Square wave solutions in semiconductor lasers with mutual rotated optical coupling

David Sukow

IFISC, Universitat de les Illes Balears, Palma de Mallorca, Spain Washington and Lee University, Lexington, Virginia USA

9 November 2010

Journées DYCOEC: Synchronization, control and bio-dynamics Organisées par l'Institute FEMTO-ST / Optique – Université de Besançon

Acknowledgments

Collaborators and Institutions

- Washington and Lee University, Lexington,
 Virginia and IFISC, Palma
- Tom Gavrielides, European Office of Aerospace Research & Development, London
- Thomas Erneux

Université Libre de Bruxelles, Bruxelles

Support

- US National Science Foundation
- Fonds National de la Recherche Scientifique (FNRS) and the InterUniversity Attraction Pole
- Washington and Lee University

Institut de Física Interdisciplinària i Sistemes Complexos

Acknowledgments

 Undergraduate student research groups

Outline

- EELs with selective orthogonal optical coupling
 - Experimental apparatus
 - Squarewaves and characteristics
- Mathematical model
 - Simulations
 - Noise effects
- Steady states
 - Mixed modes and pure modes
 - Existence and coexistence properties

Conclusion

Why Rotated Optical Feedback?

Fundamental dynamics

- Rich delay-dynamical system
- Interesting parallels with optoelectronic systems
 - Insight into laser properties

Applications

- Chaos communication
- Atomic clocks
- Optical digital logic
- Telecommunications and optical data storage
- Random number generation

Mutual Coupling via Orthogonal Optical Injection

- Both lasers naturally operate in TE mode (horizontal polarization)
- TE mode of each laser rotated to TM before injection
- Selective mutual coupling via TE to TM modes only

Experimental Schematic

Physical Experiment

Mutually Coupled Lasers Experimental Configuration

- Both lasers are SDL-5401, temperature stabilized.
 - Edge-emitting laser with dominant TE mode (horizontal polarization).
- Both nominal wavelengths
 λ=818 ± 0.1 nm.
- Both current thresholds
 I_{th} = 18.5 mA.

- U-shaped cavity for ease of alignment and similar detection path lengths.
- Cavity length L = 1.67 m
 - One-way photon time of flight $\tau = 5.57$ ns
 - TE \rightarrow TM mutual coupling only, no secondary reflections

Experimental Results: Squarewaves

- Both lasers exhibit squarewaves in both modes.
- For each individual laser, modes are in antiphase.
- Makes sense physically.
- Damped oscillations appear at onset of pulse.
- Period is twice the one-way time-of-flight between the lasers, 2τ, also the cavity roundtrip time.

Strong coupling (48.7%). I = 38.88 mA for both.

Sukow et al., Phys. Rev. E 81 025206 (2010).

Experimental Results II: Asymmetry

- Squarewaves still appear in both modes, but with plateaus of different durations
- Modes remain in antiphase within each individual laser
- Horizontal mode of each
 laser leads the vertical
 mode of the other by τ
- Total period remains 2τ
- I = 38.88 mA for both
- Coupling is weaker.

Asymmetry is Smoothly Tunable

What governs the duty cycle?

- Plateaus change duration smoothly as a function of several experimentally accessible parameters: coupling strength, alignment, and laser pump currents.
- Diagram at right shows variation with coupling.
- Implies squarewaves will be lost if coupling is too weak.
- Do initial conditions matter?

Asymmetry and Pump Current

Higher pumps produce longer plateaus in TE mode of that laser.
Squarewaves are lost if pump currents are too dissimilar.

Mathematical Model

Mutual Coupling Model

$$\frac{dE_{1}^{h}}{ds} = (1+i\alpha)Z_{1}E_{1}^{h} + \xi_{1}^{h}$$

$$\frac{dE_{1}^{v}}{ds} = (1+i\alpha)k(Z_{1}-\beta)E_{1}^{v} + \eta E_{2}^{h}(s-\tau) + \xi_{1}^{v}$$

$$T\frac{dZ_{1}}{ds} = P_{1} - Z_{1} - (1+2Z_{1})\left(\left|E_{1}^{h}\right|^{2} + \left|E_{1}^{v}\right|^{2}\right)$$

$$\frac{dE_{2}^{h}}{ds} = (1+i\alpha)Z_{2}E_{2}^{h} + \xi_{2}^{h}$$

$$\frac{dE_{2}^{v}}{ds} = (1+i\alpha)k(Z_{2}-\beta)E_{2}^{v} + \eta E_{1}^{h}(s-\tau) + \xi_{2}^{v}$$

$$T\frac{dZ_{2}}{ds} = P_{2} - Z_{2} - (1+2Z_{2})\left(\left|E_{2}^{h}\right|^{2} + \left|E_{2}^{v}\right|^{2}\right)$$

Chen and Liu, Appl. Phys. Lett. **50** 1406 (1987) Heil, Uchida *et al.*, Phys Rev. A **68**, 033811 (2003) Gavrielides *et al.*, Proc SPIE **6115** (2006)

- Rate equations for E^h, E^v,
 and Z for both lasers
- Mutual coupling only via injection of *E^h* from each laser into *E^v* of the other
- **E**^h is fundamental lasing mode if $\eta = 0$.
- Noise terms ξ added in field equations.
- Material parameters assumed to be the same.

$$k = g_1 / g_2, \quad \eta = kr\tau_1$$

$$r = \frac{\eta^2}{\beta^2 k^2 (1 + \alpha^2)}, \quad \beta = \frac{1}{2} \left(\frac{g_1 \tau_1}{g_2 \tau_2} - 1 \right) > 0$$

Simulations

Numerical simulations reproduce squarewaves, with all the expected timing relationships, and tunable asymmetry.

The Problem: simulated square waves decay to steady states.

Noise and Squarewave Stability

- Blue, green, and red are in order of increasing noise
- Blue and green decay into pure mode
- Red appears to be stable
- Suggests square waves may be supported by noise

Williams, Garcia-Ojalvo, and Roy, Phys Rev. A **55** 2376 (1997). Kuske, Cordillo, and Greenwood, J. Theor. Biol. **245**, 459 (2007).

Steady States

Steady States

$$0 = (1 + i\alpha)Z_{1}E_{1}^{h}$$

$$0 = (1 + i\alpha)k(Z_{1} - \beta)E_{1}^{\nu} + \eta E_{2}^{h}$$

$$0 = P_{1} - Z_{1} - (1 + 2Z_{1})(|E_{1}^{h}|^{2} + |E_{1}^{\nu}|^{2})$$

$$0 = (1 + i\alpha)Z_{2}E_{2}^{h}$$

$$0 = (1 + i\alpha)k(Z_{2} - \beta)E_{2}^{\nu} + \eta E_{1}^{h}$$

$$0 = P_{2} - Z_{2} - (1 + 2Z_{2})(|E_{2}^{h}|^{2} + |E_{2}^{\nu}|^{2})$$

Let
$$E_i^{\nu,h} = A_i^{\nu,h} e^{i\Phi_i^{\nu,h}}$$

then

$$Z_{i} = 0$$

$$\tan\left(\Phi_{2}^{h} - \Phi_{1}^{\nu}\right) = \tan\left(\Phi_{1}^{h} - \Phi_{2}^{\nu}\right) = \alpha$$

$$A_{1}^{\nu^{2}} = rA_{2}^{h^{2}}, \qquad A_{2}^{\nu^{2}} = rA_{1}^{h^{2}}$$

$$A_{1}^{h^{2}} = \frac{P_{1} - rP_{2}}{1 - r^{2}}, \qquad A_{2}^{h^{2}} = \frac{P_{2} - rP_{1}}{1 - r^{2}}$$

$$r = \frac{\eta^2}{\beta^2 k^2 (1 + \alpha^2)}$$

Steady States: Two Varieties

Pure-Mode Solutions

- One laser dominates completely.
- For dominant laser, TE is on and TM is off. Opposite case for the other laser.
- Two such solutions.

Mixed-Mode Solutions

- Neither laser dominates completely.
- All four optical fields are nonzero simultaneously.

The steady states depend on the coupling relative to the pumping ratio.

Mixed-Mode Steady States

Neither laser dominates completely. All four fields contribute.

$$E_1^h \neq 0, \ E_1^\nu \neq 0, \ E_2^h \neq 0, \ E_2^\nu \neq 0$$

Decomposing with $E_i^{v,h} = A_i^{v,h} e^{i\phi_i^{v,h}}$

$$A_{1}^{\nu^{2}} = rA_{2}^{h^{2}}, \qquad A_{2}^{\nu^{2}} = rA_{1}^{h^{2}}$$
$$A_{1}^{h^{2}} = \frac{P_{1} - rP_{2}}{1 - r^{2}}, \qquad A_{2}^{h^{2}} = \frac{P_{2} - rP_{1}}{1 - r^{2}}$$

$$r = \frac{\eta^2}{k^2 \beta^2 \left(1 + \alpha^2\right)}$$

These mixed-mode steady states are possible for

 $r < P_1/P_2$ (ratio less than 1), and

 $r > P_2/P_1$ (ratio greater than 1)

Sukow et al., Proc. SPIE. 6997 (2008).

Pure Mode Steady States

If Laser 1 is dominant,

$$E_1^{\nu} = E_2^h = 0$$

 $Z_1 = 0$
Then with $E_i^{\nu,h} = A_i^{\nu,h} e^{i\phi_i^{\nu,h}}$,
 $|E_1^h| = \sqrt{P_1}$
 $\tan\left(\Phi_1^h - \Phi_2^\nu\right) = \alpha$
 $k^2(Z_2 - \beta)^2(1 + \alpha^2)A_2^{\nu^2} = \eta^2 P_1$
 $A_2^{\nu^2} = \frac{P_2 - Z_2}{1 + 2Z_2} \ge 0$

If Laser 2 is dominant, $E_{2}^{\nu} = E_{1}^{h} = 0$ $Z_{2} = 0$ Then $\left|E_{2}^{h}\right| = \sqrt{P_{2}}$ $\tan\left(\Phi_{2}^{h}-\Phi_{1}^{\nu}\right)=\alpha$ $k^{2}(Z_{1}-\beta)^{2}(1+\alpha^{2})A_{1}^{\nu^{2}}=\eta^{2}P_{2}$ $A_1^{\nu^2} = \frac{P_1 - Z_1}{1 + 2Z_1} \ge 0$

Pure mode steady states are possible for $r > P_1/P_2$ (ratio < 1)

Laser 1

Laser 2

Black = TE mode, Red = TM mode

 $T = 150, \tau = 3500, \alpha = 2, \beta = 0.03, P_1 = 0.5, P_2 = 1.0$

Bifurcation Diagram: One Laser

- Mixed mode emerges from solitary state, bifurcates to limit cycle, then strange attractor.
- Pure polarization mode solution appears near $\eta = 0.07$.

Experimental Results Average Modal Powers vs. Coupling

- Mixed-mode steady state up to 0.09 roundtrip power transmission
- Oscillatory or pulsating up to 0.186
- Sudden jump to squarewaves at 0.213
- Complex dynamics above 0.267

Steady States: Both Lasers

Pure mode solution 1

$$A_1^h = 0$$
 and $A_2^h = \sqrt{P_2}$

Pure mode solution 2

 $A_1^h = \sqrt{P_1} \text{ and } A_2^h = 0$

Mixed mode bifurcation points are solid dots at:

$$\eta$$
 =0.047 (r = 1/2)
 η =0.095 (r =2)

 Pure modes coexist if η is sufficiently large.

Pure Modes Existence and Coexistence

Pure modes exist if

 $\eta^2 \ge k^2 \beta^2 \left(1 + \alpha^2 \right)$

If this condition is met, it is possible for either pure mode to exist individually, or both may coexist simultaneously, depending on operating conditions. Suppose P_1 is fixed. Then the pure modes coexist over a range of P_2 :

$$P_{2 \text{ upper}} = \frac{\eta^2}{k^2 \beta^2 (1 + \alpha^2)} P_1$$

$$P_{2\,\text{lower}} = \frac{1}{P_{2\,\text{upper}}}$$

Pure Mode Coexistence: Experimental Results

Bifurcation Diagram for Short-Cavity System for Varying L2 Current (L1 Current: 38.00 mA

Pure Mode Coexistence: Experimental Feedback Dependence

Summary

- EELs with mutual, selective, rotated optical coupling display tunable, asymmetric square waves, with antiphase relations between waves of the same laser, and fixed timing relations with the other laser.
- Simulations reproduce experimentally observed features, but appear to be unstable. Noise may play a role in determining the stability properties of square waves.
- This system possesses pure-mode and mixed-mode steady states, which are observed experimentally and theoretically. Square wave solutions appear only where both pure modes coexist.
- Further study is required to fully understand the square wave solutions. Is noise is a requirement? Can simpler analytic models offer insight and reproduce the same effects?
- More square waves in a future talk this morning!