
Techniques for utterance

disambiguation in a

human-computer dialogue system

Pontus Lurcock

a thesis submitted for the degree of

Master of Science

at the University of Otago, Dunedin,

New Zealand.

28 January 2005



ii



Abstract

Disambiguating an utterance occurring in a dialogue context is a complex

task, which requires input from many different sources of information—

some syntactic, some semantic, and some pragmatic.

The central question addressed by this thesis is how to integrate data

sources for utterance disambiguation within a bilingual human-computer

dialogue system. First, a simple scheme is proposed for classifying disam-

biguation data sources; then this scheme is used to develop a method for

combining data sources in a principled manner. Next, several actual sources

of disambiguation data are explored; each is fitted into the previously de-

scribed implementation framework. In particular, a probabilistic grammar

is developed and augmented using novel techniques to increase its perfor-

mance with respect to the local dialogue context.

In a dialogue system, ambiguities which cannot be resolved automatically

can be clarified by asking the user what was meant. This thesis also presents

a model of clarification subdialogues which is integrated within the utter-

ance disambiguation framework. This is followed by a brief treatment of

how user errors may be accommodated, and how this process can also be

fitted—conceptually and in implementation—into the previously described

disambiguation framework.

Finally, I describe the details of implementing these techniques within an

existing dialogue system, and give examples demonstrating their effective-

ness.

iii



iv



Acknowledgements

It is of course obligatory to thank one’s supervisor in the acknowledgements

section, but my gratitude to to Alistair Knott is entirely sincere. Without

use of violence or threats, he has somehow shepherded me through the

forging of this thesis at a rate unheard of in the tranquil milieu of the

AI back lab. I doubt that I could have completed this dissertation in the

allotted time but for Ali’s cheerful yet steadfast belief that I was capable

of doing so.

I thank Peter Vlugter, main author of the current Te Kaitito architecture,

for providing an excellent platform upon which to implement the work of

this thesis; he has also been my intrepid guide through many a hair-raising

MRS structure.

I thank my parents, for their unstinting support and their forbearance of

my globetrotting ways; Peter Petchey, for lending me a beautiful place to

live while I was writing up; the garden-shedsters and folks back home, for

staying in touch even when I didn’t; Bea Hudson, for care, feeding, and

ginger beer; and the whole spectacular swarm of sauna-bathers, trampers,

tree-huggers, morris-dancers, musicians, capoeiristas, croquet-istas, French-

speakers, and fire-jugglers I have encountered in Dunedin, for making my

year here so remarkable and enjoyable.

v



vi



Contents

1 Introduction 1
1.1 Ambiguity in language . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The interpretation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A pipelined model of ambiguity . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Survey 7
2.1 The Te Kaitito system . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Presupposition resolution in Te Kaitito . . . . . . . . . . . . . . 9
2.1.3 Sample dialogues . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Ambiguity in Te Kaitito . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Existing approaches to integrating disambiguation data . . . . . . . . . 12
2.2.1 Interpretation as abduction . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Eliminative parsing with graded constraints . . . . . . . . . . . 14
2.2.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Probabilistic parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Probabilistic context-free grammars . . . . . . . . . . . . . . . . 18
2.3.2 Lexicalized probabilistic grammars . . . . . . . . . . . . . . . . 19
2.3.3 Probabilistic head-driven phrase structure grammars . . . . . . 20

3 Integrating disambiguation data 21
3.1 Classifying and prioritizing disambiguation data . . . . . . . . . . . . 21

3.1.1 A taxonomy of data sources . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Prioritizing data sources . . . . . . . . . . . . . . . . . . . . . . 25

3.2 An architecture for the integration of disambiguation data . . . . . . . 27
3.2.1 The inverted pruning framework . . . . . . . . . . . . . . . . . . 27
3.2.2 An example of inverted pruning . . . . . . . . . . . . . . . . . . 28
3.2.3 The interpretation-disambiguation-clarification pipeline . . . . . 31
3.2.4 The consequences of full look-ahead for disambiguation . . . . . 31
3.2.5 Comparison to other approaches . . . . . . . . . . . . . . . . . . 32

4 Disambiguation modules 35
4.1 The syntactic-level filter module . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Integrating a stochastic HPSG grammar with Te Kaitito . . . . 36
4.1.2 Contextually augmented probabilistic parsing . . . . . . . . . . 37

vii



4.1.3 Advantages of contextually augmented probabilistic parsing . . 38
4.1.4 Idiolect-sensitive parsing . . . . . . . . . . . . . . . . . . . . . . 39
4.1.5 Inverted scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Semantic-level filter modules . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Accommodation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Presuppositional weight . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Saliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Filter modules at the dialogue act level . . . . . . . . . . . . . . . . . 42
4.3.1 Distinguishing between answers and assertions . . . . . . . . . 43
4.3.2 Distinguishing between questions and clarification questions . . 43
4.3.3 A preference for answerable questions . . . . . . . . . . . . . . . 44
4.3.4 Using ambiguity for disambiguation . . . . . . . . . . . . . . . . 45

5 Clarification subdialogues 47
5.1 Literature on clarification subdialogues . . . . . . . . . . . . . . . . . . 48
5.2 The importance of clarification . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Syntactic clarification by rephrasing . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Theoretical framework and notational conventions . . . . . . . 50
5.3.2 Clarification failure . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 Equivalent rephrasings . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.4 Converse rephrasings . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.5 Producing a set of all possible rephrasings . . . . . . . . . . . . 57
5.3.6 Inferring structures from clarified rephrasings . . . . . . . . . . 58
5.3.7 Increasing the likelihood of unambiguous rephrasing-sets . . . . 58
5.3.8 Assessing clarification strategies . . . . . . . . . . . . . . . . . . 59
5.3.9 Exhaustive clarification . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.10 Vacuous clarification . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.11 Clarification with a single rephrasing . . . . . . . . . . . . . . . 62
5.3.12 Brute force optimal clarification . . . . . . . . . . . . . . . . . . 63
5.3.13 Clarification by interactive binary choice . . . . . . . . . . . . . 64
5.3.14 Generalization of rephrasing-based clarification . . . . . . . . . 68

5.4 Other syntactic clarification techniques . . . . . . . . . . . . . . . . . . 69
5.4.1 Augmented rephrasings . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Referent-based syntactic clarification . . . . . . . . . . . . . . . 71
5.4.3 Hybrid clarification . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Semantic clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Dealing with errors 75
6.1 Relation to disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Perturbing whole utterances . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Perturbing single words . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Word similarity metrics . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Fitting perturbation into the disambiguation framework . . . . . . . . . 79
6.5 Improving the efficiency of perturbation . . . . . . . . . . . . . . . . . 81
6.6 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Perturbing for specific error classes . . . . . . . . . . . . . . . . . . . . 84

viii



7 Implementation and Results 85
7.1 General implementation details . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Integrating information sources . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Statistical parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 The global grammar . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.2 The contextually augmented grammar . . . . . . . . . . . . . . 92
7.3.3 Idiolect-sensitive parsing . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Other modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4.1 Accommodation and presuppositional weight . . . . . . . . . . 96
7.4.2 Saliency-based referent disambiguation . . . . . . . . . . . . . . 97

7.5 Clarification subdialogues . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5.3 Single-rephrase clarification . . . . . . . . . . . . . . . . . . . . 100
7.5.4 Interactive binary clarification . . . . . . . . . . . . . . . . . . . 101
7.5.5 Semantic clarification . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Conclusions and further work 107
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1.1 Integrating disambiguation data . . . . . . . . . . . . . . . . . . 107
8.1.2 Clarification subdialogues . . . . . . . . . . . . . . . . . . . . . 108
8.1.3 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1.4 Integrated natural language processing . . . . . . . . . . . . . . 109

8.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.2 Probabilistic parsing . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.3 Clarification subdialogues . . . . . . . . . . . . . . . . . . . . . 111
8.2.4 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.5 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References 113

ix



x



List of Tables

3.1 A taxonomy of disambiguation data sources . . . . . . . . . . . . . . . 22

5.1 A full parse-rephrasing table for ‘The sheep saw the fish in the river’. . 66

xi



xii



List of Figures

1.1 A typical interpretation pipeline . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Ambiguity explosion in the interpretation pipeline . . . . . . . . . . . . 4

2.1 Structure of Te Kaitito . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 A dialogue session with Te Kaitito . . . . . . . . . . . . . . . . . . . . 11
2.3 Eliminative parsing: the initial set of all possible relations. . . . . . . . 15
2.4 Remaining relations after application of unary constraints. . . . . . . . 16
2.5 Fully disambiguated parse . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Constraints at multiple levels . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 A complete set of interpretations . . . . . . . . . . . . . . . . . . . . . 29
3.2 Interpretations remaining after dialogue-act filtering . . . . . . . . . . . 29
3.3 The single interpretation remaining after semantic filtering . . . . . . . 30
3.4 The boustrophedal structure of the interpretation process . . . . . . . . 32

5.1 A relation between semantic structures and rephrasings . . . . . . . . . 52
5.2 Parses as points in rephrasing-space. . . . . . . . . . . . . . . . . . . . 67

6.1 The position of perturbation within the interpretation pipeline. . . . . 80

7.1 A sample derivation tree from the Redwoods treebank . . . . . . . . . . 90
7.2 Continuation commands . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



xiv



Chapter 1

Introduction

. . . ‘Cyclop! now,

As thou demand’st, I’ll tell thee my name, do thou

Make good thy hospitable gift to me.

My name is No-Man; No-Man each degree

Of friends, as well as parents, call my name.’

. . . For other Cyclops. . . [a]sk’d him, if his fright

Came from some mortal that his flocks had driven?

Or if by craft, or might, his death were given?

He answer’d from his den: ‘By craft, nor might,

No-Man hath given me death.’ They then said right,

If no man hurt thee, and thyself alone,

That which is done to thee by Jove is done;

And what great Jove inflicts no man can fly.’

—The Odyssey (Homer, 1857)

1.1 Ambiguity in language

Ambiguity has a distinguished history as a bane of natural language processing (see,

for example, Jurafsky and Martin, 2000, pp. 372–376). The consequences are not al-

ways as serious as they were for Polyphemus the Cyclops, whose companions failed

to resolve No-Man correctly as a proper noun, but disambiguation has nevertheless

merited serious attention.

Human disambiguation is so effective that the ambiguity in even seemingly straight-

forward utterances can be invisible until it becomes a stumbling block for a machine

1



grammar. The human advantage seems to stem to a large extent from the ability to

apply a broad range of semantic-level information about the context, the speaker and

the world as the sentence is incrementally parsed (see e.g. Swinney, 1979).

Much recent and current work in machine disambiguation—at least at the syntac-

tic level—has focused, with great success, upon statistical parsing (e.g. Collins, 1997;

Charniak, 1997), also called probabilistic or stochastic parsing. A corpus of sentences

is annotated with parses known to be correct, and the probabilities of various events

(usually rule productions) are calculated for the corpus as a whole. These probabilities

are then used to select between different candidate parses of new utterances.

Statistical parsing, however, is not sufficient in every case. Its sensitivity to context

is limited: although probabilities can be conditioned on contextual features, trade-offs

must be made for computational tractability, and using more complex events makes

the training data more sparse. Also, probabilistic parsing is not sensitive to semantic

information that can override syntactic statistics. For example,

(1.1)
There was a girl with a telescope in the room.

John saw the girl with the telescope.

Here, normal statistical parsing would have trouble: is John seeing with the tele-

scope, or is he seeing a girl-with-telescope? For a human reader, the context largely

dispels the ambiguity: we already know of a girl-with-telescope, so it seems reasonable

to assume that this is what is being referred to. A sophisticated lexicalized probabilis-

tic grammar, with information that ‘seeing with a telescope’ is more usual than ‘girl

with a telescope’, might well choose the wrong parse. However, even a relatively simple

semantic analysis would reveal that the existence of a girl-with-telescope is already

known, vastly increasing the probability that this girl-with-telescope is involved in the

correct parse.

My thesis is concerned with the disambiguation task in a particular NLP applica-

tion: human-computer dialogue. The dialogue system I am working with is the kind

that develops deep semantic representations of utterances rather than using robust,

surface-oriented, Eliza-style techniques. With these deep representations at our dis-

posal, it seems sensible to make use of this semantic information for disambiguation.

But as soon as more than one source of disambiguation data becomes available, we face

a problem: how are we to combine the different sources? What are we to do if they dis-

agree? And what are we to do if we cannot come to a reasonable decision? This thesis

attempts to answer these questions: it proposes a system for classifying different sources

of disambiguation data; it describes a procedure for integrating these sources; it details

2



several sources and their place in this scheme; and it describes fall-back techniques for

use when disambiguation fails.

1.2 The interpretation pipeline

In the field of natural language processing, the pipeline is a common metaphor for the

interpretation process: raw data comes in at one end, usually in the form of a textual

string or an acoustic signal, and is passed through a sequence of processing modules

which convert it to progressively deeper semantic forms. Figure 1.1 shows a typical

arrangement of this type.

Parsing
Semantic

interpretation

Dialogue act

interpretation
- -

Figure 1.1: A typical interpretation pipeline

The illustrated pipeline is one that might be employed in a text-driven dialogue

system. The pipelines for other systems might be different: a speech-driven system

might additionally have a ‘phonetic interpretation’ module at the beginning; a system

concerned with continuous text rather than dialogue might lack the final ‘dialogue act

interpretation’ module. But in all cases, the direction of the pipeline is the same: from

shallow, surface features like acoustic waveforms to deep semantic features like dialogue

acts. In this thesis, the ordering imposed by the interpretation pipeline will be used in

a variety of contexts: not only in the initial interpretation, but in data classification,

disambiguation, and clarification.

1.3 A pipelined model of ambiguity

In practice, the interpretation process might resemble not so much a pipeline as an

anatomical diagram of the circulatory system: just as the aorta divides and subdivides

into smaller and smaller arteries, ambiguity can split the interpretation pipeline at

any module; these divisions might then be subdivided again by subsequent modules.

Figure 1.2 shows how ambiguity can grow geometrically with the number of modules

in the pipeline: each interpretation of an ambiguous acoustic signal has several parses,

3



each of which may have more than one semantic attachment, each of which might be

interpreted as more than one dialogue act.

Pipeline stage:

acoustic

signal
-

�

^

phonetic

Are yew

leaving?

Are you

leaving?

Are you

Lee Ving?

-

^

syntactic

Are you

[pl]

leaving?

Are you

[sg]

leaving?

-

�

^

semantic

Are you [Anne

and Bob]

leaving?

Are you [Anne,

Bob and Carol]

leaving?

Are you [Anne

and Carol]

leaving?

-

^

dialogue
act

[Order]

[Question]

Figure 1.2: Ambiguity explosion in the interpretation pipeline. The

central, horizontally aligned row of boxes shows the speaker’s intended

interpretation, while the branches from the central path show other

possible interpretations which must be discarded somehow. Dotted

lines indicate further interpretations omitted for brevity.

1.4 Outline of the thesis

Chapter 2 reviews the relevant literature on disambiguation, data integration and

explicit clarification, both in general and in dialogue systems. It also introduces Te

Kaitito, the bilingual human-machine dialogue system within which the proposed tech-

niques will be implemented.

Chapter 3 forms the nucleus of this thesis. In it, I describe a simple framework for

the classification of disambiguation data sources. With reference to this classification,

I then outline a general model of how different data sources can be prioritized and

integrated; the work of the subsequent chapters takes place within the framework of

this model.

Chapter 4 goes on to describe several actual sources of disambiguation data available

to the Te Kaitito system, and the practical means by which they may be classified and

integrated according to the model described in Chapter 3. One of the most important

sources is a statistical parser, augmented in a novel fashion to give it greater sensitivity

4



to the current dialogue context. In this chapter I also describe sources which exist at

the semantic and dialogue act levels.

One of the advantages of a dialogue system is that, if the usual disambiguation pro-

cedure cannot make a sufficiently reliable judgement, the user can be queried explicitly

to resolve the ambiguity. Chapter 5 presents a method whereby such clarification subdi-

alogues may be incorporated into the disambiguation framework proposed in Chapter 3.

Particular attention is paid to disambiguation at the syntactic level using rephrasing:

a theoretical framework is established, and some general results derived, before various

actual clarification techniques are evaluated according to well-defined metrics. Finally,

there is a brief treatment of other syntactic clarification techniques, and of semantic

clarification.

Chapter 6 discusses ways in which accommodation can be made for errors in the

user’s input, and how this accommodation can be seen as part of the disambiguation

process and integrated into it.

In Chapter 7, I describe the implementation of the integration architecture for

disambiguation data within Te Kaitito, of the modules which provide disambiguation

data, and of clarification subdialogues.1 I also provide dialogue transcripts from sessions

with the system showing these systems in operation.

In Chapter 8, I sum up the theoretical and practical results of the thesis, and their

usefulness in further work on Te Kaitito and further afield. I conclude with an account

of extensions which could be made to my work, and describe its relevance to the future

development of Te Kaitito.

Much of the work described in Chapters 3, 4, 5, and 7 has previously been summa-

rized in Lurcock, Vlugter, and Knott (2004).

1The error handling described in Chapter 6 is not implemented.

5



6



Chapter 2

Literature Survey

. . . my father had the happiness of reading the oddest books in the universe, and

had moreover, in himself, the oddest way of thinking that ever man in it was

bless’d with. . .

—Laurence Sterne, The Life and Opinions of Tristram Shandy (Sterne, 1912)

In this chapter, I will introduce the main systems and techniques that underlie this

thesis. In Section 2.1.1, I describe Te Kaitito, the human-computer dialogue system

within which this project is implemented; in Section 2.2 I review some existing ap-

proaches to the integration of disambiguation data sources. In Section 2.3 I describe

the techniques of probabilistic parsing, with particular attention to those relevant to

the syntactic-level disambiguation module implemented in this project. Previous work

relating to my treatment of clarification subdialogues (Chapter 5) and error handling

(Chapter 6) is reviewed within those chapters.

2.1 The Te Kaitito system

2.1.1 Introduction

Te Kaitito is a human-computer dialogue system designed to teach Māori to speakers of

English. Its architecture is described in detail by Knott, Bayard, de Jager, and Wright

(2002).

Te Kaitito uses the LKB system (Copestake and Flickinger, 2000) for parsing and

generation. LKB makes use of grammars written in an HPSG-style formalism. Te

Kaitito can currently use two such grammars: one is the English Resource Grammar

(ERG) (Flickinger, 2000); the other a small, custom-written Māori-English Grammar,

7



the MEG (Bayard, Knott, and de Jager, 2002). The MEG comprises a set of rules

and lexical items covering a set of English sentences along with their Māori transla-

tions, so that interpreting a sentence in one language creates a logical form from which

its translation into the other language can be generated. Every language-specific rule

or word is tagged with an appropriate ‘language’ feature, preventing the mixing of

languages within a sentence. Of course, only the MEG is of any use in the teaching

of Māori; the ERG is nevertheless useful during development, and to ensure that Te

Kaitito maintains a degree of grammar independence.

The parsing process produces a flat semantic representation in the Minimal Recur-

sion Semantics (MRS) format (Copestake, Flickinger, and Sag, 1999). The MRS form

is transformed into a Discourse Representation Structure (DRS) (Kamp, van Genabith,

and Reyle, in preparation), which splits an utterance into an assertion and a set of pre-

suppositions such as anaphora and definite NPs. Te Kaitito attempts to resolve these

presuppositions with reference to the current dialogue context, then identifies the dia-

logue act which the resolved utterance performs. Further modules then deal with the

task of creating, formulating and delivering a suitable response.

resolved
sentence
DRS

Saliency list

stack DRS

Context DRS

Global DRS

text
planning
module

Grammars

English

Maori

Lexicons

English

Maori

Morphological rules

English

Maori

output
sentence

input
sentence

sentence
parser

dialogue 
engine

Knowledge graph

response
discourse
representation

content 
selection
module

set of 
fact
nodes

discourse
structure
tree

sentence
planner

discourse 
signals 
planner

referring
expression
planner

sentence
generatorMRS

MRS−to−DRS
converter

(generation of single−sentence responses)

LEGEND

Procedural module

Declarative module

created by the system
Declarative resource 

error 
message

(pathway for sentence translation application)

response 
sentence 
representationsentence

DRSs
MRSs

presupposition
resolution
module

Figure 2.1: Structure of Te Kaitito prior to the addition of my disam-

biguation framework (from Knott et al., 2002).

As can be seen from Figure 2.1, Te Kaitito’s interpretation process exhibits the

pipeline structure described in Section 1.2: the user’s initial input, supplied as a string

of text, is passed through a sequence of modules, undergoing successive transformations.

Each module can—in addition to its input along the pipeline—incorporate extra data

from the system’s current state into its output, producing a richer representation. The

pipeline continues beyond the dialogue engine to produce a response, but this thesis is

mainly concerned with the interpretation section.

Prior to the commencement of this thesis, Te Kaitito’s disambiguation facilities

8



were quite basic. There were some simple procedural rules which decided whether an

indicative sentence was an assertion or the answer to a question by consulting the

current dialogue context (described in Section 4.3.1), and syntactic disambiguation

simply consisted of choosing a parse at random.

Few aspects of this thesis will make use of the bilingual features of the Māori-

English Grammar (the main exception being the unambiguous rephrasings mentioned

in Section 5.3). Other aspects of the work require the use of the ERG—chiefly the

availability of a large treebank for the training of probabilistic grammars. Most of the

examples given will therefore use the ERG.

Te Kaitito has a modular architecture allowing the core processing pipeline to be

easily attached to different user interfaces. At present a console-based text interface and

a World Wide Web interface are in use, although a three-dimensionally rendered ‘talk-

ing head’ (described in King, Knott, and McCane, 2003) has also been implemented.

2.1.2 Presupposition resolution in Te Kaitito

As mentioned in the previous section, Te Kaitito’s interpretation pipeline includes a

presupposition resolution module. Once an utterance has been broken down into an

assertion (the new information imparted by the utterance) and a set of presuppositions

(references to the previously existing dialogue context), this module attempts to bind

the presuppositions to pre-existing relations in the dialogue context. For instance, in

the following example

(2.1) User Aaron hits a dog

System okay

User the dog chases him

System okay

the user’s second utterance contains two presuppositions: the dog and him. The system’s

response indicates that it has successfully bound these—in this case, to the previously

mentioned a dog and Aaron, respectively.

It may be that a presupposition cannot be bound to any known relation. In this

case, Te Kaitito makes use of accommodation, as described by Lewis (1979): it simply

assumes the existence of the required relation. This is a common occurrence in human

dialogue: if A says to B ‘I have to walk the dog’, B will naturally assume the existence of

a dog, even if A has never mentioned it before; conversely, if a dog has recently featured

in the dialogue, B will probably assume that A is referring to this dog rather than

9



some new, unknown dog. Lewis summarizes the process of accommodation elegantly:

‘it’s not as easy as you might think to say something that will be unacceptable for lack

of required presuppositions. Say something that requires a missing presupposition,

and straightaway that presupposition springs into existence, making what you said

acceptable after all.’

Te Kaitito operates in much the same way. Indefinite NPs create new entities in the

system’s store of semantic knowledge. Definite NPs are resolved, if possible, to existing

entities; otherwise, an entity is instantly created for the NP to refer to.

This process of presupposition matching and accommodation can be used as a

method of disambiguation; the technique was first described by Knott and Vlugter

(2003) and was implemented as part of this thesis. It will be described in detail in

Section 4.2.

2.1.3 Sample dialogues

To give an impression of the type of interaction possible with Te Kaitito, I show in

Figure 2.2 a typical dialogue session.

As the topics of discourse might suggest, the MEG is fairly restricted in its coverage;

however, this is not a serious problem for its current application. It is common in

language teaching environments to heavily restrict the discourse domain in order to

avoid confusing language learners.

Work is currently under way, independently of this project, to allow the system to

make dialogue initiatives (Slabbers, in preparation). However, the dialogue shown in

Figure 2.2 is is entirely driven by the user; essentially, Te Kaitito acts as a semantic

database with a natural language interface. The user can make assertions (Utterance 1)

which are incorporated into Te Kaitito’s model of the dialogue context, an operation

known as grounding (see e.g. Traum, 1999). If the user’s utterance is successfully in-

terpreted, an acknowledgement is given (Utterance 2).

The user can add new assertions (Utterance 6) about previously mentioned entities

by using definite NPs, and make queries (Utterance 3) to which the system responds

using its current knowledge. The bilingual structure of the MEG (described in Sec-

tion 2.1.1) allows the system to make responses in either English or Māori with equal

ease; here it is configured to generate every possible response in both languages (Ut-

terance 4). If Te Kaitito cannot fully interpret an utterance made by the user (here,

Utterance 7), it can initiate (Utterance 8) a clarification subdialogue. Chapter 5 dis-

cusses these clarification subdialogues in detail; the subdialogue shown here is initiated

10



Speaker Utterance

User a blue dog barked (1)

System Ok (2)

User a red dog walked

System Ok

User which dog walked (3)

System the red dog

it was the red dog

nā te kur̄i whero (4)

User Ok (5)

User the blue dog chased a green cat (6)

System Ok

User a weasel barked

System Ok

User a big cat chased the weasel

System Ok

User the cat barked

System Ok

User the red dog chased the weasel

System Ok

User the blue dog walked

System Ok

Speaker Utterance

User the dog ate the weasel (7)

System which dog ate the weasel (8)

User the red dog

System Ok

System Ok

User the blue dog chased a

slow monkey

System Ok

User a loud monkey ate the

blue dog

System Ok

User which monkey did the

blue dog chase

System the slow monkey

it was the slow monkey

nā te makimaki pōturi

User Ok

User what chased the monkey

System the blue dog

it was the blue dog

nā te kur̄ı kikorangi

Figure 2.2: A dialogue session with Te Kaitito; adapted from de Jager,

Knott, and Bayard (2002).

with a semantic-level clarification question, as described in Section 5.5.

This interaction model has utility for CALL: the user and the system can discuss

a situation in Māori with the possibility of falling back to English if the user fails to

understand an utterance.

2.1.4 Ambiguity in Te Kaitito

Ambiguity can arise in any of Te Kaitito’s interpretation modules: a sentence can

have multiple parses; each parse can have multiple ways to resolve presuppositions

with respect to the dialogue context; and each resolved parse might be interpretable

11



as more than one dialogue act. This thesis is concerned mainly with resolution of

ambiguity arising at the syntactic level; however, performing this task will involve

using data from all stages of the processing pipeline.

2.2 Existing approaches to integrating disambigua-

tion data

The idea of integrating information from disparate sources during sentence interpreta-

tion is certainly not a new one. Most large-scale systems perform an integration of some

kind. It is less common to specifically develop a dedicated architecture for this kind of

synthesis. In this section, I consider some of the work that has been done in this area.

Once I have presented (in Chapter 3) my architecture for integration of disambiguation

data in Te Kaitito, I will briefly compare it (in Section 3.2.5) to the schemes described

below.

2.2.1 Interpretation as abduction

Hobbs, Stickel, Appelt, and Martin (1993) describe a remarkably broad and uniform

method for sentence interpretation—including disambiguation—by the technique of

abductive reasoning. In this framework, a sentence is seen a a consequent which may

be inferred from a set of logical clauses. The system will probably already know some

of these clauses to be true. Others will need to be accommodated or assumed: these

correspond to the new information imparted by the sentence. A cost is associated with

each type of assumption, and the system works backwards from the sentence to find a

set of assumptions with minimal total cost, which is taken to be the correct interpre-

tation. Essentially, abduction seeks to find a minimal explanation of how a sentence

can be true. This framework allows uniform incorporation of syntactic, semantic, and

pragmatic information. The chief focus of the paper is on pragmatics, aided by the

construction of a large base of world and domain knowledge.

The interpretation process consists of deriving a logical form for the sentence, using

facts in a knowledge base and axioms in a grammar. Often, the knowledge base will be

insufficient to prove the sentence; in that case, one or more predicates must be assumed

to be true. These predicates are the new information imparted by the sentence. (This

division is analogous to Te Kaitito’s use of DRS to separate an utterance’s assertional

and presuppositional content, as described in Section 2.1.1).

12



As an example, Hobbs et al. describe the interpretation of the sentence

(2.2) The Boston office called.

which corresponds to proving

(∃x, y, z, e)call(e, x) ∧ person(x) ∧ rel(x, y) ∧ office(y) ∧ Boston(z) ∧ nn(z, y)

(‘there was a calling event e by a person x related by some relation rel to an office y,

which is related by some relation nn to z, which is Boston’).

I will first give the axioms necessary to prove this, and then the knowledge-base

facts to which they must be applied.

(∀w1, w2, y, p, e, x)np(w1, y) ∧ verb(w2, p)∧

p′(e, x)$3 ∧ rel(x, y)$20 ∧ Req(p, x)$10 ⊃ s(w1 w2, e) (2.3)

This can probably be most succinctly be explained using a term-by-term English gloss

(ignoring, for the moment, the superscripts attached to some of the terms).

np(w1, y) ∧ verb(w2, p) ∧
If w1 is a NP denoting y, and w2 is a verb denoting a predicate p, and

∧p′(e, x)$3 ∧ rel(x, y)$20

e is the eventuality of p holding for x, and x is somehow related to y,

∧ Req(p, x)$10 ⊃
and x satisfies the requirements placed on it by p, then

s(w1 w2, e)

w1 w2 is a sentence expressing the eventuality e.

Interpreting the NP also requires the application of another axiom:

(∀w1, w2, q, r, y, z)det(the) ∧ noun(w1, r) ∧ noun(w2, q)

∧ r(z)$5 ∧ q(y)$10 ∧ nn(z, y)$20 ⊃ np(the w1 w2, y) (2.4)

(‘If the is a determiner, and w1 and w2 are nouns denoting the predicates r and q

respectively, and r and q hold for the entities z and y respectively, and there is some

implicit relation nn between z and y, then the w1 w2 is a NP referring to the entity y’.)

The superscripted dollar amounts indicate the cost of assuming a conjunct to be

true if it is not in the knowledge base. This cost corresponds to an intuitive notion of

13



how unlikely the assumption is; thus, it is easy ($3) to assume that the information

carried by the verb is true, but hard ($20) to assume the existence of a ‘Boston office’ if

the knowledge base doesn’t encompass any office which is in any way related to Boston.

These axioms can then be combined with facts in the knowledge base:

Boston(B1) B1 is the city of Boston.

office(O1) ∧ in(O1, B1) O1 is an office in Boston (B1).

person(J1) John (J1) is a person.

work-for (J1, O1) John (J1) works for the office O1.

(∀y, z)in(y, z) ⊃ nn(z, y) If y is in z, then a compound nominal can be

formed from z and y.

(∀x, y)work-for (x, y) ⊃ rel(x, y) If x works for y, then y can be coerced into x.

(∀x)person(x) ⊃ Req(call , x) If x is a person, then x can call.

The process of interpretation consists of finding the minimum total cost which allows

the sentence’s logical expression to be true; the predicates which must be assumed

correspond to the new information imparted by the sentence. In this case, all the

antecedents of the axioms can be proved from the knowledge base except for p′(e, x)

(the information that someone called), which can be assumed for a cost of $3, and

incorporated into the knowledge base as a new fact.

The breadth of of this approach to interpretation and disambiguation comes from

the fact that both syntactic and pragmatic data are placed within the same framework.

Axiom 2.3 above is used to simultaneously derive the syntactic form of the sentence

and its meaning; w2 is a verb is placed on an equal footing with a person can make a

call. The effectiveness of the method depends, of course, on choosing suitable values for

the costs associated with assumptions, and on combining them in a suitable manner.

2.2.2 Eliminative parsing with graded constraints

Menzel and Schröder (1999) describes another method for utterance interpretation by

combining information from a variety of data sources. The technique differs somewhat

both from that of Hobbs et al. (1993) and from that devised in this thesis: it makes

use of constraint-based, eliminative parsing, starting with a representation encoding

every possible parse structure, and performing the rest of the parsing process as a

disambiguation. This approach allows simultaneous use of both syntactic and semantic

constraints in attempting to find a most likely interpretation. The system is, like the Te

Kaitito system described in this thesis, a dialogue-based language learning environment,

14



and the focus is on the correct detection and diagnosis of errors while maintaining the

robustness of the parser.

I reproduce here an example given by Menzel and Schröder of their eliminative

parsing method. Both the grammar and the constraints are here extremely simplified

for illustrative purposes. Suppose that we wish to parse the German sentence

(2.5) Der Mann besichtigt den Markplatz.

The man visits the marketplace.

using a grammar which contains only three relations: DET (the modification of a noun

by a determiner), SUBJ (the modification of a finite verb by the head of a NP as the

subject), and DOBJ (the modification of a finite verb by the head of a NP as the direct

object). We begin with a completely ambiguous representation (Figure 2.3) in which

every word modifies every other word using every possible relation.

Der
��

SUBJ

����
DOBJ

��{{
DET

$$��

SUBJ

����

DOBJ

����

DET

��

ff

SUBJ

88ii
DOBJ

55kk
DET

44__

SUBJ

@@bb

DOBJ

==ee

DET

::Mann
��

SUBJ

����
DOBJ

""yy
DET

''��

SUBJ

����

DOBJ

����

DET

��

gg

SUBJ

::jj
DOBJ

77ll
DET

55besichtigt
��

SUBJ

����
DOBJ

!!yy DET
&&

gg
SUBJ

77jj
DOBJ

55mm
DET

33den
��

SUBJ

����
DOBJ

!!zz
DET

&&
Markplatz

Figure 2.3: Eliminative parsing: the initial set of all possible relations.

Each of the double-headed arrows represents two relations of the type

corresponding to the arrow’s label, one going in each direction.

This somewhat disconcerting structure can be radically pruned by the application

of three unary constraints: ‘a determiner modifies a noun to its right with DET’; ‘a

noun can modify a finite verb as either the subject or the direct object’; and ‘a finite

verb modifies nothing’. Figure 2.4 shows the result.

The structure is still ambiguous, but far less so. Two binary constraints can complete

the disambiguation: ‘a word form can not be modified twice with the same label’, and

‘nominative case is required for the complete subject phrase’. Figure 2.5 shows the fully

disambiguated sentence.

15



Der

DET
$$

DET

::Mann

DOBJ
''

SUBJ

��
besichtigt den

DET
&&

Markplatz

DOBJ

gg

SUBJ

``

Figure 2.4: Remaining relations after application of unary constraints.

Der

DET
$$

Mann

SUBJ

��
besichtigt den

DET
&&

Markplatz

DOBJ

gg

Figure 2.5: Fully disambiguated parse

Like the axioms of Hobbs et al., the constraints used in this interpretation process

need not just be syntactic. Menzel and Schröder give a diagram of the relations, in the

realms of syntax, semantics, and domain knowledge, constraining the interpretation of

the sentence

(2.6) Der Parkplatz liegt neben der Kirche.

The car park lies beside the church.

Figure 2.6 shows the relations. The ‘domain’ knowledge relates to the particular sit-

uation under discussion; thus, in this case, the relation represents the system’s pre-

programmed knowledge that, in this case, the car park really does lie beside the church.

•
SUBJ

ffff
fffff PP

WWWW
WWWWW

syntax •
DET

ffff
ffffff

•
PN

[[[[[[[[[
[[[[[[[[[[[

• •
DET

eee
eeeee
•

•
AGENS

eeee
eeeee LOCATION

]]]]]]]]]]]]
]]]]]]]]]]]]]

semantics • •
PREP

cccccccc
cccccccccc
•

•
BESIDEaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaa

domain •

Der Parkplatz liegt neben der Kirche

Figure 2.6: Constraints at multiple levels

The structures shows in Figure 2.6 are mapped to each other by constraints and dis-

ambiguated simultaneously. The constraints in this system are graded : each constraint

16



is associated with a weight representing the severity of violating it. It is possible that

some constraints in a partial interpretation will conflict with each other. Disambigua-

tion is then a process of seeking an interpretation which, in Menzel and Schröder’s

words, ‘violates only as few and as weak constraints as possible’.

There are clear parallels with the work of Hobbs et al. In the abductive model, there

may be too few facts to prove a sentence’s logical form, in which case a minimal-cost

set of facts is assumed and added to those available for the sentence’s interpretation.

In the eliminative model, there may be too many constraints to interpret a sentence

consistently, in which case a minimal-cost set of constraints is discarded. The processes

may, to an extent, be seen as mirror images of one another.

2.2.3 Other approaches

Rosenfeld (1996) also tackles the problem of integrating disparate sources of disam-

biguation data: he uses a Maximum-Entropy framework to allow the integration of any

data source which can be described in terms of statistics on a text. However, this does

not allow the incorporation of higher semantic levels of information, as explored in this

thesis.

2.3 Probabilistic parsing

A ‘traditional’ grammar makes a stark binary decision about a sentence: either it is

a valid sentence of the language defined by the grammar, or it is not. This makes

disambiguation very hard: ideally, a grammar would be defined so as to return exactly

one parse for any valid input, and exactly zero parses for any invalid input. In practice,

this proves impossible: even humans, with a wealth of higher-level information at their

disposal, are occasionally incapable of reliably choosing a single correct syntactic parse

of a sentence. Natural language is too inherently ambiguous to be definable by such

strict set inclusion. Since it is usually considered less harmful to generate spurious

interpretations of sentences than to miss out valid interpretations, grammars have

tended to overgenerate rather than undergenerate. The problem then becomes how to

select the best or most likely of several possible parses.

Statistical, or probabilistic, parsing techniques have proved very successful in this

task (see Abney, 1996; Manning and Schütze, 1999). Probabilistic parsing generally

consists of annotating every grammatical rule in some way with a probability corre-

sponding to the frequency of that rule’s use. During the parsing of a sentence, the

17



probabilities of individual rules are combined in such a way as to calculate the overall

probability of that parse occurring. Ideally, a parse produced by such a grammar can be

understood in relation to an imaginary collection of every possible (parsed) sentence in

the grammar’s language, in which the number of instances of a sentence is proportional

to the frequency of its use. The probability assigned by the grammar should, then, be

the probability that a randomly selected sentence from this collection will correspond

exactly to the parse under consideration. It is thus likely to be a minuscule number

for any realistic grammar; nevertheless, the probabilities for alternative parses can be

compared and the most likely one selected.

Such a collection is, of course, impossible to assemble and, being infinite, would

in any case be impossible to make use of. But remarkably effective implementations

can be produced by inferring probabilities from relatively small treebanks of parsed

sentences. Data sparsity is always a problem, but it can be alleviated by the use of

backoff (see e.g. Collins, 1997) and smoothing (a survey of smoothing techniques is

given in Chen and Goodman, 1996).

In practice, implementations vary widely: the underlying grammar formalism, the

amount of contextual conditioning on the probabilities, and the resources available to

infer the probabilities all affect the design of a practical parser.

2.3.1 Probabilistic context-free grammars

One of the simplest forms of probabilistic grammar, both in conception and implemen-

tation, is a probabilistic context-free grammar (PCFG). This technique appears first to

have been described by Booth (1969), which is also one of the earliest descriptions of

any probabilistic parsing technique. Each production rule is assigned a number corre-

sponding to the probability of the production occurring given that its head occurs. Raw

probabilities can thus be easily obtained by counting instances of a production and di-

viding by the number of occurrences of the non-terminal symbol at its head. Since the

grammar is context-free, the overall probability of a parse can be calculated simply by

multiplying the probabilities of all the rules used in producing it. In practice, the prob-

abilities are so low that they can become inconvenient for human programmers to read

and difficult for computers to process accurately due to arithmetic underflows. Prob-

abilities are therefore usually stored as logarithms and combined by addition rather

than multiplication.

18



2.3.2 Lexicalized probabilistic grammars

In its simplest form, a PCFG works only with rules and parts of speech and makes no

use of data about individual words covered by the grammar. This approach can lead

to problems. Consider, as a minimal example, a very simple PCFG for interpreting a

restricted class of NPs. It has only two rules:

NP → Adjective Noun

NP → Noun Noun

Suppose that we have inferred a probability for each of these rules from corpus

of disambiguated NPs. The problem quickly becomes apparent: whichever production

is more common in the corpus will produce a higher probability for its associated

rule, which will then be used in every case. This grammar could never assign different

structures to ‘ground coffee’ and ‘ground frost’. Similar problems affect larger PCFGs:

the two sentences ‘I ordered meatballs in gravy’ and ‘I ordered meatballs in desperation’

must be given the same PP attachment by any non-lexicalized PCFG, leading to a

preposterous interpretation for one of the sentences.

In an attempt to overcome problems such as these, most modern grammars (e.g.

Charniak, 1997) make use of lexical dependency information. In the case of a PCFG,

this can be thought of as replacing every non-lexicalized rule with a huge set of lexi-

calized rules such as

1. NP(coffee) → Adjective(ground) Noun(coffee)

2. NP(coffee) → Noun(ground) Noun(coffee)

3. NP(frost) → Adjective(ground) Noun(frost)

4. NP(frost) → Noun(ground) Noun(frost)

We might then hope, with a sufficiently large parsed corpus, to be able to infer high

probabilities for rules 1 and 4, and low probabilities for rules 2 and 3. For relatively

common collocations such as ‘ground frost’, this might be feasible; for grammars of

realistic size it is impossible. Even to disambiguate the hugely restricted set of sentences

‘I ordered NP in NP ’, we would need a corpus containing productions such as

VP(ordered) → VB(ordered) NP(meatballs) PP(in)

VP(ordered) → VB(ordered) NP(zabaglione) PP(in)

VP(ordered) → VB(ordered) NP(supplies) PP(in)

VP(ordered) → VB(ordered) NP(rivets) PP(in)
...

...
...

for every possible direct object of ordered. There are several techniques for overcoming

19



this data sparsity problem; for example, backing off to an unlexicalized grammar (see

e.g. Collins, 1997), clustering word senses (see e.g. Lakeland, in preparation), and even

consulting the World Wide Web (Keller and Lapata, 2003).

2.3.3 Probabilistic head-driven phrase structure grammars

Head-driven Phrase Structure Grammar (HPSG), the formalism used by the system de-

scribed in this thesis, is a typed feature structure grammar described in detail by Pollard

and Sag (1994). The application of statistical methods to attribute-value grammars in

general, and HPSG in particular, is relatively recent. One of the earliest attempts is by

Brew (1995), who first describes a procedure for probabilistically augmenting a formal-

ism he refers to as ‘HPSG−’—which lacks the vital feature of re-entrancy. A parameter

estimation procedure for HPSG−, isomorphic to that for a PCFG, is described. Brew

goes on to sketch means by which this procedure might be extended to take account

of re-entrancy, but does not expand upon them. Abney (1997) gives a thorough treat-

ment of stochastic attribute-value grammars. He argues that the PCFG-style empirical

relative frequency estimates proposed by Brew will not generally produce a maximum

likelihood estimate, and instead advocates log-linear modelling using Markov random

fields. He proposes using the Improved Iterative Scaling (IIS) algorithm of Della Pietra,

Della Pietra, and Lafferty (1995) with Metropolis-Hastings random sampling to choose

features and set weights; however, he expresses reservations about the computational ef-

ficiency of the random sampling techniques. Johnson, Geman, Canon, Chi, and Riezler

(1999) echo these reservations, and describe two computationally tractable alterna-

tives to Abney’s feature estimator. They use these estimators to set parameters for a

stochastic version of Lexical-Functional Grammar.

Toutanova, Manning, Shieber, Flickinger, and Oepen (2002) describe an imple-

mentation synthesizing much of this work: they construct several PCFG models for

HPSG, and compare them with log-linear models that use the same sets of features.

Their grammars are trained on parsed sentences from the Redwoods treebank (Oepen,

Flickinger, Toutanova, and Manning, 2002), which is also used for the work in this the-

sis. I will make further reference reference to Toutanova et al. (2002) and the Redwoods

treebank in discussing the design (Section 4.1) and implementation (Section 7.3) of a

probabilistic grammar for Te Kaitito.

20



Chapter 3

Integrating disambiguation data

You will have observed that in the life of every scientist there comes a moment

when, having grasped some principle, he develops its consequences and broadens

its applications or, as people say, he builds a system. At such times his courage

and strength increase. He goes over what he knows and finishes acquiring the

knowledge that he lacked. He considers every notion from all its aspects, which

he brings together and classifies. And if he is unable to establish his own system

or even to convince himself that it really exists, at least when he abandons it

he is more knowledgeable than he was before he conceived of it, and he salvages

from it some truths which had not been known before.

—Count Jan Potocki (1761–1815), The Manuscript Found in Saragossa

(Potocki, 1995)

3.1 Classifying and prioritizing disambiguation data

3.1.1 A taxonomy of data sources

In a dialogue system, disambiguation data can be gleaned from a wide variety of sources.

As an aid to discussion, classification and integration of these disparate sources, I

propose the simple taxonomy shown in Table 3.1. In my explanation of this taxonomy

I will use, as a running example, the following variant of a classic ambiguous sentence:

(3.1) The fruit flies like a banana.

21



This might be interpreted as a statement about the aerodynamic properties of some

fruit, or as an observation on the dietary preferences of a group of insects.

representation level

syntactic semantic dialogue act

world general corpus

statistics

world knowledge

axioms

general dialogue

structure axioms

domain
speaker language model of

the user

axioms about user dialogue axioms

about user

dialogue

context

statistics about

recent context

context-matching

operations

axioms about

current dialogue

genre

interpretation pipeline parsing - presupposition

resolution
- dialogue act

resolution

Table 3.1: A taxonomy of disambiguation data sources; the shaded

cells correspond to sources not used in the work described by this

thesis.

In this taxonomy, sources are classified along two orthogonal dimensions. The first I

refer to as level. This might be defined roughly as ‘semantic depth’, and corresponds to

the form in which an utterance is represented at each stage in the processing pipeline—

for example, a string of characters, or a set of logical predicates. For the purposes of

this thesis, I will be using three levels:

Syntactic information sources operate on the parse structure of an utterance. A statis-

tical grammar is probably the most common example. In this case, a lexicalized

probabilistic grammar might prefer the flies-as-noun reading of Example 3.1,

based on a high incidence of the compound noun phrase ‘fruit flies’ and a low

incidence of the verb phrase ‘fruit flies’ in its training data-set.

Semantic information sources make use of the logical form of an utterance. In the

case of the example, a semantic-level disambiguation source would be one which

took into account the semantic meaning of ‘the fruit’ and ‘the fruit flies’. A base

of world knowledge and an inference engine might be able to show that fruit

does not fly much, but flies do tend to like fruit. Te Kaitito does not support

much world knowledge or reasoning of this type, but it can make judgements

22



about semantic interpretations based on the binding of referents within the local

dialogue context (see Section 2.1.2). In this case, local semantic disambiguation

would prefer flies-as-verb if there were some fruit under discussion to which ‘the

fruit’ could refer, but no flies to which ‘the fruit flies’ could refer.

Dialogue act information sources make use of knowledge about how dialogues tend

to be structured, and about the relationships between utterances considered as

dialogue acts. These might take the form of axioms about the discourse relations

which are likely to hold between an incoming utterance and its immediate con-

text, similar to those presented by Lascarides and Asher (1991). Suppose that

Example 3.1 was immediately preceded in the dialogue by the utterance ‘What

do the fruit flies like?’. Combining the knowledge that the previous dialogue act

was a question with the knowledge that, in normal dialogue, the response to

a question is usually a pertinent answer, we could derive a preference for the

flies-as-noun reading.

Further levels could be envisaged in other situations: for example, a system allowing

speech input might also need to consider a phonetic level below the syntactic level. This

thesis will not deal with the phonetic level; however, Chapter 6 describes the addition

of a character-string level at the start of the pipeline. Note that an information source

at a particular level always makes use of information at the lower levels as well—for

example, a semantic-level representation is always derived from a particular syntactic-

level representation. Thus the classification might more accurately be said to reflect

the highest representational level considered.

A similar classification can be applied to the level at which ambiguity actually

arises when interpreting a particular utterance. That is, we might say that a syntactic

ambiguity is one generated while parsing a sentence, and a semantic ambiguity is one

generated when semantically interpreting a particular parse of a sentence. This thesis is

mostly concerned with resolution of ambiguity arising at the syntactic level. However,

a central consideration of this work is that to resolve such ambiguities, we can make use

of information from other stages of the interpretation pipeline—that is, at semantic

and dialogue act levels. Developing an architecture which supports this kind of look-

ahead is a key goal of this thesis. Thus, ‘representational level’ will usually refer to the

level from which disambiguation data is being inferred, rather than the level at which

an ambiguity arises.

23



The second dimension of classification might be termed domain. This refers, roughly,

to a body or area of knowledge which can guide the system in disambiguation. In this

thesis, I will be making reference to three domains:

World refers to general world knowledge. At a syntactic level, this might take the

form of statistics inferred from a treebank of hand-parsed sentences, showing

that flies is more commonly a verb than a noun. At a semantic level, we might

have a knowledge base containing an axiom (in the style of Hobbs et al., 1993)

about what flies tend to eat. At the dialogue act level, the world domain would

encompass general dialogue axioms such as those described by Lascarides and

Asher (1991).

Speaker knowledge is concerned with the particular speaker whose utterance is being

disambiguated. In the example, we may know that the speaker is a geneticist

working with fruit flies. At a syntactic level, a corpus of their utterances might

thus show a statistical preponderance of fly-as-noun occurrences, providing use-

ful information about the likely part of speech of fly. At a semantic level, we

might know or be able to deduce that the speaker is more likely to speak about

topics related to flies. At the dialogue act level, we might have axioms specific

to certain speakers—for example, ‘Anne changes the subject a lot’ or ‘Michael

seldom answers a question directly’.

Dialogue context refers to knowledge about the situation in which the utterance was

made. Suppose that the conversation up to this point has concerned fruit flies.

Syntactically, a corpus of recent utterances drawn from the dialogue itself would

show a strong tendency for the fly-as-noun reading. Semantically, ‘the fruit flies’

might be interpretable as a reference to some previously mentioned fruit flies,

whereas ‘the fruit’ would not be resolvable to any previously mentioned fruit.

At the dialogue act level we could have axioms about the specific genre of the

current discourse. Compare, for example, an extended narration with a task-

oriented dialogue; for the narration, we might expect a higher proportion of the

speaker’s questions to be rhetorical.

As with levels, further domains are possible—if a dialogue’s topic is predefined,

a subject-specific corpus could be consulted for more specialized information; if the

system’s users are known to be from a particular region, a corpus of utterances in the

regional dialect could be used.

24



3.1.2 Prioritizing data sources

Merely classifying data sources does not tell us how to combine them. When all the

sources are in agreement, there is no problem: we disambiguate according to the con-

sensus. But what are we to do if, say, we are talking to a geneticist about a food fight,

and the contextual-level and speaker-level sources disagree? Or if fly-as-verb is common

in the recent context, but nobody has mentioned any fruit to which ‘the fruit’ could

refer?

Prioritization with respect to level has an important effect on implementation ef-

ficiency: since the construction of a representation at each level is dependent on data

from the previous level, it is more efficient to stop considering a candidate interpre-

tation at a low level. The question is how much of the interpretation tree shown in

Figure 1.2 on page 4 we must construct before we can begin to discard unlikely inter-

pretations. If syntactic-level information always overrides semantic, we can prune most

of the branches of the ambiguity tree before they begin to grow.

I will now attempt to answer these questions. As the basis for the work in this

thesis, I propose the following prioritization rules:

1. ‘Higher’ levels should take precedence over ‘lower’ levels. Specifically, dialogue

act information should take precedence over semantic information, which should

take precedence over syntactic information.

2. Narrower domains should take precedence over broader domains. Specifically,

contextual knowledge should take precedence over speaker-specific knowledge,

which should take precedence over global knowledge.

I will now attempt to justify the adoption of these rules.

Level prioritization

I claim that higher levels should be given precedence. This intuition seems to be sup-

ported by an archetypal mechanism found in puns, which creates a semantic context

to force a syntactically unusual interpretation of a common phrase. For example:

(3.2) A ghost walks into a bar. ‘Sorry,’ says the barman, ‘we don’t serve spirits’.

Here, the listener must disambiguate between two readings of the phrase ‘serve spirits’:

either (1) dispense strong alcohol or (2) cater to wraiths. The conflict between syntactic

and semantic levels of disambiguation could hardly be clearer: any general corpus would

25



contain a vast preponderance of reading 1, and a lexicalized statistical grammar inferred

from a general treebank could hardly fail to choose this reading. A human listener will

probably have heard the phrase ‘serve spirits’ in sense 1 a large number of times, and

in sense 2 not at all.1 Within the joke itself, the semantic support for reading 2 is

remarkably slender: the single word ghost. But the application of semantic reasoning to

equate ghost with spirit is nevertheless able, in a human listener, to override the vast

syntactic-level preference for reading 1.

Dialogue act information is also capable of exerting an extremely strong influence.

Consider the sentence

(3.3) Matt cooks lunch.

which, outside any dialogue context, seems entirely unambiguous. However, a vastly

implausible interpretation can be primed by manipulating the utterance’s classification

as a dialogue act:

(3.4) A: What do matt cooks do when they get hungry around midday?

B: Matt cooks lunch.

The first utterance is a question; in a normally structured dialogue, this creates an

expectation that the second utterance will form an answer to this question. Thus the

reading is changed from noun-verb-noun to adjective-noun-verb. Note that the utter-

ance’s classification as a dialogue act (specifically, as an answer to a question) overrides

both syntactic information which might be inferred by a probabilistic grammar (for ex-

ample, the high probability of lunch being a noun and cook being a verb) and global

semantic information (for example, the fact that cooks are people and people are not

usually matt).

Domain prioritization

Narrower, more context-specific domains seem to take higher precedence than more

global domains in human disambiguation. If Example 3.1 were uttered by someone

we know to be studying the aerodynamic properties of foodstuffs, we might well be

predisposed to assume the flies-as-verb reading, even if it contradicts more general

world-knowledge about the eating habits of flies and the rarity of flying fruit. This

preference might again be overridden by data from the immediately preceding context:

1Unless, of course, the listener has heard the joke before—which, given its vintage, is far from

impossible. I ignore this possibility here.

26



if the last ten utterances have all concerned fruit flies, a human would tend to prefer

the flies-as-noun reading, regardless of any broader trend in the speaker’s utterances.

Examples 3.2 and 3.4 can also be seen to support this kind of domain prioritization:

in both cases, the unusual interpretation of the utterance is cued by features in the

immediately local domain, which override the global information that would normally

lead to the ‘standard’ interpretation.

3.2 An architecture for the integration of disam-

biguation data

We can now make use of these rules in an attempt to outline a procedure for dis-

ambiguation. Unfortunately, they are not quite sufficient. I have not attempted to

formulate a prioritization rule which takes into account a data source’s position on

both axes (level and domain) simultaneously. What should we do if, for example, very

local syntactic knowledge conflicts with global dialogue act knowledge?

Fortunately, in this case, a reasonable disambiguation procedure can be produced

without fully resolving this question. As shown in Table 3.1, I will not be considering the

full space of disambiguation data sources. Dialogue act knowledge is only used in the

global domain, and semantic knowledge only in the local domain. The only difficulty

is in the conflict between contextual syntactic information and global dialogue-act

information.

In this case I have made a pragmatic decision to prioritize the dialogue-act in-

formation. This is in part due to the implementation of syntactic disambiguation: as

will be described in Section 4.1.2, syntactic world and syntactic contextual sources

are evaluated in a way which makes it hard to consider them separately. In any case,

the framework (as described below) allows for some leeway in the judgement of each

disambiguation module, so it is hoped that this will suffice.

3.2.1 The inverted pruning framework

The algorithm I propose for disambiguating an utterance can be described as follows.

We first generate a complete set of possible interpretations. I use the term ‘inter-

pretation’ to refer to a complete, unambiguous reading of a sentence, encompassing a

syntactic parse structure, a set of bindings of referents to the dialogue context, and a

determination of the dialogue act represented by the utterance. These interpretations

27



need not, of course, be realized separately in the implementation: for example, different

dialogue-act interpretations which share a single semantic interpretation can all con-

tain pointers to the same semantic-level representation. However, it can be convenient

to discuss interpretations as if they were distinct structures.

These interpretations pass through a series of filter modules, ordered more or less

by descending level; these modules make up a disambiguation pipeline with a structure

corresponding to the initial interpretation pipeline, but running in the opposite direc-

tion. Each cell in Table 3.1 on page 22 corresponds to one or more of these modules.

The individual modules will be described in detail in Chapter 4. Each module scores the

parses according to some metric appropriate to the level, throws out those which fail

to meet a certain threshold, and passes the rest on down the disambiguation pipeline.

The threshold is simply a cut-off point expressed in the metric used by a particular

filter module; it might be fixed, or dynamically calculated from the distribution of the

scores of a particular utterance. The interpretations are first assessed as dialogue acts,

and all those which pass this filter are then assessed according their semantic attributes.

Those which are sufficiently plausible at a semantic level are then assessed as syntactic

structures. Higher representational levels are thus accorded precedence because they

have the chance to weed out implausible parses before they even become visible to the

lower levels. In effect, the lower levels act as tie-breakers for the higher levels. I refer

to this procedure as inverted pruning because the filter modules are applied in the

reverse order to that in which the interpretations are constructed.

3.2.2 An example of inverted pruning

Consider the following (rather contrived) dialogue fragment, designed to create a con-

text that cues a particular interpretation of the final utterance:

(3.5) A: The big fruit flies ate the fresh fruit

B: OK

A: I threw the the mouldy fruit at the small fruit flies

B: How does the fruit fly?

A: The fruit flies like a banana

The last utterance is ambiguous at three levels: firstly, it can be parsed as a sentence

about fruit or a sentence about flies. Secondly, each of the parses has two possibilities

for semantic attachment: fresh versus mouldy fruit in one case, big versus small flies

in the other. Thirdly, each semantic-level representation could be interpreted as either

28



an answer to the question asked by B, or a new assertion, apropos of nothing—leaving

B’s question unanswered. I will now show how the inverted pruning algorithm deals

with these ambiguities.

The fruit flies like a

banana.

�

U
(The fruit flies)NP

likeVB

(a banana)NP

�

R

the [big] fruit flies

the [small] fruit flies

*

j

ASSERTION

ANSWER

*

j

ASSERTION

ANSWER

(The fruit)NP

fliesVB

(like a banana)PP

�

R

the [fresh] fruit

the [mouldy] fruit

*

j

ASSERTION

ANSWER

*

j

ASSERTION

ANSWER

Figure 3.1: A complete set of interpretations. The brackets mark the

dialogue act interpretations, which are the first to be considered.

Figure 3.1 shows the fully ambiguous interpretation tree which might be generated

from this utterance (cf. the initial state of Menzel and Schröder’s eliminative parser

shown in Figure 2.3). First, the dialogue acts of the full set of complete interpretations

are considered. Since the utterance has occurred in response to the question ‘How does

the fruit fly?’, the dialogue act module chooses all interpretations which form an answer

to this question, and discards the rest. Note that by discarding all possible speech act

interpretations of both possible semantic interpretations of the second parse, we have

eliminated this parse without even considering its syntactic merits. This is an example

of the ‘look-ahead’ approach to disambiguation.

The fruit flies like a

banana.

�

(The fruit)NP

fliesVB

(like a banana)PP

�

R

the [fresh] fruit

the [mouldy] fruit

j ANSWER

j ANSWER

Figure 3.2: Interpretations remaining after dialogue-act filtering.

Semantic-level interpretations are now being evaluated.

29



The two remaining interpretations are passed on to a semantic disambiguation

module (see Figure 3.2). There are two fruits in the current dialogue context, and the

disambiguation module must decide which of them is being referred to. It picks the

mouldy fruit, because it has been mentioned more recently than the fresh fruit (see

Section 4.2.3 for details on how Te Kaitito does this in practice).

The fruit flies like a

banana.

�

(The fruit)NP

fliesVB

(like a banana)PP R the [mouldy] fruit
j ANSWER

Figure 3.3: The single interpretation remaining after semantic filter-

ing. Syntactic-level disambiguation data could now be consulted, but

in this case the utterance has already been fully disambiguated.

The remaining interpretation is passed to a syntactic disambiguation module (see

Figure 3.3), which can do nothing but pass it on, since it is the only one left. Note

that the syntactic structure has been disambiguated without any reference to syntactic

data. Even if there is a huge syntactic preference for the flies-as-noun reading, it makes

no difference in this case: the syntactic disambiguation module is never consulted.

Inverted pruning involves consulting data sources strictly in isolation rather than

attempting to consider them all simultaneously by some technique such as weighted

linear combination. There are a number of advantages to this sequential approach. It

avoids the difficulty of trying to mathematically combine numerical scores from widely

differing sources. For example, the accommodation counter (see Section 4.2.1) will

produce integral scores ranging between zero and around five. The stochastic grammar

(described in Section 4.1) produces negative real numbers, usually in the range of

around −5 to −40, but often with very small variations between different parses of the

same sentence. A mathematical formula for combining interpretation scores would need

somehow to map these scores into a common domain before they could be compared

or combined. In contrast, inverted pruning only requires independent tuning of the

threshold value for each module: the numerical scores for interpretations do not interact

at all.

This modularity confers other advantages: modules can easily be reordered, added,

and removed, without having to make any changes to the combination process. And

changes to the scoring system within a module do not require re-tuning of any combi-

30



nation parameters.

3.2.3 The interpretation-disambiguation-clarification pipeline

If the disambiguation process is successful, a single interpretation will emerge from the

end of the pipeline. Modules explicitly avoid throwing out all possible interpretations,

regardless of their threshold, so we are assured of having at least one interpretation

left. However, we cannot guarantee only one interpretation. It could be that none of

the modules had sufficient information to whittle the available interpretations down

to one. In this case, a dialogue system has an advantage over non-interactive language

interpreters: it can explicitly ask the user for clarification.

Clarification questions are discussed in Chapter 5. They certainly count as sources

of disambiguation data, and can be classified along the ‘level’ axis of the described

taxonomy. (It is difficult, however, to give them a meaningful classification along the

‘domain’ axis.) However they cannot be integrated into the disambiguation pipeline

in the ordinary way: firstly, they are a technique of last resort—obviously, if it is

possible to disambiguate without inconveniencing the user, we would prefer to do so.

Secondly, they must be asked in order of increasing semantic depth, whereas data

sources for automatic disambiguation should be consulted in decreasing order. These

considerations will be more fully explained and justified in Chapter 5.

The complete interpretation process—consisting of initial interpretation, automatic

disambiguation, and (if necessary) explicit clarification, can thus be seen to have the

structure of a boustrophedon2—that is, progressing from left to right (interpretation),

then right to left (disambiguation), then left to right again (clarification). Figure 3.4

gives a diagrammatic representation of this structure. Note that the bottom two rows

of this figure (automatic disambiguation and explicit clarification) correspond in their

entirety to a single module in Te Kaitito’s overall pipeline as shown in Figure 2.1.

3.2.4 The consequences of full look-ahead for disambiguation

In terms of implementation efficiency, this scheme might seem a little disappointing: we

must follow every branch of the pipeline right to the end before we can decide whether

it constitutes a valid interpretation.

2The term boustrophedon, referring literally to the route followed by an ox ploughing a field, is more

commonly applied to writing systems where lines are written alternately left-to-right and right-to-left.

31



Syntactic
parse

Semantic
attachment

Dialogue
act

Initial interpretation

Automatic disambiguation

Explicit clarification

Input
sentence

Single
inter-
pret-
ation

?
- --

����

-- -

Figure 3.4: The boustrophedal structure of the interpretation process

There are also advantages, however; for example, the availability of semantic infor-

mation for every syntactic structure allows for the possibility of augmenting clarification

questions with contextual information, as described in Section 5.4.1.

If efficiency proves to be a problem, we can still apply the data sources in a more

conventional order by pruning some interpretations during the initial process of con-

structing interpretations. For instance, if we are using a hugely ambiguous grammar

which returns a thousand parses for a sentence, we might rank them them as soon as

they are generated and only pass, say, the top hundred on through the interpretation

pipeline. In this way we can improve efficiency without sacrificing all the advantages

of look-ahead disambiguation, although we might get incorrect interpretations of a

few pathological cases. In the system I am working on, this level of ambiguity is not

manifested at any level, so this kind of pre-emptive pruning is not carried out.3

3.2.5 Comparison to other approaches

This thesis takes an approach somewhat different from that of Hobbs et al.: information

sources are procedurally prioritized rather than contributing to a global numerical

score, and there is no large base of ‘common sense’ world knowledge. However, there are

also points of strong similarity: in particular, the accommodation of unknown referents

3In fact, the version of the Redwoods treebank used in the implementation of my probabilistic

grammar does exhibit large-scale ambiguity for a small proportion of sentences; however, the latest

version of Te Kaitito uses a newer and less ambiguous version of the ERG, and the MEG is not overly

ambiguous.

32



(described in Section 4.2.1) and the accommodation of errors by input perturbation

(described in Chapter 6) are similar to the cost-weighted assumptions made during

abduction.

In terms of the framework described by Menzel and Schröder (1999), the disam-

biguation procedure proposed here can be seen as an application of constraints, but in

my scheme they are applied sequentially rather than simultaneously.

Note that both Hobbs et al. and Menzel and Schröder speak in terms of ‘costs’

or ‘weights’ assigned to the making of assumptions or the retraction of constraints,

but they give few details as to how these weights should be set. Menzel and Schröder

appeal to the intuitive notion of ‘how serious one considers a constraint violation’,

and write that their parser seeks an interpretation which violates ‘as few and as weak

constraints as possible’. This raises the question of what to do when faced with the

choice of violating as few constraints as possible or as weak constraints as possible. Is

it better to violate two weak constraints or one strong one? And how are the weights

to be combined when multiple constraints are considered?

Hobbs et al. specify that their costs are combined additively, but similar questions

arise: how can one be sure, when choosing costs, that, say, an interpretation requiring

a $10 assumption and a $4 assumption will always be preferable to one requiring three

$5 assumptions? Addressing such concerns, Hobbs et al. write:

The problem of how to combine symbolic and numeric schemes in the most

effective way, exploiting the expressive power of the first and the evaluative power

of the second, is one of the most significant problems that faces researchers in

artificial intelligence today. The abduction scheme we have presented attempts

just this. However, our numeric component is highly ad hoc at the present time.

They go on to discuss various approaches to assigning and combining numerical

costs; however, they do not give a concrete recommendation for a principle on which

to base these assignments or combinations.

It seems that any implementation of simultaneous multi-level disambiguation using

numerical weights must necessarily be somewhat ad hoc. A search strategy for finding

acceptable weights is clearly needed, but the search space is large and complex: if we

have a set of n weighted constraints (or assumable axioms), and if any subset of those

might occur in a sentence, then changing the value of just a single weight has the

potential to alter the interpretations of 2n−1 sentences.

It was in order to avoid this degree of complexity that I designed a more tightly

constrained, more procedural algorithm. Certainly there are still parameters which

33



must be tuned empirically—the exact implementations of the ranking metrics, and

the threshold values for keeping or pruning interpretations—but these are local to

each module, and do not result in a combinatorial explosion of potential interactions.

Implementation thus becomes far more straightforward. This strategy might be seen

as more dangerous than the simultaneous approaches of Hobbs et al. and Menzel and

Schröder: disambiguation data can be thrown away without ever being consulted—for

example, the syntactic data of the example given in Section 3.2.2—so perhaps there is

a risk of missing a valid interpretation. However, the prioritization rules proposed in

Section 3.1.2 are designed to minimize the risk of this happening.

There is one area in which I do use linearly weighted rather than procedural com-

bination techniques: this is within the syntactic disambiguation module, in integrating

the world, speaker, and context domains. Further details of this will be given in Sec-

tions 4.1.2 and 7.3.2.

34



Chapter 4

Disambiguation modules

So he went the words to gather,

That the spells he might discover,

And a field he spread with reindeer,

Loaded benches high with squirrels,

Many words he thus discovered,

But they all were useless to him.

—Kalevala, Runo XVI, ll. 141-146 (Lönnrot, 1907)

Having established a framework for the classification of disambiguation data, I

will now outline some actual data sources around which the filter modules described in

Section 3.2.1 can be constructed. The modules are all described with a view to practical

implementation within Te Kaitito, so the level of description is fairly concrete (although

the implementation details are deferred to Chapter 7).

The descriptions of the filter modules are arranged with respect to modules’ levels,

as defined on page 22. The focus is on the highest representation level from which

the modules draw their information, rather than the level at which the information

is applied. Thus, for example, presuppositional weight is described under ‘semantic

modules’ although it is only used to disambiguate between syntactic parses.

First, the only syntactic-level module—the probabilistic grammar—will be described

(Section 4.1). Next I will discuss two semantic-level modules based on presupposition-

resolution techniques (Section 4.2), and a saliency-based module for disambiguation of

referents (Section 4.2.3). Finally, in Section 4.3, I will present a somewhat miscellaneous

collection of modules operating at the dialogue act level.

35



4.1 The syntactic-level filter module

The only syntactic-level module presented here is a stochastic parse ranker using the

probabilistic parsing techniques discussed in Section 2.3. Here I will mainly discuss the

innovations developed for this thesis; their implementation will be described in more

detail in Section 7.3.

4.1.1 Integrating a stochastic HPSG grammar with Te Kaitito

Te Kaitito, as mentioned in Section 2.1.1, uses an HPSG-style grammar which operates

by unification rather than the simple rewriting rules of a CFG. It is therefore not

possible to apply probabilities directly to productions in the same way. However, the

LKB parser does produce a derivation tree for each possible parse, which can be

treated in more or less the same way as the parse tree of a CFG. The derivation

tree is essentially a tree-structured record of the rule applications which result in a

successful parse of the sentence. Brew (1995) shows that, with very little modification,

PCFG-style training and parse ranking can be applied to HPSG derivation trees.

As described in Section 2.3.3, Abney (1997) shows that the context-dependency of

attribute-value grammars such as HPSG makes empirical relative frequency estimates1

(as used for PCFGs) sub-optimal for training. Nevertheless, they give adequate per-

formance in many cases2 and their simplicity makes them attractive. I have two main

reasons for choosing to use empirical relative frequency estimates. Firstly, the modifica-

tions made to improve the grammar’s sensitivity to dialogue context (described in the

next section) make it desirable to start with a simple probability model. Secondly, the

time-consuming process of implementing and testing a sophisticated log-linear model

would conflict with the more immediate goal of integrating the grammar both with the

rest of the disambiguation pipeline and with the Te Kaitito system as a whole.

In this thesis, then, the main concern is not to build the best possible probabilistic

grammar; it is to integrate a probabilistic grammar thoroughly with all the components

of a dialogue system. This integration takes place in two complementary ways: the

use of dialogue context to improve the performance of the probabilistic grammar in

novel ways (as described in Section 4.1.2); and the use of the probabilistic grammar to

1Abney coins the term ‘empirical relative frequency’ to describe the probability estimates calculated

for a standard PCFG.
2Toutanova et al. (2002) and Toutanova, Manning, Oepen, and Flickinger (2003) give comparisons

of PCFGs with log-linear models for HPSG.

36



improve the performance of a number of other dialogue system modules. The primary

motivation and purpose of the probabilistic grammar is certainly disambiguation of

incoming utterances. However, once in place, it is readily available for other purposes.

For example, Te Kaitito creates its utterances as MRS forms which are turned into

text strings by LKB’s generation module. LKB often generates more than one syntactic

form (phrasing) of the supplied semantic content. Prior to my implementation of the

probabilistic grammar, Te Kaitito arbitrarily picked one of these phrasings, leading

to utterances which, while syntactically valid, can be rather oddly formulated (for

example, ‘The tree in the garden the dog chases the cat up.’ rather than ‘The dog

chases the cat up the tree in the garden.’). This provides an obvious application for a

probabilistic grammar: it can be used to select the most ‘natural’ of a set of generated

utterances. The grammar can also be used to select, in similar fashion, the most natural

rephrasings during a clarification subdialogue (see Section 5.3.3).

Ranking generated utterances stochastically also allows us to augment the grammar

with special forms for use only during clarification, without the danger that they will

be used in normal dialogue; Section 5.3.7 describes this technique.

More interestingly, a stochastic grammar incorporating the innovations described

below can also be used to monitor the progress of a language learner (see Section 4.1.4).

4.1.2 Contextually augmented probabilistic parsing

In a traditional probabilistic grammar, rule probabilities are static: they are inferred

offline from a treebank and do not change during the parsing process. This limits

the sensitivity which a probabilistic grammar can have to local context. One way of

addressing this is is to use features which incorporate information about the recent

context, but this technique is limited by two factors: the computational tractability

of using increasingly complex features, and the availability of training data. The more

complex a feature, the less well-attested it will be in a corpus, requiring heavier use of

smoothing and backoff.

I have explored a simple but novel way of making a statistical grammar more sen-

sitive to context: in addition to maintaining the rule counts necessary for a traditional

probabilistic grammar (henceforth referred to as global parameters) we also maintain

a set of local parameters.

During the course of the dialogue, uses of grammar rules in utterances interpreted

by the system are counted by the local grammar in much the same way as the global

grammar is trained on a treebank beforehand. In effect, the unfolding dialogue acts as

37



a dynamic ancillary treebank which can be used to adjust the probabilistic grammar’s

parameters. The local grammar is intended to reflect the current dialogue context,

so damping is applied at every dialogue turn to pull the probabilities back towards

those given by the global parameters. Note that, as with a treebank, we can always be

fairly certain of having a correct parse since we can fall back on clarification questions

(described in Chapter 5) if disambiguation fails.

4.1.3 Advantages of contextually augmented probabilistic pars-

ing

A contextually-augmented parsing scheme offers several advantages over a traditional

‘static’ probabilistic grammar. Disambiguation should become more reliable: sentences

are disambiguated with more reference to the features seen in the recent dialogue,

rather than just those in a corpus which might reflect usage in a somewhat different

domain. For example, my global probabilistic grammar is trained on the Redwoods

treebank (introduced in Section 2.3.3 and further described in Section 7.3). Redwoods

chiefly covers the domain of business appointment scheduling, which is not a major

concern in most of Te Kaitito’s dialogues.

Data sparsity is an endemic problem in statistical parsing: no matter how large

the corpus, there will be cases it doesn’t cover. Smoothing and backoff are usually

used to compensate for a lack of data, but a bias towards the rules represented in the

local context also helps to overcome this problem: the utterance being disambiguated is

likely to be closely related to recent utterances, so a grammar reflecting them is likely

to have good coverage of the current utterance.

The locally observed features are not used in isolation: they are only used to modify

temporarily the fixed parameters of the global grammar. Thus, if the global grammar

has poor coverage in some area, the local grammar might help; and if the local grammar

doesn’t contain any pertinent data for a particular utterance, the performance will at

least be no worse than for the original, global grammar.

It has been observed (e.g. by Wang and Hoffman, 2004) that the first occurrence of

an ambiguous term in a body of text generally provides the best context for determining

the sense of an ambiguous word. Disambiguation algorithms often take advantage of

this by taking into account the sense of the first occurrence when disambiguating

subsequent occurrences of the same word, or even by disambiguating only the first

occurrence and assuming that all subsequent occurrences have the same sense (see

38



e.g. Mohammad and Pedersen, 2004). However, there is a risk associated with this

technique: if the first occurrence is disambiguated incorrectly, there is little or no hope

of rectifying it on the basis of subsequent occurrences.

The contextually augmented grammar I propose produces a similar effect. Once an

ambiguous construction has been successfully disambiguated once, the grammar’s pa-

rameters adapt to increase the probability of resolving the ambiguity in the same way

if it occurs again. But in this case the risk of propagating an incorrect disambiguation

is greatly reduced: in an interactive dialogue system, we can always fall back on explicit

clarification (as described in Chapter 5) if disambiguation produces insufficiently con-

clusive results. Thus we can be more confident of performing the first disambiguation

correctly—although we may require help from the user to do so.

4.1.4 Idiolect-sensitive parsing

In a very similar fashion to context-sensitive parsing, we can augment the probabilistic

grammar to be sensitive to a particular user’s idiolect. In this case we maintain one

ancillary database for the utterances of each individual user, train it only on that user’s

utterances, and consult it (in conjunction with the global and local databases) only

when that user is the speaker. Again, some damping is necessary: user idiolects are

susceptible to change, especially in a CALL environment where learners’ language use

may be expected to become more sophisticated with time.

Maintaining statistics on the user’s idiolect can be useful for other purposes: in

a CALL system, it is important to monitor the learner’s language use for gaps in

linguistic knowledge. A per-user treebank could allow this to be done by more elegant

means than explicit testing: the statistical database can be consulted to see if any

grammatical rules have incidences significantly below those in the global database.

When more structured, graded dialogues are added to Te Kaitito, this could allow the

system to judge when a learner has sufficient understanding for it to end the dialogue.

The statistics could also be used to rectify gaps in the user’s knowledge: when

the system generates a response, the generator often produces more than one syntactic

form. The probabilistic grammar can be used to select the most ‘natural’ of these; how-

ever, in teaching mode, more unusual use can be made of it. The generated derivation

trees can be ranked with a heavier bias towards the idiolect database, and the low-

est-scoring parse presented to the user. In this way, the system could gear its style of

expression in such a way that the user sees more examples of grammatical constructions

with which they are unfamiliar.

39



Work along these lines is currently being conducted by Slabbers (in preparation):

the probabilistic parsing code I developed for this thesis is being used in the devel-

opment of a teaching system which assesses a student user’s knowledge of syntactic

rules.

4.1.5 Inverted scoring

The Redwoods treebank data do not just include correct parse structures for sentences;

they include every possible parse, along with data showing which parses are preferred

by the annotators.

The availability of so many incorrect parses raises an interesting possibility: could

they be used to train a probabilistic grammar to recognize incorrect interpretations of

a sentence? The training process would be identical; only the input data would differ.

Using this inverted parse ranker in conjunction with a more conventional probabilistic

grammar might improve performance; after all, the incorrect parses in the treebank

contain information not available to the normal type of probabilistic grammar.

4.2 Semantic-level filter modules

Te Kaitito’s main semantic-level disambiguation facilities use the mechanisms of pre-

supposition resolution and accommodation (operating in the contextual domain of the

taxonomy described in Section 3.1.1). The features described and implemented here

were first described in Knott and Vlugter (2003).

The principle behind Te Kaitito’s semantic disambiguation is that the most likely

interpretation is the one which can be most easily incorporated into the dialogue con-

text.

4.2.1 Accommodation

If Te Kaitito is unable to bind a presupposition to the current dialogue context, then—

as described in Section 2.1.2—it will accommodate the presupposition: that is, it will

add the relation to the current dialogue context as if it had been explicitly stated.

Thus, for example, if no dogs have previously been mentioned, the dog barks produces

exactly the same effect as a dog barks: a dog relation and a barking relation are added

to the current context. (If a dog has been previously mentioned, the definite form will

40



attach the barking relation to it, whereas the indefinite form will instantiate a new

dog).

This process can be used as a disambiguation tool: we assume that the user will,

in general, not casually refer back to non-existent entities; thus the most likely inter-

pretation is one which requires the smallest number of accommodations. For instance,

given the following classic example of prepositional attachment ambiguity

(4.1) User a man with a telescope arrives

System okay

User a girl appears

System okay

User the man sees the girl with the telescope

System okay

the accommodation module would choose the interpretation where with the telescope

attaches to sees rather than the girl. Since the system has not been told about a

girl with a telescope, the girl-with-telescope relation would have to be accommodated,

whereas the other interpretation can be incorporated into the dialogue context with

no accommodation. As in Hobbs et al. (1993), we assume that the correct reading is

‘the minimal explanation of why the text would be true’—that is, the one requiring

the fewest extra assumptions.

4.2.2 Presuppositional weight

Presuppositional resolution can be used for disambiguation even when no accommo-

dation takes place, using presuppositional weight. This is defined as the number of

presuppositions in the user’s utterance which can be matched to the dialogue context.

The assumption is that the integration of a sentence into the context is more ‘complete’

when a larger number of presuppositions match, and that in this case there is a smaller

probability that the interpretation matches the context purely by chance. Consider the

following example:

(4.2) User a man arrives

System okay

User a girl with a telescope appears

System okay

User The man sees the girl with the telescope

41



In this case, no presuppositions need be accommodated for either interpretation.

But the attachment of with the telescope to the noun requires three presuppositional

relations to be bound to the context (the man, the girl, and girl-with-telescope). The

other reading only contains the first two of these presuppositions. Therefore, the pre-

suppositional weight filter module prefers the former reading.

4.2.3 Saliency

Te Kaitito maintains a saliency list of relations introduced during a dialogue. The

saliency of a relation is inversely proportional to the number of discourse turns which

have elapsed since it was last mentioned. Since an utterance is more likely to refer to

a recently mentioned entity than to one which was mentioned a long time ago, this is

a valuable source for semantic disambiguation.

The current implementation is based on saliency windows. Rather than making use

of referents’ raw positions in the saliency list, the disambiguation module regards two

entities as equally salient if they occur within a certain distance (a window) of each

other in the saliency list. The size of the window increases with depth in the saliency

stack. For example, in this case

(4.3) User A black dog walks.

System OK

User A white dog walks.

System OK

User The dog chases a cat.

‘the dog’ in the last utterance would be disambiguated to the white dog. However, if

twenty irrelevant utterances (not mentioning either dog) were interposed before the

last one, the dogs would be further down the saliency list and thus fall within the same

window. In this case the module would not attempt to disambiguate automatically,

and a semantic clarification question would have to be asked (see Section 5.5).

4.3 Filter modules at the dialogue act level

Finally, we come to filter modules which operate at the dialogue act level—using in-

ferences drawn from the properties of the utterance as a whole, and its relationship to

the preceding dialogue, rather than metrics from a particular aspect of it. Modules at

this level might be seen as making use of the co-operative principle described by Grice

42



(1975): we assume that the user is attempting to co-operate with the system, rather

than deliberately making utterances which are hard or impossible to interpret.

Sections 4.3.1 and 4.3.2 deal with distinguishing between different dialogue acts (by

making use of information at the dialogue-act level). Distinguishing between questions

and statements can usually be done at the syntactic level, but Sections 4.3.1 and

4.3.2 subdivide these classifications further. Sections 4.3.3 and 4.3.4 use more explicitly

Gricean reasoning to aid disambiguation at lower levels.

As far as I am aware, the techniques introduced in Sections 4.3.2, 4.3.3, and 4.3.4

have not previously been described or implemented.

4.3.1 Distinguishing between answers and assertions

If Te Kaitito has asked a question, and the user’s next utterance can be interpreted

as an answer to this question, then it will be interpreted as such. Otherwise, it will be

interpreted as a new assertion, apropos of nothing. For example, in this case

(4.4) System Which dog sleeps?

User The black dog sleeps.

the user’s utterance is assumed to be an answer, whereas in this case

(4.5) System Which dog sleeps?

User The black cat sleeps.

the user is assumed to have ignored the question, and the utterance is classified as a

plain assertion.

4.3.2 Distinguishing between questions and clarification ques-

tions

If Te Kaitito makes an utterance and the user responds with a question, how can

we distinguish between a question which initiates a clarification subdialogue and an

‘ordinary’ question? One way is to see whether the question could have been answered

by the semantic form from which the original utterance was produced.3

Almost all Te Kaitito’s utterances (excepting a few ‘canned’ messages for special

cases) are generated from a deep semantic structure in the form of MRS. Thus there

is an invisible semantic structure associated with the surface structure which the user

3This idea is due to Samson de Jager.

43



sees. This structure can be used to identify clarification questions: if the system is

able to answer the user’s question using the semantic material in its own preceding

utterance, it is probably a clarification question. For example, in this exchange

(4.6) System The cat sleeps.

User Which cat sleeps?

the utterance ‘The cat sleeps.’ was generated from an MRS form which must have

included a cat-relation. This relation can only have come from Te Kaitito’s dialogue

context database, and must refer to a specific cat. Thus the semantic form of the

original utterance contains the answer to the user’s question. Consider, in contrast, the

exchange

(4.7) System The cat sleeps.

User Where does the cat sleep?

The original utterance contains no location, so the MRS which generated it cannot have

contained a relation specifying where the cat sleeps. Of course, it is possible that this

information is contained in Te Kaitito’s dialogue context database, but it cannot be

extracted from the question itself. The user’s utterance is thus classified as an ‘ordinary’

question rather than a clarification question.

4.3.3 A preference for answerable questions

A participant in a dialogue usually has some mental model of what their interlocutor

knows. Following a co-operative principle, they can reasonably be expected only to

ask questions which their other participant is able to answer—or, at least, which they

believe the other participant is able to answer. For example, consider this dialogue

fragment:

(4.8) A: I missed the play, but made it to the party afterwards.

B: How was it?

B knows that A went to the party, but not the play. Furthermore, A knows that B

knows this. A is therefore likely to assume that it refers to the party rather than the

play.

Te Kaitito makes use of the same principles:4 if there are multiple parses of a

question posed by the user, Te Kaitito will ignore those which it cannot answer. Of

course, there may still remain multiple questions which the system can answer, but

these can be passed down the disambiguation pipeline in the usual way.

4This idea is due to Peter Vlugter.

44



4.3.4 Using ambiguity for disambiguation

One of Grice’s Maxims of Manner is ‘avoid ambiguity’. We can actually use the level

of ambiguity itself as an aid to disambiguation: if one parse of an utterance leads to

a great deal of ambiguity at a semantic level, we can disprefer it in favour of a parse

with little or no semantic ambiguity. The following example illustrates the principle.

Suppose that a customer walks into a shop which sells swimsuits. Arrayed behind

the salesperson is a wide variety of swimsuits. Some are black, but most are an identical

shade of shocking pink, in a variety of cuts and styles ranging from the extremely

modest to one particular, shockingly skimpy garment. The customer says ‘Please hand

me the shocking pink swimsuit.’ There is clearly ambiguity here: does shocking modify

pink or swimsuit? If it modifies pink then the customer has made a hugely ambiguous

request: all the pink swimsuits are shocking pink. But only one of the swimsuits is in

itself shocking. Thus it is reasonable to assume that shocking modifies the noun. In

the converse situation—where all the swimsuits are shocking, and several are pink, but

only one is shocking pink—shocking would probably be assumed to modify the noun.

45



46



Chapter 5

Clarification subdialogues

The stupidity of people comes from having an answer for everything. The wisdom

of the novel comes from having a question for everything.

—Milan Kundera, Interview with Philip Roth (Kundera, 1983)

There is no guarantee that the disambiguation process will result in a unique inter-

pretation; even human listeners occasionally have to ask for explicit clarification of an

ambiguous utterance. Before this project, Te Kaitito had some rudimentary facilities

for explicit clarification. In this chapter, I describe a new, systematic method for gen-

erating clarification questions, handling clarification subdialogues with the user, and

integrating clarification with the rest of the interpretation and disambiguation pipeline.

Clarification questions, like disambiguation modules, may be classified according to

the stage of the interpretation pipeline to which they correspond. At the level of syn-

tactic interpretation, there are syntactic clarification questions which seek to establish

the correct parse of an utterance. Beyond these are semantic questions, which clarify

the correct bindings for ambiguous referents in the utterance. Finally, there is dialogue

act clarification, encompassing such questions as Are you asking me or telling me?.

Dialogue act clarification is not currently implemented in Te Kaitito and will not be

further discussed in this thesis.

I suggest that clarification questions, in contrast to automatic disambiguation steps,

must be posed in the same order as the original interpretation was constructed: for

example, the syntactic structure of the utterance must be clarified before a meaningful

question can be asked about the semantic attachment. Every semantic structure is

dependent on a syntactic structure; forming the semantic clarification question makes

use of the syntactic structure, so the question cannot be constructed if the syntactic

structure is still ambiguous.

47



It would be possible, of course, to construct a semantic question based on each

syntactic interpretation, and present them all to the user; this would correspond to

simultaneously disambiguating the syntactic and semantic levels. However, it is hard

to see why this would be desirable: why go to the trouble of generating every possible

semantic question, and put the user to the trouble of reading them all, when it is possi-

ble to ask a syntactic-level question first to eliminate a number of unnecessary semantic

questions, and then only ask the semantic questions which remain? With reference to

an ambiguous interpretation tree such as that shown in Figure 3.1 on page 29, my pro-

posed clarification scheme involves travelling along a single branch of the ambiguous

structure, asking the user for guidance at each branch. Attempting simultaneous se-

mantic and syntactic disambiguation would be more akin to enumerating all the nodes

at the semantic level.

In this chapter I will give a fairly full treatment of syntactic clarification using

rephrasing, with brief discussions of other syntactic techniques and of semantic and

dialogue-act techniques. In Section 5.1 I will briefly review some literature on clarifi-

cation subdialogues. In Section 5.2 I will explain why clarification is important, both

in Te Kaitito and in general. Section 5.3 discusses rephrasing-based syntactic clarifica-

tion in some detail, creating a theoretical framework within which specific clarification

techniques are then described and assessed.

The remaining sections of the chapter are somewhat less extensive. Section 5.4 de-

scribes techniques for syntactic clarification which do not fit directly into the rephrasing-

based model of Section 5.3, although some of them extend it. Finally, Section 5.5

describes semantic clarification.

5.1 Literature on clarification subdialogues

Clarification subdialogues are a well-known and intensely studied phenomenon. They

were first described systematically by ethnomethodologists (see e.g. Sacks, Schegloff,

and Jefferson, 1974). Grosz and Sidner (1986), although they do not explicitly discuss

clarification, do give a general plan-based model for discourse structure which includes

subdialogues and can readily incorporate clarification: in Grosz and Sidner’s system,

clarification subdialogues would be classified as a ‘digression’ or type-3 interruption,

where the authors define an interruption as ‘a discourse segment whose DSP [discourse

segment purpose] is not dominated nor satisfaction-preceded by the DSP of any preced-

ing segment’. Litman and Allen (1984) discuss clarification subdialogues specifically,

48



presenting a hierarchical plan recognition approach to modelling them.

5.2 The importance of clarification

The amount of attention paid to clarification in this chapter may seem a little ex-

cessive, given that the number of candidate parses—at least for Te Kaitito’s current

grammars—is usually fairly low after disambiguation has taken place. But it should

be borne in mind that clarification questions are the last resort of disambiguation: if

clarification fails, the system has no choice but to choose an interpretation at random

(or almost at random: see Section 5.3.2). It is therefore worth investing effort in a fairly

sophisticated clarification system, even if it will only rarely be used.

The clarification process can also serve as an aid to the probabilistic grammar itself:

as described in Section 4.1.2, a dynamic probabilistic grammar trains itself on fully

disambiguated utterances, so when a particular type of ambiguity has been clarified

once or a few times the grammar parameters can adapt sufficiently to disambiguate

it in future without recourse to clarification. The dynamic grammar is also a strong

motivation for clarification to be complete and correct every time: if an incorrect parse

is randomly selected once, the grammar’s parameters are pushed in the direction of

this parse and the probability of a subsequent incorrect disambiguation is increased.

A further reason for careful attention to clarification subdialogues is that many of

the techniques I discuss have broader applications: rephrasing-based clarification can

be used in any interactive system which has a bidirectional grammar and can gener-

ate rephrasings from a candidate semantic structure; the more elaborate clarification

techniques could even be used in the absence of any other syntactic disambiguation

procedure. And, as described in Section 5.4.2, most of the techniques described for

rephrasing-based clarification are also applicable to referent-based clarification.

Clarification techniques developed for users of the system can also be of great utility

during system development; Section 5.3.11 details one such case.

5.3 Syntactic clarification by rephrasing

One common method of resolving syntactic ambiguity is simply to rephrase the am-

biguous utterance into an utterance with the same semantic content but with a different

syntactic structure. For example:

49



(5.1) A: I saw the girl with the telescope.

B: What do you mean?

A: With the telescope, I saw the girl.

It is also common for the confused party to prompt the speaker with alternatives

which resolve the ambiguity under consideration:

(5.2) A: I saw the girl with the telescope.

B: Do you mean that it was with the telescope that you saw the girl,

or that it was the girl with the telescope whom you saw?

A: It was with the telescope that I saw the girl.

Note that it is not necessary for the rephrasing to be unambiguous, or even for it to

be less ambiguous than the original utterance: it must only be unambiguous at those

points where the original utterance was ambiguous.

In this section I will give a fairly detailed and theoretically grounded account of

rephrasing-based syntactic clarification. In Section 5.3.1 I will describe a theoretical

and notational framework for the subsequent sections; Section 5.3.2 discusses the pos-

sibility of clarification failure; Sections 5.3.3 and 5.3.4 derive some general results useful

in finding redundant rephrasings; and Sections 5.3.5, 5.3.6, and 5.3.7 discuss general

implementation techniques.

Section 5.3.8 proposes metrics for the assessment of different clarification strate-

gies—that is, techniques for selecting rephrasings, presenting them to users, and pro-

cessing their responses in some way. Sections 5.3.9–5.3.13 then describe various strate-

gies and discuss their merits.

The results derived and techniques developed for rephrasing-based clarification are

quite general in nature and broadly applicable—to other types of clarification and

even to domains very different from natural language processing; Section 5.3.14 briefly

discusses these possibilities.

5.3.1 Theoretical framework and notational conventions

Let R be the set of all possible utterances, and S be the set of all possible seman-

tic (MRS) structures. (We are using the raw MRS structures before presupposition

resolution has taken place; thus there is a one-to-one correspondence between these

structures and the syntactic structures which we are attempting to disambiguate.) The

relation � (pronounced ‘generates’) may be defined by

50



∀s ∈ S∀r ∈ R : s� r ⇐⇒ r can be generated from s

(or, equivalently, iff r can be interpreted as s). I write �’s inverse as � (pronounced

‘realizes’). I will denote the image of an element e under a relation E by E[e], so

�[s] = {r|s� r}

and

�[r] = {s|r � s}

We can now define the relation �� (‘rephrases’) by

∀r1, r2 ∈ R : r1��r2 ⇐⇒ ∃s ∈ S : s� r1 ∧ s� r2

�� is clearly reflexive and commutative, from the properties of ∧; thus, as one

would expect, an utterance is a (vacuous) rephrasing of itself, and r1 rephrases r2 if

and only if r2 rephrases r1.

Suppose now that the user has presented the system with an ambiguous utterance

u. We then define the set S of interpretations of u by

S = �[u] = {s|u� s} (5.3)

and the set R of u’s rephrasings may be defined in terms of S as

R = {r|∃s ∈ S : s� r} (5.4)

The user wishes the system to interpret their utterance as a specific semantic struc-

ture s∗ ∈ S but cannot directly select this structure; all they can do is to tell the

system, for various r ∈ R, whether s∗ � r. That is, the user can specify s∗’s image

under �.

As an example, consider the sentence

(5.5) The sheep saw the fish in the river.

With a reasonable grammar, this sentence might be expected to have eight possible

parses, corresponding to all possible combinations of three independent features: the

number of sheep; the number of fish; and the high or low attachment of in the river,

corresponding respectively to the seeing occurring in the river or the fish being in the

51



S R

Sheep sg

Fish sg

Attachment low

The sheep has seen

the fish in the river.

Sheep sg

Fish pl

Attachment high

The fish in the river

was seen by the

sheep.

Sheep pl

Fish sg

Attachment high

In the river, the

sheep saw the fish.

Sheep sg

Fish pl

Attachment low

The sheep saw the

fishes in the river.

Figure 5.1: A relation between semantic structures and rephrasings.

The parses and rephrasings are subsets of those which might be gen-

erated from Example 5.3.1.

river. Figure 5.1 illustrates the relation �, relating four of these parses to rephrasings

which could be generated from them.

Unfortunately, there is no guarantee that information about rephrasings in R will

be sufficient to fully specify s∗—it is possible that a different semantic structure has

exactly the same image. So without recourse to more direct information about the set

S, even an ‘ideal’ clarification process (making full use of all the information it can

extract from the user) can only produce a set of possible structures

S ′ = {s|s ∈ S ∧ (∀r ∈ R : s� r ⇐⇒ s∗ � r)}

—that is, all the semantic structures which generate exactly the same set of rephrasings

as s∗. In practice, a clarification strategy may not make full use of all the information

available from the user (either because it does not ask for all the information, or

because it processes the supplied information wastefully), producing a larger set of

52



possible parses.

The process of rephrasing-based syntactic clarification consists of asking the

user, for various r ∈ R, whether s∗ � r, or, equivalently, whether s∗ ∈ �[r]. Let

R∗ ⊆ R be the set of utterances we are asking the user about. We can view the user’s

clarification as supplying us with a binary-valued ‘oracle’ function telling us whether

or not a given rephrasing realizes s∗. I will call this function f ; it can be defined by

f(r) =

{
1 : s∗ � r

0 : otherwise
(5.6)

We can then use f to derive the sets R∗ ∩�[s∗] and R∗ −�[s∗] of valid and invalid

rephrasings respectively, and hence define two sets S+(R∗) and S−(R∗) consisting of

subsets of S:

S+(R∗) = {�[r]|r ∈ (R∗ ∩�[s∗])} (5.7)

S−(R∗) = {�[r]|r ∈ (R∗ −�[s∗])} (5.8)

S+(R∗) contains sets which we know to contain s∗; S−(R∗) contains sets which we

know not to contain s∗. Thus we can construct a ‘minimal’ set Smin(R∗) known to

contain s∗ by

Smin(R∗) =
⋂

S+(R∗)−
⋃

S−(R∗) (5.9)

This is is minimal in the sense that, for a given R∗, no smaller set can be constructed

which is guaranteed to contain s∗. In practice, different clarification techniques may

produce a larger set due to incomplete use of the user-supplied data. I will denote this

set (for some given R∗ and clarification strategy) by Sc. Thus we have:

{s∗} ⊆ Smin(R) ⊆ Smin(R∗) ⊆ Sc ⊆ S (5.10)

For complete clarification, we would like to ensure:

{s∗} = Smin(R) = Smin(R∗) = Sc (5.11)

In Sections 5.3.5–5.3.13, I will discuss techniques for attempting to ensure each of

these equalities. First, however, I will describe the consequences of incomplete clarifica-

tion (Section 5.3.2) and two ways to reduce the number of rephrasings being considered

(Sections 5.3.3 and 5.3.4).

53



5.3.2 Clarification failure

Since, in Te Kaitito, clarification is used as a strategy of last resort, it is extremely

undesirable for a clarification strategy to produce an Smin(R∗) containing more than

one semantic structure. At this point there is little more that can be done: the system

must simply choose a parse at random. The best it can do is to warn the user that they

may have been misconstrued by generating a message such as ‘I think I understand

what you mean. . . ’.

In fact, the choice need not always be entirely random: if there is any variation

between the scores assigned to the remaining parses by the probabilistic grammar, the

system can still choose the most probable—even though the probability was not high

enough to pass the syntactic filter module’s threshold for automatic disambiguation.

Note, however, that if the clarification stage has been reached, this is precisely because

the variation in calculated parse probabilities has been deemed too low for reliable

disambiguation, so even this method of choice can be regarded as effectively random.

5.3.3 Equivalent rephrasings

This section, and the next, will investigate two ways to reduce the size of the set R

without reducing the precision of clarification, regardless of the particular clarification

strategy being used.

It is possible that some rephrasing r1 embodies exactly the same information as

another rephrasing r2; that is, �[r1] = �[r2]. In this case, the two rephrasings can be

termed equivalent, which I will write as r1Er2. E is clearly an equivalence relation,

since = is an equivalence. So we can use E to produce a partition R/E on the set R.

This is useful: if we ask the user about the validity of some particular rephrasing, there

is no need to ask about the validity of any equivalent rephrasing. Let g be a choice

function on R/E—that is, any function such that g([r]E) ∈ [r]E ∀[r]E ∈ R/E. Then

we can define a subset R− of R by

R− = {g([r]E) | [r]E ∈ R/E}

R− contains only a single rephrasing representing each equivalence class of rephras-

ings in R—that is, |[r]E| = 1 ∀r ∈ R−. It can be seen from Equations 5.7 and 5.8 that

S+(R∗) = S+(R∗ ∩R−) and S−(R∗) = S−(R∗ ∩R−), and thus by equation 5.9,

Smin(R∗) = Smin(R∗ ∩R−)

54



That is to say, whatever choice we make for R∗, the amount of information which

can be deduced from the user’s responses is not reduced at all by removing equivalent

rephrasings from R∗.

Thus, provided we can construct a suitable g, we can perform this operation in

advance by choosing R∗ from the members of R− rather than R itself. Since it does not

affect the amount of information available, this optimization can be performed before

any of the clarification strategies described below, simplifying their implementation.

The problem remains of how to define g—that is, how to choose a single rephrasing

from each group for presentation to the user. In vague terms, we would like a set of

rephrasings which are as identical as possible in parts corresponding to identical parse

structures, and as different as possible in the parts corresponding to differences in

parse structures. However, I can see no straightforward way of accomplishing this: the

correspondence between a part of a derivation tree and a part of an input string is

complicated. A more tractable measure might be similarity to the original utterance:

by choosing a rephrasing as much as possible like the input sentence, we might hope

to make the features which do differ stand out more. This similarity metric could be

calculated at the level of syntactic structures, by comparing total counts for different

rules used in the derivation tree, or it could be done at the level of character strings,

using the Minimum Edit Distance of Wagner and Fischer (1974) or something similar.

Another desirable criterion might be the ‘naturalness’ of the rephrasing in the user’s

estimation: out of the competing rephrasings, we should choose the one which seems

the most natural. Fortunately, the probabilistic grammar discussed in Section 4.1 is

ideal for this purpose: we can use it to score the syntactic structures corresponding to

the candidate rephrases, and pick the highest score. The effectiveness of this technique

might be limited: in rephrasing-based clarification, many of the rephrasings generated

have unusual forms which would seldom be seen outside a clarification subdialogue.

However, probabilistic parse ranking might at least be expected to weed out the most

horribly convoluted rephrasings from the equivalence classes. Section 7.5.4 will give

some results from the use of this technique.

5.3.4 Converse rephrasings

As well as classes of equivalent rephrasings, R may contain pairs of converse rephras-

ings. Two rephrasings r1 and r2 are converse iff �[r1]∩�[r2] = ∅ and �[r1]∪�[r2] = S.

That is, r2 can be interpreted as any syntactic structure in S which is not a possible

interpretation of r1. As in the case of equivalent rephrasings, r1 and r2 embody exactly

55



the same information: if the user tells us that s∗ ∈ �[r1] we can infer that s∗ /∈ �[r2],

and vice versa.

We can use this property, like the property of equivalence considered in the previous

section, to reduce the size of R∗. Suppose that r1 and r2 in R∗ are converse rephrasings.

We can reduce R∗ to a set R′ = R∗−{r2}. To show that this set still provides the same

information, suppose first that s∗ ∈ �[r1]. Then

Smin(R′) =
⋂

S+(R∗)−
⋃

S−(R′) (since � [r2] /∈ S+) (5.12)

=
⋂

S+(R∗) ∩�[r1]−
⋃

S−(R′) (since � [r1] ∈ S+) (5.13)

=
⋂

S+(R∗) ∩ (S −�[r2])−
⋃

S−(R′) (5.14)

= (
⋂

S+(R∗) ∩ S)− (�[r2] ∪
⋃

S−(R′)) (5.15)

=
⋂

S+(R∗)−
⋃

S−(R∗) (5.16)

= Smin(R∗) (5.17)

If s∗ /∈ �[r1] then s∗ ∈ �[r2]. In that case,

Smin(R′) =
⋂

S+(R′)−
⋃

S−(R∗) (since � [r2] /∈ S−) (5.18)

=
⋂

S+(R′)− (�[r1] ∪
⋃

S−(R∗)) (since � [r1] ∈ S−) (5.19)

=
⋂

S+(R′)− ((S −�[r2]) ∪
⋃

S−(R∗)) (5.20)

= (
⋂

S+(R′)− (S −�[r2]))−
⋃

S−(R∗) (5.21)

= (
⋂

S+(R′)− (
⋂

S+(R′)−�[r2]))−
⋃

S−(R∗) (5.22)

(since
⋂

S+(R′) ⊆ S)

= (
⋂

S+(R′) ∩�[r2]−
⋃

S−(R∗) (5.23)

=
⋂

S+(R∗)−
⋃

S−(R∗) (5.24)

= Smin(R∗) (5.25)

Thus, removing one of a pair of converse rephrasings does not affect the maximum

clarification accuracy; and by repeatedly doing this we can form a set with no converse

rephrasing-pairs without reducing maximum accuracy. Once more, the probabilistic

grammar could be used to select the more natural of two converse rephrasings (or, if

R has not been pruned for equivalent rephrasings, to select a single rephrasing from

[r1]E ∪ [r2]E).

It is not, however, clear that removing converse rephrasings is always a desirable

optimization. If the clarification strategy involves asking the user yes/no questions

56



about single sentences, it can be more natural to present both alternatives explicitly—

for example,

(5.26) User The fruit flies like a banana

System What do you mean?

1. The fruit does fly like a banana

2. The fruit flies do like a banana

rather than

(5.27) User The fruit flies like a banana

System Do you mean ‘the fruit does fly like a banana’?

It is probably preferable always to be able to select a rephrasing which realizes

one’s intended parse, than to have to implicitly select it as the converse of another

rephrasing. This arrangement produces more confidence that the system really has

understood what the user meant—the implicit choice carries the same information

from the system’s point of view, but the exact form of the non-displayed converse

rephrasing may not be clear to the user. It may, of course, be necessary to fall back on

a yes/no question in any case if no converse exists in the original R.

Removal of converse rephrasings is not always useless, however: for example, it can

be used to reduce the search space of an algorithm running on the set of rephrasings,

and the converses reinstated afterwards for convenience. Section 5.3.12 describes one

such case.

5.3.5 Producing a set of all possible rephrasings

Most of the rest of this chapter will be concerned with strategies for implementing

rephrasing-based clarification in ways which will bring the result as close as possible

to the optimal clarification process represented by Equation 5.11. In this section I will

briefly describe the easiest parts of the process: creating the complete rephrasing-set

R, and producing Sc (the fully clarified set of syntactic structures) from the set R∗

and the user’s assessments as to which of its members constitute valid rephrasings.

Implementing these parts of the clarification process mostly consists of turning the

definitions of Section 5.3.1 into algorithms.

Definitions 5.3 and 5.4 are easy to implement: Definition 5.3 is already implicitly

implemented during the process of parsing and initial semantic interpretation to MRS.

The implementation of Definition 5.4 is eased by the fact that LKB system and both

57



Te Kaitito’s grammars are bidirectional: we simply take each semantic representation

s in S and use LKB’s generation module to generate every possible rephrasing for it.

We can now produce a representation of R by combining the images of S’s members

and removing duplicates.

5.3.6 Inferring structures from clarified rephrasings

I will now jump to the other end of the clarification process—that of inferring a minimal

set Sc of syntactic structures from the results of the consultation with the user. So let us

assume for the moment that R∗ has been chosen in some way and the user has supplied

their responses. We can then implement Equations 5.7 and 5.8: we know �[r] for every

rephrasing r, since these are the semantic structures from which they were generated

in the first place. We also have a definition for the ‘oracle’ function f from the user’s

responses, which we can use to generate R∗ ∩ �[s∗] and R∗ − �[s∗] (corresponding

to those rephrasings in R∗ which the user has deemed valid and invalid respectively).

Using our values for S+(R∗) and S−(R∗) we can then implement Definition 5.9 using

straightforward set operations.

I will now turn to the more difficult issues involved in attempting to ensure the

other equalities of Equation 5.11.

5.3.7 Increasing the likelihood of unambiguous rephrasing-

sets

This section deals with attempting to ensure that {s∗} = Smin(R). As previously

mentioned in Section 5.3.2, |Smin(R)| > 1 is a circumstance which we wish to avoid if

at all possible. For a grammar of realistic size, it is probably impractical to attempt

a formal proof that this will never occur; however, we can take steps to reduce its

probability.

Firstly, when using the Māori-English grammar, the system can rephrase into a

different language. Constructions which are ambiguous in one language are often un-

ambiguous in another, as will be attested by anyone who has ever attempted to translate

a pun. This is especially true in language pairs as different as English and Māori. Thus

we can engage in clarifications such as this:

58



(5.28) User Kia ora, e hoa mā.

System What do you mean?

1. Hello friends

2. Hello, O white friend

Secondly, we can augment the grammar and lexicon with unambiguous items in-

tended only for use during clarification; for example, we could add an item correspond-

ing to the second person singular pronoun, with orthography you (by yourself). This

does introduce the danger that these items might be used when generating sentences in

other contexts; we do not really want the system to use the form you (by yourself) ex-

cept during clarification. However, the probabilistic grammar described in Section 4.1

provides a straightforward solution to this: we can use the grammar’s parse ranking to

rank candidate response sentences generated by the system in exactly the same way

as it ranks parses of the user’s input. Provided that the ‘special’ lexical items occur

rarely or not at all in the treebank used for training, generated sentences using these

forms will always be assigned lower probabilities. Of course, any general treebank will

naturally have very low incidences of such unusual forms; the only caveat is that we

must be careful if training the grammar on transcripts of previous dialogues held with

Te Kaitito.

There is another way to increase the number of different rephrasings produced:

syntactic rephrasings can be augmented with semantic information. I will describe this

technique in Section 5.4.1.

5.3.8 Assessing clarification strategies

We can now discuss various clarification strategies. I use the term ‘strategy’ to refer

to the process of selecting R∗, presenting the rephrasings to the user in some way,

gathering the user’s responses, and turning them into the binary-valued function f on

R∗ defined by Equation 5.6. f and R∗ can then be used to generate Smin as described

in Section 5.3.6.

I will now define two evaluation metrics for use in assessing the usefulness of a

clarification strategy.

Precision can be defined as |Smin(R)|/|Sc|, the minimum possible number of candi-

date parses remaining after any clarification strategy, divided by the actual num-

ber remaining. Its minimum value for a given S and R is thus |Smin(R)|/|S| 6
1 (corresponding to not a single parse being eliminated) and its maximum is

59



|Smin(R)|/|Smin(R)| = 1 (all parses which could possibly be determined invalid

using this R are eliminated). (This definition is specific to a rephrasing-based clar-

ification strategy, where Smin(R) is a lower bound on the number of remaining

parses; a more generally useful definition might be 1/|Sc|.)

Convenience is maximized by minimizing the amount of effort which the user has to

expend; it might be defined in terms of (1) the number of rephrasings which the

user must read and (2) the number of bits of information which the user must

supply to the system. Under the scheme being considered here, the first quantity

is an upper bound on the second—the greatest amount of information which can

be requested is one bit (‘Is this rephrasing valid?’) per displayed rephrasing—but

it is possible for the second quantity to be far lower, as will be seen below.

There is also a clear lower bound on the information required from the user if full

clarification is to be achieved: since, whatever interaction the system has with

the user, it must eventually select a single member of S, at least log2 |S| bits
will be required to specify this member uniquely. If less information than this is

collected from the user, the choice must, in part, be arbitrary.

It is difficult to formalize the exact way in which quantities (1) and (2) should

be combined to achieve a well-defined numerical measure of convenience, and I

will leave this part of the definition vague for the present.

Precision is the more important quantity: making life more convenient for the user

is no good if it results in an incorrect interpretation being made—this, after all, is likely

to make life less convenient for the user in the long run.

Note that precision and convenience have been defined in terms not only of a par-

ticular S and R, but of a particular s∗. It is thus inaccurate to speak of the precision

and convenience of a given clarification process where s∗ is not known, let alone of a

strategy in general. Nevertheless, I will extend the terms in various ways in the fol-

lowing sections. In some cases (such as exhaustive clarification, below) the strategy

is sufficiently fixed that the terms may be rigorously extended to mean ‘the precision

and convenience of any clarification process under this strategy, regardless of R, S

and s∗.’ In others, such as single-rephrase clarification (Section 5.3.11) and interactive

binary clarification (Section 5.3.13), I will make non-rigorous judgements based on an

assumption that the probability of any interpretation is about equal.

60



5.3.9 Exhaustive clarification

Probably the most straightforward clarification strategy might be termed exhaustive

clarification. We simply choose R∗ = R and determine the image of s∗ by explicitly

asking the user, for every r in R, whether r realizes s∗. The user receives a string

of questions of the form ‘Did you mean. . . ? (yes / no)’ (or in a GUI they might be

presented with a check-box to mark for each rephrasing). This is clearly guaranteed to

maximize precision: the user is interrogated for every available nugget of information,

so the lower bound Smin(R) is achieved. For exactly the same reason, it is guaranteed to

minimize convenience: the user is forced to read every member of R, and must supply

the theoretical maximum of |R| bits of information.

Exhaustive clarification does have the advantage of being very straightforward in

implementation: the choice of R∗ is trivial since R∗ always equals R; the presentation of

choices and collection of information always happen in the same manner; and the defi-

nition of f is trivial since the user has been forced, in effect, to define it explicitly. And

if equivalent and converse rephrasings are first removed as described in Sections 5.3.3

and 5.3.4, the user can be spared from some entirely redundant questions.

Even without equivalent or converse rephrasings, exhaustive clarification is likely

to query the user for redundant information. This creates a danger that the user,

accidentally or maliciously, will supply conflicting information; the clarification process

could find that Sc = ∅. Various techniques could be used to deal with this: the user

could be put through the ordeal again, or an interpretation chosen at random. Since

I am introducing exhaustive clarification chiefly as a theoretical limit rather than a

practical proposal, I will not pursue these possibilities any further.

5.3.10 Vacuous clarification

It seems appropriate, after a discussion of exhaustive clarification, briefly to mention

the opposite extreme.Vacuous clarificationmaximizes convenience while minimizing

precision: it is, in fact, no clarification at all, and is thus not specific to rephrasing-based

clarification. Vacuous clarification consists of choosing R∗ = ∅ so that Smin(R∗) = S,

after which a parse must be chosen at random, as happens when any clarification

method fails to produce a single remaining candidate parse.

61



5.3.11 Clarification with a single rephrasing

I will now describe a strategy which gives high convenience in many cases, at the cost

of precision in some cases. Single-rephrase clarification tries to find, for each s in

S, a rephrasing r such that �[r] = {s}—that is, r does not realize any other semantic

structure in S. Such a rephrasing is thus unambiguous in itself: if it is known that one

such rephrasing is valid, s∗ can be deduced from this fact alone. If such an r can be

determined for each member of S, a fairly convenient strategy becomes viable: the user

is presented with a list of unique rephrasings, one for each member of S, and simply

chooses the one corresponding to s∗.

When this strategy works, it achieves the lower bound for information demanded

of the user: log2 |S| bits. In effect, the mutually exclusive nature of the rephrasings

on the menu allows the system to infer a great deal more information than the user

supplies directly: the validity of one rephrasing implies the invalidity of all the others.

Exhaustive clarification on the same set of rephrasings would explicitly request another

|R∗| − 1 bits of information.

If there is a large number of parses (more than around ten, say) it may be incon-

venient for the user to read them all; however, when clarification is only used as a

last-resort disambiguation technique (as in Te Kaitito) this should seldom occur: the

disambiguation process should have removed most of the possibilities.

This strategy’s performance with respect to precision is more worrying: there is no

guarantee that a unique rephrasing will exist for every member of S. In this case, all

the structures which do not have an unambiguous rephrasing must be grouped together

under one menu item, producing a menu along the lines of

(5.29) User The dog chased the cat under the table.

System What do you mean?

1. Under the table, the dog chased the cat.

2. The dog chased the cat which was under the table.

3. Something else.

If there is only one parse without an unambiguous rephrasing, the problem is not

too great: the user must read through all the rephrasings, realize that none of them

express the intended sense, and select the ‘something else’ item in the hope that the

system’s inexpressible parse corresponds to their intent.

If there is more than one parse without an unambiguous rephrasing, the situation is

worse: the user selects ‘something else’ and the system must choose at random between

62



the semantic structures which this item represents.

Single-rephrasing clarification as a system development tool

The user is not the only beneficiary of a rephrasing which maps onto a unique semantic

structure: it is also useful during development of disambiguation and clarification code

to be able to map a semantic structure unambiguously onto a rephrasing. A rephrasing

is far easier for a developer to read than a symbolic representation of a structure, and

can be used to keep track of which structures are kept and removed during different

stages of the disambiguation and clarification process.

5.3.12 Brute force optimal clarification

A clarification strategy might be considered optimal if it attained maximal precision

using as few rephrasings as possible. There is still scope for variation in the way in

which the rephrasings are presented and the responses processed, but the core problem

is one of optimization over a search space consisting of P(R), the set of all possible

subsets of R.

The simplest algorithm is, as ever, brute force: consider every possible subset of R

and choose the smallest one which gives precision equal to choosing R itself (as with

the elimination of equivalent rephrasings, the probabilistic grammar could be used to

choose between optimally precise rephrasing-sets of equal size). Such an algorithm is

hardly innovative or elegant, but for small sets of rephrasings it might well be practi-

cal. The size of P(R) is 2|R|. Thus, for example, only 256 subsets need be considered

when |R| = 8. There are easy optimizations to be made, too. Equivalent and converse

rephrasings can be removed in advance, and the converses replaced after an optimal

subset has been found. And if some particular subset of R gives suboptimal precision,

all its subsets can be excluded from the search.

Unfortunately, brute force optimal clarification is rendered useless by a simple fact:

for any R∗, calculating |Smin(R∗)| requires knowledge of f—that is, we must know, for

each r ∈ R∗, whether the user considers r a valid parse. In particular, we must have

defined f on R in order to calculate |Smin(R)|. So, to guarantee a maximally convenient

clarification process, we must already have put the user through a minimally convenient

clarification—at which point we may as well use exhaustive clarification (Section 5.3.9)

since we have all the data to hand.

However, all is not lost. We can make some assumptions about the distribution of

63



correct rephrasings and, crucially, make the calculation of R∗ incremental and interac-

tive. The next section describes such a strategy.

5.3.13 Clarification by interactive binary choice

Introduction

I will now discuss a strategy which guarantees to produce an R∗ such that Smin(R∗) =

Smin(R), although it is not clear that the size of R∗ will always be minimal.

Attempting to construct a clarification strategy based on the derivations in Sec-

tion 5.3.1 runs up against the problem described in the previous section: although the

definition of Smin in Equation 5.9 is easy to implement, it requires knowledge of f ; that

is, for any potential choice of R∗ which we wish to assess, we must ask the user about

each rephrasing in R∗. This makes it difficult to find a minimal ‘complete’ R∗—that is,

R∗ such that Smin(R∗) = Smin(R) and |R∗| < |R′| ∀R′ : R′ ⊆ R ∧ Smin(R′) = Smin(R).

The problem is one of the ‘chicken and egg’ type: we wish to search through the space

of all R∗ in order to minimize the number of questions posed to the user, but in order

to do so we must first ask every possible question in order to define the search space.

This strategy, which I will refer to as interactive binary clarification, attempts

to get around the problem by defining R∗ iteratively: at each stage, the user is asked

for another data point on f , the size of R∗ is reduced, and all the information supplied

up to this point is used to determine the next question to pose to the user. At each

stage, the strategy attempts to reduce the size of R∗ as much as possible.

Clarification as binary space partitioning

This strategy, like the previously described exhaustive rephrasing, presents a series

of yes-no questions to the user; in this case, however, the system throws away some

parses after each answer. Provided we can find suitable clarification questions, this can

give a dramatic improvement over single-rephrase clarification in the first measure of

convenience (the amount of information presented to the user): rather than forcing the

user to read through n rephrasings to find the one which exactly reflects their intended

meaning, we can (in the best case) get away with showing them only log2 n rephrasings.

The question then becomes how to maximize convenience within this framework

of binary choice: we certainly don’t want to ask about every possible rephrasing, and

ideally we want to minimize the number of questions posed to the user. In effect,

the system needs to display the qualities of a good questioner in a game of ‘twenty

64



questions’.

It may be useful to regard the parses as points in a many-dimensional rephrasing-

space. Representing each rephrasing as a vector starting at the origin, we can locate a

parse uniquely by defining its position along each of these vectors to be 1 (signifying

that the rephrasing can be formed from that parse) or 0 (signifying that it can’t).

Note that the rephrasing-vectors need not be linearly independent: it is possible that

some rephrasing conveys information which can be deduced from a combination of

other rephrasings. If the rephrasings are linearly independent, the dimensionality of

the space will be R; otherwise, it will be smaller.

It might also be possible in some cases to find larger sets of rephrasings which

completely partition the set of interpretations, allowing binary questions to be replaced

with ternary or higher-order ones. In this case the three (or more) rephrasings would

be grouped into a single axis with three (or more) points along it, corresponding to the

disjoint subsets of S they are able to distinguish. The logical conclusion of this is the

single-rephrase technique described in Section 5.3.11, which corresponds to forming—if

possible—a single axis with |S| distinct points on it; choosing any one of these points

then disambiguates the utterance fully. For the present, I will ignore these extensions

and confine myself to the case of binary questions and binary-valued co-ordinates.

If two parses occupy the same point in this space, there is nothing we can do:

none of the rephrasings can distinguish between them (though we can still hope that

the user meant neither of them). But distinguishing parses through a series of yes-

no questions can now be seen as a problem in efficient binary space partitioning. We

wish to construct a sequence of planes in this vector space—each one normal to one

of the rephrasing-vectors and cutting it between the points 0 and 1 along it—until we

have partitioned off a single point corresponding to the correct parse. And we wish to

minimize the number of planes used to do this; this is equivalent to minimizing the

number of questions we ask the user.

Similar problems occur in the construction of rendering engines for three-dimen-

sional scenes in the field of computer graphics, where efficient rendering algorithms can

be implemented by using a sequence of planes to successively split the space under

consideration into smaller and smaller divisions; Fuchs, Kedem, and Naylor (1979)

developed the Binary Space Partitioning algorithm for this purpose. Unfortunately,

the problem is sufficiently different that computational geometry algorithms cannot

be directly applied here: amongst other difficulties, they tend to be designed for three

dimensions only, and are not restricted to planes normal to the axis.

65



Parse

sheep number sg sg sg sg pl pl pl pl

fish number sg sg pl pl sg sg pl pl

attachment high low high low high low high low

Rephrase

In the river, the
sheep saw the fish.

The sheep saw the
fishes in the river.

The sheep has seen
the fish in the river.

Table 5.1: A full parse-rephrasing table for ‘The sheep saw the fish in

the river’.

I propose the following algorithm: choose a plane which produces the most even

split of points (parses) within the space. Pose the question corresponding to this plane,

then discard all the points on the non-desired side of it. Continue, choosing planes

in the same manner, until you have only a single parse remaining, or you run out of

planes.

Precision and convenience

It is easy to see that this clarification strategy is maximally precise: the termination

condition for the iteration is that the dimensionality has been reduced to zero—that is,

there are no more rephrasings which can differentiate the semantic structures within

rephrasing-space. If there is more than one structure left, there is no way to pick the

right one using members of R.

It is somewhat harder to prove that the strategy is maximally convenient—and

indeed, I am not entirely sure that it is. I will not attempt a proof here, but a promis-

ing approach would seem to be from information and coding theory: a sequence of

rephrasing judgements clarifying an interpretation could be regarded as a binary code.

Assuming an even distribution of interpretations, a proof could be attempted that the

code constructed by this scheme has minimal length.

Example

Consider Example 5.3.1 (‘The sheep saw the fish in the river.’), and suppose that it

has resulted in the eight parses described on page 51. Suppose also that the following

three rephrasings have been generated:

66



6In the river, the sheep saw the fish.

=
The sheep saw the fishes in the river.

~
The sheep has seen the fish in the river.

sg:pl:hi

sg:sg:hi

pl:sg:hi

pl:pl:hi

pl:pl:lo

sg:pl:lo

sg:sg:lo

pl:sg:lo

Key

number of sheep

attachment of
in the river

number of fish

Figure 5.2: Parses as points in rephrasing-space.

• In the river, the sheep saw the fish.

• The sheep saw the fishes in the river.

• The sheep has seen the fish in the river.

This is an unrealistic set of rephrasings: it is very small, and the rephrasings are

orthogonal—that is, they each clarify exactly one ambiguous feature of the original

sentence. However, they make a useful example.

The relation between parses and rephrasings is shown in Table 5.1. Here, rows

represent rephrasings, columns represent parses, and a cell is marked when the parse

corresponding to its column can be realized by the rephrasing corresponding to its

row. It is clear from the diagram that the parse can be fully clarified using only these

three rephrasings: each clarifies a different ambiguous feature, so in combination they

uniquely specify a parse.

The relationship is somewhat clearer when the parses are envisaged as points in

rephrasing-space. Figure 5.2 shows this arrangement. Each axis has two possible co-

ordinates, corresponding to the user’s assessment of the associated rephrasing as invalid

(the origin) or valid.

67



5.3.14 Generalization of rephrasing-based clarification

The above sections are couched in terms of ‘semantic structures’ and ‘rephrasings’, but

in fact they deal with quite a general case: we have a set S containing a member s∗

which we wish to determine, a binary relation � between S and another set R, and a

function f on R defined by

f(r) =

{
1 : s∗ � r

0 : otherwise

which in our case is implemented by the user’s responses. In any such situation,

the same bounds and relations hold, and the same clarification can be applied. (The

development of the clarification techniques does, however, assume that there is a cost

associated with calling f and attempts to minimize this cost.)

This kind of deduction—attempting to uniquely determine a member of a set by

probing its image under some relation—is often found in the field of expert systems.

Rephrasing-based disambiguation is a far more definite and constrained problem than

those addressed by real expert systems, but there are nevertheless strong parallels—for

example, in the case of the medical diagnosis system INTERNIST (Miller, Pople, and

Myers, 1982). Alty and Coombs (1984), in their account of INTERNIST, give a dia-

gram of a relation between diseases and manifestations which bears a strong similarity

to Figure 5.1; and Jackson (1990) gives the following description of an INTERNIST

consultation:

At the start of a session, the user enters a list of manifestations. Each of

these evokes one or more nodes in the disease tree. The program creates a

disease model for each such node, consisting of four lists:

(1) observed manifestations not associated with the disease;

(2) observed manifestations consistent with the disease;

(3) manifestations not yet observed but which are always associated with

the disease;

(4) manifestations not yet observed but which are consistent with the

disease.

Replacing the words ‘observed’, ‘manifestations’, and ‘disease’ with ‘queried’, ‘rephras-

ings’, and ‘parse’ respectively, the first three items in the list become, for some s ∈ S,

68



descriptions of the sets R∗ −�[s], R∗ ∩�[s], and �[s]− R∗ respectively. (There is no

analogue to the fourth item, since we have no concept of rephrasings ‘consistent’ but not

‘associated’ with a parse: they are either definitely associated or entirely inconsistent.)

5.4 Other syntactic clarification techniques

5.4.1 Augmented rephrasings

Adding semantic information to syntactic rephrasings

One possible extension of the rephrasing scheme would be to incorporate ‘parentheti-

cal’ information from the dialogue context into the rephrasings, helping to make them

clearer. Rather than simply generating strings from the semantic representation of the

original input sentence, the system could use the resolved semantic interpretations and

attempt to add extra information from the context. The ‘lookahead’ approach to disam-

biguation means that the initial interpretation pipeline forms complete representations

for all possible interpretations, so we can make use of any semantic-level information

about the binding of the referents that has already been generated. This would result in

questions which, although still attempting disambiguation at a purely syntactic level,

would include semantic information. So instead of pure equivalent rephrasings of the

input, such as this:

(5.30) User The fruit flies like a banana

System What do you mean?

1. The fruit does fly like a banana

2. The fruit flies do like a banana

users might be presented with something more akin to the following example.

(5.31) User I put some fresh fruit in the bowl

System okay

User Andy showed me some mutant fruit flies in the genetics lab

System okay

User The fruit flies like a banana

System What do you mean?

1. The (fresh) fruit (in the bowl) does fly like a banana

2. The (mutant) fruit flies (in the genetics lab) do like a banana

69



In fact, even adding the parenthetical information to the original, ambiguous ut-

terance can result in an unambiguous utterance:

(5.32) . . .

User The fruit flies like a banana

System What do you mean?

1. The (fresh) fruit (in the bowl) flies like a banana

2. The (mutant) fruit flies (in the genetics lab) like a banana

Of course, this technique can only be of use when the ambiguous utterance refers

to entities already in the dialogue context; where it introduces new referents, no par-

enthetical information can be added. It is also unusable where there is also unresolved

ambiguity at the semantic level: if the fruit has more than one possible binding, the

system won’t know whether to augment the rephrasing as, say, ‘the (fresh) fruit’ or

‘the (mouldy) fruit’. Of course, the system could present all the possible augmentations

and attempt to clarify the syntactic and semantic levels simultaneously, but, for the

reasons given at the start of this chapter, I have chosen not to make use of this kind

of multi-level technique.

Augmented rephrasings of this kind have two benefits: firstly, they make it easier for

the user to see the indicated interpretation by differentiating it further from the other

alternatives, and by tying it explicitly to entities in the dialogue context. Secondly, they

increase the probability of finding enough distinct rephrasings to clarify an utterance

fully (as discussed in Section 5.3.7): as Example 5.32 shows, identical rephrasings can

be made thoroughly distinguishable by interpolating semantic-level information.

Making accommodation explicit

As described in Section 2.1.2, Te Kaitito accommodates definite NPs if they cannot be

resolved: if the user says ‘the dog walked’ when no dog has previously been mentioned,

Te Kaitito will assume its existence. During rephrasing-based clarification, the rephras-

ings could be augmented to make this kind of accommodation explicit. For instance,

suppose in the following example that fruit has previously been mentioned, but fruit

flies haven’t.

(5.33) User The fruit flies like a banana

System What do you mean?

1. The (fresh) fruit (in the bowl) flies like a banana

2. There are some fruit flies, and these fruit flies like a banana

70



This is particularly useful in cases where the system finds an interpretation which

the user would probably never have imagined—for example, the NP-verb-NP reading of

the sentence ‘The individual costs matter.’ Making any accommodation explicit (‘There

is an individual, and this individual costs matter.’) helps the user—in part simply by

isolating the supposed noun phrase—to see the indicated reading.

5.4.2 Referent-based syntactic clarification

Rephrasing is by no means the only way to resolve syntactic ambiguity. Consider this

example:

(5.34) A: The fruit flies like a banana.

B: Are you talking about fruit or about fruit flies?

A: Fruit flies.

This is in some ways more elegant and natural than clarification by a full rephrasing:

only one feature of the sentence is clarified, and the rest of the structure is then inferred

by B.

In some cases, this could be quite easy to implement in a computer dialogue system:

in the case above, the system could go through the two semantic structures seeking a

nominal unique to each structure, then slot them into a canned ‘Are you talking about

<n1> or <n2>’ question, and choose the parse containing whichever nominal the user

selected.

This technique is more versatile than it might at first appear. At its root it consists

of calculating the difference between the sets of relations corresponding to each of two

candidate parses. Once these discriminant relations have been found, they must be

slotted into a clarification question. Although the process seems most natural with

nouns, it can also be applied to any part of speech or linguistic phenomenon which can

be nominalized; for example verbs (‘Are you talking about flying or liking?’) and even

attachment ambiguity (‘Are you talking about seeing with a telescope or a girl with a

telescope?’).

Minimal Recursion Semantics, the formalism used for semantic representation in

Te Kaitito, is ideally suited to this application: as the name implies, the semantic

representation of a sentence is embodied as a flat, non-recursive structure—a bag of

relations. Thus, performing set-theoretic operations on the relations contained in dif-

ferent interpretations should pose few problems.

71



Where there are more than two candidate interpretations, all the techniques dis-

cussed for rephrasing-based clarification (discussed in Section 5.3) can be brought to

bear. The situation is entirely isomorphic—the only difference being that the members

of the set R are not rephrasings but relations. However, the method for presenting

the members of R to the user is less well-defined, and it may be that even if there is

some subset of R which can uniquely identify an interpretation, its members cannot

be worked into a comprehensible question that can be put to the user.

This type of clarification will not be further explored in this thesis, but it is certainly

worthy of consideration.

5.4.3 Hybrid clarification

There is no reason (other than ease of implementation) why the system should be

restricted to using only one of the syntactic clarification techniques described above.

A technique can be selected as being most appropriate to a particular clarification

instance—for example, referent-based clarification where the ambiguity can be resolved

through disambiguation of a single nominal. Techniques could also be combined dynam-

ically: single-rephrase clarification could be used in the first instance, falling back to a

more reliable technique if the user selects the ambiguous ‘other’ option. Or dynamic

binary tree clarification could be used to pare large sets of parses down to a man-

ageable number, at which point single-rephrase could be employed (when sufficient

unambiguous rephrasings exist).

5.5 Semantic clarification

Once a unique syntactic representation has been selected, it is still possible that there

will be more than one interpretation at the semantic level. At this point, semantic

clarification must be used. This thesis does not involve any work on semantic-level

clarification, but I will briefly describe the current implementation.

In Te Kaitito, the only semantic semantic ambiguity arises in the binding of definite

NPs—for example, ‘it’ or ‘the dog’ could refer to different entities in the dialogue’s

common ground. In this case, the system extracts the ambiguous NP from the user’s

utterance, and rearranges the remainder into a wh-question:1

1For the purposes of this example, I ignore the fact that the referents could in this case be disam-

biguated by the saliency filter module (Section 4.2.3).

72



(5.35) User A big dog chased a small cat

System okay

User A small dog chased a big cat

System okay

User The cat bit the dog

System Which cat bit the dog?

User The small cat

System Which dog did the cat bite?

user The big dog

Note that the system iterates over the ambiguous referring expressions, asking a

question for each in order to fully clarify the utterance.

These semantic clarification questions have some unusual properties: the wh-pronoun

does not have to be fronted (‘You chased which dog?’) and the intonation is unusual

(‘You chased which dog?’). Ginzburg and Sag (2000) discuss the features of such ques-

tions in more detail.

Once the user has supplied the answer, the system must integrate the original am-

biguous utterance, the echo question, and the user’s reply to form a coherent semantic

representation.

Since clarification questions are asked in order of increasing level, it is of course

possible that the user will be asked one or more syntactic clarification questions followed

by one or more semantic clarification questions:

(5.36) User The fruit flies like a banana.

System Do you mean

1. The fruit does fly like a banana, or

2. The fruit flies do like a banana?

User 1

System Which fruit flies like a banana?

User The fresh fruit.

The error accommodation facilities described in the next chapter will add another

potential level to this concatenation of clarification.

73



74



Chapter 6

Dealing with errors

“The lawn is full of fletchers,” Della told me one morning. . . I got dressed and

went downstairs and looked up the word in the indispensable Century. A fletcher,

I found, is a man who makes arrows. I decided, but without a great deal of

conviction, that there couldn’t be any arrow-makers on my lawn at that hour in

the morning and at this particular period in history.

—James Thurber, ‘What do you mean it was brillig?’ (Thurber, 1945)

One important aspect of utterance interpretation, especially in a CALL application

such as Te Kaitito, is the treatment of errors in user input. Errors are not a major

focus of this thesis, but I will describe a straightforward scheme for dealing with minor

errors which can easily be incorporated into the current disambiguation framework and

makes considerable use of it.

I have described several techniques for selecting between multiple possible interpre-

tations of a single input. But how is the system to deal with the opposite extreme—

input without a single valid interpretation? It can, of course, simply give up and produce

a message such as ‘I don’t understand’. This, however, is unlikely to be very helpful to

a language learner, forcing them to resort to a blind trial-and-error approach to cor-

recting their errors. Instead, the system could attempt to divine what the user meant

to say. There are several stages of the pipeline at which this kind of divination could

occur. One approach is to augment the grammar with mal-rules describing known error

patterns (Weischedel, Voge, and James, 1978; Sondheimer and Weischedel, 1980).1 At

a semantic level, the technique of accommodation described in Section 2.1.2 could be

1Mal-rules have usually been formulated as meta-rules which operate on the grammar rather than

as rules of the grammar. However, there seems to be no compelling reason why mal-rules (albeit of a

more specific type) could not be implemented using suitably flagged rules within the grammar itself.

75



viewed as error tolerance of this type, although accommodation does not necessarily

indicate an error.

In this chapter, I will consider another approach designed to deal with a restricted

class of errors, namely those which result in a string very close (at a character level)

to the correct input string (that is, the string corresponding to the user’s intended

meaning). (I will shortly attempt a more specific definition of ‘very close’.) The method

of correction is modification of the input at a character level, but this does not mean

that it is entirely restricted to correcting errors in spelling or typing: errors made at

the semantic or (especially) the syntactic level can often manifest themselves as minor

differences at the character level. For example, in

(6.1) *He never did cared for the river, did Montmorency.

an incorrect inflection of the verb care has manifested itself as the insertion of a single

letter.

The proposed principle is simple: we make minor changes to the input in the hope

that one of them will transform the user’s erroneous input into the input they originally

intended to provide.

6.1 Relation to disambiguation

The work of this thesis deals only with minor typing and spelling errors, but gives a

principled account of how their detection and correction may be regarded as part of

the disambiguation process and implemented as such. Hobbs et al. (1993) and Menzel

and Schröder (1999) integrate error handling with disambiguation in a similar fashion,

and the schemes described in Section 2.2 can cope with errors in input provided that

there is enough other information available to allow an intended meaning to be inferred.

Errors are accommodated by making extra assumptions (in the system of Hobbs et al.)

or retracting extra constraints (in the system of Menzel and Schröder). Menzel and

Schröder give particular attention not only to error detection but also to appropriate

responses, since their work is concerned with a language learning system.

6.2 Perturbing whole utterances

Given an utterance string u and some metric d which defines a numerical distance

between any two strings, we wish to search the space Sε(u) = {v|d(u, v) < ε} for some

76



ε representing (intuitively) the size of a fairly ‘minor’ change to a string. This must

take place in a module at the very start of the pipeline, before syntactic parsing. I will

refer to this technique as perturbation.

Clearly much depends on the choice of d. Perhaps the most obvious candidate is the

minimum edit distance defined by Wagner and Fischer (1974). For now I will assume

that this is the metric being used, until we come to discuss the processing of strings at

the word level.

At first glance, the search space might seem discouragingly large: even if the permis-

sible changes are restricted to extremely minor ones, the range of possibilities is vast:

for a twenty-character string written in an alphabet of twenty-six characters, there

are 25 × 20 = 500 distinct strings which differ from it only in a single character, and

26 × 21 = 546 distinct strings which can be created by inserting a single character.

Clearly, it is computationally unfeasible to create all perturbations within a certain

edit distance and attempt to run them all through the interpretation pipeline.

Fortunately, the search space can be greatly constrained by a simple observation:

every valid sentence consists of a string of valid words. Thus our search space becomes

restricted to Sε(u) ∩W , where W is the set of all strings consisting of concatenations

of valid words.

One way of implementing this constraint is to use a simple spell-checker as a filter

for the perturbed strings before giving them to the interpretation pipeline. Only a small

proportion will pass, and spell-checking is far quicker than attempting a syntactic parse.

6.3 Perturbing single words

Another method, yet more efficient, would be to split the input into words and then

perform perturbations on the individual words. The size of the search space thus be-

comes geometrically proportional to the number of words rather than the number of

letters. Care must be taken not to exclude perturbations which would split or join

words of the original input—in the first case, the perturbation algorithm run on the

words can simply be allowed to split them; in the second, words must be considered

pairwise as well as individually to allow for the possibility of joining them.

I will now discuss techniques for correcting a single word, deferring for the time

being methods for locating the erroneous word in the first place.

There has been a large amount of research into algorithms for checking and correct-

ing spelling at the word level (Kukich (1992) provides a good survey) and implemen-

77



tations of such algorithms are now commonplace in text editing and word processing

applications. In particular, there are effective techniques for finding known words (or

sequences of words) of which a given non-word text string could be a plausible mis-

spelling. It would be straightforward to run such a spell-checking algorithm on the

input string, and attempt to parse it with plausible substitutions for misspelled words.

Usually, the best that spell-checking algorithms can do is to suggest a list of al-

ternatives for the user to choose between: their lack of sensitivity to syntactic and

semantic context means that they are unable to pick a replacement with any degree

of reliability. By integrating a spelling checker into Te Kaitito, we can do far better,

since we can use the interpretation pipeline to reject impossible substitutions and the

disambiguation pipeline to weed out implausible ones.

Effectively, we can use a spell-checker both to implement the dissimilarity metric

d, and to constrain the search space to strings consisting of valid words. If we have

an input utterance consisting of words w1, . . . , wn, and a spell-check algorithm s which

produces a list of substitutions s1(w), . . . , smw(w) for a word (ranked in decreasing

order of plausibility), then we can define d by

d((w1, . . . , wn), (w1, . . . , sj(wi), . . . , wn)) = j

—that is, if we take an input sentence, and substitute a single word with the jth-best

suggested substitution from the spell-checker, the new sentence is at a distance of j from

the original. (The distance is defined to be ∞ when one string cannot be transformed

into another by a single word-substitution from the spell-checker’s suggestion list.)

The definition could perhaps be extended to multiple word-substitutions by sum-

ming the ranks of the substitutions, but since I have left vague the spell-checker’s

notion of a ‘plausible substitution’, it is impossible to formally compare, say, the rela-

tive distances of a single rank-2 substitution and two rank-1 substitutions.

6.3.1 Word similarity metrics

In the preceding discussion I have regarded the spell-checker as a black box, produc-

ing oracular judgements on the similarity of words by their ranking in its substitution

list. In fact, this is sufficient for a simple implementation: there are freely available

spelling checkers (e.g. Kuenning, 2001; Atkinson, 2005) which could be interfaced with

Te Kaitito to produce such suggestion lists. Provided that substitution was only at-

tempted on one word at a time, and that there was some way to coerce the spelling

78



checker into producing substitution lists even for words in its lexicon, there would be

no need for a well-defined distance metric. However, it is clearly desirable to be able to

talk in more concrete terms about the distance between a word and its substitution.

Most spelling checkers only rank suggested substitutions rather than assigning them

distances from the input word; even if an off-the-shelf component is used to produce

the substitution list, there is nothing to stop Te Kaitito implementing an algorithm to

assign a more concrete score to the suggestions.

Again, the most obvious choice is the minimum edit distance, this time applied to

a word-pair rather than a string-pair. But this is very unlikely to be the best measure

of how close an erroneous word is to the intended one. To construct a serious model

for the distance metric, one would require a corpus of incorrect sentences paired with

their intended forms. Te Kaitito could be instrumented to amass such a corpus during

normal operation, but it is beyond the scope of this thesis.

A less data-driven approach would be to hypothesize the causes of errors. The two

obvious ones appear to be misspelling and mistyping, which give rise to two different

distance models. It would seem sensible to calculate distances separately in spelling-

space and typing-space, then combine them—probably by taking the minimum, since

either one alone could explain a plausible substitution. In spelling-space, distance would

be proportional to how similar two words sounded; in typing-space, it would be propor-

tional to the similarity of the actions required to type them. In spelling-space, dough

and doe would be near to one another; in typing-space, they would be widely separated,

but dough and rough would be very close.

These ideas are only a brief sketch of how a realistic word-distance metric might be

defined; Kukich (1992) gives a more thorough treatment.

6.4 Fitting perturbation into the disambiguation

framework

Conceptually, the perturbation procedure fits quite neatly into the framework described

in Chapter 3. The process can be split into two parts: the actual perturbation, produc-

ing a potentially large number of candidate sentences close to the original utterance;

and the application of the metric D to rank them in terms of similarity to the origi-

nal input. Of course, since the generated perturbations are constrained by a maximum

value of D, the similarity ranking is done at the same time as the perturbations are gen-

erated. But, in the framework of this thesis, the former belongs to the disambiguation

79



process and the latter to the initial interpretation process.

On the ‘domain’ axis, perturbation as it is described here can be classified as a global

data source—although it is possible to envisage a more sophisticated scheme capable

of learning that, say, a particular speaker consistently misspelled certain words.

With these classifications, it is easy to locate perturbation—at least theoretically—

within the overall interpretation process: operating as it does at the very shallow level

of characters and single words, perturbation generation should occur right at the start

of the interpretation pipeline, before syntactic parsing; by the same token, the rankings

of perturbations should be used at the very end of the disambiguation pipeline; and

clarification between different perturbations, if it is required, should happen at the start

of the clarification pipeline. Figure 6.1 shows the augmented interpretation pipeline.

Perturb-
ation

Syntactic
parse

Semantic
attachment

Dialogue
act

Initial interpretation

Automatic disambiguation

Explicit clarification

Input
sentence

Single
inter-
pret-
ation

?
- --

����

-- -

Figure 6.1: The position of perturbation within the interpretation

pipeline.

Ideally, then, the process would be as follows: for any input sentence, all the per-

turbations within a certain (small) distance are produced, and they are all fed onward

into the interpretation pipeline. Most of them will probably fail to parse, but a few

may be successfully interpreted. Now every surviving perturbation, and every syntac-

tic parse, semantic attachment and dialogue act resolution thereof, is passed into the

disambiguation pipeline. Many more perturbations will probably be weeded out here:

there might be references to things not in the dialogue context, removed by the ac-

commodation module; and there might be parses which, while syntactically valid, are

so unlikely that they are pruned by the probabilistic grammar. Finally, if more than

one interpretation remains after syntactic disambiguation, the metric d can be used to

weed out any perturbations too far from the original utterance.

80



Finally, there is the clarification pipeline. As befits its level, the perturbation stage

comes first here: before the user can be asked a question about the syntactic structure

of the sentence, the intended input string must be definitely determined. Fortunately,

this clarification step is far easier than those further along the pipeline: since strings

of raw text are the objects under consideration, they can simply be presented to the

user as they are. A clarification process encompassing both the string and syntax level

might look something like the following:

(6.2) User The fruit flees like a banana.

System Did you mean—

(1) The fruit flees like a banana.

(2) The fruit flies like a banana.

(3) The fruit fleas like a banana.

User 2

System Did you mean—

(1) The fruit flies do like a banana.

(2) The fruit does fly like a banana.

User 1

As with the other levels of clarification, character-level clarification is intended only

as a last resort: it is expected that there will in most cases only be one candidate string

remaining after the automatic disambiguation process.

6.5 Improving the efficiency of perturbation

In spite of the optimizations possible by perturbing at the word level rather than the

character level, perturbing every input sentence is still a computationally expensive

proposition. The obvious optimization to make is only to perturb utterances in which

the system is able to detect an error. We can classify character-level errors with respect

to Te Kaitito’s pipeline structure, according to the level at which the error is detectable:

1. The error results in a non-existent word; for example, ‘Come live with me and

*bea my love.’

2. The error transforms a word into a different word, but the utterance is not syn-

tactically valid after this transformation. For example, ‘Come live with me and

*bee my love.’

81



3. The error transforms a word into a different word, and the resulting sentence

parses syntactically, but it seems impossible or grossly implausible at a semantic

level. For example, ‘Come live with me and be my *glove.’

4. The error transforms a word into a different word, creating a syntactically valid,

semantically plausible sentence with an incorrect meaning. The error might be-

come apparent at a later stage in the dialogue, but there is nothing in the utter-

ance itself or the preceding context from which it might be deduced. For example,

‘Come *lie with me and be my love.’

The first case is the easiest to deal with: not only is the error immediately apparent,

it is immediately localized. We can produce some likely perturbations of the non-

existent word, and ignore the rest.

The last case seems insoluble: at a later stage in the dialogue, it may (in a future

version of Te Kaitito) be possible to correct the error by, for example, making a contra-

dictory assertion; but by that point re-disambiguating the original utterance is neither

practically feasible nor particularly relevant.

The two intermediate cases, however, are more tractable. The second case, in par-

ticular, might be solved by means similar to those described for the first case. Again,

we have an unparseable sentence; the additional difficulty is that we do not know which

of the words is in error, since they are all in the lexicon. If we postulate only a single

error, it is feasible to attack the problem by brute force: for each word in turn, we

make a plausible substitution, and attempt to parse the sentence. For an n-word sen-

tence, attempting m substitutions for each word, this requires mn parsing attempts; n

is rarely likely to exceed 15 or so, and m can be made as small as one or two, so this

is not an excessive number.

The third case—a syntactically correct but semantically implausible sentence—

is more difficult. Te Kaitito’s semantic knowledge is currently limited to the current

discourse context; thus, it might be possible to do something about mistakes such as

(6.3) User I saw some fruit flies.

System okay

User The fruit fries like a banana.

but even this would not be easy: as described in Section 2.1.2, Te Kaitito accommo-

dates new definite NPs. At present only the number of accommodations is counted for

disambiguation purposes, and it is not clear how to define a more sophisticated metric

82



for the plausibility of an accommodation. It seems that such a metric would require a

significant amount of world-knowledge and ‘common-sense’ reasoning: were a friend to

write to me that he had been ‘attacked by a doge on the way home’, I would probably

assume—drawing on a number of beliefs and inferences—that he meant a dog rather

than the chief magistrate of Venice. Such deductions are, unfortunately, beyond the

current scope of Te Kaitito.

Bever (1970) gives another, more compelling example of a perfectly valid sentence

which human listeners nevertheless prefer to perturb:

(6.4) The horse raced past the barn fell.

Although this can be interpreted without modification as ‘the horse [that was] raced

past the barn fell’, most people prefer to interpret it as an incorrect form of ‘The horse

raced past the barn and fell’. In this case, however, the perturbation occurs at the

syntactic level rather than the character level, and is thus beyond the scope of the

current work.

6.6 An example

Here is an example of an utterance with two type-1 errors (that is, errors resulting in

non-words), and a discussion of how it might be corrected.

(6.5) User I went to a bar

System okay

User The bae was pretty bae

The spell-checker aspell (Atkinson, 2005) produces 41 candidate replacements for

the misspelling bae, of which the following subset are in the ERG’s lexicon: bar, be,

base, bare, bad. This makes for a total of 25 possible perturbations, consisting of every

possible combination of each of the five replacements for each misspelling. Of these

twenty-five, only four result in valid parses:

1. The bar was pretty bare

2. The bar was pretty bad

3. The base was pretty bare

4. The base was pretty bad

83



Of these four, the accommodation module should be able to weed out 3 and 4, since

there is no base in the current discourse context. The other two interpretations are left

to the lower-level disambiguation modules: perhaps the probabilistic grammar will be

sufficiently confident to dispose of one of them, or perhaps a clarification question will

be required.

6.7 Perturbing for specific error classes

Many simple errors are common to large numbers of language learners. We can pro-

gram the perturbation module to look for these specific errors. For example, it has

been found that, among first-year university students of Māori, 15% of errors involve

missing, spurious or incorrectly placed macrons (Earnshaw, Fleming, Weatherall, and

Knott, 2004). In this case, we can process every word in an utterance independently,

and perform a dictionary lookup for words which are identical save in the placement

of macrons. In fact, the results of Earnshaw et al. (2004) seem to show a distribution

similar to that found by Zipf (1949) for word frequency: when error classes are ranked

in descending order of the frequency of their occurrence, and when the frequencies are

plotted against this rank, the resulting slope has the shape of a reciprocal function

y = c/x for some constant c. In short, a few very common error classes account for a

large proportion of the total collection of errors. This implies that by making specific

perturbations for only a few types of error it would be possible to accommodate a

large proportion of the total errors made. Of course, some of these errors might require

perturbation at the syntactic rather than the character level, but character-level per-

turbation for specific errors would nevertheless offer a large amount of error tolerance

for a relatively small cost in implementation and processing.

84



Chapter 7

Implementation and Results

The result was not altogether the success that Harris had anticipated. There

seemed so little to show for the business. Six eggs had gone into the frying-pan,

and all that came out was a teaspoonful of burnt and unappetizing looking mess.

—Jerome K. Jerome, Three Men in a Boat (Jerome, 1889)

In this chapter, I will describe the details involved in implementing many of the

ideas I have described in the preceding chapters, and reproduce dialogue transcripts

showing the results of this implementation.

It is difficult to effectively demonstrate disambiguation by simply showing dialogue

transcripts: after all, a fully functional disambiguation system should be entirely invisi-

ble, automatically and silently selecting the correct interpretation every time. Therefore

I have adopted various techniques in order to produce visible demonstrations of the

disambiguation modules working. I have instrumented the dialogue system with di-

agnostic routines able to print out the verdicts of the modules; and in some cases I

have disabled other disambiguation modules to more clearly show a single module in

operation. The highly modular integration architecture makes this easy to do: the dis-

ambiguation pipeline is simply a global variable holding a list of functions, and can

be altered at any point—even during a dialogue—to add, remove, or reorder modules.

When demonstrating clarification questions, I simply disable all the disambiguation

modules. This chapter, then, is not intended to present a thoroughgoing evaluation

of the disambiguation system in toto; this kind of evaluation needs to be conducted

through structured user trials—which, though planned for Te Kaitito, have not com-

menced at the time of writing. The focus in presenting results is to show—within

artificially constructed dialogues—the operation of the individual modules within the

context of the disambiguation framework and of the Te Kaitito system as a whole.

85



Unfortunately, due to time constraints, it was not possible to implement all the fea-

tures proposed in the preceding chapters; in particular, error tolerance by perturbation

(Chapter 6) has not been implemented at all.

This chapter first briefly describes some general implementation details (Section 7.1)

and gives an account of the construction of the disambiguation architecture (Sec-

tion 7.2). In Section 7.3, I describe the probabilistic parsing module, its implemen-

tation, and its performance both with and without contextual augmentation. Sec-

tion 7.4 describes other disambiguation modules, including the implementation and

performance of the accommodational-weight and presuppositional-weight modules. Fi-

nally, Section 7.5 gives implementation details and results for clarification subdialogues.

7.1 General implementation details

The Te Kaitito system, like the LKB system it uses as its grammar engine, is written

in Common Lisp (Steele, 1990). For the purposes of this thesis the system was run

on CMU Common Lisp (MacLachlan, 1992) version 18e, though it can also be run on

Allegro Common Lisp. With a few minor exceptions, the work described in this thesis

was also implemented in Common Lisp and integrated with the existing Te Kaitito

codebase.

7.2 Integrating information sources

The integration algorithm, simple in conception, was also fairly straightforward in

implementation. The disambiguation data was stored within the candidate interpre-

tations, which are represented as tree-like structures to avoid replication of data. The

data structures are similar to the ‘ambiguity tree’ shown in Figure 3.1 on page 29:

higher-level representations branch off the lower-level ones.

Each disambiguation module was implemented as a function which takes a list of

interpretations and returns another list of interpretations (which is, of course, expected

to be a subset of the input list). The threshold for removing or keeping a parse is set

within the disambiguation module itself, and modules are implemented so as never to

remove all the interpretations.

Thus the integration code actually does very little: it simply starts with the full

set of interpretations, passes them sequentially through the disambiguation modules in

order of descending representational level, and stops when no modules remain or when

86



only one parse remains.

7.3 Statistical parsing

As described in Section 2.3, a statistical grammar has a set of attributes on LKB

syntactic and morphological rules, and assigns each a probability. The main requirement

for the building of a statistical grammar on top of the existing grammar is a source

of data from which to infer these probabilities. As mentioned in Section 2.3.3, there

is a treebank available for the ERG: the Redwoods treebank (Oepen et al., 2002) is a

corpus of sentences assembled for the Verbmobil project (Wahlster, 2000), with ERG

parses and human-generated annotations showing the correct parses.

There is another, longer-term advantage to basing the probabilistic grammar on

the Redwoods treebank: Redwoods is developed using [incr tsdb()]1 (Oepen, 1999), an

open-source grammar development environment, and Redwoods data is published in a

format produced by [incr tsdb()]. [incr tsdb()] is useful to the Te Kaitito project for

several reasons:

• It provides an integrated environment for the development and maintenance of

a treebank. Since it is planned to develop a treebank for Te Kaitito’s custom-

written Māori-English Grammar (MEG), these facilities would be extremely use-

ful. [incr tsdb()]’s open-source licence not only makes these facilities available at

no monetary cost, but gives the freedom to modify its source code should extra

capabilities prove necessary. (For example, as mentioned in Section 8.2.5, we will

probably wish to add annotations at the dialogue-act level.)

• [incr tsdb()] provides a user-friendly parse annotation environment, allowing hu-

man annotators to select preferences for parses in the treebank with relatively

little knowledge of the technicalities of grammar writing. This speeds up the pro-

cess of producing a correctly parsed treebank by increasing the number of people

able to work on annotation.

• [incr tsdb()] stores the annotators’ parse preferences as first-class data. This

makes it easier to update the treebank to keep pace with development of the

grammar (which is important since the MEG is currently under heavy devel-

opment). When the grammar is updated, the corpus is parsed using the new

1Pronounced, according to the manual, ‘tee ess dee bee plus plus’.

87



grammar; the annotation process can then be ‘replayed’ using the stored prefer-

ence data. Of course, this cannot cope with sentences for which the set of available

parses has changed significantly; but it can greatly reduce re-annotation effort by

automating the process when the new parses are isomorphic to the old.

• There are sophisticated facilities for profiling a grammar’s performance. The tree-

bank can thus do double duty as a source of statistical information for training

a probabilistic grammar, and as a test suite to assess and improve the quality of

the MEG’s implementation.

For the initial, ERG-based implementation described in this thesis, [incr tsdb()] is

not necessary; however, since published Redwoods data is in the form of [incr tsdb()]

output, a system developed to use Redwoods data will work with any treebank pro-

duced using [incr tsdb()].

The initial implementation of the probabilistic grammar was as a straightforward

PCFG with parameters inferred directly from counts of productions and their heads.

There were several reasons for choosing such a simple implementation; some, relating

mainly to the goals of the project, are explained in Section 4.1.1. From the point of view

of implementation, the main consideration was the planned integration of dynamically

updated probabilities: it seemed most reasonable—in terms of maintaining a coherent

probability model—to integrate the static and dynamic parts of the grammar at the

level of raw production counts. Thus a simple parameter estimation procedure was

desirable, both from the point of view of speed (since parameter estimation would have

to be done on-line) and ease of comprehension and modification.

7.3.1 The global grammar

I use the term ‘global’ to refer to the main, static portion of the grammar, with param-

eters inferred from a treebank, in contrast to the more context-sensitive components

with parameters inferred from the unfolding dialogue.

Training a grammar from the Redwoods treebank

In theory, inferring PCFG parameters from the parsed, annotated sentences of the

Redwoods treebank should be straightforward; in practice, several difficulties were en-

countered.

Each release of Redwoods data (or ‘growth’, as they are termed) consists of sen-

tences parsed with the ERG version current at the time of the release. Due to the

88



swiftly evolving nature of the ERG, the parses themselves are of limited utility for any

other ERG version.

As previously mentioned, the Redwoods treebank stores the human annotator’s

parse preferences as first-class data, allowing the same annotation process to be re-

run on a different version of the grammar. One motivation for this is to alleviate the

problem of matching the treebank to the grammar. Actually performing this procedure

can, however, be difficult: changes in the grammar can be large enough that the stored

parses are no longer relevant, so that manual intervention is once more required. More

seriously for my purposes, the parsing process can require large amounts of memory. It

proved impossible to re-parse any of the Redwoods corpora, since no computer available

to me at the University of Otago had sufficient memory to do so.

The path of least resistance thus appeared to be that of modifying Te Kaitito itself to

work with an ERG version for which a pre-parsed Redwoods corpus was available. The

Redwoods third growth (Toutanova et al., 2003) and the version of the ERG bundled

with it (dated October 2002) was chosen as offering the best compromise between

amount of data and closeness to Te Kaitito’s previously ERG version, a release dated

21 December 2003. Nevertheless, the two ERG versions differed significantly and the

modifications proved fairly labour-intensive.

Another, unexpected, problem was encountered while processing the treebank: even

the version of the ERG distributed with the Redwoods third growth did not correspond

exactly to the one evidently used to parse the corpus. Around a dozen lexical items

and several type definitions used in the treebank, accounting for several hundred rule

applications, were missing from the grammar. Most of these were added by hand with

guidance from their definition in later versions of the ERG.

With these preliminaries dealt with, it was relatively straightforward to make use

of the Redwoods parse data. Each Redwoods growth is divided into a few sub-corpora,

each consisting of a set of data files produced by [incr tsdb()]. Of these, three were

of interest here: result, containing a derivation tree for every possible parse of every

sentence in the sub-corpus (together with various other information); preference, con-

taining annotator-supplied indications as to which is the preferred parse; and parse,

containing additional information about parses—most pertinently, an indication of

whether a particular sentence caused an error during parsing, allowing us to exclude

such sentences from consideration. Figure 7.1 shows a sample derivation tree from the

Redwoods treebank. I wrote a short script in Perl (Wall, Christiansen, and Orwant,

2000) to read these three files and produce a single file containing only valid, preferred

89



parses. The parses in result were stored as bracketed S-expressions and were thus easy

to read from Lisp, but the extra information, and the other files, were in a character-

delimited format better suited to Perl’s string manipulation capabilities—hence the

preprocessing step.

subjh

i

i

hadj i uns

hcomp

be c am

am

hspec

really deg

really

pos adj infl rule

busy a

busy

tempnp

hspec

this det

this

noptcomp

sing noun infl rule

month n

month

Figure 7.1: A sample derivation tree from the Redwoods treebank

(third growth, vm6 sub-corpus, item 697, parse 2).

For the grammar itself a top-down probability model was used. Three hash tables of

counts were built up from the treebank: roots, counting the number of times each rule

was used as the head of a sentence; heads, counting the number of times each rule was

used; and productions, counting the number of instances of each parent-child-child

triplet in the derivation tree (all the ERG’s rules are binary). The probability of any

new sentence can then be calculated from these three sets of data. Dividing the count

of the root rule by the total of the counts in roots gives the probability of that rule

occurring at the root of a parse tree. Then, for every production in the tree, the triplet’s

entry in productions is divided by the head’s entry in heads to give the probability

of that production occurring from that head. Multiplying all these quantities (or, in

practice, adding their logarithms) produces a probability for the sentence.

I implemented few of the refinements possible in a statistical grammar, though

most of these could be added without too much disruption of the current architecture;

they are discussed in Section 8.2.2. In fact, the production probabilities were not even

computed and logarithmized in advance; this was for easier integration of the dynamic

grammar, as will be described in the next section. Smoothing was of the simple add-one

90



type (see e.g. Chen and Goodman, 1996).

The global grammar in action

In order to show the operation of the grammar, I instrumented the single-rephrase

clarification module to show the scores assigned by the grammar, and configured the

disambiguation pipeline not to reject any interpretations—that is, to ask for full clar-

ification in every case. As mentioned in Section 5.3.11, single-rephrase clarification is

very useful for showing parse structures as user-friendly unambiguous rephrasings, in

the cases where entirely unambiguous rephrasings can be found. After the rephrasing,

the clarification module shows the score assigned by the probabilistic grammar as a

logarithm of the sentence’s probability. Hence a higher number indicates a preference

for a particular interpretation.

> i ate lunch at the office

What do you mean?

1: at the office i ate lunch

pcfg -22.90

2: lunch at the office i ate

pcfg -23.44

The probabilistic grammar prefers the high attachment of the PP, which fits with

the intuitively correct reading that it was the eating that occurred at the office. The

next example is the utterance ‘John is really angry’, in which ‘really’ should be inter-

preted as an adverb of degree, modifying ‘angry’, rather than an adverb attached to

the verb and indicating that John is genuinely angry.

> John is really angry

What do you mean?

1: john is being really angry

pcfg -21.30

2: john is really being angry

pcfg -24.05

Once more, the grammar selects the correct interpretation.

Here is a sentence with a more fundamental ambiguity: ‘The patient authors lunch’.

The more intuitive reading is that some long-suffering writers are taking their midday

91



meal; however, the ERG includes the word author as a verb, and thus can also interpret

this sentence as being about an ill person ‘authoring’ a meal, whatever that might mean.

> the patient authors lunch

What do you mean?

1: lunch the patient authors

pcfg -17.30

2: Something else.

pcfg -16.36

Once more, the intuitively correct reading is selected. In this case, however, there

was no unambiguous rephrasing available for the correct reading, so it is presented as

a ‘something else’ choice.

7.3.2 The contextually augmented grammar

Implementation

Implementing the contextual augmentation described in Section 4.1.2 required thor-

oughgoing but fairly straightforward modifications to the grammar’s data structures

and algorithms. First, hash tables were set up parallelling exactly those constructed for

the global grammar. Then the sentence scoring routines were modified to make use of

these new data sources: wherever they previously read a count from the single global

hash table, they now read both a global and contextual count. These are combined by

linearly scaled addition, assigning a higher weight to the contextual count to reflect the

fact that it is likely to be more relevant to the current context, and to compensate for

the fact that it is derived from a far smaller sample. Weighted linear combination does

not destroy the probability model.2 In effect, it is equivalent to the following procedure:

For each set of weights to be combined

For each sentence used to build the table of counts

Duplicate the sentence a number of times equal to the scaling factor

Add all the duplicates to a new treebank

Infer probabilities from the new treebank

Although this algorithm is hardly a sensible basis for a practical implementation, it

can be seen that it maintains a consistent probability model, and produces the same

results as weighted linear combination.

2Of course, as described in Section 2.3.3, the probability model itself is somewhat inappropriate.

92



Next, a new grammar update module was added to the end of Te Kaitito’s

interpretation pipeline to maintain the values for the local grammar. This module first

multiplies all the counts in the local grammar’s tables by a damping factor; again,

since the same linear scale factor is applied to both head and production counts, the

probability model is not disrupted. The damping factor, as described in Section 4.1.2, is

applied to allow the grammar parameters to adapt as the focus of the dialogue changes.

To see how the probability model is affected by context-augmentation, suppose

that we have a global grammar induced from a collection of parses G, and that during

combination, the local grammar is given a weight of 32 and the global grammar a

weight of 1. Suppose also that the damping factor is one-half, and that we have just

incorporated pn, the disambiguated parse of the dialogue’s nth utterance, into the local

grammar. Then the current combined grammar is equal to equivalent to a normal, static

PCFG induced from the collection

G+ 32× pn + 16× pn−1 + 8× pn−2 + · · ·+ 1× pn−5 + · · ·+ 25−n × p0

where the notation ‘+ m × p’ corresponds to adding m instances of the parse p to

the collection. In practice it is of course impossible to use fractions of a sentence in a

treebank; however, identical probabilities would be produced if every sentence in the

combined treebank were duplicated 2n−5 times to give integral values, so it is clear that

fractional sentence counts do not disrupt the probability model.

This module then takes the single interpretation of the current utterance (which by

this stage of the pipeline has been fully disambiguated and clarified), and counts its

root, heads, and productions in the same way as the global grammar counts those of

a parse from the treebank. Finally, it passes the dialogue state on, unchanged, to the

dialogue engine module (see Figure 2.1), which will construct an appropriate response.

Results

I now repeat the ‘patient authors lunch’ example, but precede it with two sentences

designed to cue the interpretation which would normally be considered less likely.

> the doctor authors a report

okay

> the secretary authors a book

okay

93



> the patient authors lunch

What do you mean?

1: lunch the patient authors

pcfg -15.99

2: Something else.

pcfg -16.60

The preceding utterances with isomorphic parses have resulted in a slight preference

for the authors-as-verb interpretation. Next, I will demonstrate the same mechanism

operating on a slightly less contrived example.

To distinguish between people with identical names, it is fairly common to append

a PP—for example,

(7.1) A: I was talking to John yesterday.

B: Which John?

A: John at the office.

If both the speakers are used to disambiguating instances of ‘John’ with such PPs,

one might expect a preference for low attachment in a phrase such as ‘I saw John at

the office’, even though attachment of ‘at the office’ to the verb would more usually be

the preferred interpretation. The following example demonstrates this effect.

As a control, I first give Te Kaitito the test sentence without any context:

> i saw john at the office yesterday

What do you mean?

1: i saw john yesterday at the office

pcfg -31.28

2: john at the office i saw yesterday

pcfg -34.19

As expected, the high attachment is preferred. Next, I try introducing two PP-

disambiguated Johns before uttering the test sentence:

> john at the office works

pcfg -25.49

94



okay

> john at the bank drinks

pcfg -16.85

okay

> i saw john at the office yesterday

What do you mean?

1: i saw john yesterday at the office

pcfg -30.13

2: john at the office i saw yesterday

pcfg -28.06

The low PP attachment is successfully cued.

7.3.3 Idiolect-sensitive parsing

The idiolect-sensitive grammar was implemented in a very similar way to the contex-

tually augmented grammar: parallel hash tables were added to store counts of heads

and rules.3 The grammar update model was modified to add its counts to the idiolect

tables as well as the local tables—the difference in this case being that a user’s idiolect

table is only updated using data from utterances made by that user, rather than (as

for the contextual tables) every utterance made during a dialogue.

The PCFG parse ranker was similarly modified to make use of the idiolect tables as

well as the global and local tables; all the counts are combined by a linearly weighted

sum, as described above. In combining counts, the idiolect component is weighted less

than the local component, in keeping with the second prioritization rule of Section 3.1.2.

Also, since idiolects change more slowly than dialogue contexts, a smaller amount of

damping is applied.

Unfortunately, idiolect-sensitive parsing is hard to demonstrate with short exam-

ples: to demonstrate the effect it would be necessary to enlist users for long-term trials

with Te Kaitito and compare disambiguation performance on the same utterances us-

ing their idiolect-sensitive grammars. In my case, there was neither the time nor the

3Since the version of Te Kaitito used in this implementation only supports a single human user at

a time, it is not yet necessary to use multiple idiolect tables simultaneously.

95



user base to do this: Te Kaitito user trials have not yet commenced at the time of

writing. However, since the basic mechanism of idiolect-sensitive parsing—skewing of

grammar parameters according to utterances seen within the dialogue itself—is iden-

tical to that of contextually-augmented parsing, the results of the previous section

are very promising for idiolect-sensitive parsing. With the development of Te Kaitito

to support multi-agent dialogue (Knott, Bayard, and Vlugter, 2004), idiolect-sensitive

parsing should become more useful and more demonstrable.

7.4 Other modules

The modules for distinguishing between questions and clarification questions (Sec-

tion 4.3.2) and disambiguating using ambiguity level (Section 4.3.4) have not yet been

implemented. In the following sections I describe those modules which have been im-

plemented.

7.4.1 Accommodation and presuppositional weight

Implementation

These modules were fairly straightforward to implement. The DRS structures pro-

duced by the semantic interpretation module separate the assertion of the sentence

from its presupposition. To count them, I wrote a recursive depth-first tree-walking

algorithm which went through an utterance’s presupposition list, descending into any

nested presuppositions and counting the number of presuppositions made at each level.

Summing these values throughout the tree gives the total presuppositional weight for

an utterance.

Accommodation weight was calculated in an isomorphic fashion: the semantic mod-

ule annotates each presupposition-set with the number of presuppositions which had

to be accommodated, so in this case the algorithm simply had to recurse through the

presupposition tree calculating the total of these values.

Results: accommodation

To demonstrate accommodation, I instrumented Te Kaitito to show accommodation

scores and unique rephrasings when disambiguating.

96



> i saw the girl with the telescope

1 with the telescope i saw the girl

accommodations 2

2 the girl with the telescope i saw

accommodations 3

choosing 1

okay

Here, the girl-with-telescope parse requires three accommodations (girl, telescope,

and girl-with-telescope), versus two accommodations (girl and telescope) for the saw-

with-telescope parse (since there are no girls or telescopes in the context), so the latter

is selected.

Results: presuppositional weight

> a red girl with a telescope walks

okay

> a blue girl sleeps

okay

> i saw the girl with the telescope

okay

> which girl did i see

you saw the red girl

Here, the red-girl interpretation is preferred, because—in addition to matching the

girl relation—it involves matching the girl-with-telescope relation to the context, re-

sulting in a higher presuppositional weight.

7.4.2 Saliency-based referent disambiguation

I was not involved in the implementation of this module, so I merely give an example

of it in operation here:

97



> a black cat sleeps

okay

> a white cat eats

okay

> a dog chases the cat

okay

> which cat does the dog chase

the dog chases the white cat

When the ambiguous utterance is made, the white cat has been more recently

mentioned, and is hence more salient. The ambiguous term ‘the cat’ is thus bound to

the white cat.

7.5 Clarification subdialogues

Clarification, like disambiguation, is hard to demonstrate concisely within its proper

context of a full interpretation-disambiguation-clarification pipeline: if the disambigua-

tion modules are working as they should, clarification will seldom be required. Thus,

in order to generate the examples for this section, I have disabled the disambiguation

modules.

7.5.1 Framework

Te Kaitito’s architecture includes a versatile facility for incorporating subdialogues

at any stage of the processing pipeline, independently of whether the console or web

interface is being used. The structure of the interpretation pipeline is one of functional

composition: a large data structure representing the entire dialogue state is passed

through the pipeline from one module to the next, each module transforming it to

the next required form. However, as well as the dialogue state, each pipeline module

returns a continuation command, specifying what action should be taken next. The

continuation command can take one of three values:

pass is the most commonly used continuation, and corresponds to the normal oper-

ation of the pipeline: it simply stipulates that the module’s output should be

passed straight to the input of the following module.

98



clear is used when processing fails in some way, for example when the syntactic in-

terpretation module fails to find any valid parses. This command breaks out of

the pipeline, aborts the interpretation process, and presents a supplied message

to the the user (for example, ‘I don’t know the word “boustrophedon”.’).

subdialogue initiates a subdialogue feeding back into the current module: a supplied

message is presented to the user through whichever front-end is in use. The

user’s response is collected and returned—as part of the monolithic dialogue

data structure—to the module which initiated the subdialogue. This cycle can

be repeated an arbitrary number of times.

The subdialogue facility has already been used in van Schagen (2004) to allow

interactive expansion of the lexicon during a dialogue,4 and it is also planned to use it

in error-correcting teaching subdialogues (Slabbers, in preparation).

Figure 7.2 shows a part of the pipeline, with these commands, as a finite state

machine.

�� ��
�� ��

User

responseGF
@A

//

�� ��
�� ��

User

responseGF
@A

//

�� ��
�� ��

User

responseGF
@A

//. . . //

�� ��
�� ��

Semantic

interpretation
pass //

BC
ED

subdialogue

oo

ED
BCclear

oo

�� ��
�� ��
Dialogue act

interpretation
pass //

BC
ED

subdialogue

oo

ED
BCclear

oo

�� ��
�� ��

Dis-

ambiguation
pass //

BC
ED

subdialogue

oo

ED
BCclear

oo

· · ·

�� ���� ��Abort

Figure 7.2: A fragment of the interpretation pipeline as a finite state

machine, showing the effects of the three continuation commands.

To conduct a clarification subdialogue, then, it is simply necessary for the disam-

biguation module to return subdialogue for every response which forms part of the

clarification, relying on the system to call it back with the user’s response. Once the

clarification subdialogue has finished, the disambiguation module replaces the ambigu-

ous, underspecified interpretation structure in the monolithic dialogue structure with a

single, fully disambiguated interpretation, and returns pass to pass this interpretation

on to the dialogue engine.

4This facility has not yet been integrated with the work described in this thesis.

99



7.5.2 Implementation

The formal presentation of the techniques developed in Chapter 5 means that they

translate relatively directly into code; most of the implementation involved construct-

ing and manipulating representations of the various sets involved in Chapter 5’s deriva-

tions. Section 5.3.5 and 5.3.6 describe most of the strategy-independent aspects of im-

plementing rephrasing-based clarification; further implementation details are presented

along with the results below.

7.5.3 Single-rephrase clarification

I will give an example using the Māori-English Grammar, which allows ambiguity in

one language to be resolved by rephrasing into a different language. In this case the

ambiguous utterance is the following Māori sentence

(7.2) Kei te kai te tangata.

with the following two interpretations.5

(7.3) Kei te kai te tangata.

[present progressive] eat the person

The person is eating.

(7.4) Kei te kai te tangata.

[present locative] the food the person

The person is at the food.

No special provision is required to activate bilingual rephrasing: if the MEG is loaded,

a request to the ERG’s generation module to generate sentences from a MRS form will

naturally produce every possible sentence in both languages, since the language feature

has not been constrained. In this case, the clarification module has been configured to

show every possible rephrasing for a candidate syntactic structure, rather than picking

one using the probabilistic grammar (which does not yet work with the MEG due to a

lack of training data).

> kei te kai te tangata

5In presenting English glosses to make the interpretations clear, I am of course performing bilingual

rephrasing-based clarification for the reader.

100



What do you mean?

1: the person is at the food

kai te kai te tangata

2: the person is eating

The clarification module produces two unambiguous English rephrasings, and one

unambiguous rephrasing in Māori (effected by changing the tense and aspect marker

kei to kai).

7.5.4 Interactive binary clarification

One of the advantages of interactive binary clarification, compared to single-rephrase

clarification, is its ability to rapidly pare down a large set of readings. In the best case,

where a perfectly even split is found at every stage, it is possible to select one parse out

of n using only dlog2 ne binary choices. In an attempt to test this strategy on a suitably

large set of rephrasings, I concocted a sentence with a high degree of attachment

ambiguity: ‘I ate lunch at the office on the floor under my desk’. I instrumented the

clarification routines to produce output detailing their operations; in this example I

have elided some of it for brevity.

> i ate lunch at the office on the floor under my desk

**** we now have 14 interpretations ****

Removing (my desk i ate lunch under on the floor at the office)

Removing (under my desk i ate lunch on the floor at the office)

Removing (under my desk i ate lunch at the office on the floor)

Removing (lunch i ate on the floor at the office under my desk)

Removing (lunch i ate under my desk on the floor at the office)

Removing (lunch i ate under my desk at the office on the floor)

[ 22 more rephrasings removed ]

The clarification module reports that it has fourteen interpretations to choose be-

tween, generates a complete set of rephrasings, and begins to remove rephrasings which

are equivalent (in the sense of Section 5.3.3) to other rephrasings, eventually pruning

each equivalence class down to a single rephrasing. The probabilistic grammar is used

to select a most ‘natural’ rephrasing from each equivalence class, which is kept when

all the others are removed.

101



Next, the clarification module must choose an initial question to ask. I have con-

figured it, in this case, to print out a list of the alternatives under consideration:

(my desk i ate lunch on the floor under at the office) 1 6

(my desk i ate lunch at the office under on the floor) 2 5

(my desk i ate lunch under at the office on the floor) 2 5

(my desk i ate lunch on the floor at the office under) 2 5

(my desk i ate lunch at the office on the floor under) 5 2

(lunch i ate on the floor under my desk at the office) 2 5

(lunch i ate at the office on the floor under my desk) 5 2

[ 21 more rephrasings considered ]

Did you mean 1 (i ate lunch at the office under my desk on the floor)

or 2 (something else)?

> 1

The number printed beside the considered rephrasings require some explanation: the

first is the number of candidate syntactic structures corresponding to the rephrasing.

The second is a measure of asymmetry, calculated as the difference between the number

of structures associated with the rephrasing and half the total number of structures.

In this case the total number of structures is 14. So, for example, the first rephrasing,

realizing only a single structure, has a high asymmetry value of 6. The clarification

module picks one rephrasing by the following criteria:

1. As described in Section 5.3.13, it first looks for as even a split as possible—that

is, it seeks a rephrasing with the lowest asymmetry.

2. If there are multiple such rephrasings, it picks (if possible) one which has a

converse (as defined in Section 5.3.4) so as to be able to ask a ‘this or that’

question rather than a ‘yes or no’ question.

3. If there are still multiple rephrasings satisfying these criteria, it picks the one with

the highest score from the probabilistic grammar (along with the highest-scoring

converse, if a converse exists).

The use of the probabilistic grammar as a last-resort selection technique increases

the likelihood of a fairly natural-sounding rephrasing being presented to the user (as

in this case). Note that a maximally symmetrical rephrasing with a converse could not

be found, forcing the system to resort to the ‘something else’ question.

102



**** we now have 5 interpretations ****

(my desk i ate lunch on the floor under at the office) 1 3/2

(my desk i ate lunch at the office under on the floor) 2 1/2

(lunch i ate at the office on the floor under my desk) 2 1/2

(i ate lunch on the floor at the office under my desk) 2 1/2

(i ate lunch at the office on the floor under my desk) 5 5/2

(at the office on the floor under my desk i ate lunch) 1 3/2

(lunch at the office on the floor under my desk i ate) 2 1/2

(lunch at the office i ate on the floor under my desk) 1 3/2

(lunch on the floor at the office under my desk i ate) 1 3/2

Did you mean 1 (i ate lunch on the floor at the office under my desk)

or 2 (something else)?

> 1

After a single clarification act by the user, just five candidate interpretations remain

(this low figure is partly due to luck: the other choice would of course have led to

nine interpretations). Once more, the available rephrasings are scored according to

how symmetrically they split the space of interpretations. Note that, among the four

interpretations with the minimal asymmetry score of one-half, the system has chosen

the one which sounds most natural (‘i ate lunch on the floor. . . ’ rather than, say, ‘my

desk i ate lunch. . . ’) using the probabilistic grammar. Again, no converse can be found,

so the ‘something else’ option must be used.

**** we now have 2 interpretations ****

(my desk i ate lunch on the floor under at the office) 1 0

converse: (lunch on the floor at the office under my desk i ate)

(i ate lunch on the floor under my desk at the office) 2 1

(lunch on the floor at the office under my desk i ate) 1 0

converse: (my desk i ate lunch on the floor under at the office)

Did you mean 1 (my desk i ate lunch on the floor under at the office)

or 2 (lunch on the floor at the office under my desk i ate)?

> 1

103



**** we now have 1 interpretation ****

okay

Now only two interpretations remain, with three possible rephrasings of them. Here,

the system is finally able to locate a converse; where a converse to a rephrasing is found,

it is shown after the rephrasing itself. Thus each rephrasing in the pair is shown twice:

once during its own evaluation, and once during the evaluation of its converse. The

system uses the converse rephrasings to present the user with an ‘either-or’ question

explicitly showing both alternatives.

Once the user selects a rephrasing, the utterance is at last fully disambiguated,

and the system delivers its standard ‘okay’ response indicating that it has, at last,

successfully interpreted the user’s original utterance.

7.5.5 Semantic clarification

Since I was not involved in the implementation of saliency-based semantic clarification,

I simply give an example here of its operation.

> i have a red telescope

okay

> i have a green telescope

okay

> i saw a girl with the telescope

What do you mean?

1: with the telescope i saw a girl

2: a girl with the telescope i saw

> 1

which telescope did you see a girl with

104



This is an example of disambiguating an utterance exhibiting both syntactic and

semantic ambiguity; in accordance with the principle laid down at the star of Chapter 5,

the utterance is clarified first syntactically, then semantically.

105



106



Chapter 8

Conclusions and further work

And it is understood that there is added to the general consideration of the whole

matter, the consideration what is greater than and what is less than, and what is

like the affair which is under discussion, and what is equally important with it,

and what is contrary to it, and what is negatively opposed to it, and the whole

classification of the affair, and the divisions of it, and the ultimate result.

—Marcus Tullius Cicero, Treatise on Rhetorical Invention. i. 18 (Cicero, 1903)

8.1 Conclusions

8.1.1 Integrating disambiguation data

The main goal of this project has been the construction of a comprehensive frame-

work for classifying and integrating disambiguation data, and the implementation of

a disambiguation process based on this framework. The architecture devised in this

thesis and described in Chapter 3 encompasses both a two-dimensional classification

of disambiguation data sources, and, derived from this classification, heuristics for use

when combining data sources.

On a theoretical level, the classification provides a useful framework within which to

discuss and assess sources of disambiguation data: both the classification metrics—the

representational level corresponding to a point in the processing pipeline, and the do-

main, corresponding to a particular area or body of knowledge—are grounded in readily

comprehensible and measurable properties, so virtually any source of disambiguation

data can be located fairly clearly within the framework. My data prioritization heuris-

tics are couched in terms of this classification framework, so while I have ultimately

107



had to appeal to intuitive notions of ‘correct’ interpretations—which is probably in-

evitable when proposing disambiguation techniques—I have at least made my reasoning

explicit.

For implementation purposes, it is useful that data sources are classified with re-

spect to practically grounded measures: it removes some of the trial-and-error from the

process of integrating a new data source into the framework. Because it is generally

clear how a particular data source should be classified, it is also clear (from the prior-

itization heuristics) how it should be incorporated into a disambiguation algorithm.

This principled and procedural approach also brings benefits when tuning the per-

formance of the system. The way in which different data sources are combined is signif-

icantly constrained by their classification within the theoretical framework, so—while

there are some tunable parameters—there is little chance of an attempted implemen-

tation becoming bogged down in a huge search space of interdependent parameter

weights. As described below, there is some leeway within the heuristics, and there is

no well-defined method for resolving conflict between the two heuristics, but it should

nevertheless be a fairly quick job to classify and integrate a new module into the dis-

ambiguation pipeline.

Tuning the system is also made easier by another feature of the architecture: because

the constraints of the different disambiguation modules are applied sequentially rather

than simultaneously, the modules are rather loosely coupled: any module can operate

independently of any of the others, and the parameters for any module can be set

independently of the others. What is more, modules can be added to, removed from or

rearranged within the disambiguation pipeline without even interrupting the current

dialogue, which is a boon for development of the disambiguation procedure.

8.1.2 Clarification subdialogues

There are two main aspects to the treatment of clarification subdialogues in this thesis.

The first, forming a relatively distinct subproject, was the theoretical framework built

up for the systematic treatment of syntactic clarification by rephrasing. The second

and (at least for Te Kaitito) more important aspect is the theoretical and practical

integration of clarification subdialogues into the framework developed for disambigua-

tion.

The theoretical groundwork of Section 5.3.1 provides a solid basis for discussion of

syntactic rephrasing-based clarification in the rest of Section 5.3. This basis will be of

use in any further development of syntactic clarification: it formalizes such desirable

108



qualities as precision and convenience and allows the discussion of aspects of rephrasing-

based clarification in concrete terms. The theoretical framework is also general enough

to have wider applicability to virtually any situation where an entity must be specified

indirectly via some arbitrary relation.

8.1.3 Error handling

Chapter 6 successfully showed how the detection and correction of user errors can be

incorporated into the disambiguation framework. The interesting result here was the

usefulness of the disambiguation pipeline in error handling: the proposed techniques

involved fairly basic operations of perturbation and ranking at the character level,

but attaching the module to the rest of the interpretation pipeline allowed it to take

advantage, indirectly, of information right up to the dialogue act level.

8.1.4 Integrated natural language processing

The reciprocal benefits of integrating a new module into a large, integrated system

like Te Kaitito were apparent in implementing error handling, but were also visible

throughout the project: for example, the stochastic grammar, once implemented, could

be used to rank generated sentences as well as interpreted ones—which then, in turn,

permits the grammar writer to include rare forms specifically for use in syntactic clar-

ification (see Section 5.3.7) without fear of them being used in normal dialogue. In

general, adding a new module to a system like Te Kaitito has potential benefits pro-

portional to the number of modules already in the system—it might be able to interact

usefully with any of the pre-existing modules. Thus, for the same amount of work,

implementing a technique within an existing system provides far more benefit than

implementing it in isolation.

8.2 Further work

8.2.1 Integration

The main area of uncertainty in my architecture for the classification and combination

of data sources is how the two classification metrics should be combined with respect to

each other. In this thesis, it was not necessary to address this question thoroughly, since

Te Kaitito currently uses only a subset of the data sources covered by the taxonomy,

109



resulting in few potential points of conflict between the heuristics.

The work on accommodation of user errors was a relatively late addition to the

project, and although it was successfully incorporated into the disambiguation frame-

work, it would be pleasing—at least on a theoretical level—to try to develop a more

unified framework which places errors and ambiguity on the same footing, in a sim-

ilar fashion to Menzel and Schröder (1999). The successful theoretical integration of

character-level error tolerance into the pipeline suggests that the theoretical framework

can be expanded to accommodate errors in a more general way. This would probably

cause few changes in the current implementation, but might form a useful guide when

attempting to integrate higher levels of error tolerance into the interpretation process.

8.2.2 Probabilistic parsing

Compared to the state of the art, the current probabilistic grammar is extremely prim-

itive; as mentioned in Section 7.3, the goal here was not per se to produce a high-

performance grammar. The two main considerations were to integrate a probabilistic

grammar with the existing structure of Te Kaitito and with the new disambiguation

architecture, and to explore techniques for improving the grammar’s context-sensitivity

in ways particularly suited to the environment of a dialogue system.

With the basic structure now in place, it would clearly be desirable to improve the

performance of the grammar itself. Fortunately, there has been much recent theoretical

and practical work on parameter estimation for stochastic attribute-value grammars.

We might begin with some of the techniques used by Toutanova et al. (2002). The

obvious improvement to make is to change the overall model from a simple PCFG to a

more theoretically sound log-linear model—although it would not be straightforward to

transfer my contextual augmentation techniques to a log-linear framework. Toutanova

et al.’s results show that adding ancestor annotation1 to a PCFG results in a perfor-

mance increase roughly equal to that produces by switching to a log-linear model. And

although Toutanova et al. (2002) alludes to a fairly complex method for selecting the

degree of ancestor annotation, it seems from the follow-up publication Toutanova et al.

(2003) that equal performance is achieved by fixed annotation with the parent and

grandparent node. Fixed ancestor annotation, then, would seem to be a very simple

way of strongly improving the grammar’s performance.

1Ancestor annotation consists of conditioning a rule’s probability on one or more of its ancestors

in the derivation tree.

110



8.2.3 Clarification subdialogues

Single-rephrase and binary choice clarification perform adequately, but there is scope

for the implementation of more sophisticated and natural techniques. Referent-based

clarification has great promise, especially since so much of my work on rephrasing-

based clarification can be carried over to it. As briefly mentioned in Section 5.3.13,

binary-rephrase clarification also has scope for extension by considering ternary and

higher-degree partitions of the interpretation set.

8.2.4 Errors

Apart from the actual implementation of the techniques I propose, the main consid-

eration for error handling is integrating it with Te Kaitito’s recently added module

for acquiring unknown words from the user, described by van Schagen (2004). Clearly

decisions will have to be made regarding when to consider an unknown word as a

misspelling of a known one, and when to initiate a word-acquisition subdialogue.

8.2.5 Data gathering

These are exciting times for Te Kaitito. In addition to the work in this thesis, other new

modules are being developed (see e.g. Slabbers, in preparation; van Schagen, 2004), and

user trials are scheduled to begin soon. From the point of view of system development,

this brings two opportunities: firstly, that of evaluating the performance of the system

in the environment for which it was originally designed; and secondly, that of making

use of Te Kaitito’s new interlocutors as a source of data.

It will be easy to add facilities to Te Kaitito to produce records of its dialogues

at every level from text string to dialogue act. Essentially we can enlist our users as

annotators in the semi-automated building of a treebank. Instead of explicitly indicated

preferred parses, they use the clarification mechanism—although in most cases the

disambiguation pipeline should be able to do the job automatically.

There are vast possibilities for the purposes to which this data might be put. In re-

lation to the work of this thesis, the most obvious use is the construction of a syntactic-

level treebank to set parameters for a stochastic Māori-English Grammar, with all the

attendant benefits for various parts of the dialogue system. But we can also record

data at the semantic and dialogue act levels. There has been work on tuning pro-

noun resolution algorithms using corpora marked up for anaphoric dependencies using

the Penn Discourse Treebank (Miltsakaki, Prasad, Joshi, and Webber, 2004); similar

111



techniques could be applied to Te Kaitito’s semantic-level data. The dialogue-act in-

formation could be used to set parameters for a discourse parser similar to the one

proposed by Baldridge and Lascarides (2005). Data can be collated by learner level to

produce concrete representations of the linguistic knowledge expected at each stage of

a language course.

There are currently treebanks marked up by hand at a sentence level with human-

generated parses—for example, the Penn treebank. There are also sentence-level tree-

banks created by semi-automatic processes where the annotator merely has to select

a machine-generated parse, such as the Redwoods treebank used in this project. And

there are hand-generated treebanks marked up at the discourse level, such as the anno-

tations on the SWITCHBOARD corpus described by Stolcke et al. (2000). Te Kaitito’s

users can help us to create a treebank with this kind of discourse-level mark-up, but

without the time and effort required to explicitly mark up every utterance by hand.

Thus, for no extra effort on the part of our users, we will gain a valuable resource with

applications far beyond sentence disambiguation.

112



References

Steven Abney. Statistical methods and linguistics. In Judith Klavans and Philip Resnik,

editors, Balancing Act: Combining Symbolic and Statistical Approaches to Language.

The MIT Press, 1996.

Steven P. Abney. Stochastic attribute-value grammars. Computational Linguistics, 23:

597–618, 1997.

Jim L. Alty and Mike J. Coombs. Expert Systems—Concepts and Examples. NCC

Publications, The National Computing Centre Ltd., Manchester, England, 1984.

Kevin Atkinson. aspell. Web page, 2005. URL http://directory.fsf.org/aspell.

html. Viewed on 26 January 2005.

J. Baldridge and A. Lascarides. Annotating discourse structure for robust semantic

interpretation. In Proceedings of the Sixth International Workshop on Computational

Semantics, Tilberg, The Netherlands, 2005.

Ian Bayard, Alistair Knott, and Samson de Jager. A unification-based grammar for

a fragment of Māori and English. In Proceedings of the 2nd Australasian Natural

Language Processing Workshop (ANLP 2002), 2002.

Thomas Gordon Bever. The Cognitive Basis for Linguistic Structures, pages 279–352.

Wiley, New York, 1970.

Taylor L. Booth. Probabilistic representation of formal languages. In Tenth Annual

IEEE Symposium on Switching and Automata Theory, pages 74–81, 1969.

Chris Brew. Stochastic HPSG. In Proceedings of the seventh conference of the Euro-

pean chapter of the Association for Computational Linguistics, pages 83–89. Morgan

Kaufmann Publishers Inc., 1995.

113



Eugene Charniak. Statistical parsing with a context-free grammar and word statistics.

In Proceedings of the Fourteenth National Conference on Artifical Intelligence (AAAI

’97), pages 598–603, 1997.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th annual meeting of the Associa-

tion for Computational Linguistics, pages 310–318. Association for Computational

Linguistics, 1996.

Marcus Tullius Cicero. The Orations of Marcus Tullius Cicero, volume 4. George Bell

& Sons, 1903. Translated by C. D. Yonge.

Michael Collins. Three generative, lexicalized models for statistical parsing. In Philip R.

Cohen and Wolfgang Wahlster, editors, Proceedings of the Thirty-Fifth Annual Meet-

ing of the Association for Computational Linguistics and Eighth Conference of the

European Chapter of the Association for Computational Linguistics, pages 16–23,

Somerset, New Jersey, 1997. Association for Computational Linguistics.

Ann Copestake, Dan Flickinger, and Ivan A. Sag. Minimal recursion semantics: An

introduction (draft), 1999. URL http://www.cl.cam.ac.uk/\%7Eaac10/papers/

newmrs.ps.

Anne Copestake and Dan Flickinger. An open-source grammar development environ-

ment and broad-coverage English grammar using HPSG. In Proceedings of LREC

2000, Athens, Greece, 2000.

Samson de Jager, Alistair Knott, and Ian Bayard. A DRT-based framework for pre-

suppositions in dialogue management. In Proceedings of the 6th Workshop on the

Semantics and Pragmatics of Dialogue (EDILOG 2002), September 2002.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of

random fields. Technical Report CMU-CS-95-144, CMU, 1995.

Lorene Earnshaw, Stewart Fleming, Victoria Weatherall, and Alistair Knott. Analysis

of errors in the writing of first year students of Maori. Journal of Maori and Pacific

Development, 5(2):31–47, September 2004.

Dan Flickinger. On building a more efficient grammar by exploiting types. Natural

Language Engineering, 6(1):15–28, 2000. Special Issue on Efficient Processing with

HPSG.

114



Henry Fuchs, Zvi M. Kedem, and Bruce Naylor. Predetermining visibility priority in

3-D scenes (preliminary report). In SIGGRAPH ’79: Proceedings of the 6th annual

conference on Computer graphics and interactive techniques, pages 175–181. ACM

Press, 1979.

J. Ginzburg and I. Sag, editors. Interrogative investigations. CSLI Publications, Stan-

ford, 2000.

Herbert Paul Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan, editors,

Syntax and Semantics, volume 3: Speech Acts, pages 41–58. Academic Press, New

York, 1975.

Barbara J. Grosz and Candace L. Sidner. Attention, intentions, and the structure of

discourse. Computational Linguistics, 12(3):175–203, July-September 1986.

J Hobbs, M Stickel, D Appelt, and P Martin. Interpretation as abduction. Artificial

Intelligence, 63, 1993.

Homer. The Odysseys of Homer. J. R. Smith, London, 1857. Translated by George

Chapman.

Peter Jackson. Introduction to Expert Systems. International Computer Science Series.

Addison-Wesley, Wokingham, England, second edition, 1990.

Jerome K. Jerome. Three Men in a Boat. J. W. Arrowsmith, 1889.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. Estima-

tors for stochastic “unification-based” grammars. In Proceedings of the 37th Meeting

of the Association for Computational Linguistics, pages 535–541, 1999.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice Hall

Series in Artificial Intelligence. Prentice Hall, 2000.

Hans Kamp, J. van Genabith, and Uwe Reyle. Discourse representation theory. In

Handbook of Philosophical Logic. Springer-Verlag, in preparation.

Frank Keller and Mirella Lapata. Using the web to obtain frequencies for unseen

bigrams. Computational Linguistics, 29(3):459–484, 2003.

S. King, A. Knott, and B. McCane. Language-driven nonverbal communication in a

bilingual conversational agent. In Proceedings of the 16th International Conference

on Computer Animation and Social Agents (CASA), May 2003.

115



Alistair Knott and Peter Vlugter. Syntactic disambiguation using presupposition res-

olution. In Proceedings of the 2003 Australasian Language Technology Workshop

(ALTW2003), pages 98–104, 2003.

Alistair Knott, Ian Bayard, Samson de Jager, and N. Wright. An architecture for

bilingual and bidirectional NLP. In Proceedings of the 2nd Australasian Natural

Language Processing Workshop, December 2002.

Alistair Knott, Ian Bayard, and Peter Vlugter. Multi-agent human-machine dialogue:

Issues in dialogue management and referring expression semantics. In C Zhang,

H Guesgen, and W Yeap, editors, PRICAI 2004: Trends in Artificial Intelligence.

Proceedings of the 8th Pacific Rim Conference on Artificial Intelligence, Lecture

Notes in AI, pages 872–881. Springer Verlag, 2004.

Geoffrey Kuenning. ispell. Web page, 2001. URL http://directory.fsf.org/

ispell.html. Viewed on 26 January 2005.

Karen Kukich. Techniques for automatically correcting words in text. ACM Computing

Surveys, 24(4):377–439, December 1992.

Milan Kundera. The Book of Laughter and Forgetting, page 237. Penguin, 1983.

Corrin Lakeland. Lexical Approaches to Backoff in Statistical Parsing. PhD thesis,

University of Otago, Dunedin, New Zealand, in preparation.

Alex Lascarides and Nicholas Asher. Discourse relations and defeasible knowledge. In

Proceedings of the 29th Conference of the Association for Computational Linguistics,

pages 55–63, Berkeley, CA, 1991.

D. Lewis. Scorekeeping in a language game. Journal of Philosophical Logic, 6:339–359,

1979.

Diane J. Litman and James F. Allen. A plan recognition model for clarification subdi-

alogues. In Proceedings of the 22nd conference of the Association for Computational

Linguistics, pages 302–311. Association for Computational Linguistics, 1984.

Elias Lönnrot, editor. Kalevala: the land of the heroes. Number 259 in Everyman’s

Library. J. M. Dent & Sons Ltd., London, 1907. Translated by W. F. Kirby.

116



Pontus Lurcock, Peter Vlugter, and Alistair Knott. A framework for utterance disam-

biguation in dialogue. In Ash Asudeh, Cécile Paris, and Stephen Wan, editors, Pro-

ceedings of the Australasian Language Technology Workshop, pages 101–108, Sydney,

Australia, 2004. Macquarie University, The Australian Speech Science and Technol-

ogy Association.

Robert A. MacLachlan. CMU Common Lisp user’s manual. Technical report, Carnegie

Mellon University, 1992.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-

guage Processing. The MIT Press, Cambridge, Massachusetts, 1999.

Wolfgang Menzel and Ingo Schröder. Error diagnosis for language learning systems.

ReCALL, 1999. URL citeseer.ist.psu.edu/menzel99error.html.

A. M. Miller, H. E. Pople, and J. D. Myers. INTERNIST-I, an experimental computer-

based diagnostic consultant for general internal medicine. New England Journal of

Medicine, 307:468–476, 1982.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. The Penn dis-

course treebank. In Proceedings of the Language Resources and Evaluation Confer-

ence, Lisbon, Portugal, 2004.

Saif Mohammad and Ted Pedersen. Complementarity of lexical and simple syntactic

features: The SyntaLex approach to Senseval-3. In Proceedings of the Third Inter-

national Workshop on the Evaluation of Systems for the Semantic Analysis of Text

(Senseval-3), Barcelona, Spain, 2004.

Stephan Oepen. [incr tsdb()] competence and performance laboratory: User and refer-

ence manual, 1999. URL http://citeseer.ist.psu.edu/457852.html.

Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christoper D. Manning.

LinGO Redwoods: A rich and dynamic treebank for HPSG. In Proceedings of the

First Workshop on Treebanks and Linguistic Theories (TLT2002), 2002.

Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. University of

Chicago Press, 1994.

Jan Potocki. The Manuscript Found in Saragossa. Penguin, London, 1995. Translated

by Ian Maclean.

117



Ronald Rosenfeld. A maximum entropy approach to adaptive statistical language

modeling. Computer, Speech and Language, 10:187–228, 1996.

H. Sacks, E. Schegloff, and G. Jefferson. A simplest systematics for the organization

of turn-taking for conversation. Language, 50(4):696–735, 1974.

Nanda Slabbers. A system for generating teaching initiatives in a computer-aided

language learning dialogue. Technical report, University of Otago, Dunedin, New

Zealand, in preparation.

Norman K. Sondheimer and Ralph M. Weischedel. A rule-based approach to ill-formed

input. In Proceedings of the 8th Conference on Computational Linguistics, pages 46–

53, Morristown, NJ, USA, 1980. Association for Computational Linguistics.

Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, second edition, 1990.

Laurence Sterne. The Life and Opinions of Tristram Shandy. Number 617 in Every-

man’s Library. J. M. Dent & Sons Ltd., London, 1912.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel

Jurafsky, Paul Taylor, Rachel Martin, Marie Meteer, and Carol van Ess-Dykema. Di-

alogue act modeling for automatic tagging and recognition of conversational speech.

Computational Linguistics, 26(3):339–371, 2000.

D. A. Swinney. Lexical activation during sentence comprehension: (re)consideration of

context effects. Journal of Memory and Language, 1979.

James Thurber. The Thurber Carnival. Hamish Hamilton, London, 1945.

Kristina Toutanova, Christopher D. Manning, Stuart M. Shieber, Dan Flickinger, and

Stephan Oepen. Parse disambiguation for a rich HPSG grammar. In First Workshop

on Treebanks and Linguistic Theories (TLT2002), pages 253–263, 2002.

Kristina Toutanova, Christopher D. Manning, Stephan Oepen, and Dan Flickinger.

Parse selection on the Redwoods corpus: 3rd growth results. Technical Report 64,

Stanford University, California, 2003.

David Traum. Computational models of grounding in collaborative systems. In Work-

ing Papers of the AAAI Fall Symposium on Psychological Models of Communication

in Collaborative Systems, 1999.

118



Maarten van Schagen. Tauira: A bilingual dialogue-based lexical acquisition system.

Technical Report OUCS-2004-06, Department of Computer Science, University of

Otago, Dunedin, New Zealand, 2004.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of

the Association for Computing Machinery, 21:168–173, 1974.

Wolfgang Wahlster, editor. Verbmobil: Foundations of Speech-to-Speech Translation.

Artifical Intelligence. Springer, Berlin, July 2000.

Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly & Asso-

ciates, Inc., third edition, 2000.

Yuanyong Wang and Achim Hoffman. A new measure for extracting semantically re-

lated words. In Ash Asudeh, Cécile Paris, and Stephen Wan, editors, Proceedings

of the Australasian Language Technology Workshop, Sydney, Australia, 2004. Mac-

quarie University, The Australian Speech Science and Technology Association.

Ralph M. Weischedel, Wilfried M. Voge, and Mark James. An artificial intelligence

approach to language instruction. Artificial Intelligence, 10(3):225–240, 1978.

G. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley, 1949.

119


