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Abstract. The zebrafish (Danio rerio) has been extensively used in biomedical research as a 

model to study vertebrate development and hematopoiesis and recently, it has been adopted 

into varied fields including immunology. After fertilization, larvae survive with only the 

innate immune reponses because adaptive immune system is morphologically and 

functionally mature only after 4-6 weeks post fertilization. This temporal separation 

provides a suitable system to study the vertebrate innate immune response in vivo, 

independently from the adaptive immune response. The transparency of early life stages 

allows a useful real-time visualization. Adult zebrafish which have complete (innate and 

adaptative) immune systems offer also advantages over other vertebrate infection models: 

small size, relatively rapid life cycle, ease of breeding and a growing list of molecular tools 

for the study of infectious diseases. In this review, we have tried to give some examples of 

the potential of zebrafish as a valuable model in innate immunity and inflammation studies. 
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1 Introduction 
 

The zebrafish (Danio rerio) has been extensively used to study vertebrate development and 

hematopoiesis but interest in this model organism has gradually expanded in recent years 

into the fields of human disease, cancer and immunology (Dooley and Zon 2000; Trede et 

al. 2001, 2004; Yoder et al. 2002; Traver et al. 2003; Stern and Zon 2003; de Jong and Zon 

2005; Langenau and Zon 2005; Sullivan and Kim 2008). Concerning immunology and 

infectious diseases research, interestingly, there is a clear temporal separation between both 

innate and adaptive immune responses in zebrafish. Only the innate immune system is 

present until several weeks after fertilization; larvae must survive until that time solely on 

the strength of their innate immune system. The innate immune system is detectable and 

active at day 1 of zebrafish embryogenesis (Herbomel et al. 1999, 2001), whereas the 

adaptive immune system is morphologically and functionally mature only 4-6 weeks after 

the fertilization of the egg (weeks postfertilization, wpf) when the lymphocytes become 

functional (Willett et al. 1999; Davidson and Zon 2004; Trede et al. 2004; Lieschke and 

Currie 2007). This temporal separation provides a suitable system to study the vertebrate 

innate immune response in vivo, independently from the adaptive immune response 

(Stockhammer et al. 2009). The transparency of early life stages is another advantage that 

allows useful real-time visualization. Moreover, adult zebrafish which have complete (innate 

and adaptative) immune systems, may have certain advantages over other vertebrate 

infection models such as mice: their small size, relatively rapid life cycle and ease of 

breeding permit a large number of genetic screens to be performed.  

Like those of amphibians, fish immune systems present almost the full repertoire of 

lymphoid organs and immune cell types found in mammals (Trede et al. 2004; Zapata et al. 

2006). However, unlike that of mammals, fish development occurs in an open environment. 

Therefore, the immune system may be exposed early to a large number of pathogens. 

Zebrafish larvae hatch 2-3 days after fertilization, suggesting that their immune system must 

develop quickly to produce a heterogeneous immune repertoire (Du Pasquier et al. 2000; 

Poorten and Kuhn 2009).  



Yoder et al. (2002) have pointed out that the zebrafish can be employed as a new 

immunological model system. However, these authors also enunciate a key question “what 

will studies using this species offer that cannot be realized using other models?” Trede et al. 

(2004) have discussed the advent of the zebrafish as a powerful vertebrate model organism 

that may have an impact on immunological research based on the important role that innate 

immunity plays in orchestrating immune responses. The review by Traver et al. (2003) 

provides an overview of the value and potential of zebrafish as a model organism to study 

the development and function of the immune system. These authors propose to “use the 

zebrafish as a model organism for immunology as an alternative to study humans or mice”. 

Fish are phylogenetically lower vertebrates and rely more than mammals on innate immune 

mechanisms. The use of the whole animal in studies that utilize zebrafish can complement 

research on components of immunity that is based on in vitro experiments utilizing isolated 

or cultured cells (which are very useful for understanding specific pathways but may not 

reflect the cellular interactions that occur in the whole animal).  

In this article we have tried to sumarize advantages that zebrafish can offer for 

immunological research. 

 

2 Main cells involved in the innate immune response in zebrafish 
 

Zebrafish leukocytes, even in embryos, function in host defense. By direct microscopy, it is 

possible to observe that neutrophils rapidly accumulate at wounds (Lieschke et al. 2001; 

Renshaw et al. 2006) and bacterial foci (Le Guyader et al. 2008) and that primitive 

macrophages also phagocytose particles and bacteria (Herbomel  et al. 1999; Lieschke et al. 

2001; Hall et al. 2007). Although recent studies have reported the presence of eosinophils 

and mast cells in zebrafish (Bertrand et al. 2007; Dobson et al. 2008; Balla et al. 2010), 

larvae innate immune system comprises primarily of neutrophils and macrophages. 

Neutrophils are the first to respond to an injury; macrophages are subsequently recruited to 

inflamed tissues to phagocytose pathogens and tissue debris. 

 

 



Neutrophils: Zebrafish possess cells analogous to neutrophils in adults and larvae. 

Neutrophils rapidly accumulate at wounds (Renshaw et al. 2006) and this chemotactic 

activity is critical in responding to tissue injury and infections (Fig. 1). Today, a range of 

tools for labeling neutrophils has been developed in zebrafish using transgenic lines such as 

the zMPO:GFP which expresses GFP under the control of the myeloperoxidase promoter 

(Renshaw et al. 2006; Mathias et al. 2006) and the transgenic line CLGY463 which has an 

enhancer detection insertion near a novel myc transcription factor (Meijer et al. 2008). 

Moreover, Anne Huttenlocher and colleagues have identified mutants with increased 

neutrophil numbers. The first such mutant, in the Hai1 gene, results in damage to the 

epithelium and is associated with increased neutrophil retention at the site of an epithelial 

injury (Mathias et al. 2007). The second, in the Fad24 gene, leads to muscle damage and is 

also associated with increased tissue neutrophilia (Walters et al. 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Migration of zebrafish neutrophils to the injury site at the tail. Figure 1a shows transgenic fish 

(Renshaw et al. 2006) expressing GFP under the control of the myeloperoxidase promoter with a cut in 

the tail. Panel b (normal fish) and c (fish with a cut in the tail) correspond to a whole mount in situ 

hybridization of zebrafish embryos using a myeloperoxidase probe which also labels neutrophils. 

 



 

These tools permit real-time visualization of the response of neutrophils to 

inflammation and infections making it possible to visualize the neutrophil migration in 

three-dimensional (3D) tissue environments in vivo (Yoo et al. 2010). Until now, these 

studies were difficult to accomplish because few systems were available to permit high-

resolution imaging of the signaling dynamics in living cells within multicellular organisms.  

Zebrafish are also being used to understand the mechanisms that regulate the resolution 

phase of the inflammatory response. One of these mechanisms is the regulation of apoptosis 

(Haslett 1999) which is being studied in zebrafish by using pan-caspase inhibitors and by 

blocking or overexpressing candidate regulators of apoptosis (Renshaw et al. 2007). 

Moreover, in vivo time-lapse imaging has been used to demonstrate that neutrophils 

subsequently display directed retrograde chemotaxis back toward the vasculature. These 

findings implicate retrograde chemotaxis as a novel alternative mechanism that regulates the 

resolution phase of the inflammatory response (Mathias et al. 2006). 

 

Macrophages: Although several genes have been suggested as markers for the 

monocyte/macrophage lineage in zebrafish, including l-plastin and lysozyme C (Herbomel 

et al. 1999; Liu and Wen 2002), subsequent studies have indicated that these genes can also 

be expressed in other leukocytes (Su et al. 2007; Meijer et al. 2008). Only CSF1R or c-fms 

has become an accepted marker for zebrafish macrophages (Herbomel et al. 2001). 

Phagocytically active macrophages are the first leukocytes to appear in the zebrafish embryo 

(Herbomel et al. 1999; Lieschke et al. 2002) and exhibit avid motility and phagocytosis of 

cellular debris and bacteria (Herbomel et al. 1999; Redd et al. 2006). Several different 

subsets of the macrophage/monocyte lineage have been described, including those recently 

described as “inflammatory macrophages” which are involved in the inflammatory response 

to wounding in zebrafish larvae (Mathias et al. 2009). Recently, a macrophage-specific 

marker has been identified (mpeg1) and its promoter has been used in mpeg1-driven 

transgenes. Using these lines, researchers have followed the different behavior of 

neutrophils and macrophages after wounding (Ellett et al. 2010). 

 



 

3 Immune genes characterized in zebrafish 

 
An important requirement to use the zebrafish as a model to study human immunity (Trede 

et al. 2004) is the knowledge of the genes that encode components of the mammalian 

immune system that are also found in fish (Purcell et al. 2006). This knowledge would also 

aid our understanding of the evolution of immunity. We must also consider that a whole 

genome duplication occurred early in the teleost lineage. It has been proposed that the 

availability of additional gene copies facilitated the evolution of the highly diverse 

morphology and behavior of teleost fish (Venkatesh 2003; Volff 2005). 

Many protein and gene families involved in innate immune mechanisms have been 

described in zebrafish, suggesting that many components of the innate immune signaling 

pathways known from mammals are conserved in teleost fish. Stein et al. (2007) have 

searched the fish genomes for genes encoding components of the immune system. Although 

most of the components known in mammals have clearly recognizable orthologous in fish, 

class II cytokines and their receptors have diverged extensively, obscuring their orthologies. 

In the opinion of Stein and colleages, the main innate immune signaling pathways (kinases, 

adaptors in the TLR signaling pathway, interferon response factors, signal transducers and 

activators of transcription) are conserved in teleost fish. Whereas the components that act 

downstream of the receptors are highly conserved, components that are known or assumed 

to interact with pathogens are more divergent. These observations agree with those of 

Carradice and Lieschke (2008) who have reported that zebrafish intracellular cytokine 

signaling pathways are more conserved overall than their ligands and receptors. 

Aggad et al. (2010) have studied the conditions under which Ifn-γ is induced in fish 

larvae and adults and have also identified also the receptors for class II helical cytokines 

(IFNs and Il-10 and its related cytokines). Infection studies using two different pathogens 

have shown that IFN-gamma signalling is required for resistance to bacterial infections in 

the young embryo (Sieger et al. 2009). 

Concerning to the complement system, C3, C4 and factors B and H have been 

identified to date in zebrafish (Sun et al. 2010). It has been shown that complement 



components such as C3 and Bf can be transferred from mother to offspring and play a 

protective role in developing embryos. Their expression increases in zebrafish embryos and 

larvae in response to lipopolysaccharide (LPS) (Wang et al. 2008a, b; 2009). Multiple copies 

of mannose binding lectin (MBL) which is involved in the activation of the lectin pathway 

of the complement system, have been detected in zebrafish. Polymorphisms within MBL 

may be critical in determining fish susceptibility or resistance to various pathogenic 

organisms, as has been reported in humans (Jackson et al. 2007). 

Other genes related to the immune response have been described in zebrafish. Yoder 

et al. (2001) have described a highly diverse, multigene family of novel immune-type 

receptor (NITR) genes in zebrafish. These genes are predicted to encode type I 

transmembrane glycoproteins which consist of extracellular variable (V) and V-like C2 

(Vჼ¨C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined 

encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. NITRs have 

been proposed to be "functional orthologs" of mammalian natural killer receptors (NKRs) 

(Yoder 2009).  

Antimicrobial peptides (Zou et al. 2007) and peptidoglycan recognition proteins 

(PGRPs) with peptidoglycan-lytic amidase activity and a broad spectrum of bactericidal 

activity (Li et al. 2007; Chang et al. 2007) have also been identified in zebrafish. 

Zebrafish have been investigated for the presence of Toll-like receptor (TLR) 

proteins which function as sentinels against infection, participating in the earliest innate 

immune responses. Purcell et al. (2006) have characterized the key components of the TLR-

signaling pathway, including MYD88, TIRAP, TRIF, TRAF6, IRF3 and IRF7 in zebrafish. 

It has also been reported that the main receptor for LPS, the TLR4, is expressed in zebrafish 

during early stages of infection (Meijer et al. 2004; Jault et al. 2004). However, zebrafish 

appear to respond to LPS through a mechanism that is independent of the mammalian 

TLR4-MD2 LPS receptor complexes. Zebrafish TLR4 fails to respond to LPS due to 

differences in its extracellular domains (Sepulcre et al. 2009; Sullivan et al. 2009). The 

zebrafish genes tlr4a and tlr4b appear to be paralogous rather than orthologous to human 

TLR4 but they probably play a role in zebrafish immunity, supporting the hypothesis that 

alternative LPS induction pathways predominate in fishes (Sullivan et al. 2009).  



4 Functional ontogeny of the immune system 

 
Excellent studies have been performed on the ontogeny of the lymphoid system during the 

embryonic period of the zebrafish (Willet et al. 1997; 1999; Trede and Zon 1998; Trede et 

al. 2001), but little is known about the maturation of its immune system with regard to form 

and function, which occurs later in development. Lam et al. (2004) have observed a humoral 

response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent 

antigen (human gamma globulin) in immunized zebrafish at 4 and 6 weeks post fertilization 

(wpf), respectively, indicating that immunocompetence had been achieved. The findings 

confirm previous studies that have reported that the zebrafish adaptive immune system is 

morphologically and functionally mature by 4-6 wpf. The function of the embryonic 

zebrafish immune system before maturation has not been addressed in detail. Dios et al. 

(2010) have investigated the expression levels of several antiviral and inflammatory genes 

(IL-1β, iNOS, TNF-α, TLR3, IFN-I, IFNγ, IRF3, MDA-5, Mx) both constitutively and after 

viral stimulation during early development. Most of the genes involved in the antiviral 

response reached a positive reaction threshold as early as 5 days post fertilization (dpf). This 

finding is not surprising because oviparity requires a rapid development of the immune 

system. The same authors have determined how the expression of these genes is affected by 

changes in the temperature. Whereas the expression of most of the antiviral genes was 

almost completely inhibited at 15°C, inflammatory genes such as IL-1β, iNOS and TNF-α 

showed not obvious differences between 15 and 28ºC. After treatment with poly I:C (which 

mimics a viral infection), larvae showed significant differences in the gene expression, 

especially for of the interferon-induced protein Mx. In adults, however, poly I:C treatment 

led to a smaller increase in gene expression compared to larval Mx levels. Thus, Mx 

apparently plays an important role in viral immunity in larvae, in which the adaptive 

immune response is not fully functional. 

 

 

 



5 Zebrafish as a model for infectious diseases 
 

Sullivan and Kim (2008) have published a comprehensive review of the capabilities and 

potential of the zebrafish model system with an overview of information on zebrafish 

infectious disease models. The advantages of the zebrafish system are particularly relevant 

during the embryonic and larval stages (Fig. 2) and are very useful in the study of host–

microbe interactions (Kanther and Rawls 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Zebrafish embryos and larvae are useful to study innate immune functions and interaction with 

pathogens, numbers of animals can be high in a reduced space. Panel a. A multiwell plate where it is 

possible to conduct experimental infections with zebrafish larvae. Panel b shows one of the wells at 

higher magnification in which the larvae can be seen. Figures 2c and 2d describe the microinjection of 

zebrafish embryos. 

 

 

Viral diseases. The zebrafish has been proposed and used as a laboratory model fish species 

to study fish viral diseases. To date, most studies of viral infections in zebrafish have been 

related to viruses affecting aquacultured fish (Fig. 3). Vaccine and treatment trials, which are 



sometimes highly expensive to perform with commercial species, can be conducted at a 

reduced cost using this model.  

 

 

 

 

 

 

 

 

 

 

Fig. 3 Aspect of the external clinical signs of adult zebrafish infected with viral hemorrhagic septicemia 

virus (VHSV), a serious rhabdovirus caused disease affecting aquacultured fish. Panels a and b show 

uninfected fish and panels c and d correspond to infected fish with the characteristic symptoms of the 

disease: hemorrhages (arrows), exophthalmia (*) and a distended visceral cavity. 

 

 

La Patra et al. (2000) have infected hematopoietic precursors from the zebrafish, with the 

rhabdovirus infectious hematopoietic necrosis virus (IHNV) and the birnavirus infectious 

pancreatic necrosis virus (IPNV). Infection of whole fish with viral supernatants 

demonstrated infectious replicants for both viruses, indicating that the virus host range 

includes the zebrafish. In other species, infection with these viruses leads to prominent 

hematopoietic necrosis of the head kidney, the major site of adult hematopoiesis. The 

kinetics of hematopoietic defects differed between IHNV and IPNV infection; however, fish 

infected with either virus recovered by 6 days postinfection. Other experimental infections 

have been conducted with other rhabdoviruses, for example, Sanders et al. (2003) have 

shown that zebrafish are susceptible to another rhabdovirus adapted to higher temperatures, 

spring viremia of carp virus (SVCV). Mortality exceeded 50% in fish exposed to the virus, 

which exhibited epidermal petechial hemorrhages followed by death. Histological lesions 

included multifocal brachial necrosis and melanomacrophage proliferation in the gills, liver 



and kidneys. López-Muñoz et al. (2010) have also found that zebrafish larvae are unable to 

mount a protective antiviral response to waterborne SVCV. Nevertheless, zebrafish larvae 

appear to possess a functional antiviral system since ectopic expression of the cDNA of both 

groups I and II IFN was able to protect them against SVCV via the induction of IFN-

stimulated genes (ISGs).  

Novoa et al. (2006) have proposed to use zebrafish as a model to study vaccination 

against viral hemorrhagic septicemia virus (VHSV) (Fig. 3). Even at low temperatures, fish 

were protected by a vaccine generated by reverse genetics against the virulent virus.  

Lu et al. (2008) have successfully infected zebrafish with a nodavirus, nervous 

necrosis virus (NNV) that induces high mortalities in the larval and juvenile stages of 

infected marine fish. The disease caused by this virus is characterized by lethargy, abnormal 

spiral swimming, loss of equilibrium and neurological lesions characterized by cellular 

vacuolisation and neuronal degeneration mainly in the brain, retina, spinal cord and ganglia 

of the affected fish. In zebrafish, infected animals exhibited typical NNV symptoms, 

showing brain lesions similar to those observed in natural hosts.  

 

Fungal diseases. Chao et al. (2010) have developed a zebrafish model for Candida albicans 

infections. They have shown that C. albicans can colonize and invade zebrafish at multiple 

anatomical sites and can kill the fish in a dose-dependent manner. They monitored the 

progression of the C. albicans yeast-to-hypha transition, the gene expression of the pathogen 

and the early host immune response. Experimental infections with different C. albicans 

strains were conducted to determine each strain's virulence, and the results were similar to 

findings reported in previous mouse model studies. Using zebrafish embryos, the interaction 

between pathogen and host myelomonocytic cells can be visualized in vivo. Chao et al. 

(2010) conclude that zebrafish are a useful model host to study C. albicans pathogenesis and 

other invasive fungal research. 

 

Bacterial diseases. A number of studies on bacterial diseases have been conducted using 

zebrafish. For instance, Streptococcus iniae, which causes a systemic invasive infection in 

fish resembles human infections by several streptococcal species (Neely et al. 2002; Van der 



Sar et al. 2004; Phelps et al. 2009). Kizy and Neely (2009) have determined the role of 

several Streptococcus pyogenes virulence genes using zebrafish as a host. 

Zebrafish infection with Mycobacterium marinum has been proposed as a model for 

tuberculosis (Davis et al. 2002). Swaim et al. (2006) have shown that zebrafish are naturally 

susceptible to Mycobacterium marinum, a close genetic relative of the causative agent of 

human tuberculosis, Mycobacterium tuberculosis. They have also developed a zebrafish 

embryo-M. marinum infection model to study host-pathogen interactions in the context of 

innate immunity. Zebrafish tuberculous granulomas undergo caseous necrosis, similar to 

human tuberculous granulomas. In contrast to mammalian tuberculous granulomas, 

zebrafish lesions contain few lymphocytes, calling into question the role of adaptive 

immunity in fish tuberculosis. However, like rag1 mutant mice infected with M. 

tuberculosis, they found that rag1 mutant zebrafish are hypersusceptible to M. marinum 

infection, demonstrating that the control of fish tuberculosis is dependent on adaptive 

immunity.  

Lin et al. (2007) have studied the zebrafish immune response to infections with 

Aeromonas salmonicida and Staphylococcus aureus, a Gram-negative and a Gram-positive 

bacteria. Many of the identified genes induced upon infection (IL-1, fibrinogen, haptoglobin, 

complement components and hepcidin) are related to the acute phase proteins (APPs), with 

induction patterns similar to those observed in mammals. This observation implies 

evolutionarily conserved mechanisms among fish and mammals. Lin et al. (2007) also 

discovered some novel APPs, suggesting different immune strategies adopted by fish 

species. Notably, LECT2 was induced by up to 1000-fold upon infection, shedding new 

light on the function of this gene. 

Rodriguez et al. (2008) have reproduced Aeromonas hydrophyla disease symptoms 

similar to those present in humans and mortality in fish after experimental infection by 

intraperitoneal injection or by immersing wounded fish (Fig. 4). Fish showed clinical 

symptoms such as hemorrhaging and abdominal swelling. However histological lesions 

were not observed perhaps because the peracute form of the disease killed the fish before 

any changes could become evident. 



Vojtech et al. (2009) have established a zebrafish/Francisella (a highly virulent and 

infectious pathogen) model of pathogenesis and host immune response. Adult zebrafish are 

susceptible to acute Francisella-induced disease and suffer mortality in a dose-dependent 

manner. Zebrafish mount a significant tissue-specific proinflammatory response to infection, 

as measured by the upregulation of IL-1, interferon gamma and TNF mRNA beginning by 6 

h postinfection and persisting for up to 7 days postinfection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Adult zebrafish were susceptible to the Aeromonas hydrophila infection. Flow cytometry of 

zebrafish kidney cell populations analyzed by size (forward scatter; FSC) and granularity (side scatter; 

SSC) shows important changes after infection related with the hemolytic activity of Aeromonas: the 

kidney cells treated with viable bacteria showed a drop in the populations of lymphoid cells and 

precursor immature cells (b) compared with uninfected cells (a). Figures 4 c and 4 d show the aspect of 

control fish or infected fish with symptoms characterized by a distended visceral cavity and abdominal 

hemorrhages. 

 

Infections with Salmonella typhimurium and Vibrio anguillarum have also been 

conducted in zebrafish (Van der Sar et al. 2003; O'Toole et al. 2004). To characterize the 

embryonic innate host response at the transcriptome level against Salmonella, which causes 



a lethal inflammatory infection in zebrafish embryos, Ordas et al. (2010) have extended and 

validated previous microarray data through Illumina next-generation sequencing analysis. 

Their report describes infection-responsive genes in zebrafish embryos, which include genes 

encoding transcription factors, signal transduction proteins, cytokines and chemokines, 

complement factors, proteins involved in apoptosis and proteolysis, proteins with 

antimicrobial activities and many known or novel proteins not previously linked to the 

immune response. 

 

 

6 Application of genomics, transgenesis and other tools in the 

study of infectious diseases 
 

Powerful genetic approaches can be conducted in zebrafish to ascertain the roles that 

particular genes play in disease resistance.  

 

6.1 Mutagenesis 

One of the main advantages of the zebrafish is the ability to easily perform forward genetic 

screens (Streisinger et al. 1981; Solnica-Krezel et al. 1994; Knapik 2000). Target induced local 

lesions in genomes (TILLING) methodology is being employed routinely to generate “knock-

out” zebrafish (Deiters and Yoder, 2006). Together with several mutants described above, one 

of the most interesting examples of the application of these techniques to immunological 

research is the disruption of the rag1 gene by an ENU-induced point mutation that creates a 

premature stop codon in the rag1t26683 allele thus encoding a truncated Rag1 protein 

(Wienholds et al. 2002). Although homozygous fish (rag1-/-) are more susceptible to an injected 

dose of Mycobacterium marinum and their immunoglobulin genes fail to undergo V(D)J 

recombination, they are able to reach adulthood and are fertile. Jima et al. (2009) have 

hypothesized  that rag1-/- zebrafish may possess an enhanced innate immune response to 

compensate for the lack of an adaptive immune system. Using microarrays these authors have 

compared the expression profiles of rag1 deficient zebrafish and controls. The majority of the 

differences between wild type and mutant zebrafish were found in the intestine, where rag1-/- 



fish exhibited an increased expression of innate immune genes, including those of the 

coagulation and complement pathways. Petrie-Hanson et al. (2009) have shown that in 

comparison to wild-type zebrafish, rag1 mutants have a significantly reduced lymphocyte-like 

cell population (lacking functional T and B lymphocytes) but have a similar 

macrophage/monocyte population and a significantly increased neutrophil population. These 

zebrafish have leukocyte populations comparable to those of severe combined immunodeficient 

(SCID) and rag 1 and/or 2 mutant mice. 

Although the development of zebrafish model systems for many medical problems is 

in its early stages, large-scale genetic screening programs have been successfully applied to 

blood research and other developmental problems (Patton	
   and	
   Zon	
   2001). Today, these 

methods are being used for several diseases, including epilepsy (Hortopan	
  et	
  al.	
  2010).	
  	
  

 

6.2 Microarrays and next- generation sequencing methods 

Van der Saar et al. (2009) have conducted microarray studies to analyze the transcriptome 

responses of zebrafish to two Mycobacterium marinum strains that produce distinct disease 

outcomes (acute disease with early lethality or chronic disease with granuloma formation). 

The transcriptome profiles involved in acute versus chronic infections and in embryonic 

versus adult infected fish partially overlapped, even though the strains induce profoundly 

different disease phenotypes. The strongest differences were observed at the initial stage of 

the disease. Stockhammer et al. (2009) have used microarrays to perform a time-course 

transcriptome profiling study and gene ontology analysis of the embryonic innate immune 

response to infection by two Salmonella strains that elicit either a lethal infection or an 

attenuated response. These authors have confirmed a conservation of the host responses 

similar to that detected in other vertebrate models. 

Wu et al. (2010) have used a commercial zebrafish microarray to identify alterations 

in gene expression in zebrafish injected with Streptococcus suis, an important pathogen in 

swine. At least 189 genes showed differential expression. 

The immune response of zebrafish has been studied not only using microarrays but 

also using Solexa/Illumina's digital gene expression (DGE) system, a tag-based 

transcriptome sequencing method. This method has been used to investigate the changes in 



zebrafish transcriptome profiles induced by Mycobacterium and Salmonella (Hegedus et al. 

2009; Ordas et al. 2010). 

  

6.3 Transgenesis and RNAi 

Morpholino-modified antisense oligonucleotides (‘morpholinos’) are routinely used in 

zebrafish to transiently block genes and reduce protein expression. Levraud et al. (2008) 

have provided a protocol to generate zebrafish embryos deficient in a protein of interest for 

innate immune signaling using antisense morpholino oligonucleotides. 

Chang and Nie (2008) have used RNA interference (siRNA) and real time 

quantitative PCR to explore the effect of zebrafish peptidoglycan recognition protein 6 

(zfPGRP6) on the Toll-like receptor signaling pathway. The expression of beta-defensin-1 

was downregulated in embryos silenced by zfPGRP6. In challenge experiments to determine 

the anti-bacterial response to Gram-negative bacteria, RNAi knock-down of zfPGRP6 

markedly increased susceptibility to Flavobacterium columnare. Aggad et al. (2010) have 

used morpholino-mediated loss-of-function analyses to screen candidate receptors and 

identify the components of their receptor complexes. They found that Ifn-γ1 and Ifn-γ2 bind 

to different receptor complexes. 

Overexpression of a protein of interest is another strategy to investigate gene 

functions. In some cases, zebrafish can express genes from other animals: Yazawa et al. 

(2006) have established a transgenic zebrafish strain expressing a chicken lysozyme gene 

under the control of the Japanese flounder keratin gene promoter and have investigated its 

resistance to a pathogenic bacterial infection. In a challenge experiment, 65% of the F2 

transgenic fish survived an infection of Flavobacterium columnare, and 60% survived an 

infection of Edwardsiella tarda, whereas 100% of the control fish were killed by both 

pathogens. Hsieh et al. (2010) have also overexpressed tilapia hepcidin in zebrafish 

reporting that transgenic fish showed significantly higher bacterial clearance after Vibrio 

vulnificus challenge but not after Streptococcus agalactiae challenge. Transgenic zebrafish 

showed increased endogenous expression of Myd88, tumor necrosis factor-alpha, and 

TRAM1 in vivo. Peng et al. (2010) have produced antimicrobial peptide epinecidin-1 

transgenic zebrafish, which are able to effectively inhibit bacterial growth. 



Transgenesis can also be conducted by linking green fluorescent protein (GFP) to genes or 

promoters of interest, making it possible to visualize processes that would otherwise be 

difficult to observe.  

An extensive database of transgenic and mutant zebrafish lines is available at the 

Zfin web page (http://zfin.org/cgi-bin/webdriver?MIval=aa-ZDB_home.apg). 

 

6.4 Chemical genetic screens 

Zebrafish can be used in a ‘whole animal’-based compound discovery strategy that represents 

an advance if it is compared to traditional biochemical drug discovery programs. The use of 

larval zebrafish facilitates rapid and inexpensive in vivo vertebrate analysis. Phenotypic screens 

have been successfully employed to identify compounds as candidate drugs for many different 

conditions (Zon and Peterson 2005; Lieschke and Currie 2007; Bowman and Zon 2010). 

Whereas traditional approaches look for in vitro inhibitors of a particular target, this approach 

involves a physiological process (for example, inflammation resolution) and looks for 

compounds that accelerate that process (Martin and Renshaw 2009). Phenotype-based small 

molecule screening in zebrafish has been described in several studies (Moon et al. 2002) and is 

now being applied to Alzheimer's disease (Arslanova	
  et	
  al.	
  2010),	
  hematopoiesis (Paik	
  et	
  al.	
  

2010), multiple sclerosis (Buckley	
  et	
  al.	
  2010),	
  glucocorticoid resistance (Schoonheim	
  et	
  al.	
  

2010),	
  cancer angiogenesis (Wang	
  et	
  al.	
  2010)	
  and	
  cardiovascular diseases (Xu	
  et	
  al.	
  2010). 

 

6.5 Imaging 

As discussed above, one of the main advantages of the zebrafish is the ease of phenotypic 

analysis. The zebrafish embryo is optically transparent, making it possible to detect 

functional and morphological changes in internal organs without having to kill or dissect the 

organism. These functional and morphological changes can be further emphasized by the 

use of transgenic lines and reporter molecules (Zon and Peterson 2005). These 

characteristics of the zebrafish have made it possible to assess various aspects of the immune 

response through microscopic observations (Levraud	
  et	
  al.	
  2008). 

Lepiller et al. (2007) have shown that labeling with DAF-FM DA is an efficient 

method to monitor changes in NO production in live zebrafish under both physiological and 



pathophysiological conditions, suggesting applications to drug screening and molecular 

pharmacology. Mathias et al. (2009) and Renshaw et al. (2006) have described how the 

zebrafish system is suitable for both live time-lapse imaging of neutrophil chemotaxis and 

screening of the effects of chemical compounds on the inflammatory response in vivo.  

Singer et al. (2010) have constructed a series of plasmids to label a variety of fish 

and human pathogens with red fluorescent protein, making it possible to observe real-time 

interactions between green fluorescent protein-labeled immune cells and invading bacteria in 

the zebrafish.  

 

6.6 Gnotobiotic zebrafish 

Gnotobiosis, the ability to raise animals in the absence of microorganisms is a powerful tool 

to study the relationships between animal hosts and their microbial residents or pathogens 

(Pham et al. 2008).  

Rawls et al. (2004) have conducted DNA microarray comparisons of gene expression 

in the digestive tracts of 6 dpf germ-free zebrafish and normal zebrafish, revealing 212 

genes that are regulated by the microbiota and 59 responses that are conserved in the mouse 

intestine, related to the stimulation of epithelial proliferation, promotion of nutrient 

metabolism and innate immune responses. Colonization of germ-free zebrafish with 

individual members of its microbiota revealed the bacterial species specificity of selected 

host responses.  

Using a gnotobiotic zebrafish-Pseudomonas aeruginosa model, Rawls et al. (2007) 

have monitored microbial movement and localization within the intestine in vivo and in real 

time, taking advantage of the transparency of this vertebrate species. Pseudomonads are rare 

members of the intestinal microbiota of healthy humans but their representation is increased 

in certain pathologic states, notably inflammatory bowel diseases. These studies have 

demonstrated the utility of gnotobiotic zebrafish in defining the molecular bases of host-

microbial interactions in the vertebrate digestive tract. 

 

 

 



7 Some examples of application to inflammatory human diseases  
 

As Renshaw et al. (2007) have pointed out, the use of fish to investigate medical problems 

could result peculiar. However, we note that major advances in medical knowledge and 

immunology have been obtained by studying genetic pathways in invertebrate animals such 

as the worm Caenorhabditis elegans and the fly Drosophila melanogaster, both of which 

are more distant from humans than vertebrates such as zebrafish. 

Inflammatory diseases are an important cause of morbidity and mortality in various 

medical specialities. Below, we give some examples of human diseases that have been 

studied using the zebrafish as a model:  

 

Lung disease: Unresolved neutrophilic inflammation is a major contributor to the tissue 

damage associated with many lung inflammatory disorders (Martin and Renshaw 2009). The 

resolution of inflammation depends on the termination of pro-inflammatory neutrophil 

functions by apoptosis. To date, the bases of neutrophil apoptosis have been studied in 

purified human peripheral blood neutrophils or in mice using gene manipulation techniques; 

however, these studies usually have limitations (Dzhagalov et al. 2007). The range of tools 

developed for labeling neutrophils in zebrafish can be valuable for this research. Although 

much more work is needed before zebrafish are widely utilized in respiratory research, 

studies are already being conducted because zebrafish offer complementary benefits to 

existing respiratory disease models (Renshaw et al. 2007). The use of zebrafish facilitates 

the application of pharmacological and genetic manipulations to ascertain their effects on 

neutrophils during inflammation, the ability to screen for novel anti-inflammatory 

compounds, the generation of forward and reverse genetic screens to identify regulators of 

the resolution of inflammation and the visualization of cell behavior in vivo.  

 

Cardiomyopathy: Human dilated cardiomyopathy (DCM) is a myocardial disease 

characterized by dilatation and impaired systolic function of the ventricles. DCM is the 

single largest cause of heart failure and cardiac transplantation (Towbin and Bowles 2006). 

Accumulating evidence suggests that inflammatory and autoimmune mechanisms play a role 



in this idiopathic disease (Takeda 2003): inflammatory infiltrates and proinflammatory 

cytokines have been observed in DCM patients (Maisch et al. 2005). Recently, Friedrichs et 

al. (2009) have identified a genomic region containing genes associated with cardiac 

function and DCM. These authors used zebrafish to complement and confirm these studies 

because cardiac phenotypes could be readily assessed through direct monitoring of the heart 

in the living animal (Driever and Fishman 1996). Functional knockdown studies have been 

conducted for eight genes using morpholino (MO) antisense experiments. Knockdown of 

three of the genes (HBEGF, IK and SRA1) resulted in impaired cardiac function phenotypes. 

 

Septic shock: In mammals, microbial products, such as lipopolysaccharide (LPS), are potent 

inducers of inflammation that stimulate immune system cells after they are recognized 

(mainly by TLRs). In particular, Gram-negative enterobacterial LPS signals are transmitted 

through TLR4, whereas and Gram-positive bacteria usually activate cells in a TLR2-

dependent fashion, leading to the production of proinflammatory cytokines, proteases, 

eicosanoids, and reactive oxygen and nitrogen species (West and Heagy 2002). If this 

inflammatory response to infection is not tightly controlled, several pathological processes 

may develop, including endotoxin shock, which is a severe systemic inflammatory response 

characterized by fever, myocardial dysfunction, acute respiratory failure, hypotension, 

multiple organ failure, and often death (West and Heagy 2002; Power et al. 2004). It is well 

known in mammals that a previous exposure to LPS induces "endotoxin tolerance", which is 

thought to protect the host from endotoxic or septic shock, although the mechanisms 

involved are not been fully understood.  

Zebrafish larvae (2 dpf) are able to produce an inflammatory response when exposed 

to LPS, although the minimum lethal LPS concentration is much higher than in mammals. 

Pseudomonas aeruginosa LPS is more lethal than E coli LPS and pretreatment with a non-

lethal LPS dose induces a hypo-responsive state that protects fish subsequently exposed to 

the P. aeruginosa LPS (Novoa et al. 2009). Furthermore, two administrations of lipoteichoic 

acid (a component of the surface of Gram-positive bacteria) convey complete protection 

against exposure to a lethal concentration of LPS, demonstrating heterotolerance, as 

described previously in mammals (Dobrovolskaia et al. 2003). In these studies, when a 



mutant fish (Odysseus), in which CXCR4 function is inhibited, is used or when AMD3100 

(a pharmacological specific CXCR4 inhibitor) was applied, the fish did not acquire tolerance 

to LPS. CXCR4 is a G protein-coupled chemokine receptor; these results confirm that 

CXCR4 belongs to the cluster involved in LPS recognition and may be involved in 

controlling excessive inflammatory response (Triantafilou et al. 2008). 

The use of complete organisms, such as zebrafish larvae, presents an excellent 

opportunity to further study this model of endotoxin shock. Indeed, zebrafish have recently 

been used to study the WHIM syndrome, a primary immunodeficiency disorder 

characterized by neutropenia and recurrent infections in which CXCR4 seems to be 

associated with recurrent infections (Walters et al. 2010). 

 

Intestinal inflammatory diseases: The zebrafish has emerged as a model organism for the 

study of host-microbe interactions related to the digestive function (Dahm and Geisler 2006; 

Hama et al. 2009; Kanther and Rawls 2010) because anatomical and functional conservation 

has been reported between the zebrafish and mammalian intestines (Ng et al. 2005; Bates et 

al. 2007, Flores et al. 2008). Members of the microbiota influence intestinal epithelial cell 

proliferation rates independent of inflammation via direct modulation of β-catenin signaling 

(Cheesman et al. 2010). However, a breach of this intestinal host–microbe homeostasis 

contributes to the pathogenesis of inflammatory bowel disease (IBD), commonly manifested 

as Crohn’s disease or ulcerative colitis (Kaser et al. 2010). 

Brugman et al. (2009) have developed zebrafish model of enterocolitis to study the 

interactions between host intestinal cells and bacteria and to understand the pathogenesis of 

inflammatory bowel disease (IBD). Enterocolitis was induced by intrarectal administration 

of the hapten oxazolone in adult wild-type and myeloperoxidase-reporter transgenic 

zebrafish. Fleming et al. (2010) have developed another model of IBD in zebrafish larvae, 

together with a method for the rapid assessment of gut morphology and an in vivo compound 

screening technique. In this case, IBD was induced by the addition of 2,4,6-

trinitrobenzenesulfonic acid (TNBS) to the medium and changes in goblet cell number and 

tumor necrosis factor alpha (TNF-alpha) antibody staining were used to quantify disease 

severity.  



These studies affirm that zebrafish can be a powerful model suitable for medium-

throughput chemical screens in the study of gastrointestinal disease. 

Other studies have been conducted to analyze the expression of genes related to these 

inflammatory processes in the intestine. For example, Oehlers et al. (2010a) have studied the 

expression gradients of antimicrobial peptide genes along the zebrafish intestine; Flores et 

al. (2010) have studied the zebrafish ortholog of the human DUOX1 and DUOX2 genes, 

which play an important role in gut immunity; and Oehlers et al. (2010b) have examined 

Cxcl8 signaling, which is associated with gut inflammation. 

 

 

8  Conclusions 

 
In summary, zebrafish can be a valuable tool to increase our knowledge of innate immune 

responses and the regulation of inflammation. The use of genetic and compound screens 

should help to identify new pathways involved in inflammation resolution and also new 

compounds to modify these pathways.  
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