DEVELOPMENT OF LABORATORY TESTS FOR ASSESSING VITAMIN STATUS

Malina Kate Storer

A thesis submitted for the degree of Doctor of Philosophy at the University of Otago, Dunedin, New Zealand

Date: February 27, 2006

ABSTRACT

Aim

To develop assays for the determination of functional vitamin status and to determine the functional vitamin status of an elderly population. Specifically the focus has been to develop assays to measure the biological concentrations of *N*,*N*-dimethylglycine and glycine betaine as possible markers of functional folate status.

Background

Functional vitamin deficiencies arise when the tissue concentration of a vitamin derived coenzyme is inadequate this can occur despite normal concentrations of the vitamin in the blood or urine, and leads to lower activity of the vitamin dependent enzyme. The lowered enzyme activity causes changes in the concentrations of metabolites associated with the biochemical pathway catalysed by the enzyme. The amount of vitamin at a tissue level can be determined by measuring these changes. Functional vitamin deficiencies have been associated with many chronic diseases; the relationships between nutrients and disease can be investigated using appropriate assays.

Methods and results

Two new trifluromethanesulfonate reagents (2-phenanthrenacyl and 6-methoxynapthacyl) have been synthesised. These reagents form highly fluorescent derivatives with N,N-dimethylglycine, glycine betaine and propionylcarnitine. Using 2-phenanthrenacyl triflate as the derivatising reagent the detection limit for glycine betaine is improved from 0.2 μ M to 0.04 μ M. Optimisation is achieved by changing the solvent, base and water content of the reaction mixture. Polar aprotic solvents are used, with the presence of some water or alcohol tolerated. Suitable bases include the inorganic bases, magnesium hydroxide, silver oxide and lithium phosphate.

The cationic derivatives of *N*,*N*-dimethylglycine and glycine betaine in plasma are separated by HPLC on an alumina column within 50 minutes. Cation exchange HPLC is carried out using a polar organic solvent containing an aqueous buffer with an organic cation and a hydrophilic anion. Selectivity is affected by the choice of organic solvent and buffer. Increasing the water content and the buffer concentration reduces the retention of the derivatives. Propionylcarnitine can be quantified after separation by HPLC on a non-endcapped strong cation exchange column however the use of this assay to detect functional biotin deficiency has not been validated.

¹H NMR can be used to measure *N*,*N*-dimethylglycine and glycine betaine in urine. The inter and intra-assay CV's were < 10% and recoveries were \ge 97% over a linear range from 50 µM to 1000 µM. Limits of detection using ¹H NMR spectroscopy (15 – 25 µM) are higher than HPLC assays, though adequate for the detection of raised concentrations in urine.

Elderly hip fracture patients (aged 65-90) were investigated, as they are known to have poor nutrition compared to health elderly, and would be expected to have associated vitamin deficiencies. A greater percentage of hip fracture patients had insufficient vitamin B₁₂ and folate concentrations compared to age matched healthy elderly controls (Folate 55% and 32% <120 pM, Vitamin B₁₂ 7% and 5% <8.5 nM). The results for other analytes are difficult to interpret because of the affects of recent trauma. In the control population glycine betaine predicts total homocysteine concentrations (multiple linear regression -0.055 P = 0.099) and is a stronger predictor of folate than total homocysteine. The ratio of the concentrations of *N*,*N*-dimethylglycine/glycine betaine was not significantly associated with folate status.

Conclusion

The concentrations of *N*,*N*-dimethylglycine and glycine betaine in plasma can be measured by HPLC, and in urine by ¹H NMR. In healthy elderly there is a high prevalence of vitamin deficiency. The ratio of *N*,*N*-dimethylglycine/glycine betaine is not an appropriate marker of functional folate status, however the associations between glycine betaine and homocysteine metabolism require further investigation.

PUBLICATIONS ARISING FROM THIS THESIS

McEntyre, C. J., M. Lever and M. K. Storer (2004). "A High Performance Liquid Chromatographic Method for the Measurement of Total Carnitine in Human Plasma and Urine." <u>Clinica Chimica Acta</u> **344**: 123-130.

Happer, D. A. R., C. M. Hayman, M. K. Storer and M. Lever (2004). "Aracyl Triflates as Derivatizing Agents for Biological Betaines." <u>Australian Journal of Chemistry</u> **57**: 467-472.

Mishra, S., M. K. Storer, C. M. T. Sherwin and J. G. Lewis (2005). "A Simple Binding Assay for the Direct Determination of Biotin in Urine." <u>Clinica Chimica Acta</u> **360**: 60-66.

Storer, M. K. and M. Lever (2006). "Aracyl Triflates for Preparing Fluorescent and UV Absorbing Derivatives of Unreactive Carboxylates, Amines and Other Metabolites." <u>Analytica Chimica Acta</u> **558**: 319-325.

Storer, M. K., C. J. McEntyre and M. Lever (2006). "Separation of Cationic Aracyl Derivatives of Betaines and Related Compounds." Journal of Chromatography A 1104: 263-271.

Lee, M. B., M. K. Storer, J. W. Blunt and M. Lever (2006). "Validation of ¹H NMR Spectroscopy as an Analytical Tool for Methylamine Metabolites in Urine." <u>Clinica Chimica</u> <u>Acta</u> **365**: 264-269.

ACKNOWLEGEMENTS

The work described in this is thesis would not have been accomplished without guidance, support and encouragement from a large number of people. In particular I owe a huge thanks to my supervisors; Dr Alan Happer for advice on all things chemistry, Professor Peter George for supporting my research at Canterbury Health Laboratories and his clinical biochemistry expertise, Professor Stephen Chambers for his enthusiasm regarding the clinical study and Dr Michael Lever for being a wealth of information, guidance and advice regarding all aspects of this project. You have all had a huge part to play in this accomplishment and I am extremely grateful.

I would like to thank John Lewis and Suman Mishra in the Steroid Laboratory at Canterbury Health Laboratories for the biotin assay development, Tim Wilkinson for consultation during the initial conception of the hip fracture study and Elisabeth Wells for invaluable statistical advice. Phil Zakaria, Paul Haddad and all of the team at the Australian Centre for Research on Separation Science, deserve thanks for helping me come to terms with capillary electrophoresis. My thanks to the "Men of Steel" for their assistance during my time in the Chemistry department. I would also like to thank Steve Brennan for his assistance with mass spectrometry and Martin for his NMR spectroscopy expertise.

I am grateful to the willing patients and volunteers who participated in the clinical study. Additionally I would like to thank the blood collection staff and the staff of wards 18 and 19 at Christchurch Hospital for their cooperation. I am indebted to Chris Budgen, Lesney Stuart, Charles Hawes, Sue Carnoutsos, Linda Pike and the other staff in the respective sections at Canterbury Health Laboratories for many of the analyses performed on the samples.

Financial assistance is invaluable in an undertaking such as this and I am grateful to Canterbury Health Laboratories, the Foundation for Research Science and Technology, and the Todd Foundation for their contributions.

Many thanks to the people that have put up with me every day in the lab; Sarah M for tolerating me in the confined space of our office at all times but especially during the stressful writing-up process, Chris M for keeping the place running, Wendy, Madhu, Martin, and Sandy S for the laughs and the moral support: it's been a pleasure to work with you all. Sandy W, Chris S, Julia and Linda thanks for sharing your lab space. To my summer students Sarah

L, Catherine, and Ange thank you for your great work and entertainment over the summer months.

Thanks to the people who helped me stay sane; Marie, Sarah L, and Anna for understanding exactly what I was going through, along with Kate and Jasmine for distracting me, entertaining me, planning with me and counseling me. My thanks to Matt for putting up with me, and Michaela, and everyone else who's flatted with me for their support.

My biggest thanks and all my love to my family; to Heath and Briar for your support, even if you didn't think I was ever going to finish University and to my parents - thanks for having me, for your unwavering support, encouragement and love. I couldn't have done this without you.

In closing I would like to thank the anonymous author of my email quote... thank you for keeping it all in perspective!

"Life should NOT be a journey to the grave with the intention of arriving safely in an attractive and well-preserved body, but rather to skid in sideways, Champagne in one hand, strawberries in the other, body thoroughly used up, totally worn out & screaming 'WOO HOO - What a ride!""

TABLE OF CONTENTS

Abstract	ii
Publications arising from this thesis	iv
Acknowlegements	v
Table of contents	vii
Table of illustrations	xii
List of abbreviations	xvii
1 AN OVERVIEW OF VITAMIN DEFICIENCIES AND METHODS F	OR THE
1.1 History and significance of vitamins	2
1 1 1 The history of vitamins	4
1.2 Causes of vitamin deficiency	7
1.3 Functional vitamin deficiencies and the consequences	9
1.3.1 Vitamins and the risk of cardiovascular disease	9
1.3.2 Vitamins concentrations and cancer risk	12
1.3.3 Vitamin status and the connection with pregnancy complications	13
1.3.4 The influence of vitamins status on neurological disorders	14
1.3.5 Vitamins and the risk of hip fracture	15
1.4 Determining vitamin status	16
1.4.1 Determining thiamine status	20
1.4.2 Measuring biotin concentrations in biological samples	23
1.4.3 Measuring folate concentrations in biological samples	
1.4.4 Determining vitamin B ₁₂ concentrations	
1.4.5 Correcting vitamin deficiencies	
1.5 Aims of this work	
1.6 References for chapter one	

2	PREPARATION AND USE OF ARACYL TRIFLATE REAGENTS F	OR THE
	DERIVATISATION OF BETAINES	
2.1	Introduction	
2.2	Preparation of derivatising reagents	
2.3	Spectroscopic properties of the reagents and derivatives	
2.4	Specificity of the derivatisation reaction	54
	2.4.1 Derivatisation of the carboxyl group of betaines	56
	2.4.2 Derivatisation of amines	
	2.4.3 Derivatisation of <i>N</i> , <i>N</i> -dimethylglycine	57
	2.4.4 Other derivatives	
2.5	Optimisation of the derivatisation reaction	59
	2.5.1 Choice of derivatisation solvent	59
	2.5.2 Choice of base for derivatisation	
	2.5.3 Effect of water and extra base on derivatisation	65
	2.5.4 Limits of detection	66
2.6	Conclusions	67
2.7	Experimental	69
2.8	References for chapter two	76
3	OPTIMISATION OF AN HPLC ASSAY FOR THE SEPARATION OF C	BLYCINE
	BETAINE AND N,N-DIMETHYLGLYCINE IN PLASMA	79
3.1	Biological importance of betaines and related compounds	79
	3.1.1 Glycine betaine and <i>N</i> , <i>N</i> -dimethylglycine	
3.2	Methods for measuring glycine betaine and <i>N</i> , <i>N</i> -dimethylglycine in plasma a	nd urine 86
	3.2.1 Use of HPLC to measure betaines	
3.3	Optimisation of an HPLC assay to measure glycine betaine and N,N-dimethy	lglycine 90
	3.3.1 Samples	90
	3.3.2 Column choice	91
	3.3.3 Choice of organic solvent	
	3.3.4 Choice of buffer	94
	3.3.5 Buffer concentration	96
	3.3.6 Water content	97
	3.3.7 Conditions used for the separation of glycine betaine and N,N-dimethy	lglycine in
	plasma	
	3.3.8 Linearity	

	3.3.9 Precision and accuracy studies	100
3.4	Discussion	101
3.5	Experimental	102
3.6	References for chapter three	104
4	VALIDATION OF A ¹ H NMR ASSAY FOR GLYCINE BETAINE	AND
	N,N-DIMETHYLGLYCINE IN URINE	108
4.1	Use of ¹ H NMR spectroscopy to determine biological concentrations of betaines.	108
4.2	Validation of an ¹ H NMR assay for glycine betaine and <i>N</i> , <i>N</i> -dimethylglycine	110
	4.2.1 Methods	110
4.3	Results	111
	4.3.1 Precision study	112
	4.3.2 Accuracy	112
	4.3.3 Linearity	113
4.4	Discussion	114
4.5	Experimental	116
4.6	References for chapter four	117
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS	FOR
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES	FOR 119
5 5.1	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119
5 5.1	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120
5 5.1	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121
5 5.1	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122
5 5.1	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122 123
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122 123 123
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122 123 124
5 5.1 5.2	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis assays	FOR 119 119 120 121 121 122 122 123 124 126
5 5.1 5.2 5.3	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122 123 123 124 126 128
5 5.1 5.2 5.3	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis 5.1.1 Detection methods used in capillary electrophoresis assays 5.1.2 Capillary specifications 5.1.3 Calculating analyte mobility. 5.1.4 Selection of running voltage. 5.1.5 Background electrolyte choice 5.1.6 Capillary coatings. 5.1.7 The use of additives. 5.1.8 Micellar electrokinetic chromatography. Previous use of capillary electrophoresis for the separation of betaines Separation of betaines using capillary electrophoresis. 5.3.1 Samples	FOR 119 119 120 121 121 122 122 123 123 124 126 128 128
5 5.1 5.2 5.3	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122 123 123 124 126 128 128 129
5 5.1 5.2 5.3	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES Introduction to capillary electrophoresis	FOR 119 119 120 121 121 122 122 123 123 124 126 128 128 129 131

	5.3.5 Use of organic modifiers	136
	5.3.6 Use of phytic acid	138
	5.3.7 Calculation of mobility	139
5.4	The final separation	140
5.5	The use of capillary electrophoresis to measure thiamine species	142
5.6	Development of a capillary zone electrophoresis method for thiamine species	144
	5.6.1 The sample	144
	5.6.2 Capillary zone electrophoresis conditions	146
	5.6.3 Detection	148
	5.6.4 Final separation of thiamine species	149
5.7	Conclusions	150
5.8	Experimental	151
5.9	Reference for chapter five	153
6	DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING BI	OTIN
	STATUS	155
6.1	Biotin, the forgotten vitamin	155
	6.1.1 Methods for the quantification of biotin status	156
	6.1.2 Propionylcarnitine as a potential marker of functional biotin status	157
	6.1.3 Measuring propionylcarnitine	159
6.2	A novel binding assay for biotin	161
	6.2.1 Methods	161
	6.2.2 Standard curve	162
	6.2.3 Precision study	163
	6.2.4 Accuracy	163
	6.2.5 Normal biotin excretion	163
6.3	Biotin binding assay discussion	164
6.4	Development of an HPLC assay for propionylcarnitine	165
	6.4.1 Sample preparation	165
	6.4.2 Limits of detection	166
	6.4.3 Method validation.	166
	6.4.4 Precision and accuracy study	167
	6.4.5 Linearity	168
6.5	Discussion of propionylcarnitine assay	169
6.6	Conclusions	170

6.7	Experimental	1718
6.8	References for chapter six	173
7	COMPARISON OF FUNCTIONAL VITAMIN STATUS IN ELDERLY	NEW
	ZEALANDERS WITH AND WITHOUT HIP FRACTURE	1763
7.1	Vitamin deficiency in the elderly	176
7.2	Vitamin status of elderly hip fracture patients	180
	7.2.1 Population recruitment	180
	7.2.2 Sample collection	180
	7.2.3 Statistical analyses	180
	7.2.4 Graphs and tables	181
7.3	Results	182
	7.3.1 Population distribution	183
	7.3.2 Laboratory test results	183
	7.3.3 Vitamin B ₁₂ and folate concentrations	185
	7.3.4 Homocysteine and methylmalonic acid concentrations	186
	7.3.5 Glycine betaine and <i>N</i> , <i>N</i> -dimethylglycine concentrations	187
	7.3.6 <i>N</i> , <i>N</i> -Dimethylglycine/ glycine betaine ratio	188
	7.3.7 Carnitine concentrations	188
	7.3.8 Statistical analysis	188
7.4	Discussion	193
	7.4.1 Folate status	194
	7.4.2 Vitamin B ₁₂ status	195
	7.4.3 Homocysteine concentrations	196
	7.4.4 Betaine concentrations	197
	7.4.5 Markers of functional vitamin deficiency	197
	7.4.6 Fractures and vitamins and markers	199
7.5	Conclusions	201
7.6	Experimental	204
7.7	References for chapter seven	206
8	CONCLUSIONS AND FUTURE WORK	210
8.1	Conclusions and future work	210
8.2	References for chapter eight	215

TABLE OF ILLUSTRATIONS

1	AN OVERVIEW OF VITAMIN DEFICIENCIES AND METHODS FOR	THE
	DETERMINATION OF VITAMIN STATUS	2
	Table 1.1 Vitamin derived coenzymes and their biological roles	3
	Table 1.2 Dates of significant discoveries of vitamins	5
	Table 1.3 Symptoms of clinical vitamin deficiency	6
	Figure 1.1 Homocysteine metabolism	10
	Table 1.4 Reference ranges for vitamin assays	17
	Figure 1.2 A schematic vitamin dependant pathway	19
	Figure 1.3 Thiamine dependent transketolase pathway	21
	Figure 1.4 Biotin and Biotin metabolites	23
	Figure 1.5 β-Methylcrotonyl-CoA carboxylase biotin dependant pathway	25
	Figure 1.6 Folate species and the 1-carbon groups transferred	27
	Figure 1.7 Vitamin B ₁₂ dependent pathway	31
2	PREPARATION AND USE OF ARACYL TRIFLATE REAGENTS FOR	THE
	DERIVATISATION OF BETAINES	43
	Table 2.1 Spectroscopic properties of the starting materials Example 2.1 Structure for the starting materials	46
	Figure 2.1 Structures of aracyl triflate derivatising reagents.	4/
	Scheme 2.1 I fifilate reagent synthesis	48
	Table 2.2 Spectroscopic properties of the reagent in propan-2-of $\frac{1}{2}$	49
	Figure 2.2 2-(2,3-Naphthalimino) ethyl triflate	49
	Table 2.3 Spectroscopic properties of the derivatives in propan-2-of	50
	Figure 2.2 Elements of reagents and derivatives in acctonitrie	
	Figure 2.5 Fluorescence properties of the 2-phenanthrenacyl triffate reagent a	na 1ts
	grycine betaine derivative in different solvents	52
	Table 2.5 Structures of some ounds derivatised and masses of 2 non-theory derivative	54
	Figure 2.4 Variation of derivative yields with time	es. 55
	Figure 2.4 Variation of derivative yields with time.	30
	Figure 2.5 HPLC showing <i>N</i> , <i>N</i> -dimethylglycine mono derivative (bold),	N,N-
	Comparison derivatisation mixture	57
	rigure 2.0 HPLC trace snowing derivative formed when acetonitrile used as solvent	
	Figure 2.7 LIDL C trace chamins and a second basis in different solvents	60
	rigure 2. / HPLC trace snowing peaks caused by impurities in solvent	01

Figure 2.8 HPLC trace showing multiple <i>N</i> , <i>N</i> -dimethylglycine peaks in dimethoxyethane
Table 2.7 Solvents used for derivatisation with triflate reagents
Figure 2.9 HPLC trace showing derivatisation with alternative base
Figure 2.10 HPLC trace showing peaks resulting from impurities from resin bases 63
Table 2.8 Relative efficiency of derivatisation with different bases 64
Table 2.9 Limits of detection 66
Table 2.10 Best derivatisation conditions 67
OPTIMISATION OF AN HPLC ASSAY FOR THE SEPARATION OF GLYCINE
BETAINE AND N, N-DIMETHYLGLYCINE IN PLASMA
Figure 3.1 Structures of betaines and related compounds
Figure 3.2 Homocysteine remethylation pathways
Table 3.1 Biological concentrations of glycine betaine and N,N-dimethylglycine in
plasma and urine
Table 3.2 Limits of detection of common assays for glycine betaine and
<i>N</i> , <i>N</i> -dimethylglycine
Figure 3.1 Separation of betaine 2-naphthacyl ester derivatives by HPLC using four
different columns
Table 3.1 Choice of column
Table 3.2 Choice of base
Table 3.3 Effect of salt concentration in mobile phase
Table 3.4 Effect of water in mobile phase 97
Figure 3.2 HPLC traces of separation of glycine betaine and N,N-dimethylglycine in
plasma with Alumina and strong cation exchange Phenosphere columns
Table 3.5 Conditions for separation of glycine betaine and N,N-dimethylglycine in plasma
Table 3.6 Linearity of the assay
Table 3.7 Results of the precision studies

3

4	VALIDATION OF A 1H NMR ASSAY FOR GLYCINE BETAINE AN	D
	N,N-DIMETHYLGLYCINE IN URINE	108
	Figure 4.1 ¹ H NMR spectra of spiked (300 μ M) urine	110
	Table 4.1 Chemical shifts of the metabolites analysed	112
	Table 4.2 Results of precision study of glycine betaine and <i>N</i> , <i>N</i> -dimethylglycine in urin	ıe
	· · · · · · · · · · · · · · · · · · ·	112
	Figure 4.2 Standard curves for <i>N</i> , <i>N</i> -dimethylglycine and glycine betaine measured by	¹ H
	NMR Spectroscopy.	113
5	DEVELOPMENT OF CAPILLARY ELECTROPHORESIS ASSAYS FO	R
	BETAINES, AND THIAMINE SPECIES IN BIOLOGICAL SAMPLES	119
	Figure 5.1 Schematic of CE	120
	Equation 5.1 Apparent mobility	121
	Equation 5.2 Total mobility	121
	Figure 5.2 Micellar electrokinetic chromatography	124
	Figure 5.3 UV spectra	129
	Figure 5.4 Effect of changing the capillary coating	130
	Figure 5.5 Structure of phytic acid (5.1)	131
	Figure 5.6 Effect of changing the pH	132
	Figure 5.7 Effect of change of buffer	133
	Figure 5.8 Effect of neutral cyclodextrin	134
	Figure 5.9 Effects of mixed cyclodextrins	135
	Figure 5.10 Effect of methanol	136
	Figure 5.11 Effect of NaCl	137
	Figure 5.12 Effects of phytic acid	138
	Figure 5.13 Mobility of analytes	139
	Figure 5.14 Best Separation	140
	Figure 5.15 Structures	144
	Table 5.1 Fluorescent properties of the thiochrome derivatives (pH 9.2)	145
	Figure 5.16 Fluorescence scan of thiamine pyrophosphate	145
	Figure 5.17 UV properties	146
	Figure 5.18 Affect of sodium dodecyl sulfate on separation	147
	Figure 5.19 Peak areas with UV and fluorescence detection	148

xiv

6	DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING E	BIOTIN
	STATUS	
	Figure 6.1 Propionyl CoA carboxylase metabolism	157
	Figure 6.2 Structure of propionylcarnitine	158
	Figure 6.3 Typical standard curve for biotin-binding assay	162
	Table 6.1 Results of precision study of biotin in urine	163
	Table 6.2 Recoveries of biotin in urine	163
	Table 6.3 Concentration of biotin in urine	163
	Table 6.4 Limits of detection for derivatisation in different solvents	166
	Figure 6.4 Separation of propionylcarnitine in urine	167
	Table 6.5 Results of the precision study for propionylcarnitine	167
	Figure 6.5 Linearity of the propionylcarnitine method	168
	Table 6.6 Limits of detection for propionylcarnitine	169
7	COMPARISON OF FUNCTIONAL VITAMIN STATUS IN ELDERLY	NEW
	ZEALANDERS WITH AND WITHOUT HIP FRACTURE	176
	Table 7.1 Age and sex distribution of populations	182
	Table 7.2 Laboratory results	
	Table 7.3 Prevalence of abnormal concentrations	
	Table 7.4 Vitamins and markers results.	
	Table 7.5 Prevalence of abnormal concentrations of vitamins and markers	
	Figure 7.1 Vitamin B ₁₂ concentrations in #NOF and control populations	
	Figure 7.2 Folate concentrations in #NOF and control populations	
	Figure 7.3 Total homocysteine concentrations in #NOF and controls	
	Figure 7.4 Methylmalonic acid concentrations in #NOF and controls	186
	Figure 7.5 Glycine betaine concentrations in #NOF and controls	
	Figure 7.6 <i>N</i> , <i>N</i> -Dimethylglycine concentrations in #NOF and controls	
	Figure 7.7 <i>N</i> , <i>N</i> -Dimethylglycine/ glycine betaine ratio in #NOF and controls	
	Figure 7.8 Carnitine concentrations in #NOF and controls	188
	Table 7.6 Spearman correlation coefficients for control and #NOF populations	189
	Table 7.7 Predictors of total homocysteine in control and #NOF population	190
	Table 7.8 Predictors of methylmalonic acid in control and #NOF population	191
	Table 7.9 Predictors of glycine betaine in control and #NOF population	191
	Table 7.10 Predictors of N,N-dimethylglycine in control and #NOF population	192

XV

Table 7.11 Predictors	of N,N-dimethylglycine/glycine be	etaine ratio in	n control a	nd #NOF
population				192

LIST OF ABBREVIATIONS

#NOF	fractured neck of femur
¹ H NMR	proton nuclear magnetic resonance
°C	degrees celsius
CE	capillary electrophoresis
EDTA	<i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> -ethylenediamine tetraacetic acid
ELISA	enzyme linked immunosorbent assay
ESI MS/MS	electrospray ionisation tandem mass spectrometry
GC-MS	gas chromatography mass spectrometry
HIV	human immunodeficiency virus
HPLC	high pressure liquid chromatography
hr.	hour
LC-MS/MS	liquid chromatography tandem mass spectrometry
Lihep	lithium heprin
М	molL ⁻¹
M min	molL ⁻¹ minutes
M min NAD ⁺	molL ⁻¹ minutes nicotinamide adenine dinucleotide
M min NAD ⁺ NADH	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide
M min NAD ⁺ NADH NMR	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance
M min NAD ⁺ NADH NMR pK _a	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant
M min NAD ⁺ NADH NMR pK _a pH	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant negative log of the hydrogen ion concentration
M min NAD ⁺ NADH NMR pK _a pH r	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant negative log of the hydrogen ion concentration correlation coefficient
M min NAD ⁺ NADH NMR pK _a pH r RNA	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant negative log of the hydrogen ion concentration correlation coefficient ribonucleic acid
M min NAD ⁺ NADH NMR pK _a pH r RNA SD	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant negative log of the hydrogen ion concentration correlation coefficient ribonucleic acid standard deviation
M min NAD ⁺ NADH NMR pKa pH r RNA SD UV	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant negative log of the hydrogen ion concentration correlation coefficient ribonucleic acid standard deviation ultra violet
M min NAD ⁺ NADH NMR pKa pH r RNA SD UV v/v	molL ⁻¹ minutes nicotinamide adenine dinucleotide reduced nicotinaminde adenine dinucleotide nuclear magnetic resonance log of the acid dissociation constant negative log of the hydrogen ion concentration correlation coefficient ribonucleic acid standard deviation ultra violet volume to volume