
Physically exploring volume data

using hand-held mobile hardware

Chris Heinrich

a thesis submitted for the degree of

Master of Science

at the University of Otago, Dunedin,

New Zealand.

18 September 2015

Abstract

Volume data is widely used in many di↵erent domains including medical

imaging. The primary platform to visualize volume data is usually desktop

hardware, while the use of hand-held mobile devices to browse volume data

is widely ignored. In this thesis, we present an approach for visualizing

volume datasets using standard mobile hardware by implementing a novel

interface that turns the mobile device into an exploration tool. The key idea

of our approach is that we place a virtual representation of the volume data

into the user’s environment. The user can physically move the mobile device

through their environment to interactively slice through the virtual volume.

The slice of the virtual volume that is displayed to the user is based on

the position of the mobile device inside the virtual volume. Our presented

approach enables users to access volume data using mobile hardware as well

as it introduces a novel interface to browse the three dimensional volume

data. We conclude this work with an explorative study investigating the

usability and utility of our interface.

ii

Acknowledgements

I have many thanks to give to all those made this possible. I would first like

to thank my supervisors. Dr.Richard O’Keefe for his ingenuity, patience, en-

thusiasm and positivity. Dr.Tobias Langlotz who provided guidance, push

and always went the extra mile for me.

I would like to thank my family, who I would be lost without. My dad

for inspiration, always being there to talk to and always believing in me.

My mom for inspiration, having an unrelenting bright outlook and spoiling

me with cooking. My sister who has always been there for me, has always

outdone me and has kept me looking over my shoulder in a good way. My

grandparents who have all given me the love and confidence to keep me

going through hard times.

I would like to thank my colleagues. Jonny Collins for always playing

devil’s advocate and expanding my horizons. Jorg Muller for his friend-

ship, machine-like expertise and humor. Elias Tappeiner for his friendship

and belief in the American Dream. Dr.Holger Regenbrecht for his advice

and German lessons throughout this process. Finally, the Human Computer

Interaction (HCI) group which meets every Wednesday. They all provided

feedback, encouragement and guidance throughout this whole process.

iii

Contents

1 Introduction 1
1.1 Volume Data . 1
1.2 Motivation . 3
1.3 Research Question . 4
1.4 Requirements and Constraints . 5
1.5 Contribution . 6
1.6 Thesis Outline . 8

2 Related Work 9
2.1 Volume Rendering . 9

2.1.1 Slice-based Rendering . 10
2.1.2 Direct Volume Rendering . 11
2.1.3 Distinctions from This Project 12

2.2 Visible Human . 12
2.3 Augmented Reality . 14

2.3.1 Distinctions from This Project 15
2.4 Magic and Volume Lens . 16
2.5 Discussion . 17

3 Setting the context of this project 18
3.1 Introducing the Visible Human dataset 18
3.2 Choosing the tablet device . 20
3.3 Introducing the tablet device . 22

3.3.1 Hardware . 23
3.3.2 Sensors . 24
3.3.3 Software . 24

3.4 Android NDK and SDK . 25
3.5 Summary . 26

4 Tracking the Device Position 27
4.1 Sensor-based Tracking . 27

4.1.1 Accelerometer . 28
4.1.2 Gyroscope . 28

4.2 Sensor-based Tracking Experiment . 29
4.2.1 Results . 30

4.3 Vision-based Tracking . 31

iv

4.3.1 Pose Tracking from Natural Features 33
4.3.2 Vuforia Marker Tracking SDK 34
4.3.3 How marker tracking works in Vuforia 35

4.4 Vision-based Accuracy Experiment . 36
4.4.1 Results . 37

4.5 Experiment Conclusions . 38
4.6 Summary . 38

5 Rendering 40
5.1 Concept . 41

5.1.1 Pre-process . 43
5.1.2 Tracking . 43
5.1.3 Rendering . 43

5.2 The Implementation . 45
5.2.1 Our Scene . 45
5.2.2 Rendering Scene . 49
5.2.3 Tablet Coordinates . 52
5.2.4 Convert to Texture Coordinates 54
5.2.5 Walkthrough of Algorithm . 57

5.3 Summary . 58

6 Evaluation 59
6.1 Design . 60

6.1.1 Type of evaluation . 60
6.1.2 Evaluation Questions . 62

6.2 Evaluation Process . 65
6.3 Results . 65

6.3.1 Participants . 66
6.3.2 Data Collection . 67
6.3.3 Data Analysis . 67

6.4 Summary . 73

7 Conclusion 75
7.1 Future Work . 78

A Appendix 79
A.1 Vertex Shader Code . 79
A.2 Fragment Shader Code . 79
A.3 Our tablet dimensions . 80
A.4 3D Texture . 80
A.5 User Evaluation Questionaire . 81

References 88

v

List of Tables

3.1 Visible Human Dataset . 19
3.2 Samsung Galaxy TabPRO Hardware Specifications 23

6.1 The open ended usability based questions for our user evaluation 63
6.2 The open ended utility based questions for our user evaluation 64
6.3 Participants for our evaluation and their assigned reference letter . . . 66

A.1 Samsung Galaxy TabPRO Dimensions 80

vi

List of Figures

1.1 Our interface concept to display 2D slices of volume data 6

3.1 Our tablet device displaying a slice of the Visible Human dataset . . . 22

4.1 Results from accelerometer experiment 30
4.2 Sensor Tracking experiment gyroscope angles X, Y, Z 31
4.3 Marker-based tracking vs natural feature tracking 31
4.4 Our Visual Marker . 34
4.5 Pose Matrix that Vuforia uses to represent camera position 35
4.6 Natural feature tracking error experiment 36
4.7 Feature Tracking Euler Angles X, Y, Z 37

5.1 Rendering approach diagram with slicing through volume with tablet . 41
5.2 Complete process taken to display slice of volume 42
5.3 Our starting scene with visual marker and tablet 45
5.4 Scene after moving 100mm above marker 46
5.5 Our scene with the volume placed 100mm above marker 48
5.6 Scene with 3D texture coordinates . 49
5.7 Completed Scene . 51
5.8 Tablet screen coordinates . 52
5.9 Coordinate system of our Visible Human images 54
5.10 Example scenario of our rendering approach 57

6.1 Qualitative user evaluation process . 65
6.2 Commonly viewed axes for volumetric data: Coronal, Sagittal and Traverse 68
6.3 Example of available neural anatomy visualization mobile application . 68

7.1 Our implemented interface concept . 76

A.1 3D texture object in OpenGL ES 3.0 with its required input parameters 80

vii

Chapter 1

Introduction

Contents

1.1 Volume Data . 1

1.2 Motivation . 3

1.3 Research Question . 4

1.4 Requirements and Constraints 5

1.5 Contribution . 6

1.6 Thesis Outline . 8

1.1 Volume Data

Imaging of 3D volume data is commonly used in many di↵erent domains such as

medicine and geological surveying. Compared to traditional 3D data used in com-

puter graphics, volume data represents a vast amount of information and, thus, is

large in size. The sheer size of this type of data makes it computationally expensive to

process. This has restricted its use to mainly desktop computers where volume data

can be interactively visualized because of their hardware capabilities, in particular, the

graphics card. Recently, mobile hardware became more powerful to the extent where

it is theoretically possible to store and render volume data on o↵-the-shelf hand-held

mobile devices. Because of their form factor, input capabilities, and integrated sensors

mobile devices o↵er many unique interface possibilities compared to desktop comput-

ers. This raises the question if we can implement a real-time, interactive interface to

view volume data on hand-held mobile devices and what e↵ect would this have on the

user’s experience?

1

3D volume datasets are datasets that contain information representing every volu-

metric unit (voxel) inside a given volume. 3D volume data is unique and di↵ers from

conventional 3D data. Conventional 3D data represents some information in three

dimensions, but it doesn’t contain information for every volumetric unit. What con-

ventional 3D data typically shows is surface data, with no information about what is

beneath this surface. This leaves a wealth of information under the surface that is

not represented. Volume data on the other hand, represents every unit in the volume

which adds a multitude of information to the dataset.

The interface to interact with these volume datasets on the desktop computer con-

sists of displaying the dataset on a 2D monitor and using a keyboard/mouse to interact

with the data. We can usually rotate and move through the volume, but are limited by

the 2D interaction to browse and view the 3D volume data. This presents a dilemma

where one has three dimensional data, but one is viewing and interacting with it in a

two dimensional way.

The area of Computer Graphics that deals with visualizing volume data is referred

to as volume rendering. This area encompasses di↵erent techniques used to display

these volume datasets. When one is trying to visualize a given volume, it is likely that

one is only interested in visualizing a particular aspect of the given volume. Therefore,

the Volume Renderer renders parts of the volume irrelevant (transparent) to gain depth

through the volume and to visualize the portion of the volume you want to see. Algo-

rithms to accomplish this are computationally expensive. Desktop computers contain

dedicated graphic cards that feature graphic APIs which allow them to handle com-

plex graphical computations. However, more and more mobile devices have powerful

graphics cards which has opened new possibilities for what is possible to accomplish

on mobile devices.

Mobile devices have become increasingly prevalent in peoples everyday lives. Zick-

uhr and Rainie (2014)1 ran a survey that found in 2014, 61% of Americans own a

smartphone and 42% of Americans own a tablet computer. With students, it is even

more prevalent. Dahlstrom and Brooks (2014)2, ran a study that found in 2014, 86%

of students own a smartphone and 47% own a tablet computer. They estimate that

by 2015, 91% will own a smartphone and 58% will own a tablet computer. As mobile

hardware usage has increased their hardware has advanced as well. This advanced

hardware has led to the improved graphical capabilities and processing power of these

1http://www.pewinternet.org/2014/01/16/e-reading-rises-as-device-ownership-jumps/
2http://net.educause.edu/ir/library/pdf/ers1407/ers1407.pdf

2

devices. It hasn’t quite reached the performance capabilities of desktop computers,

but we are now able to do many tasks on a mobile device that previously have been

constrained to a desktop computer.

1.2 Motivation

As stated initially, volume data is commonly used in the medical domain. It is cre-

ated from scanners which use techniques such as magnetic resonance imaging (MRI)

or computerized axial tomography (CAT) scan. These imaging techniques produce

volume datasets by combining 2D images taken at regular intervals throughout the

volume. These combined images are collectively used to represent and visualize part

of the human body or the human anatomy. They are used for many medical purposes

such as diagnosis, surgery planning and education.

In education, a Harris Interactive (2013)3 survey was conducted on students from

the ages of 8-18 which reported their attitude towards the use of tablet computers in

education. They found that 92% of those students agreed “tablets will change the way

students will learn in the future”, 90% agreed that “tablets make learning more fun”

and 82% agreed that “tablets help students do better in classes”. Tablets have advan-

tages over smartphones because of their increased size and what that size entails. The

increased size allows for increased hardware specifications and display capabilities over

their smartphone counterparts. Studies, such as Desjardins, van Oostveen, Muirhead,

and Goodman (2011), look into tablet computers and how they can be applied to edu-

cation/learning. However, the results from that study were inconclusive. The question

still remains, can tablets be useful in education/learning and for what purpose?

The human anatomy is something we know a lot about, however, we still struggle

to teach and visualize it in a technological way. For medical students, visualizing and

learning the human anatomy is a di�cult task. Waterston and Stewart (2005) ran a

survey of practicing clinicians and found that the majority of clinicians feel that current

anatomical education given to medical students is inadequate and below the necessary

safe levels for medical practice. This is backed up by Collins (2008) who quoted Andrew

T Raftery as saying there is a “crisis” in the teaching of anatomy because of the increase

in claims relating to lack of anatomical knowledge. Medical students typically attend

lectures where they are presented anatomical structures and then dissect cadavers to

3https://www.pearsoned.com/wp-content/uploads/Pearson-Student-Mobile-Device-Survey-2013-

National-Report-on-Grades-4-to-12-public-release.pdf

3

gain a real visualization of the structures. Collins (2008) says exploring cadavers is

done to help gain an understanding of the three dimensional structure of the human

body. He says it also helps develop spatial reasoning skills necessary to understand

and interpret imaging [volumetric] data. McLachlan, Bligh, Bradley, and Searle (2004)

explains, however, that some medical schools are getting rid of the use of cadavers

entirely. This is relating to the emerging belief that cadavers do not provide the

benefits previously thought. They argue that information gathered from cadavers do

not translate to living anatomy or to the commonly viewed cross-sections of medical

imaging (such as MRI/CAT scans). As a secondary motivation for their removal, they

argue cadavers are expensive, cause a portion of students to experience mental and

physical discomfort and present ethical issues. On the other hand, current available

technology and resources available to students are typically limited to 2D diagrams,

pictures, 2D image slices, anatomical slices, and mobile applications that show virtual

3D renderings of the human anatomy. With the students belief, from survey above,

that tablets can provide enticing benefits to learning, we are curious to explore this

further in anatomy education.

1.3 Research Question

Our initial research question is ‘If we can implement a real-time, interactive interface

to view volume data on mobile devices, what e↵ect would this have on the user’s expe-

rience?’ Our research question is consequently split into two areas: Implementation of

an prototype application including an interface for browsing volume data and analysis

of the realised prototype and application using user feedback.

For the implementation, we wanted to explore ‘Is it possible to store and interac-

tively visualize volume data on a hand-held mobile device?’ We explore if this is feasible

with current mobile hardware specifications and what constraints they present. Mobile

devices also o↵er unique opportunities as they require and support di↵erent interfaces

compared to traditional desktop computer interfaces. While mobile devices mostly

lack input devices such as a mouse and a physical keyboard, they integrate touch

screen, cameras, orientation sensors, and sensors that can be used for implementing an

interface in a portable hand-held design.

For analyzing the prototype and its application, we wanted to evaluate ‘How does

using mobile hardware a↵ect the user’s experience visualizing and interacting with

volume data?’ We wanted to explore ‘In what domains would an interface to explore

4

volume data on a mobile device be useful?’ Specifically, ‘Could this interface be useful

in an education context, particularly in the scope of anatomy education?’

1.4 Requirements and Constraints

With the frequent use of volume datasets in the medical domain, we decided to focus

on visualizing the human anatomy using mobile hardware. We decided upon using

a tablet device as our mobile hardware (over a smartphone) because of its storage

capacity, processing power and display capabilities which still outperform smartphones.

Additionally, we chose a specific dataset, the Visible Human Project dataset, as our

human anatomy volume dataset. The Visible Human Project dataset is made up of a

collection of images that were taken at regular intervals throughout a human cadaver.

Now that we had our volumetric dataset, we needed to figure out how to use a tablet

device to explore it.

We intend to adapt ideas from augmented reality (AR) and, in particular, magic

lenses for our work. Augmented reality refers to capturing a user’s environment through

a mobile device’s camera and augmenting that environment with virtual content. AR

typically uses a device to capture its environment by using its camera and overlaying

some part of the environment with digital content in real time. In order to correctly

do this, we must know the position and orientation of the device and what part of the

environment to overlay. Usually, a visual marker is placed in the user’s environment

and digital content is overlaid on top of this. This visual marker is analyzed by the

device and allows the device to compute where it is in relation to the visual marker.

One is usually able to get the position and orientation of the camera (based on the

visual marker) in the user’s environment. We wanted to implement a similar interface,

but without showing the camera feed and instead focusing on the virtual volume data.

Our goal was to use the tablet device as an exploration tool to explore the human

anatomy. As we will later demonstrate, we ran into hardware constraints that forced us

to reduce the amount of the human anatomy that we could store and render. This led

to us only rendering the neural anatomy portion of the Visible Human dataset (instead

of the whole body). We wanted to explore the uniqueness of a tablet device (namely

its size and hardware) and how this could be used to interact with volume data. We

wanted the interaction to occur in real time and for all the processing to be handled on

the tablet device. We wanted to use readily available, o↵-the-shelf hardware because

that is what the everyday student would have access to.

5

On the software implementation side, we defined certain requirements. We decided

upon 15 frames per second (fps) as the minimum frame rate that would be acceptable

for real-time, user interaction as 15fps is widely considered as required for interactive

feedback. We decided that compression of volume data is out of the scope of what we

wanted to accomplish (namely the interaction of mobile hardware with volume data).

With our goal to do all the processing on the tablet, we decided that pre-processing of

the volume data into optimized data structures was acceptable. This wouldn’t a↵ect

the integrity of the dataset, but improve the performance of the application.

1.5 Contribution

Figure 1.1: Our interface concept that uses a tablet device as an exploration tool to

physically explore volume data

What is the point of three dimensional data if it doesn’t feel 3D to the user? With

the requirements from above in mind, we proposed an interface that allows the user

6

to explore a volume dataset (using a tablet device) by way of physically moving the

device through the volume data. The volume dataset is stored on the tablet and is

mapped into the user’s environment based on the actual physical dimensions of the

volume. We will use tracking technology also used for AR to get the real-time position

of the tablet device and be able to tell where it is inside our virtual volume. Since

the tablet screen is 2D, what is displayed to the user is a cross-section of the volume

data based on where the tablet device is inside the virtual volume. The dimensions

of the dataset and tablet device are taken into account which allows the user to view

the dataset with its real scale. The end result being, the slice of the data that you see

on the tablet screen is based on where the tablet is inside the virtual volume. This

interface allows the user to physically interact with the data in 3D space and is to the

best of our knowledge a novel contribution.

We also evaluate the usability and utility of our interface by collecting early feedback

on our interface from domain experts. This was because they would provide high

quality feedback and it would allow us to use a small number of participants to gain

meaningful feedback. Since we decided to render the neural anatomy portion of our

human anatomy volume dataset, we sought feedback from neural anatomy domain

experts. Our evaluation consisted of six neural anatomy domain experts, including

four neural anatomy professors. The feedback we got indicated unanimously that the

interface was easy to learn and intuitive to use. We received strong feedback that

the utility of our application could be centered around education and could help users

understand the three dimensionality of neural anatomical structures. One of the main

disadvantages of our interface that we found was the limited viewing angles of the

volume data because the camera always needed to see the visual marker. We acquired

feedback on future work that could be done with this type of interface and believe it

should be explored further.

Overall, we argue that our work is a contribution to the field of mobile human-

computer interaction as well as to e-learning using mobile devices.

7

1.6 Thesis Outline

This thesis aims to show the steps taken to explore our idea of physically moving

through volume data using mobile hardware.

1. Related Work (Chapter 2): We look at published work in the related fields

of Augmented Reality, magic lens interfaces, and volume rendering. We also

present some works that has been done with our volume dataset, the Visible

Human Project.

2. Setting the Context of this Project (Chapter 3): This chapter introduces

our mobile device, volume dataset, programming environment and programming

languages.

3. Tracking the Device Position (Chapter 4): We discuss di↵erent approaches

for tracking our device using the integrated hardware.

4. Rendering (Chapter 5): We explain how we render the slice of our volume

data based on the tablet’s position.

5. Evaluation (Chapter 6): An evaluation of our application was conducted to

get feedback on its usability and utility.

6. Conclusion (Chapter 7): We discuss future work that could be done on this

project and give a summary of what was accomplished.

8

Chapter 2

Related Work

Contents

2.1 Volume Rendering . 9

2.2 Visible Human . 12

2.3 Augmented Reality . 14

2.4 Magic and Volume Lens . 16

2.5 Discussion . 17

In this chapter, we present our literature review. This project combines di↵erent

areas in computer science to implement our approach of physically slicing through vol-

ume data using mobile hardware. The two that have the most influence are augmented

reality and volume rendering. We want to stress that this project doesn’t fit squarely

into one single area of computer science. It draws upon di↵erent aspects of both areas

to create our interface.

2.1 Volume Rendering

Volume datasets are made up of a number of voxels (volume pixels/3D pixels). These

voxels typically contain information such as colour and opacity (how transparent this

voxel is). This can be represented as RGBA and stored using 4 bytes. Volume datasets

in medicine can be created by using a scanner (such as MRI or CT scanner). These

scanners scan through a volume and record the density throughout it. A transfer

function can be defined that maps density to colour for every voxel in the dataset.

This is used in a medical context to render, for example, the bones a certain colour

that allows you to easily distinguish them from the rest of anatomy. Volume datasets

9

are typically large in size and this presents rendering constraints based on the hardware

and software used to render it. They are typically large in size because every voxel

can be represented by 4 bytes (RGBA). This means that for a relatively small volume

dataset of size 1000px x 1000px x 1000px, it would contain 1,000,000,000 voxels. With

each voxel being 4 bytes, this is 4,000,000,000 bytes which is approximately 4GB of

data. As you increase the resolution along any of the axes, the size of the volume

dataset greatly increases.

Volume rendering refers to the area of computer graphics that entails di↵erent

techniques for displaying volumetric data. The concept of volume rendering was first

presented in Drebin, Carpenter, and Hanrahan (1988). This paper presents a technique

for rendering volume data by shading voxels based on the blending of surface data and

the data underneath to provide a better representation of the volume being rendered.

This is largely referred to as Direct Volume Rendering (DVR) which is defined by Ikits,

Kniss, Lefohn, and Hansen (2004) as “methods [to] generate images of a 3D volumetric

data set without explicitly extracting geometric surfaces from the data”. This is put in

more simple terms by Kindlmann (2002) who explains DVR has “direct mapping from

volume data points to composited image elements”. In our Volume Rendering portion

of the literature review we mainly discuss two ways to render volume data: slice-based

rendering and direct volume rendering. Slice-based rendering refers to displaying a

slice or cross-section of the volume dataset. By creating a cross-section, or slice, of the

volume data you are rendering along some defined plane through the volume. This is

what we use in our approach, however, we surveyed both approaches for our literature

review.

2.1.1 Slice-based Rendering

Our approach slices through the volume using the mobile hardware as our plane. We

are, therefore, observing cross-sections of the volume dataset. Goble, Hinckley, Pausch,

Snell, and Kassell (1995) introduced a two-handed interface tool to navigate 3D volume

data. Their system was called “Netra” and was designed to be used for neural surgical

training. Their two-handed interface consisted of a plate device that was held to a

dolls head to determine the cross section of the brain to display. The second device

was a stylus pen that determined where a virtual probe was located in the virtual head.

Using this two-handed interface they were able to interactively view cross sections of the

brain. This early paper shows relevance to our application because they use an input

device to view di↵erent cross sections of volume data without introducing transparency

10

to gain depth through volume.

Fröhlich and Plate (2000) presented an approach that allows you to interactively

browse volume data. They present the cubic mouse which is an input device that allows

users to specify three-dimensional coordinates. The device “consists of a cube shaped

box with three perpendicular rods passing through the center. The rods represent the

the X,Y, and Z axes of a given coordinate system. Pushing or pulling of the rods

specifies constrained motion along the corresponding axes”. By moving the di↵erent

rods, you are moving the 2D cross-section of that axis of the volume data. They provide

an example with a neural anatomy volume dataset. They show that the three rods

represent di↵erent anatomical planes (Figure 7.2 on page 59) of the neural anatomy.

By pushing or pulling one rod, you are moving the 2D cross-section for one of these

three anatomical planes. You are able move these planes interactively. Today in

medicine, doctors still view volume data by moving 2D cross-sections along these three

axes. They use a keyboard and mouse instead of the cubic mouse, but the idea is

still relevant. This important paper allowed for interactive viewing of cross sections in

medical volume datasets using a novel input device.

Qi and Martens (2005) explored the problem of visualizing (via volume rendering)

3D data on 2D interfaces. They focused on the position of the clipping plane within

volume rendered data. They proposed three interfaces using a cube device with di↵er-

ent secondary devices such as a mouse, stylus pen and plane (square) shaped device

to interact with the data. Bornik, Beichel, Kruij↵, Reitinger, and Schmalstieg (2006)

presented a system for interactive visualization and manipulation of medical datasets

for surgical planning. They used a tablet device with a stylus-style input device to ma-

nipulate data. This unique stylus-styled input is called “Eye of Ra” and has 2 buttons

plus a scroll wheel to trigger 3D interaction tasks.

2.1.2 Direct Volume Rendering

The four most popular techniques according to Meißner, Pfister, Westermann, and

Wittenbrink (2000) used for direct volume rendering are: Raycasting, Splatting, Shear-

wrap and 3D texture-mapping hardware-based approach. We briefly explain one of

these techniques, Shear-wrap. Shear-wrap volume rendering was popularized by the

paper by Lacroute and Levoy (1994). This paper explains how they transform the

volume by shearing the 2D slices so that rows of voxels can be aligned with a row of

pixels in the output rendered image. This resulted in them being able to render a 2563

voxel volume in 3 seconds. This technique allows for faster volume rendering at the

11

cost of quality. Meißner et al. (2000) explains that this “has been recognized as the

fastest software renderer to date”. These DVR techniques allow you to observe the

volume data after parts of it have been rendered transparent (to gain depth through

the volume).

These previous approaches have used desktop hardware, but a recent paper has

looked into using mobile devices for volume rendering. Noguera, Jiménez, Ogáyar, and

Segura (2012) compares several methods for interactive volume rendering on mobile

devices. They use OpenGL ES 2.0 which is the previous version of the software we use

(OpenGL ES 3.0). They don’t explore the use of 3D textures in their approach because

they explain that “most OpenGL ES 2.0 implementations available in todays mobile

devices do not support 3D textures”. They implemented an approach that aimed to

limit complex computations on the shader and account for this lack of 3D textures.

They compare their approach against raycasting and found that their approach nearly

doubles it in performance (fps). This paper doesn’t involve using the mobile device as

a exploration tool and the interactive aspect comes in moving the viewing plane.

2.1.3 Distinctions from This Project

Our approach di↵ers from direct volume rendering for a couple reasons. Firstly, the

rendered volume isn’t observed from afar. Typically in DVR you define a camera

position in relation to the volume data. In our application, the slice of the rendered

data you are viewing is based on where the tablet is our volume. Therefore, the camera

is inside the volume instead of afar. We are using the tablet as a plane to view cross-

sections of our volume data. Secondly, the rendered data hasn’t been changed in any

way. In DVR, typically the pixels are changed according to the transfer function. This

allows for transparency to be introduced to some of the voxels so that you can see

further through the volume. This transparency, however, means you have changed the

surface data to gain depth through the volume. Our volume dataset (Visible Human)

isn’t transparent in any way, but you could use a transparent dataset and our interface

would still perform in its intended form.

2.2 Visible Human

The Visible Human Project dataset has been used largely for two purposes: imaging

and compression. Like us, many researchers have used this dataset to visualize the

human anatomy. However, researchers have also used this dataset to develop new al-

12

gorithms for compressing and transferring such large volume datasets. As we discussed

in the introduction, compression is out of the scope of this thesis. We will, however,

discuss some work that has been done in this area for potential future work. Zamora,

Wilson, Mitra, and Thoma (2000) implemented a web-based system to distribute the

Visible Human dataset. They use a 2-step lossless compression algorithm to send the

large volume dataset over the internet. They achieved an average data reduction of

7.8:1. Rodler (1999) used the Visible Human dataset to present an algorithm that uses

wavelet based compression for large volumetric data. They reported a 50% reduction

in size compared to previous best known results. Nguyen and Saupe (2001) used the

Visible Human dataset to present an algorithm for “rapid high quality compression of

volume data”. They used a voxel (block) based approach and created a 5123 volume

which is approximately 256 MB They report that their approach compressed the data

6 times more than the previous state of the art approach. This wasn’t our focus, but

future work on this interface could look to implement compression to possibly store

more of the volume data then we were able to do.

Rigamonti, Bryant, Bustos, Moore, and Ho↵man (2000) presented a paper that is

relevant to our focus because they explored using the Visible Human dataset to teach

neural anatomy. They provided a virtual dissection room for students to interact with

the Visible Human dataset. This paper explained why the traditional way to teach

anatomy is complicated and the benefits of a virtual approach. Some of the reasons

they used to argue traditional methods to teach anatomy are complicated include:

limited number of dry skulls available to anatomy departments (lots of people using one

skull), di�culties distinguishing normal details from student-made errors, fragility of

many contributing bones and the impossibility to teach all the connected openings once

the skull has been broken into. They explain how some medical schools have turned

to plastic models to teach the neural anatomy. These have their drawbacks as well,

which they argued are that “no plastic skull can faithfully reproduce the true three-

dimensional feel, palpable, measurable anatomy of a real-life skull”. Their interface

uses volume rendering to display the dataset in this virtual dissection room. They

show models of the neural anatomy which can include artifical colours to distinguish

certain structures or regions. Transparency is used in these to gain depth through the

volume rendered. This project also featured creating cross-sections based on moving

the anatomical planes. This application was an early application that explored using

volume data to teach the neural anatomy.

Our approach uses standard mobile hardware to display the Visible Human dataset,

13

while Guthe, Wand, Gonser, and Straßer (2002) used standard PC hardware to display

the same dataset. They presented a “new algorithm for rendering very large datasets

at interactive framerates on standard PC hardware”. They used a 3D texture-mapping

hardware-based approach as their volume rendering technique. Their algorithm uses

wavelet based compression which is out of the scope of this thesis. They achieve a

frame rate of 10 fps on low quality. The Visible Human dataset has been largely used

for compression and visualization research, but there is a wide range in how these tasks

have been implemented.

2.3 Augmented Reality

Azuma (1997) defines Augmented Reality (AR) “as any system that has the following

characteristics: combines real and virtual, is interactive in real time, and is registered

in three dimensions”. To achieve this, the software must know where in the real envi-

ronment to overlay some type of virtual content. This is commonly done by introducing

a visual marker into the user’s environment. The device uses a camera to analyze the

marker and is able to compute its pose relative to the marker. Using this pose, you

can correctly align the virtual content so that it looks correct on the screen given some

user’s perspective of the scene. Another technique to gain the user’s location in the

real environment is done by using GPS. However, according to Milette and Stroud

(2012) this this isn’t suitable for indoor environments and takes a substantial amount

of time to acquire their position. This led us to not consider this as a possible option

for acquiring the device’s position. AR is used in many di↵erent domains and this has

led to a wide range of implementations of AR software.

To understand the current state in AR, survey papers were used to to provide

broad context in the available frameworks and how AR applications are currently be-

ing used in di↵erent fields. Van Krevelen and Poelman (2010) and Carmigniani, Furht,

Anisetti, Ceravolo, Damiani, and Ivkovic (2011) provided a solid overview of available

AR toolkits and di↵erent applications (notably medical applications). Craig, McGrath,

and Gutierrez (2011) o↵ered not only available AR toolkits, but also reasons for why

they prefer Android over iOS for AR applications. Gotow, Zienkiewicz, White, and

Schmidt (2010) explored three key challenges for AR developers on smartphone de-

vices. Two of the challenges relate to work done in this thesis: filtering raw sensor

data and implementing a magic lens. They explained how hard it is to implement a

magic lens interface on “resource-constrained smartphones”. This is because of the

14

image taken from the mobile camera must be “transformed and rendered in real-time

according to information about the user’s position, orientation, and heading within the

environment”. They went on to explain how geomagnetic sensors on mobile devices

(which can provide user heading information) can be combined with GPS to estimate

field of view (which is used in some AR applications). They cited a problem that

the accuracy of these sensors is not adequate. They explained that a method to filter

sensor data, the Savitzky-Golay smoothing filter, is not usable in mobile AR because

the algorithm is computationally expensive and infeasible on mobile hardware. Rose,

Potter, and Newcombe (2010) focus on AR’s use strictly in an educational context,

including medical imaging. They showed how physicians place markers on a patient

body and these are used to show the patient superimposed with “augmentations of

human body components” which is used to improve understanding between the two.

They also explored rising smartphone/tablet ownership rates and interface designs for

such devices. Kalkofen, Reitinger, Risholm, Bornik, Beichel, Schmalstieg, and Samset

(2006) discussed how to expand Augmented and Virtual Realities’ use in the medical

context. They wanted to expand the use of these technologies to “cover the whole

clinical workflow from pre-operative to intra-operative and post-operative support”.

They explored using these technologies for surgical planning, surgical simulation (with

haptic feedback) and displaying information to the patient. AR has been used in the

medical domain to provide understanding to patients and physicians. These tech-

nologies, however, use largely 3D reconstructions of anatomical structures. These 3D

reconstructions have a drawback of not resembling real anatomical structures. AR

presents applications that can be used, especially in the medical domain, to provide

new understandings to the patient and physician.

2.3.1 Distinctions from This Project

Our approach di↵ers from Azuma (1997)’s definition of augmented reality for one

main reason, the user’s environment isn’t shown back to the user. The marker based

tracking serves only to give us the device’s position so that we can calculate where in

our virtual volume (which is placed in the user’s environment) the device is. It isn’t

used to augment the user’s real environment with virtual objects. The camera is never

used to capture the user’s environment for the purposes of relying it back to the user.

Therefore, this project occurs in virtual reality, not augmented reality and does not

combine the two.

15

2.4 Magic and Volume Lens

In this section, we discuss research about interfaces and how they are used to interact

with volume data. We mainly focus on the magic lens, but briefly touch on others.

The magic lens interface was first introduced by Bier, Stone, Pier, Buxton, and DeRose

(1993). It was proposed in design only, but introduced the concept of “incorportating

visual filters that modify the presentation of application objects to reveal hidden in-

formation and enhance data of interest”. This interface provides “context dependent”

feedback to the user and serves as the basis for modern augmented reality. Magic lens,

as used in today’s augmented reality, provides a handheld lens into the real environ-

ment. This magic lens determines how you interact with the virtual world.

Viega, Conway, Williams, and Pausch (1996) introduced the term volumetric lens

which is a magic lens in a volume context. Looser, Billinghurst, and Cockburn (2004)

used this volume lens in augmented reality interfaces. One example they use is of a

rendered house and the volume lens reveals details underneath such as wall beams.

This type of interface allowed you to see underneath the surface information, but you

couldn’t gain further depth. You were basically shown 3D surface data and provided

a volume lens that changed it to other “depth” 3D surface data depending on where

the volume lens was positioned. This implementation of volume lens isn’t similar to

what we want to in our approach. We want to move the volume lens deeper to gain

depth through the volume instead of keeping the volume lens outside the surface of the

volume. This means we use the volume lens to move through the volume, while they

use the volume lens to reveal certain, predetermined depth elements of their 3D scene.

Mendez, Kalkofen, and Schmalstieg (2006) present an interaction tool based on

magic lens that allows for context sensitive augmentations to occur. What this means

is that the context sensitive magic lens a↵ect objects in a scene di↵erently depending on

their context. They present di↵erent applications including a medical one that depicts

a tumor and displays relevant information of surrounding structures. They expand

upon this in Kalkofen, Mendez, and Schmalstieg (2007) by adding “focus objects” into

the scene. These objects are both overlaid and partially occluded by the context ob-

jects. They now call it Focus and Context (F+C) visualizations for augmented reality.

Finally, the trio published Kalkofen, Mendez, and Schmalstieg (2009) which adds to

this F+C visualizations by adding “support for comprehension of spatial relationships

between virtual and real-world objects”.

16

Gallo, Placitelli, and Ciampi (2011) present a system that explores medical images

using a Microsoft Xbox Kinect as the input device. This allows the user to interact

with the data using hand and arm gestures. They also detailed interaction techniques

specifically designed for deviceless exploration of medical image data. Baricevic, Lee,

Turk, Hollerer, Bowman, et al. (2012) presented the results of their user study that

used geometrically correct user-perspective (as opposed to device-perspective) render-

ing using magic lens. This study used both tablet and phone sized displays to complete

a selection task. They found that the tablet sized displays were significantly faster at

completing their selection task.

2.5 Discussion

Our approach to physically slice volume data using a mobile device as an exploration

tool mainly encompasses two areas of computer science, volume rendering and aug-

mented reality. Volume rendering is a broad area that utilizes many di↵erent tech-

niques to display volume data. Our approach is only interested in creating/viewing

cross-sections through the volume data. We are not interested in using our mobile

hardware to view a fully sampled rendering of the whole volume. However, it would be

possible to change the opacity of our volume data to be able to more clearly identify

certain regions/structures. Displaying our volume data is, merely, one aspect of our

interface.

The second aspect of our interface is knowing the position of the mobile hardware in

the user’s environment and, therefore, where it is inside the virtual volume we place in

that environment. In augmented reality, knowing the device’s position and orientation

is vital to correctly augmenting the user’s environment (as captured by a device’s

camera). Magic lens is an interface that is commonly used in Augmented Reality that

represents a lens into the real environment to display context-driven digital content.

Our approach is similar to a volume lens because the tablet screen can be seen as a

lens into our volume data. By moving this volume lens through the volume data, the

user is shown context (position) dependent content (cross-sections).

17

Chapter 3

Setting the context of this project

Contents

3.1 Introducing the Visible Human dataset 18

3.2 Choosing the tablet device 20

3.3 Introducing the tablet device 22

3.4 Android NDK and SDK . 25

3.5 Summary . 26

In this chapter, we present context information about our project. We introduce the

volume dataset that we chose. We discuss selecting our tablet device and the decisions

that went into that. We conclude the chapter by talking about some programming

choices we made with programming languages.

We set out at the beginning of our project with a straight forward idea, physically

explore volume data using hand-held mobile hardware. We then had to start answering

some of the “how” and “what” questions. How do you plan on implementing this?

What device are you going to use? What is your volume data? These decisions

required careful consideration because a poor decision could hinder the whole interface.

We started with choosing our volume dataset as this decision would impact the others.

3.1 Introducing the Visible Human dataset

We chose the Visible Human Project1 as our volume dataset. As shown in the literature

review, this dataset has been used for visualization purposes (displaying the human

1www.nlm.nih.gov/research/visible/visible human.html

18

Table 3.1: Visible Human Dataset

Male Female

Images 1,871 5,189

Resolution(Pixels) 2048 x 1216 2048 x 1216

Cut Interval 1mm 0.33mm

Size 15GB 40GB

anatomy) and for algorithmic purposes (how to process/transfer such large datasets).

We chose this dataset because of its price (free), fame (as a volume dataset in published

works) and attainability. This dataset consists of two datasets: a male and a female.

The male was taken first and was completed in 1994. The female was completed in the

following year, 1995. These datasets are free, however, you must contact the Visible

Human Project and state what you want to use it for before being given an FTP ad-

dress to download the datasets. These datasets were created by surrounding a cadaver

with liquid and then freezing it. Slices were made at regular intervals through this

frozen cadaver. These slices were then photographed and digitalized. This resulted in

a volume dataset of the human anatomy. The male dataset had cuts made every 1mm

(meaning a slice was 1mm thick which corresponds to the depth defined as Zdepth),

while the female every 0.33mm. The female cut interval was significant because the re-

searchers had created these datasets for the purpose of visualizing the human anatomy.

For both these datasets, the image resolution for each slice was set so that 1 pixel in

the dataset slice corresponds to 0.33mm in width and height of the actual volume. This

means that the actual (physical) size of each volume can be computed as follows:

Visible Human Male dataset

Xwidth = 2048px⇥ 0.33mm (3.1)

Xwidth = 675.84mm

Y height = 1216px⇥ 0.33mm (3.2)

Y height = 401.28mm

Zdepth = 1871slices⇥ 1mm (3.3)

Zdepth = 1871mm

19

Visible Human Female dataset

Xwidth = 2048px⇥ 0.33mm (3.4)

Xwidth = 675.84mm

Y height = 1216px⇥ 0.33mm (3.5)

Y height = 401.28mm

Zdepth = 5189slices⇥ 0.33mm (3.6)

Zdepth = 1712.37mm

The Visible Human male volume ends up being 675.84mm x 401.28 x 1871mm (by

using equations 3.1, 3.2 and 3.3). The Visible Human female volume ends up being

675.84mm x 401.28 x 1712.37mm (by using equations 3.4, 3.5 and 3.6). The X and

Y resolution are the same for both subjects. The male was taller than the female,

hence, a longer volume. We will use this later in the Rendering Chapter for real-scale

rendering.

Researchers found after the male dataset, taken first, that researchers preferred

cubic voxels. The male dataset could be represented as 0.33mm x 0.33mm x 1mm

voxels. However, these aren’t cubes. When the female dataset was taken, they made

the cuts every 0.33mm to create perfect cubic voxels of 0.33mm x 0.33mm x 0.33mm.

We chose to use the Visible female dataset as our volume dataset because it had cuts

at shorter intervals and, therefore, a higher resolution and quality. We didn’t know if

this extra resolution would be used for at the end, but we figured it could be nice to

have. With our volume dataset chosen, we had to decide what mobile hardware we

wanted to use to display it.

3.2 Choosing the tablet device

When considering what tablet device to buy, the first decision we came across was

whether to choose an Apple (iOS) or Android tablet. We decided on Android for a

couple reasons. We referred to the paper by Craig et al. (2011) from the literature

review about their recommendation. This paper provided three reasons for using An-

droid over iOS. Firstly, they pointed out how Android is open platform and has many

20

di↵erent vendors and devices available. This was important because our requirements

require a mobile device with high-end hardware specifications and Apple o↵ers only a

limited number of models to choose from. Apple also requires a license fee to develop

on the iOS SDK, while Android is free. Secondly, they explain that there a good num-

ber of SDKs available for Augmented Reality on Android. This was important for us

because we didn’t know what software we were going to use at the beginning of the

project and having more options was advantageous. Lastly, the authors believed that

Android is well engineered/documented and is easier to program than iOS. We came

into this project with limited experience programming for iOS, so the option to work

with a more familiar language (Java) was enticing.

Apart from the reasons provided by Craig et al. (2011), Android has in addition

the largest market share and thus the larger user base which is a very important point

when deciding to prioritize platforms. Ong (2014) reports that in 2014, Android’s share

of the smartphone global market was 84.6%. We decided on Android for the reasons

provided for our prototype implementation.

After we chose our operating system, we had to decide on what Android mobile

device to buy. We narrowed our choices by looking at their hardware and made sure

they satisfied our requirements. The Visible Human female dataset is 40 GB, so we

needed a device that could store the entire dataset. This was because our initial

goal was to render the whole dataset. We were also looking for a device with the

latest generation GPU supporting the recent OpenGL ES 3.0 because OpenGL ES 3.0

introduced support for 3D textures, something that could be useful when implementing

volume rendering. We also wanted a display that could display the dataset in high or

even it’s original resolution of 2048 x 1216 pixels. After considering di↵erent brands and

models, we decided upon on the 2013 Samsung Galaxy TabPRO 10.1 as our hand-held

mobile hardware.

21

3.3 Introducing the tablet device

Figure 3.1: 2013 Samsung Galaxy Tab Pro 10.1 displaying a slice of the Visible Human

dataset

The 2013 Samsung Galaxy TabPRO 10.1 tablet computer was chosen as it satisfied

our requirements and was readily available in local hardware vendors. Figure 3.1

shows our tablet displaying a slice image from the Visible Human female dataset. The

physical dimensions for this device are shown in Appendix A.3. Overall, we were

pleasured with this mobile hardware because it was able to satisfy our hardware and

software requirements.

22

3.3.1 Hardware

Table 3.2: Samsung Galaxy TabPRO Hardware Specifications

2012 2013 2014

Processor Dual Core 2 Quad Core (ARM) 2 Quad Core (ARM)

Memory 1GB 2 GB 3GB

Storage(Internal SSD) 16 GB, 16 GB 16GB

Storage(External) 32 GB 64 GB 128GB

Camera (Rear facing) 3.2MP 8MP 8MP

Camera (Front facing) 0.3 MP 2MP 2MP

Display Resolution(px) 1200 x 800 2560 x 1600 2560 x 1600

Graphics GPU Cores 2 6 6

The mobile hardware for our device was top-of-line at the time we purchased it.

Figure 3.2 shows the hardware for our tablet (2013) and a brief overview of how mobile

hardware has advanced before and after our chosen model. The 2013 model was able

to store our 40 GB of Visible Human female volume data entirely on the device. This

would mean that we would not have to explore compression of our volume data or

data transmission to our device. In the end, the hard drive storage didn’t turn out to

be as constraining as we thought. The memory turned out to be a bigger constraint

on how much volume data we were able to interactively browse. This is because the

amount of memory allocated to the GPU that were were able to access was limited

(300MB). We made the decision to focus this thesis on physically exploring volume

data instead of trying to render the whole volume dataset. It would be interesting to see

our same implementation on the 2014 model and see if they allocate more memory for

developers to use with the GPU. If more memory is allowed for us to use on the GPU,

we could theoretically browse a larger sized volume using our approach. Already in the

planing stage we considered also using the camera and marker tracking for getting pose

information of our device. The rear-facing camera was the one that we could use to

capture our environment and visual markers. This camera was 8MP which we thought

would be adequate in case we decided to use the camera for vision-based pose tracking.

The display resolution was 2560px by 1600px which was more than the Visible Human

female dataset (2048px by 1216px). This didn’t end up mattering though as we had to

reduce the resolution of our image slices to create more depth (Z-axis) for our virtual

volume. The hardware for the 2012 vs our 2013 model appears to have advanced

23

substantially. The memory was doubled, External Storage was doubled, Rear facing

camera MP resolution was doubled, GPU cores was tripled and the resolution of the

screen was doubled. This same jump did not occur from 2013 to 2014. The only

notable di↵erences are External storage capacity (which wouldn’t of impacted us in

any way) and the memory was increased by half (which potentially could have a↵ected

us).

3.3.2 Sensors

Mobile devices come with a number of di↵erent sensors that are used for many purposes.

Our device contained an accelerometer and gyroscope sensor which will be explained

in the next chapter. It also contained a light sensor. This measures light on the

front of the device and can be useful for automatically dimming the screen in bright

environments. It also can be uesd as a proximity sensor that measures light to tell

when something is close to it. This is useful on mobile phones when a person moves

the phone next to their ear. The last sensor of note is the magnetometer sensor which

will report the magnetic field in X, Y and Z. Milette and Stroud (2012) cite these

sensors as jumpy and less accurate than other sensors. Overall, we were pleased with

the hardware of the device we chose and it performed as expected.

3.3.3 Software

Our chosen tablet device runs on the Android KitKat 4.42 operating system. As a

Samsung product, it comes with some Samsung bloatware (Touchwiz interface, Sam-

sung applications). We didn’t find any of these programs/features hindered our use of

the device. The Android storage system can be frustrating to program with since it is

di↵erent depending on the manufacturer of the device and their internal and external

storage filesystem naming standards. Manufacturers refer to internal storage as the

Solid State Drive (SSD) and external storage as the MicroSD storage card.

The most important part of software of our tablet device is that it included support

for OpenGL ES 3.0. This is would be important for the rendering of of dataset because

it allowed for 3D textures. This will be explained further in Chapter 5 - Rendering.

The previous versions of this line of tablets only supported OpenGL ES 2.0, which only

supported 2D textures. There were implementations of OpenGL ES 2.0 that supported

2https://www.android.com/versions/kit-kat-4-4/

24

3D textures, but it was not supported on all devices with OpenGL ES 2.0. With our

device now chosen, we had to make some decisions of how to program the device.

3.4 Android NDK and SDK

An important decision came up once we selected Android as our tablet operating

system, should we use the Android Native Development Kit (NDK) or the Android

Software Development Kit (SDK)? The Android SDK3 is a set of tools and libraries

that Android provides to develop applications for their operating system. The An-

droid SDK is written in Java4 and supports many development environments. The

o�cial development environment is Android Studio5, however, alternatives exist such

as Eclipse6 and NetBeans7. These environments allow you to create applications which

are executed on Android Runtime (Dalvik Virtual Machine)8.

The Android NDK9 is a toolset that allows developers to write portions of the

application in native code, which is typically programmed in C or C++. This toolset

is typically used to optimize CPU intensive portions of an applications code. Code

written for the NDK is compiled by the Dalvik Virtual Machine and can be called

from Java code using the Java Native Interface (JNI). Android points out that using

the NDK will “not benefit” most applications and that the added complexity of using

the NDK should only be used if the optimized code is “essential” to your application.

To help decide if we should use the NDK, we referred to research that has been

done on this subject. Lin, Lin, Dow, and Wen (2011) designed an experiment that

ran di↵erent 12 test programs in both native code and Java. They found that native

code was faster by 34.2% (in overall performance over the 12 programs). Lee and Jeon

(2010) ran a 5 part experiment with both native C and Java code that evaluated JNI

communication delay, integer calculation, floating-point calculation, memory access al-

gorithm and heap memory allocation algorithm. They found that integer calculation,

floating-point calculation, memory access algorithm and heap memory allocation al-

gorithm performed faster using the native C than using the same algorithms on the

Dalvik Virtual Machine only. In our approach, floating point and integer calculation

3https://developer.android.com/sdk/index.html
4https://www.oracle.com/java/index.html
5http://developer.android.com/tools/studio/index.html
6https://eclipse.org/
7https://netbeans.org/
8http://source.android.com/devices/tech/dalvik/
9https://developer.android.com/tools/sdk/ndk/index.html

25

will be useful as we are constantly calculating the device’s position and orientation.

Son and Lee (2011) provides the most relevant results to our application because they

measure an AR engine that is of similar nature as our envisioned approach and is

written in Java and native C code. The Augmented Reality engine they used is called

NyARToolKit10. This is a port of ARToolkit and was written entirely in Java. They

identified the portions of the application that were taking the most operation time and

rewrote that portion in native C code. They found that they could increase the speed

of NyARToolKit by 1.869x when using the NDK.

Despite the programming overheads when using the Android NDK, we found these

papers results significant enough to decide to use the Android NDK in our application

for what we thought would be intensive portions of the application: Tracking and

Rendering.

3.5 Summary

We have presented some context information about our project. We first had to chose

our volume dataset to use in our interface prototype. We selected the Visible Human

Project dataset for our volume dataset. We chose this dataset for its fame in volume

rendering, availability and amount of volume data.

Now that we had our volume data, had to chose our mobile hardware and this

process consisted of many decisions. We chose the Android operating system for our

mobile hardware. We chose this because of reasons found in Craig et al. (2011) and its

large marketshare. We selected the 2013 Samsung Galaxy TabPro 10.1 as our mobile

hardware because of its advanced mobile hardware. With our mobile hardware selected,

we had to make a decision whether to use the NDK or SDK to program our interface

on the device. We chose to program using the Android NDK because of literature

done on the subject. Literature cited a performance boost by using the NDK, which

we believed was necessary for the intensive portions of our application.

10http://nyatla.jp/nyartoolkit/wp/

26

Chapter 4

Tracking the Device Position

Contents

4.1 Sensor-based Tracking . 27

4.2 Sensor-based Tracking Experiment 29

4.3 Vision-based Tracking . 31

4.4 Vision-based Accuracy Experiment 36

4.5 Experiment Conclusions . 38

4.6 Summary . 38

In this chapter, we discuss tracking of the mobile device. We need to track the

mobile device to get its position. We wanted to use this position to tell where the

mobile device is inside our virtual volume and later display the correct view based on

the device position. We began by looking at the sensors available on mobile devices

that could be used for getting positioning information. We ran a brief experiment

featuring these to see how they would serve our purpose. We then looked at using the

mobile device’s camera in combination with vision-based pose tracking approaches to

get its position. We ran another brief experiment with this type of tracking. We found

that using the mobile device’s camera for positioning was more suitable than using the

on board sensors for our application.

4.1 Sensor-based Tracking

We first looked into using the mobile device’s on board sensors to get the device’s

position. The two sensors that looked promising were the accelerometer and the gyro-

27

scope. These sensors come standard on most mobile devices and are used for a number

of di↵erent purposes.

4.1.1 Accelerometer

The accelerometer sensor measures the acceleration (g-force) of a device. This is can

be imagined as “attaching a mass to springs and seeing how far the mass deviates

from its equilibrium position” Milette and Stroud (2012). However, an accelerometer

integrated in a phone is a miniaturisation of the idea using MEMS (Microelectrome-

chanical systems). The key idea is that related to gravity. Gravity is a force that is

felt everywhere on Earth. Its acceleration can be measured at 9.8 m/s2. This force

also applies to the mass which is part of the accelerometer which means that when the

device is stationary, it still reports the rate of gravity. Likewise, when the device is in a

free-fall, it reports a acceleration of 0 because the same gravitational forces are acting

equally on the mass in the accelerometer. Accelerometers are usually measuring the

acceleration for each axis and are typically used to detect screen orientation, detect if

the device is being shook, or if the device is being moved. Android reports acceleration

in m/s2 and reports 3 values for acceleration along the X, Y, and Z axis. Our initial

idea was that given an initial position 0 we could use the measure acceleration for each

axis to estimate the current position by integrating over time.

4.1.2 Gyroscope

The gyroscope sensor is used to measure the “Coriolis force” caused by rotation. The

Coriolis force refers to “the tendency for a free object to veer o↵ course when viewed

from a rotation reference frame”Milette and Stroud (2012). It’s initially inspired by

spinner tops which try to keep to axis of rotation. When one tries to change the axis

of rotation for an rotating object (e.g. by rotating the device) there occurs a force

(Coriolis force) that tries to work against it and tries to keep the original rotation axis

caused by the conservation of angular momentum. If one could measure the force that

tries to conserve the angular momentum one could infer the external force that tries

t change the angular momentum. However, in phones there is no rotating mass but

a vibrating mass also realised using MEMS. The key idea is that similar to spinner

tops vibrating objects also tend to keep on vibrating in the same plane as its support

rotates. On a mobile device, this sensor’s design is that you have a tiny mass that

is being pushed back and forth along one axis. When the gyroscope is rotated, the

28

Coriolis force is applied and makes the mass move away from the direction it was

vibrating originally. This movement is what is measured in all 3 axes (X, Y, Z) by

the gyroscope. Therefore, this sensor is only measuring when the device is rotating.

When it is stationary, it measures 0 in all 3 axes. In laymen terms, it measures the

velocity or speed at which the device is rotating. You cannot directly measure angles,

however, over time you can combine the values to calculate an angle. However, when

tracking the gyroscope over time, noise is introduced and will produce a larger error

over time. This is known as drift and requires combining di↵erent sensors to reduce

this error. Android reports the gyroscope in radians per second around the X, Y, and

Z axes. The gyroscope is typically used to measure angular velocity and measures

angles of a mobile device. Our initial idea was that combined with the accelerometer

measuring the position we could use the gyroscope to measure the orientation of the

device. However, before realising this we were interested in the error of these integrated

sensors to see if our initial idea seams feasible.

4.2 Sensor-based Tracking Experiment

The purpose of this experiment was to measure the error of the gyroscope and ac-

celerometer sensors. To accomplish this the tablet device will remain stationary for a

certain amount of time. The measure error (deviation from the given position) will let

us know how reliable these sensors are to use and whether we could trust their sensor

readings.

The experiment design was to place the tablet device on a flat surface for a certain

amount of time and record the sensor readings throughout the duration of the experi-

ment. This would allow us to see how much the sensor readings fluctuate and change

even though the device is remaining still.

29

4.2.1 Results

Figure 4.1: Result from accelerometer experiment showing noise and spikes in the data

over time

The results of this experiment showed a number of troubling indicators which meant

that using the accelerometer and gyroscope to track the position of the device wouldn’t

be feasible. The red line in Figure 4.1 represents a smoothed line through the data

using Friedman’s “super smoother”1 algorithm Friedman and Silverman (1989). This

smoothing algorithm is a trend estimator the data attempts to filter out the noise and

spikes in the data to provide a smoothed line through the data that allows you to see

trends/patterns in the data.

Figure 4.1 shows the spikes that were recorded along the Z axis. The shape of

the red (smoothed) line from Figure 4.1 shows the average of this sensor reading. The

accelerometer reading should be 9.8 m/s2 as that is the acceleration due to gravity. The

results show that the sensor readings are spiking away from gravity before starting to

move back towards it. Similar results were found along the X axis, but not the Y axis.

The spikes in Figure 4.1 show that the sensor will randomly take a reading that is

very di↵erent than the readings taken just before or after it. This would be dangerous

for our application because when someone is moving the tablet device slowly, it could

all of a sudden jump in an unpredictable nature which would a↵ect the depicted slice

of the volume data the user is currently viewing. Spikes weren’t as prevalent along

1https://stat.ethz.ch/R-manual/R-devel/library/stats/html/supsmu.html

30

the X and Z axis’s, however, they did still occur. Figure 4.2 shows the gyroscope

(a) Rotation around X-Axis (b) Rotation around Y-Axis

(c) Rotation around Z-Axis

Figure 4.2: Sensor Tracking experiment results showing gyroscope angles over 60 sec-

onds

sensor readings for rotations around the X, Y and Z axes. Graphs (a) and (b) show

drift over time. Drift is when a value slowly moves away from its intended value over

time. However, the range for this drift is very small. This drift appears to be clearly

happening around the X and Y axes rotations(Graphs (a) and (b)). The rotation

around the Z-axis (graph (c)) is more troubling. It shows spikes in the data ranging

around 15 degrees. This range of spikes along this Z-axis would influence the slice of

the volume that the user is trying to view. Drift is a common issue and one of the ways

to address is by filtering the sensor data. This is out of the scope of this thesis, however,

Sabatini (2006) provides a start for future work with Kalman filtering. Following these

31

results we decided to reject our initial idea of using the integrated sensors to determine

the devices position and orientation as they are to prone to errors that could negatively

a↵ect out overall system.

4.3 Vision-based Tracking

Figure 4.3: Image on left shows marker-based tracking which tracks by identifying a

barcode-like image, while the image on right shows a image that allows for its tracking

by identifying the natural features in the image

So far we have looked into sensor based tracking, which we ruled out because of

the errors associated with these types of sensors. We then turned to Vision-based

Tracking. Vision-based Tracking refers to using a camera to analyze its environment

for information about its position. There are many techniques, for example, marker-

based tracking and natural feature tracking. Marker-based tracking refers to when

a camera identifies a fiducial (barcode-like) marker and gets its pose based on that.

Natural feature tracking refers to when a camera identifies natural features in an image

and get its pose based o↵ those natural features.

We will focus on using natural feature tracking because it allows us to use an image

that is related to our volume dataset. We refer to the image that is analyzed for natural

features (Marker on right in Figure 4.3) as a visual marker.

32

4.3.1 Pose Tracking from Natural Features

We referred to Wagner, Reitmayr, Mulloni, Drummond, and Schmalstieg (2008) which

discusses pose tracking based on natural features on mobile devices. This paper ex-

plains how they implemented a modified approach based on the Scale-invariant feature

transform (SIFT) algorithm. SIFT is an algorithm used to detect and describe local

features in an image. This algorithm is used to compare features detected in a new

image (from a camera) from those in a reference image. You can compare these fea-

tures from the reference and new image to find matches using the euclidean distance

between features.

To help explain this, we will describe an environment that has a visual marker

(Figure 4.3 right image) in it. We have stored this image on our device and have also

specified its size. When the camera identifies this image based on features that have

been found in both images (camera feed image and reference image), the camera is

able to tell where it is in relation to that image.

Gordon and Lowe (2006) explains how this is done in AR to get 2D to 3D corre-

spondence from features extracted from the camera video to those previously computed

(using calibration parameters) of the view scene. This is then used to get the current

camera pose and correctly augment the user’s scene with digital content.

33

4.3.2 Vuforia Marker Tracking SDK

Figure 4.4: Our Visual Marker that we created which Vuforia analyzes to get the pose

of mobile device camera

Vuforia2 is an Augmented Reality (AR) Software Development Kit (SDK) designed

for mobile devices only. Vuforia AR is implemented using natural feature tracking and

tracking a pose based on these features. Vuforia works by identifying and tracking a

visual marker (Image Target) and overlaying that target with virtual information.

This information can be a 2D/3D virtual object, video or image. The tracking is

done in real-time to provide real-time correspondence to the user between the visual

marker and the virtual information that is overlaid. The Vuforia Application Pro-

gramming Interface (API) supports both Android and iOS devices. This API supports

Java, C++, Objective-C and .Net (Unity) languages. It supports native development

programming through the use of NDK in Java and C++/Objective-C in iOS.

Vuforia allows for numerous di↵erent types of visual markers that can be created

by the developer. This is done by using their “TargetManager”3 suite. Developers can

create visual markers out of 2D image targets, 3D cuboid objects, 3D cyclinder objects

and 3D custom objects. The developer can upload a image that they want to use as

2https://developer.vuforia.com/
3https://developer.vuforia.com/target-manager

34

their visual marker on the afore mentioned marker designs and the “TargetManager”

will give that image a 1-5 star rating. This rating corresponds to the quality of tracking

it will provide.

Vuforia was chosen as our marker tracking SDK after examining the other available

frameworks based on survey papers from our literature review. ARToolKit / ARToolK-

itPlus4 was not feasible because it does not work with Android devices and will not

receive any further updates. Studierstube Tracker5 was also not feasible because it is

not publicly available and also does not work with Android devices.

4.3.3 How marker tracking works in Vuforia

Vuforia SDK works by using the mobile device’s camera to identify a visual marker.

It then analyzes this marker and returns a pose matrix (Figure 4.5). This pose matrix

represents the pose of the visual marker in relation to the camera.

2

66664

R
x

0 0 T
x

0 R
y

0 T
y

0 0 R
z

T
z

0 0 0 1

3

77775

Figure 4.5: Pose Matrix that Vuforia uses to identify the position of the camera (tablet)

Figure 4.5 shows the Pose Matrix that is returned by the Vuforia SDK. The pose

matrix contains the rotation matrix (left 3 columns of Figure 4.5). The “T” in the

matrix represents the translation along the X, Y and Z axes in millimeters. The “R”

refers to rotation around the X, Y and Z axes. Essentially, this matrix is used to

describe how to move the visual marker to the camera. Since we want the opposite,

we take the inverse of this matrix. Now we know where the tablet is in our real space,

next we need to figure out where our “imaginary” Visible Human dataset is located in

this real space.

4https://handheldar.icg.tugraz.at/artoolkitplus.php
5https://handheldar.icg.tugraz.at/stbtracker.php

35

4.4 Vision-based Accuracy Experiment

Figure 4.6: Images showing the experiment used to determine the feature tracking

error

The purpose of this experiment was to measure the error of the feature tracking

tracking SDK, Vuforia 3.0, on our tablet device. To measure this we decided to create

an experiment that put the tablet at a stationary position for a set amount of time

and record the camera pose and rotation matrix used by the marker tracking SDK.

This would allow us to see how each of the parameters deviated over the course of the

experiment to measure their possible error.

To create this experiment, we cut into a cardboard box to create a stationary

platform for the tablet to sit on with a visual marker tapped to the bottom of the box.

This would allow for the feature tracking tracking to occur and for the tablet to remain

in the same spot for the duration of the experiment. A program was written to record

the rotation matrix, camera pose, and distance to the marker over 60 seconds.

Once the results were gained, the rotation matrices were used to compute the euler

angles. This was done with guidance from Slabaugh (1999). Euler angles are used to

describe the orientation of an object (in our case the tablet). According to Euler’s

rotation theorem, any rotation can be described using 3 angles . These three angles

represent the rotation around the X, Y and Z axes.

36

4.4.1 Results

(a) Rotation around X-Axis (b) Rotation around Y-Axis

(c) Rotation around Z-Axis

Figure 4.7: Feature Tracking experiment results showing Euler angles computed over

60 seconds

The results of the feature tracking experiment once converted to Euler angles are

shown in Figure 4.7. These graphs show spikes in the tracking data, however, they

don’t show drift. The range for these readings are largely within 1 degree. This small

range is important because it means that is more consistent way to track . The range

for rotations around the X and Y axes are larger than the sensor tracking, but not

alarming high.

37

4.5 Experiment Conclusions

Based on the results of these two experiments, we concluded that feature tracking is the

better choice to deal with tablet position. Drift in the sensor data could be detrimental

to the user experience of our application over time. If the user is viewing, for example,

the liver and is moving through it slowly and then all of a sudden the application

jumps away it would lead to an unpredictable and unpleasant user experience. The

large range for the Z-axis rotation using the gyroscope was also alarming and indicted

it could not be trusted.

The small error range of the feature tracking algorithm show that it will be able

to provide the necessary accuracy for our device to move through real space. It has

spikes, but doesn’t have the large range of spikes that would be detrimental to the user

experience. It is able to do this reliably which we believed provided a stable enough

tracking method to implement our approach.

Sensor Fusion

Sensor fusion is the combination of di↵erent sensors which reduces the error or uncer-

tainty associated with individual sensor data. In our case, this would be the combi-

nation of both vision-based tracking and sensor-based tracking. This could lead to an

approach that reduces the unreliability of sensor based tracking around the z-axis. We

decided, however, that vision-based tracking would be acceptable for our application

and didn’t explore sensor fusion. Lang, Kusej, Pinz, and Brasseur (2002) and Ayub,

Bahraminisaab, and Honary (2012) provide insight into how this could be implemented

for future work.

4.6 Summary

To track the position of our mobile hardware, we surveyed both Sensor-based tracking

and Vision-based tracking. For Sensor-based tracking, we looked at the gyroscope and

accelerometer sensors. We ran an experiment to measure the error of these sensors and

found that they tend to drift over time. The spikes around the Z-axis rotation were

especially troubling because of the large range in the values. We also looked at Vision-

based tracking using natural features. This type of tracking used a reference image to

compare against a camera feed to find matches in natural features. It is then able to

compute the pose from these two images by comparing there features (with help from

38

size information supplied when storing reference image). We ran an experiment using

Vision-based tracking that found spikes in the tracking readings, but the range was

minimal. We concluded that Vision based tracking was better for our interface. This

is because Sensor-based tracking tends to drift and the troubling large range on the

Z-axis. We decided upon using Vision-based tracking using natural features (Vuforia

SDK) for determining the position of our mobile device inside our virtual volume.

39

Chapter 5

Rendering

Contents

5.1 Concept . 41

5.2 The Implementation . 45

5.3 Summary . 58

In this chapter, we present the rendering approach of our application. We left o↵

from the previous chapter with explaining and evaluating position tracking approaches

leading us to choose the Vuforia tracking SDK as it gives the best position estimate.

We now present how we will use the positional data from the natural feature tracking

approach to render the visual representation of our volume data. Our approach is

based on the idea of mapping our volume data into the user’s environment. We call

this mapped volume data our virtual volume. This virtual volume is then browsed

using the tablet device by showing the slice of the volume corresponding to the current

position of the tablet device.

We decided to map the virtual volume into the user’s environment based on the

volume’s physical dimensions which means that the virtual volume has the same di-

mensions as the original dataset. We use the Vuforia tracking SDK from the previous

chapter to get the tablet’s position relative to a placed marker which defines the posi-

tion of the virtual volume. Taking into account the pose information of the device, we

use the OpenGL ES API to render the slice of our volume data that is shown to the

user on the tablet.

40

5.1 Concept

Figure 5.1: Our rendering approach that uses the tablet to “cut” through the Visible

Human volume data which is assembled as shown

Our rendering concept refers to using the tablet device to physically slice through

the volume data and render that slice to the user. This is shown in Figure 5.1 which

depicts our volume data that is made up of a stack of Visible Human slice images. We

are going to call our Visible Human volume data our virtual volume. This is because

we want to place it in the users environment, but it is obviously not actually there.

This virtual volume is represented by a set number of image slices from the Visible

Human dataset. This will represent the Z-axis of the virtual volume. The X-axis of

the virtual volume will be the X-axis of the slice image and the Y-axis of the virtual

volume will be the Y-axis of the slice image. The resolution of these axes of the virtual

volume will correspond to the resolution of our Visible Human data. The X and Y

resolution of the virtual volume will be the same as the X and Y resolution of the

Visible Human slice images. The actual Z resolution will be the number of image slices

represented as pixels (100 slice images means 100 pixels for the Z-axis) but as we will

later explain the GPU interpolates between slices to fill gaps between the slices. In

41

terms of physical dimensions, the virtual volume will be the same size as the actual

Visible Human volume. This is to give a real feel for the data as the user moves through

it. The part of the Visible Human dataset that we are showing are the slices that are

relating to the brain. This data volume is 675.84mm x 406.28mm x 200mm.

Now that our virtual volume is set, we will introduce how we want to explore it.

We will use our tablet device to move through this virtual volume. What is displayed

to the user is based on where the tablet is inside the virtual volume. Since the virtual

volume represents the actual physical measurements of the Visible Human volume,

we are essentially cutting through the Visible Human volume dataset with our tablet

screen. We want this to be done interactively and in real time. To accomplish this,

we have broken this down into three stages: pre-process of the volume data, tracking

of the tablet and displaying the relevant slice. Figure 5.2 briefly explains the 3 main

Figure 5.2: Complete process taken to display slice of volume

stages required to display this slice of the volume data.

42

5.1.1 Pre-process

We needed to pre-process our volume data because of hardware constraints. Through

trial and error we ran into a limit with GPU memory that constrained us to only

storing approximately 320 MB of volume data in GPU memory. We believe this has

to do with how much memory the GPU is allocated. Each voxel of volume data is 4

bytes (RGBA) which led us to reduce the resolution of volume to 799(px) x 508(px) x

200(px) which is approximately 310 MB.

Pre-processing was done on a separate computer that is storing the entire Visible

Human dataset. The pre-processing program takes a specified area of the body that

the user specifies (Z-axis) and takes the relevant images’ pixel data. Resolution of the

X and Y axes can be changed here. This pixel data is what will be used to create

our 3D virtual volume. The end result of this program is that it outputs a data file

that stores all the image slice’s pixel data which is in RGBA format. This file is then

transferred to the tablet and will be read by our application. Our application reads in

this file and creates the OpenGL ES 3D volume. Creating this file is a time intensive

process and would add considerable time to our application if this process was done on

the tablet at the start of every run.

5.1.2 Tracking

The tracking aspect was explained in the previous chapter. The Vuforia tracking SDK

will give us a pose matrix that describes the position of a visual marker in relation to

the tablet camera. If we take the inverse of this, it describes the position of the tablet

camera from the visual marker. This will be used to tell us where the tablet is inside

the virtual volume.

5.1.3 Rendering

Rendering is the process of creating a visual from a model. This process is described in

the rest of the chapter. We explain OpenGL ES and how it creates our virtual volume

from the pixel data from the pre-processing stage. We then describe how our slice of

the virtual volume is rendered to the tablet screen. In order to render to our screen, we

have to introduce the programming interface that will be responsible for implementing

this.

43

OpenGL ES

OpenGL ES1 is a cross-platform programming interface for rendering 2D and 3D graph-

ics on mobile systems. OpenGL ES provides a low-level interface for the software and

graphics hardware to interact. OpenGL ES 3.0 was released in August 2012 and is

backwards compatible with OpenGL 2.0. OpenGL ES 3.0 is the version that was cho-

sen for this project because it has support for 3D textures. This feature is vital for our

project because our dataset is 3D and this feature allows for its rendering.

We chose to write the rendering in the C programming language using the Android

Native Development Kit (Android NDK). We chose this because of the described ben-

efits of using the Android NDK over Android SDK (see Chapter 3.4). We needed to

achieve our requirement for real-time, user interface which was 15 fps. We believed

using the Android NDK would help make the application reach this goal. Since we

were already using the C/C++ implementation of Vuforia (from the previous chapter)

it made sense to use the same language because it would make connecting the two

easier and, more importantly, faster.

1www.khronos.org/opengles/

44

5.2 The Implementation

We will explain how we implemented our rendering concept by explaining it step-by-

step. We will start by explaining how we defined our scene and then the mathematics

behind displaying the slice of the virtual volume to the user.

5.2.1 Our Scene

Real-world origin 0,0,0

Camera

Pose Inverse Pose

Figure 5.3: Our starting scene that consists of our tablet camera and visual marker

which defines our real-world origin at the center of the visual marker

Figure 5.3 shows our starting scene. We have our tablet device and our visual

marker. The camera on the tablet is used to get the pose matrix as described in

the previous chapter. This pose matrix describes the position of the visual marker

in relation to the tablet. We invert the pose matrix to get the position of the tablet

in relation to the visual marker. The center of the visual marker is going to be the

origin for our scene. This position is 0,0,0 along the X,Y and Z axes. Our initial idea

was to place the virtual volume right on-top of the marker to also make it easy for

the user to understand the physical location of the virtual volume. However, we ran

45

into a problem there. When we placed the virtual volume directly on top of the visual

marker, we found out that the Vuforia tracking SDK would loose tracking if the camera

got too close to the visual marker. E.g., When the virtual volume would extend down

to the virtual marker, we would need to position our tablet flat on the marker to be

able to browser this end of the virtual volume. However, when doing this we would

cast a shadow on the marker making it harder to track but even worst we would be so

close to the marker that we are not any longer able to track it. The camera would lose

tracking because it could not correctly focus and identify the natural features in the

visual marker at such close range.

Adjustment to keep tracking

100mm

Real-world origin 0,0,0

Camera

Pose Inverse Pose

Figure 5.4: We have to move 100mm above the marker to avoid losing tracking

To prevent the camera from losing tracking, we decided to place the virtual volume

not directly on top of the marker but place it so that there is a gap between the marker

and the virtual volume. This would allow the user to view the bottom end of the virtual

volume while we would still be able to focus the camera on the marker and consequently

keep tracking. After empirical tests, we decided to place our virtual volume 100mm

46

above the visual marker. We chose this height because we found that the camera would

not lose tracking of the marker at this height even with small rotations of the tablet.

This would allow us to move the camera to the bottom of our virtual volume without

losing tracking. Now our scene was ready for our virtual volume to be placed into it.

47

Placing the volume into our scene

100mm

200mm

406.28mm

675.84mm

Real-world origin 0,0,0

Camera

Pose Inverse Pose

799px

508px

200px

X-axis

Y-axis

Z-axis

Visible Human Volume

Figure 5.5: Our scene with the volume placed 100mm above marker

Figure 5.5 shows the virtual volume placed into our scene. We defined the dimen-

sions of our virtual volume by the actual physical dimensions of the volume. The

resolution of the virtual volume along the X, Y, and Z axes were 799 pixels (X), 508

pixels (Y), and 200 pixels (Z). In terms of our Visible Human volume dataset (2D

Images), we reduced the X and Y resolution to 799px by 508px from 2048 by 1216. We

reduced the resolution to allow for an increase in the Z resolution (number of slices).

Our Z resolution is 200 slices (images) that represent 200mm of Visible Human data.

We had image slices representing every 0.33mm of the human anatomy, but found that

showing every 1mm was adequate for using our interface and allowed us to show more

(depth) of the anatomy. The holes within the volume along the Z-axis will be closed

when rendering by interpolating between two neighbouring slices. We have defined the

physical dimensional aspects of our scene, but we now needed to define how OpenGL

ES will access and display our virtual volume.

48

5.2.2 Rendering Scene

3D Texture Coordinates 1,1,10,1,1

1,0,10,0,1

0,1,0 1,1,0

0,0,0 1,0,0

Figure 5.6: The 3D texture coordinates of our volume which uses a right-handed coor-

dinate system

OpenGL ES 3.0 added the support for 3D Textures. These are created in OpenGL

ES 3.0 by the creating an glTexImage3D2 object. Figure 5.6 shows the texture coordi-

nates of our 3D texture using OpenGL ES.

3D Texture

To create an glTexImage3D object you have to supply the necessary parameters as

shown in Appendix A.4. We will cover the unique parameters to a 3D texture object.

The “height” and “width” parameters represent the height and width of our slice

images from the Visible Human dataset. The “depth” parameter is the number of

image slices. The “format” parameter refers to how the pixel data is given, in our case

we used RGBA. The “type” parameter specifies how we are going to supply our pixel

data, in our case we used unsigned bytes. The “data” parameter is our byte stream of

2https://www.opengl.org/sdk/docs/man3/xhtml/glTexImage3D.xml

49

pixels we created during pre-processing. This creates our 3D texture object in OpenGL

ES 3.0.

OpenGL ES uses texture coordinates to access the glTexImage3d object. These

texture coordinates are normalized between 0-1 along the X,Y and Z axes. To access

information in this glTexImage3d object, you have to provide all 3 (X,Y,Z) coordinates.

OpenGL ES uses a right handed coordinate system. This means that if you use your

right hand, you can show how the coordinate system is defined by using three of your

fingers. To do this, make a closed fist (representing your plane) and stick out your

thumb (X), index finger(Y) and middle finger(Z). In Figure 5.6, our origin is 1,1,1.

With our texture coordinates defined, our scene was completed.

Shader

OpenGL defines a shader3 as a “user-defined program designed to run some stage on

a graphics processor”. This program is written in OpenGL Shading Language (GLSL)

and executes directly on the graphics processor. In our program we use two types of

shaders: Vertex Shader and Fragment Shader.

Vertex Shader

A Vertex shader4 is ran once for each vertex given to the graphics processor from the

drawing command. For every single vertex given to the Vertex shader it outputs a

single vertex. This is useful in 3D graphics when needing to transform a point in

virtual 3D space. We use it to process our texture coordinates for our 3D texture.

Our vertex shader code is attached in Appendix A.1. This code passes the texture

coordinates to the Fragment shader. It also uses gl˙Position to calculate the vertex

position in screen space.

Fragment Shader

A Fragment shader5 calculates the colour of a pixel on the screen based on what the

vertex shader has passed it. We use this to colour our pixels and create black pixels

outside of our virtual volume. Our Fragment shader code is attached in Appendix A.2.

This code sets the fragment color to black if the texture coordinates are outside our

3https://www.opengl.org/wiki/Shader
4https://www.opengl.org/wiki/Vertex˙Shader
5https://www.opengl.org/wiki/Fragment˙Shader

50

3D texture. If the texture coordinates are inside the 3D texture, it sets the fragment

color from the 3D texture data.

Completed scene

1,1,10,1,1

1,0,10,0,1

0,1,0 1,1,0

0,0,0 1,0,0

100mm

200mm

406.28mm

675.84mm

Real-world origin 0,0,0

Camera

Pose Inverse Pose

3D Texture Coordinates
799px

508px

200px

X-axis

Y-axis

Z-axis

Figure 5.7: Our completed scene that shows how we will compute what slice to display

Figure 5.7 shows our completed scene. We have the physical dimensions of the

actual visual human volume defined as well as the texture coordinates that OpenGL

will use to access our virtual volume data. With our scene complete, we now needed

to determine how to use show the slice relating to where the tablet is inside the virtual

volume.

51

5.2.3 Tablet Coordinates

Figure 5.8: Top image shows the physical dimensions of our tablet screen and the

bottom image shows how we used that to get the 4 coordinates of our tablet screen

To show a rendered slice of our virtual volume relating to where the tablet is, we

needed to define our camera position. Figure 5.8 shows how we defined our camera in

the middle of the tablet. We chose this location because di↵erent tablet devices have

di↵erent camera locations and we decided to place it in the middle for our prototype.

To account for a device’s specific camera location, an o↵set can be used for exact

location. With the middle of the tablet defined as our camera origin, we measured the

the distance to the four corners of the screen. These 4 screen corners (points) will be

used define our quad that OpenGL ES will render to. We measured the distance to

these points because it was important to get the real scale of the volume data onto our

screen.

These 4 points show in Figure 5.8 are used to multiply with the inverse pose matrix

52

provided by the Vuforia tracking SDK. These four points are given the Z coordinate 0

and are later translated 100 mm to account for the 100mm shift shown in Figure 5.4.

Multiplying these 4 points with the inverse pose matrix moves these 4 points in accor-

dance to the tablet device in our scene. This is because the inverse pose matrix shows

the translation and rotation from the visual marker to the tablet. We then supply

these 4 points as our quad to be rendered. Each of these four points has a X,Y, and Z

value so they are able to access the glTexImage3d object in OpenGL ES 3.0. However,

these 4 points are still in real-world coordinates (millimeters) and must be normalized

to between 0 and 1 (texture coordinates).

53

5.2.4 Convert to Texture Coordinates

Texture Coordinates are between 0 and 1. To normalize the X, Y and Z axes we do the

following calculations. We need to define the coordinate system for our volume data.

To do this we set the origin in the middle of each axes (X, Y, Z).

Figure 5.9: The coordinate system of our Visible Human images where we set the origin

in the middle

Normalize X-axis

We are trying to normalize the X-axis to be between 0 and 1 instead of -675.84mm/2

and 675.84mm/2. The following shows how we were able to accomplish that. To get

this origin coordinate for the X-axis, we use equation 5.1. In this equation, we take

the maximum width for the X-axis from our volume data (Figure 5.9). We define the

origin in the middle of this axis. Equations 5.2 and 5.3 show the mathematical steps

we took to normalize this axis between 0 and 1. Equations 5.4-5.6 show the same steps,

but with our Visible Human data’s X-axis.

X =
�xWidthmm

2
...
xWidthmm

2
(5.1)

54

X

xWidthmm
= �1

2
...
1

2
(5.2)

X

xWidthmm
+

1

2
= 0...1 (5.3)

In our scene:

X =
�675.84

2
...
675.84

2
(5.4)

X

675.84
= �1

2
...
1

2
(5.5)

X

675.84
+

1

2
= 0...1 (5.6)

Normalize Y-axis

We are trying to normalize the Y-axis to be between 0 and 1 instead of -401.28mm/2

and 401.28mm/2. To get this origin coordinate for the Y-axis, we use equation 5.7.

In this equation, we take the maximum height for the Y-axis from our volume data

(Figure 5.9. We define the origin in the middle of this axis. Equations 5.8 and 5.9 show

the mathematical steps we took to normalize this axis between 0 and 1. Equations

5.10-5.12 show the same steps, but with our Visible Human data’s Y-axis.

Y =
�yHeightmm

2
...
yHeightmm

2
(5.7)

Y

yHeightmm
= �1

2
...
1

2
(5.8)

X

yHeightmm
+

1

2
= 0...1 (5.9)

In our scene:

Y =
�401.28

2
...
401.28

2
(5.10)

Y

401.28
= �1

2
...
1

2
(5.11)

Y

401.28
+

1

2
= 0...1 (5.12)

Normalize Z-axis

We are trying to normalize the Z-axis to be between 0 and 1 instead of 0mm and

200mm. We are using 200 slice images, but this number comes from the amount of

data these slices represent (200mm). To get this origin coordinate for the Z-axis, we

use equation 5.13. In this equation, we take the maximum length (amount of data) for

55

the Z-axis. Equation 5.14 shows how we were able to define this axis between 0 and 1.

Equations 5.15-5.16 show the same steps, but with our Visible Human volume data.

Z = 0...zLengthmm (5.13)

Z

zLengthmm
= 0...1 (5.14)

In our scene:

Z = 0...200 (5.15)

Z

200
= 0...1 (5.16)

56

5.2.5 Walkthrough of Algorithm

3D Texture Coordinates

Visible Human Volume

B

D

A
C

1,1,10,1,1

1,0,10,0,1

0,1,0 1,1,0

0,0,0 1,0,0

Figure 5.10: Example scenario that shows the quad we will render inside our Visible

Human volume data

To show a walkthrough of the process of displaying each slice, we will show how each

point in our quad is calculated. We will start for position A, but the same algorithm

is used for points B,C and D. The only di↵erence is the starting coordinates which

are shown in Figure 5.8. The starting coordinates for point A will be 107.5mm (x),

67.5mm (y), 0mm (z) from Figure 5.8. The 0mm on the z axis is from placing the

tablet ontop of the marker to start (it will be moved 100mm above later).

2

66664

X 0

Y 0

Z 0

1

3

77775
=

2

66664

R
x

0 0 T
x

0 R
y

0 T
y

0 0 R
z

T
z

0 0 0 1

3

77775

2

66664

107.5mm
X

67.5mm
Y

0mm
Z

1

3

77775
(5.17)

57

X0, Y0and Z0are the new coordinates of our Point A after it has been multiplied

by the inverse pose matrix provided from the Vuforia tracking SDK (Equation 5.17).

These new coordinates are the real-world position of Point A in relation to the visual

marker. These coordinates now need to be normalized to texture coordinates which is

done by the steps explained above in 5.3.7.

X 00 =
X 0

675.84
+

1

2
(5.18)

Y 00 =
Y 0

401.28
+

1

2
(5.19)

Z 00 = 1.0� Z 0

200
(5.20)

X00, Y00and Z00are now converted to texture coordinates for point A. We subtract

our normalization for the Z-axis from 1.0 because we stored our virtual volume upside

down (ie. first slice on bottom). The same process is done for points B,C and D of

our quad. Again, the only di↵erence is the starting X,Y and Z for each point from

Figure 5.8.

5.3 Summary

We presented our rendering approach to display our slice of volume data based on

where the tablet is inside the volume. We define our volume data that is mapped into

the user’s environment as our virtual volume. This virtual volume is based on the same

physical dimensions and resolution of the Visible Human dataset. This is done to show

the slice in real scale, as it would have been seen in the actual volume. We then use

the Vuforia tracking SDK to get the tablet’s position in this virtual volume. We use

OpenGL ES 3.0 to render this slice of the virtual volume. This requires converting

di↵erent coordinate systems and the math that was required was presented as well.

Our interface was able to browse the volume data at 30fps on average. The end result

is that the user is able to explore the virtual volume interactively and in real time.

58

Chapter 6

Evaluation

Contents

6.1 Design . 60

6.2 Evaluation Process . 65

6.3 Results . 65

6.4 Summary . 73

In this chapter, we present the user evaluation of our application and the results.

We set out to evaluate the utility and usability of our application. Since our application

is an early stage prototype, we wanted to get feedback as soon as possible about its

design and possible uses for future directions. We wanted to approach domain experts

because their knowledge of their domain would allow us to gain high quality feedback.

This also meant that the feedback would be significant and allow us to not need a large

number of participants for meaningful feedback.

We came in conversation with the Anatomy department at Otago University and

received interest in the application’s possible usefulness from them. We decided to

follow this up by conducting an evaluation of the application that consisted of six

participants that had neural anatomy expertise, including four neural anatomy pro-

fessors. To evaluate our interface, we designed and conducted an interview with each

participant. Careful planning went into the design of the interview to allow for the

participant to fully express their thoughts. We had an idea of some general aspects of

our application that we wanted feedback on, but we didn’t want to restrict the partici-

pants feedback to just these areas. As this is a prototype, we wanted as much feedback

as possible. We hope the work presented in this chapter can be applied to other areas

which are beyond the scope of this thesis.

59

6.1 Design

The goal of our experiment was to evaluate the utility and usability of our application.

As we believe our interface to be novel, we had no prior research to guide us on how

to evaluate our interface.

6.1.1 Type of evaluation

We looked to the book by Purchase (2012) for advise on what types of user evaluation

were available to us and how to run them. This book led us to our first decision of

whether to conduct a quantitative (represented by numbers) or qualitative (not rep-

resented by numbers) user study. This distinction is important because it determines

how the data is collected and analyzed. Vaterlaus and Higginbotham (2011) explained

the goals of quantitative vs qualitative research, “Qualitative research questions are

used to seek understanding of phenomena that are not fully developed, where quanti-

tative methods are used to test hypotheses”. With this in mind, we decided upon a

qualitative user evaluation. We chose this because our interface is novel and we felt

we needed more general information about the application itself from an outside per-

spective. We felt we didn’t have enough information to form hypotheses that could be

evaluated.

We next had to decide how to conduct our qualitative evaluation. We considered

a comparative study that would have users use our interface and compare it against

another interface that is used to browse volumetric data. The problem we found with

this method of evaluation is how to choose the other interface to compare it against.

We believe there is no “standard” interface for exploring volume data on either the

tablet or desktop computer. We concluded that the results would be of no use if we

couldn’t prove the “comparative” interface was a good interface.

We, therefore, chose to conduct this qualitative user evaluation by having an inter-

view with participants to gain feedback about our application’s usability and utility. To

gain advice about the di↵erent available interview techniques, we consulted Turner III

(2010). They explained that there are three types of interviews that can be used in qual-

itative studies: informal, general and standardized. Informal interviews are conducted

by “spontaneously” coming up with questions for the subject to answer. This means

that every interview is di↵erent for each participant and it can be hard to draw patterns

and conclusions across all the interviews. General interviews are more structured than

informal, but still o↵er flexibility to the interviewer. The interviewer can word the

60

questions as they see fit which leads to a lack of consistency in the way questions are

posed. However, this way allows the interviewer to build a rapport with the interviewee

and choose the questions to ask depending on their previous responses. The idea is

that you are following a certain theme of questions, but have the flexibility to word the

questions as the interviewer sees fit. This allows the interviewer to “ensure the same

general areas of information are collected from each interviewee” and, therefore, able

to draw conclusions from these same general areas. Lastly, standardized open-ended

interviews are extremely structured in terms of wording of the questions. This means

that each interviewee is asked the same identical questions, however, they are worded

in a way that allows for responses to be open-ended. This allows for the interviewees to

“contribute as much detailed information as they desire and it allows the researcher to

ask probing questions as a means of followup”. This method relies on the participants

fully expressing their viewpoints or feeling for each open ended question. The result

being that there is a lot of “rich and thick qualitative” data that the researcher must

sift through to accurately reflect the interviewees overall perspective. However, Turner

points out that this method reduces researcher bias in the study because they follow

a strict wording of the questions. We decided to conduct a standardized open-ended

interview. We chose this method because the strictness of the wording of the questions

ensured that the evaluation would be conducted in a consistent manner. This allowed

us to touch on common themes we wanted answers on, while providing us the freedom

to probe further depending on what the interviewee response is. This is useful for us

because we don’t know what to expect with user responses about our application and

this allows us to gain a concrete understanding of what they think.

61

6.1.2 Evaluation Questions

With our qualitative interview method chosen, we had to design our questions and

figure out what we wanted to find out about our application.

Usability

To design the usability questions we looked to the work by Nielsen (1994) which defines

usability by five attributes:

• Learnability - How easy is the system to learn so that the user can get work done

right away?

• E�ciency - How quickly can users perform tasks once they learned the system?

• Memorability - How easy it is to remember how to use the system?

• Errors - How many errors do users make and how easy is it for them to recover

from?

• Satisfaction - How does the system feel to use, do they enjoy/like it?

We decided to focus for the usability portion of the interview on learnability, e�ciency,

and satisfaction. Memorability was not feasible given we were interviewing them only

once and errors are di�cult to judge among participants because each participant will

use the application di↵erently (no set tasks). The open ended questions we created for

usability are shown in table 6.1 on page 63.

We formed these questions with the three attributes (learnability, e�ciency, sat-

isfaction) from the definition of usability provided by Nielsen (1994). We made the

questions open ended to adhere to the standardized interview method we are follow-

ing. The goal of these questions was to provide a conversation starting place that

allowed flexibility to probe followup questions depending on the interviewees answers.

Utility

We consulted Patton (2008) for guidance on how to design the utility portion of our

evaluation. This book defines utilization-focused evaluation as “evaluation done for

and with specific intended primary users for specific, intended uses”. It defines the

focus of utilization-focused evaluation as “evaluation is on intended use by intended

users”. With this in mind, we had to narrow our focus on our intended users. We

62

Table 6.1: The open ended usability based questions for our user evaluation

Question Aim

Talk me through what you got out of using the system?

Satisfaction

Enjoyment

Works way you want it to work

Recommend to a friend

Pleasant to use

How easy was it to learn how to use this system?

Learnability

Intuition

Di�culty

How long to become skillful at

How did you find the e�ciency of the interface?

Moving through the data

E↵ort to use

decided to focus on neural anatomy domain experts as our intended users for the

evaluation. We chose them because we had Visible Human slices corresponding to the

brain readily available and within our GPU memory constraints (of how many slices

we can display). We also had an informal interview with a member of the anatomy

department who expressed interest in the application and its usefulness for education

of the neural anatomy. The questions we created are shown in table 6.2 on page 64.

Our goal was to get feedback from neural anatomy domain experts about how they

viewed the interface and what possible uses, if any, they could see this interface being

useful in. We wanted their feedback on our visualization of the neural anatomy and

how the physicality of moving through it a↵ected their experience with the data. We

also were curious to see what they didn’t like about the interface and what changes

could be made in the future. We’d like to stress that their feedback is coming from a

neural anatomy point of view, but we believe their feedback can be applied to other

domains.

63

Table 6.2: The open ended utility based questions for our user evaluation

Question Aim

Could you see this interface being useful?

How so?

Why?

Use Case

Problem with existing practices

Other datasets/domains useful

Can you see any advantages or disadvantages

of this type of interface?

Physically moving through the data

Compared to other interfaces

Compared to other datasets of volume data

64

6.2 Evaluation Process

Figure 6.1: The process of our qualitative user evaluation

With our intended users established and our interview questions formed, we needed

to figure out the process of the interview itself. We decided upon some background

questions to start the interview with to determine how experienced they are with

viewing volume data and using tablet computers. This could factor into the learnability

portion of the interview. We then wanted to give the interviewee a demonstration of the

application. This was structured in a a step-by-step manner so that each interviewee

received the same demonstration. After our demonstration (and before they used

the application), we asked our 2 open-ended utility questions. This was done to not

overwhelm the interviewee and allow them to focus their thoughts on the interface itself

(with no first hand knowledge of the usability). The interviewee was then allowed to

use the device and the interviewer helped only if they could not overcome an error.

After they determined they were acquainted with the application, we moved on to the

usability questions. The usability questions were then followed with our concluding

questions. These questions consisted of asking if they could think of any features

they wanted added/removed and any general remarks about the concept of the slicing,

our application or the way the evaluation was conducted. This process is shown in

65

figure 6.1. The interview sheet we created and used is shown in Appendix A.3.

With neural anatomy domain experts as our intended users, we had to prepare the

slices of the Visible Human that they will view. We chose to provide 20 cms of brain

data which are the slices from the top of the head to around the bottom of head. The

slices were selected at 1mm intervals to provide as much depth resolution as we could.

6.3 Results

With our evaluation process determined, we now needed to reach out to neural anatomy

domain experts and convince them to be apart our evaluation. We only wanted neural

anatomy domain experts as they were our intended user for the utility portion of the

interview.

6.3.1 Participants

We contacted the Anatomy department at Otago University and they supplied contact

information for professors/sta↵ with neural anatomy expertise. We were able to recruit

four neural anatomy professors and scheduled interviews at their convenience. A 6th

(final) year medical student and a PhD candidate from neuro psychology were also

recruited. These two student participants both had experience with neuro anatomy

from their studies and provided actual student feedback about the application. The age

range for our participants ranged from 26-52 years old. The mean age of participants

was 41.6 years old and the median age was 44.5 years old. Five (A, B, C, D, E) of the

six participants answered that they were proficient at using a tablet computer.

Table 6.3: Participants for our evaluation and their assigned reference letter

Participant Occupation

A Senior Lecturer - Anatomy

B Associative Professor - Anatomy

C Associative Professor - Anatomy

D Associative Professor- Anatomy

E Final Year Medical Student

F PhD Candidate - Neural Psychology

66

6.3.2 Data Collection

Data collection was primarily done by audio recording our interview with each partic-

ipant (after obtaining their permission). The interviewer also took brief notes during

the interview, but their focus was on the conversation itself. The recordings were an-

alyzed and transcribed quickly after each interview so that they could be as accurate

as possible. With our qualitative data now collected, it was time to analyze the data

and draw conclusions.

6.3.3 Data Analysis

Purchase (2012) defines Data Analysis as the “process of summarising raw data into

a useful form”. For our data analysis, we are going to summarize the participant

responses and draw upon common themes across the interviews. Purchase (2012)

points out that there is some subjectiveness to this process, but we tried to keep it as

objective as possible.

Utility

A common theme that three (A,B,C) of the four neural anatomy professors brought

up is that one of the major challenges for students learning the neural anatomy is

the “3D relationship between anatomical structures”. They explain this stems from

how neural anatomy is taught. Neural anatomical structures are taught to students

by a number of di↵erent resources. The ones that were consistently brought up are

2D diagrams with labels of the structures on them, 2D physical slices of actual brain

matter, 3D visualize reconstructions and brain dissections. They explain that these

resources do a good job of teaching the 2D aspect of the structures, but the students

struggle to combine these 2D resources to create a 3D mental model of the structures.

Three (A,B,C) of the four neural anatomy professors expressed their feelings that they

believe being able (by using our interface) to view the structures at di↵erent angles

and being able to physically explore them would be helpful for students to understand

the three dimensionality of the structures. The fourth neural anatomy professor (D)

found that viewing the volume data on a slice by slice basis on a constant axis provided

the necessary 3D perception for students and that our interface didn’t add any 3D feel

to the volume data. This brings us to how our participants said they usually view

volumetric data.

Four (A,C,E,F) of the six participants described a similar desktop interface that

67

Figure 6.2: Three commonly viewed axes for volumetric data: Coronal, Sagittal and

Traverse CC�

they are used to using to interact with volumetric data. They described a program that

allowed you to scroll through on 3 di↵erent axes (Figure 6.2) which are the Coronal,

Sagittal, and Traverse planes. By scrolling on each axis, you are able to view a di↵erent

slice of the volumetric data. These axes are fixed and don’t allow any rotation, they just

allow movement along one of these three axes. Participant E described our interface

as “Pure 3D” compared to the “3 sections of 2D” that these three axes provides.

Participants B and D described viewing volumetric data on physical slices. These are

sections of a real brain that have been sliced and encapsulated in plastic. They show

the neural anatomy through a series of slices. Participants B and C expressed that

these physical slices do not allow you to understand the three dimensionality of the

structures because you are left guessing what is in between the individual slices.

Participants B and E were quick to point out other available applications that

they believed were similar. One such application was called 3D Brain1 from DNA

Learning (Figure 6.3). This is a mobile application that shows the brain and labels

structures/regions. This particular application was brought up by Participant B as

something that is recommended to students. This application can be useful in showing

the relationships between structures. The interface to interact with these 3D recon-

structions is that you are able to rotate the brain, but are not able to move through

it. Parts of the brain become transparent to gain depth through the brain to deeper

1https://www.dnalc.org/resources/3dbrain.html

68

Figure 6.3: Example of available neural anatomy visualization mobile application, 3D

Brain, which shows brain regions in false colours with labels

structures, but you are always observing it from afar. A drawback that Participants

B and E brought up about these types of applications is that it isn’t real data, it is

a reconstruction and, therefore, not what the students are going to see in an actual

brain. Participants B, E and F liked the “realness” of our application (the dataset)

compared to 3D reconstructions they have experienced before.

We believe one possible use of this interface (based on the opinion of Participants A,

B, C and E) is in our applications ability to convey the three dimensionality of struc-

tures to users. Participants D and F said that current available technology adequately

satisfies this perception. Participant D made the distinction that some prior knowledge

of the neural anatomy is required before this application would help with the three di-

mensionality aspect. They pointed out that when students are just learning about the

neural anatomy, they have no idea what/where anything is, so they must have some

prior knowledge of the structures for this to have e↵ect on that 3D perception.

When asking the participants about the usefulness of the application, five (A,B,C,E,F)

of the six participants said they could see it being useful in teaching/education. Par-

ticipant D said they were not sure it added anything of value from the resources they

have available now. Of the five who said it could be useful in teaching, the areas they

identified that it could be useful in are neuro anatomy, pathology, psychology and neuro

surgical planning. Participants A, C and E brought up how this application would be

useful especially for medical students. They explained that in a clinical setting they

are going to see a lot of volume data, particularly MRI and CT scans. The Visibile

69

Human dataset looks similar to what they would see in clinical practice, so having

experience viewing this type of data would be beneficial for learning how to interpret

the volume data they will readily encounter in clinical practice.

When asked to identify any advantages or disadvantages, both answers varied

widely. On the advantages with this type of interface, Participants A and C liked

the “quickness” of being able to browse the volumetric data. They commented that it

allows you to get a quick idea of relationship between anatomical structures. Partici-

pants E and F felt that by having the application on a tablet, it is an advantage that

you can easily bring the tablet anywhere and use the application there. This could be

useful for students studying at home or having clinicians easily bring the volume data

with them on the move.

Participants C and D found that a disadvantage of this particular interface is that it

is hard to keep the current slice that they are viewing still. Interestingly, Participants

B, E and F expressed that they felt the sensitivity of the application was satisfactory.

It seemed from observing the participants that some participants wanted to view still

slices of the data and others enjoyed that the slice they were viewing deviated slightly.

It seemed to give those participants a real-time interactive feel for the data, while

others perferred a static, still view of the data. Participant C suggested adding a

pause feature to freeze the current slice of the data they are viewing. This could be a

compromise to allow both groups of participants to view the data in a way that they

want to. Participant F found a disadvantage is that it is physically demanding to hold

the tablet in the required stance. Participants B and F brought up a disadvantage of

this interface is that they didn’t know where they were at times and both suggested a

reference map to help them keep track of where they are in the volume data.

All six participants expressed a disadvantage in our interface that you can’t view

the data from “full” frontal or Coronal (from Figure 6.2). They wanted more views of

the data. When you angle the tablet device you are able to get some coronal views, but

it is never completely coronal because it loses tracking of the marker. At the conclusion

of the interview, many of the participants asked how the visual marker worked. After

learning how it worked, Participants A, C, D and E expressed they would like a second

“vertical” marker to give them the ability to view the data from coronal plane. Another

solution that Participant F came up with is to rotate the volume data so that they use

the same interface (with one marker), but the data has been rotated.

Participants C and F expressed that they felt our interface was novel. They ex-

pressed that they have never seen something like this before. Participant C thought

70

that the novelty of the interface would add to the experience of using it. They felt

that students would find it new and exciting. Participant D felt that students would

find the interface “fun”. Both these participants, C and D, felt that these qualities

would add to the user experience of students and make them more likely to use the

application.

Usability

Answers from the usability portion of the interview were generally positive and indicate

a user interface that could be useful in the future for di↵erent contexts. Four (A,

B, C, E) of the six participants expressed that they found the experience of using

the application satisfactory. We believe the novelty of the application as well as the

simplicity of the interface contribute to this. The two participants (D, F) who didn’t

express satisfaction seemed to be bothered by the lost tracking errors.

Interestingly, all six expressed that it was very easy to learn how to use. The

general consensus was that it took a few movements to get used to the tracking and

the movements that were possible (given the one marker). Four (A, B, C, E) of the six

participants felt it was intuitive to use and were able to use right away (after watching

the demonstration). Participant A summarized this by saying how the application used

our natural 3D perception and this felt more natural than using a mouse/keyboard to

interact with volume data. It should be noted that two (A, C) of our participants had

experience with augmented reality applications (which use a visual marker), so that

would factor in to how quickly they were able to pick up the movements allowed.

When asked about the e�ciency of the interface, five (A, B, C, D, E) of the six

participants found it “easy” to physically browse the volume data. Participant F felt

it was strenuous to constantly hold the device with two hands while browsing the data.

The five participants who found it “easy” to move through the data felt it didn’t require

physical e↵ort to move through the data. Five (A, B, C, E, F) of the six participants

reacted favorably to the response time of the application to their movements. Three

(A, C, E) of the six specifically mentioned that the sensitivity was satisfactory. We

received no complaints about the response time from any participants and all seemed

satisfied by the real-time aspect of the interface.

Opinions were generally positive about the resolution of the dataset. The par-

ticipants only referred to the X and Y(2D) resolution of the dataset, no participant

mentioned any concern about the depth (Z) resolution. Five (A, B, C, D, E) of the six

participants expressed that they felt the current resolution was acceptable for students.

71

When pressed for why students, they explained that for students all they need to see

are the structures that they are likely to need to know (membranes and capsules). Par-

ticipant A felt the current resolution wasn’t good enough to see veins/arteries which

they felt would be useful. Participant C felt the resolution would have to be increased

for use with neuro scientists.

Suggested Features

Suggested features were relatively consistent throughout the participants interviews.

All six participants expressed that labels could be useful. They explained that they

wanted anatomical structures to be labeled and that this could help students learn the

structures. Two participants (E, F) stressed that there must be no errors in the labeling

and that careful consideration must be point to exactly the correct structure. These two

participants explained that in their experience with computer visualizations with labels,

there have been incorrect/not exact labeling and this has led to student confusion.

Participant A suggested adding pins that would provide a similar educational e↵ect.

Participant B added that being able to highlight structures in a color could be useful

to students as well to allow them to track structures in 3D.

Two participants (A, C) said adding some kind of examination tool would be useful.

They said this could be implemented using pins or question marks on certain structures

and having the students identify the relevant structure/region. Participant C expressed

that students like doing these type of quizzes and being able to compare their results

with other students. Implementing this would require mapping coordinates to specific

structures and could be feasible to implement.

The zooming feature didn’t seem as useful as we initially thought. 2 participants

(B, C) said the zoom feature was not useful at all. Participant C said it was because of

the pixellation when you zoom in and Participant B said the current view of the data

was how they would want to view the data on. Three participants (A, E, F) expressed

they would prefer a pinch zoom instead of the slider. Participant C said they would

prefer using the side buttons to zoom as touching the screen while holding the device

with one hand would be di�cult. When observing the participants use the device, they

all seemed satisfied at the standard “real scale” of the data and hardly used any other

zoom level.

72

6.4 Summary

We conducted a six participant user evaluation that included four neural anatomy

professors, one sixth (final) year medical student and one PhD candidate from neuro

psychology. Their responses for the utility of the interface centered largely around

education. Five of the six participants said they could see it being useful in edu-

cation, particularly the learning of neural anatomy. They conveyed that one of the

main problems in the teaching of neural anatomy is for students to understand the

three dimensionality of the anatomical structures. This is because of how they are

taught, which is mostly by 2D resources (such as diagrams, slices, pictures). Three

of the four neural anatomy professors believed that this interface (with its ability to

physically interact with the data in 3D) would help students with this 3D perception

of the anatomical structures. While our study focused only on neural anatomy, we

believe these findings can applied to other domains where it is important/di�cult to

understand the three dimensionality of the volume data.

Participants expressed that it is especially useful for medical students because they

will be working with volume data, mainly MRI/CT scans. They believed that this

interface would help them be able to interpret the volume data that they will readily

work with in a clinical setting. Being exposed to this type of data early in their

education will make them more familiar with this type of data and be able to better

understand it.

One of the big disadvantages of our interface that participants found was the limits

of viewing the data. They expressed that they are used to viewing volumetric data

along 3 axes (Figure 6.1 on page 65) and that our interface didn’t allow them to go “full

frontal” or view along the coronal plane. This is something that should be investigated

in the future. This might be able to be achieved by rotating the data or by adding a

second, vertical marker to gain this movement through the volume data.

All six participants found the interface easy to learn. They found it intuitive because

it uses your natural 3D perceptions to interact with the data. They didn’t find it

physically exhaustive to use and found it easy to move through the volume data. They

found the response time of the application satisfactory and believed the resolution of

the dataset was adequate.

Suggested features for the future were centered around labeling of structures. They

conveyed that this would be useful for students learning neural anatomy structures.

Adding a examination element would also be helpful for students. The zoom feature

73

didn’t provide much and wasn’t used often. Some participants felt lost in the volume

data and suggested adding a reference map to let users know where they are in the

volume.

We conclude that this interface could be useful in di↵erent contexts where under-

standing the three dimensionality of volume data is di�cult/important. It seems to

have use in neural anatomy education as well as medical purposes. Users seem to find

the interface intuitive and easy to learn requiring minimal teaching time. A main dis-

advantage of this interface is the tracking element. It restricts the views of the data

to the user and incorporating more movements (along the di↵erent axes) through the

data would greatly enhance the user experience. Physically moving through volume

data has its advantages in certain contexts, but more research is needed into other

areas it could be useful.

74

Chapter 7

Conclusion

Volume data is 3D data that represents every unit in some given volume. It has been

widely used in medical imaging, such as a MRI or CT scans, to visualize the human

anatomy. This type of data is typically large in size and computationally expensive to

process. This has largely constrained its use with desktop hardware. Mobile hardware

has recently advanced to where it is possible to store and display volume datasets.

In this work, we present our novel approach to visualize volume data using mobile

hardware. Mobile hardware o↵ered us many unique interface possibilities compared to

deskop hardware because of their size, input possibilities and components. We decided

on an interface that uses the mobile hardware as an exploration tool to physically move

through volume data. We wanted the user to be able to “feel” the volume data by

placing the volume data in front of them. They would use the mobile hardware to slice

through this placed (virtual) volume. What would be displayed to them is the slice

of the volume data based on the mobile hardware’s position inside the virtual volume.

We wanted them to be able to view these slices interactively and in real-time to be

able to “feel” the three dimensionality of the volume data.

In order to implement this interface, we had to deal with two main challenges.

Firstly, How can we get the position of the mobile hardware? Secondly, How can

we render our slice of the volume data? To accomplish this we drew from di↵erent

areas of computer science. The two main areas were Augmented Reality (AR) and

Volume Rendering (Computer Graphics). In AR, it is imperative to know the device’s

position and orientation to correctly augment the user’s environment (as captured

by the device’s camera). This is typically accomplished by placing a visual marker

into the user’s environment and having the camera analyze it to get this position and

orientation. We use an Augmented Reality SDK (Vuforia) to get the mobile device’s

75

Figure 7.1: Our implemented interface concept that uses a visual marker to get the

mobile hardware’s position inside our virtual volume

position inside our virtual volume. This accomplishes our goal of “slicing” through the

virtual volume. To display our volume data we looked to Volume rendering which refers

to the techniques/algorithms used to visualize volume datasets. We used OpenGL ES

to to render our virtual volume. As explained in the Rendering Chapter, we use

this programming interface to interactively create/display slices of the virtual volume.

This required converting from di↵erent coordinate systems, starting with the real-world

coordinates of our marker tracker and ending with the texture coordinates of virtual

volume (OpenGL ES). Our implemented concept is shown in Figure 7.1. Before we

could evaluate the interface, we needed to select a volume dataset to display.

We chose the Visible Human Project dataset as our volume dataset to display with

our interface. This volume dataset is a collection of images taken at regular intervals

throughout a cadaver. It is commonly used to visualize the human anatomy. We

had hardware limitations that limited the amount of volume data we could render

and interact with. This led to us displaying the portion of Visible Human dataset

containing only the neural anatomy. With our dataset chosen, we set out to evaluate

76

our interface.

We decided to perform an explorative study to get feedback about the usability and

utility of our interface. We reached out to neural anatomy domain experts because of

their expertise with our neural anatomy volume data. We were able to recruit six

domain experts including four neural anatomy professors. We wanted domain expert

feedback because they would provide high quality feedback about the utility aspect

of our interface. We decided upon conducting a formal interview with each of our

six participants. This interview process consisted of having the participants observe

and use the interface and then asking them open-ended questions. The open-ended

questions were asked with strict wording and structure to allow us to collect feedback

about certain aspects of our interface, while allowing them the freedom to fully express

their thoughts. Our interface is a novel, early prototype so we didn’t want to limit the

direction of any possible thoughts they had about our interface. With our explorative

study design complete, we conducted our six participant evaluation.

The participants were in general agreement about di↵erent usability aspects of

our interface. All six participants found the interface easy to learn. Four of the six

participants found it intuitive to use. One commented on how it uses our natural

3D perception to browse the volume data. Five of the six participants found it easy

to physically browse the volume data. Only one participant found using the mobile

hardware to browse the data physically demanding. Participants seemed generally

positive about the X and Y axes resolution and no one mentioned anything about the

Z resolution. One main disadvantage that all six participants found with our interface

is that you can’t view the data from the front (Coronal) plane. They expressed how

they would like to be able to move through this plane which isn’t completely possible

because you have to keep the visual marker in view of the camera.

Our utility evaluation responses were mostly centered around education. Five of the

six participants believed it could be useful in teaching/education. The neural anatomy

professors commonly brought up how di�cult it is for students to understand the 3D

relationship between anatomical structures. This is because they are typically taught

these with 2D resources such as diagrams and brain slices. Three of the four neural

anatomy professors felt that this interface would be helpful for students to understand

the 3D aspect of anatomical structures. Some participants also mentioned how this

interface could be helpful for medical students to be exposed to volume data they would

likely to be seeing in medical practice at an early stage in their education.

77

7.1 Future Work

We believe there is much potential work that could be done with the interface presented

in this work. From the user evaluation, we found out that users would like more range

of interaction with the volume data. Right now they are limited by having to keep

the visual marker in view of the camera. One participant suggested having a interface

feature that rotated the volume. This would allow them to physically explore di↵erent

planes of the data, however, the problem of keeping the marker in the camera view

would still remain. Four of the six participants expressed that a having a second,

vertical visual marker could help gain more views of the volume data. This is an

interesting suggestion and could be implemented because Vuforia allows for multiple

markers. Along those lines, Vuforia has a feature called Extended Tracking. This

feature maps the environment around the marker using features in the environment.

Once the marker is out of view of the camera, Vuforia is able to keep tracking. We

briefly experimented with this feature, although our environment was not optimal. It

could be something to look into in the future as long as you have an environment with

unique features.

We were limited by available space in the GPU memory for which we could store

our virtual volume. Compression could be explored further in the future to store more

volume data in memory. Kalman filtering could also be explored for caching of the

volume data. We thought this could be useful because when the user is moving the

device in a certain direction, it is likely they will keep moving it in that direction. The

program could predict where the user is going and store that section of the volume

data into GPU memory.

Participants in our evaluation brought up a couple features that they could poten-

tially see being useful for our interface. All six participants brought up that labels could

be useful. Labelling anatomical structures would allow students to use this interface

earlier in their educational career (before they are taught the anatomical structures).

Two participants brought up adding some type of examination tool to the interface.

This could have “?” marks on certain structures and have the students fill them in.

Three of the participants said they would have preferred a pinch zoom, which likely

wouldn’t be hard to implement. As this was a novel, early prototype interface, we

believe there is much potential work that could be done around this interface. We were

pleased with how our interface turned out and are excited to see what the future could

hold for this type of interface and the di↵erent domains it could be used in.

78

Appendix A

Appendix

Video demonstration of our interface: https://www.youtube.com/watch?v=DNBosoSDKqs

A.1 Vertex Shader Code

#version 300 es

layout(location = 0) in vec2 a_Position;

layout(location = 1) in vec3 a_TextureCoordinates;

out vec3 v_TextureCoordinates;

void main()

{

v_TextureCoordinates = a_TextureCoordinates;

gl_Position = vec4(a_Position, 0.0, 1.0);

}

A.2 Fragment Shader Code

#version 300 es

precision mediump float;

in vec3 v_TextureCoordinates;

layout(location = 0) out vec4 fragmentColor;

uniform lowp sampler3D u_TextureUnit;

void main()

{

if (v_TextureCoordinates.z > 1.0 || v_TextureCoordinates.z < 0.0 ||

v_TextureCoordinates.x > 0.8 || v_TextureCoordinates.x < 0.25 ||

v_TextureCoordinates.y > 0.9 || v_TextureCoordinates.y < 0.3) {

fragmentColor = vec4(0.0,0.0,0.0,1.0);

}

else {

fragmentColor = texture(u_TextureUnit, v_TextureCoordinates);

79

}

}

A.3 Our tablet dimensions

Table A.1: Samsung Galaxy TabPRO Dimensions

2013 Samsung TabPRO 10.1
Height 243.1mm
Width 171.7mm
Depth 7.3mm
Weight 477g

A.4 3D Texture

Figure A.1: 3D texture object in OpenGL ES 3.0 and its required input parameters to
create such an object

80

A.5 User Evaluation Questionaire

Subject:

Stage 1: Introduction

- Introduction
- Context
- Purpose
- Schedule / Agenda / their questions at end
- Using recording - Ok?

Stage 2: Participant Background

What is your occupation at the university?

What is your age?

Do you work with visualised medical data?
- For example, MRI, X-ray, volumetric data

Do you own or regularly use a tablet computer?

- Do you use it at work?

- What do you use it for?

- Would you say you’re proficient at using one?

81

Stage 3: Demonstration
- Explain they can ask questions, tell me when you’re ready to move on

- Explain marker - orientation, pose, position in space

- Stand next to participant

- Start application

- Place application directly above marker (err on the side of too high)

- Explain that the volume is between 10cm and 30cm. Explain that above and below
this is black.

- Move application down into the volume and then back up. Do it again at a faster
speed.

- Move tablet to the front of the face. Tilt screen and show the eyes and nose. move
through with this tilted motion.

- Move tablet through the side of the volume.

- Show off the zoom in feature on some specific part of the brain.

- Show off the zoom out feature to get a view of the whole brain.

- Explain that the application needs the tablet camera to be able to see the marker
for it to work correctly.

- Show what happens when the marker loses tracking.

- Show how to reclaim tracking.

82

Stage 4: Utility Questions

Question: Could you see this interface being useful?
- How?

- Why?

- Use Case

- Problems with existing practices

- other datasets

83

Question: Can you see any advantages or disadvantages of this type of
interface?
- compared to other interfaces for viewing volumetric data
- step back to other datasets
- physically moving through the data

__

Stage 5: User use System

- Start application for them
- Hand them tablet
- Let them play with it
- Help if they get stuck

84

Stage 6: Usability Questions

Question: Talk me through what you got out of using the system?
- satisfactory
- enjoyable
- works way you want it to work
- recommend to a friend
- pleasant to use

85

Question: How easy was it to learn how to use this system?
- learn
- intuitive
- difficult?
- remember to use it
- became skillful at it

Question: How did you find the efficiency of the interface?
- Moving through the data
- Effort to use

86

Stage 7: Conclusion

Question: Can you think of any features you would like to see added in the
future?
- any features to take away or change?

Question: General Comments
- concept of slicing
- implementation
- procedure / experiment

87

References

Ayub, S., Bahraminisaab, A., and Honary, B. (2012). A sensor fusion method for smart phone orienta-
tion estimation. In Proceedings of the 13th Annual Post Graduate Symposium on the Convergence
of Telecommunications, Networking and Broadcasting, Liverpool.

Azuma, R. T. (1997). A survey of augmented reality. Presence, 6 (4), 355–385.

Baricevic, D., Lee, C., Turk, M., Hollerer, T., Bowman, D., et al. (2012). A hand-held AR magic lens
with user-perspective rendering. In Mixed and Augmented Reality (ISMAR), 2012 IEEE Interna-
tional Symposium on, 197–206. IEEE.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose, T. D. (1993). Toolglass and magic lenses:
the see-through interface. In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, 73–80. ACM.

Bornik, A., Beichel, R., Kruij↵, E., Reitinger, B., and Schmalstieg, D. (2006). A hybrid user interface
for manipulation of volumetric medical data. In 3D User Interfaces, 2006. 3DUI 2006. IEEE
Symposium on, 29–36. IEEE.

Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., and Ivkovic, M. (2011). Augmented
reality technologies, systems and applications. Multimedia Tools and Applications , 51 (1), 341–377.

Collins, J. P. (2008). Modern approaches to teaching and learning anatomy. BMJ , 337.

Craig, A., McGrath, R. E., and Gutierrez, A. (2011). Technical Note: Augmented Reality Software
Kits for Smart Phones.

Dahlstrom, E. and Brooks, D. C. (2014). with a foreword by Diana Oblinger. ECAR Study of Faculty
and Information Technology , 3–3.

Desjardins, F., van Oostveen, R., Muirhead, W., and Goodman, W. M. (2011). Tablet PCs and
reconceptualizing learning with technology: a case study in higher education. Interactive Technology
and Smart Education, 8 (2), 78–93.

Drebin, R. A., Carpenter, L., and Hanrahan, P. (1988). Volume rendering. In ACM Siggraph Computer
Graphics, Volume 22, 65–74. ACM.

Friedman, J. H. and Silverman, B. W. (1989). Flexible parsimonious smoothing and additive modeling.
Technometrics, 31 (1), 3–21.

Fröhlich, B. and Plate, J. (2000). The cubic mouse: a new device for three-dimensional input. In
Proceedings of the SIGCHI conference on Human factors in computing systems, 526–531. ACM.

Gallo, L., Placitelli, A. P., and Ciampi, M. (2011). Controller-free exploration of medical image data:
Experiencing the Kinect. In Computer-based medical systems (CBMS), 2011 24th international
symposium on, 1–6. IEEE.

88

Goble, J. C., Hinckley, K., Pausch, R., Snell, J. W., and Kassell, N. F. (1995). Two-handed spatial
interface tools for neurosurgical planning. Computer , (7), 20–26.

Gordon, I. and Lowe, D. G. (2006). What and where: 3D object recognition with accurate pose. In
Toward category-level object recognition, 67–82. Springer.

Gotow, J. B., Zienkiewicz, K., White, J., and Schmidt, D. C. (2010). Addressing challenges with
augmented reality applications on smartphones. InMobile Wireless Middleware, Operating Systems,
and Applications, 129–143. Springer.

Guthe, S., Wand, M., Gonser, J., and Straßer, W. (2002). Interactive rendering of large volume data
sets. In Visualization, 2002. VIS 2002. IEEE, 53–60. IEEE.

Ikits, M., Kniss, J., Lefohn, A., and Hansen, C. (2004). Volume rendering techniques. GPU Gems, 1.

Interactive, H. (2013). National Report: Students in Grades 4-12. Pearson Student Mobile Device
Survey 2013 , 39.

Kalkofen, D., Mendez, E., and Schmalstieg, D. (2007). Interactive focus and context visualization for
augmented reality. In Proceedings of the 2007 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, 1–10. IEEE Computer Society.

Kalkofen, D., Mendez, E., and Schmalstieg, D. (2009). Comprehensible visualization for augmented
reality. Visualization and Computer Graphics, IEEE Transactions on, 15 (2), 193–204.

Kalkofen, D., Reitinger, B. a., Risholm, P., Bornik, A., Beichel, R., Schmalstieg, D., and Samset, E.
(2006). Integrated medical workflow for augmented reality applications. In International Work-
shop on Augmented environments for Medical Imaging and Computer-aided Surgety (AMI-ARCS),
Copenhagen.

Kindlmann, G. (2002). Transfer functions in direct volume rendering: Design, interface, interaction.
Course notes of ACM SIGGRAPH .

Lacroute, P. and Levoy, M. (1994). Fast volume rendering using a shear-warp factorization of the
viewing transformation. In Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, 451–458. ACM.

Lang, P., Kusej, A., Pinz, A., and Brasseur, G. (2002). Inertial tracking for mobile augmented reality.
In Instrumentation and Measurement Technology Conference, 2002. IMTC/2002. Proceedings of
the 19th IEEE, Volume 2, 1583–1587. IEEE.

Lee, S. and Jeon, J. W. (2010). Evaluating performance of Android platform using native C for
embedded systems. In Control Automation and Systems (ICCAS), 2010 International Conference
on, 1160–1163. IEEE.

Lin, C.-M., Lin, J.-H., Dow, C.-R., and Wen, C.-M. (2011). Benchmark dalvik and native code for
android system. In Innovations in Bio-inspired Computing and Applications (IBICA), 2011 Second
International Conference on, 320–323. IEEE.

Looser, J., Billinghurst, M., and Cockburn, A. (2004). Through the looking glass: the use of lenses
as an interface tool for Augmented Reality interfaces. In Proceedings of the 2nd international
conference on Computer graphics and interactive techniques in Australasia and South East Asia,
204–211. ACM.

McLachlan, J. C., Bligh, J., Bradley, P., and Searle, J. (2004). Teaching anatomy without cadavers.
Medical education, 38 (4), 418–424.

89

Meißner, M., Pfister, H., Westermann, R., and Wittenbrink, C. (2000). Volume Visualization and
Volume Rendering Techniques. In EUROGRAPHICS2000. Citeseer.

Mendez, E., Kalkofen, D., and Schmalstieg, D. (2006). Interactive context-driven visualization tools
for augmented reality. In Proceedings of the 5th IEEE and ACM International Symposium on Mixed
and Augmented Reality, 209–218. IEEE Computer Society.

Milette, G. and Stroud, A. (2012). Professional Android Sensor Programming. Wrox Programmer to
Programmer. Wiley.

Nguyen, K. G. and Saupe, D. (2001). Rapid high quality compression of volume data for visualization.
In Computer Graphics Forum, Volume 20, 49–57. Wiley Online Library.

Nielsen, J. (1994). Usability engineering. Elsevier.

Noguera, J. M., Jiménez, J.-R., Ogáyar, C. J., and Segura, R. J. (2012). Volume Rendering Strategies
on Mobile Devices. In GRAPP/IVAPP, 447–452.

Ong, J. (2014). Report: android reached record 85% smartphone market share in Q2 (2014). Xiaomi
now fifth-largest vendor. The next web.

Patton, M. Q. (2008). Utilization-focused evaluation. Sage publications.

Purchase, H. C. (2012). Experimental human-computer interaction: a practical guide with visual
examples. Cambridge University Press.

Qi, W. and Martens, J.-B. (2005). Tangible User Interfaces for 3D Clipping Plane Interaction with
Volumetric Data: A Case Study. In Proceedings of the 7th International Conference on Multimodal
Interfaces, ICMI ’05, New York, NY, USA, 252–258. ACM.

Rigamonti, D. D., Bryant, H. J., Bustos, O., Moore, L., and Ho↵man, H. M. (2000). Implementing
anatomic visualizer learning modules in anatomy education. In the Proceedings of The Third Visible
Human Project Conference.

Rodler, F. F. (1999). Wavelet based 3D compression with fast random access for very large volume
data. In Computer Graphics and Applications, 1999. Proceedings. Seventh Pacific Conference on,
108–117. IEEE.

Rose, S., Potter, D., and Newcombe, M. (2010). Augmented Reality: A Review of available Augmented
Reality packages and.

Sabatini, A. M. (2006). Quaternion-based extended Kalman filter for determining orientation by
inertial and magnetic sensing. Biomedical Engineering, IEEE Transactions on, 53 (7), 1346–1356.

Slabaugh, G. G. (1999). Computing Euler angles from a rotation matrix. Retrieved on August , 6 (2000),
39–63.

Son, K.-C. and Lee, J.-Y. (2011). The method of android application speed up by using NDK.
In Awareness Science and Technology (iCAST), 2011 3rd International Conference on, 382–385.
IEEE.

Turner III, D. W. (2010). Qualitative interview design: A practical guide for novice investigators.
The qualitative report , 15 (3), 754–760.

Van Krevelen, D. and Poelman, R. (2010). A survey of augmented reality technologies, applications
and limitations. International Journal of Virtual Reality , 9 (2), 1.

Vaterlaus, J. M. and Higginbotham, B. J. (2011). Qualitative program evaluation methods. In The
Forum for Family and Consumer Issues, Volume 16.

90

Viega, J., Conway, M. J., Williams, G., and Pausch, R. (1996). 3D magic lenses. In Proceedings of
the 9th annual ACM symposium on User interface software and technology, 51–58. ACM.

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2008). Pose track-
ing from natural features on mobile phones. In Proceedings of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, 125–134. IEEE Computer Society.

Waterston, S. and Stewart, I. (2005). Survey of clinicians’ attitudes to the anatomical teaching and
knowledge of medical students. Clinical Anatomy , 18 (5), 380–384.

Zamora, G., Wilson, M., Mitra, A., and Thoma, G. (2000). An innovative web-based system for high
lossless compression and fast, interactive transmission of visible human color images. The Third
Visible Human. In Conference Proceedings. 2000; CDROM.

Zickuhr, K. and Rainie, L. (2014). E-reading rises as device ownership jumps. Pew Internet Research
Project .

91

