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Abstract

Data Snooping is often suspected when effective technical analysis rules are found or

presented. It is difficult to tell if a result is due to data snooping, so evaluating technical

analysis rules often boils down to detecting data snooping and if it has invalidated the

results. Herein we look at several algorithms designed to increase (risk–adjusted) returns

for investors, and several techniques for detecting or compensating for data snooping.

We find no easy answer to detecting data snooping. Many of the methods we look at

are useful, but there is no known way to get around sparse data and the unrepeatable

nature of investment decisions. We conclude that data snooping bias is a persistent risk

and it is unlikely that there is any effective single solution to the problem. The best that

we can do is be aware of the risk of data snooping and to report how we have dealt with

the risk as part of our analysis.
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Chapter 1

Introduction

1.1 What is Data Snooping?

snoop verb

1. investigate, explore, have a good look at, prowl around, nose around,

peer into. He’s been snooping around her hotel.

2. spy, poke your nose in, nose, interfere, pry (informal). Governments have

been known to snoop into innocent citizens’ lives.

Data Snooping is when the data that are used to discover models are used to evaluate

those same models, or when models are generated continuously until one that fits the data

is found. Alternatively it is when researchers use the results of a previous experiment to

design the next using the same data set, and report the results of the final experiment.

They have chosen to “go with the data”.

Data Snooping is particularly hard to avoid in finance where there is a strictly limited

set of data for any given period and it is not possible, generally, to go and discover more

from exactly the same generating process.

When data are snooped a model is found that, for some measure, is different from

what would be expected under the Efficient Market Hypothesis.

Data Snooping appears in different guises, including the following:

Over Fitting Given enough parameters in a model, it may be possible that any

pattern of returns can be fitted (i.e., over fitted) with arbitrary accuracy.

1
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Repeated Experimenting When a researcher keeps trying different models until

one is found that fits the data to hand. For example in “A Classic Case of

Data Snooping for Classroom Discussion” Crack (1999) (discussed in detail

in section 3). A parameter is adjusted until the results are “statistically

significant”.

Model Extension Using results from previous experiments to guide the choice

of models and parametrisations in new experiments. For example there are

many studies and theories that relate stock return to firm size (for example

Ferguson and Shockley (2003)). It is unclear if there is a genuine economic

relationship or if it is a simple observation. In these cases, once one paper has

made the observation other researches have studied that same effect (Lo and

MacKinlay, 1990).

1.2 Why Data Snooping Matters

In economics generally, and finance specifically, there is limited scope for controlled ex-

periments. So there is a great deal of reliance on statistical analysis (Lo and MacKinlay,

1990). There are limited financial data available however, and because what there is

is studied very closely and often, as Lo and MacKinlay, pp 432 put it “the axioms of

classical statistical analysis are violated routinely”. The researcher has very little choice

but to proceed and make do with what there is.

For example Faber (2009) published a market timing algorithm claiming a marked

decrease in volatility and a (seemingly) significant improvement in mean return. Faber

utilised a simple two–part rule: a 200–day moving average versus the S&P500 index

evaluated on the last day of the month. If the index is above the moving average (at the

end of the month) buy the index, else hold cash. The article is (as of June 2011) ranked

as the 3rd most downloaded article on the SSRN network where the on-line version resides

(more than 73,000 downloads). So it has made a mark, but is it true?

It does seem too good to be true that by utilising such a simple algorithm an improve-

ment in performance is readily available. On the face of it it contravenes the Efficient

MCom. thesis: 2010 2 Worik Stanton
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Market Hypothesis and makes most modern introductory finance textbooks obsolete.

If Faber’s results are due to data snooping then we need to know before we act on

the advice. If Faber has found a true property of financial markets then perhaps the

authors of introductory textbooks on finance need to reinterpret their opinions about the

feasibility of market timing. Either way it surely maters. We will look closely at Faber’s

results in section 4.

1.3 Our Contribution

We take a fresh look at the problem of data snooping. We use neighbourhood analysis

described in section 2.5) to look for signs of data snooping. We also take a close look at the

application of statistical analysis and its role in detecting or facilitating data snooping.

We utilise three published studies to test our approaches. The first (Crack (1999)

in section 3) is an example of data snooping that we use to test our tools. The other

two studies (Faber (2009) and Sullivan, Timmermann, and White (1999)) are both in

their own ways classic papers and we subject them to closer study than has been done

previously.

In the case of Sullivan et al. (1999) there is an algorithm presented to avoid data

snooping. The algorithm has been used in many following papers. By applying different

techniques to detect data snooping we cast doubt on the efficacy of the algorithm in

Sullivan et al. (1999). We note that the algorithm used by Sullivan et al. (1999) is not

applicable to the non–stationary data they apply it to. We also find that the experiments

presented in that paper are not fully reproducible.

In our application of statistical analysis we find and present a hitherto unnoticed

weakness in the applicability of common statistical techniques to time series of financial

returns. We doubt that financial returns are actually sampled from a random distribution.

Whilst appearing random they are, perhaps, devoid of useful information, but they are

not, generally, randomly sampled. (See section 2.3.7).
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Chapter 2

Data Snooping Tools

In this section we describe some tools that may be useful in detecting or countering

data snooping, and we look at the decision criteria that must be met to use these tools.

Decision criteria are the criteria that we use to decide if a rule is data snooping or not.

For example if we judge a technical analysis rule by statistical significance using a t–test

we may decide to reject as valid rules where the p–value is less than 0.05. In that case

p ≤ 0.05 is a decision criterion.

Before using any tests we must first reproduce the results of the rule on the data where

the author claims the results. If we can succeed in that step we proceed to applying the

rules we outline in this section.

Before we apply the tools we should ask “what results do we expect?”. We can then

apply the tools and compare the results to our prior expectations

We then collate the results from applying the tools and draw our conclusions about

data snooping. None of the methods we discuss here are definitive and all require judge-

ment. It is not human nature to accept that a result that has been achieved through

Figure 2.1: Detecting Data Snooping

much labour is in error, especially if success is pleasing. Effective technical analysis rules

(usually) take a lot of effort to find and if they are truly effective are very pleasing. So

5



August 14, 2013

there are strong incentives to accept the results of a technical analysis rule and to deny

that it is data snooping. The point of setting decision criteria is to move as much human

judgement as possible to before rule discovery, where it can be more dispassionate. A dis-

advantage of creating decision criteria is that it is not possible to foresee every eventuality

and the criteria will tend to be inflexible.

Satisfying a decision criterion is not proof that the result is not due to data snooping,

and failing is not proof that it is. Data Snooping is an unavoidable consequence of the

limits to the data available to researchers of financial time series. A rule with strong

predictive power will be discovered/created along with spurious rules that are due to

data snooping. Tests and criteria for them as outlined in this section are not magic or

perfect. They serve to “load the dice” and will filter out some of the more egregious

examples of data snooping.

Objective decision criteria cannot be tightly defined until the nature of the actual

experiment to be conducted is known. But a set of criteria is outlined below, where

possible, for each rule in section 2.1, following.

2.1 Summary of Tools

What tools have been used to try to identify data snooping? Each of the following is

introduced and then discussed in detail in the following sections.

Reproducibility If a claim that a strategy produces an excess return cannot be in-

dependently verified by another researcher repeating the experiment then there is

nothing more that can be done.

Statistical Significance It is not enough to show that a strategy produces an excess

return or a better Sharpe ratio than some benchmark. If the performance is sta-

tistically significant then it is more credible, and more likely that the performance

can be repeated.

Holdouts Partition the data set into clearly defined periods, use one set for developing

a model and another set for testing it. A test utilising holdouts is often called an

“out of sample” test.
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Neighbourhood Analysis Check that a model developed on a set of data is still nearly

as good when its parameters are changed slightly. That is, is it robust? Small

changes in a model’s parameters define a “neighbourhood” around that model. If

a good model is truly a model of the underlying data generating process then it is

likely that other models in a close neighbourhood are also good.

Other Markets Use data from one market to develop a model and data from another

market to test it. If a model is due to data snooping it will work for the market it

was developed for and is unlikely to work on others.

Story Telling Is there an economic reason why a model should work? This might be a

risk-based argument, or one based on the psychology of market participants.

Feasibility If a researcher ignores transaction costs, liquidity, risk aversion, taxes or

other impediments often very interesting looking technical analysis algorithms can

be found1. A researcher may be concentrating on returns while ignoring increased

volatility. While not strictly a data snooping issue in itself many algorithms found

by data snooping can be discarded once simple feasibility considerations are taken

into account e.g., Trethewey and Crack (2010).

2.2 Reproducibility

The first step in examining a technical analysis rule for data snooping is to reproduce

its claimed results. If the description of a rule is to be of any use or interest to us it

must contain enough information, or reference enough information, to reproduce in a

simulation the properties claimed. This is an elementary point but it is relevant. For

example, we found a strategy in a paper published in a reputable journal (Sullivan et al.,

1999) that we could not reproduce. (See section 5.6.6). Similarly, Tajaddini and Crack

(2012) were unable to reproduce results from a paper published in a respectable journal.

1The computer science/artificial intelligence literature is a rich source of such strategies. For example
Atsalakis and Valavanis (2009) conclude that the Efficient Market Hypothesis is under threat using a
simulation of trading (using neural networks), but no allowance is made for transaction costs.
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2.3 Statistical Significance

The level of statistical significance is the probability of rejecting a true null hypothesis.

That is, the probability of making a making a Type I Error (Porkess, 2004). Before com-

mencement of an experiment a significance level is specified along with a null hypothesis

and a statistical test. At its conclusion the results of the experiment are evaluated using

the test. If the test says that the probability of making a mistake by rejecting the null

hypothesis being true is less than the level of significance, then the null hypothesis is

rejected.

Economic significance without statistical significance cannot be easily distinguished

from coincidence. A technical analysis rule that results in higher mean return may be due

to the inclusion of an abnormal result, an error or an extremely rare event that should

not be modeled2. It may be a coincidence.

For example take the following two synthetic return series:

N X1 X2

1 0.629 0.533

2 0.803 0.921

3 0.533 3.000

4 0.981 0.993

5 0.222 0.190

6 0.565 0.742

7 0.997 0.308

8 0.654 0.379

9 0.054 0.087

10 0.671 0.988

The mean of X1 is 0.6109 and that of X2 is 0.8141. On the face of it X2 has a

higher mean than X1. Whilst the raw means are different, is the difference statistically

significant?

A t–test (using the built in t–test in the R statistical package version 2.11.1) returns

2A “...rare event that should not be modeled” is a “Black Swan”, see Taleb (2007).
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a p–value of 0.484. At conventional levels of significance the null hypothesis that the

means are the same cannot be rejected.

The data for both X1 and X2 were sampled from a uniform random distribution

between 0 and 1. Then the third number in X2 was replaced with 3. (A true outlier. It

is not possible for the number 3 to be in a series using this underlying data generation

process, we discuss the definition of outliers further in section 2.9.1).

The relevance to data snooping is that technical analysis rules that pick out an outlier

by chance will have a higher mean return. This can be uncovered with a simple statistical

test3.

2.3.1 Weaknesses of Statistical Significance

Although useful, statistical significance, and statistical tests more generally, have weak-

nesses. Whilst it is true that economic significance without statistical significance has

doubtful utility and is likely to be the result of data snooping, it is also true that statistical

significance does not necessarily imply economic significance. (McCloskey, 1985).

The mean returns of firm A may be different from those of firm B, with p–value

approaching zero, but still they may be very close in an economic sense. The fact the

mean returns are different does not imply that each observation is higher, or there is an

exploitable pattern in them.

The usual tests for statistical significance are based on the probability that an obser-

vation arose by chance. If an observation has been searched for, by repeatedly trialing dif-

ferent models and parametrisations, the assumption that the observation arose by chance

is not true, so the statistical significance of the (searched for) result is exaggerated. This

search process is one cause of data snooping.

Also if an algorithm can be shown to be affective at extracting excess profits yet these

profits cannot be shown to be statistically significant, one must be sure to check that the

significance tests are valid and relavent. It is possible to be pleased with profit whilst

frustrated with the data. Statistical tests often depend on assumptions made about the

3In fact the t–test is not strictly applicable. The underlying data are not normal and N is only 20.
The data are independent though. We look more closely at the assumptions of statistical tests in section
2.3.3.
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data, such as the distribution or that observations are independent. These assumptions

may well turn out to be false (we look more closely at the assumptions in section 2.3.3).

2.3.2 Null Hypotheses

Since statistical significance has its meaning in relation to the null hypothesis, it is im-

portant to frame a null hypothesis that is meaningful. The truth value of the null has

one binary bit of information and all its meaning is carried in the expression of the null.

It can be difficult to frame a useful null.

The procedure of formulating and testing a null hypothesis is not universally accepted

as best practise. For instance Armstrong (2007) argues that “An alternative [to null hy-

potheses] is to focus on the testing of two or more reasonable competing hypotheses. Such

testing can be done without the need for significance tests”. Alternatively, Armstrong

suggests in the same paper, using estimates and confidence intervals4. Although this is a

subtly different approach it uses the same parametric assumptions as significance tests.

2.3.3 Tests

There are many different tests for significance. They vary widely in the sets of assump-

tions about the data being tested and in the amount of computation required. The two

tests that we will use the most are the standard t–test and the Wilcoxon–Mann test.

We use one–sided and two–sided versions of the tests. When comparing a random

value to a fixed value we use a one–sided test and when comparing two random variables

we use two–sided tests. For example in section 5.8 we test the returns from technical

analysis rules to see if they are greater than zero (a one–sided test) or if they are different

from a benchmark (a two–sided test).

With two–sided tests we can either test the two random variable’s means (unpaired

tests) or their levels (paired tests). For instance in section 4.3.2 we compare the volatility

of the returns of a technical analysis rule to that of an index. We compare both the mean

volatility over the experimental period with an unpaired test and the volatilities for each

period against each other with a paired test.

4But it seems to us that using confidence intervals imply using significance tests.
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We will use Generalised Methods of Moments (GMM) in section 3 as that is what

was used in Crack (1999).

2.3.4 Assumptions of the Tests

We explore the assumptions of the statistical tests in more detail in appendix A

All tests have in common the assumption that the sample is randomly selected.

The t–tests assume the underlying distribution is normal. The one–sided Wilcoxon

tests assume a symmetric distribution and the two–sided Wilcoxon tests assume the

distributions of the two random variables are identical in shape.

The t–tests assume that the true variance of the sample is unknown. If the true

variance is known then the test is still valid, but the Z–test is better (Sheskin, 2004).

2.3.5 Validity of Assumptions for Financial Data

None of the assumptions of the statistical test outlined above hold consistently for all

financial data.

The most egregious violation is when we use the tests on price levels. Price levels are

not independent; today’s price is usually close to yesterday’s price, and price levels often

have a trend (that is they increase, or occasionally decrease, over time).

Financial market returns are notorious for being non–normally distributed and they

often exhibit high but (seemingly) randomly varying degrees of auto–dependence. (Lo

and MacKinlay, 2001).

Also it is known that the variance of financial returns series is not constant (Bollerslev

et al., 1992); It varies over time. So the returns cannot be described as coming from the

same distribution.

For example in section 3 we study a report of the phase of the moon affecting returns.

If we look at the 20 years of returns data used in the study we find that the standard

statistical tests soundly reject the hypothesis that the returns are normally distributed

because of significant kurtosis and skewness5.

5The kurtosis for the EWRETD over the whole period 1977–1996 was 34. On an annual basis over
that period the mean annual kurtosis was 5.6, the maximum was 26 (1987) and the minimum 0.16 (1985).
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2.3.6 Consequences of Violating the Assumptions of Statistical

Tests

Given that the assumptions of the t–test and the Wilcoxon tests are routinely violated

in financial data, what then?

Boneau (1960) reports that the t–test is extremely robust to the assumptions of nor-

mality and assumption of equal variance being violated, especially when there are a large

number of data points6. Boneau tested two–sided unpaired t tests and concluded that

the tests were robust for sample sizes greater than minuscule. However this was so long

as the sample sizes were similar and the distribution parameters of the two samples are

the same. This is a point belaboured by Bradley (1978).

In finance when we want to compare the performance of some sort of instrument or

strategy (a portfolio or a technical analysis rule) with a benchmark (say an index or zero)

it is unlikely that the population parameters are the same.

We have failed to find similar studies into the robustness of the non–parametric

Wilcoxon tests.

The continued reliance on p–values and statistical tests when the underlying data do

not conform to the underlying assumptions may be more of a cultural phenomenon than

a scientific decision.

2.3.7 The Random Nature of Financial Markets

The semi–strong form of the efficient market hypothesis states that all publicly available

information is accounted for in the prices of (and therefore returns from) financial secu-

rities (Fama and Blume, 1966). Thus there should be no way to utilise publicly available

information to earn consistent risk–adjusted excess profits.

The truthfulness of the efficient market hypothesis hypothesis is debated. But it is

true that in financial markets there is a large set of agents, of varying intelligence, looking

carefully at all information that may possibly affect the prices of securities in the market.

The agents act to adjust prices to account for this available information. So we should

expect that abnormal profits are few and far between.

6Boneau assumed that the assumption of independant errors could easilly be satisfied.
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From this perspective the sequence of prices, hence returns, in a financial market are

encoded efficiently by the market to be the best representation available of the relevant

information. It is random in the sense that if it had any predictable patterns in it that

would constitute publicly available information that market participants could use, and

they would “consume” that information removing it from the market. In the real world

of taxes, transaction costs and agent’s risk aversion this is not as simple as “market clear-

ing” or “price discovery”. But because the agents (market participants) are presumably

intelligent these “distortions” are incorporated into their models and accounted for.

This is analogous to the Algorithmic Information Theory (AIT) concept of random-

ness. In AIT a number Γ is random, relative to a computer C, if there is no set of inputs

to that computer, smaller than Γ, that produces Γ as the output of C7(Calude, 1994).

It is not a perfect analogy. For one thing the “computer” in this case, the market

and its participants, is not constant. In finance the “computer” reprogrammes itself

continuously. Also the inputs are possibly not regular. It may not be possible to describe

the set of all information.

But this is different from the concept of randomness that involves sampling from a,

possibly unknown, distribution.

The question is: Are the two forms of randomness isomorphic? Can I hope to find a

parametric distribution, of arbitrary complexity, for the return series that is smaller than

the series itself?

Empirically the answer at first glance would appear to be “yes, of course”. There are

many empirical properties of financial markets that have been observed. For instance if

there is a large price movement on one day, we are more likely to see a large movement

the next day. Variance is not globally constant but it is locally constant.

2.3.8 Decision Criteria

To have any meaning the statistical test to be used, and the level of statistical significance

required, must be decided beforehand.

A statistical test must be appropriate to the data and the assumptions of the statistical

7This is analogous to compression. Γ is incompressible.

MCom. thesis: 2010 13 Worik Stanton



August 14, 2013

test. Financial data often exhibit high kurtosis, distribution of returns have high peaks

and long tails, and the time series of returns often have non–constant variance as well as

elements of auto–correlation. It is unlikely that all the assumptions of any test can be

fully satisfied.

It could be argued that because financial time series are the output of a “machine”,

the parts of being the market and all agents in the market, that the data are not drawn

from any distribution. (See section 2.3.7 above). The objective of the machine is to find

the “true price” of securities. The true price is a Platonic concept, and is unknown.

The difference between the true price and the market price is the error in the machine’s

operation and we can expect that to be normally distributed. But since we do not know

the true price we cannot discover the error. Neither the series of market prices nor market

returns need be normally distributed. This implies that statistical tests on market prices

(and their derivatives such as market returns) cannot be valid. Any assumptions about

the distribution must by definition be violated.

We discussed the statistical tests we will be using and the applicable assumptions in

section 2.3.3

2.4 Holdouts

If an effect observed in a sample of data is truly a characteristic of the system then it

will persist, unless these characteristics change. A holdout sample is a set of data that is

available to the modeler during the model construction phase but it is not used in tuning

the parameters of the model. These data can then be used to test the model.

2.4.1 Why Holdouts Might Not Work

Holdouts can detect that an algorithm does not work (by demonstrating its ineffective-

ness). But in the case where there are a lot of algorithms to test it cannot rule out data

snooping. When there is a large enough number of algorithms tested over a training set,

we can expect by random chance some will be effective. If the original set of algorithms

tested is large enough, the set of effective algorithms will itself be large enough that we

MCom. thesis: 2010 14 Worik Stanton



August 14, 2013

can expect a proportion of them to be effective over the holdout set also (Kuang et al.,

2010).

For example consider a study that finds 1,000 economically useful trading rules sta-

tistically significant, by chance, at the 5% level, and where holdout data are available.

When the study is repeated on the holdout data 0.05 × 1, 000 = 50 rules are expected

to be judged significant at the 5% level on the holdouts. At that point it will still be

unknown which of the 50 successful rules are deemed successful due to data snooping.

2.4.2 Decision Criteria

To implement a “holdout test” at least three questions must be considered.

Which data? The holdout set must be specified. In section 3 we look at an algorithm

for dividing index returns into higher and lower return periods based on the phase

of the moon. The experiment was completed a decade ago so we can choose holdout

data that came after the paper was published. For practitioners looking to devise

trading algorithms it is not feasible to use data after the period of interest, as the

period of interest starts tomorrow.

Another possible solution is to dig deeper and use data from before the sample used

to develop the model (which we do in section 3 also). This is feasible unless there is

a reason to believe that the underlying characteristics have changed over the period

(this is related to section 2.7.1 on Story Telling). In the general case it should be

possible to divide the data into two continuous and consistent sections.

Another possible solution is to “stripe” the data. Using interleaved periods of data

to train and test the model. For instance to investigate a model for “day of the

week” effects then use even weeks to tune the model and odd weeks to test it.

How much data? The whole problem of data snooping in finance arises because of the

paucity of data. Every series of economic events occurs precisely once and will not

be seen again. Thus it is important to conserve data, as they will not be repeated

and what we have is all we will have. That is new data are not necessarily from

the same data generating process. The bigger the holdout segment the less data
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there are to develop the model. There is no general answer to how much is enough,

except that both the training and holdout set must be large enough to be able to

draw sensible conclusions.

How much of it must agree? Ideally the holdout and training data would be in com-

plete agreement. If a trading strategy generates X% excess return in training and

Y% excess return for the holdout then X and Y should be close for us to believe

the strategy works.

2.5 Neighbourhood Analysis

Financial markets are noisy. This implies that they are approximate in their behaviour.

A strategy for trading a market (in a technical analysis sense) is a parameterised model.

If such a model has superior performance on financial markets then, if the model is

“robust”, a small change to the model specification (the parameters) should result in a

small change to its performance. This is a definition of “robust”.

If the model is “brittle” in its parameters (a small change in a parameter causes a

major change in the model’s performance) then the model is a description of the data,

rather than a description of underlying properties of the data. That suggests the model’s

performance is due to data snooping.

Given that financial markets are noisy, any measurement is composed of the value of

the thing being measured and some random component. Any model must estimate the

underlying value of the thing in consideration within the tolerance of the randomness.

This describes a “region” for any parameter measured in finance, a “noise region”. It

may not be possible to clearly define the boundaries of that region but generally there

will be points that are known to be within and without the region.

For example there may be an economic reason to use a one–year moving average in a

market. To implement this suppose a technical analyst uses a 251–day moving average

on a set of data spanning 25 years and generates a promising rule. The parameter of this

rule is 251. The 250–day and 252–day moving averages are all in the same region as the
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251–day moving average8. The 20–day moving average is not. So we would expect that

the performance of the rule with a parameter of 250 or 252 would be about the same as

the 251–day rule, but we would not expect the performance of the 20–day parametrisation

of the rule to be similar.

If a developed model fits the data well, but upon changing a parameter a small amount

(so the parameter is within the region) the model fits the data badly then that implies

that the model describes that particular data set and not the underlying properties. That

is, it is data snooping.

2.5.1 Decision Criteria

In neighbourhood analysis we are looking for brittle boarders of the effective region. To

do this a smooth region in the parameter space around the optimum settings for the

proposed model must be established and in this space we must define how stable we

expect the results to be.9. Hence anti–hoc we must decide:

• How wide does the neighbourhood have to be to accept the result is not due to data

snooping?

• If a small change to the model specification should result in a small change to its

performance, (as described above), what sort of change in performance for change

in parameters is acceptable? How steep can the slope be?

Before commencing an experiment the experimenter must identify the parameters

that define neighbourhoods in the search space and the objective function to be used.

Beyond that the decision about the neighbourhoods discovered is a subjective one, or

requires further work to uncover more of the nature of neighbourhoods. But often an

experimenter will have little choice about defining a neighbourhood.

8For the NZSE50 data there is an average of 251 1

3
trading days between 2001–2009 inclusive.

9This is not always possible. Take for example the rule “15% of Mondays suffer losses greater than
12%”. It is not clear how a smoothly changing neighbourhood region could be defined because “Monday”
is the parameter and cannot be varied without losing meaning
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2.6 Other Markets

Given that people are mostly the same over most of the world, and similar economies

exist that respond in similar manners to similar events, if an effect is observed in one

market it should, with few exceptions, also be observed in others. Thus data are available

to test a model, customised on one market, on another. It is possible that data snooping

may create a self fulfilling prophecy. For instance a trader in New York, say, may notice

that returns are particularly good in the first week of January. It may be data snooping

but traders in other markets may well buy more stocks on the first trading day of the

year, thereby spreading the effect.

Clearly not all people are the same everywhere and there are clear differences be-

tween markets. For instance, and obviously, bank holidays do not fall on the same days

everywhere and “Islamic” societies tend to take Fridays off and “Christian” societies

take Sundays off. But there are deeper cultural differences. For instance involving lucky

numbers (Brown and Mitchell, 2008) or religious festivals (Bialkowski et al., 2009).

Also similar markets can be quite well correlated. A spurious effect on one market

may be observed simultaneously in other markets. It might be spread to other markets

by traders’ subjective beliefs formed by watching the first market.

2.6.1 Decision Criteria

The other markets chosen to test a rule must be both similar and dissimilar. Similar in

that it is reasonable to assume that the same underlying forces operate in both. Dissimilar

in that the two markets are not so correlated that anomalies in one appear in the other.

For example if two markets have largely overlapping participants then some pattern of

trading that is due to a meme among the traders, a transient phenomenon that is difficult

if not impossible to model, may well appear in both markets.

We have the same question as in section 2.4.2 on Holdouts: how many to use? How

many other markets are sufficient? How many markets have to show the same effects, or

not, for a data snooping diagnosis?

There can be no objective answer to those questions. Zero other markets is too few,

and the more that exhibit the same results the more confident we are that the results are
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not due to data snooping. The fewer that do the less confident we will be.

What can be done objectively is to decide which other markets will be examined

before embarking on the test taking into account what we know about the links between

the markets and the correlation of the markets.

2.7 Story Telling

Prices in financial markets move for reasons. We do not believe in magic. Fundamentally

it is because traders are buying and selling securities. But traders make those decisions

for, not always rational, reasons10.

So it is reassuring, when a technical trading rule is discovered, to have a reason for its

effectiveness. A story. Without such a thing, it is hard to believe that a rule is anything

other than a data snooped description of the input data. The lack of a story does not,

however, mean that it is data snooping. There may be an unknown economic reason for

the rule being effective.

An example of such a story is in Chan et al. (2000) where momentum effects in stock

market indexes from a number of countries are found. The story is said to be that

momentum is partly driven by post-earnings announcement drift which is in turn driven

by under reaction to news.

Computer science literature is replete with examples of trading rules discovered by

neural networks, evolutionary algorithms and other “black box” methods. Quite apart

from a tendency to ignore trading costs or feasibility (see section 2.8) they often do not

have any economic justification.

On the other hand chartists generally have economic reasons for their charts (often

to do with market over/under reactions and mean reversion) which on close examination

turn out to be spurious11. The existence of an economically plausible story is no guarantee

that a rule is not a spurious result of data snooping. Indeed the researcher may “over fit

the story” by searching for any possible explanation (e.g., Crack (1999)).

10See Poteshman and Serbin (2003) for an example of provably irrational behavior in option markets.
A particular set of circumstances allowed the authors to prove that some trades were irrational. Or see
Rashes (2001) for evidence of traders being temporarily confused by similar ticker symbols. One can
only wonder how many other irrational trades there are where it cannot be proved?

11There does exist some evidence of some effective charting rules, see for instance Lo et al. (2000).
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2.7.1 Decision Criteria

A story cannot be effectively quantified, but that which cannot be measured need not be

discarded. Subjective tests can have value.

A rule that has no economic intuition, no story, is less attractive than one that does.

A false rule found using data snooping will not have a story, except due to coincidence.

It is human nature to believe results that have been worked hard for. A researcher that

discovers a (seemingly) useful technical analysis algorithm will be receptive to reasons

why it should work. So to avoid this confirmation bias the story must be known before

the rule is found. That is not to say that a story found subsequently must be false, it is

just to say that such a “post–hoc” story is not the evidence against data snooping that

it would be if it were known ante–hoc.

For a rule that exploits unknown properties or economic laws there can be no story,

clearly. But a rule that is found using search guided by a story suits us better than a

rule found by searching randomly.

2.8 Feasibility

The Efficient Market Hypothesis (EMH) is that “...any information that could be used to

predict stock performance should already be reflected in stock prices” Bodie, Kane, and

Marcus (2005, p. 370). The implication is that there do not exist any technical analysis

rules, utilising only price/return information, that can be used to gain consistent excess

risk adjusted profits from the market after accounting for risk aversion, transaction costs

and taxes.

We commonly find that reports of the failure of the EMH fail to consider the feasibility

of their trading method. It is not enough to be able to predict prices better than the

market, one needs to be able to act on the information. There must be a feasible trading

strategy.

The mechanism for the market price adjusting to reflect the information available

is investors exploiting (i.e., trading on) the information available to them. Since price

information is available at negligible cost it follows from the EMH that the information
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available in prices cannot be used to gain excess profits (Bodie et al., 2005).

This implies that there can be no profitable technical analysis rule. But there have

been many papers that uncover profitable technical analysis rules. For instance in Chavar-

nakul and Enke (2008) which used neural networks to optimise a volume based trading

rule. The optimised rule was reported to perform better than buy and hold, violating

the EMH. Yet there was no consideration of transaction costs (as acknowledged by the

authors) nor was there consideration of feasibility (e.g., if in the time between generating

the signals and implementing the trades the prices moved to remove profits). Without

considering these problems the algorithm cannot be said to contradict the EMH.

2.8.1 Decision Criteria

Judging the feasibility of a technical analysis rule after the fact (often many years after

the fact in long studies) is not trivial. For two of the studies we look at here we use index

data that goes back to 1928, the original studies used data from the 19th century, and

times were different then.

To be a feasible strategy there must have been securities to trade. The three studies

we consider all use index data, but indexes are not available for trade, and index proxies,

in the form of index funds, were not accessible to traders until the 1970s12. There was

nothing to stop index tracking portfolios being formed before then, except for practical

considerations.

Additionally the trading must be profitable after accounting for transaction costs.

Ignoring transaction costs is a form of data snooping. When researchers ignore transaction

costs they are removing important data from their data sets so that their models are

better. In our experience many researchers and many studies do ignore transaction costs,

or address them tangentially.

More subtly a rule may generate a return stream that has a positive mean excess

return, but the return stream of the rule is more volatile than the return stream of the

benchmark it is compared to. When considering feasibility it is important to consider

what it is that market participants want and need. Ignoring volatility is also a form of

12The Vanguard fund started trading in 1975 and was the first index fund (Bogle, 2006).

MCom. thesis: 2010 21 Worik Stanton



August 14, 2013

data snooping in the same way that ignoring transaction costs is.

To be useful, and to violate the EMH, a trading strategy must (a) be profitable

when back tested (including transaction costs) and (b) have a risk/reward ratio that is

acceptable. Searching through the space of all possible rules will uncover a lot of rules

that, on the face of it, are attractive. But most (if not all) will be infeasible. Such

infeasible rules do not need to be examined, further, for data snooping.

It is not possible to precisely quantify what transaction costs will be, as they depend

on specific market conditions on the trading day13. One approach to transaction costs

(and the approach we take in section 5) is to look at the break even transaction cost.

We compare a break even transaction cost with what would be reasonable transaction

costs from the period. This is an unsatisfactory method. As Bajgrowicz and Scaillet

(2009) point out break even transaction costs are considered ex–post so are hard to use

when designing rules. Additionally there is no clear “reasonable” transaction cost for any

period, let alone one that is many decades in the past. But even so, we can think of no

better approach.

It is not possible to define an “acceptable” return/volatility relationship. Every in-

vestor has a unique tolerance for variability in returns. The way we deal with the re-

lationship between volatility and returns is to report a Sharpe ratio when we need to.

In section 3 the assertion we test is that of greater returns and lower volatility, and we

test both independently. The Sharpe ratio is useful, but it is arbitrary. Yet we are again

forced to use it as there is no better approach we can think of.

To assess profitability and volatility levels a benchmark must be chosen. Without a

benchmark there is no way to illustrate the effectiveness, or not, of a rule. At the very

least a benchmark of zero is implied, investing your wealth in a vault. But in the real

world that is generally a negative real return.

The EMH postulates that no rule can beat the market (Bodie et al., 2005), so some

concept of a market portfolio is needed. For example a portfolio of T–Bills to benchmark

a zero-beta long–short fund, or a portfolio of stocks to benchmark a long-only stock fund.

13Models of transaction costs do exist, see for example Trethewey and Crack (2010).
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2.9 Outlier Analysis

Often the out performance of a model is found to be due to a small handful of significant

days. For instance a model of the New York Stock Exchange index (NYSE) in 1987

that is “Stay out of the market in months beginning with ’O’ ” appears on the face of

it ridiculous. But it would be significantly better than buy and hold over that period

because of the market crash in October of that year14.

Those occasions can be viewed as outliers. If there is an algorithm that suggests being

long some trading days and short others, and those long days coincide with market rises

and the short with falls, such that the rises and falls are in the tails of the distribution

of returns there can be two interpretations:15

• The algorithm stumbled onto those days by accident.

• The algorithm correctly identified those days. It describes the underlying economic

process.

Deciding which interpretation is true is difficult. If a hypothesised algorithm explains

the extreme result (the month begins with “O” is not a good explanation) then the

experimenter would tend to accept that the algorithm describes the underlying economic

process. (See section 2.7 on “Story Telling”.)

If the hypothesised algorithm works only for a sub–period of the available data then

that result may be explainable by unusual data points in the “good” subset (see the

section on “Holdouts”. Section 2.4) and the experimenter would tend to accept the

algorithm as a happy accident.

2.9.1 What is an Outlier?

“An outlier is an observation that is far removed from the others in the set.” Porkess

(2004). That is a subjective definition that does not do much to help deal with a data

set.

14It is an interesting observation that the “stay out of the market in October” works well in many
years.

15There is no need to assume a parametric distribution. The top and bottom 1% (say) of historical
moves can define the tails.
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Porkess helps by suggesting two possible definitions of outliers:

1. Points two standard deviations away from the mean.

2. Points more than 1.5× the inter quartile range away from the top or bottom quartile

However there is nothing unusual about data points meeting one or both of these

criteria, which implies there is no such thing as outliers in financial markets. Rather they

are a natural and important part of the system. In this context we do not view “outliers”

as points to be removed. But rather we view them as phenomenon to be acknowledged.

They should be removed only if they are a some sort of measurement error, such as a

data entry mistake (such as a misplaced decimal point) or a failure of the data capture

mechanism (such as a programming error).

2.9.2 Outliers of known Parametric Systems

If the underlying distribution, and its parameters, are known then data that originates

from a different distribution can possibly be identified. This is illustrated in figure 2.2

page 29. The green circles plot standard log-normal observations with the sign randomly

flipped. The black crosses plot standard normal observations.

However return series for financial data are not from known distributions. The dis-

tributions have fat tails with infrequent and irregular extreme values during booms and

busts, e.g. in October 2008 there were several extreme moves.

Financial data have been described better as being from a mixture of distributions. See

for example Johanson and Sornette (1998) where the authors identify two distributions of

returns, the common occurrence and a different distribution in crashes. Thus the crashes

can be viewed as distributional outliers. Or see Press (1967) which suggests that the

distribution of returns from some stocks in the Dow Jones Industrial Averages index is

a “Poisson mixture of normal distributions”. We do not see how being from a mixture

of distributions gets us anywhere. True a mix of distributions fits the data better but

it still leaves us in the same pickle. Is an “outlier” a true outlier or a datum from an

ordinary distribution? One “outlier” by itself is probably a true outlier (for example it
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could be an error) but it is also not very interesting. It is unclear how this can be applied

to financial data.

2.9.3 Outliers of Non–Parametric Systems or when Parameters

Unknown

Not knowing the parameters of the underlying distribution, nor having an analytical

reason to reject some points, we might use a non–parametric approach.

The most extreme values can be removed from the data set, on the assumption that

those values are likely to be outliers from a process other than that that is being modeled.

It is often stated that most of the benefit of investing in markets is had on very few

best days (Malkiel, 1999, pp. 163). Testing that influence of outliers on VWRETD in

figure 2.3, it can be seen that at the 1% level, removing outliers increases mean returns.

That is negative outliers dominate. The effect is even more marked at the 10% level.

It remains unclear that there is any characteristic of market prices that we could use

to define “outliers”. However we choose to look at extreme values we cannot rule out the

possibility that we are simply looking at a natural part of the market.

2.9.4 Errors

Gathering data is an imperfect process, and there will be errors. For example Tajaddini

and Crack (2012) find multiple data errors in two foreign exchange data sets. Misreported

data can be true outliers. Whatever the mechanisms driving prices, a mistake in reporting

those prices is not a valid mechanism. Examining extreme points often will uncover

errors16.

2.9.5 Cupolas

In recent years there has been some excitement in the finance community about copulas.

Copulas are a method of converting a group of univariate distributions (several random

16Sometimes obvious errors are not extreme points. For example if the bid is greater than the ask
price.
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variables) into a multivariate distribution (a single function of several random variables).

The univariate distributions are the 1–dimensional marginal distributions of the copula.

The motivation is to find a better method of modeling dependence among different

securities than correlation (see for instance Rodriguez (2007, pp 401) that uses copulas

to model “daily returns from five East Asian stock indices during the Asian crisis, and

from four Latin American stock indices during the Mexican crisis,”). Copulas can capture

non–linear dependencies and as Rodriguez puts it “...[copulas] are able to capture tail

behaviour without the need of using discretion to define extreme outcomes.” Rodriguez

(2007, pp 403)

Better statistical methods of modelling dependency will provide better description

of observed phenomenon in financial markets. Observations of data outside the range

expected will lead to even better models17.

Imagine the next generation model, that is unknown today. A model that in back

testing can predict all of the observed phenomena, including phenomena not used to

set the model’s parameters. If in subsequent time periods data are uncovered (by the

passage of time) that defy the predictions of the model, in what sense are those data

outliers? Clearly using the definition supplied by the model they are, but that is scant

consolation to investors losing wealth. The model, no matter how good, is allways an

imperfect description. The true process remains unknown.

2.9.6 Decision Criteria

It is entirely unclear if there is any sort of outlier analysis that can be useful for detecting

data snooping. It can be used to explain the performance of a rule, but that simply defers

the problem. A rule’s efficacy may be due to identifying true outliers (from a different

distribution). But that is not to distinguish a rule due to data snooping, that is effective

only on the training set from a true rule that describes some property of the underlying

distribution.

17Rodriguez (cited above Rodriguez (2007, pp 401)) says: “I find evidence of changing dependence
structures during periods of financial turmoil. I also test whether these changes are best described
using copulas with tail dependence and asymmetry compared to symmetric and also to tail-independent
copulas.” This is typical, after the event it is possible to describe it. But a description is not a model.
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2.9.7 Outliers, Summary

• However defined, outliers are interesting points.

• Except for errors there is no justification for removing outliers.

• Given the importance of extreme values in financial series, predicting and exploiting

outliers is an acceptable goal for a technical analysis algorithm.

2.10 Literature Review

In Lo and MacKinlay (1990) the authors credit Aldous (1989) for coining the term “data

snooping statistics”, “where you have a family of test statistics T (a) whose null distri-

bution is known for fixed a, but where you use the test statistic T = T (a) for some a

chosen using the data” Lo and MacKinlay (1990, p433). Lo and MacKinlay examine data

snooping biases in finance and find “...that even mild forms of data snooping can change

inferences substantially.” (Lo and MacKinlay, 1990, p435)

Concern about data snooping is not limited to the finance literature. Ioannidis (2005)

claims to show that because of data snooping it is the case that most research findings,

in medicine, are false.

Data Snooping takes many forms. Crack (1999) purposely sets out to use data snoop-

ing to show a “relationship” between phases of the moon and S&P 500 returns18. This

is a clear case of searching for a relationship until one is found. In Leippold and Lohre

(2012) a recent example of simultaneously testing several hypotheses is presented.

Arguably the most important paper published on the subject of data snooping is

Sullivan et al. (1999). They used an algorithm (introduced in White (2000)) based on

the “Stationary Bootstrap” introduced in Politis and Romano (1994). This was further

refined in Hansen (2005), Romano and Wolf (2005) and Hsu and Kuan (2005).

The original papers by Sullivan et al. and the techniques developed therein have been

extensively cited in the Finance literature since, becoming something of a “gold standard”

for correcting for data snooping bias. See for example Qi and Wu (2005) where a similar

study to Sullivan et al. (1999) was performed on the foriegn exchange market, or Hsu

18We look closely at Crack (1999) in chapter 3
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and Kuan (2005) where Sullivan et al.s study was expanded to include more sophisticated

trading methodologies.

There has been criticism too. Bajgrowicz and Scaillet (2009) criticise Sullivan et al.

for not accounting for transaction costs and for a lack of out of sample success for the

techniques presented that were claimed to be free of data snooping bias. In chapter 5 we

make similar criticisms of Sullivan et al. (1999) and also question the assumptions behind

their use of the stationary bootstrap.
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Figure 2.2: When two known distributions are mixed the outliers generated by one may
be apparent.
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Chapter 3

A Classic Case: Lunar Investing

The lunatic is on the grass...
The lunatic is in the hall...
The lunatic is in my head...

Got to keep the loonies on the path

Waters (1973)

In this section we reexamine a study where the author claimed to be data snooping

on purpose.

In Crack (1999) a technique is given for using the phase of the moon to divide daily

returns and volatility (variance) of the combined NYSE/AMEX and NASDAQ equally

weighted and value weighted indexes into periods of higher returns/low volatility and

lower returns/higher volatility. Statistical significance was used as the objective function.

It was found that the periods around the new and full moons had significantly smaller

daily returns and significantly higher volatility than days in the rest of the month1.

3.1 Profitable Moon

The natural null hypothesis is that the moon has no influence over investor behaviour2.

The alternative given by Crack (1999) is:

1Kathy Yaun, Lu Zheng and Qiaoqiao Zhu published a paper (Yuan et al., 2006) in the Journal of
Empirical Finance in 2006 that found returns were about 3% to 5% higher close to the full moon than
to the new moon for global indexes. Ilia D. Dichev and Troy D. Janes published a paper (Dichev and
Janes, 2003) that found that returns were higher nearer the new moon than the full moon for all USA
indexes and for 23 out of 24 other countries.

2There is a lot of folklore concerning the moon and human moods and behaviours. However Crack
(1999) looked into the available psychology literature at the time of his paper and found no scientific
support for lunar effects on human behaviour.
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...the period of time near the new moon or the full moon is “bad” relative to

the interphase period (the period away from new and full moon). ...my lunar

behavioral hypothesis is simply that near new moon or full moon, volatility

will be higher and returns will be lower than during the interphase period.

The question is “Was Crack data snooping?” (as he claimed).

3.1.1 Economic Intuition

Suspending disbelief and rejecting the null hypothesis that the moon has no detectable

effect on investment returns, what are the parameters of the moon’s influence? When

testing methods for detecting the differing periods of lunar influence and differentiating

real rules from rules purely a result of data snooping it will be important to have some

idea of what makes sense economically.

For instance: If a particular phase of the moon is associated with higher returns when

compared to the rest of the lunar cycle, say the new moon with none of the moon’s face

illuminated, then it is reasonable to believe that the day before and the day after that

phase will not be among the worst returns. The moon’s level of illumination is at a

particular value for a vanishingly small period of time. To the human observer the phase

will seem to last two or three days and the descriptive terms (full, first/second quarter,

new etcetera) are approximations.

Any real effect should be apparent in more than one market. We are supposing some

unknown deep mechanism here in human psychology and/or physiology. It is reasonable

then to expect that the effect would not be specific to a particular geographic market.

So when considering, ante–hoc, what data snooping detection tools to use from section

2, we can expect neighbourhood analysis (section 2.5) and other markets (section 2.6) to

be effective. Also we should not be able to conclusively reject the “story”. That is, we

must not be able to prove that the moon has no effect on human mood.

3.1.2 Algorithm in “A Classic Case...”

The “full” and “new” moons are described with the parameter P , the proportion of the

moon’s face illuminated by the sun.
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The periods near and far from the new and fill moon are defined using a parameter α,

0 < α < 0.5. The “new/full” (NF ) period is when P < α or P ≥ 1−α, the “interphase”

(IP ) period (the rest of the lunar cycle) α ≤ P < 1− α3.

The data used by Crack are for 1 January 1977 – 31 December 1996. The values

for α reported in Crack (1999) are 0.20, 0.25, 0.30, 0.35, 0.40. It was found that without

exception mean return was higher and volatility (variance) lower in the “new/full” than

in the “interphase” period. Setting α at 0.3 gave the most significant results.

3.2 Reproduction

The first step was to reproduce Crack’s results. It is important to assure ourselves that

the results that were presented are accurate.

The return data were taken from the indexes VWRETD and EWRETD ([VE]WRETD)

published by the Center for Research in Securities Prices (CRSP). These are respectively

value and equally weighted composite indexes for the NYSE/AMEX and NASDAQ. The

TRETURNS field was used (being total returns, including dividends).

The algorithm was reimplemented in R. See section B page 133 for the code that

produced these results. The original Matlab code is in section B.1 page 1414.

The data that are now on the United States Naval Meteorology and Oceanography

Command’s web site differs from that obtained from Crack on two days. On 8–January–

1984 and 19–September-1996. 8–January–1984 was not a trading day and 19–September–

1996 was, but is not included in the original experiment so these inconsistancies in the

data are of no consequence in this section.

For this reproduction the moon data did not differ in any meaningful way from Crack’s.

The results for the repeat of the experiment are in tables 3.1 and 3.2.

The results are very close to the original. The best value for α is 0.3 and the p–values

at that α are significant at 5%. This indicates that the period when the moon is less than

30% full or more than 70% full has higher returns and lower volatility than the other

periods. On the face of it, there is a “lunar effect”.

3Crack (1999) has a typo where P = 1− α is in both the “interphase” and “new/full” periods.
4Professor Crack made the original lunar phase data he used available, and also the Matlab code

that he used.

MCom. thesis: 2010 33 Worik Stanton



August 14, 2013

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.20 2948 2108 0.1016 0.1819 −1.1464 0.1258 0.1390 0.1215 1.2909 0.0984
(0.0454) (0.0468) (0.0188) (0.0073)

0.25 3334 1722 0.1029 0.1974 −1.3418 0.0898 0.1372 0.1212 1.3123 0.0947
(0.0425) (0.0500) (0.0174) (0.0077)

0.30 3703 1353 0.1017 0.2263 −1.7939 0.0364 0.1349 0.1237 1.1264 0.1300
(0.0386) (0.0539) (0.0161) (0.0090)

0.35 4056 1000 0.1192 0.1994 −1.0311 0.1512 0.1336 0.1252 0.8841 0.1883
(0.0394) (0.0568) (0.0154) (0.0092)

0.40 4390 666 0.1249 0.2018 −0.9081 0.1819 0.1325 0.1288 0.3721 0.3549
(0.0354) (0.0704) (0.0149) (0.0098)

Table 3.1: Results of Crack’s algorithm applied to the VWRETD (value weighted) index
from 1977-01-01 to 1996-12-31. The first column (α) defines how the lunar month is
divided into near new or full (NF ) or “interphase” (I). The next two columns (NNF and
NI) are the number of days in both sets (there are 5,056 daily returns over all). The next
two columns (µNF × 253 and µI × 253) record the mean returns for the periods (defined
by α) annualised. The Z–Stat and p–value columns are the results from the GMM test
with the null hypothesis that the returns in the NF period and the I period are the
same. The four final columns apply to the standard deviation with the means, Z–stat
and p–value.

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.20 2948 2108 0.2138 0.2812 −1.3483 0.0888 0.1060 0.0918 1.4516 0.0733
(0.0534) (0.0458) (0.0141) (0.0058)

0.25 3334 1722 0.2129 0.2981 −1.7112 0.0435 0.1043 0.0921 1.4135 0.0788
(0.0514) (0.0468) (0.0130) (0.0060)

0.30 3703 1353 0.2087 0.3328 −2.2135 0.0134 0.1036 0.0908 1.8331 0.0334
(0.0497) (0.0525) (0.0120) (0.0067)

0.35 4056 1000 0.2225 0.3206 −1.6877 0.0457 0.1022 0.0924 1.6304 0.0515
(0.0483) (0.0548) (0.0114) (0.0074)

0.40 4390 666 0.2290 0.3267 −1.6423 0.0503 0.1016 0.0915 1.0098 0.1563
(0.0458) (0.0623) (0.0116) (0.0057)

Table 3.2: Results for the EWRETD (equally weighted) index from 1977-01-01 to 1996-
12-31. The columns are the same as in table 3.1
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3.2.1 Detecting Data Snooping. Decision Criteria

Now we are satisfied that we can reproduce the results that Crack got, we ask “is it

data snooping?”. In this section the tools from section 2 for detecting data snooping are

considered, ante–hoc, to prepare for considering whether Crack’s results are due to data

snooping.

3.2.1.1 Statistical Significance

The objective function of Crack’s study was statistical significance. Thus by the measure

he used his results were significant.

The test that Crack used for statistical significance was implemented by “Generalised

Method of Moments” (GMM, Arnold and Crack (1999))5. The GMM results should be

compared to the results from other tests.

According to Crack (1999) the GMM tests “with Newey–West standard errors” “...are

therefore robust to both auto–correlation and heteroskedasticity in the moments”.

In addition to repeating the GMM tests, a standard t–test and a Wilcoxon–Mann

non–parametric test will be used.

As discussed in section 2.3.6 the standard t–test is robust to non–normality, with

the amount of data we have, but is not robust to auto correlation. The Wilcoxon–

Mann test being a non–parametric test is robust to non–normality, auto–correlation and

heteroskedasticity.

3.2.1.2 Holdouts

To implement holdouts we need to: select which holdout data to use, how much holdout

data to use and what level of agreement we need between the holdout period and test

period.

Crack’s study used data from 1977–1996 inclusive. There are, from CRSP, data

available from 1926 to 2009. Crack’s study covered 20 years, and since there are 20 years

of data available from before Crack’s study we will use the period 1957–1976 as the first

holdout period. That answers both which and how much. As for the agreement: If the

5GMM is not a widely used test outside of economics.
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moon truly influences returns in the manner uncovered by Crack then the same influence

should be present before and after the period covered by Crack. We will use a second

holdout period of 1997–2009. It is conceivable that after uncovering an inefficiency in the

market (the lower returns near the new and full moon) traders exploited and eliminated

the effect. In which case we expect to see the lunar effect in the 1957–1976 period but

not in the 1997–2009 period.

In Summary:

• We use the two periods 1957–1976 and 1997–2009 as holdouts.

• We expect to see the same statistically significant lunar influenced returns in both

holdout periods. Allow for the possibility that the effect is only apparent in the

first holdout period hypothesising that the discovery of the lunar influence alerted

traders who moved to eliminate it.
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3.2.2 Neighbourhood Analysis

Crack’s algorithm divided the lunar month using α (see section 3.1.2). For each possible

value of α, say αi we can define another, αi+1 > αi such that αi+1 is the smallest value

of α greater than αi that divides the months differently from αi. If IPi and NFi are

the IP and NF sets defined by αi, then αi+1 is the smallest α such that αi+1 > α and

(IPi 6= IPi+1 or NFi 6= NFi+1).

Because there are a finite number of trading days, the set of αis is finite and de-

fines neighbourhoods in Crack’s analysis. The sets NFi and IPi are neighbours of sets

NFi+1 and IPi+1, and αi is “next to” αi+1. All the αs are in table 3.7 on page 43.

Ante–hoc there is no practical criteria to set over what the transition between “neigh-

bours” should look like, or how to distinguish brittle transitions. All that we can do is

learn, post–hoc, and train our judgement.

3.2.3 Outlier Analysis

In section 2.9.6 we gave up on using outlier analysis for detecting data snooping. But

it still may be revealing to analyse the outliers. We may learn the reason the algorithm

performs as it does: we may find the trading days responsible.

3.2.4 Other Markets

As discussed in section 2.6.1, we want to use markets that are correlated (so the same

underlying processes operate) but not too correlated (so one market is essentially the

same as the other).

The VWRETD and EWRETD indexes are NYSE and NASDAQ composite indexes.

So we should look for markets that were well developed in the 1977–1996 period.

Also for comparison Crack’s investigation of the VWRETD and EWRETD indexes

the other markets need to have been in operation over the same period.

The choice of which markets to use was also guided by availability. In the end all

developed market indexes with data covering the 1977–1996 period that are available

currently via the Otago University Bloomberg terminal were used. These six indexes

selected for the Other Markets test are in two groups of three. The first group are
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indexes from the USA and overlap explicitly with Crack’s data. There are members of

the overlapping indexes that are also included in the CRSP data set. The second group

are from foreign countries and, whilst they may be correlated to a greater or lessor extent

(see table 3.10) they do not specifically overlap.

Overlapping Market Indexes

CCMP The NASDAQ composite index (thus a component of both VWRETD

and EWRETD that Crack used). Capitalisation weighted index of three

NASDAQ markets: Global Select, Global Market and Capital Select. http:

//www.nasdaq.com/symbol/ccmp

INDU The Dow Jones Industrial Average. A price–weighted average of the 30

blue–chip stocks that are generally the leaders in their industry.

http://www.djaverages.com/index.cfm?go=industrial-overview

SPX Standard and Poor’s 500. A capitalisation weighted index of 500 stocks rep-

resenting all major industries in the USA. http://www2.standardandpoors.

com/spf/pdf/index/SP_500_Factsheet.pdf

Non–Overlapping Market Indexes

HSI The Hang Seng Index. Free–float capitalisation weighted index of companies

from the Stock Exchange of Hong Kong6. http://www.hsi.com.hk/HSI-Net/

NKY The Nikkei–225 Stock Average. A price weighted average of the 225 top

rated Japanese companies listed in the first section of the Tokyo Stock Ex-

change. http://www.bloomberg.com/quote/NKY:IND

SPTSX A capitalisation weighted index designed to measure market activity of

stocks listed on the Toronto Stock Exchange. http://www.standardandpoors.

com/indices/sp-tsx-60/en/us/?indexId=spcadntx--caduf--p-ca-l--

The results of using these markets are described in section 3.6.

6“Free–float” refers to the fact that when calculating the weights for the capitalisation weighting
only shares that are not closely held (e.g., by company insiders) are counted.
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3.2.5 Story Telling

According to folklore the moon’s phase has an effect on human moods and behaviour.

Thus it is feasible, if one chooses to believe the tales, that the phase of the moon could

influence markets via the moods of market participants. Crack found that returns were

higher away from full and new moons. The story could be that around new and full

moons investors are more nervous and bearish.

However Crack reported that there is no scientific evidence of any effects of the moon

and human mood. If such an effect were to be found in financial markets it would be a

new effect.

Still there is no positive reason to reject the hypothesis of the moon effecting human

moods. But we could find no stories that would imply that the “interphase” period would

give better returns and volatility.

3.2.6 Feasibility

There is no direct way of trading on the value of the indexes VWRETD or EWRETD.

However if the volatility differences exist and are not priced then there are potential

option trading strategies that exploit that miss–pricing7. If lunar months can be divided

into high and low return portions than moving into high β stocks in high return periods

and into low β stocks in low return periods could potentially be profitable.

3.3 Implementing Statistical Significance

As laid out in section 3.2.1.1 there are three tests to be compared:

1. Generalised Method of Moments tests.

2. t–test for two independent samples.

3. Wilcoxon–Mann test.

Statistical significance was the objective function for Crack’s study, and we have

already reproduced his results. So we know that using the test he used, and at his best α

7Studying implied volatility using options, and looking for correlations with lunar cycles is another
approach.
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the results were significant. Our objective here is then to look at statistical significance

with the other two tests as well. A statistical significance test is a mathematical analogy

of an opinion. We are getting second and third opinions.

Using the following values for α the statistical significance of testing the mean returns

in the IP period and NF period (the null hypothesis being that the returns for the two

periods are the same) for all three tests was calculated: 0.15 0.17 0.19 0.21 0.24 0.26 0.28

0.30 0.32 0.34 0.36 0.39 0.41 0.43 0.45 and plotted in figure 3.1.

From this we can see again that the GMM test clearly indicated significantdifference

in mean returns at Crack’s optimal α. The t–test agrees with Crack for EWRETD but

only just for VWRETD. The Wilcoxon–Mann test has a different opinion and does not

reject the null hypothesis that there is no difference in mean returns for the IP and NF

periods. However the Wilcoxon–Mann test, being non–parametric, has less power and is

therefore more prone to accepting a false null.

We cannot do mathematics by holding elections. All we can say that is that the results

are not as satisfactory as Crack found when viewed through the lens of other statistical

tests.

But we can notice that Crack used one–sided tests. We have followed Crack’s tech-

niques quite closely, and have done one–sided tests too (which explains the high p–values

in tables 3.3 – 3.5). But Crack is looking for a difference in returns between the interphase

and new/full periods. There is no anti–hoc information as to which returns should be

higher. So in this case the use of one–sided tests is itself data snooping. If Crack had

used two–sided tests then fewer significant results would have been found.

3.4 Implementing Holdouts

In table 3.3 and 3.4 the results for the later holdout period (1997 – 2009) are shown8.

The mean return results for 1997–2009 are both the opposite of what Crack (1999) found

(i.e., µNF > µN) is not significant. There is no clear pattern for the standard deviation of

returns. Moreover, and damningly, the results are not statistically significant even using

8Lunar data from Meteorology and Command (2010) had to be used as the previous data that Crack
used did not extend after 1996, when he made the file.
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the GMM test. And given that we are using statistical significance from the GMM test

as our objective criteria we can say that the holdouts, after Crack’s experiment, are a

failure9.

In tables 3.5 and 3.6 the results for the earlier period (1957 – 1977) are presented.

The results are similar to the results for the later period with NF returns consistently

higher that IP returns, no clear pattern for standard deviation and no detected significant

p–values using GMM.

So it is clear that the results are not significant for the period following Crack’s study

and importantly the results are not significant for the period immediately preceding

Crack’s study.

3.5 Implementing Neighbourhood Analysis

In table 3.7 is a representative sample of all possible αs. For example taking the first two

αs in table 3.7: 0.2599514 and 0.2699923. The division of the days into IP and NF by

0.2599514 is different from the division of the days into IP and NF by 0.2699923. But

there is no α
′

such that 0.2599514 < α
′

< 0.2699923 and the division of days into IP and

NF using α
′

differs from that produced by α equals 0.2599514 or α equals 0.2699923.

So the neighbourhood around Crack’s reported “best α”, 0.3, consists of 10 unique

points (αs) inside the region defined by the nearest two other αs Crack looked at, 0.25

and 0.35.

We ran Crack’s study using these αs and the results are in table 3.8 and figure 3.2. The

regions around Crack’s best α (0.3) are significant for mean return for both VWRETD

and EWRETD. The volatility improvements are significant around Crack’s best α for the

Equally weighted index but none is significant for the Value weighted index.

The near neighbourhoods are similar in performance. So there is no evidence of data

snooping from Neighbourhood Analysis.

9Consistently positive results in the absence of statistical significance should make us question relying
on statistical significance measures as an objective function. We discussed this in section 2.3.1.
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α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.20 1906 1366 0.1191 −0.0333 1.4832 0.9310 0.2143 0.2111 0.5104 0.3049
(0.0642) (0.0937) (0.0289) (0.0270)

0.25 2166 1106 0.1416 −0.1132 1.7272 0.9579 0.2148 0.2091 1.1124 0.1330
(0.0588) (0.1344) (0.0279) (0.0282)

0.30 2399 873 0.0912 −0.0427 0.8653 0.8066 0.2141 0.2099 0.7932 0.2138
(0.0588) (0.1455) (0.0277) (0.0290)

0.35 2631 641 0.0871 −0.0742 0.8949 0.8146 0.2133 0.2117 0.1887 0.4251
(0.0500) (0.1837) (0.0271) (0.0318)

0.40 2843 429 0.0864 −0.1493 1.1730 0.8796 0.2118 0.2206 −0.7195 0.7641
(0.0526) (0.2086) (0.0268) (0.0358)

Table 3.3: Results for the VWRETD (value weighted) index from 1997-01-01 to 2009-12-
31. This is after the period covered by Crack’s study (Crack (1999)) and shows that the
effects noticed by Crack disappears in the period after his study. (The columns are the
same as for table 3.1 page 34)

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.20 1906 1366 0.2267 0.1142 1.2416 0.8928 0.1794 0.1763 0.8123 0.2083
(0.0712) (0.0949) (0.0286) (0.0281)

0.25 2166 1106 0.2354 0.0708 1.2444 0.8933 0.1787 0.1769 0.4467 0.3276
(0.0640) (0.1326) (0.0277) (0.0296)

0.30 2399 873 0.1989 0.1273 0.5540 0.7102 0.1788 0.1762 0.5715 0.2838
(0.0641) (0.1366) (0.0277) (0.0301)

0.35 2631 641 0.2019 0.0891 0.7313 0.7677 0.1785 0.1764 0.2400 0.4052
(0.0601) (0.1686) (0.0273) (0.0329)

0.40 2843 429 0.2003 0.0437 0.8975 0.8153 0.1768 0.1861 −0.7205 0.7644
(0.0630) (0.1904) (0.0270) (0.0374)

Table 3.4: Results for the EWRETD (equally weighted) index from 1997-01-01 to 2009-
12-31. This is after the period covered by Crack’s study (Crack, 1999) and shows that
the effects noticed by Crack disappears in the period after his study. (The columns are
the same as for table 3.1 page 34)

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.20 2931 2084 0.0887 0.0573 0.4909 0.6882 0.1163 0.1170 −0.1787 0.5709
(0.0431) (0.0550) (0.0086) (0.0094)

0.25 3312 1703 0.0856 0.0565 0.4414 0.6705 0.1162 0.1173 −0.3308 0.6296
(0.0426) (0.0575) (0.0085) (0.0094)

0.30 3673 1342 0.0783 0.0685 0.1476 0.5587 0.1178 0.1131 0.7859 0.2160
(0.0425) (0.0575) (0.0090) (0.0095)

0.35 4032 983 0.0799 0.0582 0.3041 0.6195 0.1170 0.1149 0.3406 0.3667
(0.0394) (0.0677) (0.0087) (0.0106)

0.40 4364 651 0.0681 0.1265 −0.6185 0.2681 0.1166 0.1168 −0.0377 0.5151
(0.0392) (0.0884) (0.0086) (0.0115)

Table 3.5: Results for the VWRETD (value weighted) index from 1957-01-01 to 1976-12-
31. This is before the period covered by Crack’s study (Crack, 1999) and shows that the
effects noticed by Crack was not apparent in the period before his study. (The columns
are the same as for table 3.1 page 34)
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Figure 3.1: Significance for various αs and three tests: Wilcoxon–Mann, GMM and the
t–test. The null hypothesis is that mean returns for IP days equals the mean return for
NF days.

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.20 2931 2084 0.1418 0.1157 0.4703 0.6809 0.1126 0.1142 −0.2661 0.6049
(0.0574) (0.0627) (0.0067) (0.0100)

0.25 3312 1703 0.1419 0.1097 0.5453 0.7072 0.1128 0.1142 −0.2756 0.6086
(0.0585) (0.0625) (0.0069) (0.0099)

0.30 3673 1342 0.1357 0.1180 0.3308 0.6296 0.1142 0.1107 0.4485 0.3269
(0.0574) (0.0597) (0.0072) (0.0110)

0.35 4032 983 0.1372 0.1052 0.5024 0.6923 0.1134 0.1126 0.0949 0.4622
(0.0547) (0.0730) (0.0071) (0.0121)

0.40 4364 651 0.1243 0.1754 −0.6648 0.2531 0.1131 0.1145 −0.1524 0.5606
(0.0557) (0.0772) (0.0071) (0.0139)

Table 3.6: Results for the EWRETD (equally weighted) index from 1957-01-01 to 1976-
12-31. This is before the period covered by Crack’s study Crack (1999) and shows that the
effects noticed by Crack was not apparent in the period before his study. (The columns
are the same as for table 3.1 page 34)

α ∈























0.2599514 0.2699923
0.2799991 0.2899573
0.2999561 0.3099852
0.3199322 0.3299898
0.3399466 0.3499958























.

Table 3.7: The αs in Crack’s algorithm (Crack, 1999) divide the period 1977–1996 into
periods of “near new and full moon” (NF) and “interphase moons” (IP). In this table
are all the αs such that 0.25 < α < 0.35 and such that there is a change in the way the
α divides the days into NF and IP sets.
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EWRETD (Equally Weighted)

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.35 4023 1033 0.2218 0.3202 −1.6182 0.0528 0.1022 0.0928 1.4879 0.0684
(0.049) (0.0548) (0.0115) (0.0072)

0.3399 3959 1097 0.2224 0.3124 −1.4866 0.0686 0.1022 0.0932 1.2997 0.0968
(0.0487) (0.0567) (0.0117) (0.0069)

0.33 3872 1184 0.2192 0.316 −1.6292 0.0516 0.1028 0.0918 1.523 0.0639
(0.0492) (0.055) (0.0119) (0.0066)

0.3199 3815 1241 0.2153 0.3236 −1.8986 0.0288 0.1028 0.0923 1.6044 0.0543
(0.0485) (0.0555) (0.0118) (0.0071)

0.31 3743 1313 0.2101 0.3325 −2.1656 0.0152 0.1033 0.0914 1.7387 0.041

(0.0495) (0.0531) (0.0119) (0.0069)
0.30 3666 1390 0.2113 0.3225 −1.9762 0.0241 0.1035 0.0916 1.6949 0.0451

(0.0492) (0.0541) (0.0121) (0.0065)
0.29 3605 1451 0.2088 0.3242 −2.172 0.0149 0.1038 0.0911 1.7428 0.0407

(0.0495) (0.0514) (0.0123) (0.0064)
0.28 3533 1523 0.2149 0.3044 −1.7832 0.0373 0.1035 0.0926 1.4172 0.0782

(0.0498) (0.0492) (0.0124) (0.0065)
0.27 3452 1604 0.2178 0.2937 −1.5168 0.0647 0.1037 0.0928 1.3526 0.0881

(0.0504) (0.0481) (0.0127) (0.0063)
0.26 3375 1681 0.2144 0.2971 −1.73 0.0418 0.1041 0.0923 1.4148 0.0786

(0.0507) (0.0465) (0.0129) (0.0062)

VWRETD (Value Weighted)

α NNF NI µNF × 253 µI × 253 Z–stat (p val.) σNF ×
√
253 σI ×

√
253 Z–stat (p val.)

0.35 4023 1033 0.1211 0.1894 −0.8616 0.1945 0.1338 0.1248 0.9127 0.1807
(0.04) (0.0573) (0.0155) (0.0091)

0.3399 3959 1097 0.1204 0.1879 −0.8451 0.199 0.1337 0.1257 0.7611 0.2233
(0.0396) (0.0598) (0.0158) (0.0088)

0.33 3872 1184 0.1108 0.2145 −1.3811 0.0836 0.1344 0.1237 0.9701 0.166
(0.0394) (0.0564) (0.016) (0.0084)

0.3199 3815 1241 0.1077 0.2192 −1.5691 0.0583 0.1342 0.1251 0.9769 0.1643
(0.0379) (0.0561) (0.0157) (0.0094)

0.31 3743 1313 0.0988 0.2386 −2.0551 0.0199 0.1348 0.1237 1.1415 0.1268
(0.0379) (0.0537) (0.0159) (0.0091)

0.30 3666 1390 0.1028 0.2202 −1.6678 0.0477 0.135 0.1237 1.1241 0.1305
(0.0383) (0.0555) (0.0162) (0.0087)

0.29 3605 1451 0.1015 0.2184 −1.734 0.0415 0.1356 0.1227 1.2201 0.1112
(0.0392) (0.0514) (0.0164) (0.0084)

0.28 3533 1523 0.1057 0.2031 −1.4499 0.0735 0.1357 0.1229 1.1851 0.118
(0.0402) (0.0497) (0.0167) (0.0083)

0.27 3452 1604 0.1098 0.1895 −1.1526 0.1245 0.1362 0.1225 1.2003 0.115
(0.0411) (0.0503) (0.017) (0.008)

0.26 3375 1681 0.1035 0.1984 −1.3796 0.0839 0.1369 0.1216 1.2928 0.098
(0.0416) (0.0496) (0.0173) (0.0078)

Table 3.8: Results for the CRSP VWRETD (value weighted) and EWRETD (equally
weighted) indexes, from 1977-01-01 to 1996-12-31 for αs in the neighbourhood of Crack’s
best α. The significant p–values (in bold) are in the region of Crack’s best α. The closest
neighbours are significant.
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Figure 3.2: The mean EWRETD returns separated into NF and IP over the full range of
αs. The “interesting” neighbourhood, described in the text and in table 3.7, is highlighted
and all αs in that neighbourhood are plotted.
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3.6 Implementing Other Markets

For the reasons outlined in section 3.2.4 we are going to look at Crack’s results in other

markets.

There are six markets we are going to look at and we will run the exact same study

as Crack. We summarise the results in table 3.9.

Interestingly two of the six markets (CCMP and SPTSX) we looked had a significant

difference between the NF and IP sets using the same criteria Crack used in his paper.

A third market (SPX) was almost but not quite significant at 5%.

Given that the CCMP, which is a NASDAQ composite index, forms part of the CRSP

[VE]RWETD indexes it is not too surprising that it should show some of the same features.

SPTSX is an index of stocks traded on the Toronto stock exchange, not part of

the CRSP data, and the SPX index does have some commonality with CRSP, yet the

Canadian SPTSX is a better fit than the U.S. SPX to Crack’s hypothesis about the moon

and returns.

It is interesting to look at the correlation of the return series for all those indexes, in

table 3.10. SPX has the highest correlation with the CRSP value weighted index followed

by (in descending order) INDU, CCMP then SPTSX all with correlations over 70%. The

HSI and lastly the NKY both have correlations below 20%.

For the equally weighted CRSP index the correlations are also in two groups. The

most correlated is CCMP (91%) followed by SPX, SPTSX and INDU (in that order) all

over 70%. HSI, correlated 22%, and NKY at 19% form the other group.

In terms of agreeing with Crack’s prescription for higher returns and lower volatility

the p–values are in table 3.9.

The best three are all significant, or nearly so, at 5% for the mean return but only

CCMP is significant for volatility. In terms of correlated markets there are four that are

reasonably highly correlated (> 70%) with the CRSP indexes.

So, even for well correlated markets the effect that Crack observed is not universal.

It fails to appear at all in either of the Asian markets.

So looking at these other markets offers no evidence to refute the hypothesis that

Crack was data snooping.
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Index p–valueµ p–valueSD
CCMP 0.0174 0.0492
SPTSX 0.0411 0.1001

SPX 0.0521 0.1366
INDU 0.1932 0.1407
HSI 0.6575 0.0802

NKY 0.7178 0.3437

Table 3.9: The p–values for the separation of the mean returns and standard deviations
of the NF and IP sets at α = 0.3 for the six “other markets”

CCMP HSI INDU NKY SPTSX SPX VWRETD EWRETD
CCMP 1.000

HSI 0.180 1.000
INDU 0.730 0.139 1.000
NKY 0.164 0.198 0.103 1.000

SPTSX 0.677 0.178 0.660 0.157 1.000
SPX 0.779 0.136 0.961 0.103 0.681 1.000

VWRETD 0.856 0.156 0.943 0.125 0.730 0.982 1.000
EWRETD 0.912 0.224 0.717 0.188 0.722 0.755 0.836 1.000

Table 3.10: Correlation of the returns in the other markets used to compare with Crack’s
results. The date range is the same 1977–1996 period that Crack used.

CCMP
The NASDAQ composite index (thus a component of both VWRETD
and EWRETD that Crack used). Capitalisation weighted index of three
NASDAQ markets: Global Select, Global Market and Capital Select.

HSI
The Hang Seng Index. Free–float capitalisation weighted index of

companies from the Stock Exchange of Hong Kong.

INDU
The Dow Jones Industrial Average. A price–weighted average of
the 30 blue–chip stocks that are generally the leaders in their

industry.

NKY
The Nikkei–225 Stock Average. A price weighted average of the 225 top
rated Japanese companies listed in the first section of the Tokyo Stock

Exchange.

SPTSX
A capitalisation weighted index designed to measure market activity

of stocks listed on the Toronto Stock Exchange.

SPX
Standard and Poor’s 500. A capitalisation weighted index of 500

stocks representing all major industries in the USA.
VWRETD
EWRETD
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3.7 Conclusion

Given the tests that we used the results for the lunar hypothesis can be summarised thus:

Data Snooping Test No Evidence Inconclusive Evidence

of Data Snooping of Data Snooping

Statistical Significance X

Holdouts X

Neighbourhood Analysis X

Other Markets X

Only the neighbourhood analysis showed no evidence of data snooping. It appears

that as the α enters the “good zone” the performance gradually improves and as α leaves

the region the performance gradually degrades.

When testing for statistical significance it appears that Crack choose a test well suited

to his purposes. Considering figure 3.1 (page 43) the t–test would have been almost

as good, but the Wilcoxon–Mann shows no statistical significance. Only a very small

proportion of the samples had a significant result from the point of view of T–test and

Wilcoxon–Mann test but about a third were significant from the point of view of GMM.

Clearly GMM was a better choice for Crack to use, and there is evidence that the p–values

where due to data snooping. So the phenomenon that Crack reported (periods of better

returns and lower volatility in the lunar month) appears to be real in the period Crack

looked at.

The “Holdout” test was very clear. The 1977–1996, the period studied by Crack,

show no sign of the properties Crack observes during 1977–1996.

The “Other Markets” test was also fairly clear. In the two Asian markets the in-

dexes showed none of the lunar properties while two of the four North American indexes

showed similar patterns in returns, and a third was almost significant at the 5% level

(using GMM). Only one of the North American markets showed a significant difference

in volatility between the IP and NF sets of returns. The four daily returns to the North

American indexes are all fairly significantly correlated with the CRSP data that Crack

used, but even then the results are equivocal. If all the correlated markets had shown
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the same properties Crack found in the CRSP data we would have been suspicious, but

when correlated markets do not show the same properties we should reject the properties

as data snooping.

In the final analysis it does look to us that Crack did find a way of partitioning daily

returns, in one market, according to the phase of the moon that separated them into high

return and low volatility days and lower return higher volatility days. But we do think

that the statistical p–values are due to data snooping. Also the absence of the effect

in other markets and in holdout data illustrates that the effect in itself is due to data

snooping. Crack has described the data, not the data generating process. He claimed to

be data snooping and we agree with him.

3.8 Explain why it (appeared to) Work

Given that it is clear that Crack was data snooping, the question remains what was the

out–performance of the IP returns caused by? Is it just random chance that days with

slightly better returns fell into the IP set? Or are there unusual days (outliers) in the

IP or NF sets that skew the means?

One way to get a feel for this is to look at the days with the most extreme returns

and see if they tend to occur in the IP or NF sets.

To this end we have done further analysis using the 1976–1997 data with α set to 0.3.

But this time we partition the data according to daily returns.

Our objective is to find whether the success of Crack’s approach was due to the

distribution of some outliers, or whether it was due to a wider distribution of returns.

We order the data by absolute daily return. We then divide it into two sets using

a cutoff value. One set (labeled “Below” in table 3.11) includes all the days where the

absolute daily return is less than the cutoff, and the other (labeled “Above”) where

absolute daily returns are above the cutoff. We then compare these two sets in the same

manner that Crack did. We run Crack’s algorithm, with α = 0.3, twice. Once on the

data below and once on the data above the cutoff.

We repeat with nine cutoffs evenly spaced, such that each new cutoff moves about

370 data points to the below set from the above set.
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Our null hypothesis is that the effect noticed by Crack is distributed throughout the

data and it is not caused by outliers. We will reject the null hypothesis if we can find a

cutoff where the effect is present in data below the cutoff and not in the data above.

Looking at the results in table 3.11 we can see that our null hypothesis cannot be

rejected. It looks like extreme value “outliers” are not responsible for the effect. In fact,

it seems that the data with smaller absolute returns are more likely to be responsible

for the effect. The p–values for differences in mean and variance are almost all small for

the below sets and almost all not small for the above sets. It could be that the extreem

values produce higher standard errors in the estimates of mean and standard deviation

and this gives higher (i.e., less significant) p–values there.
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EWRETD Data
Cutoff Below #NF #IP µNF µIP p–valueµ σNF σIP p–valueσ

0.008618
Below 372 134 -0.692 0.504 0.007 0.271 0.228 0.001
Above 3331 1219 0.309 0.314 0.442 0.058 0.059 0.825

0.006286
Below 724 288 0.027 0.710 0.003 0.213 0.173 0.002
Above 2979 1065 0.253 0.231 0.793 0.048 0.047 0.230

0.004934
Below 1106 412 0.197 0.674 0.004 0.179 0.151 0.012
Above 2597 941 0.214 0.183 0.899 0.040 0.040 0.695

0.003988
Below 1479 545 0.295 0.633 0.004 0.158 0.135 0.011
Above 2224 808 0.151 0.130 0.835 0.034 0.034 0.422

0.003227
Below 1853 677 0.307 0.555 0.010 0.143 0.124 0.018
Above 1850 676 0.110 0.111 0.485 0.028 0.028 0.196

0.002501
Below 2234 802 0.299 0.510 0.010 0.132 0.115 0.026
Above 1469 551 0.071 0.075 0.394 0.022 0.022 0.324

0.001830
Below 2607 935 0.278 0.463 0.011 0.123 0.108 0.034
Above 1096 418 0.043 0.042 0.508 0.016 0.017 0.674

0.001220
Below 2969 1079 0.256 0.414 0.013 0.115 0.101 0.031
Above 734 274 0.016 0.015 0.575 0.011 0.011 0.776

0.000614
Below 3332 1222 0.232 0.369 0.014 0.109 0.095 0.030
Above 371 131 0.003 -0.009 0.988 0.006 0.005 0.050

VWRETD Data
Cutoff Below #NF #IP µNF µIP p–valueµ σNF σIP p–valueσ

0.012239
Below 363 143 -0.153 0.865 0.007 0.348 0.293 0.026
Above 3340 1210 0.129 0.151 0.330 0.084 0.082 0.186

0.008781
Below 740 272 0.024 0.648 0.024 0.270 0.240 0.069
Above 2963 1081 0.121 0.120 0.510 0.067 0.066 0.197

0.006841
Below 1120 398 0.104 0.562 0.010 0.231 0.210 0.114
Above 2583 955 0.101 0.086 0.667 0.054 0.055 0.696

0.005302
Below 1473 551 0.138 0.456 0.020 0.207 0.186 0.087
Above 2230 802 0.078 0.069 0.626 0.044 0.043 0.030

0.004111
Below 1860 670 0.148 0.420 0.016 0.187 0.171 0.130
Above 1843 683 0.055 0.036 0.778 0.035 0.035 0.315

0.003075
Below 2226 810 0.149 0.361 0.023 0.172 0.158 0.116
Above 1477 543 0.031 0.025 0.601 0.028 0.027 0.028

0.002224
Below 2611 931 0.137 0.321 0.024 0.160 0.148 0.155
Above 1092 422 0.018 0.017 0.515 0.020 0.020 0.242

0.001482
Below 2979 1069 0.125 0.287 0.027 0.150 0.139 0.150
Above 724 284 0.004 -0.002 0.635 0.013 0.013 0.471

0.000720
Below 3341 1213 0.113 0.253 0.032 0.142 0.130 0.135
Above 362 140 0.002 -0.006 0.820 0.006 0.007 0.841

Table 3.11: What causes the effect noticed by Crack? Here we sort the returns by absolute
value to see if it is the extreme values causing the effect. The top table is EWRETD data
and the lower table is VWRETD. We then divide it into equally sized subsets defined by
nine cutoffs. Then we apply Crack’s algorithm to the data below and the data above the
cutoff, separately. It looks to us as if the effect noticed by Crack is apparent in the data
with the extreme values removed, and therefore not in the extreme values themselves.
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Chapter 4

An Interesting Case: Market Timing

“A Quantitative Approach to Tactical Asset Allocation” (Faber, 2009) published in 2007

and updated in 2009 proposed a simple method of market timing. At the end of every

month a 10–month moving average of the level of the S&P 500 is compared to the level

of the S&P500 index and if the index (including dividends) is above the moving average

buy the index, if it is below then hold cash1.

4.1 Faber’s Claim

Faber argues that the main benefit of his timing algorithm is in improving Sharpe ratios

by reducing volatility. Although, he says, if followed 1900 – 2008 his algorithm produces

an increase in annualised returns (table 4.1).

S&P 500 Timing
Annualised Return 9.21% 10.45%

Volatility 17.87% 12.01%
Sharpe (4%) 0.29 0.54

Maximum Drawdown −83.66% −50.31%
Best Year 52.88% 52.40%

Worst Year −43.86% −26.87%

Table 4.1: S&P 500 Total Returns vs. Timing Total Returns (1900–2008). Taken from
Faber (2009). The “4%” refers to an assumed risk free rate for calculating the Sharpe
Ratios.

1Faber uses the 90–day T–Bill, as do we. Given the one month reevaluations, using 30–day instru-
ments would be more realistic, but will make little difference.
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4.2 Reproducing Faber’s Results

Faber used the S&P 500 index including gross dividends and the 90–day US T–bill rate

for the cash rate.

4.2.1 Data

The data used to reproduce Faber’s results were obtained from the Otago University

Bloomberg terminal. Using the monthly S&P500 index and the field

“TOT RETURN INDEX GROSS DVDS”.

The data from the Otago University Bloomberg terminal start in 1926. Faber’s data

started in 1900, so we could not reproduce, or test, all of Faber’s results. But we have

enough of the data, covering multiple business cycles, to test Faber’s claims.

For calculating volatility the simple returns were calculated using the “returns” func-

tion from the R library fBasics (Wuertz and Rmetrics, 2010). We calculated a variance

deviation (σ2
M) using monthly data then an annualised volatility σA =

√

12× σ2
M .

The 90–Day bill rate that Faber used as a risk free rate was downloaded from the

Federal Reserve website (Reserve, 2010).

4.2.2 Reproduced Results

In his Exhibit 2 Faber reports the total return, volatility, max drawdown, worst year and

Sharpe ratio2 for the S&P 500 from 1973–2008. Reproducing the results using data from

the Otago University Bloomberg terminal gave similar but not quite identical results. See

table 4.2.

Faber does not carefully define drawdown. We have struggled to find a precise defi-

nition of what a drawdown is in the context of finance and portfolio values. In Magdon-

Ismail et al. (2004) it is described as “...the largest drop from a peak to a trough”. It

seems the intention is to describe “the maximum possible loss a buy and hold investor can

experience by choosing the worst times to enter and exit the market” (our description).

We would define “loss” as a negative return. This is the definition that we use.

2Faber assumed a risk free rate of 6%, so it was not really a Sharpe ratio
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Faber Attempted Reproduction
Return 9.26% 9.29%

Volatility 15.54% 15.55%
Max Drawdown −44.73% −40.67%

Best Year 37.58% 34.06% (1995)
Worst Year −36.77% −32.97% (2008)

Best 12 Months
Not reported

61.18% (Start 1982–06–30)
Worst 12 Months −38.94% (Start 1973–09–28)

Sharpe(6%) 0.21 0.21

Table 4.2: Faber’s Exhibit 2 and our reproduced figures.

The differences in best and worst year are odd. It would have been helpful if Faber

had included which years he found. In reproducing Faber’s figures it was found that the

best and worst year were 1995 and 2008 respectively. Whilst the best and worst 12 month

periods started in 30 June 1982 and 30 September 1973 respectively.

When it comes to reproducing the “quantitative” results, Faber’s timing algorithm,

we can only attempt part. Faber starts his main simulation in 1900 whilst the data

available from the Otago University Bloomberg terminal start in 1926.

Figure 4.1 is taken from Faber’s Exhibit 7 (Faber (2009, pp 12)).

In table 4.3 page 56 is Faber’s data for the worst ten years (in terms of absolute

return) for the period 1900–2008. We only have data for the risk free rate from 1934 so

half of the years identified by Faber there is no reproduction.

4.2.3 Summary

Our reproduction of Faber’s results is not perfect. We do not get exactly the numbers

that he did. In some cases Faber was a little unclear, for example not precisely defining

drawdown,4 and being unclear about exactly which time periods some of his results

covered. We did, however, manage to reproduce the effects that Faber described. The

timing strategy does produce slightly better returns and reduced volatility. So we have

enough material to work with in the following sections.

4But then who does precisely define “drawdown”? There does not seem to be any precise and widely
accepted definition of this often used phrase
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Faber’s Results Reproduction
S&P 500 Timing S&P 500 Timing

1931 −43.86% 1.41% No Data
2008 −36.77% 1.33% −32.97% 1.37%
1937 −35.26% −7.65% −37.11% −12.45%
1907 −29.61% 0.09% No data
1974 −26.47% 8.16% −25.94% 7.48%
1917 −25.26% 2.51% No Data
1930 −25.26% 2.51% No Data
2002 −22.10% −4.62% −20.94% −4.78%
1920 −16.69% −4.80% No Data
1973 −14.69% −15.36% −13.4% −14.2%

Table 4.3: Faber’s Exhibit 8 “S&P 500 Ten Worst Years vs. Timing, 1900-2008” and
reproduced from available data . Interestingly it seems that the S&P 500 index was first
published in 1957 S&P 500. From 1928–1957 a daily index of 90 stocks was published3

Wilson and Jones (2002). In 1957 it was expanded to 500 stocks and became the S&P
500 Wilson and Jones (2002).
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Figure 4.1: S&P 500 Total Returns vs. Timing Total Returns (1990–2008)
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4.3 Statistical Significance

4.3.1 Decision Criteria

We will use a 5% level of significance for all our tests in this section. We will use the

Wilcoxon–Mann non–parametric test and a standard two–sample t–test.

We test a timing portfolio with level PT that is generated by investing one dollar at

the start of the period (1931) and reinvesting the returns from Faber’s timing algorithm

each month. The index portfolio with level PI is similar but uses the monthly returns of

the S&P 500 for the period (buy and hold).

We will use paired and unpaired tests over volatility, return and Sharpe ratios. Paired

tests compare individual observations and examine if one value (Faber’s timing algorithm

or buy and hold of the index) is mostly higher or lower than the other. Unpaired tests

compare the overall means5.

We used a t–test for the paired and unpaired tests and a Wilcoxon signed rank test

for non–parametric testing of the paired data and Wilcoxon rank sum test (equivalent to

the Mann-Whitney test) for the unpaired data. The tests we used were as implemented

in R (Ihaka and Gentleman, 2010).

We calculate volatility on an annual basis by calculating the standard deviation of

the monthly returns for both Faber’s timing portfolio and the buy and hold portfolio.

When we also test the Sharpe ratios we calculate them for each year using the 12

monthly returns to calculate a volatility for that year and using 90–day T–Bills for the

risk free rate6.

We test the following statistics, as reported in table 4.4:

Level We test if the level of the timing portfolio fund is less than or equal to the level of

the index (PT ≤ PI). It only makes sense to test the level in the paired case as it is

non–stationary and the long term mean of the price level of the S&P 500 does not

5It is possible to have a time series, A, which is mostly larger than another time series, B (using the
same observation times) yet the mean value of B is greater than the mean value of A. If at most times t
At >Bt but when Bt >At B is much greater than A

6Faber reports Sharpe ratios calculated using a constant risk free rate. (Faber (2009, pp 21 Ex-
hibit 15, pp 22 Exhibit 16, pp 28 Exhibit 21)) We think that using the same risk free rate the algorithm
uses, when it is out of the market, for calculating Sharpe ratios is more appropriate than using a constant
rate.
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have a clear interpretation. The null hypothesis is that the level of Faber’s timing

portfolio not greater than the level of the buy and hold portfolio on each month.

Volatility We do a paired comparison of volatility of the monthly returns for each year.

The null hypothesis is that the volatility in the returns of Faber’s timing portfolio

is not less than for the buy and hold portfolio. Do an unpaired test of the null

hypothesis that the the mean of the monthly volatilities, for the complete series, is

not less for Faber’s timing portfolio than for the buy and hold portfolio (that is we

test the null: H0 : SDS&P − SDFaber ≥ 0).

Returns A paired test of the null hypothesis that the returns of the buy and hold

portfolio are greater than those of Faber’s timing portfolio, and an unpaired test

of the null hypothesis that he mean return of the buy and hold portfolio is not less

than that of Faber’s timing portfolio.

Sharpe ratios A paired test of the null hypothesis that the Sharpe ratios (calculated

annually) of the buy and hold portfolio are greater than those of Faber’s timing

portfolio, and an unpaired test of the null hypothesis that he mean of the Sharpe

ratios for the buy and hold portfolio is greater than that of Faber’s timing portfolio.

The tests will be performed on data for the whole period (1931–2009) and a moving

10–year window for the unpaired tests, although we report discrete decades for brevity.

4.3.2 Results

Tables 4.4 and 4.5 present the p–values from the t–test and the Wilcoxon–Mann test.

For the complete period neither test rejected any of the null hypotheses except for

the volatility (VI ≤ VT ) which was clearly rejected.

For each decade we mostly do not reject the null that the level of Faber’s timing index

is less or equal to the index.

We do mostly reject the null that the timing algorithm has worse volatility. The t–test

failed to reject the null for one observation. But the tests rejected the null for the mean

volatility (column “Vol UP”) for five of nine decades in the Wilcoxon–Mann test and four

of nine for the t–test.
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The tests consistently fail to reject the null for the tests on returns and for the Sharpe

ratios (except for one Mann–Whitney result, but with so many results a solitary type I

error is not unexpected).

Date Range Level Vol Paired Vol UP Ret Paired Ret UP Sharpe Paired Sharpe UP
1932–2009 1.000 0.000 0.000 0.838 0.727 0.162 0.251
1932–1941 1.000 0.008 0.020 0.867 0.797 0.508 0.503
1942–1951 1.000 0.006 0.078 0.738 0.604 0.601 0.518
1952–1961 1.000 0.033 0.245 0.908 0.647 0.928 0.633
1962–1971 0.000 0.009 0.009 0.490 0.494 0.571 0.526
1972–1981 0.000 0.054 0.046 0.364 0.428 0.273 0.281
1982–1991 1.000 0.006 0.129 0.940 0.741 0.982 0.812
1992–2001 1.000 0.110 0.172 0.473 0.488 0.214 0.283
1999–2008 0.000 0.025 0.010 0.028 0.085 0.074 0.056

Table 4.4: p–values for t–tests on S&P 500, Faber’s timing portfolio and buy and hold of
the index (bold indicates significance less than five percent). The first column, “Level”,
is the p–value of the test of the level of Faber’s timing portfolio (PT ) Vs. the index (PI).
H0 : PT ≤ PI . The next two columns are the p–values of the tests of the timing portfolio
volatility (VT ) Vs. the index volatility (VI). The “Vol Paired” column is a paired test
(t–test for two dependant samples) with H0 : VT ≥ VI and the “Vol UP” H0 : µVT

≥ µVI

is an unpaired test (t–test for independent samples). The fifth and sixth columns are
similar tests of returns. They compare the returns of the timing portfolio RT with the
returns of the index. Column “Ret Paired” tests H0 : RT ≤ RI and column “Ret UP”
tests H0 : µRT

≤ µRI
. The last two columns test the Sharpe ratios, ST and SI for the

timing algorithm Sharpe ratio and the index Sharpe ratio respectively. Column “Sharpe
Paired” tests H0 : ST ≤ SI and the column “Sharpe UP” tests H0 : µ(ST ) ≤ µ(SI).
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Date Range Level Vol Paired Vol UP Ret Paired Ret UP Sharpe Paired Sharpe UP
1932–2009 1.000 0.000 0.000 0.369 0.883 0.921 0.388
1932–1941 1.000 0.002 0.012 0.495 0.744 0.590 0.698
1942–1951 1.000 0.004 0.083 0.179 0.697 0.545 0.466
1952–1961 1.000 0.022 0.248 0.689 0.757 0.918 0.635
1962–1971 0.000 0.010 0.006 0.457 0.606 0.850 0.568
1972–1981 0.000 0.016 0.072 0.144 0.261 0.936 0.568
1982–1991 1.000 0.010 0.062 0.813 0.770 0.960 0.717
1992–2001 1.000 0.009 0.182 0.674 0.682 0.639 0.398
1999–2008 0.000 0.014 0.022 0.097 0.340 0.020 0.068

Table 4.5: p–values for Wilcoxon–Mann tests on S&P 500, Faber’s timing and the buy
and hold portfolios (bold indicates significance less than five percent). The first column,
“Level”, is the p–value of the test of the level of Faber’s timing portfolio (PT ) Vs. the
index (PI). H0 : PT ≤ PI . The second two columns are the p–values of the tests of the
timing portfolio volatility (VT ) Vs. the index volatility (VI). The “Vol Paired” column is
a paired test (Wilcoxon matched pairs signed ranks test) with H0 : VT ≥ VI and the “Vol
UP” H0 : µVT

≥ µVI
is unpaired test (Mann–Whitney U). The fifth and sixth columns are

similar tests of returns. They compare the returns of the timing portfolio RT with the
returns of the index. Column “Ret Paired” tests H0 : RT ≤ RI and column “Ret UP”
tests H0 : µRT

≤ µRI
. The last two columns test the Sharpe ratios, ST and SI for the

timing algorithm Sharpe ratio and the index Sharpe ratio respectively. Column “Sharpe
Paired” tests H0 : ST ≤ SI and the column “Sharpe UP” tests H0 : µ(ST ) ≤ µ(SI).
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4.3.3 Interpretation

The tests for the level are a bit pointless. It is clear which periods the timing portfolio

performs better than the index by inspection. (See figure 4.2).

For volatility it is better news for Faber. The null hypothesis that for each year

the volatility of the timing algorithm is worse (greater than) the volatility of the index

VT ≥ VI , (“Vol Paired” column of tables 4.4 and 4.5), year by year, is rejected in all Mann–

Whitney cases and in all but two cases by the t–test. It is rejected for the complete data

set (1932–2009) also.

The null hypothesis that the mean volatility of the index over a decade is better

(lower) than the timing algorithm’s mean volatility over each decade, µVT ≥ µVI , (“Vol

UP” column of tables 4.4 and 4.5) is rejected except for the decades 1952–1961 (both

tests), 1972–1981 (Mann–Whitney only), 1982–1991 (t–test only) and 1992–2001 (both

tests). It is rejected for the complete data set (1932–2009) also.

This is a good story for Faber.

For returns it is a constant story. For both tests for all periods there is no evidence

to reject the null hypothesis that the timing algorithm returns are lower than the index

returns.

For the Sharpe ratios there is almost no evidence that the Sharpe ratios of Faber’s

timing algorithm are better than those of the index. This is especially bad news for

Faber, as his claim is that there is a large reduction in volatility yet similar returns.

4.4 Neighbourhood Analysis

The data we have are monthly. So the moving average was a 10–month moving average.

We can look at the 9–month and 11–month moving averages to see if the the results are

robust in near neighbourhoods.

4.4.1 Results

The results of the neighbourhood analysis are in table 4.6. The results for the 9–month

and 11–month moving averages are very similar to what Faber got for his 10–month
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moving average.

The maximum drawdown for all three moving average horizons is the same for the

same period 1987-08-31 to 1987-10-31.

The 10–month period Faber choose has the lowest return and does not have the

lowest volatility or best Sharpe ratio which indicates that Faber was not knowingly data–

snooping around the period (but our data is not quite the same as Faber’s).

Drawdowns
Months Return Volatility Start End Amount Sharpe

9 Faber 0.1097 0.1183 1989-12-31 1990-07-31 0.0819 1.193
10 Faber 0.1067 0.1200 1987-08-31 1988-07-31 0.2051 1.179
11 Faber 0.1152 0.1214 1987-08-31 1988-07-31 0.2051 1.233

N/A S&P 500 0.0929 0.1566 2000-08-31 2002-08-31 0.3798 0.682

Table 4.6: Comparing Faber’s timing algorithm for the S&P 500 1973–2008 using 9–
month, 10–month (Faber’s original choice) and 11–month moving averages.

4.5 Other Markets

We will look at some other markets and see if Faber’s results for 1973–2008 hold there.

We have Bloomberg data, as described in section 3.2.4. Additionally we have to locate a

risk free rate for the markets we investigate.

We will look at markets from the USA (CCMP; Nasdaq Composite), Canada (SPTSX;

Toronto Stock Exchange) and Japan (NKY; Nikkei 225) as these are the markets for which

we have both price data and risk free rates.

We will reproduce the results, look at statistical tests,7 and do Neighbourhood Anal-

ysis.

7For more details on these statistical tests using sub–periods see appendix C.

MCom. thesis: 2010 63 Worik Stanton



August 14, 2013

T
es
t

M
ar
ke
t

D
at
e
R
an

ge
L
ev
el

V
ol

P
ai
re
d

V
ol

U
P

R
et

P
ai
re
d

R
et

U
P

S
h
ar
p
e
P
ai
re
d

S
h
ar
p
e
U
P

t–
te
st

C
C
M
P

19
72
–2
00
9

0.
00
0

0.
00
0

0.
00
1

0.
32
6

0.
39
9

0.
21
8

0.
26
4

S
P
T
S
X

19
73
–2
00
8

0.
00
0

0.
00
0

0.
00
0

0.
07
4

0.
20
5

0.
21
5

0.
27
3

N
K
Y

19
73
–2
00
8

0.
00
0

0.
00
0

0.
00
0

0.
16
2

0.
25
3

0.
13
7

0.
14
5

W
il
co
x
on

–M
an

n
C
C
M
P

19
72
–2
00
9

0.
00
0

0.
00
0

0.
00
1

0.
30
9

0.
60
2

0.
91
3

0.
54
1

S
P
T
S
X

19
73
–2
00
8

0.
00
0

0.
00
0

0.
00
0

0.
64
9

0.
54
9

0.
79
8

0.
50
5

N
K
Y

19
73
–2
00
8

0.
00
0

0.
00
0

0.
00
0

0.
26
4

0.
38
7

0.
82
9

0.
30
4

T
ab

le
4.
7:

t–
te
st

an
d
W

il
co
x
on

–M
an

n
te
st

on
F
ab

er
’s

al
go
ri
th
m

in
ot
h
er

m
ar
ke
ts
.
T
h
e
fi
rs
t
co
lu
m
n
,
“L

ev
el
”,

is
th
e
p
–v
al
u
e
of

th
e
te
st

of
th
e
le
ve
l
of

F
ab

er
’s

ti
m
in
g
p
or
tf
ol
io

(P
T
)
v
s.

th
e
in
d
ex

(P
I
).

H
0
:
P
T
≤

P
I
.
T
h
e
se
co
n
d
tw

o
co
lu
m
n
s
ar
e
th
e
p
–v
al
u
es

of
th
e
te
st
s
of

th
e

ti
m
in
g
p
or
tf
ol
io

vo
la
ti
li
ty

(V
T
)
v
s.

th
e
in
d
ex

vo
la
ti
li
ty

(V
I
).

T
h
e
“V

ol
P
ai
re
d
”
co
lu
m
n
is

a
p
ai
re
d
te
st

w
it
h
H

0
:
V
T
≥

V
I
an

d
th
e
“V

ol
U
P
”

H
0
:
µ
V
T
≥

µ
V
I
.
T
h
e
fi
ft
h
an

d
si
x
th

co
lu
m
n
s
ar
e
si
m
il
ar

te
st
s
of

re
tu
rn
s.

T
h
ey

co
m
p
ar
e
th
e
re
tu
rn
s
of

th
e
ti
m
in
g
p
or
tf
ol
io

R
T
w
it
h
th
e
re
tu
rn
s

of
th
e
in
d
ex
.
C
ol
u
m
n
“R

et
P
ai
re
d
”
te
st
s
H

0
:
R

T
≤

R
I
an

d
co
lu
m
n
“R

et
U
P
”
te
st
s
H

0
:
µ
R

T
≤

µ
R

I
.
T
h
e
la
st

tw
o
co
lu
m
n
s
te
st

th
e
S
h
ar
p
e

ra
ti
os
,
S
T
an

d
S
I
fo
r
th
e
ti
m
in
g
al
go
ri
th
m

S
h
ar
p
e
ra
ti
o
an

d
th
e
in
d
ex

S
h
ar
p
e
ra
ti
o
re
sp
ec
ti
ve
ly
.
C
ol
u
m
n
“S

h
ar
p
e
P
ai
re
d
”
te
st
s
H

0
:
S
T
≤

S
I

an
d
th
e
co
lu
m
n
“S

h
ar
p
e
U
P
”
te
st
s
H

0
:
µ
(S

T
)
≤

µ
(S

I
).

MCom. thesis: 2010 64 Worik Stanton



August 14, 2013

4.5.1 CCMP: A convenient choice

The first market index we will examine is CCMP. It is the NASDAQ Composite Index.

The description of CCMP from Bloomberg says it is “...a broad–based capitalization–

weighted index of stocks in all three NASDAQ tiers”. The level of the index is displayed

in figure 4.3. It is a convenient choice as being from the USA we can use the same risk

free rate as is used for analysing the S&P 500.

In table 4.7 the t–test and the Wilcoxon–Mann test results are presented. For the

statistical tests we have fewer years than we had for the S&P 500 data. The results for

the level reject the null that the level of Faber’s algorithm is less than or equal to the

level of the index. That null that the volatility of Faber’s algorithm is greater than or

equal to the volatility of the index is rejected also. The null that the returns and Sharpe

ratio of Faber’s algorithm are less than or equal to those of the index is also rejected.

In table 4.8 the general results for CCMP using the 10–month moving averages and

its neighbours are displayed along with the data from reproducing Faber’s results on this

market. The results are better than for the S&P 500 index that Faber used. There is a

marked improvement in Sharpe ratios, volatilities and even returns. Also the 11–month

moving average is better indicating that Faber has not likely used data snooping to decide

on the 10–month horizon of the moving average.

These results (for the CCMP index) are similar to, and an improvement on, the results

Faber obtained on the S&P500 index.

4.5.2 SPTSX

The SPTSX is a capitalisation weighted index of the Toronto Stock Exchange. We ob-

tained the data from the Otago University Bloomberg terminal. The level of the index

and of the Faber timing algorithm are displayed in figure 4.4 page 68. In table 4.8 page 66

there are the results for applying Faber’s algorithm using the 10–month moving average

and the 9–month and 11–month month moving averages. As above for CCMP all results

are better for the timing algorithm than for the index alone. The results of the statistical

tests are very similar to those for CCMP in table 4.7.
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4.5.3 NKY

The Nikkei 225 (NKY) index gave similar results for the previous two indexes in repro-

duction, for Neighbourhood Analysis and statistical tests.

Market Method
MA Annualised Drawdown

Sharpe
Months Return Volatility Start End Amount

CCMP

Faber 9 0.08498 0.1676 2000-02-29 2002-11-30 0.4706 0.6014
Faber 10 0.1002 0.1633 2000-02-29 2002-01-31 0.3663 0.7403
Faber 11 0.1068 0.1647 2000-02-29 2002-01-31 0.2959 1.0850
Index 0.0722 0.2271 2000-02-29 2002-08-31 0.7200 0.5166

NKY

Faber 9 0.0569 0.1133 1989-12-31 1998-07-31 0.2341 0.8617
Faber 10 0.0523 0.1169 1989-12-31 1998-07-31 0.3439 0.9583
Faber 11 0.0501 0.1174 1989-12-31 1998-07-31 0.3545 0.9365
Index 0.0151 0.1923 1989-12-31 2008-10-31 0.7796 0.3919

SPTSX

Faber 9 0.0940 0.1214 1994-01-31 1994-10-31 0.1269 0.3776
Faber 10 0.0936 0.1207 1994-01-31 1994-09-30 0.1061 0.3771
Faber 11 0.0947 0.1246 2000-08-31 2002-05-31 0.1829 0.4193
Index 0.0564 0.1690 2000-08-31 2002-08-31 0.4122 0.1619

SPX

Faber 9 0.1097 0.1183 1989-12-31 1990-07-31 0.0819 1.193
Faber 10 0.1067 0.1200 1987-08-31 1988-07-31 0.2051 1.179
Faber 11 0.1152 0.1214 1987-08-31 1988-07-31 0.2051 1.233
Index 0.0929 0.1566 2000-08-31 2002-08-31 0.3798 0.682

Table 4.8: Neighbourhood analysis on Other Markets

4.5.4 Summary of Other Markets

The results seem consistently better in other markets than they do in the case of the S&P

500 that Faber originally used.

4.6 Was Faber Data Snooping?

In Faber’s original example (using the S&P 500 index) the results are equivocal. It is not

clear that Faber’s timing algorithm can reliably produce a better Sharpe ratio than that

available by buying and holding the index. It is clear that a penalty is paid in returns

for the better volatility.

In the other three markets that we examined it is clear that there were statistically

significant lower volatilities, but the improvement in Sharpe ratios was not significant

(see table 4.7).
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Judging from the fact that Faber would have done better to use a different index, and

a different moving average we can say with some certainty that he was not data snooping.

As an aside, we have not been able to show that Faber’s algorithm does not work.

Some doubt remains but it does seem effective, at least some of the time in some markets,

and when it is not effective it is not terrible. This is a surprising result. Conventional

wisdom has it that market timing is damaging to returns (Malkiel, 1999, pp. 163), yet

Faber’s algorithm is very simple. Some may say that Faber’s algorithm is not truly market

timing but is trend following (see for instance Holcomb (2011)) as it makes no attempt

to predict market movements but reacts to them. In our opinion this is splitting hairs.

Faber’s algorithm attempts to get out of bear markets before they fully develop (Faber

(2009, pp 11)) and to be in the market at other times. To us that is market timing.

Data Snooping Test No Evidence Inconclusive Evidence

of Data Snooping of Data Snooping

Statistical Significance X

Holdouts N/A

Neighbourhood Analysis X

Other Markets X
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Figure 4.3: The CCMP Index and Faber’s timing algorithm for 1973–2008
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Figure 4.4: The SPTSX Index and Faber’s timing algorithm for 1973–2008
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Figure 4.5: The NKY Index and Faber’s timing algorithm for 1973–2008
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Chapter 5

A Comprehensive Case: Searching

for Rules

In this section we look closely at the paper “Data-Snooping, Technical Trading Rule

Performance, and the Bootstrap” published in The Journal of Finance in October 1999

and authored by Ryan Sullivan, Allan Timmermann, and Halbert White (Sullivan et al.,

1999). The authors examined a large number of technical analysis rules on the Dow Jones

Index from 1897 to 1996. The authors base their work on an earlier paper from 1992

(Brock et al., 1992) which did a similar study with a smaller set of rules.

Sullivan et al. (1999) claim to have found that several of the rules were “effective”,

in that the mean annual return of the rules was close to, or better than, 20%. They also

claim to have proved that the apparent success was not due to data snooping using a

bootstrapping algorithm. The bootstrap algorithm is described in White (2000), which

is a companion paper.

We will attempt to apply our techniques to the same rules as Sullivan et al. (1999)

to see if we agree with their results. We have chosen to study this paper as it directly

addresses data snooping, and it is extensively cited1.

1Google Scholar reports more than 500 citations, SSRN more than 100.
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5.1 The Rules, Data and Technique in Sullivan et al.

(1999)

Sullivan et al. (1999) looked at five classes of rules:

• Filter Rules

• Moving Averages

• Channel Breakouts

• On Balance Volume Averages

• Support and Resistance

The rules are trialed on the daily closing prices of the Dow Jones Industrial Average

Index from 1897 to 1996. We look more closely at the rules in section 5.4

Sullivan et al. (1999) divided the data into sub-periods, mostly the same as in Brock

et al. (1992):

1897 – 1914 The first sub–sample and it ends with the closing of the stock exchange

for the First World War. (In Brock et al. (1992) this sub–period ended in July 1914

and the second started in January 1915)

1915–1938 This sub–sample is chosen to include both the “rise of the twenties” and the

depression of the 1930s.

1939–June 1962 This sub–sample is chosen to include the Second World War and it

ends when the Centre for Research in Securities Prices (CRSP) begins its daily

price series

July 1962 – 1986 The most recent period in Brock et al. (1992) covers the data from

the start of the CRSP daily data to the end of their data set

1987–1996 Sullivan et al. (1999) added this sub–period to cover the gap between their

study and that of Brock et al. (1992)

1897–1986 This period is the complete period covered in Brock et al. (1992)
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1897–1996 This is the complete period of the Sullivan et al. (1999) study.

In each period each rule was trialed separately using many different parametrisations,

generating 7,500 rules2.

The rules were evaluated using two criteria: Mean return and Sharpe ratio. For each

sub–period there are (up to) two best rules, one with the highest mean return and one

with the highest Sharpe ratio.

The process of rule discovery (generating 7,500 rules and testing them all against the

same 110 years of data, 1897 – 1996, being about 30,000 observations) is data snooping.

In Sullivan et al. (1999) it is asserted that the bootstrapping algorithm can adjust for

data snooping and give an accurate picture of the true worth of the rules. The authors

use the bootstrapping algorithm (White, 2000) to assign p–values to the rules, testing

the null hypothesis of no predictive superiority over holding a risk free asset.

This is similar to what we are doing herein. We are interested in the question: Is a

rules performance due to data snooping? In Sullivan et al. (1999) the claim is that that

question is answered definitively.

5.1.1 Risk Free Rates

To calculate Sharpe ratios, and returns when out of the market, Sullivan et al. (1999)

used three risk free rates for three periods.

1897–1925 Interest rate for 90-day stock exchange time loans3

1926–June 1954 One–month T–bill rates reported form CRSP

July 1954 to 1996 Daily Federal Funds rate

Since we only have data from 1928 (as we describe in section 5.6.1) we use the One–

month t–bill rates (we get our data from the website of Aswath Damodaran4) and the

daily Federal Funds rate from the Federal Reserve Bank of St Louis’s website5.

2Strictly speaking they did not generate 7,500 rules, but 7,500 parametrisations of the five rules.
3As reported in Banking and Monetary Statistics, 1914-1941 (1943).
4http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histret.html
5http://research.stlouisfed.org/fred2/series/FEDFUNDS
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5.2 Our Approach

In section 5.6 we implement the rules that Sullivan et al. (1999) reported as being best

using the two criteria: mean return and Sharpe ratio. We model a portfolio starting at

time zero with one dollar and follow the signals generated by the rules. Thus we use our

total wealth (initially one dollar) to be long the index when the signal is 1, short the

index, to the value of our (current) total wealth, when the signal is −1 and in the risk

free asset when the signal is 0.

We then apply our methods from section 2 to ascertain if we can detect data snooping.

5.3 Our Expectations and What We Found

We expected to find that the algorithms described as “best” by Sullivan et al. (1999)

would nominally “make money” when applied to the Dow Jones index. That is to say

that a simulated portfolio, short, neutral or long the index following the instructions of

one of the rules selected by Sullivan et al. (1999), would be more profitable than buying

and holding the index.

We are interested to see if such rules could violate the Efficient Market Hypothesis by

returning feasible consistent risk adjusted returns, in excess of holding the index.

We were disappointed to find that the rules in Sullivan et al. (1999) were not described

precisely. We did our best to reconstruct the rules from the description but in two cases

(Channel Breakouts section 5.4.4 and Filter section 5.6.7) cases we found that the rules

as described performed poorly on the data in the time period where Sullivan et al. (1999)

reported they were the best rules.

Examining the “Reality Check” bootstrapping algorithm, as described inWhite (2000),

we found that the assumptions required are violated using long-term financial data.

White’s “Reality Check” is based on the “Stationary Bootstrap” described in Politis

and Romano (1994). It is a requirement for that algorithm that the underlying data be

stationary. The daily return of the Dow Jones Industrial Averages, the index used in

Sullivan et al. (1999) has not been stationary over the 80 years of our study. We discuss

this and other problems with the Reality Check in section 5.12.1.
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Lastly the best algorithms that Sullivan et al. (1999) find switch between long, neutral

and short with great frequency. So we calculated a break even transaction cost for each

one and found that they are not practical for most of the periods in question, and probably

not practical for any. If a technical analysis algorithm cannot return excess trading profits

it cannot be said to violate the Efficient Market Hypothesis. (We discuss this in section

2.8 above).

5.4 The Rules from Sullivan et al. (1999)

Here we present the rules as described in Sullivan et al. (1999) that were found by them to

be “best”, those from table 5.1 (page 79). We do not examine the support and resistance

rules as they were not found to be the best, for data we have, by Sullivan et al. (1999).

Sullivan et al. (1999) do not explicitly describe the rules with equations, instead they

give English language summaries and references split between the body of their article

and an appendix. We do our best to reconstruct exactly the rules they used and claimed

to be effective.

5.4.1 Moving Average Rules

Sullivan et al. (1999) found moving average rules to be the best for the 1915–1938 sub–

period (using both criteria), the 1939–1986 (with Sharpe Ratio as the criterion) and

for the 90–year and 100–year periods both starting in 1897 and finishing in 1986 or 1996

(using both criteria). The moving average rules found to be best used one moving average,

compared to the level of the index. The rule gave a long signal when the price is above

the moving average and a short signal when the price goes below the moving average. A

“band” filter was tested where the price has to go above or below the moving average by

a percentage.

Sullivan et al. (1999) tested rules with two moving averages but none of those made

it into the category of “best”.

The moving average rule appears in equation 5.1.
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SMAt
=















































1 Pt > MA(n)× (1 + b)

−1 Pt < MA(n)× (1− b)

0















MA(n)× (1− b) ≤ Pt < MA(n) if long

MA(n)× (1 + b) ≥ Pt > MA(n) if short

(5.1)

Where SMAt
is the signal (1 for long, −1 for short and 0 for neutral) and MA(n) is

an n–day moving average.

Sullivan et al. (1999) state that their best rules use n ∈ {2, 5} and b ∈ {0, 0.001}. See

table 5.2.

5.4.2 On Balance Volume Averages

Sullivan et al. (1999) found that an On Balance Volume Average (OBV) rule gave the

best results when judged by mean return for the period 1939–19866

The OBV works by keeping a running total of the volume traded. If the price goes

up the volume for that day is added, if the price goes down it is subtracted. A moving

average of the daily volume tally is calculated then compared with the tally to generate

the long/short signal. The rule is in equation 5.2.

SOBVt
=















1 OBVt > MAOBV (t, n)

−1 OBVt < MAOBV (t, n)

OBVt =















OBVt−1 + V OLt Pt > Pt−1

OBVt−1 − V OLt Pt < Pt−1

MAOBV (t, n) =
∑t−1

i=t−n
OBVi

n

(5.2)

where n is the number of days in a moving average. Sullivan et al. (1999) state that

n = 2 gave the best results. See table 5.2.

6They counted this as two periods split at June/July 1962. The same rules were found to be best for
both those sub–periods. Hence in our simulations we combine the two periods into one period 1939–1986.
.
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5.4.3 Filter Rules

Sullivan et al. (1999) found a filter rule worked best for the period 1987–1996 using mean

return criterion.

The filter rule works by producing a long signal when the price moves x% above the

low point while short, and a short signal when the price moves x% below the high point

while long.

Sullivan et al. (1999) add an extra parameter, y, the liquidation parameter. When

the price moves y% above a low (if short) of y% below a high (if long) go neutral. It

follows that y ≤ x.

The filter rule is in equation 5.3.

SFt
=















































+1 Pt ≥ Lt × (1 + x)

0















Pt ≤ Ht × (1− y) while long

Pt ≥ Lt × (1 + y) while short

−1 Pt ≤ Ht × (1− x)

Ht = Highest value while long index

Lt = Lowest value while short index

(5.3)

where x is the “initiation” parameter. The change in security price (x× price) required

to initiate a position, and y is the “liquidation” parameter. The change in security price

(y × price) required to liquidate a position.

Sullivan et al. (1999) state that their best rule used y = 0.10 and x = 0.12. See table

5.2

5.4.4 Channel Breakouts

Sullivan et al. (1999) found that a channel breakout rule was best in the 1987–1996 period

using the Sharpe ratio criterion.

A channel is defined (in Sullivan et al. (1999)) when the high over the previous n

days is within x percent of the low in the same period. When the price breaks out of the

channel a long or short signal is generated if the price goes above or below the channel,
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respectively.

We look at the Channel Breakout Rule, and some of the difficulties in implementing

it, in section 5.6.8 below.

Given what we have read in Sullivan et al. (1999),7 we define a channel breakout in

equation 5.4

Pmt,n
= (max([Pt−n,...,Pt−1])+min([Pt−n,...,Pt−1]))

2

Pht,n
= Pmt,n

× (1 + x
2
)

Plt,n = Pmt,n
× (1− x

2
)

SCBt,n
=















1 Pt > Pht,n

−1 Pt < Plt,n

(5.4)

Pmt,n
is the mid point between the maximum and minimum prices over the last n days

Pht,n
is the top of the channel

Plt,n is the bottom of the channel

max([Pt−n, ..., Pt−1]) is the maximum price for the days t− n to t− 1

min([Pt−n, ..., Pt−1]) is the minimum price for the days t− n to t− 1

Positions are held for c days ignoring all signals in that time.

Sullivan et al. (1999) used n = 200, x = 0.15 and c = 50 days. See table 5.2.

5.5 Sullivan et al. (1999) Results

Tables 1 and 2 (pages 1661 and 1662 of Sullivan et al. (1999)) are reproduced here in

table 5.1. They list the best rules and the periods where they performed best as reported

by Sullivan et al. (1999).

Detailed data for each rule and how it performed in simulation, the number of trades

etcetera is missing from Sullivan et al. (1999).

The authors claim that “In all four subperiods we find again that the best trading

rule outperforms the benchmark”.

7Without fixing the description to be what we think a channel rule should really be. We have no
basis on which we can change the descriptions from Sullivan et al. (1999).
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Sample Best Rule, criterion
Period Dates Mean return Sharpe Ratio

Sub–period 1 1897–1914
5–day support & resistance, 20–day channel rule
0.005 band, 0.075 width
5–day holding period 5–day holding period

Sub–period 2 1915–1938
5–day moving average 5–day moving average

0.001 band

Sub–period 3 1939–June 1962
2–day on–balance volume 2–day moving average

0.001 band

Sub–period 4 July 1962–1986
2–day on–balance volume 2–day moving average

0.001 band

Sub–period 5 1987–1996
Filter rule, 200–day channel rule
0.12 position initiation 0.150 width
0.10 position liquidation 50–day holding period

90 years 1897–1986
5–day moving average 5–day moving average

0.001 band

100 years 1897–1996
5–day moving average 5–day moving average

0.001 band

Table 5.1: The “historically best performing trading rule”...“with respect to mean return
criterion” and “with respect to mean Sharpe ratio” from Sullivan et al. (1999, pp. 1661–2)

5.6 Reproduction

We attempted to reproduce the results of Sullivan et al. (1999). We used the algorithms,

in the previous section, that Sullivan et al. (1999) found effective by either of their two

measures in any period.

The reproductions went smoothly for the moving average rules. For the Filter and

Channel breakout rules, however, we could not get results that we would call satisfactory

or even interesting. It could be worth exploring these rules in more depth, going beyond

what Sullivan et al. (1999) described and looking for more precise definitions of the rules,

but that is beyond our scope.

5.6.1 The Data, Rules and Objective Criteria

We obtained daily data for the Dow Jones Industrial Average index from Yahoo.com8,

and we use the “Adj Close” field. Using this source we can obtain data for 1928 to 2010.

Sullivan et al. (1999), however, used data from 1897 to 1996. This limits the areas of

Sullivan et al. (1999) that we can study.

8http://finance.yahoo.com/q/hp?s=^DJI+Historical+Prices
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In Sullivan et al. (1999) the data were divided into five sub–periods described in

section 5.1.1. Given the later start and finish of our data series we will use the same sub–

periods where we can. The 20–Day Channel rule and the 5–Day Support and Resistance

rule were found by Sullivan et al. (1999) to be best only for the sub–period 1897–1914.

We have none of those data so we ignore those two rules. So our sub–periods are as

described in table 5.2.

Period Rule Comment

1928–1996
5–Day Moving Aver-
age

The 5–Day Moving Average rule was found
by Sullivan et al. (1999) to be best using the
mean return criterion for 90 and 100–year pe-
riods starting in 1897 and finishing in 1986
and 1996 respectively

1928–1996
5–Day Moving Aver-
age with 0.001 band

The 5–Day Moving Average rule with a 0.001
band was found to be best using the Sharpe
ratio for the same periods as above

1939–1986
The 2–Day Moving
Average rule with a
0.001 band.

This rule was found to be best for the two
consecutive periods that we have combined
using the Sharpe ratio criterion

1939–1986
The 2–Day On Bal-
ance Volume.

This rule was found to be best for the two
consecutive periods that we have combined
using the mean return criterion

1987–1996
200–Day Channel
Rule 0.15 width and
50–day holding period

This rule was found to be best, in this period,
using the Sharpe ratio criterion.

1987–1996
Filter Rule 0.12 initi-
ation and 0.1 liquida-
tion

This rule was found to be best, in this same
period, using the mean return criterion.

1997–2010
5–Day Moving Aver-
age with and without
a 0.001 band

This period is not in Sullivan et al. (1999),
but the 5–day moving average rules (with
and without the band) are used across all
the data in Sullivan et al. (1999) so we used
both 5–day moving average rules on hold out
samples. We found that with out the band
the 5–day moving average rule makes a loss
in this period.

Table 5.2: Periods and rules trialed to reproduce some of the results of Sullivan et al.
(1999). The data the rules were tested on was the daily Dow Jones Industrial Average
closing price.

We will use “buy and hold the index” as a benchmark where we need benchmarks for

calculating break even transaction costs and profitability.

The rules generate trading signals in {−1, 0, 1} where −1 =⇒ short, 0 =⇒ neutral
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(i.e., in the risk free asset) and 1 =⇒ long positions.

To assess feasibility of each rule we will find the break even transaction cost (as a

proportion of the market price of the security at the time of the trade). While this is a

rough measure of feasibility it benefits from being simple and tractable. There are more

advanced models of transaction costs that we could use (see for example Trethewey and

Crack (2010)), but break even transaction costs prove to be illuminating in several cases

as we shall see.

We do not consider the issue of practicality. Can the signals generated can be acted

on in time? It is not obvious how we could check this. There is the question of how an

index could be traded before the advent of modern derivatives, the overheads involved

in managing large portfolios that track the index etcetera. Whilst these are interesting

questions they are beyond our scope.

5.6.2 5–Day Moving Average

Sullivan et al. (1999) found a simple 5–day moving average to be best for the periods

1915–1938 and the 90 years and 100 years from 1897 when using mean return as the

criterion. We simulate trading using these rules and the Dow Jones index data.

The description in Sullivan et al. (1999) of the moving average rule is sufficient to

reproduce their simulations. However we do not have all the data that Sullivan et al.

(1999) used, so we cannot reproduce their simulations exactly. Our data series starts in

1928 so we made the decision to do the simulation in two tranches: 1928–1996 which is as

much of the Sullivan et al. (1999) data as we have, and 1997–2010 as a holdout sample.

On the face of it the returns from this strategy are tremendous. In table 5.3 and

figure 5.1 we report the results of simulating trading of the signals generated by the rule

from 1928 to 1996. Over 17,132 trading days the wealth of a trader following this strategy

grows by about 82,000 times. The mean daily return is better than three times the return

of the index.

This is too good to be true, and as we shall see it is not so good and not so true.
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Index Simulated Trading
Number of Trades N/A 3,950

Total Return 25.87 362,647.77
(Geometric) Mean Daily Return 1.921× 10−4 7.475× 10−4

Standard Deviation 1.14% 1.08%

17,132 trading days

Table 5.3: Trading the Dow Jones Industrial Average index using a 5–Day Moving Av-
erage signal for 1928–1996

5.6.3 5–Day Moving Average with a 0.001 Band

Sullivan et al. (1999) found a simple 5–day moving average to be best for the periods

1915–1938, and the 90–years and 100–years from 1897 when using the Sharpe ratio as

the objective criterion.

These simulations are very similar to those in the previous section so we will follow

the same procedures. The results are in table 5.4 and figure 5.2.

There are slightly more trades with the band than with out. This is because without

the band the rule is effectively always in the market, long or short9. With the band,

when the price is close to the moving average the algorithm is out of the market. So in a

falling market without the band there is one trade from long to short, with the band it

is long to flat to short. So there is an extra trade with the band10.

The purpose of the band is partly to stop frequent trading. Small oscillations in price

around the moving average signal will not cause frequent trades. But as we have observed

it does not mean there will be fewer trades over all. It would be interesting to see how

the size of the band effects the number of trades.

5.6.4 2–Day Moving Average with a 0.001 Band

Sullivan et al. (1999) found that the 2–Day Moving Average, 0.001 Band rule had the

best performance for the two adjoining periods: 1939–1962 and 1962–1986. We have

combined the two periods and we consider this rule over the period 1939–1986. We can

9Without the band the rule is only out of the market when the moving average equals the price.
This happens once for the 2–Day moving average (24 May 1957) and not at all for the 5–Day moving
average.

10This is a matter of definition. Going long to short could be described as 2 trades which would
double the number of trades with no band.
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Index Simulated Trading
Number of Trades N/A 4,439

Total Return 25.87 121,695.11
(Geometric) Mean Daily Return 1.921× 10−4 6.837× 10−4

Standard Deviation 1.14% 1.06%

17,132 trading days

Table 5.4: Trading the Dow Jones Industrial Average index using a 5–Day Moving Av-
erage signal and a band of 0.001 for 1928–1996. There are more trades using the band
than without the band (see table 5.3) because with the band the rule trades out of the
market between being long and short or vice verse

do this as there is no break between the two periods and both periods were evaluated

using the same criterion.

This 2–Day Moving Average Band algorithm is very similar to the 2–Day Moving

Average Band described in section 5.6.3 and it is clear how it can be implemented from

the description provided in Sullivan et al. (1999).

The results of the simulated trading of this algorithm are in figure 5.3 and table 5.5.

As with the previous 5–Day moving average the results are too good to be true. (See

section 5.7 below).

Index Simulated Trading
Number of Trades N/A 5,783

Total Return 11.34 45,731.45
(Geometric) Mean Daily Return 2.087× 10−4 8.913× 10−4

Standard Deviation 0.81% 0.76%

12,045 trading days

Table 5.5: The 2–Day Moving Average rule with a 0.001 Band on the DJIA for 1939–1986

5.6.5 2 Day On Balance Volume Rule

Sullivan et al. (1999) found this rule was best using the mean return criterion for the

same two adjoining periods as the 2-day moving average rule above (January 1939–June

1962, July 1962–December 1986) We have again combined the two periods, each roughly

20 years, to use one longer period of about 40 years.
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The performance of the rule is illustrated in figure 5.4 and table 5.6. As in the above

examples this seems too good to be true, and again it is.

Index Simulated Trading
Number of Trades N/A 5,436

Total Return 11.34 233,371.78
(Geometric) Mean Daily Return 2.087× 10−4 1.027× 10−3

Standard Deviation 0.81% 0.80%

12,045 trading days

Table 5.6: The performance of simulating trading the 2–Day On Balance Volume rule
1939–1986

5.6.6 200–Day Channel Rule with 0.150 Width and a 50–Day

Holding Period

Sullivan et al. (1999) found this rule to be the best of the trialled rules for the 1987–1996

period using Sharpe ratio criterion.

From the description in Sullivan et al. (1999) we could not design a rule to do better

than buy and hold of the index with zero transaction costs. See figure 5.5 and table 5.7.

We discuss some of the difficulties we had with this rule in more detail in section 5.6.8.

Index Simulated Trading
Number of Trades N/A 14

Total Return 2.35 0.14
(Geometric) Mean Daily Return 4.778× 10−4 5.130× 10−5

Standard Deviation 1.04% 0.26%

2,529 trading days

Table 5.7: Trading the Dow Jones Industrial Average index using a 200–day channel rule
with 0.150 width and a 50–day holding period for the period 1987–1996

5.6.7 Filter Rule with 0.120 Initiation, 0.100 Liquidation

In Sullivan et al. (1999) the filter rule was found to perform best for the 1987–1996 period

using the mean return criterion.
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However our simulation indicates far from being too good to be true this rule is

quite dismal and performs much worse than buy and hold. See figure 5.6 and table 5.8.

The mean daily return, while positive, is much worse than the benchmark. There is an

improvement in volatility, but we do not think that is much compensation for returns so

much worse than the index.

Index Simulated Trading
Number of Trades N/A 591

Total Return 2.35 0.18
(Geometric) Mean Daily Return 4.778× 10−04 6.623× 10−05

Standard Deviation 1.04% 0.89%

2,529 trading days

Table 5.8: Trading the Dow Jones Industrial Average index using a filter rule with 0.120
initiation, 0.100 liquidation 1987–1996

5.6.8 Ambiguity in the Rules: The Channel Rule Examined

It is unclear from Sullivan et al. (1999) exactly how the “channel” is defined. It is clear

when a channel exists but the rule has a signal to go long generated when the price is

above the channel and a signal to go short generated when the price is below the channel.

So although we defined a rule in equation 5.4 (page 78) it is not clear that that is the

only definition.

In equation 5.4 we defined the channel and channel rule as:

Pmt,n
= (max([Pt−n..Pt−1])+min([Pt−n..Pt−1]))

2

Pht,n
= Pmt,n

× (1 + x
2
)the top of the channel

Plt,n = Pmt,n
× (1− x

2
)the bottom of the channel

(5.5)

But the channel could be defined:

P ′

ht,n
= min(Pt−n...Pt−1)× (1 + x)

P ′

lt,n
= max(Pt−n...Pt−1)× (1− x)

(5.6)
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Then the signal could be defined as:

St =















+1 Pt > P ′

ht,n

−1 Pt < P ′

lt,n

(5.7)

An alternative that is plausible given the description in Sullivan et al. (1999) is to

define the channel around the mid point between the max and min over [Pt−n..Pt−1]. So

the channel would be defined around the mid point Pm:

Pm =
max(Pt−n..Pt−1) +min(Pt−n..Pt−1)

2
(5.8)

The width of the channel would be Pm × x. So the top of the channel (Ph) and the

bottom (Pl) would be:

Ph = Pm × (1 + x
2
)

Pl = Pm × (1− x
2
)

(5.9)

Then the long signal would be generated for Pt > Ph and a short for Pt < Pl. This is

symmetric and unambiguous, but more complex.

Additionally while there is not much authoritative literature on channel breakouts

what we can find describes the channels as being roughly parallel to the price curves,

which is not apparent from Sullivan et al. (1999)’s description in which the channels are

parallel to the x–axis. See for example Caginalp and Balenovich (1996).

5.6.9 Conclusion on Reproduction

At this point we are in the unfortunate position of being unable to reproduce Sullivan

et al. (1999)’s results for the filter rule (section 5.6.7) or the channel rule (section 5.6.6).

So in keeping with our comments in section 2.1, we will discontinue investigation of these

rules. This leaves the 2–Day Moving Average with 0.001 Band, the 2–Day On Balance

Volume, the 5–Day Moving Average with 0.001 Band and the 5–Day Moving Average

no band rules as the rules from Sullivan et al. (1999) that we have data for and we can

reproduce.

This is frustrating and we cannot help but think that our implementation lacks some-
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thing compared to Sullivan et al. (1999)’s. But we are limiting ourselves to using the

information supplied by, or referenced from, Sullivan et al. (1999). It is up to the authors

of Sullivan et al. (1999) to provide clear details of what it was they were studying. We

cannot believe that the algorithms for the filter or channel rules that we built using infor-

mation provided by Sullivan et al. (1999) are the same as theirs. We could have done our

own research to look for alternative descriptions of these rules, but that, too, is beyond

our scope.

5.7 Feasibility (Break Even Transaction Costs)

Sullivan et al. (1999) did not apply any transaction costs to their simulations. But there

are an enormous number of transactions that some of the rules generate. For example we

can see in table 5.3 that over the period of our simulation there were nearly 4,000 trades,

about 42 a year or nearly one a week,11 for the 5–day moving average rule.

One approach is to ask “what is the break even transaction cost for the rule?”. We

can then judge if the transactions costs are low enough to be feasible. A related question

is “what are the expected transaction costs?”.

Determining transaction costs is not easy. Transaction costs consist of a portion of the

bid–ask spread plus the trading commissions, at least. To this must be added the price

impact of trading, taxes and sundry other idiosyncratic costs to the trading agent. There

have been several estimates of transaction costs over time. In Lesmond et al. (1999) it is

estimated that the minimum average transaction cost was 1.2% on the New York Stock

Exchange in the years from 1963 to 199012. It is tempting to assume that transaction

costs have reduced over time, thus for the portion (roughly half) of our sample which

predates 1963 could be assumed to be higher than 1.2%. However in Gehrig and Fohlin

(2006) transaction costs were estimated for the Berlin stock exchange for 1880–1910,

using the same technique developed in Lesmond et al. (1999). Gehrig and Fohlin (2006)

found the transaction costs were as low as 0.53%. In Sullivan et al. (1999) for the early

11It is interesting that the rule trades at roughly the same frequency as the length of data it uses.
12Being the average transaction cost for the largest size decile. For the smallest size decile the average

was 10.3%.
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Figure 5.1: Trading the Dow Jones Industrial Average index using a 5–Day Moving
Average signal (Y–Axis is log scale) for 1928–1996
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Figure 5.2: Trading the Dow Jones Industrial Average index using a 5–Day Moving
Average signal with a 0.001 band (Y–Axis is log scale) for 1928–1996
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Figure 5.3: The 2–Day Moving Average rule with a 0.001 Band on the DJIA for 1939–
1986. (The Y–Axis is log scale).
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Figure 5.4: Trading the Dow Jones Industrial Average index using a 2–Day On Balance
Volume rule for 1939–1986. (The Y–axis is Log scale).
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Figure 5.5: Trading the Dow Jones Industrial Average index using a 200–day channel
rule with 0.150 width and a 50–day holding period for the period 1987–1996. This is an
illustration of the problems we had reproducing the results from Sullivan et al. (1999).
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Figure 5.6: Trading the Dow Jones Industrial Average index using a filter rule with 0.120
initiation, 0.100 liquidation 1987–1996
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part of the sample there are formidable barriers to implementing the strategy13. So we

are comfortable that saying a minimum break even transaction cost of 0.5%, 50 basis

points, is a conservative estimate. If the break even transaction costs are less than 50

basis points the trading rules are not feasible.

13As we discussed in section 2.8 there were no ETFs or index funds available before the 1970s.
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5.7.1 Results

In section 5.6.9 we gave up investigating the filter and channel rules as we could not

come close to reproducing the results from Sullivan et al. (1999). So we will study the

remaining rules listed in table 5.2 page 80 that we can reproduce, excluding the 5–Day

moving average rule on the data from 1996–2010 that we will use as a hold out sample.

Break even TC
Period Rule Net Gross

1928–1996 5–Day Moving Average No Band 0.24% 0.32%
1928–1996 5–Day Moving Average with 0.001 Band 0.22% 0.31%
1939–1986 2–Day Moving Average with 0.001 Band 0.18% 0.23%
1939–1986 2–Day On Balance Volume 0.23% 0.18%

Table 5.9: The break even transaction costs that we calculated for the algorithms from
Sullivan et al. (1999) that we were able to reproduce. The transaction costs are calculated
net where break even is getting the same return as the index, and gross, where break even
is returning 0. The highest break even transaction cost is 32 basis points. In section 5.7
we decided that 50 basis points would be a conservative estimate of the minimum break
even transaction costs for feasible technical analysis rules.

5.7.2 Conclusion from Feasibility

None of the rules is feasible once transaction costs are considered. We find it disappointing

that the Sullivan et al. (1999) authors did not do more to consider transaction costs in

their paper. Finding the break even transaction cost is a very simple procedure and it is

very illuminating.

Not considering transaction costs for a trading strategy is a form of data snooping.

It leads to spurious results. Likely transaction costs are part of the data, and ignoring

them biases the results.

There are clearly some interesting properties of the DJIA index that are worth pur-

suing, properties that make the moving average rules look so attractive, but they are,

again, beyond our scope.

Nevertheless we will apply our tools to see how the remaining strategies work. But

we will conclude that the feasibility test indicates that the results in Sullivan et al. (1999)

are data snooping.
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5.8 Statistical Tests

The statistical tests for the promising rules reported in Sullivan et al. (1999) are in table

5.10. The null hypothesis tests are for the mean returns of the rule being greater than

zero and/or greater than the buy and hold returns on the index.

We use the single sample t–test and the Wilcoxon Signed Rank test when comparing

the algorithm’s returns with zero and the t–test for two independent samples and the

Mann–Whitney U test when comparing the algorithm’s returns with the index’s returns.

The results for the four rules at the top of the table are consistent, there is strong

evidence to reject the null hypothesis and accept the alternative. It does appear for those

four rules that they perform better than nothing and they perform better than the index.

The graphs of these rules in figure 5.4 page 89 and figure 5.3 page 89 bear this out.

The remaining two rules have much more interesting statistical properties. These are

the two 5–Day moving average rules (with and without a band). Here the statistical tests

diverge.

The results of the standard t–test and the Wilcoxion test disagree for the case where

the alternative is “Greater than Index” where the t–test rejects and the Wilcoxion does

not reject the null.

There are 24 results (six rules, two alternative criteria and two tests) in total, of which

three do not reject the null at the 5% level. Given that, it is not unbelievable that the

cases which fail to reject the null are due to random variation. So there is no evidence of

data snooping using Statistical Significance.

5.9 Neighbourhood Analysis

The neighbourhood analysis results for the four algorithms from Sullivan et al. (1999)

that we can simulate are tabulated in table 5.11.

There is a greater than ten percentage points change in the number of trades for the

5–Day moving average algorithm (without a band) around 5 days. There is also a greater

than ten percentage point change in the mean return around the band for the 2–day

moving average algorithm. For all the algorithms there is a large difference in the total
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Alternative Greater than
Zero Index

Rule t–test Wilcoxion t–test Wilcoxion
2 Day on Balance Volume 1939-01-03 to
1962-06-29

0.000 0.000 0.000 0.000

2 Day on Balance Volume 1962-07-02 to
1986-12-31

0.000 0.000 0.000 0.000

2 Day Moving Average 0.001 Band 1939-01-
03 to 1962-06-29

0.000 0.000 0.000 0.009

2 Day Moving Average 0.001 Band 1962-07-
02 to 1986-12-31

0.000 0.000 0.000 0.000

5 Day Moving Average 1928-10-01 to 2010-
10-27

0.000 0.000 0.000 0.013

5 Day Moving Average 0.001 Band 1928-10-
01 to 2010-10-27

0.000 0.000 0.000 0.067

Table 5.10: Statistical significance for Sullivan et al. (1999) rules. The numbers are p–
values from the t–test (single sample t–test when comparing the algorithm’s returns with
zero and t–test for two independent samples when comparing the algorithm’s returns with
the index’s returns) and Wilcoxon test (the Wilcoxon Signed rank test) when comparing
with zero and the Mann–Whitney U test otherwise. The two results in the second panel
(the 5–day moving average rules with and without a band) for comparing the algorithm’s
returns with those of the index are curious in the degree to which the t–test and the
Wilcoxon tests disagree. Given that there are 24 tests it is not inconceivable that the
divergence between the t–test and Wilcoxon test are due to random variation.

return, except for the return of the 3–Day OBV when compared to the 2–Day OBV. Here

the daily returns are remarkably close. (The 1–Day OBV is meaningless as there are no

trades triggered. The 1–day moving average of the OBV is the same as the OBV, as

there are no signals).

For the two algorithms that use a band a small change in the band caused small

changes in the number of trades. In both cases the mean daily return was higher for the

smaller band. So too was the volatility. Since both were evaluated using Sharpe ratios

(see table 5.2 page 80) we should compare Sharpe Ratios. As a quick approximation the

mean daily return over the volatility from table 5.11 are in table 5.12.

For the 2–Day MA we can see that the small change in the band caused a large change

in the objective measure used in Sullivan et al. (1999) as well as return and volatility.

The changes in the objective measures were less dramatic for the 5-Day MA. But this is

evidence of data snooping14.

For the 5-Day MA and 2–Day OBV algorithms, with out a band, Sullivan et al. (1999)

14The Sharpe ratios are dramatic.

MCom. thesis: 2010 94 Worik Stanton



August 14, 2013

used mean return as the objective measure. Adjusting the periods (days over which a

moving average is calculated) for these two algorithms to create a neighbourhood requires

that we make a major change. The 4–Day MA algorithm’s period is only 80% of the 5–

Day period and the 6–Day algorithm is 120% of the 5–Day period. The difference is

even more dramatic for the 2–Day OBV. Still the changes in performance were much less

dramatic for the 2–Day OBV and 5–Day MA algorithms than for the 2-Day MA where

we explored the neighbourhood in the band. But given the size of the neighbourhood

we would be reluctant to draw too many conclusions using this technique in this case,

because the changes are not small.

So using Neighbourhood Analysis around the MA period parameter for MA rules we

cannot make a conclusion about data snooping.
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Algorithm Var
Number of
Trades

Total Re-
turn

Mean
Daily
Return

Volatility
Break–
Even
TC

2–Day Moving
Average
(Band)
1939–1986

0.0005
5,725
(99%)

151,538
(331%)

0.099%
(111%)

0.78% 0.24%

0.001 5,783 45,731 0.089 0.76% 0%

0.0015
5,565
(96%)

13,992
(31%)

0.079%
(89%)

0.74% 0.23%

5–Day Moving
Average
(Band)
1928–1996

0.0005
4,215
(95%)

209,770
(172%)

0.072%
(105%)

1.07% 0.32%

0.001 4,439 121,695 0.068 1.06% 0%

0.0015
4,611
(104%)

78,636
(65%)

0.066%
(96%)

1.05% 0.31%

5–Day Moving
Average

(MA Period)
1928–1926

4–Day
4,652
(118%)

311,178
(86%)

0.074%
(99%)

1.09% 0.27%

5–Day 3,950 362,648 0.075 1.08% 0.32%

6–Day
3,504
(89%)

154,604
(43%)

0.07%
(93%)

1.07% 0.34%

2–Day On Balance
Volume Average
(MA Period)

1939–1986

1 – – – – –
2 5,436 233,372 0.103 0.8% 0.23%

3
5,411
(100%)

217,992
(93%)

0.102%
(99%)

0.8% 0.23%

4
3,825
(70%)

6,496 (3%)
0.073%
(71%)

0.8% 0.23%

Table 5.11: Neighbourhood Analysis for the algorithms that we could reproduce. Dis-
playing how the number of trades, total and mean return, volatility and the gross break
even transaction cost for the algorithms and neighbours.
The first column names the algorithm. In (bold) is the parameter we change.
The second column describes the values of that parameter.
The next five columns contain the results of the simulations. The percentages in brackets
for the number of trades, total and mean return are the percentage of the main result
that was in the neighbour.
Note that the 1–day moving average (a neighbour for the 2-Day moving average) makes
no trades. This is because the 1-Day moving average of a daily series is the series itself.
Since the two series (the index and the 1–day average) are identical the 1–day MA is
never greater (smaller) than the index to give a long (short) signal.

Algorithm Band Return/Volatility

2–Day Moving
Average

0.0005 0.1269
0.0010 0.1171
0.0015 0.1068

5–Day Moving
Average

0.0005 0.0673
0.0010 0.0642
0.0015 0.6286

Table 5.12: Neighbourhood Analysis in the band for the two Moving Average algorithms.
The mean daily return over the volitility from table 5.11.
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5.10 Other Markets

In this section we test the rules, that we can reproduce, on other markets.

If the results in Sullivan et al. (1999) are due to data snooping we do not expect to see

similar performance in other markets. If they were not due to data snooping we expect

to see similar results Especially in related markets.

From section 5.6.9 we know we that the rules we can reproduce are:

• 2–Day Moving Average with 0.001 Band (1939–1986)

• 2–Day On Balance Volume (1939–1986)

• 5–Day Moving Average with 0.001 Band (1897–1996)

• 5–Day Moving Average no band (1897–1996)

For the other markets to test we will use the markets from section 3.2.4. (In 3.2.4 we

used the Dow Jones Industrial average, which is the main market here so it is excluded).

These are (with the starting date, the correlation with the DJIA and the risk free

index used):

• SPTSX Toronto Stock Exchange Composite Index (from 1977, 95.2%, risk free rate

is the Canadian 3 month treasury)

• CCMP The NASDAQ composite index (from 1971, 95.0%, risk free is the USE 3

month treasury)

• HSI The Hang Seng Index. (from 1986, 88%, risk free rate is 015)

• MEXBOL The Mexican IPC index (from 1991, risk free rate is 015)

• NKY The Nikkei–225 Stock Average. (from 1984, risk free rate is mean Japanese

discount rate.)

15For the MEXBOL (Mexican) and HSI (Hong Kong) we did not apply a risk free rate, using zero
instead. In these two markets there is so much uncertainty that there is no such thing as a risk free rate.
The MEXBOL is a Mexican index and over this period there was a lot of instability in the Mexican state.
The HSI is from Hong Kong and there has been both structural uncertainty (with the 1997 transfer of
sovereignty) and state risk in that the current administration rules at the whim of the Chinese state,
and the Chinese state is not a transparent organisation, nor has it a track record of stability, yet. So in
these two cases we felt that zero was the correct risk free rate.
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The markets are listed, in table 5.13, in descending order of correlation with the DJIA

index that is used by Sullivan et al. (1999).

In figures 5.8 to 5.15 the performance of the rules is shown in the other markets.

Summary statistics for each market and algorithm are in table 5.14.

5.10.1 Break Even Transaction Costs in Other Markets

Given the instances of good apparent performance of the algorithms in other markets

(CCMP – 5–Day MA with and without a band and SPTSX – 2–Day OBV) we felt it

would be illuminating to look at the break even transaction costs for these markets. This

we do in table 5.13.

We see no sign of feasible break even transaction costs for any of the markets except

the 2–day OBV rule using the SPTSX index.

Disregarding transaction costs, these three examples have exponential returns. But

after a simple adjustment for transaction costs the results are much less impressive.
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Market Algorithm
Net Break Even
Transaction Cost

Date Covered

CCMP

5–Day Moving
Average 0.001 Band

0.30% 1971-02-05 to 2010-10-27
SPTSX 0.27% 1977-01-03 to 2010-10-27
NKY 0.00% 1984-01-04 to 2010-10-27
HSI 0.38% 1986-12-31 to 2010-10-27

MEXBOL 0.21% 1991-11-08 to 2010-10-27
CCMP

5–Day Moving
Average

0.27% 1971-02-05 to 2010-10-27
SPTSX 0.27% 1977-01-03 to 2010-10-27
NKY 0.00% 1984-01-04 to 2010-10-27
HSI 0.35% 1986-12-31 to 2010-10-27

MEXBOL 0.23% 1991-11-08 to 2010-10-27
CCMP

2–Day Moving
Average 0.001 Band

0.48% 1971-02-05 to 1986-12-31
SPTSX 0.40% 1977-01-03 to 1986-12-31
NKY 0.00% 1984-01-04 to 1986-12-26
HSI NA

MEXBOL NA
CCMP

2–Day
On Balance Volume

0.00% 1971-02-05 to 1986-12-31
SPTSX 1.10% 1977-01-03 to 1986-12-31
NKY 0.00% 1984-01-04 to 1986-12-26
HSI NA

MEXBOL NA

Table 5.13: The break even transaction costs for other markets. There is an uneven
coverage for the periods used in Sullivan et al. (1999) for these markets. The date
range each data set encompasses is in the last two columns. Only one of the break even
transaction costs (2–Day OBV for SPTSX at 1.1%) is better than the feasibility cutoff of
0.5%. This indicates that, in almost all cases, the algorithms described in Sullivan et al.
(1999) and that we were able to reproduce would not have been feasible in markets other
than the ones used in Sullivan et al. (1999).
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Figure 5.8: The 2–Day MA with Band and 2–Day OBV rules applied to the Toronto
Stock Exchange Composite Index. The simulations all do better than the index. The
2–Day OBV has very good returns (the y–axis uses a logrithmic scale).
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Figure 5.9: The 5–Day MA with and without a band rules applied to the Toronto Stock
Exchange Composite Index. The dotted vertical lines indicate the extent of the plots in
figure 5.8.The simulations all do better than the index
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Figure 5.10: The 2–Day MA with Band and 2–Day OBV rules applied to the Nasdaq
Composite Index. There are no trades for the 2–Day OBV before 1985. After 1985 the
2–Day OBV rule seems to do well.
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Figure 5.11: The 5–Day MA with and without a band rules applied to the Nasdaq
Composite Index (CCMP). The simulations all do better than the index. The dotted
vertical lines indicate the extent of the plots in figure 5.10. Both of these rules have very
good returns. (The y–axes use a logrithmic scale).
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Figure 5.12: The 5–Day MA with and without a band rules applied to the Hang Seng
Index. The simulations all do better than the index.
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Figure 5.13: The 5–Day MA with and without a band rules applied to the Mexico IPC
Index. The simulations all do better than the index.
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Figure 5.14: The 2–Day MA with Band and 2–Day OBV rules applied to the Nikkei
Index (NKY). The 2–Day OBV has no trades and grows at the risk free rate.
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Figure 5.15: The rules applied to the Nikkei Index. The simulations all do better than
the index (NKY). The dotted vertical lines indicate the extent of the plots in figure 5.14.
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5.10.2 Summary

Other Market (Index)
Data Snooping Algorithm SPTSX CCMP HSI MEXBOL NKY

2–Day MA Band X X X N/A X

2–Day OBV X x X N/A x
5–Day MA Band X x X X X

5–Day MA No Band X X X X X

Table 5.15: Most but not all of the other markets and algorithms did well. In this table
X indicates the simulation did better than the index and x indicates the simulation did
worse than the index.

The results of Other Markets are detailed in table 5.14 summarised in table 5.15 and

figures 5.8 to 5.15.

The two and five day moving average rules all do better than the index.

The 2–Day OBV on the NKY, CCMP (Nasdaq) does worse than the index. It gener-

ated no signals at all for the NKY.

The 2–Day OBV does better than the index only on SPTSX.

The 2–Day MA rule for NKY does do better than the index but not by much, and

has a break even transaction cost that is 0% to two decimal places.

The 5–Day MA algorithm, with and without a band look good when plotted (figure

5.15), especially after 1996. But like all the algorithms used on the NKY the break even

transaction costs are very close to 0.

All four of the algorithms on the SPTSX look good when plotted (figures 5.8 and

5.9). The mean daily returns are all an order of magnitude better than the index. The

break even transaction cost of the 2–Day OBV (1.1%) is the only break even transaction

cost we found that is better than the 50 basis points that we have set as our cut off for

feasibility. The 2–Day MA break even transaction cost, at 0.4% below our cutoff but is

better than the break even transaction costs for the 5–Day MA algorithms, both of which

are 0.27%.

On the Nasdaq (CCMP) the two and five day moving average algorithms all look good

when plotted (figures 5.10 and 5.11). The 2–Day OBV improved its performance after

1985, but till then did not generate many, if any, signals. The break even transaction

cost for the 2–Day moving average algorithm (on CCMP) at 0.48% came close to our
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feasibility limit, but did not quite make it.

For both the Hang Seng and MEXBOL indexes we could only test the 5–Day moving

average algorithm because the indexes do not over lap the periods used for the 2–Day

OBV or the 2–Day MA algorithms. When plotted the algorithms look to perform well

(figures 5.12 and 5.13). The mean daily returns are an order of magnitude better than

the index. But the break even transaction costs are all below our 50 basis point feasibility

cutoff.

The 2–Day MA with band and the 2–Day OBV on the NASDAQ (CCMP) (figures

5.10 and 5.14) perform very differently from the performance on the DJIA where they

both did very well. This is on a market that is highly correlated with the DJIA. We see

the same difference between the 2–Day OBV and Moving Average in the NKY index as

in the CCMP. This in the index with the least correlation to the DJIA. Given that 2–Day

MA and 2–Day OBV both did well on the same time period on the DJIA this is evidence

of data snooping.

5.11 Holdout Sample

The data for the Sullivan et al. (1999) study finish in 1996. This leaves us with 14 years

of data (1997–2010) after the end of their study to use as a holdout sample. Some of

the rules tested in Sullivan et al. (1999) were only claimed to be effective for sections of

the period covered, so it would be unreasonable to judge those rules on periods that no

effectiveness is claimed for.

But the two 5–Day Moving Average rules were found to be effective over the complete

period. So this rule should be effective for the 14 years following the century where that

rule was found to be amongst the most effective.

In table 5.16 and figure 5.17 we can see that in the 15 years following the study the

5–Day Moving Average rule did not continue to reliably outperform the index. In fact it

had a negative return over the period, and only marginally better volatility.

We tested the 5–Day Moving Average with 0.001 band on data from 1997 to 2010.

Similarly as we can see in table 5.16 and figure 5.17, this rule also stopped performing

well at the same time the Sullivan et al. (1999) study ended. This is evidence of data
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snooping(or of the market having learned).

Index Simulated Trading
Number of Trades N/A 981

Total Return 0.73 -0.67
(Geometric) Mean Daily Return 1.571×10−04 -3.158×10−04

Standard Deviation 1.27% 1.21%

3,479 trading days

Table 5.16: Holdout sample for 5–Day Moving Average and 0.001 Band rule for 1997 –
October 2010

Index Simulated Trading
Number of Trades N/A 908

Total Return 0.73 -0.67
(Geometric) Mean Daily Return 1.571×10−04 -3.186×10−04

Standard Deviation 1.27% 1.22%

3,479 trading days

Table 5.17: Holdout sample for 5–Day Moving Average rule for 1997 – October 2010

Neither rule performs in the holdout sample (1997–2010) as well as it it did in the

main sample (1928–1996).
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Figure 5.16: Holdout sample for 5–Day Moving Average and 0.001 Band rule for 1997 –
October 2010
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Figure 5.17: Holdout sample for 5–Day Moving Average, no band, rule for 1997 – October
2010
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5.12 Conclusions on Sullivan et al. (1999)

Data Snooping Test No Evidence Inconclusive Evidence
of Data Snooping of Data Snooping

Statistical Significance X

Holdouts X

Neighbourhood Analysis X

Other Markets X

Feasibility X

Table 5.18: The results of our data snooping tests on the data from Sullivan et al. (1999).

Our results for detecting data snooping in Sullivan et al. (1999) are summarised in

table 5.18. Sullivan et al. (1999) used an algorithm to detect data snooping. Given that

we found evidence of data snooping in their results we cannot find that it is effective.

Also we cannot take the results seriously given the lack of consideration of transaction

costs in Sullivan et al. (1999), and the failure of the best algorithms therein to perform

with a simple and conservative allowance for transaction costs.

Recall that the objection to the effectiveness of technical trading rules, based on the

EMH, depends crucially on feasibility. Given the results in section 5.7 it is clear that

the rules are not useful as trading signals, unless transaction costs can be brought down

to very low levels, less than 50 basis points per trade. Given the periods that these

rules were found to be “effective” we think it is unlikely that such low transaction costs

could have been available. If we can classify ignoring transaction costs as a type of data

snooping, we can definitely say Sullivan et al. (1999) were data snooping.

A question remains: Have the Sullivan et al. (1999) authors uncovered some underly-

ing properties of the index? Given the fact that the rules only apply to carefully defined

periods (for the 5–Day moving averages the affect disappeared the year after the study) it

is unlikely. They appear to have described the index rather than the underlying proper-

ties. I.e., they were data snooping. It is a possibility that after the publication of Sullivan

et al. (1999), traders discovered these anomalies in the market and they were arbitraged

away. This assumes that traders could lower their transaction costs or improve on the

rules.

The most disappointing aspect of this study was that we could not reproduce Sullivan
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et al. (1999)’s results using the information they provided. This did mean that there were

properties observed by the authors of Sullivan et al. (1999) that we could not observe.

Our next disappointment was the lack of investigation of transaction costs. Whilst it

is very difficult to accurately model transaction costs we were able to use a very simple

procedure that placed boundaries on the transaction costs. Those boundaries ruled out

any of the rules we could simulate from being feasible.

The superior performance of the moving average rules, albeit infeasible for traders,

was interesting. It would be interesting to investigate why they were so effective, and

directly compare different moving average models of the markets. Is there some spurious

thin–trading induced serial correlation in index returns from 1897 through 1996? That

is beyond our scope.

Our analysis of Sullivan et al. (1999) using holdout samples and transaction costs is

not original. Bajgrowicz and Scaillet (2009) makes similar observations to us regarding

the (in)feasibility of the rules in Sullivan et al. (1999) due to transaction costs and the

failure of even the most successful rules when studied after the time period covered in

Sullivan et al. (1999).

5.12.1 Bootstrapping and Other False Discoveries

Sullivan et al. (1999) introduced an algorithm tailored to detect data snooping. It draws

on the “Stationary Bootstrap” developed in Politis and Romano (1994) to considerably

expand the amount of data available to test the technical trading rules on.

Sullivan et al. (1999) was a follow on paper to Brock et al. (1992). The earlier

paper examined many of the same rules on on the Dow Jones Industrial Averages index

as Sullivan et al. (1999) did. The innovation of Sullivan et al. (1999) is to use the

bootstrapping algorithm (fully documented in the companion paper White (2000) and

termed the “Reality Check”) to detect data snooping. But we see 3 major problems with

this innovation.

Firstly; in Brock et al. (1992) the best algorithm found stopped working straight after

the end of the study. Thus it failed to work out of sample which we argue is a sign of

data snooping. We see the same lack of performance in hold out samples in Sullivan et al.
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(1999). But the claim is Sullivan et al. (1999) is that the “Reality Check” has prevented

data snooping. To us this is empirical evidence that the “Reality Check” does not work.

The next two problems have to do with how the bootstrapped samples are constructed.

The method is that outlined in Politis and Romano (1994). It involves taking randomly

selected sub-sequences of random length from the original series and concatenating them

to create a new series that has the same statistical properties as the original series but

is effectively new data. This is used hundreds of times to repeatedly test the technical

trading algorithms.

There is a problem in that the stationary bootstrap of Politis and Romano (1994) is

designed for use on strictly stationary data. It is trivial to see why this must be so. If

we are concatenating randomly selected sequences to create a sequence with the same

properties then if the original series was not stationary the bootstrapped series will have

inconsistencies around the joins of the sub sequences. But the returns of the DJIA are

not stationary. At the very least there are periods of low volatility and periods of high

volatility. The bootstrapping algorithm is applied to the outputs of the rules, and we can

see no reason to accept that the output of the algorithms is stationary when they applied

to non–stationary data.

Fundamentally there is another, more subtle, problem with this approach. Financial

data (such as a time series of index returns) are not drawn from a distribution. It is

random in an algorithmic sense16 but it is not random in the sense that it is sampled

from a distribution. Financial data are the product of a process. The process is a self–

aware one. It is the actions of all traders in the market, who are all working together,

in communication with each other and optimising their behaviour. Thus all the data

are idiosyncratic. A bootstrapped sequence is not the output of the same process, or

anything like it. Even if we cannot tell the difference by examining it.

To put it another way. If the idiosyncratic part of financial returns are due to a

random process then there would be no information in historical prices that could be

used to help predict future prices. The EMH would be correct and technical analysis rules

would be ineffective. In that case (ignoring problems with non stationarity associated

16See section 2.3.7 page 12
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with changes in macro–economic variables and conditions) bootstrapping could make

sense. A return series from one time segment would be much like another. If however

the idiosyncratic part of financial returns are due to some (possibly, probably, unknown)

process then: the EMH is false, it is possible that technical analysis rules could be effective

and bootstrapping cannot work as it would erase the structure imposed by the process.
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Chapter 6

Conclusion

Detecting data snooping is hard.

We have investigated six techniques for detecting if a particular result is due to data

snooping, seven if ignoring feasibility is counted as data snooping. None of the methods

we addressed can on their own give a definitive answer that a result is not due to data

snooping, but together they can be helpful.

In section 4 we studied Faber’s algorithm that, anti–hoc, we felt sure was due to data

snooping. But it turned out to be extremely unclear. In fact if the algorithm in Faber

(2009) was presented using data snooping, (a better market and a better moving average,

see section 4.6) it would have performed better. In section 5 we dealt with a set of results

that we decided was likely due to data snooping. Yet it was presented in the context of

a study that explicitly ruled out data snooping.

Of all the techniques we used we feel the most satisfactory was using holdout data.

But even if such data are available the huge multitude of technical analysis rules that can

be conceived weakens the effectiveness of using holdout data.

We did not get a chance to evaluate “story telling”. None of the examples we tested

were presented in the context of a story. But we feel it is appropriate to have an economic

basis for technical analysis rules (that is a story). But it is not a scientific test, so it is

hard to evaluate.

The least useful of the tools we looked at was statistical significance. This is probably

due to the fact that the process of data snooping is, often, to find significance, even where

there is none. It is concerning that p–values from simple tests continue to be used when
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the assumptions underlying those tests (independence and constant distribution) do not

apply to financial markets in the general case (Lo and MacKinlay, 2001).

The examples we have used all use daily data. Given that we can define technical

analysis rules almost without limit, and there are 2,500 trading days per decade, there

will always be serious problems with data snooping if rules are optimised by back testing

on such (daily) data. But if a technical analysis rule was successful in back testing up to

a day ago, and fails tomorrow, is that due to data snooping in rule discovery or is it due

to changes in the nature of the market (e.g., traders learning)?

It is clear that the economy generally and the financial system in particular is prone

to periodicity. Periods of contraction, expansion and stagnation . Whilst defining the

temporal borders of these periods is problematic, there exist different market modes and

structural breaks.

So we must conclude that using such data to test technical analysis rules data snooping

bias is a persistent risk and it is unlikely that there is any effective single solution to the

problem. The best that we can do is be aware of the risk of data snooping and to report

how we have dealt with the risk as part of our analysis.
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Appendix A

Statistical Test Assumptions

Single Sample t–test Sheskin 2004, pp 135

Hypothesis evaluated. Does the sample come from a population in which the

mean equals a specific value?

Assumptions:

• Sample is randomly selected, no sample’s value depends on the value of an-

other.

• Underlying distribution is normal

• True variance is unknown1

t–test for two independent samples Sheskin 2004, pp 375

Hypothesis evaluated. Do two independent samples represent two populations

with different mean values?

Assumptions:

• Sample is randomly selected

• Underlying distribution is normal

• True variance is unknown1

• The two samples have the same variance

1If the variance is known the t–test is not invalid but the z–test is better.
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t–test for two dependant samples (i.e., paired two–sample test) Sheskin 2004, pp 575

Hypothesis evaluated. Do two dependant samples represent populations with

different means?

Assumptions:

• Sample is randomly selected

• Underlying distribution is normal

• True variance is unknown1

• The two samples have the same variance

Wilcoxon Signed Ranks test Sheskin 2004, pp 189

Hypothesis evaluated. Does sample come from a population in which the median

equals a specified value?

Assumptions2

• Sample is randomly selected

• interval/ratio data

• The underlying distribution is symmetrical

Mann–Whitney U test Sheskin 2004, pp 423

Hypothesis evaluated. Do the independent samples represent two populations

with different median values?

Assumptions2

• Sample is randomly selected

• Samples independent of each other

• The underlying distributions are identical in shape3.

2According to Sheskin there is an additional assumption that is not adhered to and that is that the
underlying distribution is continuous.

3Sheshkin argues that this assumption implies homogeneous variance .
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Wilcoxon matched pairs Signed ranks test Sheskin 2004, pp 609

Hypothesis evaluated. Do two dependant samples represent two different popu-

lations?

Assumptions2

• Sample is randomly selected

• The original data are interval/ratio data.

• The underlying distributions are identical in shape3.
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Appendix B

Code to Repeat the Results from

Crack (1999)

“evs.dat” is a data file of returns. EWRETD, VWRETD and S&P500 respectively.

“moon.prn” is a record of lunar phases. The data were downloaded from the XXXXX A: Get that website

Quantify the difference
website. In the 10 years since this was done there has been a small change to the data

on one day. The results here are from the original data on the original paper.

The first few lines of “evs.dat”:

19500104 0.015487 0.0108 0.011340020059674

19500105 0.00832 0.004112 0.0047365393466734

19500106 0.006124 0.002286 0.00294898473815719

19500109 0.006944 0.001546 0.0058720074772225

19500110 -0.001199 -0.003662 -0.0029316936858268

The first few lines of “moon.prn”:

19650101 0.01

19650102 0.00

19650103 0.01

19650104 0.03

19650105 0.07

19650106 0.13

The code...
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rm(list=ls())

## Fit a model to the data as in Crack’s paper

library(xts)

library(timeSeries)

library(Hmisc)

## Load the data, split into New/Full and Interphase, calculate mean

## and SD for both

## Location of CRSP data

## Data file name

dfn <- "evs.dat"

get.moon.data <- function(){

## Load moon data from the disk. Return a xts object of all the

## data. As of 2010-07-02 read the data from the Crack’s original

moon <- read.table("moon.prn")

moon.xts <- xts(moon[,2],

order.by=as.Date(as.character(moon[,1]), format="%Y%m%d"))

return(moon.xts)

}

get.returns <- function(date.range, which="Equally", method="compound"){

## As of 2010-07-02 the data is all in one file, of returns. EWRETD

## and VWRETD are from CRSP, S&P500 is from Yahoo

ret <- read.table(dfn)

## The first column is the date YYYYMMDD, the second is EWRETD, next

## VWRETD then S&P500 in the 4th column

c <- 0

if(which=="Equally"){

c <- 2

}else if(which == "Value"){

c <- 3

}else if(which == "S&P"){

c <- 4

}else{

stop(which, "unknown")

}

ret.xts <- xts(ret[,c],

order.by=as.Date(as.character(ret[,1]), format="%Y%m%d"))

## Filter to the date range we want

ret.xts <- ret.xts[date.range,]

names(ret.xts) <- c("returns")

return(ret.xts)

}

lunar.returns <- function(ret.xts, moon.xts, alpha){
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## Using the alpha separate returns into those near new and full

## moons (NF) and the "interphase" (IP) returns. Return them in two

## xts objects in a list

## Only care about days we trade, so filter out all others

moon.xts <- moon.xts[index(ret.xts),]

## Get the IP dates. ’moon.IP.xts’ will be TRUE in Interphase period

## and ’mmon.NF.xts will be true in the other periods

moon.IP.xts <- alpha<=moon.xts & moon.xts<(1-alpha)

moon.NF.xts <- moon.xts<alpha | (1-alpha) <=moon.xts

## Get the trading dates for IP and NF periods. This is very

## R-centric syntax but also very cute! ’moon.IP.idx’ will hold

## just the dates where there was trading and it was an "interphase"

## period. Similarly ’moon.NF.idx’.

moon.IP.idx <- index(moon.IP.xts[moon.IP.xts])

moon.NF.idx <- index(moon.NF.xts[moon.NF.xts])

## Get the returns in tne NF and IP periods and name them

returns.IP <- ret.xts[moon.IP.idx]

returns.NF <- ret.xts[moon.NF.idx]

l.ret <- list(returns.IP, returns.NF)

names(l.ret[[1]]) <- "returns.IP"

names(l.ret[[2]]) <- "returns.NF"

return(l.ret)

}

doit <- function(ret.xts, moon.xts, date.range, alpha, dy){

## Get the IP and NF returns

## From Crack’s code. This log stuff. *FIXME* Why?

Rt <- log(1+ret.xts)

l.r <- lunar.returns(Rt, moon.xts, alpha)

returns.IP <- l.r[[1]]

returns.NF <- l.r[[2]]

## The mean and SD...

rIP <- returns.IP

rNF <- returns.NF

mean.IP <- mean(rIP)

SD.IP <- sd(rIP)

mean.NF <- mean(rNF)

SD.NF <- sd(rNF)
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## Testing for statistical significance

x <- as.numeric(rIP)

y <- as.numeric(rNF)

## one--sided where the alternative is tht IP returns are greater

## than NF.

t.t.1 <- t.test(x, y, alternative="greater")

w.t.1 <- wilcox.test(x, y, alternative="greater") # mu = 0, paired =

# FALSE, exact =

# NULL, correct =

# TRUE, conf.int =

# FALSE,

# conf.level =

# 0.95,

## two--sided where the alternative is that the means of IP are not

## the same as the means of NF

t.t.2 <- t.test(x,y)

w.t.2 <- wilcox.test(x,y)

## GMM Test. Copy Crack’s code. Use same variable names

NNF <- length(rNF)

NI <- length(rIP)

T <- NNF+NI

muNF <- mean.NF

muI <- mean.IP

## Creat deltaNF, 1 when in NF, 0 in IP. Also deltaI vice versa

mni <- merge(rNF, rIP)

mni[!is.na(mni)] <- 1

mni[is.na(mni)] <- 0

deltaNF <- mni[,1]

deltaI <- mni[,2]

sigmaNF2 <- sum((rNF-mean.NF)^2)/NNF

sigmaI2 <- sum((rIP-mean.IP)^2)/NI

theta <- c(muNF, muI, sqrt(sigmaNF2), sqrt(sigmaI2))

Gamma <- matrix(ncol=4, nrow=4)

Gamma[1,] <- c(-NNF/T, 0, 0, 0)

Gamma[2,] <- c(0, -NI/T, 0, 0)

Gamma[3,] <- c(0, 0, -2*NNF*theta[3]/T, 0)

Gamma[4,] <- c(0, 0, 0, -2*NI*theta[4]/T)

f <- matrix(ncol=T, nrow=4)

f[1,] <- deltaNF*(Rt-theta[1])

f[2,] <- deltaI*(Rt-theta[2])

f[3,] <- deltaNF*((Rt-theta[1])^2 - theta[3]^2)

f[4,] <- deltaI*((Rt-theta[2])^2 - theta[4]^2)
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WHITE <- (f%*%t(f))*1/T

NW <- matrix(0, ncol=ncol(WHITE), nrow=nrow(WHITE))

m <- 200

for(j in 1:m){

phij <- (1/T) * f[,(j+1):T] %*% t(f[,(1:(T-j))])

NW <- NW + (1-(j/(m+1))) * (phij+t(phij))

}

NW <- NW+WHITE

OMEGA <- NW

VGMM <- solve(t(Gamma)%*%solve(OMEGA)%*%Gamma)

SE <- sqrt(diag(VGMM)/T)

## H0 muNF=muI

R <- t(c(1, -1, 0, 0))

Rtheta <- R%*%theta

VRtheta <- R%*%(VGMM/T)%*%t(R)

statmu <- Rtheta/sqrt(VRtheta)

## H0: sigmaNF=sigmaI

R <- t(c(0, 0, 1, -1))

Rtheta=R%*%theta;

VRtheta=R%*%(VGMM/T)%*%t(R)

statsig=Rtheta/sqrt(VRtheta);

## Prepare results to return

df.ret <- data.frame("alpha"=alpha,

"NNF"=NNF,

"NI"=NI,

"muNF"= muNF*dy,

"SE.NF"= SE[1]*dy,

"muI"= muI*dy,

"SE.I"= SE[2]*dy,

"statmu"=statmu,

"p.statmu"=pnorm(statmu),

"sigmaNF"=sqrt(sigmaNF2*dy),

"SE.S.NF"=SE[3]*sqrt(dy),

"sigmaI"=sqrt(sigmaI2*dy),

"SE.S.I"=SE[4]*sqrt(dy),

"statsig"=statsig,

"p.statsig"=1-pnorm(statsig)

)

return(df.ret)

}

test.2 <- function(date.range){

## Reproduce Crack’s results

MCom. thesis: 2010 137 Worik Stanton



August 14, 2013

alphas <- c(.2, .25, .3, .35, .4)

N <- length(alphas)

df.e <- data.frame("alpha" = vector(length=N, mode="numeric"),

"NNF" = vector(length=N, mode="numeric"),

"NI" = vector(length=N, mode="numeric"),

"muNF" = vector(length=N, mode="numeric"),

"SE.NF" = vector(length=N, mode="numeric"),

"muI" = vector(length=N, mode="numeric"),

"SE.I" = vector(length=N, mode="numeric"),

"statmu" = vector(length=N, mode="numeric"),

"p.statmu" = vector(length=N, mode="numeric"),

"sigmaNF" = vector(length=N, mode="numeric"),

"SE.S.NF" = vector(length=N, mode="numeric"),

"sigmaI" = vector(length=N, mode="numeric"),

"SE.S.I" = vector(length=N, mode="numeric"),

"statsig" = vector(length=N, mode="numeric"),

"p.statsig" = vector(length=N, mode="numeric"))

df.v <- data.frame("alpha" = vector(length=N, mode="numeric"),

"NNF" = vector(length=N, mode="numeric"),

"NI" = vector(length=N, mode="numeric"),

"muNF" = vector(length=N, mode="numeric"),

"SE.NF" = vector(length=N, mode="numeric"),

"muI" = vector(length=N, mode="numeric"),

"SE.I" = vector(length=N, mode="numeric"),

"statmu" = vector(length=N, mode="numeric"),

"p.statmu" = vector(length=N, mode="numeric"),

"sigmaNF" = vector(length=N, mode="numeric"),

"SE.S.NF" = vector(length=N, mode="numeric"),

"sigmaI" = vector(length=N, mode="numeric"),

"SE.S.I" = vector(length=N, mode="numeric"),

"statsig" = vector(length=N, mode="numeric"),

"p.statsig" = vector(length=N, mode="numeric"))

ret.v.xts <- get.returns(date.range, which="Value", method="compound")

ret.e.xts <- get.returns(date.range, which="Equally", method="compound")

moon.xts <- get.moon.data()

for(i in 1:N){

alpha <- alphas[i]

v <- doit(ret.v.xts, moon.xts, date.range, alpha, 253)

e <- doit(ret.e.xts, moon.xts, date.range, alpha, 253)

for(n in names(v)){

df.v[[n]][i] <- v[[n]]

df.e[[n]][i] <- e[[n]]

}

}

## Construct the file name for the LaTeX output

fn.date <- paste(substring(date.range, 1, 4),

substring(date.range, 6, 7),

substring(date.range, 9, 10),
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substring(date.range, 13, 16),

substring(date.range, 18, 19),

substring(date.range, 21, 22),

sep="")

fn.e <- paste("Fragments/Lunar.", fn.date,".e.tex", sep="")

fn.v <- paste("Fragments/Lunar.", fn.date,".v.tex", sep="")

## Label for caption

cap.date.1 <- substr(date.range, 1, 10)

cap.date.2 <- substr(date.range, 13, 23)

## Display frame. 11 columns. N * 2 rows. One for data the next

## for T-stats

disp.e <- matrix("", ncol=11, nrow=(N*2))

disp.v <- matrix("", ncol=11, nrow=(N*2))

d.names <- c("alpha","NNF","NI","muNF","muI","statmu","p.statmu","sigmaNF","sigmaI",

d.stats <- c("","","","SE.NF","SE.I","","","SE.S.NF","SE.S.I")

stat.col <- c(4,5,8,9)

## Amount to round data

nr <- 4

for(i in 1:N){

dr <- (i-1)*2+1

ds <- dr+1

for(j in 1:length(d.names)){

n <- d.names[j]

val.e <- round(df.e[[n]][i], nr)

val.v <- round(df.v[[n]][i], nr)

disp.e[dr,j] <- paste("$",val.e,"$",sep="")

disp.v[dr,j] <- paste("$",val.v,"$",sep="")

}

for(n in stat.col){

val.e <- round(df.e[[d.stats[n]]][i], nr)

val.v <- round(df.v[[d.stats[n]]][i], nr)

disp.e[ds,n] <- paste("$(",val.e,")$",sep="")

disp.v[ds,n] <- paste("$(",val.v,")$",sep="")

}

}

l <- latex(disp.e,

file=fn.e,

title=’’,

colheads=c(

’$\\alpha$’,

’$N_{NF}$’,

’$N_{I}$’,

’$\\mu_{NF}\\times253$’,
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’$\\mu_{I}\\times253$’,

’Z--stat’,

’($p$ val.)’,

’$\\sigma_{NF}\\times\\sqrt{253}$’,

’$\\sigma_{I}\\times\\sqrt{253}$’,

’Z--stat’,

’($p$ val.)’),

caption=paste("Results for the CRSP EWRETD (equally weighted)",

"index. From ",cap.date.1,"to",cap.date.2),

caption.loc="bottom",

align=c("|ccc|cccc|cccc|"),

##landscape=TRUE,

rowname=NULL,

where="p",

label=paste("tab:.e.",fn.date,sep=""),

size="footnotesize"

)

l <- latex(disp.v,

file=fn.v,

title=’’,

colheads=c(

’$\\alpha$’,

’$N_{NF}$’,

’$N_{I}$’,

’$\\mu_{NF}\\times253$’,

’$\\mu_{I}\\times253$’,

’Z--stat’,

’($p$ val.)’,

’$\\sigma_{NF}\\times\\sqrt{253}$’,

’$\\sigma_{I}\\times\\sqrt{253}$’,

’F--stat’, ’($p$ val.)’),

align=c("|ccc|cccc|cccc|"),

caption=paste("Results for the CRSP VWRETD (value weighted)",

"index. From ",cap.date.1,"to",cap.date.2),

caption.loc="bottom",

##landscape=TRUE,

##append=TRUE,

where="p",

label=paste("tab:.v.",fn.date,sep=""),

size="footnotesize",

rowname=NULL)

}

all.dates.test <- function(){

date.range <- "1977-01-01::1996-12-31"

test.2(date.range)
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date.range <- "1962-07-02::1976-12-31"

test.2(date.range)

date.range <- "1997-01-01::2006-12-29"

test.2(date.range)

}

B.1 Original Matlab Code Crack (1999)

clear;

load moon.prn; % the USNO data

load evs.dat; % CRSP E, V, S indices

data=evs;

% load data.dat;

% data=data(:,1:8);

% date1=min(moon(:,1));ind1=min(find(data(:,1)>=date1));

date1=770101;ind1=min(find(data(:,1)>=date1));

date2=max(moon(:,1));

ind2=max(find(data(:,1)<=date2));

data=data(ind1:ind2,:);

tic

obs=[];

% k=0;

% for i=1:length(data)

% for j=1:length(moon)

% if(data(i,1)==moon(j,1))

% k=k+1;

% obs(k,:)=[data(i,:) moon(j,2)];

% end

% end

% end

k=1;

for i=1:length(data)

obs(k,:)=[data(i,:) moon(find(data(i,1)==moon(:,1)),2)];

k=k+1;

end

toc

T=length(obs);
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A=size(obs);

K=A(1,2);

% plot(100*exp(cumsum(log(1+obs(2:T,3)))),diff(obs(:,4)))

plot(obs(2:T,2),sign(diff(obs(:,K))),’.’)

waxc=obs(find(sign(diff(obs(:,K)))>0&obs(2:T,K)<.50),2);

waxg=obs(find(sign(diff(obs(:,K)))>0&obs(2:T,K)>.50),2);

wang=obs(find(sign(diff(obs(:,K)))<0&obs(2:T,K)>.50),2);

wanc=obs(find(sign(diff(obs(:,K)))<0&obs(2:T,K)<.50),2);

% test diff of two means

clear

s=2;

k=1;

for alpha=[0.10 0.15 0.20 0.25 0.30 0.35 0.40]

partial=obs(find((obs(:,K)>=alpha)&(obs(:,K)<(1-alpha))),s);

newfull=obs(find((obs(:,K)<alpha)|(obs(:,K)>=(1-alpha))),s);

n=newfull;

p=partial;

N(k,:)=[length(n) length(p)];

Z1(k)=(mean(n)-mean(p))/sqrt(var(n)/length(n)+var(p)/length(p));

k=k+1;

end

[Z1’ N]

plot(Z1)

pause

% test same pop

k=1;

for alpha=0.01:0.01:0.49

partial=obs(find((obs(:,K)>=alpha)&(obs(:,K)<(1-alpha))),2);

newfull=obs(find((obs(:,K)<alpha)|(obs(:,K)>=(1-alpha))),2);

n=newfull;

p=partial;

[length(n) length(p)];

Z2(k)=(mean(n)-mean(p))/sqrt((length(n)*var(n)+length(p)*var(p))/(length(p)+length(n)

k=k+1;

end

plot(Z2)

pause

F=[];

A=[];

P=[];

V=[];

N=[];

AC=[];

M=[];

% test same var

k=1;
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for alpha=0.01:0.01:0.49

partial=obs(find((obs(:,K)>=alpha)&(obs(:,K)<(1-alpha))),s);

newfull=obs(find((obs(:,K)<alpha)|(obs(:,K)>=(1-alpha))),s);

n=newfull;

p=partial;

n(find(abs(n)>10))=[];

p(find(abs(p)>10))=[];

[length(n) length(p)];

F(k)=var(n)/var(p);

A(k)=alpha;

AC(k,:)=[autocorr(n) autocorr(p)];

P(k)=cdf(’F’,F(k),length(n)-1,length(p)-1);

V(k,:)=[std(n) std(p)];

M(k,:)=[mean(n) mean(p)];

N(k,:)=[length(n) length(p)];

k=k+1;

end

[A’ F’ P’ N/1000 V]

plot(A’,[F’ P’])

error(’tim’)

gibbous=obs(find(obs(:,K)>=0.5),2);

crescent=obs(find(obs(:,K)<0.5),2);

[mean(gibbous) mean(crescent)]

% Txc=length(waxc);

Tng=length(wang);

% Txg=length(waxg);

Tnc=length(wanc);

[mean(waxc) mean(waxg) mean(wanc) mean(wang)]

g=gibbous;

c=crescent;

Z=(mean(g)-mean(c))/sqrt(var(g)/length(g)+var(c)/length(c))

plot(obs(:,K),obs(:,4),’.’)

set(gca,’ylim’,[-0.05 0.05])

% TRADING STRATEGIES

alpha=0.15

partial=obs(find((obs(:,K)>=alpha)&(obs(:,K)<(1-alpha))),2);

newfull=obs(find((obs(:,K)<alpha)|(obs(:,K)>=(1-alpha))),2);

n=newfull;

p=partial;

[length(n) length(p)];

F(k)=var(n)/var(p);

A(k)=alpha;

P(k)=cdf(’F’,F(k),length(n)-1,length(p)-1);
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V(k,:)=[std(n) std(p)];

N(k,:)=[length(n) length(p)];

k=k+1;

end

[A’ F’ P’ N/1000 V]

[N,X]=hist(p,50);

N=N/sum(N);

bar(X,N)

set(gca,’xlim’,[-0.04 0.04])

set(gca,’ylim’,[0 0.35])
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Other Markets Stat Tests

Date Range Level Vol Paired Vol UP Ret Paired Ret UP Sharpe Paired Sharpe UP

t–test
1972::2009 0.000 0.000 0.001 0.326 0.399 0.218 0.264
1972::1981 0.000 0.020 0.028 0.311 0.382 0.270 0.244
1982::1991 0.000 0.015 0.093 0.562 0.529 0.860 0.659
1992::2001 1.000 0.086 0.118 0.534 0.519 0.245 0.283
1999::2008 0.000 0.024 0.029 0.167 0.256 0.222 0.264

Mann–Whitney test
1972::2009 0.000 0.000 0.001 0.309 0.602 0.913 0.541
1972::1981 0.000 0.003 0.038 0.103 0.381 0.752 0.534
1982::1991 0.000 0.002 0.062 0.661 0.625 0.850 0.602
1992::2001 1.000 0.002 0.140 0.588 0.698 0.820 0.534
1999::2008 0.000 0.005 0.012 0.437 0.320 0.715 0.432

Table C.1: Statistical Tests on the CCMP. The first column, “Level”, is the p–value of the
test of the level of Faber’s timing portfolio (PT ) vs. the index (PI). H0 : PT ≤ PI . The
second two columns are the p–values of the tests of the timing portfolio volatility (VT ) Vs.
the index volatility (VI). The “Vol Paired” column is a paired test with H0 : VT ≥ VI and
the “Vol UP” H0 : µVT

≥ µVI
. The fifth and sixth columns are similar tests of returns.

They compare the returns of the timing portfolio RT with the returns of the index.
Column “Ret Paired” tests H0 : RT ≤ RI and column “Ret UP” tests H0 : µRT

≤ µRI
.

The last two columns test the Sharpe ratios, ST and SI for the timing algorithm Sharpe
ratio and the index Sharpe ratio respectively. Column “Sharpe Paired” testsH0 : ST ≤ SI

and the column “Sharpe UP” tests H0 : µ(ST ) ≤ µ(SI).
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Figure C.1: Green Jelly Beans Cause Cancer. Munroe (2011)
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