to 

ovulation.  Each of the steps in this process is actively regulated, with selection of the 

follicles to progress.  In humans, only one follicle typically becomes dominant to 

ovulate.  Consequently, the number of dormant follicles in ovaries (the ovarian 

reserve) progressively declines, leading to menopause. 
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Figure 1-2. Folliculogenesis in ovary 

Folliculogenesis have different developmental stages.  There are three phases of 

follicles: primordial, preantral and antral.  Preantral follicles includes primary and 

secondary follicles.  Antral follicles have small antral follicles and large antral 

follicles.   

 

 

Folliculogenesis occurs in the cortex of the ovary.  Four major regulatory systems are 

involved: primordial follicle recruitment, preantral follicle development, selection, 

and atresia.  There are three phases of follicles: primordial, preantral and antral.  

Primordial (or non-growing) follicles have flattened pre-granulosa cells associated 

with the oocyte.  Preantral follicles are divided into two stages: primary and 

secondary follicles.  Primary follicles have a single layer of cuboidal granulosa cells 

around the oocyte.  Secondary follicles are preantral follicles with two or more 

granulosa cell layers surrounding the oocyte.  Antral follicles are any follicles with a 

fully formed antrum.  Antral follicles have two stages: small antral follicles and large 

!
!
!
! !
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antral follicles.  Large antral follicles are usually defined by the time when the follicle 

requires FSH to survive (Figure 1-2) [42].   

 

The initial formation of primordial follicles occurs during fetal development.  The 

primordial follicle consists of a small primary oocyte, a single layer of granulosa cells, 

and a basal lamina.  The progression of immature follicles to subsequent stages is 

regulated by interactions between oocytes and their associated granulosa cells.  These 

interactions are mediated by growth factors that act in an autocrine and paracrine 

fashion [43, 44].  Hormones have minimal importance at this stage.  These regulatory 

processes lead to a continuous recruitment of primordial follicles to the preantral 

stage [43]. 

 

As follicles progress through the antral and pre-ovulatory phase, they become 

dependent on the cyclical secretion of the pituitary hormones: follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH) [43].  As follicles grow, the number of 

granulosa cells increases and they begin to express AMH and inhibin B (InhB), 

leading to low levels of AMH in the blood of girls.  Once puberty begins, FSH 

influences the selection of limited numbers of small, growing follicles during each 

ovarian cycle.  From this smaller cohort of growing follicles, one follicle is typically 

selected as a dominant follicle (in humans).  The dominant follicle(s) subsequently 

ovulates under the influence of LH [42].  The other follicles are removed by atresia.  

FSH needs to exceed a threshold concentration to enable FSH-dependent selection of 

follicles [45-47]. 
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1.3.2 AMH regulation of the actions of FSH with folliculogenesis 

The granulosa cells synthesize AMH, in a stage-specific manner.  The primordial 

follicles lack AMH, with the onset of AMH production occurring in the early 

preantral follicles [48].  Antral follicles contain large numbers of granulosa cells, 

which are thought to be the primary source of circulating AMH [49].  However, the 

production of AMH is highest in the granulosa cells of preantral and small antral 

follicles, after which it ceases abruptly [48].  AMH is not produced by either atretic 

follicles or the corpus luteum [50].  The expression of AMH by growing follicles 

putatively modulates follicular growth.  AMH also blocks the recruitment of non-

dominant (preantral) follicles during the selection of a dominant follicle [13, 51] by 

decreasing the responsiveness of follicles to FSH [52].  Thus, AMH plays a role as a 

negative feedback signal of the number of growing follicles [53].  When this 

mechanism is absent, such as in AMH-/- mice, there is increased recruitment of small 

growing follicles.  This does not lead to increased ovulation, as FSH affects multiple 

stages of follicular development.  Consequently, AMH is controlling the rate at which 

the pool of follicles is depleted, without influencing litter size.  Consistently, AMH-/- 

mice exhibit premature depletion of follicles [51] and polymorphic variants of AMH 

and its receptor are associated with the age of menopause in humans [54].  Given the 

above, there is the potential in the future for AMH to be used to delay the process of 

reproductive aging, and the onset of menopause. 

 

1.3.3 Concentration of AMH in follicular fluid 

In humans, the AMH concentration in follicular fluid relates to the size of small antral 

follicles.  The median concentration of AMH is highest in small antral follicles with a 
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3 mm diameter (8 nM) and decreases thereafter, as follows: 2.8 nM in 9 mm, less than 

0.7 nM in 12 mm, 18 pM in 16 mm [55].  The age of a woman does not affect the 

level of AMH in her follicles [56].  Consequently, AMH in pre-pubertal age girls are 

similar to older women.  The concentration of AMH is not related to the 

concentrations of other hormones in follicular fluid, including androstenedione and 

testosterone [57].  The size of an ovulatory follicle is between 17-25 mm in diameter 

[58] 

 

1.3.4 Circulating levels of AMH in females  

During development, when AMH mediates aspects of male sexual differentiation, 

females have little or no AMH.  The first expression of AMH in primary follicles 

occurs on the third postnatal day 3 in rats and mice [6, 59], and around 36 weeks of 

gestation in humans [60].  This initial production is very low, with AMH levels in the 

cord blood of female babies being less than 2.8 pM [61].  AMH levels rise rapidly 

during the “mini-puberty” that occurs after birth.  Consequently, 3-month-old infant 

girls have significantly higher levels of circulating AMH (mean of 15 pM) with the 

levels decreasing by 12 months of age [62].  These levels of AMH overlap the adult 

male range [21, 25, 62] (Figure1-1), but are markedly below the lower limits for 

developing males (Section 1.1.3).  Circulating AMH levels in girls only minimally 

increase throughout the pre-pubertal years [25].  From mid childhood to early 

adulthood (8-25 years old), AMH levels slightly increase as the profile of ovarian 

follicles matures [63].   

 

The levels of circulating AMH in women peak around 25 years of age [63].  The 
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range of AMH values at this age show extreme variation between women [63, 64], 

with this range extensively overlapping with the range of AMH values in young men.  

The median AMH level progressively decreases after this age as the pool of ovarian 

follicles diminishes.  AMH levels become undetectable at menopause [63], and 

elderly females lack AMH, unless they develop granulosa cell tumors [65].  The loss 

of circulating AMH is the first endocrine sign of menopause, and precedes the decline 

of estrogen and other ovarian hormones [46, 62, 66]. 

 

1.3.5 AMH as a biomarker of ovarian reserve 

It is not currently possible to directly determine the number of primordial follicles in a 

living woman and her ovarian reserve can therefore also not be directly measured [46].  

AMH levels fall in the circulation throughout reproductive life [67] and become 

undetectable at menopause [25].  Serum AMH levels correlate with the size of the 

primordial follicle pool and the measurement of serum AMH concentrations are 

commonly used to estimate the ovarian reserve of woman [68].  The levels of AMH 

do not vary during the menstrual cycle, in contrast to other ovarian hormones, such as 

estrogen.  This increases the utility of AMH as a biomarker, as a woman’s level of 

AMH can be examined at any stage of her menstrual cycle [69].  Estimation of 

ovarian reserve is particularly important at the beginning of in vitro fertilization (IVF) 

treatment, as it enables the attending clinicians to predict whether the woman will 

have a poor or over-response to the drugs used to induce super-ovulation [70].   

 



 13 

1.3.6 Polycystic ovary syndrome 

Polycystic ovary syndrome (PCOS) is the major cause of anovulatory infertility [71].  

Up to 20% of females of reproductive age have PCOS [72, 73].  Anovulatory women 

with PCOS have abnormal granulosa cell function and this abnormality may influence 

the oocyte or embryo quality [74].  Their ovaries are also enlarged with increased 

numbers of follicles or cysts that have arrested developmental progression at the 

antral stage. Women with PCOS have significantly elevated levels of serum AMH 

level, suggesting that AMH may be involved in the generation of their follicular status 

[75].  This is due to increased numbers of preantral and antral follicles, and to 

increased production of AMH by cystic follicles [76].  Serum AMH levels appear to 

correlate to the level of severity of the PCOS, with AMH increasingly used in the 

clinical assessment of PCOS [77].  

 

1.4 Summary of the biology of AMH 

AMH appears to be a complex regulator that can act as a hormone or as a local 

regulator.  It has different actions in males and females; it may additional have actions 

which are common to both sexes.  The concentrations of AMH present in different 

biological fluids can be extremely different.  Nanomolar concentrations of AMH are 

present in ovarian follicular fluid, the seminal fluids of adult men and the circulation 

of boys.  In contrast, the level of AMH in the circulation of adult men and women 

rarely exceed a few tens of pM.  How can one regulator signal at different 

concentrations and initiate disparate actions?   

 

AMH is a member of the TGFβ superfamily, which has complex context dependent 

signaling. Before discussing the molecular biology of AMH, this thesis reviews the 

known characteristics of the TGFβ superfamily. 
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1.5 The TGFβ superfamily 

1.5.1 Overview 

 The TGFβ superfamily is one of the main families of protein signaling molecules, 

which are variably described as cytokines or growth factors. The family has 35 

mammalian members [78], which can be divided into two major TGFβ subfamilies, 

based on the similarity of their sequences.  The two families are the 

TGFβ/activin/nodal subfamily and the bone morphogenetic protein (BMP)/growth 

and differentiation factors (GDFs) subfamily [79].   

 

The TGFβ superfamily members typically show paracrine actions on cells near their 

site of synthesis [80], although the family also contains ligands that are best known as 

hormones.  These include the activins and inhibins.  The functions of TGFβ 

superfamily ligands are context dependent, cell type-specific and vary with the stage 

of development [81].  Consequently, a given TGFβ ligand can inhibit and stimulate 

the proliferation of a particular cell type [5].  The cellular functions regulated by this 

family include cell growth, adhesion, cell recognition, apoptosis, differentiation and 

migration [82, 83].  The TGFβ superfamily contributes to the development and 

function of most, if not all, tissues.  The family has also been implicated in the 

pathogenesis of many human diseases, including cancer, neurological conditions, 

wound-healing disorders and fibrosis [80].  For this reason, the TGFβ superfamily has 

been extensively studied, with the lack of information relating to AMH being a 

notable exception to this generalization (Section 1.2). 

 

The context dependent pleiotropic signaling of the TGFβ superfamily is generated 

from multiple layers of regulation, which include intra- and extra-cellular components.  
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These layers are briefly outlined below, with a particular emphasis on the multiple 

roles of BPs. 

 

1.5.2 Ligands 

1.5.2.1 Ligand expression and processing  

Fundamentally, the actions of cytokines are defined by when and where they are 

expressed [84, 85].  With the TGFβs there is an added complexity as multiple ligands 

can activate the same receptor (Section 1.5.3.1).  Consequently, the activation of a 

given receptor in a particular cell can be by a single ligand or by combination of 

ligands.  For example, the TGFβ subfamily has three members, TGFβ1, TGFβ2, and 

TGFβ3, which can activate a common receptor.  The expression of each isoform is 

different, but in some cellular environments more than one TGFβ isoform is present at 

the same site [86].  This results in null mutations of TGFβ ligands exhibiting a milder 

phenotype than the null mutations of TGFβ receptors [87, 88].  

 

TGFβ superfamily ligands are synthesized as proprotein homodimers that share a 

conserved structure consisting of a signal sequence, a longer N-terminal domain and a 

shorter C-terminal receptor-binding domain.  In most instances, the N- and C-terminal 

peptides dissociate after cleavage of the proTGFβ.  However, some ligands form 

stable non-covalent complexes consisting of the N- and C-terminal peptide.  In the 

case of the TGFβ subfamily, the N-terminal peptide is called the latency-associate 

peptide (LAP), although this terminology is not used for other TGFβ ligands [89]. 
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The regulation of cleavage of the proTGFβs is one mechanism for controlling their 

bioactivity.  This phenomenon may be particularly relevant to AMH, and is covered 

in Chapter 5. 

 

1.5.2.2 Ligand availability 

The activity of TGFβ ligands can be modified by BPs that either prevent or assist 

them reaching the sites where their cognitive receptors are.  This can generate 

gradients of signaling, which are particularly important in morphogenesis.  For 

example, short gastrulation (Sog) is a BMP BP, which is synthesized in the ventral-

lateral region during the early patterning of an embryo, and diffuses from its site of 

synthesis.  The BMPs in the early embryo are then transferred from regions of low 

Sog to regions of high Sog, creating a gradient of BMPs ligands, with the 

concentration of BMPs being highest in the ventral-lateral region (reviewed:[90]). 

 

There are also BPs that can trap ligands, preventing their diffusion [79].  The 

combination of a sequestering BP and a ligand can create microscopic zones where 

signaling cannot occur immediately adjacent to zones where signaling is occurring.  

This type of mechanism is common in BMP signaling, and can be mediated by BPs 

such as noggin, and chordin [83, 91].  

1.5.3 Receptors 

All of the TGFβ superfamily signal through a receptor complex, which contains two 

type-1 receptors and two type-2 receptors.  The type-1 and type-2 receptors are 50-60 

kDa and 70-80 kDa, respectively [92].  Both types of receptors are serine-threonine 

kinases, with their kinase domain having approximately 40% homology [93].  This 
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contrasts with the other major cytokine families that predominantly signal through 

tyrosine kinases or g proteins. 

 

1.5.3.1 Receptor specificity 

Instead of each TGFβ ligand having different receptors, they share seven type-1 

receptors and five type-2 receptors.  For example, activin, nodal and BMPs share the 

same type-2 receptor: activin receptor type-2A (ACVR2A) (Figure 1-3).  Activin and 

nodal share several type-1 receptors: ACVR1 (ALK2), ACVR1B (ALK4) and 

ACVR1C (ALK7).  BMPR2 is another type-2 receptor for BMPs.  Activin receptor-

like 1 (ALK1) is a type-1 receptor for BMP9 and BMP10 [94]. 
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Figure 1-3. TGFβ superfamily ligands and receptors 

TGFβ superfamily has a SMAD 2/3 pathway and a SMAD1/5/8 pathway. Ligand 

binding triggers the phosphorylation of one of the receptor, making phosphorylated 

R-SMAD.  R-SMAD and SMAD 4 forms a complex, which enters the nucleus to 

induce transcription of target genes.  AMH and BMP share type-1 receptors and 

SMAD 1/5/8 as a common downstream signaling pathway.  Binding proteins of TFG-

β superfamily are shared between ligands.  AMH is the only ligand that it is not 

investigated for its binding proteins. 

 

 

 

The specificity of receptors is context dependent, as various BPs can alter the ability 

of a ligand to bind to a receptor complex. These BPs can be membrane-embedded and 

were initially described as co-receptors or type-3 receptors. Co-receptors generally 

enhance the ability of ligands to bind to the receptors [83].  For example, betaglycan 

presents TGFβ to TGFβ receptors [95] and inhibin to activin receptors [96, 97].  The 

complex characteristics of betaglycan are discussed later (Section 1.5.4.1). 
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1.5.3.2 Receptor expression 

The expression levels of the various type-1 and type-2 receptors are different, with 

respect to target cells and the stage of development [95, 96].  As noted above, many 

receptors can form multiple different complexes.  Signaling within the TGFβ 

superfamily is therefore also dependent on which combinations of receptors are 

produced by specific cells, not exclusively by the pattern of expression of any one 

receptor.   

 

1.5.3.3 Receptor inhibition 

Some of the TGFβ superfamily ligands can bind to receptors, but are unable to 

activate an intracellular pathway [96, 98].  These ligands act as competitive inhibitors 

of other ligands that induce a downstream response.  For example, Lefty (also known 

as left-right determination factor) can inhibit the binding of Nodal to its receptors [99, 

100], whereas inhibin A and inhibin B compete with the activins [96, 97].  

 

1.5.4 Binding proteins 

The TGFβ-superfamily BPs contributes to multiple functions outlined in the Sections 

above.  Each BP only binds to a subset of the TGFβ superfamily ligands (Table1-1).  

For example, follistatin (FS) binds to the activins with high affinity and to the BMPs 

with lower affinity [101, 102].  The binding specificities of the BPs are typically 

different to the receptors, and the combination of receptors and BP generate a large 

number of differing signaling contexts. 
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Some of the TGFβ superfamily BPs can be grouped into families: most notably the 

chordins, follistatins, noggins, and the cerberus/ DAN family [103].  Most BPs 

regulate one or more of the BMPs, but there is no consistent relationship between BP 

families and the ligand or receptor subfamilies (Figure 1-3, Section 4.3.2).  The BPs 

have diverse functions ranging from accessory receptors to ligand traps, with some of 

the BPs being able to operate through different mechanisms at different sites [79, 80]. 

Examples of this are discussed in the following Section. 

 

There is no consistent stoichiometry for the relationship between BPs and ligands: 

chordin and BMP bind on a one-to-one basis (chordin:BMP) [104]; chordin-like 2 – 

BMP, FS – Activin, FS-like 3 – Activin A all bind with a 2:1 ratio [104-106], whereas  

betaglycan has three binding sites, each of which has unique characteristics (Section 

1.5.4.1).  The stoichiometry of some of the ligand – BP interactions has yet to be 

defined. 
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Table 1-1. Binding proteins and ligands 

Binding proteins Binds to Reference 

Betaglycan TGFβ, BMP with inhibin [107] 

Brorin BMP [108] 

Chordin BMP [109, 110] 

Chordin-like1 BMP [109] 

Chordin-like 2 BMP [109] 

DAN BMP, chordin, FS, noggin [111] 

Decorin TGFβ1/2 [112] 

Endoglin activin, BMP, TGFβ [113] 

FS activin, BMP, TGFβ1 [114-116] 

FS-like 1 activin, BMP [117] 

FS-like 3 (FLRG) activin, BMP, TGFβ1 [118] 

FS-like 4 BMP(?) Note 

Noggin BMP [119] 

α2-macroglobulin 
activin, betaglycan, BMP1, 

TGFβ as a carrier protein 

[120, 121] 

 

 

Note.  FS-like 4 has been discovered recently and the binding characteristics are 

unknown. However, the data sheet of R&D systems reported that FS-like 4 inhibited 

the ability of BMP6. 
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As noted in the previous sections, the TGFβ-superfamily BPs can exert diverse 

influences.  In some instances, a single BP can generate opposing actions, depending 

on the context of the cell.  This mechanism is exemplified by betaglycan, as outlined 

in the next Section. 

 

1.5.4.1 Betaglycan, an example of a complex binding protein 

 

Betaglycan is an 853 amino acid proteoglycan, which was originally known as the 

type-3 TGFβ receptor [122].  Betaglycan regulates aspects of both the BMP and 

TGFβ subfamily ligands.  When betaglycan is absent, TGFβ1 and TGFβ3 can activate 

TβR2, but TGFβ2 cannot.  However, when betaglycan is present, it binds all three 

TGFβ isoforms, and then transfers them to TβR2.  Under this circumstance, TGFβ2 is 

equally potent as TGFβ1 and TGFβ3 [88, 96, 123, 124].  Betaglycan enhances BMP 

signaling by increasing BMP ligand binding to BMPR1A and BMPR1B [125] and by 

regulating the trafficking and cell localization of BMP receptors [126].   

 

Betaglycan has two different forms: a membrane-bound form and a soluble form, 

created by cleavage of the membrane-form adjacent to the extracellular portion of the 

trans-membrane domain.  The soluble form is therefore not anchored to the membrane, 

and is unable to transfer TGFβs bound to it to the TGFβ receptors.  Soluble 

betaglycan therefore, inhibits TGFβ signaling, by sequestering the TGFβs [95, 124, 

127].  Consequently, betagylcan can be a BP that enhances TGFβ2 signaling, or a BP 

that inhibits all TGFβ signaling, depending if the target cell secretes the enzymes that 

cleaves it.   
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Inhibin cannot directly bind to activin receptors, unless assisted by betaglycan.  

Betaglycan binds inhibin with high affinity (Kd: 600pM).  The resulting betaglycan-

inhibin complex then transiently associates with ACVR2.  This transient complex 

then naturally dissociates creating free betaglycan leaving inhibin bound to ACVR2 

[96]. That is, betaglycan is acting like a chaperone to change the conformation of 

inhibin to one that has high affinity for ACVR2.  The binding of inhibin to ACVR2 

inhibits the binding of activin to this receptor, which in turn blocks the recruitment of 

the activin type-1 receptor [96, 128].  Betaglycan thus determines whether inhibin is 

able to antagonize activin signaling.  As with the TGFβs, this situation can be 

reversed by the target cell, as the soluble form of betaglycan can bind inhibin, 

preventing it reaching ACVR2.  Betaglycan also assists inhibins to antagonize BMP 

signaling, although this effect has been less studied, and is less well characterized [96, 

107].   

 

The inhibin and TGFβ binding sites on betaglycan are separate, but the two sites 

interact.  If TGFβ binds to betaglycan then inhibin cannot bind. This leads to the 

situation where TGβs are able to block the inhibin-mediated inhibition of activin 

signaling, by preventing inhibins binding to betaglycan.  The TGFβs can enhance 

activin signaling independent of the TGFβ receptors [79].  This example shows that 

TGFβ superfamily signaling is context dependent, as multiple layers of interactions 

regulate whether an intracellular cascade is triggered. 

1.5.5 SMADs: Intracellular signaling 

This thesis is focused on the extracellular regulation of AMH activity, and does not 

investigate the intracellular mediates of AMH action.  The intracellular actions of the 
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TGFβs are therefore only briefly discussed.  The SMADs are the main intracellular 

mediators of TGFβ signaling, although TGFβ can also activate other pathways.  The 

SMAD pathway is sometimes referred to as the canonical signaling for TGFβ [80], 

with non-SMAD pathways being described as non-canonical signaling.  Two main 

SMAD signaling pathways exist and act depending on which receptor-specific SMAD 

is activated (Figure 1-3).  The TGFβ/activin-like pathway activates SMAD 2/3 

whereas and the BMP-like pathway involves SMAD 1/5/8 [79].  Each type-1 

receptor activates only certain SMADs.  ACVR1B (ALK4), TGFBR1 (ALK5) and 

ACVR1C (ALK7) are specific for SMAD2/3, while ACVRL1 (ALK1), ACVR1 

(ALK2), BMPR1A (ALK3) and BMPR1B (ALK6) are specific for SMAD 1/5/8.  

Non-canonical pathways for AMH have not been identified, which may reflect a lack 

of investigation of this possibility. 

 

SMADs consist of three domains. The C-terminal domain binds to the type-1 receptor 

and also interacts with other proteins [129].  When receptor-activated SMADs (R-

SMAD) are phosphorylated on the C-terminal, they can associate with the common-

mediator SMAD (Co-SMAD), SMAD 4.  Two R-SMADs and a single SMAD 4 

makes a complex, which is shuttled into the nucleus.  In the nucleus, this complex 

binds to chromatin and regulates the expression of the target gene with other 

transcription factors [130].  SMAD6 and SMAD7 are inhibitors that negatively 

regulate signaling strength and duration, creating negative feedback [131].  While 

receptors are active, both R-SMAD phosphorylation and SMAD nuclear 

accumulation are maintained but this ceases after receptor activity is lost [83].  The 

mechanism of SMAD phosphorylation and nuclear accumulation is straightforward 

compared with other signaling pathways like extracellular signal-regulated kinase 



 25 

(ERK) activation by the Ras-Raf-MEK pathway downstream of EGF receptor 

signaling [83].  R-SMADs are dephosphorylated by a signal-independent and 

constitutively active phosphatase.  This feeds nuclear R-SMADs back into the 

cytoplasm [83]. 

 

1.5.6 Summary 

AMH is an atypical member in TGFβ superfamily and it has been thought to have a 

hormonal regulation without having BPs or sharing those with other members.  To 

date, no BPs for AMH have been identified and it has been believed the regulation of 

AMH is less complicated than other members in the family are.  The following 

sections discuss whether AMH is atypical, and if not, whether BPs for AMH 

participates in the regulation of AMH signaling. 

 

1.6 The molecular biology of AMH 

The following section discusses the molecular aspects of AMH, with particular 

reference to the TGFβ superfamily.  AMH has a unique place in this family.  It is the 

only ligand that has its own specialized type-2 receptor, placing it outside of the major 

TGFβ subfamilies.  It is a subfamily in its own right.  The evolutionary origin of 

AMH is unresolved, with recent phylogenetic trees of the TGFβ superfamily placing 

it on different branches.  Some analyses suggest that AMH may be most closely 

related to the GDNF ligands, which are not consistently regarded as TGFβ 

superfamily members, as their receptors differ from other TGFβs and as their 

intracellular cascade is unrelated the SMAD pathway.  Other analyses suggest that 

AMH’s closest relation is the inhibin A subunit, whereas others consider AMH to be 

adjacent to GDF15 on the phylogenetic tree.  All analyses agree that it is most distant 

from the BMPs, which is paradoxical as AMH shares type 1 receptors with the BMPs, 

and as AMHR2 and BMPR2 are closely related to each other [78, 132-134]. 
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Until recently, AMH was thought to be like a classical hormone, with a few specialist 

functions.  This contrasts with the pleiotropic nature of the superfamily as a whole.  

For these reasons, AMH is generally considered to be TGFβ-like, rather than a 

conventional member of the TGFβ superfamily.  This conception has shaped research 

into AMH.  The following section compares and contrasts the molecular biology of 

AMH with other members of the TGFβ superfamily, as a means of understanding its 

biology. 

 

1.6.1 The AMH gene 

The AMH gene is 2.75 kb long and contains five exons [135].  The fifth exon encodes 

part of the C-terminal peptide (AMHc), which binds to AMH receptors (Section 

1.4.6).  This is the only portion of the gene that has significant homology to the TGFβ 

superfamily [135, 136].  The other exons are, however, conserved between 

mammalian species, with the promoter and coding regions showing 65-80% and 70-

75% homology between bovine, human, mouse and rat [6]. 

 

The coding region of AMH is most closely related to the inhibin, activins and TGFβs 

[83], which is somewhat paradoxical as AMH shares type-1 receptors with the BMPs  

(Figure1-3). 

 

1.6.2. The AMH protein 

The AMH protein is a 140-kDa glycoprotein, which consists of two identical 

monomers, each of which contains 555-560 amino acids, depending on the species 

[136-138].  AMH, like other members of the TGFβ superfamily, has three domains: 

the first is a signal sequence of 20 amino acids, which enables it to be secreted as a 
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535 amino acid proprotein (proAMH) [139].  ProAMH is subsequently cleaved at 

position 451/452 to form a 25 kDa C-terminal peptide (AMHC) and a 110 kDa N-

terminal peptide (AMHN) [135, 139] (Figure1-4).  

 

 

 

Figure 1-4. Structure of AMH protein 

ProAMH has an N-terminal and C-terminal domain, which give rise to AMHN and 

AMHC after cleavage.  The two AMH homodimers are linked by disulphide bonds 

(blue lines). 

  

AMHN%(110kDa)% AMHC%(25kDa)%
N0terminal% C0terminal%

proAMH%



 28 

AMHC and AMHN remain as a non-covalent complex (AMHN,C) after cleavage of 

proAMH, with AMHC only separating from AMHN as AMHN,C binds to the AMH 

receptor [140-142].  The formation of a stable complex (AMHN,C) may facilitate the 

biological functions of AMH.  Some of the functions of AMH are paracrine, and 

require AMH to diffuse through embryonic tissues (Section 1.1.2).  The C-terminal 

fragments of TGFβ superfamily ligands tend to be insoluble in physiological 

conditions, which limits diffusion [98].  However, the formation of N- and C- 

terminal complexes increases the solubility of TGFβ superfamily ligands, facilitating 

their diffusion [98].  AMH fits this pattern, as AMHN enhances and stabilizes the 

effect of AMHC in an in vitro assay of the regression of the Müllerian duct [140].  

Furthermore, mutations in AMHN cause PMDS in humans, indicating that the N-

terminal domain is required for normal AMH function, even though it does not bind 

to the AMH receptor [143]. 

Similarly, hormones must be soluble to remain in the circulation, and the N-terminal 

region may therefore be critical for AMH to remain in the circulation [144] (see 

Section 1.5.2).  

 

In addition to regulating solubility, the N-terminal domains of the TGFβ superfamily 

have other functions, which includes regulating the intracellular trafficking of the 

ligand.  The N-terminal domain of AMH may also serve this function, as mutant 

forms of human AMH (hAMH) that lack the C-domain are secreted more rapidly than 

wild-type hAMH, when transfected into CHO cells [145]. 

 

In summary, the functions of the N-terminal domain of AMH are incompletely 

understood, but appear to be conserved with a proportion of the other members of the 



 29 

TGFβ superfamily.  Most TGFβ ligands can only act over short distances, and the low 

homology of the N-terminal domain of AMH to other TGFβ superfamily ligands may 

simply reflect that it belongs to a small but significant portion of the family that 

mediates long-distance signaling, through hormonal and paracrine mechanisms. 

 

1.6.3 Cleavage variants of AMH 

Serine proteases such as plasmin creates AMH cleavage variants (AMH25-254 and 

AMH255-560) [146].  These are not detected in the blood of healthy people but were 

observed in the blood of a patient with a sex cord tumor [147] and in equine granulosa 

cell tumors [148].  Naturally occuring mutations that alter amino acids 194 or 195 

lead to PMDS [149, 150].  This raises the possibility that AMH may be cleaved at the 

194/195 as part of normal physiology, but this has not been experimentally verified.  

In transfected cell lines, AMH∆194 is not secreted, which is attributed to misfolding 

of the protein [145].  The properties of AMH∆195 are unknown.  There are no 

commercial or in-house suppliers of the cleavage variants of AMH, and the 

physiological significance of the variants is unknown.  Consequently, these variants 

were not studied as part of this thesis. 

 

1.6.4 Forms of AMH in the circulation 

At the beginning of this thesis, the forms of AMH in the circulation had not been 

investigated, with the exception of a single study, which examined a single man with 

a sex chord tumor.  This man’s level of AMH was supraphysiological, enabling his 

AMH to be examined by western blots, without prior concentration by 

immunoprecipitation [147].  All of this man’s AMH was cleaved, with a minority 

being the alternative cleavage form (Section 1.6.3).  The forms of AMH in the 

circulation of healthy individuals were examined by the Otago AMH Neurobiology 
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Group at the University of Otago.  The AMH in the circulation of boys, men and 

women was found to be a mixture of proAMH and AMHN,C [141].  Free AMHC and 

the cleavage variants of AMH were not detected.  The absence of AMHC in the 

circulation is consistent with its physiochemical properties (Section 1.4.2).  As a 

consequence of this discovery, the thesis has examined proAMH, as well as the 

AMH-receptor-binding forms of AMH. 

 

ELISAs for AMH do not distinguish between proAMH and AMHN,C [10].  Therefore, 

the levels of AMH reported in Sections 1.1.3 and 1.2.4 represent an aggregate 

measure of proAMH and AMHN,C, which the Otago Neurobiology Group refers to as 

total AMH.  Different population groups have different ratios of proAMH and 

AMHN,C.  Boys and girls have a higher proportion of proAMH than men or women 

[151].  As well as differences between groups, there is also variation between 

individuals of the same sex and age.   

 

1.6.5 Cleavage of proAMH 

Multiple enzymes have been shown to cleave proAMH to AMHN,C  in vitro, but there 

is currently no proof of which enzymes are physiological regulators of proAMH 

cleavage in vivo.  Some of the proprotein convertases of the subtilisin/kexin-type 

(PCSK) cleave proAMH at 451/452, including  PCSK3 (furin), PCSK5, and PCSK6 

[152].  Plasmin also cleaves AMH into 57kDa N-terminal and 12.5 kDa C-terminal 

fragments.  It can also cleave proAMH between Arg 427 and Ser 428, generating the 

alternatively cleaved form of AMH (Section 1.6.3) [6].  The PCSK enzymes and 

plasmin both cleave the pro-form of multiple cytokines.  Consequently, the rate/extent 
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of the cleavage of proAMH may be linked to the rate/extent of other regulators, such 

as the proBMPs.  The cleavage enzymes themselves are subject to complex regulation.  

Plasmin is formed by the cleavage of plasminogen, with this cleavage subject to 

complex interactions between activators and inhibitors [153].   

 

Sertoli cells and granulosa cells express the enzymes that cleave proAMH in vitro.  

The level of these enzymes and their regulators vary during testicular development, 

the seminiferous cycle [154], ovarian development, the ovarian cycle, the stage of 

follicular development [155] and pregnancy [156].  The cleavage-enzymes have both 

intracellular and extracellular forms [157].  Consequently, proAMH is potentially 

cleaved by the cells that synthesize it and/or by other cell types. 

 

When recombinant proAMH is added to organ cultures of the Müllerian duct, 

regression occurs [139, 142], even though proAMH is unable to activate AMHR2.  

This suggests that the Müllerian duct is able to activate proAMH, which creates a 

scenario where the bioactivity of AMH depends of the level of cleavage enzymes in 

the target tissues.  When enzymes are present, the associated AMH receptors can be 

activated by both circulating proAMH and AMHN,C.  When enzymes are absent, only 

the AMHN,C  will be able to activate the receptors, leading to a smaller AMH signal 

than in tissues that can cleave proAMH.  ProAMH also appears to be cleaved within 

the gonads.  The majority of AMH in ovarian follicular fluid is proAMH, indicating 

that the granulosa cells that synthesize AMH do not extensively cleave it 

intracellularly.  However, the majority of AMH in the circulation of women is 

AMHN,C.  This indicates that proAMH may be cleaved as it passes from the ovarian 

follicles to the blood.  Alternatively, proAMH may be cleaved outside of the ovary, 
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and then returned to the blood.  The former appears to be the case for adult mice, as 

recombinant human AMHN,C (rhAMHN,C) does not accumulate after intravenous 

injection of rh-proAMH (Pankhurst, personal communication). 

 

In summary, the cleavage of proAMH appears to be part of the regulation of the 

bioactivity of AMH.  However, there is insufficient evidence to explain in detail when 

and where this occurs.  The potential regulation of proAMH cleavage by TGFβ BPs is 

discussed in Chapter 5. 

 

1.6.6 AMH type-2 receptor 

AMHR2 is thought to be specific to AMH, and conversely all AMH signaling is 

thought to be dependent on AMHR2 [158, 159].  This is in marked contrast to other 

TGFβ superfamily ligands, and lays the foundation for the presumption that AMH is 

unlike any other TGFβ superfamily ligand.  The strongest evidence for the one-to-one 

relationship between AMH and AMHR2 is that AMH-/- and AMHR2-/- mice [160] 

and humans [158, 161] have the same overt clinical phenotype, PMDS.  However, 

most of the actions of TGFβ superfamily ligands involve redundant signaling, with 

the result that the phenotype of null-mutations of ligands only reveals part of their 

signaling function.  Other experiments are therefore needed to identify the full range 

of signaling of a ligand and a receptor.  To date, the possibility that proAMH or 

AMHN,C can signal through other receptors outside of the Müllerian duct has not been 

extensively tested.  Similarly, the ability of other TGFβ superfamily ligands to bind to 

AMHR2 has not been systematically examined. 
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The human AMHR2 gene is located in chromosome 12, contains 13 exons [162], and 

encodes a 63 kDa protein of 573 amino acids.  The signal sequence, the extracellular, 

transmembrane and intracellular regions contain 17, 132, 21, and 403 of the 573 

amino acids respectively [162].  The intracellular region contains a serine/threonine 

kinase domain.  Rats and mice have two splicing variants of AMHR2, which partially 

lack either the binding site or the kinase domain [163].  The physiological function of 

these variants is unknown.  There is a 30% overall homology between AMHR2 and 

the other TGFβ superfamily type-2 receptors [4, 158].  AMHR2 is phylogenetically 

near to BMPR2 [83], and interacts with the same type I receptors as BMPR2.  This 

raises the possibility that AMH and BMP signaling may have some commonalities, 

even though the AMH and BMP ligands are only distantly related. 

 

AMHR2 is present in the reproductive tissues of both sexes.  It is expressed at very 

high levels in the developing testis and at lower levels in the mature testis [11].  The 

Leydig cells are primarily responsible for this expression [164-166].  AMHR2 is 

expressed in the mesenchymal cells surrounding the Müllerian ducts of both sexes 

[167], but AMHR2 is not expressed in the epithelium of the Müllerian duct.  

Consequently, the AMH-induced regression of the Müllerian duct is an indirect effect 

[168].  AMHR2 mRNA has also been detected in the rat prostate, human prostate 

cancer cells, and prostate cancer cell lines [169, 170].  In females, AMHR2 mRNA is 

present in the granulosa cells of the ovaries, the endometrium of the uterus, the 

uterine cervix and the mammary gland [11, 170-173].  

 

AMHR2 is also expressed outside of the reproductive tracts, with levels that are high 

relative to other cytokine receptors [17].  This was initially overlooked, as the levels 
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of AMHR2 in the testis are two orders of magnitude higher than in other tissues [17].  

The initial surveys of AMHR2 expression were set to detect high levels, creating the 

impression that all non-reproductive tissues had little or no expression of AMHR2.  

More recently, functional levels of AMHR2 expression has been detected in the lungs 

[174, 175], breast [176], endometrium [170], and in various neurons in the central 

nervous system [17, 22, 30]. A detailed study of AMHR2 expression has yet to be 

published, but preliminary data suggests that AMHR2 is expressed in many tissues 

[10] . 

 

1.6.7 AMH type-1 receptors  

AMH has two known type-1 receptors: ACVR1/ALK2 and BMPR1A/ALK3 [1]. 

ACVR1 and BMPR1A, like AMHR2, are both expressed in the mesenchyme 

surrounding the Müllerian duct [177].  ACVR1-/- [178] and BMPR1A-/- [179] mice 

exhibit embryonic lethality, and are unsuitable for analyzing AMH signaling in vivo.  

However, when either the ACVR1 or the BMPR1A gene is conditionally inactivated 

in cells that express AMHR2, then PMDS occurs with incomplete penetrance [1].  

When both genes are inactivated in AMHR2-expressing cells, PMDS invariably 

occurs in male mouse embryos, indicating that ACVR1 and BMPR1A are 

functionally redundant in the mesenchymal cells surrounding the Müllerian duct [1].  

PMDS also occurs when antisense probes are used to inactivate ACVR1, but not 

when BMPR1A is similarly inactivated [180].   

 

BMPR1B/ALK6 is also a putative receptor [79].  However, BMPR1B-/- male mice 

exhibit normal regression of the Müllerian duct [181], indicating that BMPR1B is not 



 35 

essential for the hallmark function of AMH.  In an immature Sertoli cell line, 

BMPR1B inhibits AMH signaling [181].  This raises the possibility that BMPR1B is 

involved in negative feedback for AMH signaling.  If so, then the absence of 

BMPR1B would not be expected to cause PMDS, as AMH signaling would be 

expected to be abnormally enhanced, rather than attenuated.  

 

The human ACVR1, BMPR1A and BMPR1B proteins have a mass of 57, 60, 57 kDa, 

respectively [162, 182].  The genes for the human ACVR1, BMPR1A, and BMPR1B 

gene are, respectively, located in chromosome 2 and consists of 18 coding exons, 

chromosome 10 and consists of 15 coding exons, and chromosome 4 and consisting 

of 17 coding exons [183].  Each type-1 receptor has an extracellular domain, 

transmembrane domain, and serine/threonine kinase domain in the intracellular region 

[162].  The human ACVR1 protein consists of 509 amino acids, comprising a signal 

sequence (20 amino acids), extracellular (103 amino acids), transmembrane (23 

amino acids) and intracellular domains (363 amino acids).  The intracellular region 

contains a serine/threonine kinase domain.  The human BMPR1A protein consists of 

532 amino acids, comprising the signal sequence (23 amino acids), and extracellular 

(129 amino acids), transmembrane (24 amino acids) and intracellular regions (356 

amino acids).  Human BMPR1B protein consists of 502 amino acids, comprising a 

signal sequence (13 amino acids) and extracellular (113 amino acids), transmembrane 

(22 amino acids) and intracellular regions (354 amino acids) [162].   

 

The AMH type-1 receptors are shared by different type-2 receptors [93] which are 

activated by the BMP subfamily [79, 184] (Figure1-3).  For example, BMP7 binds to 

the complex of ACVR2B and ACVR1.  BMP2, BMP4 and BMP7 bind to the 
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complex of BMPR2 and BMPR1A or BMPR1B.  BMP4 and GFD5 bind to the 

complex of ACTR2B and BMPR1A or BMPR1B [79].   

 

In males, ACVR1 is expressed in the urogenital ridges of fetal and adult murine testis, 

which is similar to the AMHR2 expression pattern [180, 181].  BMPR1A is expressed 

in mitotic spermatogonia during the first week postnatal, in the germ line 

compartment of the postnatal murine testis [185] and in the peri-Müllerian 

mesenchyme[1][177].  BMPR1B is expressed in the urogenital ridges at a very low 

level, and is not detectable in the fetal murine testis [180].  In adults, BMPR1B is 

expressed in the epithelial layer of the Müllerian duct but not in the mesenchymal 

layer of mice [181].  The complete removal of Müllerian duct is an essential aspect of 

male sexual differentiation, and it is therefore unsurprising that BMPR1B is absent in 

the Müllerian mesenchymal cells, as inhibition here would appear to be undesirable.  

Consequently, this does not exclude the possibility that BMPR1B is part of the AMH 

signaling pathway at other sites. 

 

In females, ACVR1 is also expressed in the urogenital ridges of the fetal and adult 

murine ovary [180, 181].  BMPR1A is expressed in granulosa cells and conditional 

knockout of BMPR1A in murine granulosa cells is sub-fertile with reduced 

spontaneous ovulation [186].  BMPR1B is expressed in murine urogenital ridges at a 

very low level [180] and in the granulosa cells of the mature murine ovary [186].  

However, BMPR1B is barely detectable in the fetal murine ovary [180].  In adult 

mice, BMPR1B is only expressed in the oocytes of small antral follicles and in the 

granulosa cells of large antral follicles [180, 187].  Disruption of BMPR1B in mice 

generates infertility [187].  This indicates that the expression pattern of BMPR1B and 
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AMHR2 are not identical in the ovary.  In addition, AMH Type-1 receptors generally 

show a less follicle-stage-specific expression pattern than AMHR2.  These 

observations are consistent with the type-1 receptors having roles in BMP signaling in 

rodents [188] as well as roles as receptors for AMH signaling. 

 

1.7 Is AMH signaling regulated by binding proteins? 

AMH, like other members of the TGFβ superfamily, is a pleiotropic regulator, but this 

only recently been recognized.  The exploration of AMH signaling has been based 

almost solely on the presumption that AMH only signals through one simple 

mechanism, which is exemplified by the regression of the Müllerian duct.  The TGFβ 

superfamily ligands share receptors and BPs, leading to context dependent signaling.  

AMH is the only ligand for AMHR2 but AMH shares type 1 receptors with other 

TGFβs.  It is therefore conceivable that AMH may also share BPs with other TGFβ 

superfamily members.  The concentration of AMH in the circulation of adults is low 

compared to that of boys, which in turn appears to be low relative to the 

concentrations within the gonads.  Despite this, the AMH in the circulation appears to 

have function.  This suggests that the regulation of AMH signaling may be more 

complex than has previously been thought.  This complexity may be explained if BPs 

modulate and integrate the activities of AMH, either by regulating its ability to bind to 

the AMH receptors and/or by controlling the cleavage of proAMH into the AMH-

receptor competent form, AMHN,C.  This aim of this thesis was therefore to undertake 

the first test of whether the bioactivity of AMH can be affected by any of the known 

TGFβ-superfamily BPs.   
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Chapter 2: Materials and Methods 

2.1 Luciferase reporter assay 

2.1.1 Maintenance of the cell lines 

The human epithelial prostate cancer cell lines, DU145 and LNCaP (American Type 

Culture Collection), were incubated in T75 flasks filled with Roswell Park Memorial 

Institute (RPMI) medium 1640 ( Gibco) supplemented with 2 mM L-glutamine, 10 

mM HEPES, 1 mM sodium pyruvate (Sigma), 25 mM glucose (Sigma), 17.85 mM 

sodium bicarbonate (Sigma) and 10% fetal calf serum (FCS, Invitrogen) at 37 ºC in a 

5% CO2, water-jacketed incubator (Forma scientific, model 3111).  The FCS was 

derived from females, unless otherwise stated. 

 

When the cells reached 80 to 90% confluency, they were washed with Hank’s 

Balanced Salt Solution (HBSS, Invitrogen) then incubated at 37 °C for 5 minutes in a 

solution containing 0.05% trypsin-EDTA (Life Sciences).  The cells were spun at 

2,000 g for 5 minutes and the pellet re-suspended in 1 ml of fresh media 

supplemented with 10% FCS.  One third of the cell suspension was then plated in a 

new 75 ml flask containing 10 ml of RPMI supplemented as described in the 

paragraph above (unless otherwise stated).  The remaining cells was mixed with 15% 

dimethyl sulfoxide to prevent the formation of ice crystals during the freezing process, 

and 0.5 ml aliquots were stored at -80 °C for subsequent culturing. 

 

The P19 murine embryonic carcinoma cell line (American Type Culture Collection) 

was maintained in Eagle’s Minimum Essential Medium-alpha (MEM-α, Sigma) 

instead of RPMI, but was otherwise maintained as described above. 
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2.1.2 Transfection of cells 

2.1.2.1 Transfection vectors  

The transfection vectors were prepared by Dr. Suneeth Mathew (Otago Neurobiology 

Group).  In one of the transfection vectors ((BRE)2-Luc), a firefly luciferase gene is 

driven by a BMP responsive element (BRE), which enables the activation of the 

AMH signaling cascade to be measured (Chapter 3.1.1).  This vector was kindly 

donated by Dr. Peter ten Dijke (The Netherlands Cancer Institute) [189] and amplified 

in ultra-competent E-coli DH5α cells by Dr. Suneeth Mathew.  The CMV-Amhr2 

plasmid contains AMHR2 gene has been previously described [163]. The phRL-SV40 

vector contains a Renilla reniformis luciferase under the control of the SV40 promoter, 

and was kindly donated by Prof. Warren Tate. pcDNA3.1(+) (Invitrogen) was used as 

a control vector [163] in experiments examining whether the presence or absence of 

CMV-Amhr2 influenced BMP signaling. 

 

2.1.2.2 Transient transfection 

This process began when the cells reached 80% confluency.  The transfection medium 

was prepared before the cells were harvested.  First, FuGENE6 (Roche) transfection 

reagent was diluted in serum-free MEM-α according to the manufacturer’s 

instructions.  Three µl of FuGENE6 was added for each µg of transfection vector 

DNA, with the volume of medium relating to the number of wells. The transfection 

vectors were diluted in milliQ-H2O, and added to the mixture of FuGENE6 and 

medium. The final amount was 20 ng of AMHR2, 20 ng of (BRE)2-luc and 0.2 ng of 

phRL-SV40 per well, unless otherwise indicated.  pcDNA was used as control vector, 

when needed. This mixture was then incubated for between 30 minutes and 1 hour at 

room temperature, whilst the cells were harvested. 

 

The cells were trypsinized as previously described (Section 2.1.1).  The concentration 

of cells was determined with a hemocytometer.  The cells were then diluted with 

medium to obtain a final plating density of 10,000 cells per well on a 96-well plate, 

unless otherwise indicated.  The medium contained 10% female FCS, unless 

otherwise stated.  The diluted cells were then mixed with the vector, FuGENE6 and 

medium solution.  One hundred µl to the final mixture of cells and reagents was then 



 40 

added per well, using a 96-well plate.  Un-transfected cells were used as controls in 

some experiments. 

 

2.1.3 Incubation of the transfected cells with ligands and binding 

proteins  

2.1.3.1 Forms of AMH 

The early methods for purification of AMH used diethylaminoethyl ion exchange, 

dye-affinity or immunoaffinity chromatography from the testes [6].  More recently, 

studies have used recombinant AMH preparations from various sources, including 

bacteria, tobacco and Chinese hamster ovary cells [6].  One unresolved issue with 

these preparations is whether the post-translational modification of AMH is normal 

when a human gene is transferred to another species.  For this reason, the recombinant 

AMH used in this project was predominantly from a human cell line (next paragraph).  

Whilst this is superior to other alternatives, it is not perfect because the cells used are 

not a physiological source of AMH, and may therefore process AMH differently to 

granulosa and Sertoli cells. 

 

Recombinant hAMH was produced by PX’ Therapeutics (Grenoble, France), under 

contract to the University of Otago.  This rhAMH was produced from HEK293 cells, 

which is a cell-line derived from human embryonic kidney.  These cells were 

transfected with an rh-proAMH vector.  The HEK293 cells predominantly secreted 

uncleaved proAMH, but with low level of AMHN,C [141].  When AMHN,C was 

required, the rh-proAMH was cleaved by furin, as described in Section 2.4.1   

 

In some experiments, AMHC was used.  The AMHC used in these experiments was 

derived from transfected E Coli, and was purchased from R&D systems (Table 2-1).  
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Table 2-1. Binding proteins and ligands catalog numbers 

Protein Catalog number Species 

Betaglycan 242-R3 Human 

Brorin 6147-FW Human 

Chordin 758-CN Mouse 

Chordin-like1 1808-NR Human 

Chordin-like 2 2520-CH Human 

DAN 755-DA Mouse 

Decorin 143-DE Human 

Endoglin 1097-EN Human 

FS288 5386-FS Human 

FS315 4889-FN Human 

FS-like1 1694-FN Human 

FS-like3 (FLRG) 1288-F3 Human 

FS-like 4 4890-FN Human 

Noggin 6057-NG Human 

α2-macroglobulin 1938-PI Human 

AMHC 1737-MS Human 

BMP2 355-BM Human 

BMP4 314-BP Human 

Activin A 338-AC Human 

 

 

 

2.1.3.2 TGFβs and binding proteins 

The BPs and TGFβ-superfamily ligands were purchased from R&D systems.  The 

catalogue numbers are listed in Table 2-1.  These BPs and ligands were reconstitutes 

according to manufacturer’s instructions and then stored at -80 °C.  The aliquots were 

made to prevent repeated freeze thaws.  These aliquots can be stored for 12 months at 

-80 °C.   
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2.1.3.3 Preparation of solutions containing ligands and binding proteins 

The AMH, TGFβ-superfamily ligands and BPs to be added to cultured cells were 

diluted in medium, immediately prior to their addition to the cells.  When 

combinations of ligands and/or BPs were added to the same well, they were mixed in 

medium and incubated together for 5 minutes at 37 °C in a storage plate, before 

addition to the culture medium.  

 

2.1.3.4 Stimulation of P19 cells with ligands and BPs 

One hundred µl of solution with the transfected cells were plated for 24 hours before 

the ligands and BPs were added, unless otherwise stated.  When 96-well plates were 

used, 50 µl of the culture medium was removed from each well.  Sixty µl of the 

solution containing the ligands and BPs was immediately added to each well.  The 

plate was then gently swirled to mix the added and existing media, after which the 

plate was incubated for 24 hours incubation at 37 °C.  

 

AMHN,C contains furin. The effect of furin on the reporter assay was tested by 

comparing the activity of four nM of AMHC, in the presence and absence of 0.02 

IU/µl of furin buffer (Chapter 3.2.1.5). 

 

2.1.4 Luciferase enzyme assay 

The medium was removed and rinsed with 200 µl per well of HBSS.  The remaining 

medium and HBSS was removed, followed by adding 20 µl per well of passive lysis 

buffer (Promega).  A tilter shaker shook the plate for 1 hour, with the wells being 

scratched with pipette tips to disrupt cells after 30 minutes of this incubation.  The 

cell lysates were then assayed immediately, or frozen at -80 °C for subsequent assay, 

which was typically undertaken on the next day.  Once the procedures were 

established (Chapter 4ff), the samples were routinely frozen before assay, to ensure 

consistency between experiments.  After thawing, the lysates were triturated with a 

pipette to re-suspend them. 
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The luciferase activity was measured using the Dual-Luciferase® reporter assay 

system (Promega), according to the manufacturer’s instructions.  10 µl aliquots of the 

samples were loaded on a 96-well plate and incubated for 2 seconds with 50 µl of the 

firefly luciferase buffer and the firefly luminescence measured for 10 seconds using a 

Victor X3 2030 (Perkin Elmer) plate reader.  The reaction was then quenched by 

adding 50 µl of the Renilla reniformis luciferase buffer for 2 seconds followed by a 10 

seconds Renilla luminescence measurement with shaking.  This enzymatic activity is 

temperature-dependent. Thus, the measurement was undertaken at 23-24 °C to 

minimize the variability of the measurement.   

 

Experiments included controls wells that had not been transfected with the (BRE)2-

Luc vector, or any other vector.  These were used to estimate the zero-value for the 

luciferase assays. 

 

2.1.5 Calculations and statistics 

2.1.5.1 Normalisation 

 

The absolute intensity of the fluorescence in a well in a reporter assay is determined 

by the extent of the activation of the reporter (the desired variation) plus numerous 

unavoidable influences.  The latter includes small well-to-well and day-to-day 

variation in the number of cells, small day-to-day variation in the transfection 

efficiency, variation in room temperature, and the concentrations (and age) of the 

chemicals used to generate the fluorescence.  The procedures required to produce 

informative reporter assays are well understood, with broad agreement.  Firefly 

luciferase assays were initially unreliable due to variation in cell number, with this 

being overcome by co-transfection with a vector that causes constitutive expression of 

a second luciferase (Renilla).  The two forms of luciferase can be independently 

measured and the ratio of the firefly to renilla luciferase activities provides a measure 

of the activation of the target reporter that is insensitive of cell number, and most of 

the variables that lead to day-to-day variation in the absolute level of firefly luciferase 

activity in the assay.  This technique is known as the dual-luciferase reporter assay 

[189]. 
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The level of reporter activity in the AMH reporter assay varies with the concentration 

of AMH and with the level of AMHR2 expression ([163] and Chapter 3).  These two 

variables are independent of each other.  The abundance of AMHR2 molecules 

determines the maximum activation of the intracellular cascade, but theoretically (and 

by observation) the dose-response curve is determined by the binding constants 

between AMH and AMHR2.  Ideally, the level of AMHR2 should not vary from day 

to day.  However, for technical reasons it was necessary to transiently transfect the 

P19 cells with AMHR2 (Chapter 3), for each batch of each experiment.  Each 

experiment included wells with a high concentration of AMH (BP experiments) or 

BMP (AMH-BMP interaction experiments), which had been experimentally shown to 

maximally activate the reporter system.  This value was defined as 100% activation in 

each experiment, with the no AMH wells being defined as 0% activation.  All other 

values were linearly scaled.  The zero and 100% values were defined from the control 

wells that lacked BPs.  Consequently, any BP that increased the top value will yield 

values greater than 100%, whereas BP that suppressed basal reporter activity would 

yield negative values.  This normalization thus does not mathematically bound the 

assay to values between 0 and 1. 

 

The zero-value for the firefly and Renilla reniformis luciferase assays were subtracted 

for the observed values, before the ratio of the firefly to Renilla activities calculated 

for each well. 

 

2.1.5.2  Number of data points included in each dose-response curve 

The sigmoidal shape of a dose-response curve requires more data points to definite 

than a straight line.  The Departmental statistical adviser, Mr Andrew Gray, was 

asked to undertake a power calculation.  He recommended 50 points per curve. In this 

thesis, most experiments used 60 points for each dose-response curve, for the reasons 

outlined below.  This number is very large compared to the norms of biomedical 

experiments. 

 

The design of a dose-response curve needs to balance opposing influences, with there 

being no consensus on how to do this.  From a purely statistical standpoint, the ideal 

design is 60 different doses (concentrations) with no replicate.  Here each point is 
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imprecise, but the estimation of the curve parameters has maximum precision.  

However, this is rarely done in biomedical science, as the generation of a large 

number of dose can introduce experimental error leading to a false positive that has 

high statistical certainty. 

 

The data from the reporter assay was initially variable, and the first part of the thesis 

involved an investigation of the source of this variation (Chapter 3).  The purpose of 

this was to increase the signal-to-noise ratio of the assay.  Equally, the purpose was to 

develop an understanding of what the sources of variation in the assay were.  This 

enabled the experiments to be designed in a manner that minimized the risk of false 

positive and false negatives.   

 

The reporter assays is sensitive to the speed of processing various steps.  Practice and 

the use of devices such as multi-pipettes increased signal-to-noise.  However, in the 

absence of robotic processing of the experiment, there was a practical necessity to 

minimize the size of individual experiments.  This involved collection of data in three 

batches.  This is a common issue with experimental design: for example, with 

genetically-modified mice, it is often necessary to examine mice from different litters 

on different days, as there are insufficient mice with the appropriate genotype in a 

single litter.   

 

The collection of data in three batches was also undertaken for a separate reason.  

False positives can arise through minor procedural issues: For example, the addition 

of a BP to a well will dilute the AMH in the well.  An exactly equal volume of control 

must be added.  If the setting on the multi-pipette moved (or was incorrectly set) 

when adding the BP or control solution, then a small systematic difference would be 

created.  Similarly, if the concentration of the BP were in error, then this would not be 

detected if the experiment were completed as a single batch.  Each BP was prepared 

three times, as the experiment was done in three batches – consequently, the 

experiment would detect if a significant error was made in preparing a BP (or other 

critical components). 

 

It is common to make measurements in triplicates.  When the values of the three data 

points that make up a triplicate are not in close agreement, then the measurement is 
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suspect and should be repeated.  Similarly, when a dose-response curve is generated 

in three batches, then any significant differences between the batches would indicate a 

possible problem, requiring the experiment to be repeated. 

 

2.1.5.3  Calculation of EC50, top and bottom values of dose-response curves 

A dose-response curve was calculated using the “sigmoidal dose-response (variable 

slope)” function of Prism (6.0, GraphPad Software Inc), with the outputs including 

estimates of the EC50, top and bottom values for the curve, along with the standard 

errors for each of the estimated parameters.  When two curves were being compared, 

for example AMH plus and minus a BP, the data was log transformed by Prism and 

the two curves compared using the “log (agonist) vs. response - variable slope (four 

parameters)”, with statistical assessment of the HillSlope, logEC50, top and bottom 

values being obtained.  All results with a p value of < 0.05 are recorded. 

 

2.1.5.4  Statistical comparison of mean values 

The mean values of groups were compared using one-way or two-way ANOVA, with 

the p-values being corrected for multiple tests using Bonferroni’s method, when 

appropriate.  The statistical calculations were undertaken using Prism and SPSS 

Statistics (IBM Corporation), here and elsewhere in the thesis.  All results with a p-

value of < 0.05 are recorded. 

 

2.1.6 Method Development 

The initial results contained high variation within and between experiments.  This 

variation was reduced as outlined below. 

 

2.1.6.1 Solution for technical variation 

The assay was initially undertaken using 24-well plates, which involved inefficient 

use of cells and other reagents.  The assay proved to be sufficiently sensitive for the 

procedure to be downscale to 96-well plates, with all experiments using P19 cells 
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involving 96-well plates.  The addition of reagents to wells, one well at a time, 

introduced variation due to pipetting and degraded the assay by extending the time 

cells were outside of the incubator.  The use of 96-well plates enabled multi-pipettes 

to be used, with the reagents being pipetted from storage plates (Section 2.1.3.3).  

This strategy greatly reduced experimental variation. 

 

2.1.6.2 Efficiencies relating to the maintenance of cells 

P19 cells are smaller than DU145 or LNCaP cells.  At the beginning of the growth, 

they mainly grew as a monolayer.  However, when the cells were close to confluency, 

they started to grow as aggregation clusters.  This made it difficult to count the 

number of cells, as the clusters were not readily separated by trypsin.  This also 

introduced the risk of generating cells with diverse characteristics, as there is variation 

in the environment within and outside of clusters.  Therefore, the cell confluency was 

carefully checked to avoid the cell clusters.  If clustering occurred, the clustered cells 

were discarded. 

 

The entire medium was initially changed after 24 hours incubation, which stressed the 

cells.  Only part of the medium was therefore changed, typically 50% (Section 2. 

1.3.3). 

 

The wells on the edge of the 96-well plates have a different environment to other 

wells, which can affect the rate of evaporation of the medium and the availability of 

CO2.  The outside wells were therefore not used, and were filled with HBSS or 

medium to produce a constant environment. 

 

The characteristics of cell lines can change over time, with this being unavoidable.  

The use of trypsin to split cell cultures is necessary, but this also damages cells.  

When cells were needed for experiments, the flasks were seeded at a high density to 

provide cells for experiments.  In between experiments, the flasks were seeded at a 

lower density to minimize the number of passages.  Cells were also frozen, to enable 

cultures to be re-established from low passage cells.  If the appearance or growth 

characteristics of cells changed, then cultures were terminated and the stocks re-

established from frozen cells. 
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The dimethyl sulfoxide used during the cryopreservation is toxic to cells, and freeze-

thaw procedures can introduce variation.  Cells were grown from at least one passage 

after freezing before being used in experiments.  Any flasks with atypical cells were 

not used.  

 

Similar experiments were undertaken in batches in as tight a timeframe as possible, to 

ensure that each part of the thesis program was internally consistent.  

 

2.1.6.3. Optimizing the lysis step 

The incubation time for cell lysate was optimized, which involved increasing it from 

15 minutes to 1 hour, and adding a mixing and scratching procedure 30 minutes after 

homogenization the cells (Section 2.1.4).  A routine freeze-thaw step was introduced, 

with a re-suspension step (Section 2.1.4). 

 

2.2 Detection of TGFβ-superfamily receptors  

The expression of the TGFβ-superfamily receptors by DU145, LNCaP and P19 cells 

were examined by PCR.  Quantitative analysis of the level of expression in P19 cells 

was also undertaken using real-time PCR.  

 

2.2.1 RNA extraction 

Medium in the T75 flask was removed and 1 ml of TRI reagent (Sigma-Aldrich) 

added to the cells and pipetted several times to form a homogenous lysate.  After 5 

minutes, 0.2 ml of chloroform was added to the lysates, which were shaken for 15 

seconds and then stood for 2 minutes at room temperature.  After centrifugation at 

14,500 g for 15 minutes at 4 °C, the aqueous phase was transferred to a fresh tube and 

0.5 ml of 2-propanol was added and mixed. The samples were stored at -20 °C 

overnight, and then centrifuged at 12,000 g for 10 minutes at 4 °C.  The supernatants 

were removed and the RNA pellets washed by adding a minimum of 1 ml of 75% 

ethanol.  Each sample was vortexed and then centrifuged at 7,500 g for 5 minutes at 

4 °C.  The samples were placed in a 65 °C heating block to dry.  Fifty µl of 
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autoclaved Diethylpyrocarbonate-treated water was added to each sample, and the 

samples heated for 5 minutes at 65 °C, after which they were vortexed and stored at -

20 °C. 

 

2.2.2 DNase treatment of RNA 

The RNA samples were incubated for 30 minutes with TURBO DNase in TURBO 

DNase buffer (TURBO DNA-free kit, Ambion) to remove genomic DNA 

contamination.  The reaction was stopped by the addition of DNase inactivation 

reagent.  After incubation for 2 minutes, the samples were centrifuged at 10,000 g for 

1.5 minutes.  The supernatant was collected, and the concentration of RNA in it 

measured.  

 

2.2.3 Measurement of RNA concentration 

Measurements of RNA concentration were undertaken using the NanoDrop 

spectrophotometer (Thermo Scientific).  The spectrophotometer was initialized and 

blanked using 2 µl of distilled water, after which 2 µl of each sample was analyzed.  

The quality of the RNA samples was confirmed by loading them onto 1.5% agarose 

(Invitrogen) gels containing 0.5 µg/ml of ethidium bromide and run at 100 volts for 

60 minutes for visualization with a UV transilluminator (Biometra, TI1).  

 

2.2.4 cDNA synthesis 

The DNase-treated RNA was converted to cDNA (complementary DNA) using the 

SuperScript VILO cDNA synthesis kit (Invitrogen).  1 µg of RNA was mixed with 4 

µl of the VILO reaction mix and 2 µl of the Superscript enzyme mix.  The synthesis 

was achieved using the protocol described in Table 2-2.  The concentration of the 

resulting cDNA was estimating using a NanoDrop spectrophotometer.  Samples with 

no reverse transcriptase control (RT-) were made as controls.   
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Table 2-2. cDNA synthesis condition 

 
 

 

2.2.5 PCR reactions 

PCR (polymerase chain reaction) was performed in a thermal cycler (MJ research) in 

a 20 µl reaction mixture containing cDNA, 5 µM of the primers (Table 2-3), 10 mM 

of dNTPs (Invitrogen), 0.05 U/µl of Taq DNA polymerase, 10X Taq reaction buffer 

containing 2 mM of MgCl2 (New England Biolabs), 0.1 mM cresol red and 10% 

sucrose (Univar).  Equal amounts of cDNA were loaded for each sample, with β-actin 

used as a loading control.  The PCR was performed in a thermal cycler (MJ research) 

following the cycle conditions described in Table 2-4.  The primers sequences are 

listed in Table 2-3.  The samples, along with the controls, were then loaded onto 1.7% 

agarose (Invitrogen) gels containing 0.5 µg/ml of ethidium bromide and run at 100 

volts for 30 minutes for visualization with a UV transilluminator (Biometra, TI1).  No 

template controls (water) and RT- controls were included in each experiment.   

 

The gels were photographed with an RGB digital camera.  The image was converted 

to grayscale in Photoshop CS6 (Adobe Systems Integrated), and then inverted to 

generate a black on white image.  The images were not otherwise manipulated.  

Irrelevant bands have been cropped from some figures. 

  

Step Temperature*(°C) Duration*(min)
1 25 10
2 42 60
3 85 5
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Table 2-3. Primers used for PCR 

 
  

Gene$Detected Mouse$Primer Sequence Product$size(bp)
ACVR2A ActR2A(F 5’(AGCAAGGGGAAGATTTGGTT(3’ 178

ActR2A(R 5’(GGTGCCTCTTTTCTCTGCAC(3’
BMPR2 BMPR2(F 5’(AGGATCAGGTGAAAAGATCAAGAGA(3’ 165

BMPR2(R 5’(GCAAGGTACACAGCAGTGCTAGATT(3’
AMHR2 AMHR2(F 5’(GCTCCAGAGCTCTTGGACAA(3’ 89

AMHR2(R 5’(AGTAGTAGCGCCAGAGAGTAAA(3’
ACVR1 ALK2(F 5’(GATCAACAGAGGCCAAACATACCTA(3’ 274

ALK2(R 5’(AGATGGATTCTGTTCTGACAACCA(3’
BMPR1A ALK3(F 5’(GTCTATTCCAGGGCAGATTTCCTA(3’ 160

ALK3(R 5’(CCTGCTTAACATCTGACGCAAGT(3’
BMPR1B ALK6(F 5’(ATACCAGCTTCCCTATCACGACCT(3’ 277

ALK6(R 5’(TGAAATTCTTGCTCTGTCCACAAGTA(3’
ACVR2B ActR2B(F 5’(CAGGGACTTCAAAAGCAAGAATGT(3’ 189

ActR2B(R 5’(AGGAAGGCGTCTCTCTGGAAGTT(3’
GAPDH GAPDH(F 5’(CTTCATTGACCTCAACTA(3’ 300

GAPDH(R 5’(TTCACACCCATCACAAAC(3’
β(actinA betaAactin(F 5’(TCGTCGACAACGGCTCCGGCATGT(3’ 520

betaAactin(R 5’(CCAGCCAGGTCCAGACGCAGGAT(3’

Gene$Detected Human$Primer Sequence Product$size(bp)
ACVR2A ActR2A(F 5’(CAGTGCAGAGTGGGCAAGTTAACA(3’ 222

ActR2A(R 5’(AAGCATTCCTTACGCGGAGATCTG(3’
BMPR2 BMPR2(F 5’(GATGTTCTTGCACAGGGTGTTCCA(3’ 239

BMPR2(R 5’(TGACTTCACAGTCCAGAGATTCAG(3’
AMHR2 AMHR2(F 5’(AGGCCTGACAGCAGTCCACCA(3’ 255

AMHR2(R 5’(TTGAGGATGGGCCAAGGCAGC(3’
ACVR1 ALK2(F 5’(AAACCAGCCATTGCCCATCG(3’ 283

ALK2(R 5’(TACCATTGCTCACCATCCGC(3’
BMPR1A ALK3(F 5’(TGGGCAAATGGCGTGGCGA(3’ 280

ALK3(R 5’(TGTGCAGGTGGCACAGACCAC(3’
BMPR1B ALK6(F 5’(GCAGCACAGACGGATATTGT(3’ 630

ALK6(R 5’(TTTCATGCCTCATCAACACT(3’
ACVR2B ActR2B(F 5’(CTCCCTCAGGGATTACCTCA(3’ 428

ActR2B(R 5’(AGGGCAGCATGTACTCATCC(3’
β(actinA betaAactin(F 5’(TCACCCACACTGTGCCCATCT(3’ 295

betaAactin(R 5’(CAGCGGAACCGCTCATTGCCA(3’
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Table 2-4. PCR cycle conditions 

 

 

2.2.6 Quantitative PCR reactions 

The quantitative PCRs were performed using SYBER Green Master Mix (Applied 

Biosystems) and the gene-specific primers used for PCR (Table 2-3).  A 3-step PCR 

procedure was carried out using the protocol described in Table 2-5.  The efficiency 

of each primer set was known from previous in-house use of the primers, and varied 

between 1.8 and 1.9.  The relative copy number of each gene was calculated by 

reference to a standard curve with known levels of cDNA for each gene. 

 

Table 2-5. qPCR cycle condition 

 

DU145,'LNCap

Step Number'of'cycles Temperature'(°C) Duration Step Number'of'cycles Temperature'(°C) Duration
Initial'denaturation 1 95 2'mins Initial'denaturation 1 95 2'mins

denaturation 35 95 15'secs denaturation 35 95 15'secs
Annealing 35 70 15'secs Annealing 35 60 60'secs
Extention 35 72 30'secs Extention 1 72 3mins

Final'extension 1 72 3'mins

Step Number'of'cycles Temperature'(°C) Duration Step Number'of'cycles Temperature'(°C) Duration
Initial'denaturation 1 95 2'mins Initial'denaturation 1 95 2'mins

denaturation 35 95 15'secs denaturation 35 95 15'secs
Annealing 35 65 15'secs Annealing 35 62 15'secs
Extention 35 72 30'secs Extention 35 72 30'secs

Final'extension 1 72 3'mins Final'extension 1 72 3'mins

Step Number'of'cycles Temperature'(°C) Duration Step Number'of'cycles Temperature'(°C) Duration
Initial'denaturation 1 95 2'mins Initial'denaturation 1 95 2'mins

denaturation 35 95 15'secs denaturation 35 94 20'secs
Annealing 35 60 15'secs Annealing 35 60 30'secs
Extention 35 72 45'secs Extention 35 72 45'secs

Final'extension 1 72 3'mins Final'extension 1 72 10'mins

P19'cells

Step Number'of'cycles Temperature'(°C) Duration
Initial'denaturation 1 95 2'mins

denaturation 35 95 20'secs
Annealing 35 60 20'secs
Extention 35 72 30'secs

Final'extension 1 72 5'mins

all'genes'above

βEactin AMHR2

ACVR1,'BMPR1A ACVR2A,'BMPR2

BMPR1B ACVR2B

Number'of'cycles Temperature'(°C) Duration
1 95 15$min
45 95 20$sec
45 60 20$sec
45 72 30$sec
1 95 5$sec
1 65 1$min
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2.3 Do binding proteins interfere with an AMH ELISA? 

2.3.1 Preparation of the samples 

The binding of AMHN,C and each of 6 BPs (chordin, chordin-like1, endoglin, FS288, 

FS315, FLRG) were assayed using the AMH gen II enzyme-linked immunosorbent 

assay kit (ELISA (Beckman Coulter, A79765, analytical sensitivity 0.08 ng/ml)).  

Thirty five µl of 29 pM of rhAMHN,C (Section 2.1.3.1) and 35 µl 20 nM BPs were 

mixed and incubated for 30 minutes at 37 °C.  The concentration of AMH selected is 

in the middle of the standard curve, and corresponds to the AMH value of a typical 

young adult.  The BPs were added at large molar excess (greater than 500 times) to 

ensure that even a weak effect of the BP was detected.  The BPs selected were those 

that affected the AMH dose-response curve in Chapter 4.  Twenty µl of this premix 

were pipetted to the ELISA plate and incubated for 30 minutes on an orbital shaker. 

 

2.3.2 ELISA protocol 

The ELISA was undertaken according to the manufacturer’s protocol, with the 

assistance of Ms. N. Batchelor for the detection steps.  Standards were prepared in a 

pre-incubation plate (25 µl standard plus 125 µl assay buffer) and mixed and 

incubated on orbital shaker at room temperature for 1 hour. A hundred twenty µl 

standards were pipetted to the wells. A hundred µl of assay buffer were pipetted to the 

samples.  The wells were incubated, shaking at 300 rpm on an orbital microplate 

shaker, for 1 hour at room temperature.  Each well was aspirated and washed five 

times with washing solution, using an automatic microplate washer 

(ThermoScientific). The plate was then inverted onto absorbent material; to remove 

residual washing solution and 100 µl of the antibody-biotin conjugate solution added 

to each well.  The plates were incubated for 1 hour at room temperature, on an orbital 

microplate shaker at 300 rpm.  Each well was aspirated and washed five times with 

wash solution using an automatic microplate washer.  Residual wash solution was 

removed by inversion, as described above, and 100 µl of the TMB chromogen 

solution added to each well.  The wells were incubated, shaking at 300 rpm on an 

orbital microplate shaker for 10.5 minutes at room temperature.  The plates were 
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covered with a black box to avoid exposure to sunlight.  A hundred µl of the stopping 

solution was added to each well and the absorbance of the solution was read in the 

well within 30 minutes using a microplate reader set to 450 nm.  The intra-assay CV 

for this ELISA in the Otago Neurobiology Laboratory has been previously described 

[190, 191]. [190, 191[Pankhurst, 2015 #2078]. 

 

Samples were measured in triplicate.  Standard curves were generated using a 

quadratic curve, as recommended by Beckman Coulter.  

 

2.4 Assessment of AMH cleavage with binding proteins 

2.4.1 Furin treatment of AMH 

Recombinant human AMH (PX’Therapeutics) at 10 mM was reacted with 8 units of 

furin (New England Biolabs) in 40 µl of reaction buffer consisting of 100 mM 

HEPES, pH 7.4, 2.4 mM Ca2+, 140 mM Na+, 4 mM K+ (Cl- ).  The reaction was 

allowed to progress for 24 hours at 37 °C and was then stopped by freezing the 

sample at -20 °C.  

2.4.2 Optimizing the incubation time and the concentration of proAMH 

Two1.2 nM rhAMH and one 6 nM solutions were reacted with 8 units of furin (New 

England Biolabs) in 11.25 µl of reaction buffer consisting of 100 mM MES, pH 7.5, 

0.3mM Ca2+, 12 mM Na+, and 107 mM K+ for 4 hours or 8 hours at 37 °C. In order to 

stop the reaction, Laemmli buffer was added and the samples were heated to 95 °C for 

5 minutes.   

2.4.3 Preparation of binding protein samples  

BPs were diluted with 0.05% v/v Tween-20 to become either 133 nM (Brorin, 

chordin-like1, decorin, noggin, FS-like1, FLRG, FS288, DAN, chordin-like2) or 66 

nM (chordin, betaglycan, endoglin, FS-like 4, α2-macroglobulin).  The final 

concentration of these proteins in the following preparation was either 10 nM or 20 

nM, respectively. 
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2.4.4 Furin cleavage with binding proteins 

An aliquot of the rh-proAMH was used in the following experiments (2.1.3.1).  Each 

of 14 BPs were added to the rhAMH (PX’Therapeutics) at 10 mM and each BP 

preparation was reacted with 8 units of furin (New England Biolabs) in 40 μl of 

reaction buffer consisting of 100 mM HEPES, pH 7.4, 2.4 mM Ca2+, 140 mM Na+, 4 

mM K+.  The reaction was allowed to progress for 4 hours at 37°C.  In order to stop 

the reaction, Laemmli buffer was added and the samples were heated to 95 °C for 5 

minutes.  Two control aliquots of rhAMH were incubated in the same treatment with 

or without the addition of furin to the reaction buffer. 

 

2.4.5 Electrophoresis and Western blotting  

SDS-PAGE was run using 10% Tris-glycine bisacrylamide gels with a 4% stacking 

gel using the Xcell Surelock Mini-Cell system (Invitrogen) at 100 volts for 2 hours. 

Proteins were transferred to a 0.4-µm nitrocellulose membrane (Whatman) at 30 volts 

for 1 hour.  Blotting membranes were blocked with Odyssey blocking reagent (Licor) 

for 30 minutes, probed with 0.1–0.2 mg/mL polyclonal goat anti-human MIS/AMH 

propeptide antibody (AF2748; R&D Systems), visualized with IRDye680 donkey 

anti-goat IgG antibody (Licor) applied at 0.66 mg/mL and scanned on an Odyssey 

infrared scanner (Licor).  

2.4.6 Image quantification 

The proportion of proAMH to AMHN,C was measured using densitometry.  The 

density of the faint bands in the Western blots was quantified without image 

manipulation, using Image J software (NIH, http://rsbweb.nih.gov/ij/). 
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Chapter 3: Establishment of an AMH reporter assay 

3.1 Introduction 

One of the main objectives of this thesis was to examine if BPs can enhance or inhibit 

the ability of AMH to activate AMHR2.  The focus is limited to interactions between 

BPs and either AMH or the extracellular portions of AMH receptors.  Indirect 

interactions involving intracellular cascades were not examined.  The first step in this 

investigation was to develop a reporter assay for the activation of AMH receptors.  

The assay development makes use of the commonality of TGFβ-superfamily 

signaling pathways.  The relationship between AMH and BMP signaling is therefore 

outlined below, after which the assay is described. 

 

3.1.1 AMH signaling cascade 

AMH has a unique type-2 receptor, but it shares type-1 receptors with the BMPs 

(Chapter 1.6.1).  Consequently, the SMAD intracellular signaling pathway for AMH 

is shared with the BMP ligands.  The SMAD 1/5/8 pathway mediates the hallmark 

function of AMH.  SMAD 1 and SMAD 8 are both expressed robustly in the 

mesenchymal cells of the Müllerian duct, while SMAD 5 is expressed at a lower level 

[181].  When Smad 1, 5 and/or 8 are conditionally knocked out in AMHR2-

expressing cells, the male mice exhibit PMDS, with variable penetrance.  When all 

three genes (Smad 1, 5, 8) are deleted, then all male mice exhibit PMDS.  However, 

when only 1 or 2 of Smad 1, 5 or 8 are deleted, the male mice exhibit either partial or 

no regression of the Müllerian ducts.  Therefore, there is functional redundancy 

between the three Smads for AMH signaling, with all three needed for full function 

[1].  Similarly, when AMH is added to Sertoli or Leydig cell derived cell lines, 

SMAD 1 is phosphorylated and accumulates in the nucleus, after binding to the co-

SMAD 4 [192].  
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3.1.2 Luciferase reporter gene assay 

3.1.2.1 Design of the assay 

BMP signaling can be measured by a BMP reporter assay in vitro, without 

interference from other cytokines such as TGFβ1, bFGF and VEGF [189]. The assay 

uses a (BRE)2-Luc vector [163], which contains a firefly luciferase reporter gene 

under the control of a BMP responsive element BRE promoter (Figure 3-1).  When 

BMP is added to the reporter cells, the SMAD 1/5/8 pathway is activated.  After 

translocation to the nucleus, the activated SMAD 1/5/8 binds to the (BRE)2-Luc 

vector, leading to transcription and translation of the firefly luciferase gene.  The cells 

can then be lysed and the luciferase activity assayed by detecting the intensity of the 

light emitted when luciferase substrates are added.  This value correlates with the 

amount of reporter gene expression induced by BMP ligand binding.  Any variation in 

the transfection efficiency with the (BRE)2-Luc vector can affect the sensitivity of the 

assay.  This can be negated by co-transfecting the cells with a vector containing 

Renilla reniformis luciferase under the control of a constitutive SV40 promoter, and 

reporting the results as the ratio of the firefly and Renilla reniformis luciferase 

activities.  This also controls for the number of cells in a well.   

 

AMH shares the type-1 receptors and the intracellular signaling cascade with BMP 

(Chapter 3.1.1).  Consequently, AMH signaling can be measured using the (BRE)2-

Luc reporter assay, provided the cells express AMHR2 [163, 193] (Figure 3-1).  At 

the start of the thesis, a basic AMH assay was available in the laboratory, but this 

assay was insufficiently sensitive to use as a screen for the influence of BPs on AMH 

signaling.  The first step was therefore to optimize the assay, by varying the cell type, 

the amount of serum, and factors such as the length of incubation in AMH after 

transfection. 

  



 58 

 
Figure 3-1. Luciferase reporter assay 

AMH and BMP share the same type-1 receptors and the following intracellular 

signaling cascade by SMAD 1/5/8.  The (BRE)2-Luc vector contains the firefly 

luciferase coding region under the control of the BRE promoter.  The luciferase level 

from transfected cells with this vector can be majored as amount of gene expression 

by the AMH and BMP ligand binding. 

 

 

 

3.1.2.2 Selection of cell line 

Several cell lines were investigated as vehicles for the reporter assay.  The ideal cell 

line should express the AMH receptors, have a robust intracellular response to AMH, 

be easy to maintain and proliferate rapidly.  They should also preferably have limited 

expression of BMPR2, to minimize any interference from BMPs produced by the cell 

line.  At the start of the thesis, the description of AMHR2 in cell types was very 

incomplete, and only a few cell lines were known to respond to AMH, most notably 

the prostate cancer cell lines DU145 [169] and LNCaP [169, 193].  These cell lines 

have previously been used for AMH assays [169, 193].  Both cell lines are old, and 

have been widely distributed.  This can lead to the accumulation of mutations and 

divergence between cell lines located in different laboratories.  Therefore, the 

assessment of these cell lines included measurement of the expression of TGFβ-

superfamily receptors, as well as monitoring of their growth characteristics. 
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DU145 and LNCaP are both human cell lines, with the proliferation of DU145 cells 

being testosterone-independent and LNCaP cells being testosterone-dependent [169].  

Neither DU145 nor LNCaP cells had the required characteristics, leading to the 

testing of P19 cells.  P19 cells are a murine embryonic carcinoma, which are known 

to respond to BMP and activin [194].  The P19 cells have limited expression of 

AMHR2 and consequently their use in an AMH reporter assay required transfection 

with AMHR2 [195]. 

 

3.1.2.3 Selection of culture medium 

Serum promotes the growth of most cell lines, and assists in their recovery after 

transfection.  However, AMH is a hormone and the addition of serum may therefore 

interfere with an AMH reporter assay, due to the presence of either AMH or some 

other TGFβ-superfamily member, particularly BMPs.  The alternative is to use a 

defined medium, but defined media have added growth factors, with the identity of 

the factors being a commercial secret.  Consequently, the influence of serum on the 

growth of cells and the sensitivity of the reporter assay was closely monitored.  

Female fetuses lack significant levels of AMH, and female FCS hypothetically is 

superior to other serum for an AMH assay.  However, at the start of the thesis, female 

FCS was not available in New Zealand.  A source of female FCS was obtained 

towards the end of the first year, and was tested within the assay. 

 

3.1.3 Aims of Chapter 3 

In summary, the purpose of the work described in this Chapter was to produce an 

AMH reporter assay that (1) had a high signal to background ratio, (2) could be used 

to screen multiple BPs over an extended period, with (3) results that were 

reproducible from week-to-week.  This work forms the basis for the majority of the 

subsequent experiments described in Chapter 4.   
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3.2 Results 

3.2.1 Selecting a cell line 

DU145 and LNCaP cell lines were established at the University of Otago, and the 

initial phase of development of the assay was restricted to these two cell lines. 

 

3.2.1.1 Expression of TGFβ-superfamily receptors 

Each of the type-1 AMH receptors, ACVR1 (Figure 3-2A), BMPR1A (Figure 3-2B), 

and BMPR1B (Figure 3-2C) were detected in the DU145 and LNCaP samples.  The 

ACVR1 and BMPR1A bands were much stronger than the BMPR1B in both the 

DU145 and LNCaP samples.  The LNCaP sample showed weaker bands than the 

DU145 sample for all the type-1 receptors.  No bands were observed in the H2O and 

RT- negative controls and the β-actin band was of similar strength in the DU145 and 

LNCaP samples (Figure 3-2D).   

 

A strong AMHR2 band was detected in both the DU145 and the LNCaP cells  (Figure 

3-3A).  Likewise, a strong BMPR2 band and moderate ACVR2A and ACVR2B 

bands were detected in the DU145 sample (Figure 3-3B, C).  These receptors were 

also present in the LNCaP sample, although the BMPR2 and ACVR2A bands were of 

lower intensity, with the ACVR2A band being close to the level of detection (Figure 

3-3B, C). No bands were observed in the H2O and RT- negative controls. 
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Figure 3-2. Expression of AMH type-1 receptors 

cDNA was prepared from DU145 and LNCaP cells and gene specific primers were 

used for PCR as described in Chapter 2.2.5. (A) ACVR1, (B) BMPR1A, (C) 

BMPR1B, (D) β-actin.  H2O and RT- were used as negative controls. (C) The lane 

orders were swapped to provide consistency. 
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Figure 3-3. Expression of TGFβ type-2 receptors 

cDNA was prepared from DU145 and LNCaP cells and gene specific primers were 

used for PCR as described in Chapter 2.2.5.  (A) AMHR2 (cDNA amount used are 

shown (ng/µl)), (B) BMPR2 and ACVR2A, (C) ACVR2B.  H2O and RT- were used 

as negative controls. 

 
 

 

3.2.1.2 Growth of cell lines 

The LNCaP cells grew more slowly than the DU145 cells, and typically took 1 to 2 

days longer for 24-well-cultures to be ready to use. The growth of cells was even 

more prolonged in flasks.  The LNCaP cells also tended to aggregate rather than grow 

as a monolayer.  This made it difficult to accurately count the cells, separate the cells 

for re-plating and lyse the cells at the end of the experiment.  Aggregation also creates 

a non-uniform environment, as the surface and middle of the cluster have different 
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cell-to-cell and cell-to-medium interactions.  Lastly, the LNCaP cells died within 48 

hours after transfection without dihydrotestosterone (data not shown). 

 

3.2.1.3 Establishment of the assay 

Transfection stresses cells.  Therefore, the first experiments tested whether 

endogenous expression of AMHR2 in the DU145 cells was sufficient to produce a 

viable reporter assay.  AMHC was added to DU145 cells that had been transfected 

with the (BRE)2-Luc reporter.  No dose-response curve was observed (Figure 3-4).  

Several possible explanations for this observation were tested. 

 

 
 

Figure 3-4. Dose response curve to AMHC 

DU145 cells were transfected with (BRE)2-Luc (0.2 µg/100,000 cells) and plated at a 

density of 50,000 cells per well.  They were then incubated with culture media 

supplemented with female 10% FCS for 24 hours.  They were then incubated with 

various concentration of AMHC for 24 hours.   Each dot represents the mean ± the 

standard error of the mean of 3 wells.   

 

 

 

First, the culture contained 10% FCS, which may have sufficient AMH to saturate the 

reporter. However, the background response was similar when FCS and female FCS 
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were used.  Furthermore, no significant response to AMHC was observed when 

female FCS was used (Figure 3-5).   

 

 

 
Figure 3-5. Female FCS did not affect the reporter assay 

DU145 cells were transfected with (BRE)2-Luc (0.2 µg/100,000 cells) and phRL-

SV40 (0.2 µg/100,000) and plated at a density of 50,000 cells per well.  They were 

then incubated in culture media supplemented with 10% FCS, 10% Female FCS, or 

Female FCS containing 4.3 nM AMHC for 48 hours.  The ratio of the firefly luciferase 

to Renilla reniformis luciferase was calculated and normalized to the ratio obtained 

after transfection. The bars represent the mean plus the standard error of the mean of 

3 wells.  Neither female FCS nor AMHC were significantly different to FCS, p > 0.05, 

one-way ANOVA. 

 

 

 

Second, the (BRE)2-Luc reporter and luciferase assay were tested.  The DU145 cells 

express BMPR2, enabling the reporter to be tested by the addition of BMP2. BMP2 

significantly increased reporter activity (left panel Figure 3-6), indicating that the 

reporter construct and luciferase assay were working.  AMHC did not induce reporter 

activity in the same assay, suggesting either that the AMH was inactive or that the 
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level of AMHR2 may have been insufficient.  When DU145 cells were transfected 

with AMHR2, AMHC produced as much reporter activity as BMP2 (right panel, 

Figure 3-6).  This verified that the AMHC was active.  However, the background level 

of reporter activity was increased in the transfected cells, with this observation being 

replicated by repeating the experiment.  Hence, the signal-to-noise of the assay was 

low.  The higher background in the AMHR2 transfected cells was observed with both 

FCS and female FCS (Figure 3-7).  In Figure 3-7, the cells with female FCS had a 

higher reporter activity, but this was not significantly different and was not a 

replicable result (see Figure 3-5). 
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Figure 3-6. DU145 cells transfected with AMHR2 respond to AMHC  

DU145 cells were transfected with or without AMHR2 (0.2 ug/100,000 cells) along 

with (BRE)2-Luc (0.2 ug/100,000 cells) and phRL-SV40 (0.002 ug/100,000 cells), 

and plated at a density of 100,000 cells per well.  The cells were then incubated in 

culture media supplemented with 10% female FCS for 24 hours.  Half the culture 

medium was removed and mixed with AMHC, BMP2 or no additional factor, and the 

returned to the cells for 24 hours.  The final concentration of AMH and BMP2 was 

4.3 nM and 7.7 nM, respectively.  The ratio of the firefly luciferase to Renilla 

reniformis luciferase was calculated and normalized to the ratio obtained after 

transfection.  The data is the combined results from 2 replicate experiments, with a 

total of 7 wells per group.  The bars represent the mean + the standard error of the 

mean.  The * indicate the groups were significantly different from each other, 2-way 

ANOVA with an adjusted p value of p <0.0001. 
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Figure 3-7. AMHR2 transfected cells had a high background 

DU145 cells were plated and pre-incubated in culture media supplemented with either 

10 % FCS or female FCS for 6 days.  The cells were then transfected with or without 

AMHR2 (0.2 ug/100,000 cells), (BRE)2-Luc (0.2 ug/100,000 cells) and phRL-SV40 

(0.002 ug/100,000 cells), and plated at a density of 100,000 cells/well.  The cells were 

incubated in culture media supplemented with 10% FCS or female FCS and incubated 

for 48 hours.  The ratio of the firefly luciferase to Renilla reniformis luciferase was 

calculated and normalized to the ratio obtained after transfection.   The bars represent 

the mean + the standard error of the mean of 3 wells.  The groups were significantly 

different by 2-way ANOVA, with an adjusted p value of p <0.0001.  When specific 

groups were compared by Tukey’s multiple comparisons test, the control and 

AMHR2 treated groups were significantly different (p <0.001) for FCS and for 

female-FCS.  The two control groups (p < 0.083) and the two AMHR2 groups were 

not significantly different from each other. 

  

Fi
re

fly
/R

en
ill

a

FCS

fem
ale

 FCS
FCS

fem
ale

 FCS
0

2

4

6

8

AMHR2Control

*
*



 68 

The length of incubation after transfection and the length of incubation after addition 

of AMH were varied.  Some variation was observed in these experiments, but the best 

results were obtained with 24 hours for each incubation step (not illustrated).  These 

time periods were used in subsequent experiments, unless indicated otherwise. 

 

At this stage of the assay development, variation from experiment to experiment was 

a problem, as was the failure of some experiments to yield results.  Several key issues 

were identified.  One, the DU145 cells exhibited variable spontaneous differentiation.  

Two, the LNCaP cells grew slowly and variably.  Three, the assay had low sensitivity, 

and minor variations in procedure were sufficient to invalidate an experiment.  For 

these reasons, work on the DU145 and LNCaP cells was terminated, and development 

proceeded with a cell line known to have vigorous growth (P19). 

 

3.2.1.4 Expression of TGFβ-superfamily receptors by P19 cells 

The expression of TGFβ-superfamily receptors by P19 cells was examined, to assess 

their suitability for use in an AMH reporter assay.  No AMHR2 band was detected in 

the P19 cells (Figure 3-8).  The P19 sample was of good quality, as clear non-

degraded rRNA bands were observed (not illustrated) and as a strong β-actin band 

was detected (Figure 3-9A).  The primers for mouse AMHR2 were verified using 

cDNA from the testes as a positive control. A weak single AMHR2 band of 

appropriate size was detected in the testes sample.  The three AMH type-1 and their 

co-type-2 receptors: ACVR1 (Figure 3-9B), BMPR1A (Figure 3-9C), BMPR1B 

(Figure 3-9D), BMPR2 (Figure 3-10A), ACVR2A (Figure 3-10B) and ACVR2B 

(Figure 3-10C) were also detected in P19 samples.  When examined by qPCR (Table 

3-1), the level of AMHR2 was not abundant before transfection.  Transfection 

increased the level of AMHR2, but its abundance remained lower than for the other 

type-2 receptors.  The mRNA type-1 receptors were less abundant than the type-2 

receptors, with BMPR1A being the most abundant and no significant levels of 

BMPR1B being detected (Table 3-1). 
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Figure 3-8. Expression of AMHR2 by P19 cells 

AMHR2 cDNA was prepared from P19 cells and gene specific primers were used for 

PCR as described in Chapter 2.2.5.  cDNA from mouse testis was used as positive 

control.  H2O and RT- were used as negative controls.  The band size is 89 bp. 
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Figure 3-9. Expression of AMH receptors by P19 cells 

cDNA was prepared from P19 cells and gene specific primers were used for PCR as 

described in Chapter 2.2.5.  (A) β-actin, (B) ACVR1, (C) BMPR1A, (D) BMPR1B.  

H2O and RT- were used as negative controls. 
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Figure 3-10. Expression of TGFβ type-2 receptors by P19 cells 

cDNA was prepared from P19 cells and gene specific primers were used for PCR as 

described in Chapter 2.2.5.  (A) BMPR2, (B) ACVR2A, (C) ACVR2B.  H2O and RT- 

were used as negative controls.  
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Table 3-1. mRNA abundance of P19 cells 

 

 

 

 

 

 

 

 

 

 

 

The data is the mean ± standard error of the mean of 3 flasks.  The copy number for 

each mRNA species was calculated and is expressed as %  of BMPR2 copy number. 

 

 

 

3.2.1.5 Do P19-AMHR2 cells respond to AMH? 

When AMHR2 non-transfected P19 cells were used, the background reporter activity 

was similar in FCS and female FCS, and no response to 4.3 nM AMHC was observed 

(Figure 3-11).  When P19 cells were transfected with AMHR2, the background 

reporter activity was not significantly increased (Figure 3-12).  These observations 

indicate that the background reporter activity is unlikely to be due to AMH in the 

medium. 

  

Receptor 
mRNA abundance 

in P19 cells 

AMHR2 9 ± 0.1 

BMPR2 100 ± 0.1 

ACVR2A 115 ± 1.7 

ACVR2B 136 ± 1.3 

hAMHR2 

(transfected) 

32 ± 3.2 

ACVR1 13 ± 1.5 

BMPR1A 44 ± 1.6 

BMPR1B 0 ± 0.1 
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Figure 3-11. AMHR2 non-transfected P19 cells did not respond to AMHC 

P19 cells were transfected with (BRE)2-Luc (0.2 ug/100,000 cells) along with phRL-

SV40 (0.02 ug/100,000 cells) and plated at a density of 50,000 cells per well.  The 

cells were incubated in culture media supplemented with 10% FCS, 10% Female FCS, 

or Female FCS containing 4.3 nM AMHC for 48 hours.  The ratio of the firefly 

luciferase to Renilla reniformis luciferase was calculated and normalized to the ratio 

obtained after transfection. The bars represent the mean + the standard error of the 

mean of 3 wells. Neither female FCS nor AMHC were significant different to FCS, p 

> 0.05, one-way ANOVA. 
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Figure 3-12. Transfection of AMHR2 changes the signal to noise with 
AMHC 

P19 cells were transfected with or without AMHR2 (0.2 ug/100,000 cells), along with 

(BRE)2-Luc (0.2 ug/100,000 cells) and phRL-SV40 (0.002 ug/100,000 cells), and 

plated at a density of 100,000 cells per well.  The cells were incubated in culture 

media supplemented with 10 % female FCS for 24 hours.  Half the culture medium 

was removed and mixed with AMHC, BMP2 or no additional factor, and the returned 

to the cells for 24 hours.  The final concentration of AMHC and BMP2 was 4.3 nM 

and 7.7 nM, respectively.  The ratio of the firefly luciferase to Renilla reniformis 

luciferase was calculated and normalized to the ratio obtained after transfection.  The 

data is the combined results from 2 replicate experiments, with a total of 6 wells per 

group.  The bars represent the mean + the standard error of the mean.  The * indicate 

the groups were significantly different from each other, 2-way ANOVA with an 

adjusted p value of p < 0.0001. 

  

Tran
sf 

ctr
l

AMHR2

0.0

0.5

1.0
Fi

re
fly

/R
en

ill
a

Control
AMHC

BMP2

*
*

*
*

*

*



 75 

When 4.3 nM AMHC was added to the P19 cells transfected with AMHR2, strong 

reporter signal was detected.  The AMHC-induced signal was 10 times larger than the 

background signal, which is markedly different to the small AMH effect observed 

when DU145 cells were used (Figure 3-6).  Importantly, similar results were obtained 

when this and subsequent experiments were repeated.  The effect of AMHC on the 

AMHR2 transfected cells varied with the AMHC concentration, in the expected 

manner.  The reporter activity increased most rapidly when the AMHC concentration 

increased from 0 to 0.2 nM, with further increases in AMHC resulting in lower rises in 

reporter output.  The effect of AMH appeared to be maximal at around 1.0 nM 

(Figure 3-13).  

 

 

 
Figure 3-13. AMHC is dose-responsive in transfected P19 cells 

P19 cells were transfected with AMHR2 (0.2 ug/100,000 cells), along with (BRE)2-

Luc (0.2 ug/100,000 cells) and phRL-SV40 (0.002 ug/100,000 cells), and plated at a 

density of 50,000 cells per well.  The cells were incubated with culture media 

supplemented with female 10% FCS for 24 hours.  They were then exposed to various 

concentrations of AMHC for 24 hours.  The ratio of the firefly luciferase to Renilla 

reniformis luciferase was calculated and normalized to the ratio obtained after 

transfection.  The data is a total of 3 wells per group. A dose-response curve was 

fitted using the “sigmoidal dose-response (variable slope)” function of Prism 
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The method was established using AMHC, which is the ligand-binding portion of 

AMH.  However, the physiologically active form of AMH appears to be AMHN,C.  

The Otago AMH Neurobiology Group’s supply of AMHN,C is generated by cleavage 

of proAMH with furin, which will therefore be present in experiments using AMHN,C.  

The potential influence of furin on the reporter assay was determined by whether furin 

decreases the response produced by AMHC.  No effect of furin was observed (Figure 

3-14). 

 

 
Figure 3-14. Furin does not affect the reporter assay 

P19 cells were transfected with AMHR2, along with (BRE)2-Luc and phRL-SV40, 

and incubated with culture media supplemented with female 10% FCS for 24 hours.   

They were then incubated in 4 nM AMHC with 0.02 IU/µl of furin buffer or with 0.02 

IU/µl of furin buffer.  The ratio of the firefly luciferase to Renilla reniformis 

luciferase was calculated and normalized to the ratio obtained after transfection.  The 

mean of 3 wells for each data point is plotted.  The furin-treated group was not 

significantly different to the control, 1-way ANOVA p > 0.05. 

 

 

 

The level of reporter activity after the addition of AMHN,C  had a clear dose response 

curve (Figure 3-15).  There was a large difference between the maximum response 
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and the background (zero-added AMH).  The maximum reporter activity induced by 

AMH was similar for both AMHN,C and AMHC.  In this experiment, AMHN,C was 

more potent than AMHC.  This observation was replicated.  However, the response to 

AMHC had an atypically shaped dose-response curve compared to previous and 

subsequent experiments, suggesting that it arose from a technical issue relating to one 

aliquot of AMHC (see also Discussion). 
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(A) 

 

(B) 

 
Figure 3-15. AMHN,C is dose-responsive in transfected P19 cells 

P19 cells were transfected with AMHR2, along with (BRE)2-Luc and phRL-SV40, 

and incubated with culture media supplemented with female 10% FCS for 24 hours.   

They were then exposed to various concentrations of AMHC and AMHN,C for 24 

hours.  The ratio of the firefly luciferase to Renilla reniformis luciferase was 

calculated and normalized to the ratio obtained after transfection.  Each data point is 

the mean of 2 wells.  The bars represent the mean + the standard error of the mean.  

(A) A dose-response curve was made using the “sigmoidal dose-response (variable 

slope)” function of Prism.  (B) The data was normalized as a percentage of the 

maximum concentration of AMH and log transformed in Prism and the two curves 

compared using the “log (agonist) vs. response - variable slope (four parameters)”.  
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3.2.1.6 Do P19-AMHR2 cells respond to BMP? 

The response of the P19 cells to BMP2 was examined as part of the validation of the 

assay (see Discussion).  7.7 nM of BMP2 induced strong reporter activity in the non-

transfected cells (Figure 3-12).  Unexpectedly, the reporter activity in response to 

BMP2 was significantly greater in the AMHR2-transfected cells than in the non-

transfected cells (Figure 3-12).  Other research groups have previously reported a 

similar observation using AMHR2-transfected P19 cells and the mouse Leydig tumor 

cell line (MA-10) [192, 196], with the phenomenon also being evident in the 

preliminary experiments of this thesis, which used DU145 cells (Figure 3-6).  These 

experiments (Figures 3-6, 3-12) were not designed to specifically examine whether 

BMP2 can activate AMHR2.  Consequently, the control cells were not transfected 

with a control vector, and therefore had a lower level of transgenic DNA than the 

AMHR2-transfected cells. 

 

Further experiments were therefore undertaken to verify whether transfection of P19 

cells with AMHR2 altered BMP signaling, as the canonical theory of AMH specifies 

that AMHR2 is AMH specific (Chapter 1.6.6).  P19 cells were transfected with the 

BRE reporter and either AMHR2 or a control vector.  The response of P19 control 

cells to rhBMP2, rhBMP4, rhBMP6 and rhBMP7 were examined in the absence of 

AMHR2.  rhBMP7 produced minimum activation of the P19 cells (not illustrated) and 

was not further studied.  The EC50 (half maximal effective concentration) values for 

BMP2 and BMP4 were 2.6 and 1.1 nM, respectively (Figure 3-16).  Transfection of 

the P19 cells with AMHR2 did not significantly affect the EC50 or the maximum 

value for any of the BMPs tested (Figure 3-16).  This suggests that BMPs do not 

signal through AMHR2, although the conclusion is only valid if the signaling 

components downstream of the type-2 receptor are not already maximal when strong 

activation of BMPR2 occurs.  That is, the assay can be activated above the maximum 

(top) value of BMP working through BMPR2.  Preliminary analysis of this issue is 

described in the next Section. 
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(A) 

 

 
(B) 

 
 

Figure 3-16. BMP is dose-responsive in transfected P19 cells 

P19 cells were transfected with AMHR2 or control vector, along with (BRE)2-Luc 

and phRL-SV40, and incubated with culture media supplemented with female 10% 

FCS for 24 hours. They were then exposed to various concentrations of (A) BMP2 

and (B) BMP4 for 24 hours.  The ratio of the firefly luciferase to Renilla reniformis 

luciferase was calculated and normalized to the ratio obtained after transfection.  The 

data is the total of 2 wells per group.  The bars represent the mean + the standard error 

of the mean.  The data was first normalized as a percentage of the maximum 

concentration of BMP.  A dose-response curve was made using the “sigmoidal dose-

response (variable slope)” function of Prism. 
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3.2.2. Interactions between BMPs and AMH 

The fact that the P19 reporter assay responds to both BMP and AMH does not affect 

its use as a screening tool to detect AMH BPs.  However, the assay has the potential 

to be used to investigate the interaction between BMP and AMH signaling, which 

may be a determinant of the magnitude of AMH response produced in vivo.  

Consequently, some preliminary experiments were undertaken to determine how 

AMH and BMPs interact in the reporter assay. 

 

3.2.2.1 Does AMH inhibits BMP signaling when AMHR2 is absent? 

AMH does not activate the P19 reporter cells in the absence of AMHR2.  However, 

this does not exclude the possibility that AMH may associate with its type-1 receptors, 

and diminish the ability of those receptors to associate with BMPs.  Previous work 

using levels of ligands that were greatly supraphysiological (71.4 nM) suggests that 

this does not occur [192].  As a first step, this issue was re-examined using 

physiological levels of ligands.  The addition of 1 nM AMHC to the culture medium 

did not affect the reporter activity produced by 0.4 nM of BMP2 (Figure 3-17), 

indicating that AMH is not an inhibitor of BMP signaling, in this assay. 
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Figure 3-17. AMH does not affect BMP signaling in the absence of 
AMHR2 

P19 cells were transfected with AMHR2 (0.2 ug/100,000 cells), along with (BRE)2-

Luc (0.2 ug/100,000 cells) and phRL-SV40 (0.002 ug/100,000 cells), and plated at a 

density of 50,000 cells per well.  The cells were incubated with culture media 

supplemented with female 10% FCS for 24 hours.   They were then exposed to 

various concentrations of 0.4 nM BMP2 or/and 1nM AMHC for 24 hours.  The ratio 

of the firefly luciferase to Renilla reniformis luciferase was calculated and normalized 

to the ratio obtained after transfection.  The data is a total of 3 wells per group.  The * 

and ** indicate the groups were significantly different from each other, one-way 

ANOVA with an adjusted p value of p < 0.0012 and 0.002, respectively. 

 

 

 

3.2.2.2 Do BMP4 and AMH redundantly activate P19 reporter cells? 

The interactions between BMPs and AMHC were also examined by adding different 

concentrations of BMP and AMH.  In the first experiment, 3 nM of AMHC was used 

as this maximally activates the P19 assay in previous experiments (e.g. Figure 3-15).  

As expected, this caused a robust response from the P19 cells (Figure 3-18).  0.6 nM 
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of BMP4 was also added, which produced a half-maximal response for BMP.  The 

combination of 3 nM AMHC and 0.6 nM BMP4 did not produce an additive effect, 

with the activation being not different to that produced by 3 nM of AMHC alone and 

only slightly above that produced by 0.6 nM BMP4 alone (Figure 3-18).  This 

suggests that the BMP and AMH signaling are largely redundant when the reporter is 

strongly activated.  
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Figure 3-18. When AMH is maximum, BMP is not additive 

P19 cells were transfected with AMHR2, along with (BRE)2-Luc and phRL-SV40, 

and incubated with culture media supplemented with female 10% FCS for 24 hours.   

The cells were incubated with culture media supplemented with female 10% FCS for 

24 hours.  They were then exposed to various concentrations of 0.6 nM or 3 nM 

BMP4 or/and 0.3 nM or 3 nM AMHC for 24 hours.  The ratio of the firefly luciferase 

to Renilla reniformis luciferase was calculated and normalized to the ratio obtained 

after transfection.  The data is a total of 4 wells per group.  The *,**,***,and **** 

indicate the groups were significantly different from each other, one-way ANOVA 

with an adjusted p value of p=0.0068, p=0.0002, p=0.0001 and p<0.0001, 

respectively.  Similar observations were obtained when similar experiments were 

undertaken using slightly different concentrations of BMP4 (all of which yielded 

strong activation of the assay). 
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0.3 nM of AMHC significantly increased reporter activity when added in combination 

with 0.6 nM of BMP4.  However, the magnitude of the increase was not fully additive, 

with the observed effect of the combined factors being 3.75 ± 0.20.  This was 

significantly less than sum of the BMP and AMH values (4.94) (p < 0.011, one-

sample T-test).  Figure 3-19 describes the converse experiment, where a sub-optimal 

dose of AMH is added to a maximum dose of BMP4.  The addition of AMH did not 

increase the response above that of BMP4 alone. 
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Figure 3-19. When BMP is maximum, AMH is not additive 

P19 cells were transfected with AMHR2, along with (BRE)2-Luc and phRL-SV40, 

and incubated with culture media supplemented with female 10% FCS for 24 hours.   

The cells were incubated with culture media supplemented with female 10% FCS for 

24 hours.   They were then exposed to various concentrations of 0.6 nM or 3 nM 

BMP4 or/and 0.3 nM or 3 nM AMHC for 24 hours.  The ratio of the firefly luciferase 

to Renilla reniformis luciferase was calculated and normalized to the ratio obtained 

after transfection.  The data is the combined results from 3 replicate experiments, with 

a total of 14 wells per group.  The * indicate the groups were significantly different 

from each other, 2-way ANOVA with an adjusted p value of p<0.0001. 
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3.3 Discussion 

3.3.1 An AMH-reporter assay was developed 

A highly sensitive AMH reporter assay was developed based on transfected P19 cells. 

The concentration required to induce half-maximal activation of the reporter was of 

the order of 0.4 nM of AMHN,C, with 1 nM producing near maximal activation.  

These values are within the physiological range of circulating AMH observed in 

developing human males (Chapter 1.2.3).  The assay produced broadly similar results 

for AMHN,C and AMHC (see also Chapter 3.2.1.5). 

 

3.3.1.1 Maximum (top) value 

The maximum reporter value induced by AMH was less than that produced by BMP.  

This indicates that assay is not limited by the downstream components of the assay, 

including endogenous components such as SMAD 1/5/8 and the (BRE)2-Luc reporter.  

Consequently, if a BP were to increase the maximal response to AMH, then the assay 

should be able to detect this. 

 

 In the initial experiments, the concentration of AMH and BMP were different, as the 

purpose of the experiments was not to compare the two ligands.  However, the 

maximum response generated by AMHC and BMP2 were also different in subsequent 

experiments (Chapter 3.2.1).  The maximum response in AMH-(BRE)2-Luc reporter 

assays is proportional to the abundance of AMHR2 [163].  At the level of mRNA, the 

transfected P19 cells have less AMHR2 than BMPR2, which may explain why the 

AMH-induced maximum is less than for the BMP2-induced maximum.  If so, 

increasing the amount of AMHR2 vector may have increased the maximum response.  

However, this was not done for several reasons.  First, the assay involves transfection 

of 3 vectors, which risks adverse consequences for the cells. Second, the maximum 

response needs to be sufficiently low to ensure that the downstream components are 

never limiting.  If AMHR2 were maximized, this may negate the ability to detect BPs 

whose action increases the efficacy of AMH receptor activation.  Third, the assay was 

sufficiently sensitive for the required purpose.  There was no additional benefit to be 

obtained by further increasing the signal to noise. 
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The abundance of AMHR2 mRNA in the transfected P19 cells was similar to that of 

the type-1 receptors, at the level of mRNA.  It is unknown whether this corresponds 

the abundance of the receptor protein.  However, this is a further reason to be cautious 

about raising the level of AMHR2, as signaling requires both type-1 and type-2 

receptors.  Simply raising AMHR2 levels alone may not substantially increase 

signaling. 

 

One disadvantage of using AMHR2-transfected cells is that the level of AMHR2 may 

vary between experiments.  This issue also relates to the level of (BRE)2-Luc and 

phRL-SV40, which may contribute to variation between experiments.  The Otago 

AMH Neurobiology Group examined the possibility of producing stable transfected 

cells line, with one or all of the vectors and I tested these cell lines.  This experimental 

approach was discontinued as the cell line proved to be unstable.  They exhibited poor 

growth characteristics and the appearance of the cells changed, indicating that 

spontaneous differentiation was occurring.  At that time, the research group was also 

developing the capacity to produce recombinant AMH, in collaboration with PX’ 

Therapeutics.  When AMH expression was optimized, the cells producing it grew 

more slowly and were less healthy in appearance.  This suggests that AMH may have 

adverse affects on cell growth.  Consequently, a decision was made to use transiently 

transfected cells, as the development of permanent cells might have required 

prolonged research, and have may not been successful, as the presence of AMHR2 

might have adversely affected the maintenance of the cell line. 

 

3.3.1.2 Minimum (bottom) value 

The reporter value when no AMH was added appeared to be much lower for P19 cells 

than for DU145 cells.  This was advantageous for the purpose of the reporter assay, as 

it increased the signal-to-noise ratio and as it minimized the possibility of BPs 

affecting the assay by interacting with the factors that generate the zero value.  The 

reason for the difference between the cells is unclear, and was not investigated further 

as it appeared to be outside of the scope of the thesis. 

 

The existence of a low minimum value could have arisen if AMH were present in the 

control cultures, which had no added AMH.  Theoretically, this could be from a low 
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production of AMH by P19 cells, although the presence of AMH in the added serum 

is a more likely explanation.  The level of serum was restricted to 10% for this reason, 

and female FCS was used as it was expected to have less endogenous AMH.  The 

observation that the background is low in the absence of added AMH indicates that 

little or no AMH is being added along with the FCS.  This could not be directly tested 

as the available ELISAs were for human AMH, with the first validated assay for 

bovine AMH being reported in 2015 [197].   

 

FCS contains BMPs and BPs [198] and these BMPs may be responsible for the zero 

AMH value in the reporter assay.  This was not a significant problem as the level of 

activation is low.  A single batch of FCS was used throughout the entire thesis to 

ensure the level of added growth factors was constant. 

 

Ideally, it would have been nice to eliminate these BMPs.  Consideration was given to 

use serum-free medium, as a way of achieving this.  However, this option was not 

used for the following reasons.  Cells need growth factors to grow and the assay is 

dependent on the cells being healthy, otherwise the added factors may alter gene 

expression by affecting the health of the cells, rather than solely by the level SMADs 

activation.  The presence of minimum levels of growth factors is therefore potentially 

more advantageous than further lowering of the zero-AMH level.  Serum-free 

medium contains growth factors, with the identity and concentration of the factors 

being a commercial secret.  Using serum-free medium therefore does not necessarily 

eliminate BMPs.  On balance, further development of the assay to reduce the small 

zero-AMH value was not considered to be worth the investment of time and resources. 

 

3.3.1.3 Other factors affecting the P19 reporter assay 

The AMHN,C used in the experiment was generated by cleavage of proAMH with 

furin.  Furin is labile and its activity declines during the preparation of AMHN,C.  

Some residual furin activity would therefore have been present in the AMHN,C., 

creating the possibility that furin would interfere with the assay.  However, the 

addition of furin to control cultures did not affect the growth of the P19 cells, or their 

response to AMHC. 
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The initial results had high variation within and between experiments.  This variation 

was substantially reduced through multiple independent changes, most of which are 

outlined in Chapter 2, particularly Section 2.1.6.   

 

3.3.1.4 DU145 and LNCaP cells 

The initial development of the reporter assay began with DU145 and LNCaP cells.  

These cell lines were presumed to be natural targets for AMH and had been used by 

other research groups to develop AMH-reporter assays [169, 193].  A basic reporter 

assay based on these cell line had been developed by Dr Imhoff, a previous member 

of the research team [199].  For the reasons outlined below, the replacement of 

DU145 and LNCaP by P19 cells was the most critical step in developing a robust 

reporter assay. 

 

A basic reporter response was observed with both the LNCaP and DU145 cells, but 

refinement was needed as the signal-to-noise ratio was low, and as the variation in the 

assay was unacceptably high.  Further development of an LNCaP-based assay was 

terminated early in the thesis, principally because the growth characteristics of 

LNCaP cells were poor.  The dependence of LNCaP cells on testosterone was an 

additional factor in this decision, as it creates unnecessary complexity in the reporter 

assay.  Tran et al. had reported that LNCaP cells could survive for four days without 

testosterone [193].  However, this observation was not corroborated by the initial data 

from this thesis, which supports the more commonly held view that the growth of 

LNCaP cells has a requirement for testosterone [169]. 

 

The low signal-to-noise ratio with the DU145 cells appeared to be due to the low 

expression of AMHR2.  If so, a sensitive and reliable assay based on DU145 cells 

would require the cells to be transfected with AMHR2.  The need to use transfection 

meant that there was no advantage in using a putative target cell of AMH, particularly 

as transfection of DU145 cells with AMHR2 did not substantially improve the signal-

to-noise ratio.  I therefore elected to test a cell line that had robust growth 

characteristics, and which also naturally expressed the AMH type-1 receptors.  P19 

cells were the first cell line tested, and proved superior to the DU145 cells, leading to 

the discontinuation of research using the DU145 cells. 
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The minimum value was increased when DU145 cells were transfected with AMHR2, 

with this phenomenon being previously reported for MA-10 cells [196].  The reason 

for this is unclear.  If this was simply due to AMH in the medium, then this 

phenomenon should also have been observed in the P19 cells.  However, the 

minimum value for P19 cells was low compared to the DU145 cells, and was not 

significantly increased after AMHR2 transfection, which is consistent with a previous 

study [200].  This issue was not further examined, due to the decision to focus the 

project on advancing the assay based on P19 cells. 

 

3.3.1.5 Technical issues relating to assay development 

Some of the initial experiments described in this Chapter were exploratory in nature, 

and were not fully controlled, as they were not intended to generate publishable data.  

Most specifically, when cells are transfected with vectors, the vector can alter the 

growth and/or other characteristics of the cells.  For example, when the DU145 cells 

were transfected with AMHR2 the Renilla reniformis luciferase reporter signal was 

reduced, indicating that the transfection with AMHR2 had decreased cell number.  

Transfecting the control cells with an empty-vector could have controlled for this.  

Ideally, this control should have been done, but the absence of this control did not 

affect the assay development, as the comparison between transfected and non-

transfected cells was not a critical issue.  For example, in Figure 3-6 the main 

comparison is within the untransfected cells and within the transfected cells, rather 

than between the two groups.  Control vectors were routinely used when the influence 

of changing AMHR2 levels was being examined, for example Figure 3-16. 

 

3.3.1.6 Comparison with other reporter assays 

The EC50 of the P19 assay is within the physiological range of circulating AMH for 

boys, but is above the physiological range of circulating levels of AMH in men and 

females.  The adult-like levels of AMH, however, produce detectable levels of 

activation of the reporter activity.  This is in marked contrast to most previous assays, 

which have reported EC50 values that are supra-physiological (see Chapter 4, Table 

4-1).  The reasons for this are unclear, and multiple factors may be important, as 

outlined below.   
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Visser et al. have also used P19 cells [180], suggesting that cell type is a not a critical 

issue.  However, cell lines can accumulate mutations, and the two P19 cell lines are 

not necessarily identical.  Visser et al. used a TLX2-Lux promoter [180], which could 

have a different dose-response curve to the (BRE)2-Luc used in this thesis.  However, 

there are also reports of non-physiological EC50 when (BRE)2-Luc is used with other 

cell types [189].  

 

One recurring issue with historic studies is that the AMH used was a mixture of 

proAMH and AMHN,C. The rhAMH used by Visser et al. appears to be an example of 

this.  They used rhAMH produced by HEK-293S cells transfected with proAMH 

[180].  The rhAMH produced by the Otago AMH Neurobiology Group is also from 

HEK cells, and is predominantly proAMH, with only minor levels of AMHN,C, 

indicating that HEK cells have limited capacity to active proAMH.  proAMH does not 

activate AMHR2, and the high EC50 reported by Visser et al. may be because their 

AMH preparation contained little bioactive AMH.  The EC50 values reported in this 

thesis are derived from AMH preparation that is predominantly (AMHN,C) or 

exclusively (AMHC) bioactive. 

 

3.3.1.7 Summary 

In conclusion, Chapter 3 has established a robust AMH reporter assay, which has 

multiple purposes, within and beyond this Thesis.  The chemistry of signaling 

processes is dependent on concentration.  Many of the earlier studies of AMH have 

used concentrations that are order(s) of magnitude above the concentrations present in 

humans.  The physiological significance of these studies is unclear.  Importantly, the 

P19 assay described in the thesis works at physiologically relevant levels of AMH.   

In the process of developing a working reporter assay, some of the results provided 

preliminary data about the nature of AMH signaling.  These issues are outlined in the 

remaining two Sections of this Discussion. 



 93 

3.3.2 Does BMPR2 limit AMH signaling? 

3.3.2.1 Expression of AMH type-1 receptors 

The transfected P19 cells expressed all of the type-1 receptors required for a cell to 

respond to AMH, which is consistent with previous qualitative studies (for example, 

[201]).  ACVR1 and BMPR1A were the most abundant type-1 receptors, with the 

limited expression of BMPR1B mRNA by P19 cells.  In most of the initial PCR 

conditions, a BMPR1B band was not detected (data not shown).  This was confirmed 

by qPCR and is consistent with other studies of P19 cells [202].  ACVR1 and 

BMPR1A mediate the majority of the proven actions of AMH (Chapter 1.6.7).  The 

low level of BMPR1B was therefore not of concern for the validity of the bioassay, 

and no attempt was made to increase BMPR1B levels.   

 

It is currently unclear whether the rate-limiting step in AMH signaling involves the 

type-1 or the type-2 receptors.  The way receptor complexes are assembled varies 

within the TGFβ superfamily. For example, the activins and the TGFβ-subfamily 

ligands bind to their type-2 receptors independently of the type-1 receptors.  The type-

1 receptors are then recruited to form the full signaling complex.  The type-1 

receptors cannot bind these ligands in the absence of the type-2 receptors [203].   

 

In contrast, the BMPs can bind to a type-1 receptor or to a pre-formed complex of 

BMPR2 and a type-1 receptor [204].  Consequently, when BMPR2 is present, some 

of the type-1 receptors may be bound to it.  The binding affinity for the ligand 

dramatically increases when both type-1 and type-2 receptors are present [205].  This 

may be due to the ability of BMPR2 and BMP type-1 receptors to form preassembled 

heterometric receptor complexes, in the absence of a ligand [204].   

 

AMH is thought to bind directly to AMHR2 and not to its type-1 receptors, although 

this has not been definitively proven.  If this is correct, then the abundance of 

AMHR2 may be more critical than the abundance of the type-1 receptors.  The 

abundance of the type-1 receptor mRNA in the P19 cells was lower than for the type-

2 receptors, but despite this the output of the reporter assay was very sensitive to the 

abundance of AMHR2 (Section 3.3.1.1).  This is consistent with the generally 

accepted scheme for the assembly of the AMH-signaling complex.   
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3.3.2.2 Competition for type-1 receptors 

The maximum reporter activity produced by AMH was consistently lower than the 

maximum produced by BMP.  This may have been because BMPR2 was more 

abundant than AMHR2, as noted above (Section 3.3.1.1).  The BMPR2 being 

expressed by the P19 is murine, as are the type-1 receptors.  The AMHR2 and the 

AMH are recombinant based on the human sequences.  This is advantageous as the 

BPs used are also human, but it is possible that hAMHR2 is less able to compete for 

murine type-1 receptors than mouse AMHR2 and mouse BMPR2.  If so, the 

difference in the maximum response between AMHR2 and BMPR2 may be an 

artifact of using proteins from different species.  Alternatively, it could also result 

from differences in the way that AMHR2 and BMPR2 interact with the type-1 

receptors.   

 

BMPR2 can bind type-1 receptors in the absence of ligand [204].  This potentially 

limits the ability of the initial AMH-AMHR2 complex to recruit type-1 receptor and 

thus form a complete signaling complex.  The extent to which this might occur will 

depend on the Kd of the type-2 receptors for the type-1 receptors, and their 

distributions within the cell membrane.  If AMH-AMHR2 cannot strip all of the type-

1 receptor from BMPR2, then this should result in a lower maximum activation by 

AMH relative to BMP. 

 

The dose-response curve for BMPs was not significantly altered by transfection of 

AMHR2.  This suggests that AMHR2 does not inhibit BMP signaling by competing 

with BMPR2 for the type-1 receptors.  However, the experiments reported in this 

Chapter were not designed to specifically test this, and it is not possible to fully 

exclude that this mechanism might be important when BMP levels are low.  That is, 

when the concentration of BMP-BMPR2 is low. 

3.3.3 Can AMH and BMP signaling be redundant? 

At the beginning of this thesis, there was a consensus that AMH was a classical 

hormone, with only one function.  AMH was considered to signal in isolation of other 

regulators, as it had its own unique receptor, AMHR2.  The Otago AMH 

Neurobiology Group has progressively challenged this, arguing that AMH conforms 
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to the pattern of TGFβ signaling, where the influence of a ligand is contextual [10, 

206].  The characteristics of the P19 reporter assay are relevant to this debate. 

 

The activation of the P19 reporter cells was dose-dependent when AMH was the only 

ligand in the medium.  This form of signaling is consistent with that of a classical 

hormone, and may model the mechanism that occurs during the regression of the 

Müllerian duct.  However, when the reporter assay was strongly stimulated by a BMP, 

the addition of AMH had little or no effect on reporter activity.  Hence, in this model 

system, the AMH pathway is not independent of the BMP pathway.  AMH here is a 

redundant ligand that has little or no activity unless BMP levels are physiologically 

low.  Similarly, when a dose of AMH close to its EC50 was added with a dose of 

BMP4 close to its EC50, then the combined increase in reporter activity was 

significantly less than the sum of the reporter activity of AMH alone plus BMP4 

alone.  This is consistent with AMH and BMP4 signaling via a common sigmoidal 

dose-response curve, where doubling the EC50 dose does not lead to doubling of 

output.  AMH and BMP4 have different top (maximum values) and further 

experimentation is required to define what the precise dose-response curve of 

combinations of AMH and BMPs are.  This was beyond the scope of the thesis, and 

was therefore not investigated further. 

 

Most immature neurons in mice express AMHR2, and AMH is present in the blood of 

developing male mice.  However, the numbers of neurons are only sexually 

dimorphic in a minority of brain nuclei.  This could arise if most neurons are exposed 

to BMPs from sources that are common to males and females, during the period of 

natural cell death.  In these neurons, the presence of AMH in males would not have an 

affect as the SMAD 1/5/8 pathway is strongly activate by BMPs.  In brain nuclei with 

low levels of endogenous BMPs (or the absence of BMPR2), then SMAD 1/5/8-

induced survival of neurons would become strongly regulated by AMH, creating a 

male bias.  This is an early stage hypothesis that requires substantial further evidence 

to be proved.   

 

The above argument illustrates that the P19 reporter assay has uses that are 

independent of its use as a vehicle to identify AMH BPs.  At the beginning of the 

thesis, one of the options available was to further investigate the interactions between 
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AMH and BMPs.  Whilst this was an attractive option, it was not possible to examine 

this option and to simultaneously search for AMH BPs.  For this reason, further work 

was not undertaken on the interaction between AMH and other TGFβ-superfamily 

members.  As noted in the next Chapter, the study of BPs is potentially informative 

about BMP and AMH interactions, as well as putatively being central to the 

understanding why AMH appears to be able to signal at diverse concentrations.  
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Chapter 4: Do AMH binding proteins exist? 

4.1 Introduction 

AMH is a member of the TGFβ superfamily, whose actions are pleiotrophic and 

context dependent (Chapter 1.5.1).  The complexity of signaling is generated through 

shared receptors, and shared BPs.  AMH has historically been viewed as being outside 

of this framework, so that the role of BPs as modulators of AMH biology has not been 

examined.  One reason to suspect that BPs influences AMH signaling is that different 

dose curves for AMH have been described and because the Kd of AMH binding to its 

specific receptor is outside of the biological range of AMH levels, as discussed below. 

 

4.1.1 Kd and EC50  

The understanding of a hormone/cytokine includes knowledge of the range of 

concentrations that it affects the behavior of cells.  One component of this is the 

ability of the cytokine to bind to its receptor, which is most directly measured by the 

Kd.  AMH putatively binds directly to AMHR2, with the type-1 receptors then being 

recruited to bind with the AMH-AMHR2 complex [140].  If this is correct, then the 

Kd of AMHR2 for AMH is an important determinant of the dose-response curve of 

cells to AMH.   

 

Another measure of the response of a cell to a cytokine is the EC50.  The EC50 of a 

sigmoidal dose-response curve represents the concentration of a compound that 

causes an effect that is half way between the baseline (Bottom) and maximum 

response (Top).  The EC50 can differ from the Kd for multiple reasons.  First, and 

most importantly for this thesis, the binding of AMH to AMHR2 may be modulated 

by BPs.  BPs might sequester AMH.  If so, a higher concentration of AMH would be 

needed to affect the cells, leading to a change in the EC50 without a change in Kd of 

AMH for AMHR2.  Alternatively, a BP might facilitate the binding of AMH to 

AMHR2, thus lowering the effective Kd and the EC50.  Second, the intracellular 
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cascade may modulate the dose-response curve, through feedback mechanisms and 

intracellular BPs.  In this thesis, EC50 has been used as the initial screen for BPs as 

EC50 can detect BPs acting by diverse mechanisms.  Nevertheless, the Kd of 

AMHR2 for AMH is relevant to the understanding of an EC50, and is therefore 

outlined in the next section. 

 

4.1.2 Paradox of AMH concentration and Kd for AMHR2 

4.1.2.1 Müllerian duct 

The level of AMH in the blood of male embryos is highly variable [23].  However, 

males almost invariably lack a uterus, indicating that the removal of the Müllerian 

duct is insensitive to the concentration of AMH.  This could occur if the lowest 

concentration of AMH found in male embryos (200-300 pM) were sufficient to 

produce a strong activation of the AMHR2.  This would require the Kd of AMHR2 

for AMH to be around 200 pM, or possibly less.  However, the reported Kd for 

AMHR2 varies between 2.5 and 20 nM (Table 4-1), which is orders of magnitude 

above the highest level of AMH recorded in the circulation of a male.  This creates 

the paradox where AMH is leading to invariant loss of the Müllerian duct, despite 

insufficient AMH levels to cause significant direct activation of its receptor. 
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Table 4-1. Estimates of the affinity of AMHR2 for AMH 

 

Test system nM reference 

COS cells with transfected 

hAMHR2 
2.5 (Kd, iodinated AMHN,C) 

[158] –

note 1 

human epidermoid 

carcinoma cell line (A431) 
5.8 (Kd,iodinated AMHN,C) 

[207] –

note 1 

human ovarian carcinoma 

cell line (OVCAR5) 

10 (Kd, biotinylated proAMH and 

AMHN,C mixture)flow cytometory 

[208] –

note 1 

AMHR2-antibody hybrid 

used as the capture reagent 
10 (Kd, AMHC, AMHN,C, ELISA) [140] 

human ovarian carcinoma 

cell line (OVCAR8) 

12 (Kd, biotinylated proAMH and 

AMHN,C mixture)flow cytometory 
[209] 

Leydig cells 
15(Kd, biotinylated proAMH and 

AMHN,C mixture) flow cytometory 
[12] 

transfected P19 cells 
18 (EC50, proAMH and AMHN,C 

mixture) 
[180] 

duct regression in vitro 
15-20 (EC50, proAMH and 

AMHN,C mixture) 

[152] –

note 2 

 

Note 1. The AMHN,C was generated by plasmin cleavage of proAMH, which 

generates AMHN,C and an alternative cleavage form, whose ability to bind to AMHR2 

is unknown [153].  Hence, the Kd may be an over-estimate as a proportion of the 

AMH may lack the ability to bind to AMHR2. 

Note 2. As the duct regression assay is an organ culture, the estimation of the 

effective dose of AMH may be affected by the ability of AMH to diffuse into the 

Müllerian duct.  This provides some insight into the amount of AMH needed to 

trigger the regression of the Müllerian duct in vivo, but is a less accurate estimate of 

the ability of AMH to bind to AMHR2 than the direct measures of Kd, using tagged 

AMH. 
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There are several possible resolutions of this paradox.  First, a BP may modulate the 

binding of AMH to AMHR2, in a manner analogous to the way that betaglycan 

modules the binding of TGFβ2 to TβR2 (Chapter 1.5.4.1).  The influence of the BP 

would need to be large, probably shifting the EC50 by one or two orders of magnitude.  

Second, the local concentration of AMH adjacent to the Müllerian duct may be orders 

of magnitude higher than in the circulation of male embryos.  This would require that 

the diffusion of AMH away from the Müllerian duct is limited.  This could be 

achieved by the presence of BPs around the Müllerian duct, which act to concentrate 

AMH around the AMHR2-expressing cells.  Third, AMH induces regression of the 

Müllerian duct by triggering the release of an apoptotic factor by the cells surrounding 

the duct.  This could act as an amplifying mechanism where a low level of activation 

of AMHR2 leads to a large release of apoptotic factor via various methods. 

 

4.1.2.2 Circulating AMH 

The putative endocrine roles of AMH appear to be dose-dependent within the 

physiological range.  The signaling mechanism here, may therefore be different to 

what is occurring during the removal of the Müllerian duct, depending on which 

mechanism creates the dose-insensitivity of this phenomenon (see previous Section). 

 

Immature neurons express AMH receptors, and AMH contributes to generation of 

male biases in the brain [17, 30].  Heterozygous male mice that carry a null mutation 

of AMH (AMH+/-) exhibit a neural phenotype that is intermediate between AMH-/- 

and AMH+/+ littermates.  In marked contrast to the brain, AMH+/- male mice lack 

Müllerian ducts, illustrating the difference dose-dependencies between the brain and 

the Müllerian duct.  AMH+/- mice have half the level of AMH mRNA [30], suggesting 

that the influence of AMH on immature neurons is dose-dependent at physiological 

concentrations of AMH.  A similar situation appears to be occurring during human 

development, as the circulating level of a boy’s AMH correlates with a measure of his 

maturity [28], and with the severity of his symptoms, if he has an autistic spectrum 

disorder [210].  These observations also suggest that AMH produces a dose-

dependent effect, at physiological concentrations.  The physiological concentration of 

AMH in developing human males (approximately 0.3 - 2 nM [21, 28]) is lower than 

the reported Kd of AMHR2 for AMH, and much lower than the various estimates of 
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EC50 for AMH, using cell lines (Table 4-1).  This indicates that the canonical 

mechanism for AMH signaling does not fully explain the observed dose-response 

curves in living individuals. 

 

Men and women have an order of magnitude less circulating AMH than boys 

(Chapter 1.3.4). Consequently, if the difference between the Kd for AMHR2 and the 

level of AMH in boys makes AMH signaling paradoxical, then it is even less clear 

that the AMH in the circulation of adults is sufficient to produce meaningful 

activation of AMH receptors.  For this reason, the possibility that AMH is a hormone 

in adults has not been seriously considered until recently.  AMH levels in men and 

female rhesus monkeys correlate with various cardiovascular traits [32], but there is 

currently no evidence that the observed correlations are due to causal regulation by 

AMH in adults.  If this were occurring, then AMH would need to signal with a 

different dose-response curve in boys and adults.  Consistent with this, the observed 

dose-response curve to AMHC in Chapter 3 (Figure 3-13) included activation of the 

AMH reporter at adult-like levels of AMH, with the top of the curve being reached at 

the lower range of boy-levels.  Again, one possible resolution of this issue is that 

AMH signaling in adults and boys is facilitated by different BPs.  Alternatively, AMH 

may signal through a receptor other than AMHR2 in adult peripheral tissues, as there 

is currently no proof that the putative adult functions of AMH are AMHR2-dependent. 

 

4.1.2.3 Ovarian follicular AMH 

Extremely high levels of AMH exist within the gonads, with this being most 

comprehensively documented in females.  The level of AMH in the follicular fluid of 

small antral follicles is of the order of 8 nM [55] (Chapter 1.3.3).  At first sight, this 

level of AMH is sufficient to produce significant activation of AMHR2, based on 

some but not all of the reported EC50 values (Table 4-1).  However, most of the 

AMH in the follicular fluid is the uncleaved precursor, proAMH [211], which does 

not bind to AMHR2 [140].  The level of AMHN,C in the follicular fluid thus appears to 

be too low to produce substantial activation of AMHR2, unless a BP or some other 

mechanism is altering the response of  granulosa cells to AMH. 
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4.1.2.4 In vitro studies using embryonic neurons 

The influence of AMH on cells isolated from tissues outside of the reproductive tract 

has rarely been studied, as AMH was not expected to affect such cells until recently.  

The first such study by our research group used embryonic motoneurons isolated from 

mouse embryos.  Embryonic motoneurons in vitro die in the absence of an exogenous 

survival factor.  When AMH is added to embryonic motoneurons, the observed dose-

response curve was log dose – linear output.  Consequently, significant survival of 

neurons was observed at both adult human-like and boy-like levels of AMH [17].  

The effect of AMH was maximal at concentration of 360 - 710 pM, with higher 

concentrations of AMH being inhibitory [17].  Prof. Donahoe (Harvard) provided the 

AMH used in this study, and the observed sensitivity of motoneurons to this AMH 

was orders of magnitude greater than obtained by the gifting laboratory in their assays 

using cancer cell lines [12, 209].  The data from the embryonic motoneurons provides 

a basis for postulating that the AMH in the circulation is functional.  However, it is 

unknown why embryonic neurons are more sensitive to AMH than cell lines, or why 

the dose-response curve for neurons is log-linear in vitro when the limited data 

suggests that it is linear-linear in vivo (Chapter 4.1.2.2).  Again, the existence of AMH 

BPs is a possible explanation. 

 

4.1.3 Forms of AMH for the assay 

The initial experiments in this Chapter used rhAMHC, as the identity of the AMH 

species in the circulation were unknown, and historically, most of the AMH 

experiments have used rhAMHC.  Furthermore, a source of recombinant AMHN,C was 

not available at the beginning of the thesis.  Additional experiments using AMHN,C 

were undertaken later in this thesis, after the presence of AMHN,C was discovered in 

serum [140].  Theoretically, AMHC and AMHN,C could have different affinities for 

BPs, as the presence of the N-terminal domain of AMH could create or disrupt 

binding sites for BPs.  The glycosylation of AMH is predominantly associated with 

the N-terminal domain [139].  AMHC and AMHN,C may thus differ in the extent of 

glycosylation as well as in the amino acid portion of AMH.  Additionally, the use of 

AMHN,C makes the tests more physiological as the existence of free AMHC has not 

been demonstrated in natural fluids.  One minor limitation to the use of AMHN,C is 
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that it had to be produced from proAMH in vitro by our research group.  

Consequently, the AMHN,C preparation contains traces of furin (see Chapter 3.3.1.3) 

and traces of proAMH.  The latter may cause the EC50 values to be slightly under-

estimated as a proportion of the AMH is not AMHR2-competent.  The concentration 

of AMHN,C, and the extent of any proAMH contamination, will vary from batch to 

batch, which limits the ability to compare experiments undertaken with different 

batches of AMHN,C.  For this reason, a single large batch of AMHN,C was prepared for 

the experiments in this Chapter.  

 

The ability of BPs to affect proAMH will be discussed in Chapter 5. 

 

4.1.4 Soluble binding proteins 

The initial test of the BPs used soluble versions of the BPs.  If any of the BPs bound 

AMH, then addition of them to the culture medium was expected to decrease AMH 

reporter activity by preventing AMH reaching the receptor.  That is, they were 

expected to act as a sink for AMH as the total number of BP molecules in the medium 

was expected to be large relative to the number of BPs on the surface of the P19 cells.  

This scenario is modeled on the known actions of soluble betaglycan that inhibits 

TGFβ signaling (Chapter 1.5.4.1) and soluble FS that acts as a ligand trap of activin 

[79].  The development of a sensitive bioassay (Chapter 3) was important for this 

strategy, as the accurate detection of inhibition required a clear positive control in the 

absence of the inhibitor.  This strategy was not designed to test the mode of action of 

the BPs in vivo, which requires different types of experiments.  

 

The P19 cells may produce BPs and there may be low levels of BPs in the culture 

medium.  These BPs are only likely to influence the reporter assay if they were 

membrane bound or bound to the extracellular matrix, as the culture medium was 

changed at the start of the assay.  If such BPs exists they may compete with the BPs 

added as part the experiment.  In order to minimize this, the concentration of the BPs 

used in the screens described in this Chapter was high (Table 4-2).  The fact that the 

volume of the medium is large relative to the P19 cells, is a further safe-guard as it 
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ensures that the molar number of the test BP will be very large relative to the number 

of endogenously occurring BPs.   

 

 

 

Table 4-2. Binding proteins and the concentrations used in this Chapter 

Binding protein 
Dose curves 

Figures 4-4, 4-5 

(nM) 

ELISA 

[BP nM] x replicates (nM) 

Betaglycan 5 x 1, 10 x 2 10 - 

Brorin 30 x 1, 20 x 2 20 - 

Chordin 10 x 3 10 20 

Chordin-like1 20 x 3 20 20 

Chordin-like 2 20 x 3 20 - 

DAN 106 x 1, 20 x 2 20 - 

Decorin 53 x 1, 20 x 2 20 - 

Endoglin 
8.2 x 1, 10 x 2,   

10 x 3 (AMHN,C) 
10 20 

FS288 
7.9 x 3 (AMHC),  

20 x 3 (AMHN,C) 
20 20 

FS315 10 x 3 10 20 

FS-like1 28 x 1, 20 x 2 20 - 

FS-like3 (FLRG) 20 x 3 20 20 

FS-like 4 10 x 3 10 - 

Noggin 20 x 3 20 - 

α2-macroglobulin 10 x 3 10 - 

 

Note.   Dose-curve experiments were conducted as three independent replicates.  At 

the beginning of the thesis, the concentrations of BPs were calculated in ng/ml.  This 

limits the ability to compare the potency of BPs, as they were added in different molar 

concentrations.  Subsequently, the BPs were used at either 10 or 20 nM, depending on 

the availability of the BP.  Consequently, some of the replicate experiments had 

variation in the concentration of the BP.  For example, two of the curves for decorin 

used 20 nM and the other 53 nM.  In all cases, the BPs were in a large excess, and the 
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results of the three experiments were comparable, enabling them to be combined.  

Ideally, each replicate should have been identical.  

 

4.1.5 Objectives of Chapter 4 

A priori, AMH signaling may be modulated by multiple BPs, which act at one or 

multiple sites (Müllerian duct, gonads, or endocrine target cells).  In this Chapter, I 

have used the assay established in Chapter 3 to examine whether 15 of the known 

TGFβ-superfamily BPs can bind to AMH, leading to a change in the AMH dose-

response curve of the P19 reporter activity.  The methods used in this Chapter were 

described in Chapter 2 and 3. 
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4.2 Results 

4.2.1 Binding proteins with AMH 

4.2.1.1 Dose curve and EC50 

The response of transfected P19 cells to AMHC (Figure 3-13) was re-examined with 

an extended dose curve, to more accurately define the EC50 (Figure 4-1).  The EC50 

of AMHC was calculated to be approximately 0.5 nM, with near-maximal response 

occurring at concentrations greater than 1 nM (Figure 4-1).  Figure 4-1A illustrates 

that the dose-response curve was sigmoidal.  The EC50, top, and bottom values of the 

sigmoidal dose curve were calculated from the log of the AMH concentration, and the 

log dose-response curve is shown in Figure 4-1B.  The log dose curves illustrate the 

influence of BPs more clearly than the simple dose-response curve, and subsequent 

data is presented as log dose curves for this reason.  The AMHC dose-response curve 

was broadly similar between experiments (c.f. Figure 4-1 and Figure 4-2). 

  



 107 

(A) 

 
(B) 

 
 

Figure 4-1. Definition of the dose-response curve for AMHC 

 (A) A dose-response curve was fitted using the “sigmoidal dose-response (variable 

slope)” function of Prism.  (B) The data were log transformed in Prism and the two 

curves compared using the “log (agonist) vs. response - variable slope (four 

parameters)”.  The data is the mean plus and minus the standard error, with six wells 

for each concentration point. 
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4.2.1.2 AMH and binding proteins 

The known TGFβ-superfamily BPs were sequentially studied, using two screens.  The 

effect of each BP on the AMH dose-response curve was examined using AMHC.  The 

EC50, the top, and bottom values were examined.  When a supply of AMHN,C became 

available, the effect of the BPs was re-examined at 0.16 nM of AMHN,C.  Among the 

first 14 of the BPs tested, 8 had no effect in the AMHC screen, with the other 5 

producing only a small change.  The 15th of the BPs tested (FS288) produced a larger 

effect.  The results of the 8 BPs that did not affect AMH signaling in the reporter 

assay are present in Figure 4-2 (A-H).  These BPs did not alter the EC50, or the top or 

bottom values of the AMH dose-response curve (Table 4-3). 
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                   (G) 

 
                      
                      (H) 

 
 

Figure 4-2. Influence of BPs on the dose-response curve to AMHC 

The influence of eight BPs on the response of the P19 reporter cells to AMHC is 

illustrated. (A) Betaglycan, (B) Chordin, (C) Chordin-like 1, (D) DAN, (E) FS-like 1, 

(F) FLRG, (G) Noggin, (H) α2-macroglobulin.  The BPs were added in a large molar 

excess relative to the maximum concentration of AMHC (Table 4-2). The data is 

illustrated as the mean plus the standard error of the mean of 6 wells for each 

concentration point, in both the control and BP-treated curves.  The statistical analysis 

of each curve was from the 60 data points, as described in Section 2.1.5. 
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The dose-response curve to AMHC in the presence of 20 nM or 30 nM of brorin was 

significantly different to the control curve (p=0.0025), although the magnitude of the 

change was relatively small (Figure 4-3A).  With the addition of 20 nM of brorin, the 

EC50 for AMHC decreased from 0.50 nM to 0.40 nM, with no apparent change in 

either the top or bottom value (Table 4-3).  Although statistically significant, a change 

in the EC50 of 0.1 nM is within the noise of the assay and insufficient to explain the 

phenomena described in the Introduction to this Chapter.  A second screen was 

therefore used to verify whether the small changes were robust.  When brorin was 

added to a single dose of AMHC near the EC50 (0.5 nM), there was no significant 

change in the reporter activity of the P19 cells (figure 4-4B).  Similarly, when 20 nM 

of brorin was added to a single dose of AMHN,C near the EC50 (0.16 nM, Figure 3-

15), there was no significant change in the reporter activity of the P19 cells (Figure 4-

5B).  This indicates that if brorin has an effect on AMH signaling, the magnitude of 

the effect is near the limits of detection of the assay. 

  



 113 

                     (A) 

 
                      
                     (B) 

 
                      
                     (C) 

 
  

-5 -4 -3 -2 -1 1

-50

50

100

150

Fi
re

fly
/R

en
ill

a(
%

)

log10 AMHc (nM)

Control
Brorin

-5 -4 -3 -2 -1 1

-50

50

100

150

log10 AMHc (nM)

Fi
re

fly
/R

en
ill

a(
%

)

Control
FS-like 4



 114 

Figure 4-3.  Brorin, Decorin and FS-like 4 affect AMHC signaling 

The influence of brorin, decorin and FS-like 4 on the response of the P19 reporter 

cells to AMHC is illustrated. (A) Brorin, (B) Decorin,  (C) FS-like 4.  The BPs were 

added in a large molar excess relative to the maximum concentration of AMHC (Table 

4-2). The data is illustrated as the mean plus the standard error of the mean of 6 wells 

for each concentration point, in both the control and BP-treated curves.  The statistical 

analysis of each curve was from the 60 data points, as described in Section 2.1.5. 

(A)-(C) were significantly different from control with (A) p=0.0025, (B) p=0.0003, 

(B) p=0.0006. 
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                     (A) 

 
                      
                     (B) 

 
 

Figure 4-4. The effect of binding proteins on 0.5 nM AMHC 

The influence of 14 BPs on the reporter activity generated by an EC50-like 

concentration of AMHC is illustrated.  Panel (A) illustrates the BPs which had no 

effect on the AMHC dose-response curve (Figure 4-2), whereas panel (B) illustrates 

the BPs which affected the dose-response curve (Figure 4-3, 4-7, 4-10, 4-12).  The 

concentration of BPs used is recorded in Table 4-2.  The BPs in panels A and B were 

tested in the same experiment.   The bars represent the mean + the standard error of 

the mean of 9 wells.  There was a statistically significant effect of group for the entire 

experiment (General Linear Model, p<0.0005).  Bonferroni post-hoc tests indicated 

that endoglin (**, p=0.003) and chordin-like 2 (*, p=0.04) were significantly different 

to the control group. 
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                     (A) 

 
                      
                     (B) 

 
 

Figure 4-5. The effect of binding proteins on 0.16 nM AMHN,C 

The influence of 14 BPs on the reporter activity generated by an EC50-like 

concentration of AMHN,C is illustrated.  Panel (A) illustrates the BPs which had no 

effect on the AMHC dose-response curve (Figure 4-2), whereas panel (B) illustrates 

the BPs which affected the dose-response curve (Figure 4-3, 4-7, 4-10, 4-12).  The 

concentration of BPs used is recorded in Table 4-2.  The BPs in panels A and B were 

tested in the same experiment.  The bars represent the mean + the standard error of the 

mean of 8 wells.  There was a significant effect of group for the entire experiment 

(General Linear Model, p<0.0005).  Bonferroni’s post-hoc test indicated that endoglin 

and FS288 were significant different to the control group (*, p<0.0005). 

  

Con
tro

l

Beta
gly

ca
n

Cho
rdi

n

Cho
rdi

n-l
ike

 1
DAN

FS-lik
e 1

FLR
G

Nog
gin

α2
-m

ac
rog

lob
uli

n
0

50

100

150

Fi
re

fly
/R

en
ill

a 
(%

)

Con
tro

l

Bror
in

Dec
or

in

FS-lik
e 4

End
og

lin

Cho
rdi

n-l
ike

 2

FS28
8

0

50

100

150

Fi
re

fly
/R

en
ill

a 
(%

)

*

*



 117 

Similarly, the addition of 20 nM or 53 nM of decorin caused a small but statistically 

significant change to the dose-response curve (p=0.0003) (Figure 4-3B).  The EC50 

changed from 0.64 nM to 0.36 nM, with no apparent change in either the top or 

bottom values (Table 4-3).  However, 20 nM of decorin did not cause a significant 

increase in the second screen, using single doses of AMHC (Figure 4-4B) and 

AMHN,C (Figure 4-5B) near their EC50.   

 

The effect of 10 nM of FS-like 4 was similar to that of decorin and brorin.  The EC50 

changed from 0.64 nM to 0.43 nM (Figure 4-3C, p=0.0006), with no apparent change 

in either the top or bottom value (Table 4-3).  No change was observed in the second 

screen using either AMHC (Figure 4-4B) or AMHN,C (Figure 4-5B).  
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Table 4-3. Change of top, bottom and EC50 value with binding proteins 

Binding protein 
Top Bottom EC50 

Control with BP Control with BP Control with BP 

Betaglycan 105 109 -0.18 -1.2 0.50 0.45 

Chordin 110 103 -1.4 1.1 0.84 0.65 

Chordin-like1 113 124 2.8 -1.3 0.50 0.38 

DAN 105 95 -0.71 -0.49 0.37 0.24 

FS-like1 109 115 1.2 -1.4 0.57 0.47 

FLRG 105 103 0 2.1 0.70 0.68 

Noggin 109 107 3.4 0.89 0.57 0.48 

α2-macroglobulin 110 107 0.1 -1.5 0.66 0.61 

Brorin 105 110 -0.18 0.04 0.50 0.40 

Decorin 111 97 1.8 -1.5 0.64 0.36 

FS-like 4 111 101 -0.52 1.1 0.64 0.43 

Endoglin(AMHC) 106 98 1.3 -5.3 0.58 0.53 

Endoglin(AMHN,C) 109 99 -0.69 -0.19 0.37 0.40 

Chordin-like 2 108 92 -0.64 -2.2 0.60 0.49 

FS288 (AMHC) 102 103 -1.7 1.48 0.37 0.22 

FS288 (AMHN,C) 104 106 -3.5 -0.16 0.54 0 

FS315(AMHC) 114 110 -1.6 2.3 0.84 0.65 

 

The data are the top (maximum), bottom (minimum) and EC50 values from the 

curves illustrated in Figures 4- 2,3,7,8,10,11,12,15.  All values are the % of the top 

value in the absence of a BP. 

 

 

The differences in the results between the first and second screens for brorin, decorin 

and FS-like 4 could be due to random fluctuation in the assays, as the magnitude of 

the observed effects were small.  Alternatively, they could be produced if the effect of 

the BPs were limited to the lower or upper portions of the dose-response curve.  This 

requires additional experimentation to prove, but indicative results can be obtained by 

comparing the ratio of the reporter activity in the presence and absence of the BP for 

each concentration of AMH.  The enhancement of AMHC signaling produced by 
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brorin (Figure 4-6A) and decorin (Figure 4-6B) were limited to the lower doses of 

AMHC, corresponding to adult-like circulating levels of AMH.  The effect of FS-like 4 

was also restricted to the low concentrations, but the magnitude of the FS-like 4-

induced change is small and is mainly generated from a single data point (Figure 4-

6C).  This type of limited post-hoc analysis is only valid when a statistically 

significant effect has been detected in the dose-response curve.  Similar analyses for 

the 9 BPs that had no significant effect on the dose-response curve (Figure 4-2) were 

therefore not reported. 
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Figure 4-6. The effect of brorin, decorin and FS-like 4 may vary 
depending on the concentration of AMH   

The illustrated experiment examined whether the effect of (A) Brorin, (B) Decorin 

and (C) FS-like 4 varied depending on the concentration of AMHC.  The ratio of 

reporter activity in the presence and absence of the BP was calculated for each 

concentration of AMHC, and is plotted against the concentration of AMHC.  Values 

above 1 indicate enhanced signaling.  The data are from Figure 4-3.  Each BP had a 

significant effect on the AMH-dose curve as a whole (legend Figure 4-3).  Robust 

post-hoc analysis of individual concentrations is not possible, as each illustrated point 

is the ratio of mean values, and is therefore n=1.  In this type of analysis, variation 

will be greatest at the low dose as the ratio of two small numbers is being calculated.  

Conclusions should therefore only be reached if there is a consistent pattern to the 

data. 

 

 

 

4.2.1.3 Endoglin and chordin-like 2 reduce the signaling of AMH 

8.2 nM or 10 nM of Endoglin reproducibly decreased the response to AMH.  The 

reporter activity was lower at each dose of AMHC in the dose-response curve (Figure 

4-7B) and the response to the EC50 dose of AMHC (p=0.003, Figure 4-4B) was also 

lower, with high statistical certainty.  The shape of the dose-response curve was not 

altered (Figure 4-7A).  The log dose-response curve had a calculated bottom value 

below zero.  This suggests that the endoglin affected the dose curve by decreasing the 

basal activity of the reporter assay.  When the entire plus endoglin curve was shifted 

such that the zero value was aligned to the minus endoglin (control) curve, then there 

was no difference to the AMHC signaling with and without endoglin (Figure 4-7C). 
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Figure 4-7. Endoglin reduces reporter activity, independent of AMHC 

The influence of endoglin on the response of the P19 reporter cells to AMHC is 

illustrated. Endoglin was added in a large molar excess relative to the maximum 

concentration of AMHC (Table 4-2). The data is illustrated as the mean plus the 

standard error of the mean of 6 wells for each concentration point, in both the control 

and endoglin-treated curves.  The statistical analysis of each curve was from the 60 

data points, as described in Section 2.1.5.  (A) A dose-response curve was fitted using 

the “sigmoidal dose-response (variable slope)” function of Prism.  (B) The data were 

log transformed in Prism and the two curves compared using the “log (agonist) vs. 

response - variable slope (four parameters)”.  The groups were significantly different 

from each other with p=0.0041.  (C) Separate no AMH values were calculated for the 

control and the endoglin curves (no AMH, plus endoglin) and the curves re-plotted as 

described for (B). 

 

 

 

Similar results were obtained when 10 nM of endoglin was added to AMHN,C.  All 

values were lower on the dose-response (Figure 4-8), and the response produced by 

0.16 nM of AMHN,C was lower when endoglin was present (p<0.0005, Figure 4-5B). 

When the base line was corrected for the observed effect of endoglin, the endoglin 

dose-response curve was still significantly different to the control dose curve 

(p=0.0008, Figure 4-8B).  The difference was small, and was present across the entire 

dose-response curve (Figure 4-8C).  However, there was no significant effect of dose 

when the concentration of endoglin was varied between 1 and 10 nM and the 

concentration of AMHN,C held constant at a high level (2nM) (Figure 4-9).  The zero 

dose point for endoglin in this curve was statistically significant to the wells that had 

endoglin added to them (p<0.001, Figure 4-9), but the magnitude of the effect was 

small, consistent with the previous experiments (Figure 4-8).  This suggests that the 

effect of endoglin is maximal at 1 nM. 
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Figure 4-8. Endoglin reduces reporter activity, independent of AMHN,C 

The influence of endoglin on the response of the P19 reporter cells to AMHN,C is 

illustrated. Endoglin was added in a large molar excess relative to the maximum 

concentration of AMHN,C (Table 4-2).  The data is illustrated as the mean plus the 

standard error of the mean of 6 wells for each concentration point, in both the control 

and endoglin-treated curves.  The statistical analysis of each curve was from the 60 

data points, as described in Section 2.1.5. (A) and (B) The data were log transformed 

in Prism and the two curves compared using the “log (agonist) vs. response - variable 

slope (four parameters)”.  The curve illustrated in (B) has been corrected for the 

influence of endoglin on the basal activity of the reporter assay.  The curves in (A) 

and (B) were significantly different from each other with p<0.0001. (C) The 

possibility that the effect of endoglin varies with the concentration of AMHN,C was 

examined using the method described in Figure 4-6. 
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Figure 4-9. The influence of endoglin on AMHN,C did not vary with 
concentration 

The influence of endoglin on the reporter activity generated by 2 nM AMHN,C is 

illustrated.  Each data point is the mean ± the standard error of the mean of 6 wells.  

The zero endoglin point was significantly different to all other points (p<0.001). 

 

 

 

Similarly to endoglin, 20 nM of chordin-like 2 reproducibly decreased the response to 

AMHC.  The reporter activity was lower at each dose of AMHC in the dose-response 

curve (p=0.026, Figure 4-10B) and the response to the EC50 dose of AMHC (Figure 

4-B) was also significantly lower (p=0.04).  However, this effect was smaller than for 

endoglin.  The shape of the dose-response curve was not altered (Figure 4-10A).  The 

log dose-response curve had a calculated bottom value below zero.  This suggests that 

the chordin-like 2 affected the dose curve by decreasing the basal activity of the 

reporter assay similarly to endoglin.  When the zero-value was reset to the calculated 

bottom of the dose-response curve, then the dose response curves to AMHC with and 

without chordin-like 2 were identical (Figure 4-10C).  However, this effect of 

chordin-like 2 was not observed with AMHN,C (Figure 4-5B). 

  

0 2 4 6 8 10
0

1

2

3

4

Endoglin (nM)

Fi
re

fly
/R

en
ill

a



 127 

                      (A) 

 
                      
                     (B) 

 
 

                      
                     (C) 

 
  

0 1 2 3 4

0

50

100

AMHc (nM)

Fi
re

fly
/R

en
ill

a 
(%

)
Control
Chordin-like 2

-5 -4 -3 -2 -1 1

-50

50

100

log10 AMHc(nM)

Fi
re

fly
/R

en
ill

a(
%

)

Control
Chordin-like 2

-5 -4 -3 -2 -1 1

-50

50

100

150

log10 AMHc (nM)

Fi
re

fly
/R

en
ill

a(
%

)

Control
Chordin-like 2



 128 

Figure 4-10. Chordin-like 2 reduces reporter activity, independent of 
AMHC 

The influence of chordin-like 2 on the response of the P19 reporter cells to AMHC is 

illustrated. Chordin-like 2 was added in a large molar excess relative to the maximum 

concentration of AMHC (Table 4-2). The data is illustrated as the mean plus the 

standard error of the mean of 6 wells for each concentration point, in both the control 

and chordin-like 2-treated curves.  The statistical analysis of each curve was from the 

60 data points, as described in Section 2.1.5. (A) A dose-response curve was fitted 

using the “sigmoidal dose-response (variable slope)” function of Prism.  (B) The data 

were log transformed in Prism and the two curves compared using the “log (agonist) 

vs. response - variable slope (four parameters)”.  The groups were significantly 

different from each other with p=0.026.  (C) Separate no AMH values were calculated 

for the control and the chordin-like 2 curves (no AMH, plus chordin-like 2) and the 

curves re-plotted as described for (B). 

 

 

 

4.2.1.4 Follistatin 288 increased the signal to dose of AMHC 

FS288 reproducibly increased the response to AMH.  The dose response curve was 

shifted to the left, with the EC50 in the presence of 7.9 nM of FS288 being 0.22 nM 

compared to 0.37 nM for the control (p<0.0001, Figure 4-11A,B).  The top and the 

bottom of the curve were not altered (Figure 4-11B).  Consequently, the relative effect 

of FS288 was largest when AMH concentrations were low, with little or no effect 

when AMH levels were sufficient to produce a near maximal response (1 nM) (Figure 

4-11C).  The reporter activity produced from 0.5 nM AMHC was 108% of the control 

when 20 nM of FS288 was present, which was not significantly different (Figure 4-

4B).  This result is consistent with the original screen (Figure 4-11C) (see 4.3.2). 
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Figure 4-11. Follistatin 288 altered the EC50 for AMHC 

The influence of FS288 on the response of the P19 reporter cells to AMHC is 

illustrated.  FS288 was added in a large molar excess relative to the maximum 

concentration of AMHC (Table 4-2). The data is illustrated as the mean plus the 

standard error of the mean of 6 wells for each concentration point, in both the control 

and FS288-treated curves.  The statistical analysis of each curve was from the 60 data 

points, as described in Section 2.1.5. (A) A dose-response curve was fitted using the 

“sigmoidal dose-response (variable slope)” function of Prism.  (B) The data were log 

transformed in Prism and the two curves compared using the “log (agonist) vs. 

response - variable slope (four parameters)”.  The groups were significantly different 

from each other with p<0.0001.  (C) This panel illustrates the effect of FS288 varies 

with the concentration of AMHC .  The data was calculated as described in Figure 4-6. 

 

 

 

When 20 nM of FS288 was added to a dose-response curve for AMHN,C , the curve 

was significantly different to control (p<0.0001), with a lowered EC50 (Figure 4-

12A).  However, the dose-response curve did not exhibit a typical sigmoidal shape, 

raising the possibility that an error had occurred.  The experiment was therefore 

repeated.  FS288 again shifted the dose-response curve to the left (p<0.0001), with the 

EC50 decreasing from 0.54 nM to 0.28 nM (Figure 4-12B).  The curve had a normal 

sigmoidal shape (Figure 4-12B).  FS288 did not significantly increase the maximum 

response produced by AMHN,C (Figure 4-12B and Figure 4-13B).  In the second 

screen, 20 nM of FS288 increased the reporter response to 0.16 nM of AMHN,C by 

29% (p<0.0005) (Figure 4-5B).  The post-hoc analysis was examined by calculating 

the ratio of the reporter activity in the presence and absence of the BP for each 

concentration of AMH.  Values greater than 1 were observed with low doses of 

AMHC with FS288 (Figures 4-12C).  The effect of FS288 was dose-dependent across 

a range spanning 0.1 to 5 nM, when the concentration of AMHN,C was 0.2 nM (Figure 

4-14A). 

  



 131 

                      (A) 

 
                      
                     (B) 

 
 

                      
                     (C) 

 
 

  

-5 -4 -3 -2 -1 1

-50

50

100

150

Fi
re

fly
/R

en
ill

a 
(%

)

Log10 AMHN,C  (nM)

Control
FS288

0 1 2 3
0

1

2

3

AMHN,C (nM)

FS
28

8/
C

on
tro

l



 132 

Figure 4-12. Follistatin 288 altered the EC50 for AMHN,C 

The influence of FS288 on the response of the P19 reporter cells to AMHN,C is 

illustrated.  FS288 was added in a large molar excess relative to the maximum 

concentration of AMHN,C (Table 4-2). The data is illustrated as the mean plus the 

standard error of the mean of 6 wells for each concentration point, in both the control 

and FS288-treated curves.  The statistical analysis of each curve was from the 60 data 

points, as described in Section 2.1.5. (A) and (B) illustrate two replicate experiments 

The data were log transformed in Prism and the two curves compared using the “log 

(agonist) vs. response - variable slope (four parameters)”. The curves in (A) and (B) 

were significantly different from each other with p<0.0001. (C) The possibility that 

the effect of FS288 varies with the concentration of AMHN,C was examined using the 

method described in Figure 4-6. 
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Figure 4-13. The follistatins affect AMH signaling at moderate and high 
AMHN,C concentrations 

(A) The effect of FS315 on the reporter activity produced by an EC50-like 

concentration of AMHN,C (0.16 nM). The bars represent the mean + the standard error 

of the mean with an n of 8 wells. The * indicates that the groups were significantly 

different from each other, one-way ANOVA with p value of p=0.0005.  (B) The effect 

of FS288 and FS315 on the reporter activity produced by 3nM AMHN,C. The bars 

represent the mean + the standard error of the mean, with an n of 8 wells.  The * 

indicate the groups were significantly different from each other, one-way ANOVA 

with a p value adjusted for multiple tests, p=0.029. 
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                      (B) 

 

Figure 4-14. The follistatins have a dose-dependent effect on 0.2 nM 
AMHN,C. 

The influence of (A) FS288 and (B) FS315 on the reporter activity generated by 0.2 

nM AMHN,C is illustrated.  Each data point is the mean ± the standard error of the 

mean of 6 wells.  The data were significantly different to zero, linear regression (A) 

p<0.0001, (B) p=0.01. 
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4.2.1.5 Follistatin 315 may differentially affect AMHC and AMHN,C 

FS288 and FS315 are splice variants.  FS315 was added to the screen for BPs at a late 

stage of the thesis, after the FS288 data was obtained.  Ten nM FS315 did not 

significantly affect the dose-response curve of the P19 reporter cells to AMHC (Figure 

4-15).  FS315 was not included in either of the secondary screens using AMHC 

(Figure 4-4) or AMHN,C (Figure 4-5) as FS315 was only obtained after these screens 

had been completed.   

 

 

 

 

 
Figure 4-15. Follistatin 315 did not influence the dose-response curve to 
AMHC 

The influence of FS315 on the response of the P19 reporter cells to AMHC is 

illustrated. FS315 was added in a large molar excess relative to the maximum 

concentration of AMHC (Table 4-2). The data is illustrated as the mean plus the 

standard error of the mean of 6 wells for each concentration point, in both the control 

and FS315-treated curves.  The statistical analysis of each curve was from the 60 data 

points, as described in Section 2.1.5.  The data were log transformed in Prism and the 

two curves compared using the “log (agonist) vs. response - variable slope (four 

parameters)”. 

  

-5 -4 -3 -2 -1 1

-50

50

100

150

log10 AMHc (nM)

Fi
re

fly
/R

en
ill

a(
%

)

Control
FS315



 136 

FS315 was also examined with AMHN,C, despite the negative result obtained with 

AMHC, to enable the activities of FS288 and FS315 to be compared.  In contrast to 

the results obtained with AMHC, 10 nM of FS315 significantly increased the reporter 

activity produced by 0.16 nM of AMHN,C (p=0.0005) (Figure 4-13A).  There was also 

a small but significant increase in the reporter activity when a high concentration (3 

nM) of AMHN,C was used (p=0.029) (Figure 4-13B).  These experiments were 

undertaken in preference to a dose curve as there was insufficient AMHN,C available.  

The FS315-induced amplification of the effect of 0.2 nM AMHN,C was dose-

dependent (Figure 4-14B), although the potency of FS315 was less than that of FS288 

(compare Figure 4-14A and 4-14B). 

 

4.2.2 Activin and the reporter assay 

The classical action of FS is to block the actions of activin, although this is not its 

only function (Chapter 1.5.4).  The first step towards understanding how FS may 

affect the AMH reporter assay was therefore to determine whether the observed affect 

of FS was secondary to an effect on activin.  Activin A did not activate the (BRE)2-

Luc reporter construct, irrespective of whether the P19 cells were transfected with 

AMHR2 or a control vector (Figure 4-16).  This is consistent with the generally 

accepted pathway for activin signaling, which involves SMAD2/3 rather than 

SMAD1/5/8.  However, this does not exclude the possibility that activation of the 

SMAD2/3 pathway affects signaling via SMAD1/5/8.  If this occurs, then the dose-

response curves to AMH would change when activin A was present.  10 nM of activin 

A caused a small but statistically significant change to the dose response curve, 

involving an increase in the maximum (top) value (p=0.0012, Figure 4-17A).  There 

was no clear effect of activin A at lower doses of AMHC, or around the EC50 

concentration (Figure 4-17B). 
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Figure 4-16. Activin A does not have a dose-dependent effect on 
reporter activity 

P19 cells were transfected with AMHR2 or pcDNA3.1(+), along with (BRE)2-Luc 

and phRL-SV40.  Each data point is the mean + standard error of 3 wells.  A dose-

response curve was fitted using the “sigmoidal dose-response” function of Prism.  
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Figure 4-17. Activin A does not inhibit AMHC signaling at low 
concentrations 

The influence of Activin A on the response of the P19 reporter cells to AMHC is 

illustrated.  Activin A was added in a large molar excess relative to the maximum 

concentration of AMHC (10 nM). The data is illustrated as the mean plus the standard 

error of the mean of 6 wells for each concentration point, in both the control and 

Acticin A -treated curves.  The statistical analysis of each curve was from the 60 data 

points, as described in Section 2.1.5. (A) The data were log transformed in Prism and 

the two curves compared using the “log (agonist) vs. response - variable slope (four 

parameters)”.  The two curves were significantly different  (p=0.0012), due to an 

elevated top value for the activin A treated group.  When the high concentrations of 

AMH (≥ 2 nM) were omitted, the two curves were not different.  (B) The relative 

effect of activin A at difference concentrations of AMHC is illustrated (see legend of 

Figure 4-6 for a description of the method). 
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4.2.3 Do binding proteins influence an AMH ELISA? 

FS288 is a serum protein [212].  Consequently, the results reported above raise the 

possibility that part or all of the AMH in the circulation may be bound to FS288.  If so, 

then FS288 may prevent anti-AMH antibodies binding to AMH in 

immunoprecipitation experiments and in immunoassays, such as ELISAs.  A similar 

argument can be made in reference to the study of the gonadal functions of AMH, as 

FS288 and other BPs are present in the gonads, including ovarian follicular fluid [56, 

213, 214].  The effect of selected BPs on the detection of AMH in the Beckman 

Coulter Gen II ELISA were therefore examined, with the dual purpose of determining 

whether BPs have the potential to confound the ELISA and as a first test of whether 

the BPs that influence the EC50 of AMH in the reporter assay bind directly to AMH.  

 

None of the BPs that affected the AMHN,C EC50 of the P19 reporter assay (Section 

4.2.1) altered the quantitation of  29 pM of rhAMHN,C (Figure 4-18).   
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Figure 4-18. Binding proteins do not interfere with an AMH ELISA 

The BPs which affected AMH signaling in previous experiments were tested to 

determine whether they altered the detection of AMH in the Gen II AMH ELISA. 

20 nM of either chordin, chordin-like1, endoglin, FLRG, FS288 or FS315 were added 

to  29 pM of rh-AMHN,C, and the level of AMH measured in triplicate, using an 

ELISA.  The bars represent the mean + the standard error of the mean.  The data were 

first normalized as a percentage of the control, in the absence of any added BP.  There 

was no significant effect in the experiment as a whole (one-way ANOVA). 
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4.3 Discussion 

4.3.1 Overview 

This Chapter has examined the ability of the 15 known TGFβ-superfamily BPs to 

influence AMH signaling, using a broad screen.  The BPs that had the greatest 

influence on AMH signaling were the FSs, which ironically were amongst the last of 

the BPs to be tested.  This discussion therefore begins with an overview of FS, and 

the possible relevance of FS to the understanding of AMH biology.  Three BPs 

(brorin, decorin and FS-like 4) had small effects and are discussed together.  Similarly, 

the two BPs (endoglin and chordin-like 2) that depressed the bottom of the AMH dose 

curve are discussed together.  The Chapter ends with a discussion of the biological 

relevance of identifying which BPs do not influence AMH signaling.  The aims of this 

Chapter were to undertake the first exploration of AMH BPs and consequently there 

is no prior literature relating to AMH and BPs to discuss. 

 

4.3.2 Follistatin appeared to increase AMH signaling 

FS288 had the strongest effect on the dose-response curve for AMHC, and was 

therefore selected for additional examination (Table 4-4).  A significant effect was 

also observed with the first AMHN,C dose-response curve, but the shape of the curve 

was atypical.  When replicated, the effect was again strongly significant and a normal-

shaped curve was observed.  The effect of FS288 was greatest at lower concentrations 

of AMH, but was also detectable at concentrations around the EC50.  A significant 

effect was observed when FS288 was added to 0.16 nM AMHN,C.  FS288 caused a 

non-significant (p=0.078) elevation of the effect of 0.5 nM of AMHC.  The magnitude 

of the effect of FS288 in this experiment was similar to that produced by 0.5 nM of 

AMHC in the dose-response experiment.  This suggests that the experiment was 

underpowered rather than a clear negative result, as the effect of FS288 was examined 

at a concentration where its effect on AMH signaling is small.  Collectively, the data 

as a whole shows a robust effect of FS288 on AMH signaling. 
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FS315 and FS288 are splicing variants of the same gene [215-217]. FS315 was 

examined because a clear result was obtained with FS288.  FS315 had a similar effect 

to FS288 in experiments using AMHN,C, but no effect of FS315 was observed on the 

dose-response curve to AMHC (Table 4-4).  These results were obtained at the end of 

the thesis, and further experimentation is needed to prove whether FS315 regulates 

AMH signaling in a manner similar to FS288.  

 

Table 4-4. Summary of FS288 and FS315 

 

 AMHC AMHN,C 

BPs 
 

0.5 nM 

 

Dose curve 

 

0.16 nM 

 

Dose curve 

0.2 nM 

AMHN,C 

and FS 

dose 

 

FS288 

 

N.S.* 

 

Increase 

 

increase 

increase 

top no 

change 

dose-

responsive 

FS315 - N.S. increase 

 

- 

(top 

increase) 

dose-

responsive 

(less 

effective 

than FS288) 

 

* Note this experiment showed a non-significant increase in reporter activity 

(p=0.075), with the magnitude of the observed effect being consistent with that 

expected with the dose curve.   

 

 

FS was a low priority to test at the beginning of the thesis, as its classical action is 

inhibitory, and the primary objective was to identify BPs that might enhance AMH 

activity.  The canonical action of FS is to inhibit the binding of activin to the activin 

receptors [218, 219].  The effects of FS observed in the thesis are not secondary to an 

indirect effect of FS on endogenous activins.  If this were happening, the putative 
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endogenous activins would need to be suppressing AMH signaling.  However, the 

addition of activin A to the medium had a slight positive effect on AMH signaling. 

 

The screen for BPs was designed to detect inhibition of AMH signaling, as the 

addition of a BP to the medium was expected to bind to the AMH in the medium, thus 

limiting its ability to bind to the AMH receptors.  This presumption was based on the 

actions of betaglycan, which enhances signaling when membrane-bound and inhibits 

signaling when in its soluble form (Chapter 1.5.4.1).  The observed effects of the FSs 

were thus in the opposite direction to the initial expectation.  This issue appears to 

have arisen because the molecular mechanism of FS action is not modeled by 

betaglycan. 

 

The FSs do not have a transmembrane domain, in contrast to betaglycan.  The FS are 

secreted as soluble proteins, but then associate with the cell membrane by binding to 

heparan sulfate [118, 214].  Consequently, when FS is added to the medium, it would 

be expected to bind to the cell surface of the P19 cells, provided they express 

significant levels of heparin-sulfate proteoglycans.  FS binds BMPR1A [220].  This 

creates the following testable hypothesis; FS binds AMH, and concentrates it at the 

surface of the cell, through its ability to bind to heparan sulfate.  The ability of FS to 

bind to BMPR1A, would then bring AMH into close association with BMPR1A.  

BMPR2 can bind to BMPR1A in the absence of ligand [204].  It is not known 

whether AMHR2 can also do this.  If it does, then FS would act to concentrate AMH, 

BMPR1A and AMHR2 at one site.  This may decrease the EC50 for an AMH 

response by creating a local concentration of AMH near its receptor.  Equally, AMH 

bound to FS may have a lower Kd for its receptors than AMH alone, in a manner 

analogous to the way that betaglycan facilitates the binding of TGFβ2 and inhibin to 

receptors. 

 

The FS isoforms differ markedly in their ability to bind to heparan sulfate [118, 214].  

FS288 has the highest affinity for heparan sulfate, and is a putative autocrine 

/paracrine regulator which is thought to have limited ability to diffuse from its site of 

synthesis.  FS315, in contrast, is a serum protein and therefore has a low affinity for 

heparan sulfate.  Consequently, FS315 would be expected to be less potent that FS288 

as an enhancer of AMH signaling, if the heparan sulfate binding is important for this 
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activity.  Further experimentation is required to test this, but the limited data 

discussed above is consistent with this (see Figure 4-14). 

 

The TGFβ-superfamily binding site on FS is on the N-terminal portion of FS, which 

is common to FS288 and FS315 [221-223].  This binding site appears to be relatively 

non-specific, as FSs binds BMPs 2,4,6,7,11,15, inhibin and myostatin (GDF8), as 

well as activin [101, 220, 223, 224].  The binding of activin to FS occurs with high 

affinity and with limited spontaneous dissociation of the FS-activin complex [101, 

222, 225].  In contrast, the BMPs bind to FS with a Kd that is between 1 and 10% of 

that of activin A [101, 116], with the FS-BMP complex being unstable [116].  This 

type of binding would facilitate FS-mediated activation but not inhibition, as any FS-

mediated activation requires transfer of the ligand from FS to the signaling receptors, 

which requires FS to dissociate from the ligand. [226, 227]Furthermore, structural 

analysis of FS has revealed similarities between the activin binding sites on FS and 

ACVR1 [222, 223].  ACVR1 is a type-1 receptor for AMH (Chapter 1.6.7). 

Consequently, it is plausible that the FS-induced enhancement of AMH signaling 

involves a direct interaction between AMH and FS.  The direct testing of this is an 

important next step in analyzing the relationship between FS and AMH.   

 

In summary, FS288 and possibly FS315 are putatively AMH BPs.  The 

concentrations of FS vary with the physiological context, and can be extremely high 

in some pathologies [226, 228].  The experiments reported in this Chapter used 

concentrations of FS that are within the natural range of FS in vivo.  The current 

experiments were designed to detect BPs, and are not instructive of what the actions 

of the BPs may be in vivo.  The possible physiological importance of FS-AMH 

interactions is discussed in Chapter 6. 
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4.3.3 Brorin, decorin, and follistatin-like 4 appeared to increase AMH 

signaling on dose curves 

Three of the 13 BPs, brorin, decorin, and FS-like 4 caused a statistically significant 

change in the dose-response curve.  The effect of these BPs were small and were only 

evident when the concentration of AMH was low.  There was little or no effect at 

concentrations of AMH that were near or above the EC50, either in the dose curve 

(see Figure 4-3) or in the experiments using a single concentration of AMH.  Overall, 

the data strongly suggested that brorin, decorin and FS-like 4 are unlikely to regulate 

the activity of AMH either in the gonads or in the circulation of boys.   

 

The data does not exclude the possibility that brorin, decorin and/or FS-like 4 

influence the effect of circulating AMH in adults.  However, each of the BPs was 

added in supra-physiological concentrations and only produced a moderate 

amplification of AMH signaling.  This suggests that these BPs would only have a 

minor or no effect of AMH signaling in vivo.  These BPs are worthy of further study.  

However, the priority for this thesis was to detect more potent BPs, and a decision 

was made to examine further candidates, rather than to study brorin, decorin and/or 

FS-like 4 more intensely. 

 

4.3.4 Endoglin and chordin-like 2 may inhibit endogenous cytokines 

Endoglin and chordin-like 2 reduced the bottom (zero AMH) of the dose-response 

curve, but did not affect the reporter activity produced by AMH.  This suggests that 

they are not regulators of AMH, and that their effect on the reporter assay is unrelated 

to AMH.  Endoglin and chordin-like 2 inhibit the activity of multiple TGFβ-

superfamily ligands [109, 229, 230] and their effect on the assay is presumably related 

to inhibition of TGFβ-superfamily ligands present in the medium and/or produced by 

P19 cells (see Chapter 3.3.1.2 and Chapter 4.1.4).  The identity and source of the 

ligands was not investigated as this issue is outside of the scope of the thesis.   
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4.3.5 BPs and the quantitation of AMH 

The detection of AMH within an ELISA is dependent on the antibody binding sites on 

AMH being accessible.  AMH BPs in biological fluids could potentially interfere with 

the detection of AMH, by blocking the binding of AMH to either capture or the 

detection antibody of the ELISA.  For this reason, the affect of FSs, and other putative 

AMH BPs, on the Beckman Coulter AMH Gen II ELISA was briefly examined.  No 

interference was detected, suggesting that current AMH ELISAs are not confounded 

by endogenous BPs.  

 

4.3.6 Most of the TGFβ-superfamily binding proteins did not affect AMH 

signaling 

Eight of the BPs tested appeared to have little or no effect on either the EC50 or the 

top of the AMH dose curve.  Putatively, BPs may affect AMH signaling at the low 

end of the curve (adult-circulating-like levels), the middle of the curve (boy-

circulating-like levels) or the top of the curve (gonadal/paracrine-like levels).  

Consequently, the absence of a clear effect of a BP on the dose-response curve is 

relatively strong evidence that the BP does not affect AMH signaling in any context.   

 

One limitation of the experiment is that the molecular context of the BP may not be 

appropriate.  All BPs were added to the culture medium.  This mimics the in vivo 

action of the soluble forms of the BP.  However, many of the BPs can also be attached 

to the cell membrane and/or the extracellular matrix.  With BPs such as betaglycan, 

this alters the way a cell responds to a ligand (Chapter 1.5.4.1), but it does not alter 

the ability of the ligand to bind to the BP.  This suggests that the current tests have a 

sound basis, but it is not possible to be completely certain that the association between 

AMH and BPs will conform to the proven actions of the well-studied BP-ligand 

interactions. 

 

Another limitation of the experiments is that the biological activity of the BPs was not 

directly tested.  The BPs were verified as active by the manufacturer, but this does not 

exclude the possibility that the product degraded during transport.  The BPs were 

added to the cultures at a concentration that was at least an order of magnitude greater 
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the EC50 concentration of AMH.  This was done to maximize the chance of 

observing an effect, but this would also have provided some protection against partial 

degradation of the BP.  The BPs would have been expected to have observable effects 

at the low end of the AMH dose curve, even if greater than 90% of the bioactivity had 

been lost.  The above not withstanding, in an ideal world the activity of each BP 

would have been verified, with this being an acknowledged weakness in the data.  

This was not initially done, as the normal tests of the bioactivity of the BPs would 

have required new assays to be established.  At the time, I elected to test other BPs 

rather than to establish a new assay for each BP.  However, with the benefit of 

hindsight, the current assay could have been used to test the BMP-related BPs, by 

including a BMP positive control, with and without the BP being tested. 

 

One reason for being certain that a BP does not regulate AMH is that the inability of 

certain BPs to influence AMH signaling may be biologically important.  AMH and 

BMPs share a common downstream pathway, and in vivo many cell types may be co-

regulated by AMH and BMP.  If a BP affects BMP signaling, without also effecting 

AMH signaling, then it may alter the relative influence of AMH and BMP on the 

SMAD1/5/8 pathway.  This requires experimental verification, but the possible 

importance of this is illustrated by the following hypothesis.  AMH is male-specific 

during early development, while the BMPs are common to males and females.  If the 

BMPs and AMH have equal effect on the SMAD1/5/8 pathway, the activation of the 

SMAD1/5/8 pathway would be approximately twice as large in males as in females.  

If a BMP BP is added, the BMP activation would be reduced.  If the reduction was 

50%, then female activation of SMAD1/5/8 reduces by half, but the male signaling 

will only reduce by 25%.  Consequently, the magnitude of the difference between 

male and female activation would increase.  If this is correct, then the extent of AMH-

induced sexual dimorphism would vary from site-to-site in a male, depending on the 

relative suppression/activation of BMP and AMH signaling (Figure 4-19). 
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Figure 4-19. The combination of AMH and BMP produces sex 
differences 

If AMH signaling only, the SMAD1/5/8 pathway can create male specific pathway.  

If both AMH and BMP signal, the SMAD 1/5/8 pathway can create a male bias.  If 

BMP signaling only, the SMAD1/5/8 pathway is not sexual dimorphic. 

 

 

4.3.7 Gremlins 

The BMP inhibitors, gremlin1 or 2, have recently been reported to inhibit the effect of 

AMHC on the transition of primordial follicles to the primary follicle in ovarian organ 

cultures [231].  An antibody to gremilin 2 co-immunoprecipitated AMHC, suggesting 

that the gremilins are AMH BPs [231].  These experiments used 0.36 nM of AMHC, 

which corresponds to the range of AMH in the circulation of boys.  It would be 

interesting to test the influence of gremlins across the full range of physiological 

levels, with the reporter assay developed in this thesis being an appropriate first test of 

this. 
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4.3.8 Conclusion 

At the beginning of the thesis, AMH signaling was thought to occur without any 

modulation by BPs, in marked contrast to mode of action of the TGFβ superfamily.  

This Chapter presents the first evidence that several of the known TGFβ-superfamily 

BPs may influence AMH signaling.  The strongest evidence is for FS288, but other 

BPs such as FS315, brorin, decorin and FS-like 4 need further study.  The current 

experiments are principally an indirect test of chemistry, a test of whether AMH binds 

to the putative BP in solution.  The next step is to test whether any of the putative BPs 

are relevant to physiological or pathological contexts.  This is beyond the time 

constraints of this thesis to experimentally examine this question, but the possible 

importance of AMH BPs in vivo is discussed in Chapter 6.  The next Chapter, 

discusses a further screen for AMH BPs.  

 



 150 

Chapter 5: Do binding proteins regulate the activation 

of AMH? 

5.1 Introduction 

5.1.1 The cleavage of proAMH is variable 

Recombinant forms of AMH that were generated from the full coding region of the 

gene contain a mixture of proAMH and AMHN,C, with proAMH being the major 

species ([153] see also Figure 5-3).  Similarly, the AMH secreted from cultured testes 

contains a high proportion of proAMH [152].  Both of these observations suggest that 

proAMH may be inefficiently cleaved but the significance of this has been generally 

overlooked.  Hence, many studies of AMH signaling have used preparations that 

contain high levels of proAMH, which does not bind to AMHR2.  This has lead to 

misleading data, such as EC50 for AMH that are outside of the physiological range 

(Chapter 4, Table 4-1). 

 

During the early stages of this thesis, the Otago AMH Neurobiology Group undertook 

the first qualitative study of the form of AMH in normal human circulation.  Their 

results showed that AMH in the circulation is a mixture of proAMH and AMHN,C 

[141].  This issue could not initially be advanced, as existing ELISAs detected both 

forms [151].  The Otago AMH Neurobiology Group therefore invented a proAMH-

specific ELISA [190] and undertook the initial quantitative studies of the form of 

AMH in the human circulation.  The group’s unpublished results showed that AMH is 

inefficiently cleaved by boys and girls, with the result that proAMH is more abundant 

than AMHN,C in the circulation of preadolescent males.  The extent that proAMH was 

cleaved to AMHN,C varied between similarly aged individuals of the same sex.  

Unpublished data from the group also showed that the AMHN,C in the serum was 

cleaved within the gonad, before release. These observations provide the first 

evidence that biological activity of the AMH in the circulation is partially regulated 

by the extent to which proAMH is cleaved within the gonad. 
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The fate of proAMH in the circulation is currently unknown.  The Müllerian duct is 

thought to be able to cleave AMH in vitro [10, 142], but it is unknown whether some 

tissues (other than the gonads) are able to cleave proAMH.  If they do, the cleaved 

AMH does not return to the circulation. 

 

5.1.2 Function of proAMH 

The function of proAMH is unknown.  Some procytokines have functions that are 

unrelated to the biological activities of the cleaved forms.  For example, proNGF and 

NGF each produce distinct biological actions through distinct receptors, which work 

in co-operation with a shared receptor.  This leads to context dependent biology, 

where the effect of proNGF released by one neuron is dependent on whether the 

target neuron can cleave the proNGF to NGF [10, 232-234].  To my knowledge, this 

type of phenomenon has not been described to date for the TGFβ superfamily. 

 

The bioactivity of some TGFβ-superfamily members is regulated in part by whether 

the proform is cleaved.  The uncleaved proTGFβ can be targeted for degradation, thus 

reducing bioactivity without reducing the initial synthesis of the cytokine [235].  It is 

unclear whether proAMH is an example of this, as proAMH is released to the 

circulation rather than being degraded within the gonads. 

 

5.1.3 The cleavage of TGFβ proforms can be regulated by binding 

proteins 

The cleavage of proTGFβs typically occurs intracellularly, during protein synthesis, 

with all proprotein molecules being cleaved.  However, some TGFβ ligands can be 

secreted as proTGFβs, with extracellular activation of the proforms.  The extent of 

cleavage of some proTGFβs is actively regulated, with BPs being part of this 

mechanism. For example, the cleavage of proTGFβ1 is controlled intracellularly by 

HtrA serine peptidase 1a (htra1A) [236], whereas cysteine-rich transmembrane BMP 

regulator 1 (CRIM1) regulates the cleavage of some BMPs intracellularly [237].   
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5.1.4 Cleavage of proAMH 

AMH is synthesized as a proprotein and the first 24 amino acids are then removed to 

create proAMH.  ProAMH does not activate AMH receptors, and the bioactivity of 

AMH through AMHR2 is thus dependent on cleavage proAMH (Chapter 1.6.5).  The 

cleavage site for AMH is Arg-Ala-Gln-Arg [139, 146] (Figure 5-1), which is different 

to the proTGFβ site, which is Arg-His-Arg-Arg [152].  A wider ranger of enzymes 

cleaves the Arg-Ala-Gln-Arg than the Arg-His-Arg-Arg motif, with the result that 

multiple enzymes, including furin, are able to cleave proAMH in vitro (Chapter 1.6.5).  

These enzymes are expressed in the gonads and other tissues, with a complex pattern 

of expression [206].  Consequently, the variation in the extent of proAMH in blood in 

the population could in part be due to differing levels of cleavage enzymes.  However, 

this does not exclude the possibility that cleavage of proAMH is also regulated by 

other factors, including BPs that act in a manner analogous to CRIM1 or htr1a. 

 

 

 
Figure 5-1. Furin cleaves proAMH 

ProAMH can be cleaved by furin at an Arg-X-X-Arg site between 120 kDa AMHN 

and 25 kDa AMHC. 

  

AMHN%(110kDa)% AMHC%(25kDa)%
N0terminal% C0terminal%

Furin%

…......%

…......%
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5.1.5 Aims of Chapter 5 

The objective of this Chapter was to determine whether any of the BPs examined in 

Chapter 4 were able to enhance or inhibit the activation of proAMH by influencing 

the ability of furin to cleave it. 
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5.2 Results 

5.2.1 Optimizing the incubation time and the concentration of proAMH  

BPs putatively could activate or inhibit the cleavage of proAMH.  Consequently, the 

initial screen was done under conditions where approximately half of the proAMH 

had been cleaved.  The precise conditions to achieve this were not known, although 

previous experience by the Otago AMH Neurobiology Group had provided some 

indicative data.  The effect of a 4- and 8-hour incubation of a 1.2 nM solution of 

proAMH with furin was therefore examined, with two concentrations of proAMH 

(1.2 and 6.0 nM) being tested at 8 hours (Figure 5-2).  The longer incubation only 

increased the extent of cleavage from 60% to 74%, suggesting that the activity of 

furin was diminishing with time.  A 4-hour incubation time was therefore used in 

subsequent experiments.  The higher concentration of proAMH (6 nM) gave brighter 

bands, but clear data was obtained from the lower concentration (1.2 nM), after 

densitometry readings.  The lower concentration was therefore used, to conserve 

stocks of proAMH and to ensure that the BPs could be added in molar excess to the 

amount of proAMH. 
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Figure 5-2. Four hours incubation cleaved half of proAMH 

ProAMH (1.2nM and 6 nM) were incubated with furin for 4 hours and 8 hours. 

ProAMH and AMHN,C were detected by a Western blot consisting of samples of 

proAMH incubated with furin to demonstrate the relative quantities of proAMH and  

AMHN present.  The N-terminal antibody detects proAMH and AMHN bands as 

indicated by the labeled arrows.  Lane 1 is the molecular weight marker.  Lane 2 (1.2 

nM), 3 (1.2 nM), 4 (6 nM) had 4 hours, 8 hours, and 8 hours incubation time, 

respectively. The densitometry was measured by ImageJ and the data was normalized 

as a percentage of cleavage. Lane 2 had 40% proAMH and 60% AMHN,C, Lane 3 had 

26% proAMH and 74% AMHN,C, Lane 4 had 20% proAMH and 80% AMHN,C. 

 

 

 

5.2.2 Do binding proteins affect cleavage of AMH? 

The influence of 14 BPs (10-20 nM, Table 5-1) on furin-mediated cleavage of 1.2 nM 

of proAMH was tested, in replicated experiments.  Half of the BPs were tested in 

three replicates, with the other half being tested twice, due to limitations in the 

availability of the batch of proAMH.  This experiment was undertaken before FS288 

was known to increase AMH signaling (Chapter 4).  FS315 was therefore not 
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included in this experiment, as FS315 was only added to the BPs being tested after 

significant results were obtained with FS288.  

 

The intensity of each band on the western blot was measured by densitometry (Figure 

5-3).  A small amount of the AMHN,C band was detected in the uncleaved proAMH, 

which was a normal feature of proAMH preparations [152] (Figure 5-3).  None of the 

BPs tested caused a significant change to the intensity of the proAMH and AMHN,C 

bands, indicating that they did not affect the rate of furin-induced cleavage of 

proAMH. 

 

 

Table 5-1. Binding proteins and the concentration used in this Chapter 

 

Binding proteins nM 

Betaglycan 10 

Brorin 20 

Chordin 10 

Chordin-like1 20 

Chordin-like 2 20 

DAN 20 

Decorin 20 

Endoglin 10 

FS288 20 

FS315 10 

FS-like1 20 

FS-like3 (FLRG) 20 

FS-like 4 10 

Noggin 20 

α2-macroglobulin 10 

 

The Table lists the concentration of the TGFβ BPs used in the experiments described 

in this Chapter.   



 157 

(A1)  

(A2) 

  

+B
ro
rin

'

+C
ho

rd
in
+li
ke
'1
'

+D
ec
or
in
'

+N
og
gi
n'

+F
ol
lis
ta
8n

+li
ke
'1
'

+F
LR
G'

+F
S2
88
'

+D
AN

'

pr
oA

M
H'
w
ith

'fu
rin

'

U
nc
el
av
ed

'p
ro
AM

H'

98'

64'

50'

proAMH'

AMHN'

R
at

io
(%

)

+B
ror

in

+C
ho

rdi
n-l

ike
 1

+D
ec

ori
n

+N
og

gin

+F
S-lik

e 1

+F
LR

G

+F
S28

8
+D

AN

pro
AMH w

ith
 fu

rin

un
cle

av
ed

 pr
oA

MH
0

20

40

60

80

100
proAMH
AMHN,C



 158 

(B1)  

 
(B2)  

 
Figure 5-3. Binding proteins did not affect the cleavage of proAMH 

ProAMH (1.2 nM) and furin were incubated with 14 BPs (10-20 nM) for 4 hours.  An 

uncleaved proAMH sample was included to indicate the form of the starting material.  

The BPs were tested in two groups of 8 BPs (A) or 6 BPs (B).  Representative 

Western blots are shown in A1 and B1.  The relative abundance of proAMH and 

AMHN,C were calculated as described in Figure 5-2.  Panels A2 and B2 illustrate the 

results obtained by combining replicate experiments.  No statistical analysis was 

undertaken as the N value is only 2 or 3. 
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5.3 Discussion 

5.3.1 Is proAMH cleavage regulated by binding proteins? 

AMH is activated by the cleavage of proAMH, which occurs in the gonads, and 

putative elsewhere in the body, before the binding to the AMH receptors.  However, 

locations, mechanism and regulation of the cleavage are unknown.  One possibility is 

that the regulation is dependent on BPs.  However, the TGFβ superfamily BPs tested 

in Chapter 5 did not affect the cleavage of proAMH by furin. 

 

There are multiple enzymes that cleave proAMH in vitro, with these enzymes being 

widely expressed throughout the body [10].  To date, the physiological relevance of 

these enzymes for the cleavage of proAMH has not been tested.  It is possible, that the 

ability of BPs to regulate the cleavage of proAMH is dependent on which enzymes 

are present.  Consequently, one limitation of the current experiment is that it only 

relates to furin.  The data does not exclude the possibility that the tested BPs regulate 

proAMH cleavage by other enzymes.  Other enzymes were not tested, as they are not 

generally available, and the time commitment needed to generate them could not be 

justified, when the relevance of the enzymes to normal physiology is unproven. 

 

5.3.2 Limitations of the experimental approach 

The AMHN,C bands were slightly diminished in the presence of decorin and chordin-

like 2, but no conclusion can be reached from these observations.  The experiments 

described in this Chapter were designed to detect substantial inhibition, as the BPs 

known to regulate proTGFβ cleavage are potent.  Furthermore, proAMH is abundant 

in fluids in vivo, suggesting that proAMH cleavage in vivo may be subject to 

significant inhibition.  Western blots provide qualitative evidence, with multiple 

replicates needed to obtain even semi-quantitative estimates.  The current data 

therefore does not exclude the possibility that one or more of the BPs slightly reduced 

the rate of cleavage.  The detection of small or moderate inhibition of proAMH 

cleavage would require a quantitative test, such as a proAMH- and/or AMHN,C-
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specific ELISA.  The Otago AMH Neurobiology Group has developed such ELISAs, 

but they were not available at the time when the work in this Chapter was conducted.  

 

5.3.3 Conclusion 

In summary, this Chapter describes a small exploratory extension from the main 

objective of this thesis (Chapter 3 & 4).  The results obtained were negative, and this 

avenue of investigation was therefore stopped.  
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Chapter 6: Final conclusions and future research 

directions 

6.1. Final conclusions 

The concentration of AMH varies by orders of magnitude.  Circulating levels of 

AMH in adults are low compared to those in boys, whereas the level of AMH in the 

serum of boys is low compared to levels within the gonads (Chapter 1.2.3, 1.3.4).  

This raised the issue of whether AMH signaling varied from context to context, under 

the influence of BPs.  The putative BP was expected to change the EC50 of AMH by 

an order of magnitude but none of the tested BPs exhibited an effect of this magnitude.  

There are multiple reasons why a potent BP was not detected.  First, and foremost, 

AMH signaling may not be subject to strong regulation by a BP.  Second, 15 BPs 

were tested, but many other TGFβ-superfamily BPs exist.  One of these untested BPs 

may be a potent regulator of AMH.  Third, AMH has a unique type-2 receptor, and 

may therefore have a unique BP, that is not shared with other TGFβ-superfamily 

ligands.  If so, a different strategy will be needed to discover it. 

 

Although a potent regulator of AMH was not found, lesser effects were observed with 

some BPs.  FS288 was the most significant of these, with a three-fold increase in 

AMH signaling being observed when the concentration of AMH was at adult-like 

levels.  This may be particularly important for women whose levels of AMH decline 

as their ovarian reserve declines (Chapter 1.3.5).  Signaling in the TGFβ superfamily 

is context dependent and broad conclusions cannot be made from the study of one 

context.  For example, the interaction between FS288 and AMH signaling putatively 

involves proteoglycans, whose expression varies between cell types.  Similarly, 

FS288 may combine with other BPs to produce stronger or weaker amplification of 

AMH signaling. 

 

The forms of AMH in biological fluids have only recently been described and the 

regulation of the activation of proAMH by cleavage is incompletely described.  The 
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effective concentration of AMH surrounding its receptors in vivo is therefore 

uncertain. Consequently, the understanding of when and where proAMH becomes 

cleaved is a critical issue to be resolved.  A pilot study in Chapter 5 did not reveal any 

effect of BPs.  However, definitive research into the regulation of cleavage cannot 

occur until the physiological sites and physiologically important enzymes have been 

identified. 

 

The AMH reporter assay described in Chapter 3 can be used for multiple unrelated 

studies of AMH.  It has been used in Chapter 4 to screen for AMH BPs.  It can also be 

used to examine the interaction between AMH and other TGFβ superfamily ligands 

that activate the SMAD1/5/8 pathway.  The interaction between AMH and BMPs was 

briefly examined in Chapter 3.  The data is consistent with AMH and BMPs having 

convergent signaling, although further work is needed to prove this.  This issue is 

biologically important, as AMH was originally thought to be an independent regulator 

of male sexual development, as AMH is the sole inducer of the Müllerian duct 

regression.  Elsewhere in the body, AMH may produce sex biases by interacting with 

BMPs in developing tissues [10].  If so, the BPs, which inhibits BMPs but not AMH, 

may influence the magnitude of AMH-induced sexual dimorphism. 

 

My Master of Science thesis related to the role of hormones in generating sexual 

dimorphism in fish.  Therefore, at the beginning of the thesis, my interest related to 

the male-specific aspects of AMH.  However, my experiments and reading about BPs, 

shifted my interest to the mechanism of the regulation of AMH.  I have become 

especially interested in ovarian folliculogenesis, and the possibility that AMH, BMP 

and FS may interact to regulate it.  This will be discussed in the next section. 
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6.2 Future direction 

FS is a gonadal protein, which was originally discovered due to its ability to inhibit 

FSH [238].  AMH is also known to inhibit FSH and this prevents it from facilitating 

small antral follicles maturing into antral follicles (Figure 6-1).  Furthermore, AMH 

blocks the recruitment of primordial follicles by decreasing the responsiveness of 

follicles to FSH (Chapter1.3.2).  These ideas suggest that AMH and FS may interact 

with ovarian follicles.  The combination of these local growth-regulating factors may 

have roles to regulate the individual follicles. 

 

Similarly to AMH, BMPs are an important factors in folliculogenesis.  In contrast to 

AMH, BMPs are positive regulators of primordial follicles developing into primary 

follicles.  The expression of FS mRNA has not been reported in the stage between 

primordial follicles and preantral follicles.  However, similar to AMH, FS may be 

expressed and secreted from the follicles in later stages, which may then affect the 

early stage follicles interacting with AMH or BMP.  Therefore, the combined action 

of AMH, BMP, and (or) FS with FSH could be examined for preantral follicle growth 

on ovarian follicle development by using in vitro follicle culture system.  This work 

could be expanded in vivo by using AMH deficient female mice or conditional 

knockout of these genes.  Alternatively, the direct binding of AMH and FS could be 

also tested by immunoprecipitation or two-hybrid technique.  

 

This Thesis showed FS increased AMH signaling with low AMH concentration, 

which may be important for ovarian reserve.  Finding of the regulation mechanism of 

folliculogenesis by these proteins may eventually improve the infertility treatment 

such as IVF.   
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Figure 6-1.! Schematic model of the actions of AMH and BMP in 
folliculogenesis. 

AMH is produced by the small growing follicles.  AMH inhibits initial follicle 

recruitment and inhibits FSH-dependent growth and selection of follicles.  BMPs has 

been shown to stimulate the transition from primordial to primary follicle. FS may 

interact AMH and BMP and regulate these growth. 
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