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Abstract 15 

During the last two decades, increasing use of full-coverage sonic mapping of the seafloor, has made 16 

us more aware of the large and different number of seafloor processes and events bearing significant 17 

geohazard potential. This awareness combines with the increasing use of seafloor for infrastructures 18 

and with the high density of population and settlement on the coast. 19 

Seafloor mapping is the first step to make a census of the geohazard-bearing features present in a 20 

given offshore area. It often provides the only tool for a comprehensive seafloor geohazard 21 

assessment over large areas, scarcely groundtruthed by acoustic prospection and seafloor sampling. 22 

Indeed, the characterization of geohazard features on a morphological basis alone is however limited, 23 

as and more detailed investigations are needed to define the character and state of activity of 24 

potentially hazardous features. Such investigations include the use of deep-tow or autonomous 25 

platforms designed to acquire HR data at depth as well as in situ measurements, both being very 26 

expensive activities not applicable over large areas. This is the reason why seafloor mapping is often 27 

not only the first and the main but also the only tool for a comprehensive seafloor geohazard 28 

assessment over large areas, often scarcely groundtruthed by acoustic prospection and seafloor 29 

sampling. 30 

This special issue represents an example of the diversity of approaches to seafloor geohazard 31 

assessment and summarizes the present state of this discipline. Both the diverse technologies applied 32 

and the specific aims of offshore geohazard assessment brought different communities to deal with 33 

the study of seafloor processes/events from remarkably distinct viewpoints. We identified three end 34 

members in offshore geohazard assessment: 1) geohazard assessment “sensu stricto”, 2) 35 

"engineering" geohazard assessment, 3) "non-specific" geohazard assessment. These are being 36 

conducted by industry, academia and public agencies in charge of civil protection and land planning 37 

and management. Understanding the needs and geohazard perception of the different groups is a 38 

necessary step for a profitable collaboration in such an interesting and rapidly developing field of 39 

marine geology.  40 
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1. Introduction 42 

In May 2009, an international conference on “Seafloor Mapping for Geohazard 43 

Assessment” was held in the charming location of the Giardini “La Mortella” in the 44 

volcanic island of Ischia (Naples Gulf, Italy) within the umbrella of the IGCP project 45 

511 and the MaGIC Italian National Project. Ischia island was affected in the recent 46 

geological past by a massive sector collapse and debris avalanche (Chiocci and De 47 

Alteriis 2006, De Alteriis et al. 2010), whose deposits and scar morphology were the 48 

object of a pre-conference fieldtrip. 49 

The conference  brought together some hundred participants from 12 countries, 50 

representing the academic, industry and public administration communities. The 51 

participants presented several case studies and discussed on the state of the 52 

knowledge of geohazard assessment in the submarine domain, focusing especially 53 

on the use of seafloor mapping by multibeam echosounder data complemented by 54 

other geophysical and in situ data and measurements for the purpose of geohazard 55 

assessment(Chiocci et al. eds., 2009). 56 

Noticeably, about one third of the presentations were directly or indirectly linked to, 57 

and given by, representatives of industry and private companies working for 58 

geohazard offshore surveys, witnessing the applied nature of the topic. It was made 59 

evident early during the conference that industry and academia do not share the 60 

same point of view as to what represents a geohazard and what is simply a 61 

constraint for offshore activities (see section 3). The Special Issue resulting from the 62 

conference contribution aims, among others, to bridge the gap between academic 63 

research (not much funding, relative long-term development research themes) and 64 

the industry practice (spectacular, often very costly dataset focused on specific, 65 

applied issues, with little time to carry out bibliographic comparisons and a 66 

comprehensive view of the study area). Both the Ischia conference and this volume 67 

cover different areas worldwide, with higher density in the Mediterranean Sea 68 

(Fig.1). 69 

 70 

2 Seafloor morphology exploration in the recent decades: seafloor mapping 71 

programs and offshore geohazard investigations 72 

Because of the widespread and always increasing use of multibeam and other 73 

mapping techniques, marine geology is undergoing a very stimulating and active 74 

historical moment as the scientific community is flooded by a massive amount of 75 

extremely high-resolution morpho-bathymetric datasets that allow an 76 

unprecedented look at the seafloor. The impact of these data is tremendous, 77 

sometimes comparable with the effect that the production of the first bathymetric 78 

map of ocean floor (Heezen and Tharp 1954, Heezen et al. 1959) exerted on the 79 
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understanding of global tectonic processes that lead to the definition of plate 80 

tectonics. Thanks to multibeam mapping techniques, our ability to produce a near-81 

continuous bathymetric surface of the seafloor has revolutionized our understanding 82 

of marine morphodynamics. This has significantly changed the detail with which we 83 

can interpret seafloor tectonic and sedimentary process at the origin of geohazards 84 

(Hughes Clarke et al. 1996). 85 

Multibeam sonars underwent rapid development during the '80s (Farr 1980, Brown 86 

and Blondel 2008), although the number of surveys at sea using this technique was 87 

limited. Since the '90s, more performing systems have been used and technology 88 

improved to integrate acquisition of echosoundings including backscatter (de 89 

Moustier 1988, Lurton 2002). Today, the modern swath mapping sonar systems 90 

collect concurrent swath bathymetry and acoustic backscatter data. When processed 91 

together, these data can be used for remote sensing of seafloor characteristics, with 92 

several applications in geotechnical and geohazard surveys (e.g., offshore drilling and 93 

mining, dredging and disposal, subsea cable and pipeline routes; de Moustier et al. 94 

2010). 95 

It is only during the last 10-15 years that multibeam echosounders become a 96 

common tool in any kind of subaqueous survey, from very shallow coastal and 97 

lacustrine environments to full ocean depths, providing increasing amounts of high 98 

resolution data. These data constitute nowadays the unavoidable base for any 99 

geohazard assessment study. The use of AUVs and other near seafloor platforms has 100 

extended high-resolution surveys to the deep water. In addition, bathymetric data 101 

extracted from 3D seismic volumes rival in horizontal resolution with multibeam 102 

echosounders and allow the comparison of seafloor and buried seismic surfaces with 103 

a seismic geomorphology approach (Posamentier 2007). 104 

As far as seafloor geohazard is concerned, multibeam bathymetry is not only able to 105 

identify features representing the trace of hazardous geological processes, but may 106 

also precisely measure morphometric parameters and their variation trough time, to 107 

enhance the monitoring of seafloor changes representing active processes. 108 

Multibeam bathymetry also provides boundary conditions and inputs to numerical 109 

modeling aiming to reproduce geological processes to make predictions for future 110 

scenarios (e. g. run out of failed sediment, tsunami modeling). 111 

Obtaining a comprehensive seafloor map of homogeneous resolution at the regional, 112 

EEZ and oceanic level has been the focus of numerous initiatives. In the pre-113 

multibeam era, large scale seafloor mapping has been first carried-out using low-114 

frequency, long-range side scan sonar systems such as GLORIA (Geological Long-115 

Range Inclined Asdic, Rusby and Revie 1975). A long-standing initiative to merge, 116 

collect, homogenize and edit existing datasets of mainly single-beam soundings such 117 

as GEBCO (General Bathymetric Chart of the Oceans, Carpine-Lancre et al. 2003, Hall 118 
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2006) is being carried out with the support of international organizations (UNESCO, 119 

IHO) and hydrographic national offices. 120 

In the multibeam era, several projects aimed to acquire full -overage multibeam data 121 

for different purposes such as the Norwegian Mareano (Thorsens 2009, Dolan et al. 122 

2009), the Californian CSMC (California Seafloor Mapping Program, OPC, 2007 ), the 123 

Irish INSS-INFOMAR (Irish National Seabed Survey), the mapping of the Spanish EEZ 124 

(Muñoz et al. 1998), the European MESH (Mapping European Seabed Habitats) and 125 

the Italian MAGIC (Marine Geohazard Along the Italian Coasts). At a Mediterranean 126 

scale, an effort to compile existing data in deep water is being made by CIESM and 127 

Ifremer (MediMap Group 2005). 128 

 129 

 130 

3. Geohazards in the marine realm 131 

Kvalstad (2007) defined geohazard in the offshore domain, as “local and/or regional 132 

site and soil conditions having a potential of developing into failure events causing 133 

loss of life or damage to health, environment or field installations”. Such definition is 134 

broad enough to include most of the geological processes shaping the seafloor, as no 135 

time frame is defined and potentially any modification of the seafloor may be 136 

damaging for structures resting on it.  137 

Geohazards are one of the elements in the equation of geological risk. The geological 138 

risk is in fact the product of the occurrence of a given geological event or process 139 

(geohazard), the vulnerability of a given area or region to this geohazard and the 140 

possible damaging consequences on humans, structures and/or the environment. 141 

In marine and coastal environments, the major geological hazards are linked to the 142 

occurrence of events such as earthquakes, volcanic eruptions, submarine landslides 143 

or rapid processes that are able to modify the morphology and character of the 144 

seafloor such as gravity-driven sediment flows, fluid emissions, bedform migration, 145 

retrogressive erosion at canyon heads, etc (Fig. 2). Secondary effects such as 146 

tsunamis (either triggered by earthquakes or landslides) also need to be considered, 147 

as both their genesis and propagation is strongly controlled by seafloor morphology. 148 

Despite the definition of geohazards, though debatable, is relatively straightforward, 149 

their assessment is relatively complex. In fact, for the marine realm, it is often 150 

difficult if not impossible to define: 151 

1) the time scale of the hazard. Seafloor sector collapses and related debris 152 

avalanches are common processes in the millennial-scale geologic evolution of 153 

volcanic islands, and thus an event bearing an extremely high damage potential 154 
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might reoccur in the future. However, do they have to be considered in a geohazard 155 

assessment if no signs of activity are present? In a similar way, retrograding canyon 156 

heads, that seldom affect the coastline, often show a clear match between subaerial 157 

and submarine erosional morphologies, showing that landslides shaped the coast 158 

inshore of the canyon head. The question is therefore: should this be considered a 159 

geohazard if no signs of instability are detected but there is only the knowledge that 160 

a geological process could cause mass wasting in an undefined future? 161 

2) the capability of a given process to produce dangerous effects. Our knowledge 162 

on submarine processes is in many cases very limited. Do we have to assume a 163 

conservative approach (worst-case scenario) in any instance? For example, for 164 

landslide-generated tsunamis there are physical models linking the volume of the 165 

mobilized sediment and water depth to the tsunami wave height. Is it reasonable to 166 

consider all slide scars, caused by different failures (rotational, translational, complex 167 

etc.), as a result of catastrophic events, when we do not know precisely the failure 168 

dynamics? What would be the result of the assessment if many or most of the 169 

failures were slow enough not to produce significant effects on the overlying water 170 

column?  171 

3) the recurrence time of most of the hazardous events. Sometimes only erosional 172 

scars witness the occurrence of mass wasting in a given setting, so hindering any 173 

possible definition of age and recurrence time of landslide events. For instance mass 174 

wasting at canyon heads is the main process for their genesis and retrogression, as 175 

witnessed by the multiple, complex and overlapping landslide scars that form it. 176 

However mass wasting there is usually occurring with the complete disintegration of 177 

the failed mass and its transformation into gravity flows dispersing down canyon. In 178 

this case we know that the process is frequent, but what does “frequent” mean? 179 

4) the frequency – magnitude relationship of observed geohazards. In addition to 180 

frequency-dependant attenuation, hull mounted multibeam systems have an 181 

inherent loss of resolution with increasing water depth. Therefore, the capability to 182 

depict and characterize geohazard-bearing features is water depth-dependant. This 183 

problem is shown in Figure 3 with an example of size distribution of submarine 184 

landslides in the Mediterranean basin with data compiled from the public literature 185 

(Camerlenghi et al. 2010). The fact that landslides appear to have a characteristic 186 

size-magnitude, probably reflects our inability to image small-sized landslides 187 

(hundreds of m2 or lower), or/and to a subjective underestimate by the operator 188 

(small=not hazardous?). 189 

The impact of offshore geohazards for coastal communities is also depth-dependent, 190 

i.e. the deeper the geohazard generating feature, the smaller the potential impact, 191 

so this somehow counterbalances our inability to depict small geohazard features in 192 
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deep water. However, the impact of geohazard processes for offshore infrastructure, 193 

can be very high, also in deep water, no matter the size of the geohazard generating 194 

feature. To confront this, industry is massively using AUVs and ROV-mounted 195 

multibeam systems for seafloor mapping to achieve the high resolution of hull-196 

mounted coastal surveys also in very deep waters. 197 

5) the spatial distribution of hazardous events. In open slope settings, it is common 198 

practice to highlight features such as submarine landslides as evidence for 199 

geohazard, and pipeline and cable routes are often set to avoid these features. 200 

However, how likely is that the next failure occurs over the same area where failure 201 

already occurred? Isn’t it more likely that the next failure occurs in a nearby area 202 

that shows no current signs of seafloor disturbance? In other words, is it a wiser 203 

decision to lay a pipeline through a submarine landslide scar or through an area that 204 

apparently shows no signs of recent failure but is near to another area that failed? 205 

Despite the above mentioned limitations, geohazards have to be defined, depicted 206 

and evaluated because the use of the seafloor for settling structures continues to 207 

increase as is the coastal population. Therefore, assessment of marine geohazards 208 

must be a key element in coastal and seafloor management. For instance the always 209 

increasing use of the seafloor for cable route and drilling facilities (more and more 210 

extending in deep water), let marine geohazard to be a major concern for industries 211 

and public agencies dealing with marine infrastructures. Also onshore, for coastal 212 

communities and structures, marine geohazards may produce either direct effect as 213 

for submarine landslides retrogressively propagating onshore such as Finneidfjord in 214 

1996 (Longva et al. 2003) or Stromboli in 2002 (Chiocci et al. 2008) or indirect effects 215 

as for submarine landslide generating or contributing to tsunamis such as Great 216 

Banks in 1929 (Piper et al. 1999) or Nice in 1979 (Malinverno et al. 1988). 217 

For geologically active regions (such as the Mediterranean, the Caribbean and many 218 

regions around the Pacific belt of fire), which are often highly touristic regions, the 219 

risk is extremely high as the scenic coasts are often volcanic or fault-controlled and 220 

tourists and coastal settlements are packed in narrow coastal belts and constricted 221 

pocket beaches. In such a setting, even limited coastal landslides or tsunamis may 222 

have enormous effects, as witnessed by the Nice 1979 landslide and subsequent 223 

tsunami (Sultan et al. 2010). 224 

4. Diverse approaches and characterizations of geohazard  225 

One of the main outcomes of the Ischia conference and of this volume is the 226 

evidence that there are three end-member approaches in geohazard 227 

characterization that we hereafter refer as 1) “geohazard assessment sensu-stricto”; 228 

2) “engineering geohazard assessment” and 3) “non specific geohazard assessment” 229 

(Fig. 4). 230 
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The “geohazard assessment sensu-stricto” is the one conforming to the classical 231 

definition (see beginning of section 2) and is typical of applicative surveys as it is 232 

aimed to precisely identify one or more hazards in a specific site and the possibility 233 

this hazard might occur in a given time span (see for instance L’Heureux et al. this 234 

volume, Strasser et al. this volume). This approach needs a precise knowledge of the 235 

character of the process/event considered hazardous, its recurrence time, the 236 

present state of the seafloor and subseafloor and the factors controlling it. For 237 

instance, for a submarine landslide, the knowledge of the state of stability of the 238 

slope (based on geomechanical characters of the potentially failing mass) and the 239 

definition of possible triggers of the instability is needed. 240 

The study should therefore rely on a suite of geophysical data and in situ 241 

measurements that made it very costly and only possible for small areas and limited 242 

number of features/hazardous processes. The outcome of the study however is not 243 

only a truthful assessment of the hazard but may also define the character of the 244 

infrastructure in order to reduce the vulnerability to the hazard. In this case, a real 245 

risk assessment is possible. 246 

The “engineering geohazard assessment” considers the presence of any uneven 247 

feature at the seafloor that constitutes a geohazard in itself as it is a development 248 

constraint that may impact the seafloor structure, if not taken into the due account. 249 

As an example the presence of a rock outcrop or a slope-break at the seafloor is 250 

considered by the industry a geohazard to be avoided or carefully considered for 251 

operational planning of a cable or pipeline route to avoid free spans. In strict terms 252 

these uneven features (ridges, boulders, …) should not be considered as real 253 

“geohazards” because by themselves they have no “potential of developing into 254 

failure events” (Kvalstad 2007). In other words, the hazard results from human 255 

action at the location of this feature without the feature itself necessarily develops 256 

into a failure event. Furthermore, in this approach, the time span considered for the 257 

assessment is usually comparable with the life span of the infrastructure at the 258 

seafloor (e.g., pipeline, submarine cable), generally not longer than a few decades 259 

and thus shorter in time of the return period of most geological processes (see for 260 

example Dyer this volume, Cecchini et al. this volume). 261 

Finally the “non-specific geohazard assessment” involves the census of potentially 262 

hazardous features present in a whole region without targeting at any specific 263 

process/event and at any specific effect on exposed good. Such assessment is aimed 264 

to define in a general perspective the presence and character of all the hazardous 265 

marine geological processes/events and possibly the seafloor and subseafloor 266 

predisposition to these processes/events. This approach does not attempt to define 267 

the precise age and recurrence period of the hazard; it rather evaluates the spatial 268 

occurrence of hazardous events and highlight the possibility that similar events  269 
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occur in the future, given the similarity of the morpho-structural and 270 

lithostratigraphic setting of the surroundings. 271 

In strict terms the “non-specific geohazard assessment” should not be considered as 272 

a real geohazard assessment but, in our perception and given the present 273 

technology, is the only possible way to define at a regional scale the location, type 274 

and characteristics of the geohazards present in a given region, with possible 275 

indication on their state of activity. Cost-efficient multibeam mapping is in this 276 

respect the fundamental tool for such assessment, that therefore relies essentially 277 

on geomorphic interpretation of high-resolution bathymetric data. Examples of this 278 

type of geohazard assessment are provided in Chiocci and Ridente (this volume), 279 

Larroque et al. (this volume) and Lo Iacono et al. (this volume). 280 

Assessment of geohazards according to these 3 end-members is very clearly divided 281 

by the approach that different communities have when studying geohazards (Fig. 4). 282 

In fact, Academia (universities and research institutes) moves between the 283 

“geohazard assessment sensu-stricto” and the “non-specific geohazard assessment” 284 

approaches, as it is mainly interested in understanding the processes and events 285 

both at small and large scale. Academic studies are often focused in small areas that 286 

are investigated in detail to characterize the seafloor and subseafloor. Academia is 287 

also interested in the overall geological evolution of continental margins and 288 

therefore the “non-specific geohazard assessment”, is seen as a way to understand 289 

the processes shaping the seafloor and the relationship between processes and long-290 

term morphological evolution. 291 

On the contrary, industry moves between the “engineering geohazard assessment” 292 

and the “geohazard assessment sensu-stricto”, and often these two are performed 293 

in sequential order. The need to find the safest route or site for laying and installing 294 

infrastructures at the lowest possible economic cost often means that even small 295 

seafloor features have to be considered in geohazard assessment, as they constrain 296 

the deployment of the structure. 297 

Finally, stakeholders and public administrations (including geological surveys) are 298 

interested in the “non-specific geohazard assessment”, needed to wholly assess the 299 

risk for public goods in a given region and the “engineering geohazard assessment” 300 

approach needed for public works and land management. 301 

5. Special Issue outline 302 

Here follows a succinct outline of the contributions of the Special Issue, grouped by 303 

thematic affinity. Due to the location of the venue, the majority of the contributions 304 

show case studies from European, and in particular Mediterranean, continental 305 

margins (Fig. 1). This fact also reflects the increased attention towards offshore 306 

geohazard assessment in this densely populated region and towards the 307 
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management of marine areas and marine spatial planning, which is for the moment 308 

limited to the coastal areas (e.g., Schaefer 2009), but will impact in the near future 309 

entire regional seas or marine basins for activities where seafloor geohazards are 310 

relevant, including installations of offshore eolian plants, offshore oil and gas 311 

activities (COM 2010). 312 

 313 

5.1 Methodological aspects of offshore geohazard mapping 314 

The first group of papers is devoted to generic aspects of seafloor mapping for 315 

geohazard purposes. Chiocci and Ridente (this volume) describe the efforts made by 316 

the Italian community in trying to produce regional maps of geohazard features, and 317 

the need to standardize cartographic representation amongst the diverse settings 318 

and parties involved in such effort. Mosher (this volume) highlights the limitations of 319 

multibeam data and the risks of data over-interpretation resulting from system 320 

resolution problems. Along a similar line, Dyer (this volume) discusses a few cases of 321 

inappropriate data processing and how this had an impact on offshore installations.  322 

 323 

5.2 Seafloor morphology and implications for geohazards 324 

The second group of papers provides a few examples of how seafloor mapping 325 

techniques are useful in delineating zones of active geohazards, or excluding certain 326 

seafloor features as the source of potential geohazard. Urgeles et al. (this volume) 327 

perform a detailed analysis of prodeltaic bedforms that had been previously 328 

interpreted as indicative of early seafloor deformation. Cecchini et al. (this volume) 329 

discuss the seaforms on the eastern Sardinia-Corsica continental shelf that could 330 

represent a hazard for pipeline routing. Boudillon et al. (this volume), Ercilla et al. 331 

(this volume), Lo Iacono et al. (this volume) and Morelli et al. (this volume) depict the 332 

complex geomorphology and stratigraphic architecture of various continental 333 

margins and the implications of the structural and sedimentary-erosive features for 334 

geohazard assessment. Finally, Hough et al (this volume) present an integrated and 335 

systematic map-based approach for the assessment and mitigation of seabed 336 

geohazards and risk to proposed deepwater development. 337 

 338 

5.3 Faults and fluids 339 

This section illustrates the ability of multibeam mapping, together with other 340 

geophysical techniques, in delineating active faults and fluid seepage structures. 341 

Larroque et al. (this volume) and Nomikou et al. (this volume) provide two examples 342 

of recent fault activity in the Ligurian margin and Aegean Sea and show how 343 
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multibeam mapping can help in redefining regional seismic hazard. Dalla Valle et al. 344 

(this volume) provide evidence of interaction between fluid seepage, faulting and 345 

mass-wasting. Léon and Somoza (this volume) present a GIS application to help 346 

identify marine geohazards derived from gas hydrate dissociation using seafloor 347 

mapping data. 348 

 349 

5.4 Landslide identification, modeling and possible tsunami implications 350 

The last section in this special issue presents a series of papers characterizing 351 

submarine slope failures and slope failure potential and how the morphometric 352 

parameters extracted from seafloor mapping and subsurface geophysical data help 353 

define the post-failure dynamics of these events and their consequent tsunamigenic 354 

potential. Migeon et al (this volume) and Casas et al. (this volume) define various 355 

types of mass failure events and deduce the controlling factors in the development 356 

of the observed failures. Casalbore et al (this volume) show the advantage of 357 

differential bathymetric surveys for depicting seafloor dynamic processes at the 358 

origin of geohazards. Mazzanti et al. (this volume) use constraints from an historical 359 

event and observed seafloor morphology to test landslide propagation and tsunami 360 

generation models. Tinti et al. (this volume) and Argnani et al (this volume) use 361 

morphometric parameters from a large sector collapse on the island of Ischia and 362 

the Eastern Adriatic Basin, respectively, to test tsunami worst-case scenarios for the 363 

adjacent Italian coasts. L’Heureux et al. (this volume) use multibeam bathymetric 364 

data together with additional geophysical and geotechnical data to clarify the 365 

sequence of events around the 1888 landslide and tsunami in the bay of Trondheim. 366 

Finally, Strasser et al. (this volume) present a new concept for evaluating basin-wide 367 

slope stability through time as a potential tool for regional seismic and tsunami 368 

hazard assessment. 369 

  370 

6. Challenges in offshore geohazard mapping 371 

Multibeam bathymetry probably offers the most cost-effective way to chart the 372 

ocean floor, yet this only portrays a static view of the seafloor. Marine sedimentary 373 

processes often occur over large time spans and/or at very low recurrence rates, and 374 

therefore this static view of the ocean floor depicts a series of potentially hazardous 375 

phenomena that are not active anymore or not representative of present day 376 

processes, particularly in formerly glaciated margins (see also cautionary note in 377 

Mosher this volume). In active geodynamic settings or in areas close to sources of 378 

high sediment supply, the seafloor offers a much more dynamic environment, and 379 

differs greatly from one season to another. This also offers the opportunity to 380 

witness the processes at the origin of geohazards at work with repetitive surveys.  381 
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Programs are just being established to monitor seafloor dynamic systems using 382 

multibeam surveys. For example Duffy and Hughes-Clarke 2005, Smith et al., 2005 383 

and Hughes Clarke et al. 2009 have shown that using repetitive multibeam surveys it 384 

is possible to measure seafloor bedform migration. Knowledge of migration rate 385 

together with bedform height theoretically enable the calculation of sediment 386 

transported within the migrating bedforms or “bedload transport” (Duffy and 387 

Hughes-Clarke 2005). The repetitive surveys have also wide application to 388 

monitoring mass-wasting phenomena, both in sedimentary and volcanoclastic 389 

environments as already shown in Chiocci et al. 2008, Hughes-Clarke et al.2009, 390 

Casalbore et al (this volume), or affecting man-made structures (Dan et al. 2007, Li et 391 

al. 2009). A series of backscatter multibeam surveys has also been used to assess the 392 

impact on benthic ecosystems of hyperpycnal flows and related turbiditic deposition 393 

associated with major flood events (Urgeles et al. 2002). 394 

Yet, for monitoring morphological change, the typical scale of spatial change must be 395 

greater than the total survey accuracy, which significantly limits our ability to 396 

monitor geohazard processes in deep sea environments.  Due to survey accuracy 397 

issues, the scale of the apparent vertical difference is usually proportional to the 398 

slope of the seafloor (Hughes-Clarke et al. 2009). 399 

Repetitive surveys are often planned in an opportunistic manner, constrained by the 400 

availability of previous surveys and the occurrence of catastrophic events such as 401 

floods (e.g. Urgeles et al. 2002, Casalbore et al. this volume) or seafloor failures 402 

(Chiocci et al. 2008). However, monitoring seafloor dynamic processes requires 403 

careful planning and some idea of the rate of seafloor change. Duffy and Hughes-404 

Clarke 2005 and Hughes Clarke et al 2009 already indicate that in order to track 405 

moving dunes, the surveying period needs to be close enough for the dunes not to 406 

migrate more than half their spacing.  407 

The common practice for geohazard assessment in the domain of offshore 408 

exploration includes a reiterative approach where geohazard are identified with 409 

repeated and more and more focussed surveys. This include the use of AUV-ROV 410 

seafloor surveys, also because of the need to identify potentially hazardous features 411 

at the scale of the planned seafloor infrastructures (Kvalstad 2007). Also academic 412 

research may take advantage from these new technologic developments. Migeon et 413 

al. (2011b) propose a closer look at the seafloor down the area of the Nice 1979 414 

event with the use of an AUV with spatial resolution of 2 m (compared to the 25 m 415 

of the Simrad EM300 echosounder). Apart from the increased number of submarine 416 

landslide scar detected, the main advantage is the possibility to identify clearly the 417 

signature of retrogressive erosion and the traces of gravity flow transformations at 418 

meter scale, with implication for the understanding of the causal sedimentary 419 

processes.  420 
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The importance of groundtruthing remains in any case a key point in most common 421 

practice of geohazard assessment, especially when quantitative data are needed to 422 

support modelling. The search for the crucial site to obtain in situ data is in any case 423 

based on the use of swath bathymetry and seismic profiles: indirect geophysical data 424 

may actually guide the selection of significant measures, for example of sediment 425 

pore pressure to evaluate the possible effects of a recent earthquake (Sultan et al. 426 

2008). 427 

The increasing amount of data and the diversity of dataset in the offshore domain 428 

has already propelled the integration of large and complex datasets in Geographic 429 

Information Systems as a current practice to evaluate the areal and size distribution 430 

of geohazards. Concerning the distribution of submarine landslides along entire 431 

continental margins, for example, a limited number of studies exist at large scale to 432 

evaluate if there is a scaling relationship between submarine landslide area/volume 433 

and frequency of occurrence, as it is the case for earthquakes and their magnitude 434 

(e.g., Chaytor et al 2009). In some cases mapping is supported by other analyses such 435 

as landslide susceptibility linked to seismic activity (Strasser et al. this volume), and 436 

susceptibility maps of submarine landslides and of fluid flow features related to 437 

possible controlling parameters (Leon and Somoza, this volume).  438 

Finally, another need related to large seafloor datasets, especially when data have to 439 

be summarized in synthetic views, is the rapid analysis of the data with the 440 

application of automatic seafloor classifications (e.g., Atallah and Smith 2004). These 441 

approaches have the advantage of allowing to make some predictions on the state of 442 

the seafloor that can be tested with successive surveys integrating additional 443 

techniques. The literature on this subject is sizeable and rapidly expanding (e.g., 444 

Hamilton 2005). Some attempts to compare different methods show that the 445 

success of a method in recognizing known patterns depends on the character of the 446 

seafloor morphology and its dominant grain size (Müller et al. 2007). The use of 447 

these techniques may serve as a guide to interpretation and a basis to formulate 448 

hypotheses, but it needs to be applied with caution and to be accompanied by 449 

control from independent data.  450 

The increasing number of seafloor mapping studies at local and regional scale will 451 

certainly contribute to capture any inherent pattern in the signature of potentially 452 

catastrophic processes and thus provide enhanced seafloor geohazard assessment. 453 

 454 

7. Conclusion 455 

Seafloor geohazards are one of the increasing concerns worldwide because of the 456 

increasing development of offshore and coastal facilities and growth of marine 457 
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services’ exploitation. Assessment of seafloor geohazards involves several 458 

communities facing different interests and needs. 459 

Technological development is offering marine geology powerful seafloor mapping 460 

tools, multibeam bathymetry above all; they are essential for geohazard 461 

characterization and, trough repetitive surveys, monitoring and understanding of 462 

ongoing geological processes. Does not only high-resolution seafloor mapping 463 

enhance the assessment of marine geohazard, but it is also boosting the scientific 464 

knowledge on seafloor tectonic, erosional and depositional processes. 465 

The study of geohazard-bearing features provides an opportunity for collaborative 466 

activities between academia and industry as well as with public authorities in charge 467 

of land planning or civil defense. However, for the different communities, geohazard 468 

assessment has different objectives, time span and required precision in forecast. 469 

Accordingly, we identify three types of geohazard assessment: sensu-strictu, 470 

engineering and non-specific. Regardless of the different approach, seafloor 471 

mapping remains the unavoidable if not the main step in the geohazard assessment 472 

process.  473 

For industry, focused in short time span and small areas, seafloor mapping is the first 474 

step in zoning the area of interest, in order to define the physical environment 475 

where the infrastructure will lay and define geohazards that may recur during the 476 

life-span of the infrastructure. Sea floor mapping is also the base to plan further 477 

investigations and in-situ measurements aimed to identify type, location and 478 

possible timing of hazardous event.  479 

For public authorities, seafloor mapping is the main tool to obtain a homogeneous 480 

product over vast offshore areas. Given the impossibility to achieve a precise 481 

(definite) assessment of geohazard for any seafloor feature, the assessment mainly 482 

relies in the identification of geomorphic features linked to hazardous 483 

processes/events that might re-occur in the future over the same area, without any 484 

specific indication of time and precise location. This assessment does not involve a 485 

specific indication of time or precise location of geohazard occurrence.  486 

Finally, scientific research, is interested in defining in detail the physical processes 487 

that shape the seafloor with the maximum possible resolution. However seafloor 488 

mappingis also the primary tool to define the amount and type processes occurring 489 

in a given area that are the key to interpret the long-term morphostructural and 490 

stratigraphic evolution of the continental margin and ocean basins. 491 

 492 
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Figure Captions 695 

Figure 1. Location of the study areas described in the articles of this volume (yellow 696 

dots). Further case histories presented at the Ischia Conference in May 2009 but not 697 

included in this volume are reported as red dots. Their extended abstracts are 698 

collected in Chiocci et al. eds. (2009). 699 

Figure 2. Cartoon summarizing the seafloor features linked to potentially hazardous 700 

geological processes. This figure depicts an idealized continental margin with both 701 

natural geohazard-bearing features and main anthropogenic structures lying on the 702 

seafloor. 703 
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Figure 3. Frequency of magnitude (log-area) for submarine landslides from the 704 

Medditerranean landslide database (see Camerlenghi et al. 2010) in the 705 

Mediterranean basin showing incomplete view of distribution (i.e. smaller landslides 706 

are not picked in the distribution). 707 

Figure 4. Triangular diagram summarizing the different type of geohazard 708 

assessment and how the different communities relate to them. See text for details. 709 
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