
Supporting group plans in the BDI architecture using coordination middleware

Stephen Cranefield
Department of Information Science, University of Otago

Dunedin, New Zealand
stephen.cranefield@otago.ac.nz

Abstract

This paper investigates the use of group plans and
goals as programming abstractions that encapsulate
the communication needed to coordinate collabora-
tive behaviour. It presents an extension of the BDI
agent architecture to include explicit constructs for
goals and plans that involve coordinated action by
groups of agents. Formal operational semantics for
group goals are provided, and an implementation
of group plans and goals for the Jason agent plat-
form is described, based on integration with the
Zookeeper coordination middleware.

1 Introduction
Belief-Desire-Intention (BDI) agent programming provides
a powerful and popular model for developing software that
is goal-oriented, adaptive to its circumstances, and equipped
with pre-existing domain knowledge in the form of plans.
However, when multiple agents need to coordinate their ac-
tions over sustained interactions, especially in interdependent
activities such as working together towards a common team
goal, manual implementation of the required communication
actions can be complex and error prone, and may negatively
impact scalability and other desirable properties of distributed
systems, such as robustness against network partitions.

Our aim in this work is to raise the level of abstraction
when programming groups of BDI agents so that explicit co-
ordination is no longer necessary, but rather is handled im-
plicitly by robust industry-grade coordination middleware.
This paper investigates the potential of group goals and plans
to provide such a programming abstraction. Furthermore,
group plans can serve as the external blueprint for the col-
lective action of the agents, and provide all group members
with common view of the intended group activity. Thus, we
also aim to have a single plan used as the source code for all
agents in the group, despite their differing local subgoals.

This paper makes the following contributions. We define
a model for group goals and plans, with formal operational
semantics that define how agents’ local BDI computations
are affected by the states of group goals. We then describe
an implementation of our model using Jason, the Apache
ZooKeeper middleware, and a set of domain-independent

plans that serve as the interface between shared group plans
and the group goal state in ZooKeeper.

2 Group Goals
We define a group goal as one requiring coordinated action
by a group of agents. In this paper, we focus on conjunctive
group goals, in which each agent has a specific local sub-
goal to achieve, and the group goal is satisfied only when
all the subgoals are individually satisfied. We can represent
a group goal for a group of agents {a1, . . . , an} by a term
gg(group goal name, [a1:subgoal1, . . . , an:subgoaln]).

We consider that the group goal becomes active when one
or more agents begin working towards it, and can then eventu-
ally fail or succeed. However, to avoid agents waiting indefi-
nitely for other agents to complete their subgoals, we need to
consider what happens if some agents do not succeed, fail, or
even begin their own subgoal in a timely manner. We address
this by allowing a group goal to fail due to a “join timeout”
or a “completion timeout”. A join timeout occurs when some
agents do not begin working on their subgoals within a certain
interval after the earliest start of any of the other agents’ sub-
goals. A completion timeout occurs when the result of some
subgoals are still unknown within a certain interval since the
last agent began work on its subgoal. The timeout values are
specified as part of a group plan (see the next section).

Figure 1 shows the lifecycle of a group goal as a UML
state diagram. The variables joined and succeeded record the
agents that have begun work and completed their subgoals.

3 Group plans
We conceptualise a group plan as one that defines a collective
view of coordinated action amongst a group of agents, and
which can be followed in a synchronised way by all agents.
We rely on group goals to provide the coordination between
agents, and define a group plan as one in which all goals are
group goals.

A group plan is supported by a set of individual plans for
each agent to achieve its own subgoals. These individual
plans could be known by all agents, or they could be kept
private, as the application and group requires.

In this paper we restrict our attention to group plans in
which each group goal gg involves all agents in the group.
However, this is not as strong a restriction as it seems at first

Started

AllJoined

Succeeded

started(a) [a joined  |joined| +1 < group_size]
 / joined = joined  {a}
succeeded(a) [a succeeded]
 / succeeded = succeeded  {a}

started(a) [a joined  |joined| +1 = group_size]
 / startCompletionTimer(cto); joined = joined  {a}

started(a) / startJoinTimer(jto); joined = {a}; succeeded = {}

JoinTimedOut

SubgoalFailed

CompletionTimedOut

Failed

succeeded(a)
[a succeeded  |succeeded| +1 < group_size]
/ succeeded = succeeded  {a}

succeeded(a) [a succeeded 
|succeeded|+1 = group_size]
 / succeeded = succeeded  {a}

join timeout

failed(a)

completion
timeout

 failed(a)

started(a)
failed(a)

succeeded(a)

Figure 1: State diagram for a group goal

glance. Any agent’s subgoal may be a trivial “do-nothing”
goal (one having a plan that immediately succeeds), and BDI
agents may have multiple goals (intentions) active at the same
time. Thus it is possible for an agent to work towards its
own local goals while waiting for the other agents to complete
their work towards a group goal We can also model sequential
turn-taking behaviour by a sequence of group goals in which
all agents except one have a do-nothing goal. To simplify the
notation in cases like this, we adopt the do-nothing goal as
the default for any agents that do not have a subgoal listed.

As group goals are only satisfied when all agents’ subgoals
are completed, the successful completion of each group goal
is a point of synchronisation between agents. In other words,
an agent that quickly completes its subgoal for one group
goal cannot begin work on the next group goal until all other
agents complete their subgoals. This is in line with the idea
that a group plan is a mechanism for specifying the coordi-
nated action of a group of agents. However, there may be
cases when the programmer would like an agent with a sub-
goal that is achieved quickly to be able to begin working on
the following group goal without delay. Given our current
state machine for group goals, this early start to a group goal
would start the join timeout timer goal before the previous
goal is fully achieved. While it may be possible to predict an
appropriate timeout period, adding this capability calls for a
more sophisticated treatment of timeouts.

Figure 2 shows a group plan for two agents, A and B to
perform a pincer attack on an enemy at location L3, with
A moving to one side of the enemy (location L1), and B
moving to the other side (location L2), before they both con-
verge on location L3. A and B must be distinct members
of the group {a1, a2}. Plans for the group members’ local
subgoals of the group goals are also shown. In this exam-
ple, the two agents have the same local plans, but in gen-
eral these could differ between agents and need not be shared
with other agents. The plans are expressed in the Jason plat-

1 { include("group_plans.asl") }
2
3 join_timeout(_, 5000). // In milliseconds
4 completion_timeout(surround, 600000).
5 completion_timeout(converge, 300000).
6
7 +!pincer(A,B,L1,L2,L3) <-
8 .union([A], [B], [a1,a2]); // Check group membership
9 !gg(surround, [loc(L1)[agent(A)],

10 loc(L2)[agent(B)]]);
11 !gg(converge, [loc(L3)[agent(A)],
12 loc(L3)[agent(B)]]).
13
14 +!loc(L)[agent(a1), gg(surround)] <-
15 move_to(L);
16 ?loc(L).
17
18 +!loc(L)[agent(a2), gg(surround)] <-
19 move_to(L);
20 ?loc(L).
21
22 +!loc(L)[agent(a1), gg(surround)] <-
23 move_to(L);
24 ?loc(L).
25
26 +!loc(L)[agent(a2), gg(converge)] <-
27 move_to(L);
28 ?loc(L).

Figure 2: Example group and local plans

form’s version of AgentSpeak [4]. The include directive
loads a set of plans for handling group goals, including one
that handles gg goals. These plans coordinate the distributed
maintenance of the state of each group goal, making use of
the Apache ZooKeeper coordination middleware, and are de-
scribed in Section 5.2. Jason does not support terms of the
form agent:subgoal, within the gg goals, so we use Ja-
son ‘annotations’ to identify the agent associated with each
subgoal (e.g. subgoal[agent(A)]).

The body of the group plan is a sequence of two group
goals, but group plans may be more complex and include
any control structures provided by the BDI programming lan-
guage. However, in this paper we do not address the use
of context conditions. A context condition for a group plan
would need to be evaluated by all agents, and so a mech-
anism for shared beliefs is needed to support this feature.
Shared beliefs can be implemented using similar middleware
techniques to those we use to implement group goals [16],
but we leave that for future work. We also do not currently
consider explicit communication between agents, although
agents working in a team may need to share information.

4 Semantics of group goals
In this section we present a set of inference rules defining
how the operation of each agents’ underlying BDI platform
is extended to take account of the shared state of group goals.

We model the combined goal states of the agents as a set
comprising goal trees labelled with agent names. Each goal
tree records a top-level goal for an agent as the root of a tree
of subgoals, generated by a stack of currently executing plan
bodies, as shown in Figure 3. There can be multiple goal
trees for each agent. For example, the goal tree shown in the
left side of Figure 3 represents the goal-tree for a top-level
goal g0 and its stack of executing plans: one for goal g0

...

g0

g1,i

...

g2,j

g1,1

...

g3,kg3,1

g2,1

g0

g1,1 ; … ; g1,i g1,i

g2,1 ; … ; g2,j 

g3,1 ; … ; g3,k 

Figure 3: An example goal tree

with body g1,1; . . . ; g1,i, another for subgoal g1,1 with body
g2,1; . . . ; g2,j and a third for subsubgoal g2,1 with body
g3,1; . . . ; g3,k. We only consider plan bodies with sequential
execution of goals, and we assume that successful goals
are immediately removed from the tree. Thus, the tree is
expanded in a depth-first manner by extending the bottom
left node, and can therefore also be visualised as a stack of
plan bodies (growing downwards), as shown on the right of
the figure. Our syntax for goal trees turns this format on its
side, and we express the tree in the figure as follows:
〈g0〉 · 〈g1,1; . . . ; g1,i〉 · 〈g2,1; . . . ; g2,j〉 · 〈g3,1; . . . ; g3,k〉
A goal tree can be seen as a projection of a goal-plan

tree [20], in which the levels of the tree alternate between
goal and plan nodes. In a goal-plan tree, the children of a
goal node represent the applicable plans for that goal, and
the children of a plan node represent the goals in the body of
the plan. However, our semantics do not require the explicit
representation of plans, and we can consider each goal node
to be annotated with information about the applicable plans,
and which plans have already been tried unsuccessfully. This
information is needed by each agent’s standard BDI reason-
ing, but not for the handling of group goals defined here. For
the same reason, we do not model the agents’ beliefs as these
would be passed unchanged through each of our transitions.

Our operational semantics for group goals are presented in
Figure 4. The rules define the valid transitions on a triple
containing the goal state (the set of all agents’ goal trees),
a set of state machines for the group goals, and a times-
tamp. Transitions on these triples are denoted 〈GS, S, t〉 −→
〈GS′, S′, t′〉. Transitions of an agent a’s set of goal trees in
its local BDI engine are denoted GS a−→ GS′. We write g
and gg for local and group goals, respectively, ρ for a (possi-
bly empty) sequence of plans bodies, and π for the tail of a
plan body. We decompose sets by using the disjoint union op-
erator (]). smgg represents the state machine for group goal
gg, and we use a ‘.’ notation to indicate sending an event to a
state machine, e.g. smgg. started(a), and to access the state
machine’s joined and succeeded variables. The creation of
a new state machine for group goal gg, with its clock set to
time t, is denoted sm(gg, t), and s. update clock(t) returns
a copy of s with its clock set to t.

To define the interaction between our inference rules and
the local BDI computations of each agent, we assume that a
goal that has failed is first marked with a success or failure
flag, written as g4 or (respectively) g8, before it is handled
by the BDI engine. This allows our semantics to define how
failure or success of an agent’s local contribution to a group
goal should be handled, and how group goal failure is indi-

cated to a local agent’s BDI engine.
The Timer rule indicates that the clocks of all state ma-

chines can be advanced.
The next three rules have a local agent computation in their

premises (above the line) and a transformation on the com-
bined state in the conclusion (below the line). These can be
read procedurally from the bottom up. Given an initial com-
bined state that matches the left hand side of the transition in
the conclusion, check any constraints on that state appearing
in the rule’s premises. If these are satisfied, run a single step
of the relevant agent’s BDI engine, as shown in the premises.
The conclusion then defines a transition that incorporates the
updated local state change into the new combined state.

The Local Computation rule states that any single step tran-
sition in an agent’s BDI engine can proceed as normal, pro-
vided that it does not involve a local subgoal of a group goal
that the agent has not yet joined. These cases are handled by
other rules.

The Start Goal rule states that the first agent to begin a
group goal, by calling a local plan for that goal, causes a new
state machine for that goal to be created and to receive the
started event for that agent.

The Join Goal rule states that subsequent agents beginning
the group goal cause the corresponding started event to be
sent to the state machine for that goal.

The Local Failure and Local Success rules handle the cases
when an agent’s work on its own subgoal for a group goal
gg results in failure or (respectively) success. In these cases,
the state machine for gg must be notified of a’s failure or
(respectively) success.

Finally, the Group Failure and Group Success rules enable
the use of an agent’s local BDI failure and success handling
mechanisms to cause transitions on a group goal once its state
machine reaches the failed or succeeded states. Note that the
Group Failure rule can be applied to an agent that has either
already failed its local subgoal, or is still working on it.

We have modelled these rules using Maude [5], together
with six rules defining standard (individual agent) semantics
for transforming goal trees when subgoals fail or succeed1.
We then modelled three additional rules defining the transi-
tion systems for agents with a single common group goal and
one local subgoal. Using Maude’s LTL model checker, we
have verified that in the two-agent case, individual subgoal
successes (when timeouts do not occur) and failures neces-
sarily lead to group goal successes and failures.

5 Design and Implementation
The semantics in Figure 4 model agents that interact sequen-
tially with a shared set of group goal state machines to pro-
duce a sequence of transitions. This is not a realistic model in
a distributed setting. In this section we show how the use of
coordination middleware allows us to implement group goals
for a group of distributed agents. In particular, we use the
Apache ZooKeeper coordination middleware [13] to provide
Jason agents, potentially running on different hosts, with an
eventually consistent view of the state of their group goals.

1To simplicity failure handling, we currently assume there is a
single subgoal for each goal.

update time(t, t′)

〈G,S, t〉 −→ 〈G, {s. update clock(t) : s ∈ S}, t′〉 Timer

@ρ2, gg, π′ : ρ1 = ρ2 · 〈gg;π′〉 unless smgg ∈ S ∧ a ∈ smgg. joined {ρ1 · 〈g;π〉}
a−→ {ρ′} update time(t, t′)

〈{a : ρ1 · 〈g;π〉}]GS, S, t〉 −→ 〈{a : ρ′} ∪GS, S, t′〉
Local Computation

@ smgg ∈ S {ρ · 〈gg;π〉} a−→ {ρ · 〈gg;π〉 · 〈g;π′〉} update time(t, t′)

〈{a : ρ · 〈gg;π〉}]GS, S, t〉 −→ 〈{a : ρ · 〈gg;π〉 · 〈g;π′〉} ∪GS, S ∪ sm(gg, t′). started(a), t′〉
Start Goal

smgg.state 6= failed a 6∈ smgg. joined {ρ · 〈gg;π〉} a−→ {ρ · 〈gg;π〉 · 〈g;π′〉} update time(t, t′)

〈{a : ρ · 〈gg;π〉}]GS, S] smgg, t〉 −→ 〈{a : ρ · 〈gg;π〉 · 〈g;π′〉} ∪GS, S ∪ smgg. started(a), t′〉
Join Goal

smgg.state 6= failed

〈{a : ρ · 〈gg;π〉 · 〈g8;π′〉}]GS, S] smgg, t〉 −→ 〈{a : ρ · 〈gg;π〉 · 〈g8;π′〉} ∪GS, S ∪ smgg. failed(a), t〉
Local Failure

a 6∈ smgg. succeeded

〈{a : ρ · 〈gg;π〉 · 〈g4;π′〉}]GS, S] smgg, t〉 −→ 〈{a : ρ · 〈gg;π〉 · 〈g4;π′〉} ∪GS, S ∪ smgg. succeeded(a), t〉
Local Success

smgg.state = failed

〈{a : ρ · 〈gg;π〉 · ρ2}]GS, S] smgg, t〉 −→ 〈{a : ρ · 〈gg8;π〉} ∪GS, S ∪ smgg, t〉}
Group Failure

smgg.state = succeeded

〈{a : ρ · 〈gg;π〉 · ρ2}]GS, S] smgg, t〉 −→ 〈{a : ρ · 〈gg4;π〉} ∪GS, S ∪ smgg, t〉}
Group Success

Figure 4: Operational semantics of group goals

Agents (running the Jason BDI interpreter) may be dis-
tributed across multiple hosts, and use a distributed fault-
tolerant set of ZooKeeper servers to maintain the state of
group goals. On each host, the agents run within a con-
tainer provided by the camel-agent middleware [6]. This pro-
vides the ability for agent action invocations to be delivered
as messages to the Apache Camel message routing and medi-
ation engine [14], and for percepts to be delivered back to the
agents. Due to its domain-specifc language for message filter-
ing and transformation, and its existing support for communi-
cating with ZooKeeper, Camel provides a convenient mech-
anism for connecting agents to ZooKeeper Message process-
ing “routes” written in Camel’s domain-specific language in-
terpret certain agent actions as ZooKeeper client requests to
update the state of group goals, while other routes deliver up-
dates about their state to agents in the form of percepts. Be-
low, we discuss the representation of the state of group goals
in ZooKeeper, and the Camel routes.

5.1 Storing group goal states in ZooKeeper
ZooKeeper [13] is a high performance coordination middle-
ware system that maintains data objects replicated across a set
of servers. The data objects, known as znodes are organised
into a hierachical namespace like a file system, and are de-
signed to support the storage of coordination metadata in dis-
tributed applications, rather than large amounts of operational
data. Znodes are identified by a path from the root node and
may contain data, which is an array of bytes, and metadata
such as the time of creation, time of last modification, and
number of child znodes. ZooKeeper provides several guar-
antees about the view of the znodes across multiple clients
[13]: “Linearizable writes: all requests that update the state
of ZooKeeper are serializable and respect precedence; [and]

/

failed active succeeded

goal

joined failed succeeded

... goal ...

subgoal ... subgoal ... subgoal ...

goal ... goal ...

notified

Figure 5: The ZooKeeper data model for group goal state

FIFO client order: all requests from a given client are exe-
cuted in the order that they were sent by the client.”

Figure 5 shows the znode structure we use to main-
tain the group goal state. When an agent first begins
a local subgoal, this is recorded by creating the node
/active/goal/joined/subgoal, where goal is the term represent-
ing the group goal. The node is automatically created if
it does not already exist. The node data records the num-
ber of subgoals for the goal, the join and completion time-
out periods, and whether the goal is already known to have
failed or succeeded (both initially false). If an agent’s sub-
goal for that group goal fails, the failed subgoal is recorded
by creating the node /active/goal/failed/subgoal, and success-
ful completion of a subgoal is recorded in a similar way using
the succeeded subtree of the goal’s node. The metadata for
/active/goal/joined/ and /active/goal/succeeded/ record how
many children these nodes have, and these counts are used to
detect when a join timeout has occurred (in conjunction with
the goal node’s creation date), when a goal has failed (if there

Start goal
Trigger: Agent action start goal(goal, subgoal, jto, cto)
Response:
• Create or overwrite znode /active/goal with the data:

– number of subgoals (computed from goal term)
– join timeout (jto)n
– completion timeout (cto)
– -1 for the “all-joined” time (meaning no agents have started

their subgoal)
– whether the goal has already failed (initially false)
– whether it has already succeeded (initially false)

• Create joined, failed, and succeeded nodes beneath this new node,
if they do not exist.

• Create node /active/goal/joined/subgoal

Record local failure
Trigger: Agent action notify my part failed(goal, subgoal)
Response: Create znode /active/goal/failed/subgoal

Record local success
Trigger: Agent action notify my part succeeded(goal, subgoal)
Response: Create znode /active/goal/succeeded/subgoal

Notify group failure
Trigger: A change to the children of /failed, in the form of an updated
list of child nodes
Response: For each child node /failed/goal, check whether
/notified/goal exists. If not, add failed(goal) to each agents’ set of
pending percepts (i.e. those waiting for its next perception)

Notify group success
As for Notify group failure, but replace failed with succeeded

Master route
Route policy: ZooKeeper route policy. This setting encapsulates a
leadership election using Camel. It ensures that only one instance of
Camel will run this route. If the leader fails, another will take over.
Trigger: A timer tick, set at a configurable frequency
Response: Get the list of children for znode /active. For each znode
/active/goal:
• Read the data and metadata for /active/goal

• Read the data and metadata for /active/goal/joined

• Read the data and metadata for /active/goal/failed

• Read the data and metadata for /active/goal/succeeded

• Compute the state of the group goal from this information, as
outlined above in the description of the znode data mode used

• If /active/goal has neither failed=true nor succeeded=true:
– If state is Failed:
∗ Update /active/goal with failed=true

∗ Create node /failed/goal

– If state is Succeeded:
∗ Update /active/goal with succeeded=true

∗ Create node /succeeded/goal

– If state is AllJoined:
∗ If /active/goal has allJoinedTime = −1
∗ Update /active/goal with allJoinedTime set to the last

modified time for node /active/goal

Figure 6: Description of Camel routes

are any sub-sub-nodes for failed agents), and when a goal has
succeeded (when the number of agents with successful sub-
goals equals the group size). When a goal is known to have
failed or succeeded, a new node for it is created as a child of
/failed/ or /successful/, and this node creation can be detected
by other clients using ZooKeeper’s “watch” mechanism. The
changes to the znode structure described above are made by
“routes” defined in Camel, as shown in Figure 6.

5.2 Generic plans for group goals
The Camel routes described in Figure 6 are not sufficient to
implement our semantics for group goals on their own. In ad-
dition to the user-supplied group plans, additional agent code
is needed to trigger the “Start goal” Camel route when an
agent begins working on its subgoal for a group goal, and to
handle failed and succeeded percepts from the “Notify
group failure” and “Notify group success” routes. This logic
is provided by a set of generic plans for handling group goals
that are included into the user’s group plan code using a pre-
processor directive (see line 1 of Figure 2). These plans define
how to achieve the gg goal for beginning a new group goal,
as used in Figure 2 (lines 8–11). The plan for gg creates a
new top-level goal achieve_my_part to begin execution
of the agent’s local subgoal. This triggers a plan that performs
the start_goal action (to update the ZooKeeper state, via
a Camel route), calls the agent’s subgoal (passed as a parame-
ter of achieve_my_part), and then (if successful) notifies
ZooKeeper (via Camel) of this success. Two other plans han-
dle percepts from Camel indicating the success or failure of

the group goal. These wake up the suspended gg plan with a
success or failure message. In addition, the plan handling the
failure percept aborts the achieve_my_part goal. One
more plan handles the event indicating that the agent’s local
subgoal failed. This performs an action to update ZooKeeper
(via Camel) about this failure.

There is a direct correspondence between these plans and
the semantic rules in Figure 4. The use of a separate intention
for the local subgoal implements the constraints on the Local
Computation rule—it is necessary to avoid the success or fail-
ure of the subgoal directly affecting the group goal based on
local BDI computation. The plan for achieve_my_part
implements the Start Goal and Join Goal rules (which are
only distinguishable from the state machine’s point of view),
as well as the Local Success rule. The plan handing failure
of the achieve_my_part goal implements the Local Fail-
ure rule. The last two plans implement the Group Failure and
Group Success rules.

6 Discussion
The key requirements of an implementation of group plans
are: (1) that all agents see the same outcome for each group
goal; (2) that the successful completion of a group goal acts
as a synchronisation point for the agents, and (3) that timeouts
are handled in an appropriate way. We argue that requirement
1 is met due to the guarantees provided by ZooKeeper (see
Section 5.1) and the correspondence between our semantic
rules and the generic plans for handling group goals.

For requirement 2 we must weigh up the application’s re-
quired temporal precision for synchronisation against the po-
tential need for scalability and partition tolerance. While
most applications may not require group plans for large
groups, there may be a need to support many teams running
different group plans at once. Thus, we apply an eventual
consistency approach to updating agents about the group goal
state. This means that there will be some variation in the
times at which agents receive a percept informing them about
a group goal’s failure. For example, a subgoal failure causes
a Camel route to create a new znode recording the failure, and
this is then noticed by the Master route. The Master route then
creates a znode representing the overall goal failure, and the
“Notify group failure” route detects this and creates failed
percepts for the agents to perceive. We have not yet evaluated
the performance of this mechanism. ZooKeeper guarantees
that a “clients view of the system is guaranteed to be up-to-
date within a certain time bound . . . on the order of tens of
seconds)” [2], which is hopefully a worst case guarantee. On
the other hand, coordination via standard inter-agent messag-
ing may be no better, and is more prone to programmer error.

In a distributed setting, handling timeouts (requirement 3)
is not a straightforward matter due to potential differences
between agents’ clocks. Therefore, we take a forgiving ap-
proach to timeouts. The Master route is the arbiter, but it
cannot be guaranteed to check for a timeout at the precise
moment that it would be due to occur. Therefore when it
next polls the group goal state, it checks for state changes
that would avoid a timeout before checking whether a timeout
has occurred. Thus, the specified timeout intervals are really
lower bounds on the time at which timeouts will be checked.

The Master route must use its own local time when check-
ing for timeouts, as the only temporal information available
from ZooKeeper is the creation and last modification times
of znodes. This means the Master route uses its own current
time against ZooKeeper’s last modification time for the rele-
vant znode. This is a shortcoming that could be resolved by
implementing a route to synchronise the Master route’s clock
with ZooKeeper’s, by repeatedly creating nodes and reading
their creation time.

The Master route currently operates by polling. It would
be more efficient to use ZooKeeper watches to receive up-
dates to the znodes of interest. However, this is not straight-
forward in Camel as it requires dynamically creating routes at
run-time whenever a group goal is started, which is not stan-
dard practice in Camel. Another approach would be to avoid
the need for a master process by changing to some other mid-
dleware that directly supports replicated state machines in a
peer-to-peer architecture. One option is the Cassandra dis-
tributed database, which supports the Paxos protocol [17] via
“lightweight transactions” [8]. It is also supported by Camel.

7 Related work
There is a large body of research on many aspects of team-
work, cooperation and collaboration in multi-agent systems
[7; 19; 18; 11; 21; 9]. Here we focus on the work related to
BDI agent reasoning with a pre-designed plan library.

Kinny et al. [15] present an expressive formalism for joint

plans structured as graphs comprising actions, goal, belief
queries, and ‘and’ and ‘or’ nodes. Possible worlds semantics
for the model are presented as well as operational semantics
in terms of graph transformations. Coordination is based on
the transformation of graphs for joint plans into role-specific
graphs that have added communication acts to broadcast the
result of each edge traversal in the plan graph. In contrast,
we focus on the more limited but well known AgentSpeak
model of BDI execution, and investigate the use of main-
stream highly scalable coordination middleware to support
the execution of group plans.

Griffiths et al. [10] investigate a model of cooperation be-
tween BDI agents arising from cooperative plans, which con-
tain actions that must be performed by other agents. They
present a formalism for their model in Z, and propose an ap-
proach for selecting trusted partners to help them execute cer-
tain actions. However, no model of plan execution is given.

The JACK agent platform includes support for “team-
oriented programming” [1]. Teams are defined in terms of
roles with constraints on how many members must play each
role. Teams have their own beliefs, desires and intentions,
which can be propagated up or down the team hierarchy.
Team plans can post goals for subteams (including individ-
uals) and these may be executed in parallel. The program-
mer has control over how success or failure of a team is de-
rived from success or failure of the subteams, and whether to
wait for all subteams to finish their goals before execution in
the parent team moves on. This is a powerful but procedural
model with no semantics defined. Our work aims to provide
similar features in the context of a more standard declarative
model of BDI agents.

JaCaMo [3] enhances the Jason BDI platform with the abil-
ity to use coordination artifacts that implement the MOISE
organisation model [12] for multi-agent systems. However,
while MOISE has group plans (goals decomposed into mis-
sions), JaCaMo does not support these as a first-class con-
struct. In JaCaMo, each agent’s plans must explicitly coordi-
nate with the group via a GroupBoard artifact and/or explicit
requests to other agents to achieve goals [3, Fig. 6]. Our ap-
proach removes this need. We also provide formal seman-
tics specifying how state changes for group goals come about
from local BDI computation steps, and how changes to group
goal states affect the local BDI computation. MOISE and Ja-
CaMo do not have formal semantics.

8 Conclusion
This paper has presented a model for coordinating the activi-
ties of a group of BDI agents by providing them with shared
group plans containing group goals. These concepts provide
an abstraction layer that removes the need for the program-
mer to provide explicit communication actions to share in-
formation about the agents’ failures and successes in pursuit
of a larger goal. We defined the lifecycle of group goals as
a state machine and presented formal operational semantics
for the interaction between the individual agents’ BDI execu-
tion engines and a set of shared state machines for the group
goals. We also described an implementation of this model
using Jason and the industrial-strength coordination middle-

ware, Apache ZooKeeper.
There are many avenues for extending this work, such as

supporting disjunctive goals and context conditions defined
over shared beliefs, providing more flexible options for the
use of timeouts, supporting explicit communication between
agents (for purposes other than group goal coordination), in-
vestigating the use of Cassandra and other middleware, and
evaluating the performance of the approach.

References
[1] Agent Oriented Software Pty Ltd. Jack in-

telligent agents teams manual, release 5.5.
http://www.aosgrp.com/documentation/
jack/JACK_Teams_Manual.pdf, 2005.

[2] Apache Software Foundation. ZooKeeper pro-
grammer’s guide, ZooKeeper 3.1 documentation.
https://zookeeper.apache.org/doc/
r3.1.2/zookeeperProgrammers.html#sc_
zkDataModel_znodes, December 2010.

[3] O. Boissier, R. H. Bordini, J. F. Hbner, A. Ricci, and
A. Santi. Multi-agent oriented programming with Ja-
CaMo. Science of Computer Programming, 78(6):747–
761, 2013.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Pro-
gramming Multi-Agent Systems in AgentSpeak using Ja-
son. Wiley, 2007.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott. The Maude 2.0 system.
In Rewriting Techniques and Applications (RTA 2003),
number 2706 in Lecture Notes in Computer Science,
pages 76–87. Springer, 2003.

[6] S. Cranefield and S. Ranathunga. Embedding agents
in business processes using enterprise integration pat-
terns. In Engineering Multi-Agent Systems, volume
8245 of Lecture Notes in Computer Science, pages 97–
116. Springer, 2013.

[7] K. Decker. TAEMS: A Framework for Environment
Centered Analysis & Design of Coordination Mecha-
nisms. In G. O. Hare and N. Jennings, editors, Founda-
tions of Distributed Artificial Intelligence, pages 429–
448. Wiley, 1996.

[8] J. Ellis. Lightweight transactions in Cas-
sandra 2.0. DataStax Developer Blog post,
http://www.datastax.com/dev/blog/
lightweight-transactions-in-cassandra
-2-0, 2013.

[9] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L.
Arcos. AMELI: An agent-based middleware for elec-
tronic institutions. In Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems, pages 236–243. IEEE Computer
Society, 2004.

[10] N. Griffiths, M. Luck, and M. d’Inverno. Annotating
cooperative plans with trusted agents. In Trust, Reputa-
tion, and Security: Theories and Practice, volume 2631

of Lecture Notes in Computer Science, pages 87–107.
Springer, 2003.

[11] B. J. Grosz and S. Kraus. Collaborative plans for com-
plex group action. Artificial Intelligence, 86(2):269–
357, 1996.

[12] J. F. Hubner, J. S. Sichman, and O. Boissier. Devel-
oping organised multiagent systems using the MOISE+
model: programming issues at the system and agent lev-
els. International Journal of Agent-Oriented Software
Engineering, 1(3-4):370–395, 2007.

[13] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the USENIX Annual Techni-
cal Conference. USENIX Association, 2010.

[14] C. Ibsen and J. Anstey. Camel in Action. Manning,
2010.

[15] D. Kinny, M. Ljungberg, A. S. Rao, L. Sonenberg,
G. Tidhar, and E. Werner. Planned team activity. In
Artificial Social Systems, volume 830 of Lecture Notes
in Computer Science, pages 227–256. Springer, 1994.

[16] E. S. L. Lam, I. Cervesato, and N. Fatima. Comingle:
Distributed logic programming for decentralized mobile
ensembles. In Coordination Models and Languages –
17th IFIP WG 6.1 International Conference, COORDI-
NATION 2015, volume 9037 of Lecture Notes in Com-
puter Science, pages 51–66. Springer, 2015.

[17] L. Lamport. The part-time parliament. ACM Transac-
tions on Computer Systems, 16(2):133–169, 1998.

[18] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On act-
ing together. In Proceedings of the 8th National Con-
ference on Artificial Intelligence, pages 94–99. AAAI
Press / The MIT Press, 1990.

[19] D. V. Pynadath and M. Tambe. The communicative mul-
tiagent team decision problem: Analyzing teamwork
theories and models. Journal of Artificial Intelligence
Research, 16:389–423, 2002.

[20] J. Thangarajah, L. Padgham, and M. Winikoff. Detect-
ing & avoiding interference between goals in intelligent
agents. In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, pages 721–
726. Morgan Kaufmann, 2003.

[21] M. Wooldridge and N. R. Jennings. The cooperative
problem-solving process. Journal of Logic and Com-
pututation, 9(4):563–592, 1999.

