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Why Rotated Optical Feedback?

 Fundamental dynamics

 Rich delay-dynamical system
 Interesting parallels with 

optoelectronic systems
 Insight into laser properties

 Applications

 Chaos communication
 Atomic clocks
 Optical digital logic
 Telecommunications and 

optical data storage
 Random number generation



Mutual Coupling via
Orthogonal Optical Injection

 Both lasers naturally operate in TE mode (horizontal polarization)
 TE mode of each laser rotated to TM before injection
 Selective mutual coupling via TE to TM modes only



Experimental Schematic



Physical Experiment



Mutually Coupled Lasers
Experimental Configuration

 Both lasers are SDL-5401, 
temperature stabilized. 

 Edge-emitting laser with 
dominant TE mode (horizontal 
polarization).

 Both nominal wavelengths 
λ=818 ± 0.1 nm.

 Both current thresholds           
Ith = 18.5 mA.

 U-shaped cavity for ease of 
alignment and similar 
detection path lengths.

 Cavity length L = 1.67 m

 One-way photon time of 
flight τ = 5.57 ns

 TE → TM mutual coupling 
only, no secondary reflections



Experimental Results: Squarewaves

 Both lasers exhibit 
squarewaves in both modes.

 For each individual laser, 
modes are in antiphase.

 Makes sense physically.
 Damped oscillations appear 

at onset of pulse.
 Period is twice the one-way 

time-of-flight between the 
lasers, 2τ, also the cavity 
roundtrip time.

 Strong coupling (48.7%).
 I = 38.88 mA for both.

Sukow et al., Phys. Rev. E 81 025206 (2010).



Experimental Results II: Asymmetry
 Squarewaves still appear 

in both modes, but with 
plateaus of different 
durations

 Modes remain in antiphase
within each individual laser

 Horizontal mode of each 
laser leads the vertical 
mode of the other by τ

 Total period remains 2τ

 I = 38.88 mA for both
 Coupling is weaker.



Asymmetry is Smoothly Tunable
 What governs the duty cycle?

 Plateaus change duration 
smoothly as a function of 
several experimentally 
accessible parameters: 
coupling strength, alignment, 
and laser pump currents.

 Diagram at right shows 
variation with coupling.

 Implies squarewaves will be 
lost if coupling is too weak.

 Do initial conditions matter?



Asymmetry and Pump Current

 Higher pumps produce longer plateaus in TE mode of that laser.
 Squarewaves are lost if pump currents are too dissimilar.



Mathematical Model



Mutual Coupling Model
 Rate equations for Eh, Ev, 

and Z for both lasers

 Mutual coupling only via 
injection of Eh from each 
laser into Ev of the other

 Eh is fundamental lasing 
mode if η = 0.

 Noise terms ξ added in 
field equations.

 Material parameters 
assumed to be the same.
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Simulations
 Numerical simulations reproduce squarewaves, with all the 

expected timing relationships, and tunable asymmetry.
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 The Problem: simulated square waves decay to steady states.



Noise and Squarewave Stability

 Blue, green, and red are in order of increasing noise
 Blue and green decay into pure mode
 Red appears to be stable
 Suggests square waves may be supported by noise

Williams, Garcia-Ojalvo, and Roy, Phys Rev. A 55 2376 (1997).
Kuske, Cordillo, and Greenwood, J. Theor. Biol. 245, 459 (2007).



Steady States



Steady States

 Let 
then
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Steady States: Two Varieties

 Pure-Mode Solutions

 One laser dominates 
completely.

 For dominant laser, TE is on 
and TM is off.  Opposite 
case for the other laser.

 Two such solutions.

 Mixed-Mode Solutions

 Neither laser dominates 
completely.

 All four optical fields are 
nonzero simultaneously.

 The steady states depend on the coupling relative to the 
pumping ratio.



Mixed-Mode Steady States
 Neither laser dominates completely.  All four fields contribute.
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 These mixed-mode steady states are possible for
r < P1/P2 (ratio less than 1), and

r > P2/P1 (ratio greater than 1)
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Pure Mode Steady States

 If Laser 1 is dominant,

 Then with                      ,

 If Laser 2 is dominant,

 Then 
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 Pure mode steady states are possible for r > P1/P2 (ratio < 1)



Steady States

0.1  ,5.0  ,03.0  ,2  ,3500  , 150 21 ====== PPT βατ

Laser 1 Laser 2

Black = TE mode, Red = TM mode



Bifurcation Diagram: One Laser

 Mixed mode emerges 
from solitary state, 
bifurcates to limit cycle,
then strange attractor.

 Pure polarization mode 
solution appears near 
η = 0.07.



Experimental Results
Average Modal Powers vs. Coupling

 Mixed-mode steady state up to 0.09 roundtrip power transmission
 Oscillatory or pulsating up to 0.186
 Sudden jump to squarewaves at 0.213
 Complex dynamics above 0.267
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Steady States: Both Lasers
 Pure mode solution 1

 Pure mode solution 2

 Mixed mode bifurcation points 
are solid dots at:

η =0.047 (r = ½)
η =0.095 (r =2)

 Pure modes coexist if η is 
sufficiently large.
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Pure Modes
Existence and Coexistence

 Suppose P1 is fixed.  Then the 
pure modes coexist over a 
range of P2 :

 Pure modes exist if

 If this condition is met, it is 
possible for either pure 
mode to exist individually, 
or both may coexist 
simultaneously, depending 
on operating conditions.
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Pure Mode Coexistence: 
Experimental Results

 Laser 1 current fixed:
38 mA

 Laser 2 current varies

 Pure modes have region 
of coexistence where I2 is 
similar to I1

 Square wave solutions 
only observed where pure 
modes coexist.

 Many other complex 
solutions also coexist Power transmission 57.6%



Pure Mode Coexistence:
Experimental Feedback Dependence

 I1 fixed at 38 mA

 Plot shows currents I2
where pure modes 
coexist, depending on 
coupling strength.

 Weaker coupling leads 
to a smaller coexistence 
region of pure modes, 
to a nonzero minimum.
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Summary
 EELs with mutual, selective, rotated optical coupling display tunable, 

asymmetric square waves, with antiphase relations between waves of 
the same laser, and fixed timing relations with the other laser.  

 Simulations reproduce experimentally observed features, but appear 
to be unstable. Noise may play a role in determining the stability 
properties of square waves.

 This system possesses pure-mode and mixed-mode steady states, 
which are observed experimentally and theoretically.  Square wave 
solutions appear only where both pure modes coexist. 

 Further study is required to fully understand the square wave solutions.  
Is noise is a requirement?  Can simpler analytic models offer insight 
and reproduce the same effects?

 More square waves in a future talk this morning!
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