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Abstract

Human societies have long cultivated the ability to organise themselves into

groups and have also established formal or informal rules of behaviour that are

expected within these groups. In the field of multi-agent systems, researchers

are inspired by this ability of human societies to form groups and establish social

control, and they have applied them to solve some of the problems in artificial

agent societies.

One of the problems in artificial agent societies is the problem of non-cooperation,

where individuals have motivations for not cooperating with other agents. An

example of non-cooperation is the issue of freeriding, where some agents do not

contribute to the welfare of the society but do consume valuable resources. This

can be likened to the “commons” problem. The way to address this problem is

by imposing strict rules by centralised institutions. However, centralised solu-

tions suffer from performance bottlenecks, and their scalability is poor. Towards

this end, our first objective of this thesis is to investigate decentralised mech-

anisms for facilitating social control in agent societies. Our second objective

is associated with an important attribute of modern artificial societies, which is

the openness of such societies. Agents may join and/or leave these societies at

any time. Towards this end, our second objective of this thesis is to investigate

mechanisms which can handle the dynamism of open agent societies.

Another key aspect in facilitating social control lies in employing appropriate

mechanisms that can facilitate such control. In this thesis we are inspired by

decentralised social practices found in human societies. This thesis investigates

mechanisms that contribute towards the formation (via self-organisation) of dif-

ferent groups in an agent society based on their cooperativeness. It demonstrates

that these mechanisms help in achieving the separation of good agents (coopera-

tors) from bad agents (noncooperators) without expelling them from the society.
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It demonstrates how the concepts of tags can be used for group formation and

how the information about the cooperativeness of agents in the society can be

spread based on using socially-inspired mechanisms. It also investigates how

monitoring and control mechanisms such as referrals, voting, gossip, resource

restriction, and ostracism can be used in artificial agent societies. Thus our fo-

cus of this thesis is to develop socially-inspired mechanisms to facilitate self-

organisation of groups in agent societies to restrict exploitation. We demon-

strate that the formation of groups shield “bad” agents from taking advantage of

“good” agents. We also demonstrate that the society is better off if the groups

are organised based on their cooperativeness.

Overall, the goal of this thesis is to investigate and demonstrate the new socially-

inspired mechanisms for the self-organisation of groups in open, decentralised

agent societies. This thesis initially systematically explores closed, centralised

societies and gradually moves on to open, decentralised societies, since many

real-life societies lie somewhere between these two ends of the open spectrum,

with more and more societies lying closer to the end of full openness. We believe

the mechanisms explored in this thesis can be applied to open, decentralised

agent societies, such as electronic file-sharing societies to help avoid the problem

of freeriding. The mechanisms proposed in this thesis could also be applied to

organise agents into groups based on their behaviour, in virtual worlds and other

online communities.
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Chapter 1

Introduction

Human societies that we are a part of have evolved over millennia. One of the key compo-

nents that make human societies a success is the innate ability of their members to organise

into groups to cooperate and collaborate with each other and perform tasks in an organised

manner. To facilitate cooperation and collaboration, these groups have established formal

or informal social structures that specify the rules of interactions between individuals in the

groups. Formal structures include the establishment of organisations and governments that

operate based on well-formed rules. Informal structures include the use of socially estab-

lished mechanisms such as reputation, trust and norms.

Either formal or informal, these structures (or mechanisms) facilitate the betterment of

the society. These structures facilitate the separation of good individuals from bad. It is from

this ability of human societies that we derive the inspiration for this thesis.

Our principal objective in this thesis is to develop several social mechanisms for artificial

agent societies that can help to distinguish “good” agents (cooperative) from “bad” ones (un-

cooperative) in an agent society. This separation of individuals into different groups not only

shields from bad agents exploiting the good but leads to the betterment of the society. For

example, an electronic file-sharing society containing sharers and non-sharers will benefit

from the segregation process that sifts good from bad. Grouping good with good and bad

with bad makes a better society, where better services can be made available for good groups.

We have developed and experimented with mechanisms that operate under both closed- and

open-world assumptions which can be applied to centralised, semi-centralised, or distributed

2



societies.

1.1 Motivation

With the advancement of Information and Communications Technology (ICT), electronic so-

cieties have become popular, and different types of electronic societies exist. Moreover, with

the development of Web 2.0 (O’Reilly, 2005), the Internet is being used in a more interac-

tive manner (i.e. a “read-write web” that facilitates better interaction between individuals).

Modern electronic societies facilitated by Web 2.0 technologies include social networking

societies and communal blogs and wikis. Some of the well-known electronic societies in-

clude Massively Multi-player Online Games (MMOGs) such as World of Warcraft (1994),

e-commerce societies such as eBay (1995), and virtual societies such as Second Life (2003).

Another important domain of electronic societies is the area of Peer-to-Peer systems

(P2P). An important feature or activity that is involved in the P2P domain is file-sharing,

which consumes a considerable amount of the traffic on the Internet (Jackson, 2011). People

share their digital goods, such as videos, audios, images and ebooks, with others and also

receive these goods from them. Thus the sharing of digital goods has led to the development

of digital communities whose goal is to facilitate sharing among its members. However,

the goal of sharing in digital communities can be undermined by the presence of freeriders.

The freeriding problem was first reported in Gnutella by Adar and Huberman (2000). In

P2P common usage terms, a freerider is called as a “leacher”. Leaching is not a crime, but

it is selfish behaviour which results in receiving the benefit from the community without

providing reasonable contribution back to the community.

Due to “nature’s design”, different types of people exist in a society. In online com-

munities the ‘types’ of users may correspond to different ‘levels’ of cooperativeness. The

achievement of an online community can be determined by the cooperativeness of its mem-

bers. Agents’ cooperativeness differs from one another. This behaviour (cooperativeness) is

not the same for all the agents. The level of cooperativeness varies among agents. So, one

of the potential actions to take to address the problem of good agents being exploited by bad

agents is to separate good agents from bad without expelling the bad from the society. This

can be accomplished by separating agents based on their cooperativeness. By doing this we
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can avoid cooperators being exploited by freeriding. In order to implement this solution,

three features should be considered. They are

1. the nature of the society (closed or open)

2. the level of control in the society (centralised, semi-centralised, or decentralised)

3. the social mechanisms used for separating groups

In this connection we observe that some natural complex systems show cooperative be-

haviour. For example in animal societies, animals form herds, schools, clans. Additionally,

humans have organised themselves into groups to perform various tasks. Individuals in a

group cooperate, coordinate and collaborate with each other. Inspired by the organisation

of groups in these societies, this thesis investigates how social mechanisms can be devel-

oped and used in agent societies to help agents to self-organise themselves into groups (i.e.

help in the segregation of groups based on the cooperativeness of agents) which leads to the

betterment of the society.

Social mechanisms developed in this thesis are used as components to help build up

and maintain social structure in artificial societies. Knowledge sharing and P2P file-sharing

are the application domains that have been considered for testing the social mechanisms we

are investigating in this thesis. Nevertheless, most of the results and findings presented are

general and could also be applied to other systems such as online gaming societies and virtual

worlds.

1.2 Research questions and contributions

The overarching research question posed in this thesis is How can we separate good indi-

viduals from bad by dynamically forming different groups based on cooperativeness? (or

help the self-organisation of groups based on cooperativeness?). The sub-questions are as

follows.

1. How can we design and develop systems that have the ability to deal with selfish,

non-cooperative agents without excluding them?
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2. How can we develop mechanisms that can be used to self-organise societies (i.e. sepa-

rate them into groups based on cooperativeness?) that are centralised, semi-centralised,

or decentralised operating under closed- or open-world assumptions?

3. How can social mechanisms such as referral, voting, tagging, gossip and ostracism be

used for this purpose?

The above questions are interrelated to each other. The main focus of the thesis is to pro-

vide a decentralised solution for open P2P systems from models inspired by human societies

to achieve self-organisation. Our aim is to help establish artificial societies which are open,

scalable, adaptive, self-organising, and, decentralised.

1.2.1 Publications

The research presented in this thesis has resulted in several peer-reviewed publications. Table

1.1 shows which publication corresponds to which chapter in the thesis.

1.3 Thesis structure

This thesis has three parts as shown in Table 1.2. The first part of the thesis (Chapters 1-

3) provides an introduction and relevant background for the thesis. Chapter 1 presents an

introduction to the thesis, its motivation, its research objectives, and its structure. Chapter

2 introduces the relevant topics and concepts to understand the main research of this work.

This includes an introduction to multi-agent systems and the characteristics of artificial agent

societies. It also discusses different types of system structures, such as closed and open, and

levels of control applied on them, such as centralised, semi-centralised and decentralised.

It also introduces the freeriding problem. Chapter 3 discusses the social theories employed

in this work by introducing findings from the relevant literature. The social mechanisms

discussed are tagging, referral, voting, gossip, and ostracism.

The second part, which comprises of Chapters 4-7, presents the newly developed socially-

inspired mechanisms along with the experiments, results, and our findings. All our exper-

iments make use of some social mechanisms that we have developed. Chapter 4 presents
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No Paper Chapter

1 Sharmila Savarimuthu, Maryam Purvis, and Martin K. Purvis. 2008. Emergence of

Sharing Behaviour in a Multi-agent Society Using Tags. In Proceedings of the 2008

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech-

nology - Volume 02 . IEEE Computer Society, Washington, DC, USA, 527-530.

4

2 Sharmila Savarimuthu, Maryam Purvis, and Martin K. Purvis. 2008. Altruistic Sharing

using Tags. The 6th International Workshop on Agents and peer-to-peer computing. Estoril,

Portugal, 2008.

4

3 Sharmila Savarimuthu, Maryam Purvis, and Martin K. Purvis. 2009. Tag-based model for

knowledge sharing in agent society. In Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems - Volume 2. International Foundation for

Autonomous Agents and Multiagent Systems, Richland, SC, 1299-1300.

4

4 Sharmila Savarimuthu, Martin K. Purvis, Maryam Purvis, and Mariusz Nowostawski. 2009.

Mechanisms to restrict exploitation and improve societal performance in multi-agent sys-

tems. Intelligence Integration in Distributed Knowledge Management, IGI Global, Hershey,

New York, 182-194.

5

5 Martin K. Purvis, Sharmila Savarimuthu, Marcos De Oliveira, and Maryam Purvis. 2006.

Mechanisms for Cooperative Behaviour in Agent Institutions. In Proceedings of the

IEEE/WIC/ACM International Conference on Intelligent Agent Technology. IEEE Com-

puter Society, Washington, DC, USA, 121-124.

5

6 Sharmila Savarimuthu, Maryam Purvis, and Martin K. Purvis. 2009. Self-Organization of

Peers in Agent Societies. In Proceedings of the 2009 IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent Technology - Volume 02. IEEE Com-

puter Society, Washington, DC, USA, 74-77.

6

7 Sharmila Savarimuthu, Maryam Purvis, Martin K. Purvis, and Bastin Tony Roy Savarimuthu.

2010. Mechanisms for the self-organization of peer groups in agent societies. Multi-Agent-

Based Simulation XI - International Workshop - volume 6532 of Lecture Notes in Artificial

Intelligence, Springer, Toronto, Canada, May 11, 2010, 93-107.

6 and 7

8 Sharmila Savarimuthu, Martin K. Purvis, Bastin Tony Roy Savarimuthu, and Maryam Purvis.

2010. Gossip-based Self-organising Open Agent Societies. The 13th International Confer-

ence on Principles and Practice of Multi-Agent Systems, Kolkata, India, November 12th

-15th.

7

Table 1.1: Publications backing the thesis
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Parts Chapters

I - Introduction and Background 1-3

II - Socially-Inspired Models 4-7

III - Discussion and Conclusion 8-9

Table 1.2: Three parts of the thesis

the mechanisms developed for knowledge sharing in artificial agent societies in a system-

controlled (centralised) environment and its results. Chapter 5 presents the mechanisms

developed that help to resist exploitation and lead to betterment of the society in semi-

centralised agent societies by playing the Prisoner’s dilemma game. Chapter 6 presents the

mechanisms developed for sharing digital goods (P2P file-sharing) in closed, decentralised

agent societies and the results. Chapter 7 presents the mechanisms developed for sharing

digital goods in open, decentralised agent societies and the results.

The third part presents the discussion and conclusion and consists of Chapters 8 and 9.

Chapter 8 discusses the contributions, limitations and future work. Chapter 9 concludes the

thesis.
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Chapter 2

Social control in multi-agent systems

Computer scientists have been inspired by several natural phenomena to design computer

systems. Inspired by natural evolution, they have been exploring how evolutionary concepts

such as mutation and cross-over can be used to generate new solutions in the areas of genetic

algorithms and evolutionary computing (Holland, 1992; Eiben and Smith, 2008). In the field

of neural computing (Wasserman, 1989), researchers have been inspired by the neural pro-

cesses that happen in the human brain and have modeled them as software processes to find

solutions to certain types of problems in the areas of image recognition and speech synthesis.

In a similar vein, researchers in multi-agent systems have sought inspiration from human so-

cieties. Human societies are made up of several autonomous individuals who communicate,

collaborate, compete and cooperate with each other. They operate in groups that are cohe-

sive, and the order in these groups is sustained through informal social mechanisms such as

trust, reputation and norms (Dellarocas and Klein, 1999). Inspired by processes in human

societies, this thesis explores the social mechanisms that can be employed in artificial agent

societies to facilitate social order through the separation of groups. Towards this goal, this

chapter aims at discussing the background of this thesis. First, it provides an introduction

to multi-agent systems (MAS) and how societies are modeled and simulated in the field of

MAS in Section 2.1. Second, it provides an introduction to artificial societies, agent-based

social simulation (ABSS), the nature of the agent societies and level of control applied on

these societies. Third, it introduces the problem of non-cooperation in human and electronic

societies in Section 2.3.
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2.1 Agents and multi-agent systems

This subsection aims at providing an introduction to software agents and the field of Multi-

agent Systems (MAS).

2.1.1 Software agents

An agent that is a part of a MAS is an autonomous software entity which can perform tasks in

order to achieve its goal(s) without direct human supervision. A software agent may use Ar-

tificial Intelligence (AI) which is an adaptation of human-like intelligence for computational

entities. Agents interact with each other to achieve their goals. But still they are autonomous

entities with the ability to say no to requests to perform an action. Software agents have three

other main capabilities to meet their delegated objectives. They are

a) Reactivity: agents sense the changes in the environment and react accordingly.

b) Proactiveness: agents exhibit goal-directed behaviour by carrying out appropriate

tasks by initiating those tasks themselves.

c) Social ability: agents interact with each other to work together as a team to achieve

a shared goal when the goal is not achievable by an individual agent. Hence cooperation is

needed in many circumstances to achieve the goal.

According to Wooldridge (2009) an agent is “a computer system that is capable of inde-

pendent (autonomous) action on behalf of its user or owner (figuring out what needs to be

done to satisfy delegated objectives, rather than constantly being told).”

Characteristics of software agents also include learning, negotiating, being adaptive, and

being cooperative or competitive (Wooldridge and Jennings, 1995). A software agent can

come in many different types such as: interface agent, data mining agent, gaming agent, user

agent, buyer agent, monitor agent and mobile agent (Nwana, 1996).

2.1.2 Multi-agent systems (MAS)

A multi-agent system is a system that consists of many autonomous agents interacting with

each other to achieve a goal. The research field of multi-agent systems is about three decades

old. It originated as a research branch of Distributed Artificial Intelligence (DAI) (Weiss,
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1999), which started in the 1980s as a series of distributed artificial intelligence workshops

(Davis, 1980, 1982). The focus of DAI was to investigate interaction mechanisms for com-

puting nodes that are distributed across a network. Over the years, researchers realised the

need for modeling societies (i.e. a collection or group of individuals as opposed to single

agents), since problems of cooperation and coordination can be better addressed through

the design of mechanisms for the society as a whole as opposed to just the individual agents.

Additionally, earlier linguistic modeling of human communication abilities through the mod-

eling of speech-acts provided the infrastructured modeling paradigm for software agents to

exchange messages, negotiate with one other, influence each other, and also resolve con-

flicts. Thus, MAS also became a computational tool for sociologists to test their theories

about human societies (Doran and Palmer, 1995; Helbing, Farkas, and Vicsek, 2000; Macy

and Willer, 2002; Pan, Han, Dauber, and Law, 2007).

According to Bradshaw (1997), multi-agent systems are suitable for developing large

scale distributed applications to help solving complex problems. Typical examples that em-

ploy distributed solutions can be found in domains that require resource allocation and load

balancing. MAS are suitable for applications such as air traffic control, robots working

together, vehicle monitoring, supply chain operations, and network management (Nguyen-

Duc, Briot, Drogoul, and Duong, 2003; hadouaj and Drogoul, 2004; Arkin and Hobbs, 1993;

Cakar and Muller-Schloer, 2010; Durfee, 2006; Steeb, McArthur, Cammarata, and Narain,

1986; Lesser and Corkill, 1983; Swaminathan, Smith, and Sadeh, 1997; Chan and Chan,

2010; Smith and Davis, 1981). A real life example for distributed problem solving would

be crowd sourcing (Brabham, 2008). A problem is submitted to the online users/groups.

They work to find the solution by managing the workload within themselves. Different

groups come up with different solutions. Among these solutions the best one will be chosen.

Alternatively, a solution can be found by dividing the main problem into several parts and as-

signing each of them to different groups. At the end, combining the solutions from different

groups would produce the final solution for the problem. The main advantage of distributed

problem solving is the speed (Smith and Davis, 1981). The solution can be reached faster by

making more entities involved in solving the problem and balancing the work load.

According to Wooldridge (2009), a multi-agent system “is one that consists of a number

of agents, which interact with one-another. In the most general case, agents will be acting
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on behalf of users with different goals and motivations. To successfully interact, they will

require the ability to cooperate, coordinate, and negotiate with each other, much as people

do.”

The next subsection is organised as follows. An introduction to the field of Agent Based

Social Simulation (ABSS) is given in Section 2.2. It also discusses two important dimensions

that are considered when modeling agent societies. These two dimensions are the nature of

the society (e.g. open and closed) and the level of distributed management control on the

part of the agents in the society (e.g. centralised and decentralised). These two dimensions

are discussed in Sections 2.2.2 and 2.2.3 respectively.

2.2 Artificial societies

An agent society is made up of several agents that interact. These agents may play differ-

ent roles, and their interactions may be governed by protocols and norms (Artikis and Pitt,

2001). These societies, are often called artificial societies (Gilbert and Conte, 1995). Sociol-

ogists are interested in investigating how human societies that are formed with these capabil-

ities perform under certain conditions (Conte, 2001; Gilbert and Troitzsch, 1999; Suleiman,

Troitzsch, and Gilbert, 2003). Computer scientists use artificial societies to model and study

how electronic societies that are made up of agents and also human users operate under cer-

tain conditions (e.g. auctions (Sierra, 2004; Noriega, 1999) and P2P systems (Pouwelse,

Garbacki, Epema, and Sips, 2005; Babaoglu, Meling, and Montresor, 2002)). Artificial so-

cieties are thus tools not only for understanding human societies but also for investigating

mechanisms that can be used in electronic societies. Multi-agent systems also provide so-

phisticated tools for simulating societies (Davidsson, 2002; Ferber, 1999), which may aid

understanding various kinds of social processes in these two types of societies.

Artificial societies are agent-based systems which are also suited for the study of emer-

gent properties of societies of agents (Ferber, 1999; Di Marzo Serugendo, Gleizes, and Kara-

georgos, 2005; Bak, 1996). Interactions between agents in these artificial societies may lead

to new and emergent collective ‘macro’ behaviour that may result from these ‘micro’ inter-

actions.
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2.2.1 Agent Based Social Simulation (ABSS)

Multi-agent-based social simulations are used for modeling the real world by creating artifi-

cial agent societies with many interacting agents. Individuals in human societies are modeled

as software agents. As a consequence, intuitions and theories can be tested on this artificial

society, in the so called “Artificial Social Laboratory”.

Simulation modeling is a tool for understanding, testing hypotheses, and predicting re-

sults. This is particularly valuable because not all real world environments provide access

to their internal processes and states. Using simulations, their states (e.g. variables) can be

controlled and their effects on results can be studied through “what-if” scenarios. Accord-

ingly, an Agent Based Social Simulation (ABSS) is a social modeling approach that employs

an agent society to conduct microsimulations which may lead to macro behaviour (emergent

behaviour such as self-organisation) through the interactions of the agents. Thus, ABSS

enable scientists to study the complex social behaviour.

2.2.2 Nature of societies

Figure 2.1: Nature of societies

Researchers interested in ABSS have modeled different types of agent societies. The

societies can be open, semi-open, semi-closed or closed as depicted in Figure 2.1. These

categories are based on the classification by Davidsson (2001) and are discussed below.

• Closed society
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A closed society is limited in terms of the number of participants. In a closed society

no external agents are allowed entry or participation. Because of this reason, the main-

tenance of the society is relatively easy (i.e. less effort is spent in maintaining social

control). Thus, this type of society supports stability and trustfulness (i.e. cheaters are

easily identified1, hence participants usually tend to be more trustworthy).

• Semi-closed society

In a semi-closed society an external party can request for an agent to be created which

will work on behalf of the user (e.g. booking flight tickets). Here the new agent is of a

‘predefined’ type. Hence this society avoids the problem with malicious agents, since

it has created the predefined agent types or roles. In our view a semi-closed society

could also be called an ‘open society constrained by roles’.

• Semi-open society

In a semi-open society an electronic institution operates as a gate keeper. The joining

agent promises to follow the constraints specific to the society. This institution may

decide whether to accept the agent to the society based on its reputation. (e.g. Sec-

ond life (Rymaszewski, Au, Wallace, Winters, Ondrejka, Batstone-Cunningham, and

Rosedale, 2006)). Once the agent has been admitted, the institution can check whether

the new agent follows the rules by monitoring its interactions from time to time, since

it could be a malicious agent. In our view a semi-open society could also be called an

‘open society based on reputation’.

• Open society

In an open society any one can join and leave at any time. The best example for this

type of society is the World Wide Web (WWW), since it is open and has no restriction

on who joins. These type of societies support openness (i.e. any one can join) and

flexibility. Since there are no restrictions for joining the society, there are concerns

about trustfulness (i.e. bad agents can cause damage). Hence the stability of the society

cannot be guaranteed.

1Since there is limited number of participants in the society.
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The main difference between semi-open and semi-closed societies is that in semi-open

societies, it may be difficult to monitor the new agents (due to the need for more resources

to monitor interactions). These new agents may execute malicious code. So the stability and

trustfulness properties are at stake, while in the semi-closed society there is less of a need for

monitoring, since the agents are less likely to be malicious. However, the semi-closed society

suffers from the lack of flexibility in the society (i.e. if a new agent is not of a predefined

type, it cannot join the society).

Though there is a distinction between semi-open and semi-closed societies, this thesis

will make use of just two broadly defined types of societies: closed agent societies and open

agent societies.

2.2.3 Level of control in agent societies

An important aspect that has to be considered when investigating the behaviour of agent so-

cieties is the level of control of agents in the society. For example an agent can be monitored

and controlled heavily by an institution all the time, while an agent in another institution may

not be monitored at all.

There are different levels of control which can be applied in the society. The society can

be centralised, semi-centralised, or decentralised. Figure 2.2 shows different levels of control

in a society. The level of control decreases when we move from left to right (centralised to

decentralised).

• Centralised

Centralised systems are controlled by a central authority. These systems operate in

a top-down fashion. Having centralised control is a convenient solution, since it is

straightforward to implement a direct control. However, this solution is not scalable

and is not suitable for dynamically growing systems which change and expand their

state spaces (Minar, 2002; Bias, 2009; Bondi, 2000). There are several disadvantages

of central control including single-point-of-failure and performance bottlenecks. Most

significantly, centralised systems have scalability issues.

• Semi-centralised
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Semi-centralised systems do not have one central authority; instead they have several

local controllers (e.g. local controllers in groups). Modern electronic societies tend

to be semi-centralised (partially centralised / hybrid systems) or decentralised. Semi-

centralised systems also suffer partly from the weakness of the centralised systems.

• Decentralised

Decentralised systems are distributed, and they have no central authority. These sys-

tems operate in a bottom-up fashion. Bottom-up approaches are suitable for devel-

oping dynamic systems and are responsive to changing conditions, and are relatively

scalable.

It should be noted that these societies operate either under closed- or open-world assump-

tions. For the above mentioned reasons and also to facilitate scalable and robust societies, it

is better to have decentralised control for open and distributed information systems.

This thesis models all three types of controls in societies. The overall goal is to develop

techniques that facilitate a progressive move from a centralised to decentralised system con-

trol for open agent societies.

Figure 2.2: Control applied in the society
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2.3 Non-cooperation or selfish behaviour in societies

This subsection introduces the problem and organisational metaphor that has motivated this

thesis. It discusses the problem of non-cooperation in human and artificial agent soci-

eties. Sociologists have been investigating the problem of cooperation for several centuries

(Dawes, 1980; Axelrod, 1984; Kollock, 1998). In particular, they have been working towards

finding ways to facilitate and encourage social order through informal social mechanisms,

such as norms, and more formalised mechanisms, such as rules that are enforced through

policing mechanisms. In their well-known paper on civil agent societies, Dellarocas and

Klein (1999) argue that civil agent societies provide adequate social mechanisms that can be

used for solving problems in artificial agent societies. These mechanisms include interaction

protocols and norms.

This subsection aims at discussing the problem of non-cooperation in human societies

and electronic societies. Section 2.3.1 also discusses research solutions relevant to this prob-

lem.

2.3.1 Non-cooperation problem in human societies

For a society to operate effectively, agents within the society must obey certain social rules

and norms. However, autonomous agents might not obey these rules or norms. When ev-

eryone else cooperates a rogue agent may benefit from non-cooperation. This situation is

exemplified in Hardin’s famous example of the “Tragedy of the Commons” (Hardin, 1968).

2.3.1.1 Tragedy of the commons

In Hardin’s classic paper (1968) “Tragedy of the Commons”, he outlines a scenario that

depicts the tragedy of the herders in pastures. A common pasture is open to herders, each of

whom tries to maintain as many cattle as possible on the commons. A herder reckons that

the positive benefits of adding one additional animal will all go to him, alone, whereas the

negative effects from overgrazing of that one additional animal will be shared and borne by

all the herders. Accordingly, self-interested herders may continue adding one more animal

to their herds, even if they know that collectively this is destroying the commons. The
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question posed by this scenario is: how can we restrict selfish herders and avoid the tragedy

of resource depletion?

Tragedy of the commons is a social dilemma which depicts the public goods problem of

the society. The Prisoner’s dilemma game models the dilemma between two individuals.

2.3.1.2 Modeling the tragedy of the commons using Prisoner’s Dilemma

The Tragedy of the Commons can be modeled and studied using the “Prisoner’s Dilemma”

game (Axelrod, 1984). The Prisoner’s Dilemma was proposed by two mathematicians Mer-

rill Flood and Melvin Dresher in 1950 and was formalised by Albert Tucker (Tucker, 1950).

The game depicts a situation where two collaborating criminals are imprisoned and ques-

tioned separately. Each criminal may either cooperate with his fellow criminal by refusing

to divulge details of the crime or defect by “ratting” on his colleague. It is possible to estab-

lish a reward structure such that

• if both criminals cooperate they get a reward, R,

• if they both defect, they are punished (punishment, P),

• if one player defects and the other cooperates, then the defector gets high reward

(temptation, T) and the other gets a severe punishment (sucker, S)

• and T > R > P > S, and 2R > T + S

Under these reward conditions, each individual criminal will reason that if the other

• cooperates, he does better by defecting.

• defects, he also does better by defecting.

The payoff matrix for Prisoner’s Dilemma is shown in Table 2.1

Criminals 1 / 2 Cooperate Defect

Cooperate R,R S,T

Defect T,S P,P

Table 2.1: Payoff matrix for Prisoner’s Dilemma.
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Thus the Nash equilibrium situation (John F. Nash, 1950) for this game is for both play-

ers to defect, even though they would collectively get a higher reward if they were both to

cooperate. The Tragedy of the Commons can be likened to a situation in which the individual

herder is playing the Prisoner’s Dilemma game against the collection of all the other herders:

his selfish interests lead him to defect, even though they are all better off if they cooperate.

A solution to this problem is to provide social incentives such that players are encouraged to

cooperate and avoid the sub-optimal solution of defection.

2.3.2 Non-cooperation problem in electronic societies

Electronic societies are also plagued by scenarios that can be likened to the Tragedy of the

Commons. Freeriding is a well-known example in peer-to-peer (P2P) systems, where an

agent does not contribute to the society by sharing its files but downloads the files from other

users. P2P communities heavily rely on altruistic sharing of digital goods such as video files,

audio files and e-books. If everyone shares, that is good for the societal welfare. However,

if everyone is exclusively self-interested, there would be nothing to share in the community.

Though neither of these two extreme cases are seen in real life file-sharing communities,

the communities are aware that the freeriders should be kept under a close watch in these

communities, since the increase in the number of self-interested people refusing to share

leads to the degradation of the system.

Following the rapid rise and fall of the popular file-sharing system Napster (1999), P2P

systems such as Kazaa (2001) and BitTorrent (2004) have become widely used. However,

uncooperative behaviour is frequently observed in these systems. BitTorrent is currently

particularly popular, and Hales and Patarin’s analysis of BitTorrent’s workings (2005) is of

interest. With BitTorrent, groups of users “swarms” with an interest in a specific media file

coordinate to speed-up the process. A given file is partitioned into pieces, and each peer is

responsible for obtaining and sharing with the other peers some of the pieces. Each swarm is

managed by a “tracker”, which keeps track of the peers interested in a file or group of files.

Peers may query the tracker for a random list of other peers in the swarm, and once obtained,

the peers can exchange their piece lists so that they may determine which peers may have

pieces that they need. Since a peer may not be able to service at once all the peers that need
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its piece, it only services up to a limited number of other peers, with remaining peers being

left out “choked”. Presumably peers will choose to cooperate with those peers which, in

turn, have cooperated with it, and so cooperative behaviour is presumed to be induced by

an implicit “tit-for-tat” strategy. But Hales and Patarin determined that it would be easily

possible to cheat under these arrangements and be a freerider. Interestingly, such cheating

is not observed in connection with BitTorrent, although is observed on other systems. They

wondered what the reasons for this more cooperative behaviour might be.

Hales and Patarin (2005) have suggested an answer to their own question which concerns

the way that file metadata is handled with BitTorrent. BitTorrent does not provide a central

distribution for metadata; instead the acquisition of metadata is left to the users. To download

a file using BitTorrent, one must supply information which can be found in a special .torrent

file, but the user must use his or her own devices, such as user-run Web sites, to find this

file. This means that the connectivity of this “network” of interested users is not complete:

separate, possibly somewhat isolated, groups of users will form and share the metadata.

Although this is sometimes thought to be a weakness of BitTorrent, Hales suggests that this

may be an advantage, since separate swarms with their individual trackers can be formed

for the same file. This can lead to a swarm selection process, whereby higher performing

swarms (with more cooperative members) are selected and poorly performing swarms (with

more freeriders) are deselected and eventually die off.

The suggested mechanism at work here is that, by means of probably unintended lim-

itations in terms of metadata access, there is an arrangement in BitTorrent that can lead

self-interested peers to generate multiple groups and a group-swarm-selection process that

ultimately yields more cooperative (and hence higher overall performing) groups. Thus by

having some restrictions in a group, the Tragedy of the Commons can be avoided.

The mechanism based on restriction is one particular approach to address the problem of

freeriding. However, in our view, for agent societies, several mechanisms can be proposed

and investigated not only to uncover malefactors, but also to guide and sometimes restrict

agent behaviour so that a more cooperative environment is fostered. Thus by having sev-

eral types of mechanisms that impose certain restrictions in the artificial agent societies, the

Tragedy of the Commons can be avoided. The restrictions in this thesis are embedded in the

social mechanisms that we have investigated. Our focus is not on expelling the “evil” agents
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that do not cooperate in a society (because the “evil” ones can return anyway with a new

identity), but to substantially distinguish them from the ones that are good through social

mechanisms that help in the self-organisation of groups (or the segregation of groups) based

on their cooperativeness.

Our own approach is tailored to segregate groups by making use of social mechanisms

such as tagging, referral, voting, gossip, and ostracism to facilitate social control in artificial

agent societies. It shields cooperators from exploitation by non-cooperators, thereby leads to

te betterement of the society. In this kind of configuration and managerial arrangement, good

agents segregated into good groups get good service, and the bad ones end up in groups with

bad agents where the service is restricted. In this thesis we have considered different types

of societies, such as closed and open, and also have considered different types of control

applied to societies such as those organised according to centralised, semi-centralised, and

decentralised control. Figure 2.3 shows the two important characteristics considered (i.e.

type of society and level of control in a society) in the experimental Chapters 4-7.

The next chapter provides an overview of the social mechanisms used in this thesis and

also discusses prior work on achieving segregation using these social mechanisms.
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Figure 2.3: Progression of the experimental chapters.
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Chapter 3

Facilitating social control in artificial

agent societies

“We humans do act collaboratively, not out of altruism, but because of social

mechanisms that bound us to do so. Human societies have created a myriad

of different mechanisms to reduce the inherent complexity and the uncertainty

that exist in society. Analogously to human societies, research on multi-agent

systems and artificial societies is in its way to create social mechanisms to be

applied to computational entities.”- (Pujol, 2006)

This chapter aims at discussing the social mechanisms investigated by researchers in

multi-agent systems to facilitate social control in artificial agent societies. Towards this end,

Section 3.1 discusses the background on designing agent societies as investigated in the field

of multi-agent Systems. In Section 3.2 the three-step process involved in the investigation

of artificial agent societies is explained. In Section 3.3 we discuss the segregation of groups

within a society. In this context, several social mechanisms that are developed and employed

in this thesis are presented in Section 3.4 along with various relevant research works that have

investigated social mechanisms for facilitating social control, and Section 3.6 contextualises

the contributions of this thesis. Finally, Section 3.7 summarises the chapter.
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3.1 Why artificial agent societies?

Social simulation is a research approach which explores the behaviour of societies. Societal

behaviour is a complex process. Computer simulations are suitable tools to help explore

and understand social processes better, since various ‘what-if’ scenarios can be explored by

changing the parameters of the system.

In the field of multi-agent systems, several researchers have realised the importance of

studying artificial agent societies (Gilbert and Conte, 1995; Dellarocas and Klein, 1999;

Hales, 2000; Conte, 2001; Davidsson, 2001, 2002; Pujol, 2006). Two important reasons for

the interests in these societies include:

a) the ability to investigate social models in this artificial laboratory.

b) the feasibility to apply some well-known social theories to artificial agent societies to

improve the societies.

In an early paper, Dellarocas et al. (Dellarocas and Klein, 1999) note that ideas borrowed

from human societies can be taken advantage of, by incorporating them into electronic agent

societies. Inspired by human societies, the authors argue that there is a need for creating

electronic institutions, modeling social contracts, and specifying social rules for interactions

between agents in the society.

Soon researchers working along these lines developed electronic institutions (Colom-

betti, Fornara, and Verdiccchio, 2002; Esteva, Rosell, Rodriguez-Aguilar, and Arcos, 2004;

Arcos, Esteva, Noriega, A.Rodrı́guez-Aguilar, and Sierra, 2005; Boissier, Padget, Dignum,

Lindemann, Matson, Ossowski, Sichman, and Vázquez-Salceda, 2006). One of the well-

known electronic institution models is described in the work of Sierra and his team (Arcos

et al., 2005). They work with tightly controlled systems and have implemented agent-based

institutional systems with centrally administered mechanisms that maintain strict control of

individual agent interactions within the institutions. The advantage of having a centrally

controlled institution is that it is well structured and easy to monitor. The disadvantage is the

lack of scalability/flexibility and autonomy of the agents. The agents are heavily controlled

in these types of institutions (e.g. a governor checks each message of the agent). Centralised

systems can become inefficient over time (due to increase in size), and become costly to

maintain, too. They are prone to single-point-of-failure and performance bottlenecks.

23



While developing a framework for electronic institutions, the infrastructure for facilitat-

ing social control in electronic institution is also considered. For example, AMELI (Esteva

et al., 2004) is a middleware which prevents agents from violating rules in electronic in-

stitutions. This infrastructure enforces institutional rules and controls agent interactions.

AMELI’s architecture (Esteva et al., 2004) has four types of higher authority agents who

act on lower-level interacting agents. The institution manager, transition manager, and scene

manager take care of institution execution, transition and scene related functions. The gover-

nor agent is an interface that the institution provides which must be used by agents external

to the system to communicate with other agents. Thus, the role of the governor agent is to

monitor the messages sent by the external agent. Hence every external agent has a governor

that is assigned to it. In this system, the communication between the external agents and the

agents in the system is vetted by the governor agents, while the other activities in the institu-

tion are managed by the corresponding managers. Thus this system is a regimented system

where agents are heavily controlled by strict institutional rules and authorities. Though the

system allows other agents to join, these are always monitored by the governor agents. The

system is thus a semi-closed system that does not let the agents act on their own will. In

other words, the agents in this system are not allowed to act without the interference of the

monitors. In our own work we prefer to have our system behave desirably and maintain

the structure/order without compromising the agent’s autonomy. Attaining social control by

using social mechanisms is the way to achieve it.

There are research works that have proposed mechanisms for establishing social control

in agent societies (Rasmusson and Jansson, 1996; Dellarocas and Klein, 1999; Dellarocas,

2000; Castelfranchi, 2000). An approach that makes use of reputation is a “soft security”-

based approach where users monitor themselves and avoid having a centralised control (Ras-

musson and Jansson, 1996). If users can establish social control among themselves, then

there is no need for any kind of top-level control (global authority). The basic idea of this

system is to achieve social control by means of using reputation as part of a security mecha-

nism. Agents themselves take the responsibility of establishing a safe and fair society with-

out involving any external force acting on them. It is thus a self-policing mechanism. The

advantage of using a reputation-based social mechanism is that it is distributed and helps

to deal with the malicious users present in the society without relying on an authority. The
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malicious users can be identified and potentially ignored (e.g. ostracised) by others through

social mechanisms. This process helps to prevent users from being harmed by the malicious

users. Researchers using the soft security approach have defined social control (Rasmusson

and Jansson, 1996) as a “group behaviour that indirectly forces the group members to be-

have in a particular way”. Social control is thus a bottom-up approach implemented in a

distributed fashion among users to help achieve cooperation in open societies that are vul-

nerable to selfish behaviour of malicious users. This work (Rasmusson and Jansson, 1996)

notes that it is a good idea to employ soft security to enable secure e-commerce transactions

in open environments where no central monitor keeps track of the actions of the individuals.

Based on the fact that human societies are well-structured by social contracts, the frame-

work for electronic societies based on civil agent societies presented by Dellarocas and Klein

(1999) has captured a set of processes and elements that human societies possess in order to

establish social control. They have proposed the use of social contracts for agent mediated

electronic marketplace. They have recommended the use of norms, institutions, and mech-

anisms for making social contracts which would aid to control the selfish behaviour in the

open multi-agent society.

In line with this approach, Dellarocas (2000) has proposed the design of Contractual

Agent Societies (CAS), where autonomous agents playing different roles coordinate with

each other through social contracts. With these contracts the interactions between agents are

clearly defined. This setup helps to achieve coordinated social activity. Social control is es-

tablished, by which the system shows desirable behaviour by preventing possible deviations.

Due to the open nature of the systems, establishing social order as an emergent behaviour

by means of local interactions would be preferable to having the system hardwired in order to

achieve a predesigned social order (Castelfranchi, 2000). Since modern open systems have

a dynamic nature (i.e. they can change unpredictably due to varying conditions), the social

order should also be established dynamically considering the current state of the system.

The system needs to be adaptive with built-in adjusting capabilities. The social order can

be produced by having some form of social control (Castelfranchi, 2000). There are several

research works which make use of a normative approach for social control (Conte, 2001;

Grizard, Vercouter, Stratulat, and Muller, 2007; Boella, van der Torre, and Verhagen, 2006;

Vazquez-Salceda, Aldewereld, and Dignum, 2004). Social control has been achieved by
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having other mechanisms such as sanctions, incentives and reputation in place. Castelfranchi

(2000) discusses different forms of social control. In particular he distinguishes centralised

social control mechanisms from decentralised mechanisms. In this thesis, we are interested

in establishing decentralised social control, since it is a bottom-up approach which can lead

to emergent, self-organising behaviour of the system. We intend to develop and employ

different types of social mechanisms to achieve this. Note that using norms in an electronic

society is one approach for monitoring and controlling the agent behaviour. However, there

could be several other approaches that are possible for monitoring and controlling the agents

(e.g. referral and gossip mechanisms).

We have developed and employed social mechanisms for agent societies to achieve the

desired result of segregation of groups of agents with similar behaviour (cooperativeness).

We describe these social mechanisms in more detail in Section 3.4.

3.2 Processes used in managing agent societies

In this section we identify three main steps of the process associated with specifying and

managing agent societies. These three steps include the following.

• Step 1 - Agent interaction in an agent society

• Step 2 - Monitoring agent interactions

• Step 3 - Controlling agent interactions

In order to elaborate these three steps let us consider an example from Axelrod (1986).

His work captures the emergence of cooperation in social dilemmas through norms without

having a central control. In his paper (Axelrod, 1986), agents interacted with each other in the

form of a simple norms game that was played between agents (Step 1). Step 1 corresponds

to the context of agent interaction. In this example the context is the norms game. Agents

were supposed to monitor other agents for the violations of certain actions (i.e. violation of

norms). This corresponds to Step 2. If violations are detected, those agents are expected to

punish the violating agents (i.e. controlling). This corresponds to Step 3. There was also a

meta-level punishing (i.e. agents were expected to punish those non-punishers who failed to
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punish a violation). Here, a meta-level monitoring and controlling was in action. In general,

agent societies employ these three steps when investigating social control mechanisms.

We note that Step 1 in agent interactions can be based on informal norms and/or through

formal rules established by the institution. Agent interactions are often modeled in the re-

search literature using a game-theoretic approach (e.g. cooperation or coordination games).

This thesis places an emphasis on the Steps 2 and 3 where several reputation-based social

mechanisms are employed.

3.2.1 Reputation-based mechanisms for social control

Electronic marketplaces are increasingly being used. Some of the well-known examples

include eBay (1995), TradeMe (1999) and Amazon.com (1995). These market places facil-

itate trading (buying and selling) goods online, and they provide mechanisms that ensure a

fair trade where the expectations of buyers and sellers are met. These systems also provide

mechanisms for specifying and monitoring obligations (e.g. a buyer should pay within 3

days after winning an auction). These mechanisms ensure secure and safe trading in these

electronic market places.

To ensure security and safe trading, online markets have a mechanism of users rating each

other based on their interactions. Consider eBay (1995) as an example, which is currently the

world’s largest electronic market place. In eBay people leave feedback about others whom

they have had transactions with. Users could give positive, neutral or negative feedback.

The feedback about users is associated with their profile and is visible to everyone. The

reputation of a user (both as a seller and a buyer) is calculated by the overall ratings. In

this approach the users are expected to report honestly and this approach works well for the

current system. The user has no control over his ratings being visible to everyone using the

system. Ebay displays the reputation records about all its members. It suspends or removes

users violating the rules (Omidyar, 2011). People generally tend to behave honestly and show

their good side, since their reputation score is visible publicly. The advantage of this kind of

social control is that it enables improvement in electronic societies. The disadvantage is that

the user loses control to the central authority which stores the user’s information. The user

has no control over his/her information being visible to everyone. We believe decentralised
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mechanisms where information is distributed across different entities can be adopted in order

to achieve the same purpose. For instance, partial information about the reputation of users

can be held by distributed peers.

Once the information about agent behaviour has been collected (either through cen-

tralised or distributed mechanisms), this information can be used for two purposes in the

context of identifying good behaviour and discouraging bad behaviour in the system. Firstly,

this information can be used for producing recommendations. For example, an agent can

vouch for another agent based on that agent’s interactions (i.e. through a referral process).

An agent can also identify the best agent or a set of good agents that have cooperated in the

past (e.g. in the context of voting in a society for the best agent, agents can nominate the best

one based on their past interactions). Secondly, this information can be used for controlling

bad agents. For example, the reputation score can be used to restrict resources for bad agents

and can even be used to sanction bad agents in a society. Reputation-based mechanisms are

shown to solve social dilemmas (Milinski, Semmann, and Krambeck, 2002).

Monitoring agent interactions can be achieved through two approaches. The first ap-

proach is to use a centralised reputation system which collects all the information (e.g.

eBay, TradeMe, Amazon.com) as explained before. Since there are several disadvantages

of this approach, several multi-agent researchers have investigated reputation-based systems

for monitoring agent interactions (Yolum and Singh, 2003b, 2005; Candale and Sen, 2005;

Gursel, Sen, and Candale, 2009) which use distributed approach. They make use of a de-

centralised, partial reputation system such as the use of referral or gossip in agent systems.

In these systems, each agent has only partial information. These types of systems are more

scalable and decentralised. We have adopted a similar approach of using several social mech-

anisms to establish social control in this work. More details are presented in Section 3.4.

3.3 Separation of groups within an agent society

The previous section discussed how reputation-based systems might be used for monitoring

and controlling in an agent society. This section describes how several groups can be formed

within one society based on employing some social mechanisms. Having numerous agents

in a society can become unmanageable. By having smaller groups of agents in a society, the
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groups can be more manageable by reducing the complexity of the individual group. For

example, if there are more agents joining an open society (imagine a very large group), it

may become unmanageable and may lead to scalability issues. Instead, more and smaller

groups could be formed if an excessive number of agents join the society, and that can make

things more flexible and scalable. Two mechanisms can be used for grouping purposes:

• Tag mechanism

A tag mechanism can be used to form groups. It is a simple group-forming mechanism,

and it is explained in detail in Section 3.4.4.

• Reputation-based mechanism

Initially a society may employ a tag-based mechanism for assigning members into

groups (for bootstrapping purposes), and later these groups can evolve to be coop-

erating or non-cooperating groups (based on cooperativeness of the agents) when

reputation-based mechanisms are used. This is the scheme used in this thesis.

3.3.1 Group segregation

Schelling’s model (Schelling, 1969) was the first which showed segregation of groups as an

emergent behaviour based on micro interactions among agents. In this model there are two

types of agents, with red and green colors. An agent is satisfied (according to its satisfaction

level), if it is in the cluster of similar color agents. Otherwise the agent can move to a

random place. This model showed the segregation of similar color clusters forming over

time corresponding to the satisfaction level of the agents. The advantages of segregation

based models are

a) the model does not need a global view (local view/partial information is enough).

b) the model is scalable for large numbers of agents.

c) the model has the flexibility to cope with random arrival and departure of agents.

These properties of segregation-based models make them suitable for designing dis-

tributed dynamic systems in open environments. The advantage of grouping has been shown

to be beneficial in achieving the emergence of cooperation in prisoner’s dilemma interac-

tions (Hirshleifer and Rasmusen, 1989; Oh, 1999). Martinovic’s work has adopted such
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a segregation model (Martinovic, Leng, Zdarsky, Mauthe, Steinmetz, and Schmitt, 2006).

It is emphasised in this connection that during the segregation it is important to get into a

good neighborhood, since such locations are essential for self-protection against exploiters

(freeriders). Being in a good neighborhood also helps in obtaining useful information and

better service. The freeriders, on the other hand are moved to bad neighborhoods. This

is similar to our own work in the sense that cooperators move to good groups and non-

cooperators are moved to bad groups.

3.4 Research works using different social mechanisms

In this section we discuss social mechanisms that we have developed in this thesis to facilitate

social control in multi-agent systems. These social mechanisms include gossip, ostracism,

referral, voting, and tagging. These social mechanisms are described in subsections 3.4.1 to

3.4.4. Each subsection provides a brief introduction to the social mechanism and discusses

similar work that has used these mechanisms in agent societies.

3.4.1 Gossip

Gossip is a powerful mechanism in human society for information sharing. Research done by

evolutionary biologists suggests that humans have shown more interest in gossip more than

in the original information (Sommerfeld, Krambeck, Semmann, and Milinski, 2007), when

participants were presented with both types of information (the gossip information and the

“real”, original information). Based on their research they have noted “gossip has a strong

influence... even when participants have access to the original information as well as gossip

about the same information” and also that “gossip has a strong manipulative potential”.

In a way, a gossip mechanism can be considered to be a ‘distributed referral’ mechanism

(Eugster, Felber, and Le Fessant, 2007). It is similar to having a reputation system, except

that the gossip information is distributed. Paine (1967) has explained that people who gossip

within their gossip circle feel the fellowship or belongingness to the community. In fact

gossip is a property of a group (Paine, 1967) that can be used to provide local social control;

it aids in maintaining the social structure. Gossip can also be considered as an indirect
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attack on a person where no other easy way of sanctioning is possible. Thus gossip is a

mechanism for transmitting public opinion which can lead to some social benefit (Stirling,

1956). Gossiping is also a way of doing social comparison (Suls, 1977; Paolucci, Marsero,

and Conte, 2000).

The grooming behaviour in animals is analogous to the gossip behaviour in humans

(Dunbar, 1996). Dunbar’s work (2004) also acknowledges that gossip is a way of social

bonding, and it is a part of social life. An additional benefit of gossip is that it helps to con-

trol freeriders. Gossip information about freeriders is important, because people do not want

to be exploited by a freerider, and freeriders degrade the societal welfare. The most common

way of controlling freeriding is based on memory of past behaviour (Dunbar, 2004). Gossip

helps this by being a medium for ‘information storage and retrieval’ (Roberts, 1964). The

work of Conte and Paolucci (2002) considers gossip as a medium to spread and retrieve the

reputation about an agent which aids in establishing social control.

De Pinninck et.al.’s work (de Pinninck, Sierra, and Schorlemmer, 2008) has adopted the

gossip mechanism to achieve a similar goal as ours. In their work gossip has been used

as an identification mechanism to spread and find information about the norm violators. In

our work we use gossip for a similar purpose, which is to identify freeriders. In their work

(de Pinninck et al., 2008), gossip is shared locally with nearby agents called ‘mediators’,

and it does not need complex computations. The mediator agent contacts the enforcer agent

to punish the violator. Gossip has been used in relation to the norm enforcement technique

in their work, and gossip has been also used for reputation management in Yu and Singh’s

work (2000).

In a recent work of Mordacchini et.al. (Mordacchini, Baraglia, Dazzi, and Ricci, 2010),

they have proposed an architecture for gossip-based peer-to-peer systems which facilitates

information exchange among peers through gossip. Their system groups users with similar

interest (or users who are interested in similar contents) by the distributed process of sharing

information through gossip. This sort of grouping has an advantage of making recommen-

dations accordingly, since those groups of users share a common interest. It is different from

our work, since our work groups agents based on behaviour (cooperativeness). The work of

Khan and Tokarchuk (Khan and Tokarchuk, 2009) proposed a group-structured P2P system

which also uses gossip to form groups with peers of common interest. Both (Mordacchini
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et al., 2010; Khan and Tokarchuk, 2009) have used gossip to form groups based on peers

looking for similar content. In our work we, too, use gossip to form groups (based on be-

haviour), but content searching is not the focus in our work.

The work by Ganesh et.al. (Ganesh, Kermarrec, and Massoulié, 2003) has proposed a

similar gossip-based information dissemination for P2P membership. It has used a gossip-

based distributed mechanism which does not require a global view, so it uses less memory

and leverages scalability and decentralisation. These aspects are similar to the approach used

in this thesis, but our focus is not P2P membership. Instead our focus is on forming dynamic

groups automatically by enabling self-organisation of agents into groups of different levels

of cooperativeness to avoid exploitation by freeriders.

There is other work in agent-based simulation and P2P systems which has used gossip-

based protocols (Kempe, Dobra, and Gehrke, 2003; Jelasity, Montresor, and Babaoglu, 2004,

2005; Gorodetsky, Karsaev, Samoylov, and Serebryakov, 2007; Zaharia and Keshav, 2008;

Dasgupta, 2003; Boyd, Ghosh, Prabhakar, and Shah, 2006). Gossip-based protocols broad-

cast information, and they are based on the way information spreads in the form of rumors

in human societies. The information is shared between one-to-many individuals. In these

protocols the number of participants (with whom the information is shared) increases each

time. In this fashion the information is spread to everyone in the society in a short period of

time. The disadvantage is that lots of resources are used for this sort of information sharing

without realising whether the information would be useful to the recipient. This results in

information flooding which overloads the system (i.e. causes congestion and performance

bottlenecks) (Li, 2008). Instead, it could be made more simple and useful if the recipient

could get the information by requesting, rather than having all types of information being

overloaded through a flooding model. Following this request-based approach, the user has

an option of choosing the information he/she wants and avoiding the unnecessary informa-

tion. This approach does not overload the system, and it needs less computation compared

to the former approach. Moreover, the user has the control over the information he/she is

being exposed to. Our approach uses such a kind of gossip mechanism where the user can

specifically request for information that he/she needs.
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3.4.2 Ostracism

It has long been the case in human and animal societies that the member of a group who does

not abide by rules or norms can be punished by other members of the group (the followers

of the rule/norm). One kind of punishment is ostracism, which results in the social exclusion

of the punished member. All the other members of the society would stop interacting with

the member who is being ostracised and would no longer consider that person to be a part

of their group (by ignoring him/her). This kind of behaviour is used as a social punishment

mechanism where there is no higher authority or institutional monitor to check deviations

and establish punishment. Thus it is a decentralised mechanism as opposed to having a

central controlling authority to establish sanctions.

There is work which has used ostracism for improving cooperation where the context of

interaction has been modeled using the Iterated Prisoner’s Dilemma (IPD) game (Hirshleifer

and Rasmusen, 1989; Oh, 1999). Cooperation is achieved by a grouping mechanism. Players

who persistently defect are expelled from the group as a way of punishment by other players.

Thus group ostracism is used to protect cooperators from the defectors. Ostracism is used

to expel defectors from the cooperative groups. By doing this, cooperators would only have

other cooperators in their groups and they play only with them. By imparting the fear of

punishment, cooperation is enforced. Thus having ostracism as a punishment mechanism

has helped to control defectors and promote cooperative behaviour in the IPD game. Thus

cooperative groups of similar players are formed and emergence of cooperation is achieved.

Pinninck’s work (de Pinninck et al., 2008) has used an ostracism-based mechanism to

punish norm violators in an open multi-agent system. Their work makes use of the concept

of a normative reputation for each of the agents in the society. Depending upon whether

an agent abides by the norm, its reputation is spread through gossip. Agents with a bad

normative reputation are ostracised by the members of the society (i.e. agents stop interacting

with a norm violator). By ostracising the norm violators, agents achieve better payoffs by

interacting only with the normative agents. Thus the norm is enforced, and the norm violators

are punished in an open agent society. Similarly, our work also uses ostracism along with

gossip to identify freeriders and restrict exploitation in a simulated P2P environment.

In his book on ostracism, Williams (2001) explains different types of ostracism. The
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ostracism that we use in this work falls under the type of punitive ostracism described by

Williams. Punitive ostracism is where an individual is ostracised by others as a punishment

(by avoiding interactions or ignoring). In our own work an agent is ostracised for being

non-cooperative (punitive ostracism).

3.4.3 Referral and voting

Referral is a useful mechanism when there is no prior experience or information about a

new person or a new service. For example, when someone applies for a job, the company

that advertises the job asks for referrals (e.g. letters of recommendations or references)

from the present or previous employers of the candidate. Referral is first-hand experience

shared by another agent about an agent in question. It differs from gossip, because gossip

is second-hand information which is normally about the experience of a third party which is

shared between agents. For example, agent A may consider B to be of high repute. It may

recommend B to C, so it is referral. C may pass on this information about B to D and E,

which is then gossip.

Referral mechanisms are useful in many domains including P2P (Yu and Singh, 2002;

Yu, Li, Singh, and Sycara, 2004) and have also been demonstrated by multi-agent system

researchers in other contexts, such as selecting a service provider (Yolum and Singh, 2003b,a,

2005; Candale and Sen, 2005; Gursel et al., 2009).

Condale and Sen’s work (Candale and Sen, 2005) uses a referral mechanism to choose a

service provider. They have considered using referrals not only for picking a service provider

but also for choosing an agent who gives good referrals. Choosing a good agent for getting

referrals improves the chances of finding a good service provider. Another issue is that the

activity of referring to a good provider over time would make the provider more busy, and the

service may degrade over time. So they have considered two further aspects, such as when

and whom to ask for a referral. They have shown that using referrals appropriately delivers

satisfying results. They have also considered negative referrals, where agents may provide

false information in referrals just to protect their service providers from service deterioration

caused by overloading. In this thesis, we don’t consider such misleading behaviour on the

part of agents.
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In the work of Yu and Singh (2002), they have used referrals for selecting reliable services

so that agents could find trustworthy agents through referrals. The frequent interaction and

adaptiveness of agents make the referrals more efficient and that leads to the emergence of

referral networks. These referral networks are the key components for the emergence of

social structures in their system. In their extended work in the e-commerce domain (Yu

et al., 2004), they have investigated the link structure of the network and how such systems

emerge to become self-organising referral networks.

Voting mechanisms are related to referrals. Once agents have information about others,

they can use this information for providing recommendations (i.e. a referral can contribute

in choosing the best agent through a voting process. Several agents can also vote on the

‘goodness’ of a particular agent). Voting is particularly suitable for systems with a top-level

authority, because voting requires an authority to tally the votes and enforce the decision

obtained through voting in the society. Agents typically vote based on their personal expe-

rience, which is plurality voting. The definition for plurality voting, as stated by (Shoham

and Leyton-Brown, 2009), is “Each voter casts a single vote. The candidate with the most

votes is selected”. In plurality voting, each agent votes for one of the candidates (Shoham

and Leyton-Brown, 2009). In this voting system the person with the most votes is selected as

the winner and there is no requirement that the winner should get majority of votes. Voting

is suitable for systems in which there is a higher-level authority who can tally the votes and

enforce the decision. The voting may not be suitable for systems without such an authority.

In our work voting is performed to establish the most and least cooperative player of the

group. The system uses local group monitors to enforce decision, and it is explained in detail

in Chapter 5.

3.4.4 Tagging

In this thesis tag-based mechanisms are used for group formation. This subsection provides

background information on tags. Tags have been used in modeling artificial societies since

John Holland proposed their usage (Holland, 1993). The tags which are modeled in multi-

agent-based simulations simply represent markings that are visible to other agents and are

used for grouping purposes. Examples of these tags in nature include birds of the same
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feather flocking together and animals that look similar to each other coming together to form

a herd. Each animal can be thought of as having the same tag (e.g. same appearance). They

interact within the group identified by all the members having the same tag. Thus the tagging

mechanism that we use is inspired by nature, and it has been widely used to model grouping

behaviour in artificial agent societies. Note that tags in nature are often permanent markers

identifying the species. But tags can also be temporary markers that are acquired or lost in

connection with a particular social context. It is this more flexible and dynamic aspect of tags

that is emphasised in our work1. A straightforward way to think of the tags used in artificial

societies is to assume that they represent group names for sets of agents: agents having the

same tags belong to the same group, and agents of the same group have some preference

to interact with others within their group. Thus people are usually friendly to others who

are similar to them (belong to the same group of interests, education, ethnicity, profession,

culture, personality). They choose their friends, partners based on certain similarities that

are assumed to represent compatibility.

Various researchers have characterised what tags are in slightly different terms.

• According to Riolo (Riolo, Cohen, and Axelrod, 2001) a “tag can be a marking, dis-

play, or other observable trait. Tag-based donation can lead to the emergence of coop-

eration among agents”.

• According to Hales (Hales and Edmonds, 2003b) “tags - observable social cues or

markers attached to agents. These tags are visible (readable) by other agents allowing

them to distinguish between agents with different tags”.

Tagging offers a simple mechanism that can facilitate cooperative behaviour on the part

of selfish individuals. Individuals prefer to interact with other individuals who are observed

to be similar to them (because they have the appropriate tag).

Tags offer several advantages. Using tags is relatively simple when compared to other

complicated mechanisms that are used to achieve cooperation/altruism. For example, other

1There are two ways of assigning tags to an agent in an agent-based simulation system. First, an agent

can be assigned to a tag-group at the initialization phase. Second, an observer can tag an agent based on an

observed attribute.
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known cooperation mechanisms used are direct and indirect reciprocity (Nowak and Sig-

mund, 1998; Trivers, 1971), kin selection (Hamilton, 1964a,b; Axelrod, Hammond, and

Grafen, 2004), and centralised control mechanisms. In the reciprocity mechanism, keep-

ing the memory of past interactions is needed. In kin selection, it is necessary to have a good

recognition mechanism to identify the kin. Centralised control systems require a monitor to

employ punishments or offer incentives, which represents a performance bottleneck and does

not scale as well as decentralised systems. In contrast, a simple tagging mechanism does not

involve additional overheads, such as memory storage, maintaining reputation records, and

monitoring logs.

In this connection some researchers have shown that tag-based mechanisms have been

successful in the evolution of cooperation using the Iterated Prisoner’s Dilemma/ Prisoner’s

Dilemma (IPD/PD) games (Riolo, 1997; Hales, 2000, 2001, 2002; Hales and Edmonds,

2003b; Hales, 2004b). Riolo (Riolo, 1997), has shown how cooperation is achieved by

using tags in playing the pair-wise Iterated Prisoner’s Dilemma game. Tags achieved co-

operative behaviour in that work by biasing the partner selection towards similar tags. This

biasing achieved cooperation among agents after enough iterations of the games were played

between the interacting agents.

In Hales’s work (Hales and Edmonds, 2003b) different types of tags were used to achieve

cooperation in different scenarios, such as Prisoner’s Dilemma, resource-sharing and load

balancing. In a subsequent work Hales (2008) compared the various tag models. In other

work by Hales’s (Hales, 2004b), a tag-based P2P system was proposed, where tags are mark-

ers that are visible to other agents. Agents interact with other agents that have the same tag.

The Prisoner’s Dilemma game was used to model the interactions among the P2P nodes for

sharing files. This work extends his previous work on tags, to networks, where a neighbor list

of nodes is considered to be a tag, and the movement of a node from one place in a network

to another is modeled as a mutation. His results showed that tags work well for P2P systems

in achieving cooperation, scalability and robustness.

In another work by Issac Chao (2007), it is reported that tag recognition does better than

multi-agent based learning mechanisms in one-shot PD game. Using experiments conducted

using simulations, the performance of tag-based mechanism is compared with other learning

mechanisms including evolutionary algorithms. Tag-based mechanisms showed promising
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results. Learning mechanisms might fail due to computational requirements (limitations) re-

quired in an open agent society where agents join and leave a society at run-time. A simple

genetic algorithm applied on the whole population just makes copies of the fittest whereas

the tag-based mechanism incorporates the same evolutionary algorithm across different tag-

groups, thus enabling the scalability of an open agent society. It should be noted that an

evolutionary algorithm performs better when compared to other learning mechanisms, the

evolutionary aspect combined with a tag-based system performs the best in facilitating co-

operation in an agent society.

All these works use tags as a group identifying mechanism to form teams and to improve

cooperative behaviour within the group, which eventually leads to the cooperation of the

entire society. In this thesis, tags are used as simple markings to form groups (in Chapter

4) where agents interact based on tag matching. We used tags for forming groups and also

‘colored’ tags are used for defining a simple meaning, implying the status of the agent (in

Chapter 5). In later parts of the thesis, tags are used as bootstrapping mechanisms to form

initial groups, and later the groups evolve based on agents’ behaviour (in Chapters 6 and 7).

3.5 Altruism

Altruistic behaviour is commonly observed in the animal kingdom, particularly in species

which have complex social structures (e.g. vampire bats, insect colonies and some bird

species) (Okasha, 2009). Altruism exists in human societies too.

Altruism has been of interest to researchers in the fields of sociology, psychology and

computer science (Axelrod et al., 2004; Batson, 1991, 1998; Tankersley, Stowe, and Huettel,

2007; Trivers, 1971; Sober and Wilson, 1998; Rushton and Sorrentino, 1981; Lehmann and

Keller, 2006; Németh and Takács, Németh and Takács; Fehr and Rockenbach, 2003; Fehr

and Fischbacher, 2003). Multi-Agent Based Simulations (MABS) provide the platform for

scientists to experiment with such models (Epstein and Axtell, 1996).

We give money to beggars or charity without expecting reciprocity. We know certainly

that they would not be returning the favor to us. But still we help them. People help strangers

at random places. Those helpers don’t know if the favor will be reciprocated because the

chances are very slim, but they still help strangers. Even though we live in a materialistic
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world, people do help others altruistically without self-interest. We could see lots of exam-

ples when calamities occur. Sometimes people offer help anonymously which means they

would receive no benefit for their altruism. By these examples, we see that altruism is built

in. Sometimes people show altruistic behaviour towards others, sometimes they do not show.

In brain science research (Tankersley et al., 2007; Rilling, Gutman, Zeh, Pagnoni, Berns,

and Kilts, 2002), it has been revealed that people are naturally moderately altruistic. They

discovered that altruistic behavior is hard-wired in the human brain and it is pleasurable to

humans. Research in bioethics also claims that people who adopt the altruistic decision are

likely to be the happy people in their lives (Post and Neimark, 2007).

Whether it be our real life human society or (any form of) the electronic digital society

or virtual world, the basic truth is that some sort of altruism prevails in there which keeps

things going, making it a better place (still).

3.6 Contextualising the contribution of this thesis

This section contextualises the contributions of this thesis with respect to the three-step pro-

cess of investigating agent societies (see Section 3.2). The three steps of the process are

given in three rows in Figure 3.1.

• Step 1 - Agent interaction

The context of agent interaction is depicted in the upper row of Figure 3.1. In Chap-

ter 4, agents interact with each other in the context of playing the Knowledge-sharing

game. In Chapter 5, the Prisoner’s Dilemma game is used to model the agent interac-

tions. In Chapters 7 and 8, the context of interaction between agents is file-sharing in

electronic societies. In all the four chapters tags have been used for group formation.

• Step 2 - Monitoring interaction

The monitoring process is depicted in the middle row of Figure 3.1. In Chapter 4,

monitoring is handled by the system itself. In Chapter 5, the behaviour of agents is

monitored by other agents in a group, and the referral mechanism is in place to spread

the information. Referral is used along with voting to choose agents based on their
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behaviour (i.e. best or worst). In Chapters 7 and 8, decentralised systems are modeled.

We move away from the global view of information by considering partial view of

information and aggregation using our gossip mechanism.

• Step 3 - Controlling interaction

The control process is depicted in the lower row of Figure 3.1. In Chapter 4, system

control is used. In Chapter 5, resource restriction2 is used as a controlling mechanism

for exploiters and also to restrict access to them. In Chapters 7 and 8, ostracism is used

as the control mechanism.

In this thesis, we have employed a mix of social mechanisms to accomplish social con-

trol. We have used tags for forming groups, referral to get first-hand information, and voting

to obtain the public opinion. Gossip is used to share the second-hand information. Resource

restriction and ostracism are used as controlling mechanisms to restrict access to exploiters.

These mechanisms employed in agent societies help them achieve social control by struc-

turing the society which enables betterment of the society as a whole. Overall, this thesis

has adopted a novel approach of establishing social control through several socially-inspired

mechanisms in artificial societies.

Employing these mechanisms in agent societies results in improvement of the society by

restricting exploitation of agents. In other words uncooperative behaviour in the artificial

agent societies is curbed by making use of social mechanisms. This thesis systematically

develops and tests computational mechanisms for controlled agent societies and gradually

moves to develop more advanced and scalable mechanisms for fully decentralised societies

and also from closed to open societies. Our goal has been to develop computational mech-

anisms to support distributed systems that are more open, scalable, decentralised, adaptive

and self-organising without any top level control by employing our agent-based social mech-

anisms in place.

2Explained in Chapter 5
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Figure 3.1: Contextualising the experimental chapters.
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3.7 Summary

In this chapter we have discussed the social mechanisms to facilitate social control in artifi-

cial agent societies. We have presented the three-step process involved in the investigation

of artificial agent societies and discussed the social mechanisms employed for the segrega-

tion of groups within a society. For each social mechanism various relevant research work

was discussed. The next part of the thesis presents our specific computational models and

mechanisms and demonstrates the empirical tests that have been performed.
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Part II - Socially-Inspired Models
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Chapter 4

Knowledge sharing in agent societies

4.1 Introduction

Both human and animal societies have an innate ability to operate in groups. In the animal

kingdom, animals often live in groups. Humans too, form societies and often work together

as a group: we believe in working together to achieve something as a group which we cannot

achieve individually. For example, even primitive hunter-gatherer groups have been shown

to have exhibited group tendencies to obtain food (Clutton-Brock and Parker, 1995), and

it is common to observe group-supporting behaviour in animal societies (Dugatkin, 1997;

Wilkinson, 1984).

For human beings, group mechanisms have provided social machinery that enables co-

operation and collaboration. It has been observed in nature that animals that look similar

often form a group. Members of a group have an identifier (a tag) that helps them associate

with each other. Such tags can be differently interpreted by external observers.

It is frequently observed that when a task becomes too difficult for a single entity to

perform, some kind of collaboration or cooperation arises between individuals. For example

in the hunter-gatherer societies, it was difficult for an individual to hunt a mammoth, so

members hunted as a group. There was an advantage to form their own group, which gave

them strength to defend themselves and also provided more hands to work towards obtaining

food. Cooperation is the key to the group’s achievement.

An important aspect of this collaborative behaviour is the sharing of knowledge or skill
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sets among a group. Our concern in this chapter is to experiment with tag-based mechanisms,

where groups are formed using tags. Members that belong to a particular group share their

skills with other members of their group. In this chapter, we seek to identify those conditions

under which a tag-based mechanism produces satisfactory results when there are multiple,

competing groups present in the environment. Our experiments in this area were conducted

in the context of agents engaging in a knowledge-sharing game.

Consider a scenario where there are different groups that use different techniques for

cultivating a crop. The group with the best technique might have a higher yield, hence this

group can be considered as outperforming the others. Eventually the other groups will likely

follow the technique of the successful group. In other words, the other groups improve

(convert to the best group by following their technique). This is a simple example of the

conversion process, which can lead to the betterment of a society in many cases.

Another example of conversion is the adaptation of ideas. In the academic research do-

main, we may be influenced by ideas reported by different research groups and subsequently

embrace valid ideas of those groups that enhance our own work.

Thus conversion is a mechanism that has been present in human societies for a long time,

such as converting people from a conquered land to adopt new customs, beliefs, skills, and

even religion. Traditionally, new members that are being inducted into a group take up the

new skills in order to enhance their prospect of success1. The strategies employed by the

winning group are considered to be the successful ones (at least for the time being). In this

work, we have adopted a conversion mechanism in connection with playing a knowledge-

sharing game for the betterment of the society.

In equitable societies, the cost of communal services (such as the cost of road works,

setting up parks) is shared. But, in some cases, it is best for an individual to bear the costs,

rather than dividing the whole cost over the entire society. In this work we demonstrate one

such example (in Section 4.3.9) where the whole society is better off when some individuals

bear the cost of sharing.

1Success is determined by wealth which leads to survival.
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4.2 Outline of basic experimental mechanisms

Our concern is to experiment with tag-based mechanisms, where groups are formed using

tags. Members that belong to a particular group share their skills with other members of the

group. To start with, not all members in the society might be skilled in performing a task, and

also not all members that possess the skill might want to share it with their group members

let alone other group members. We have experimented with different scenarios to observe

whether cooperative (sharing) behaviour can be induced in those setups.

• Tagless model

In Sections 4.3.1 and 4.3.2, we show the baseline experiment when there are no tags

in the system.

• Tag model

We show how sharing occurs when there are tags in the system and discuss how tags

help in the process of sharing in Sections 4.3.3 and 4.3.4.

• Tag-and-trait model

We describe in Sections 4.3.5 and 4.3.6, the conditions under which tags are suitable

to facilitate altruism and when they are less suitable for this purpose. We have also

discovered a necessary condition for the society to evolve to “All-sharing”.

• Conversion model

We show how knowledge-sharing can be made possible even in the presence of non-

sharing agents in the population. This is discussed in Sections 4.3.7 and 4.3.8.

• Individual versus group cost sharing model

Additionally, we have experimented with two cost sharing mechanisms, individual

cost-bearing and group cost-bearing. We present the mechanisms in Sections 4.3.9

and 4.3.10.
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4.3 Experimental setup

In our own work we have employed a straightforward and practical model for examination:

knowledge sharing which deals with sharing knowledge within a society composed of shar-

ers and non-sharers. Note that knowledge-sharing differs from resource-sharing (Hales and

Edmonds, 2003b; Holland, 1993; Riolo, Cohen, and Axelrod, 2001), since resources are

depleted when shared, which is not the case when knowledge is shared.

The inspiration for our experimental domain model came from the work of Nemeth and

Takacs (Németh and Takács, Németh and Takács). In their model agents can teach or learn,

or can do both. In their work sharing is based on proximity. They have demonstrated how

altruistic teaching led to group formation and settlement. Agents shared their knowledge

with their neighbours in their locality. As a result, the accomplishment of altruistic teaching

led to an emergent phenomenon of settlement of agents and the accumulation of knowledge.

To model social behaviour in the artificial society, we used an interactive mechanism

called the knowledge-sharing game. The operational details of the game are described in

Section 4.3.1. It employs a social interaction model, where the sharing of knowledge is most

beneficial for the group. Non-sharing is the selfish option, which benefits the individual but

not the society as whole. Sharing benefits the society by spreading the knowledge, but it

costs the donor who shares but not the recipient who gains the benefit. In this work “sharing

the knowledge with other peers who lack knowledge at a cost to itself” is referred to as

‘altruism’. The donation (sharing) costs the donor, and the donor gets nothing back as a

reward/benefit. Donations reduce the score (wealth) of the donor, which can lead to the

decrement of its survival and reproduction chances. The parameters of the experiment are

Knowledge (K), Sharing (S), Wealth (W) and Tag (T).

• Knowledge (K bit) could be 0 or 1. If K=1, the agent possesses the knowledge, other-

wise it does not.

• Sharing (S bit) could be 0 or 1. If S=1, the agent is willing to share, otherwise it does

not.

• Wealth (W) could be 1.0 or below. When the agent initially possesses the knowledge,

it has its Wealth set to 1.0. But each time it shares the knowledge, it loses 0.1from its
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wealth.

• Tag (T) is a string of binary bits. Agents having the same tag belong to the same group.

In the start of the game, only 20% (randomly assigned) of the population possess the knowl-

edge (K=1), hence they have a wealth score of 1.0 for possessing knowledge, and 50%

(randomly assigned) of the population has the tendency to share (S=1). This leaves the agent

population with four different types of players.

• Type K+S+: agents with knowledge who do share (K=1, S=1)

• Type K-S+: agents without knowledge who do share (K=0, S=1)

• Type K+S-: agents with knowledge who do not share (K=1, S=0)

• Type K-S-: agents without knowledge who do not share (K=0, S=0)

This is the general setup and the initial composition of players in all the experiments

unless otherwise articulated. We chose these parameter values since we wanted to keep the

number of sharers and non-sharers equal and start with a small number of knowledge bearers

(1/5th of the population (20%) and see how this composition (four types) changes over time.

4.3.1 Tagless model

In this game, players are randomly paired, and sharing may or may not occur between them.

Sharing happens only when one player of the pair (player1) has the knowledge and the ten-

dency to share (K+S+) and the paired player (player 2) is without knowledge. The player

who acquires the knowledge gains a wealth score of 1.0. During reproduction, the player

with high wealth gets to reproduce and the player with low wealth dies. Sharing the knowl-

edge does cost the donor (0.1) in terms of its wealth. The receiver gets only the wealth

benefit (1.0) with no corresponding cost. 1.0 is the maximum value of wealth that a player

can have at any time in this game. Thus if a player receives knowledge, its wealth value can

never surpass 1.0, but each time it shares, it loses 0.1 from its wealth score (since it spends

some time and energy to share). From the individual agent’s perspective, it is better not to
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share, so that it can keep its score high and increase its survival chances. But for the society’s

welfare overall, it is good to share.

The game is played with 100 players over a duration of 1000 iterations. In each iteration,

every player gets to play the game once as a donor (player1) and once as a receiver (player2).

The players with higher fitness have more chances for being selected for reproduction and

they outperform others. This process derives logically from the concepts of survival of the

fittest. In our approach reproduction does not apply for all individuals (the whole population)

at the same time. Often in evolutionary models, the whole population enters the reproduction

phase at the same time, but in nature it does not work that way.

In natural systems, reproduction takes place gradually in the population. In our approach

10% of the population is selected and paired for reproduction in every iteration. In each pair

the stronger reproduces, and the weaker dies. If both are of same wealth, one is randomly

selected. Thus 5% of the population reproduces (has one offspring), and 5% dies. In this

manner, the population maintains a steady state with a value fixed at 100. The offspring agent

is a copy of the parent, having the same behaviour of the parent (sharing bit, S), but not the

knowledge (K bit). All young ones are born without knowledge and with a wealth of 0. The

new agents acquire knowledge when they interact with other agents in the population that

(a) have knowledge and (b) the tendency to share their knowledge with others. The overall

process is outlined in Algorithm 4.1.

4.3.2 Results for the Tagless model experiment

Figure 4.1 shows the average of 30 complete runs of this experiment. It depicts the overall

knowledge (not the wealth) of the population (represented by the K line) and the sharing

behaviour (the S line). The experiment starts with 20% of the agents having knowledge (K

line) and 50% of them having the sharing tendency (S line). When 50% of the population

comprises sharers, the population gains more knowledge. After a number of generations

(around 30-40 iterations), almost 90% of the population have acquired the knowledge. The

sharing tendency starts going down as the sharers die out, because of their low wealth score

due to the cost of donation (0.1). The selfish non-sharers take over, and the population

drifts towards non-sharing, since the non-sharers retain the maximum score. After several
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Algorithm 4.1: Pseudocode for the Tagless model

foreach generation do1

foreach player do2

Play with a random player;3

Interact;4

Share based on the behaviour (S);5

Collect payoff;6

end7

Select 10% of the population;8

Pair them for comparison of wealth (payoff);9

foreach pair do10

Weaker one dies;11

Stronger one reproduces;12

Newborn inherits the behaviour (S);13

end14

end15
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generations (100 iterations), the population has few with knowledge and very few with the

tendency to share. Because most of the population now has the non-sharing behaviour, there

is less sharing and hence a decline in knowledge (remember that offspring are born without

knowledge). The S line then tends towards 0. When the S line is 0, there is no sharing at all,

and the 5% newborn agents that appear after each iteration cannot obtain any knowledge. So

in the end almost the entire population has become ignorant and selfish.

Figure 4.1: The knowledge and sharing level in Tagless model. The

knowledge of the population represented by K line and the sharing be-

haviour by the S line.

4.3.3 Tag model

To improve upon the scenario described in the Tagless model, we introduced a new modeling

approach, the Tag model. Tagging has been shown to achieve cooperation in animal societies

(Axelrod et al., 2004) and also in artificial agent societies (Hales, 2002; Riolo, 1997). This

model is aligned with the idea that in general, most of us do not share information with just

anyone, but only with those with whom we feel comfortable.

We again used the basic knowledge-sharing scenario described in Section 4.3.1, except

that there is no sharing bit assigned, and instead the players have group tags. The decision

to share is based on tag matching. If the tags match, sharing takes place, otherwise it does

not. The sharing agent’s score decreases by 0.1, every time it shares, and so sharers are more
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likely to die than non-sharers. For our tag experiment, we use a string of 3 binary bits as tags

(000, 001 etc.). Thus there are 8 different tag groups. Every player is randomly assigned a

tag.

Algorithm 4.2: Pseudocode for the Tag model

foreach generation do1

foreach player do2

Play with a random player;3

if tags match then4

Interact;5

Share;6

Collect payoff;7

end8

end9

Select 10% of the population;10

Pair them for comparison of wealth (payoff);11

foreach pair do12

Weaker one dies;13

Stronger one reproduces;14

Newborn inherits the tag (T);15

end16

end17

When two players interact, player1 (if it has knowledge) always shares its knowledge

with player2 if they both have the same tag. Players are altruistic towards other players who

are like them (based on their tag). At the end of each iteration 10% of the population is

picked randomly, paired and compared by score. In each pair the high scorer gets the chance

to reproduce, and the low scorer dies, so that 5% of the population reproduces in every

generation. In natural evolutionary systems, mutations randomly occur, because of natural

errors (which are very infrequent). In our experiments, the offspring agent gets the tag of the

parent with a very low mutation probability and has no knowledge or wealth.
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This tagging mechanism results in a population of 100 players grouped into 8 tag groups.

Group members are always altruistic towards their own fellow group members. Since the

sharing is based on tag matching, the population keeps maintaining the knowledge by sharing

it with newcomers to their group. The newborns are born with their tags which they inherit

from the parent. But they have no knowledge from birth. Whenever they get to interact with

other players with the same tag that have the knowledge, they receive the knowledge. The

overall process is outlined in Algorithm 4.2.

4.3.4 Result for the Tag model experiment

This setup results in almost 90-100% of the population eventually having knowledge (see

Figure 4.2). Even after many generations (10000), the knowledge level is maintained. In

Figure 4.2, the results from Tagless model and the Tag model are compared. The graph

shows the average of 30 runs. The red K (without tag) line shows the knowledge level

that was achieved in the Tagless model. The blue K (with tag) line shows the knowledge

achieved in the Tag model, which makes use of tags. The tagging mechanism promotes

altruistic behaviour in populations even where the reward for being selfish is more than that

of being fair. At the start of the experiment, there were 8 tag groups with varying numbers of

members. At the end of 1000 iterations, there was only 1 surviving group that had the entire

population: all others had died.

At the outset only 20 players had knowledge. When they start sharing their knowledge

within their group, the number of knowledge bearers in the population increased, iteration by

iteration. By the end, one group ended up with all the knowledge. (Note that the maximum

number of knowledge bearers in the population will be 95, because there are always 5 new

agents born without knowledge.)

In this model, even if few players are available in the population, at least the parent of

the newborn has the same tag. For the newborns the knowledge will continue to be shared in

this setup, which does not occur in the previous setup (Tagless model) where all the sharers

may die out.

This result is in accordance with the work reported in (Riolo et al., 2001; Riolo, Cohen,

and Axelrod, 2002). They have designed their model in such a way that every group is full of
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donors who donate the resources, and there is no one who does not donate within the group.

By that the agents of the same tag group always cooperated with each other. In other words,

the behaviour is correlated with the tag. It was remarked by Roberts and Sherratt (Roberts

and Sherratt, 2002) that the agents were forced to cooperate within their group.

We extend the investigation by employing a mechanism in our next experiment that does

not correlate a tag with behaviour.

Figure 4.2: Comparison of knowledge in Tag model and Tagless model.

4.3.5 Tag-and-trait model

We believe that having both sharers and non-sharers in a group would be a plausibly realistic

approach. In order to test whether the tag system really works for the given domain, the strat-

egy/behaviour should not be correlated with the tag. In our next mechanism, the behaviour

of the agent is independent of the tag, which means that even though the tags may match,

the agents do not have to cooperate/share. Behaviour is based on the sharing bit (tag and

behaviour are not correlated). This is analogous to an agent not sharing a skill with someone

in the same group, because it is inherently selfish.

The Tag-and-trait model is a combination of Tagless and Tag models. In the Tagless

model, the decision to share is based on the S bit, and interaction is allowed with any random

player in the population unconditionally. In the Tag model, the decision to share is based

on tag matching, and the interaction is restricted within the group. We experimented with
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combining aspects of Tagless and Tag models. In the Tag-and-trait model, the decision to

share is based on the S bit, and the interaction is local, based on tags.

We performed the experiment of the Tag-and-trait model in essentially the same fashion

as the Tag model, with a few differences. Recall that the sharing decision in the Tag model is

just based on tag matching: if the tags matched, then the agents shared. In the Tag-and-trait

model, once the tags match, then whether sharing takes place is based on the sharing bit (S).

Also, in the Tag model during reproduction, the offspring agents only inherit the tag of their

parent. In the Tag-and-trait model, the offspring agent also inherits the sharing tendency (S

bit), as well as the parent’s tag.

Algorithm 4.3: Pseudocode for the Tag-and-trait model

foreach generation do1

foreach player do2

Play with a random player;3

if tags match then4

Interact;5

Share based on the behaviour (S);6

Collect payoff;7

end8

end9

Select 10% of the population;10

Pair them for comparison of wealth (payoff);11

foreach pair do12

Weaker one dies;13

Stronger one reproduces;14

Newborn inherits the tag (T), behaviour (S);15

end16

end17

The overall process of the Tag-and-trait model is outlined in Algorithm 4.3.
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4.3.6 Results for the Tag-and-trait model experiment

There were dramatically different behaviours observed for different stochastic experimental

runs of the simulation. One result, call it “All-sharing”, shows that 100% sharing can be

achieved using tags (Figure 4.3, see the S line), while another result, “No-sharing”, shows

0% sharing (Figure 4.4, see the S line). In Figure 4.3, it can be observed that the sharers

ultimately increased in numbers for that run, so there was more knowledge-sharing in the

population. Almost 95% of the population gained knowledge. Another result for the same

experiment is shown in Figure 4.4. From Figure 4.4, it can be observed that the number of

sharers eventually declined towards 0, and due to the lack of sharing, the knowledge level

decreased.

Figure 4.3: The K line shows the knowledge and the S line shows the

sharing (All-sharing).

The reason lies in the formation of groups with K and S. The rate at which the number

of sharers die out in the population should be less than the number of sharers who are born

in the groups. If so, the sharing is supported and produces the “All-sharing” result. If the
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Figure 4.4: The K line shows the knowledge and the S line shows the

sharing (No-sharing).

number of sharers that die are more than the number of newborn sharers, the “No-sharing”

result is obtained. We note that behaviour of a qualitatively similar nature was observed by

McDonald and Sen (2005) in the Prisoner’s Dilemma game, who explained that for cooper-

ation to evolve, the number of groups invaded by defectors must be less than the number of

new cooperative groups formed.

In the process of investigating the two different behaviours of our results, we observed

that there was a key structural indicator associated with those groups that eventually domi-

nate the society when the society has complete sharing and knowledge.

This indicator reflects the crucial condition that identifies when the group has rid itself

of all its non-sharers. The group with this condition must also have at least one member

of type K+S+. When non sharers (type K+S- and type K-S-) gain the knowledge, their

wealth becomes 1, and they maintain this wealth (since they never share). That will make

it unfavorable for type K+S+ players to survive, since they gradually lose their wealth by

sharing. As a result, type K+S+ players eventually die out, and type K-S- players increase.
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Figure 4.5: Groups satisfying the winning condition.

When a group loses all its type K+S+ players, there is no way for the players in that group to

obtain knowledge. The group will end up producing more knowledge-less non-sharers (type

K-S-) whose wealth is 0. That will eventually lead to the group’s extinction.

As long as there are type K+S+ players in a group, they serve as sources for the entire

group to gain knowledge. When type K-S+ players gain the knowledge from type K+S+,

they also become type K+S+. This group will survive by producing type K-S+ sharers (no

knowledge) who will change as type K+S+ and share more.

Thus a group which gets rid of type K+S- and type K-S- and is composed of only type

K+S+ and type K-S+ will survive. Hereafter we refer to this condition as the “winning

condition”. This winning condition is the necessary condition for a group to win and to

achieve the all-sharing result. This winning condition, which is necessary for any group to

survive in the long term, can be expressed as follows.

COUNT(K+ S+)>0 AND COUNT(S−) = 0 (4.1)

The predicate ‘COUNT’ should be read as the number of players with the given condi-

tion.

The number of type K-S+ agents does not matter, because if there are some type K-S+
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Figure 4.6: Size of tag groups (with 3 bit tags).

agents without any type K+S+ agent in the group, the group is still doomed, since these K-S+

agents cannot receive knowledge.

Results from a sample run are presented in Figures 4.5 and 4.6. Among the 8 groups there

could be more than 1 group which could meet the winning condition. Figure 4.5 shows 8

lines corresponding to 8 tag groups. On the y-axis each line has two values, 0 and 1. When a

tag group meets the winning condition, the line goes from 0 to 1. Among 8 groups, 2 groups

met the winning condition at some point. They are tag groups 011 and 110: tag group 011

met the winning condition in iteration 47 and it sustained the condition for some iterations.

At iteration 408, it failed the condition so the line dropped to 0.

But tag group 110 met the condition in the 123rd iteration and became the winner, since

it sustained the condition. Even though these two groups had only sharers, when group 011

lost their type K+S+ players, the group could not succeed in the long run.

From Figure 4.6, it can be observed that there is only one winner out of all the groups.

The entire population is of one group (group 110), because of the nature of the interaction

mechanism to replicate the fitter member and extinguish the weaker member. The group
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Figure 4.7: Keeping S constant and increasing K.

Figure 4.8: Keeping K constant and increasing S.
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111, which had almost 80-90% of the population at one point, became extinct later, because

it had non-sharers and also lost its type K+S+ players. The group 110, which was initially a

small group with the winning condition, eventually took over.

The “All-sharing” result was obtained when there was at least one group that met the

winning condition and sustained it. Otherwise we obtained results like “No-sharing”, where

none of the groups satisfied the condition, and they all ended up with non-sharing, knowledge-

less entities. If the agents are either of type K+S+ and type K-S+ at the end of the iterations,

the “All-sharing” result is obtained. If they are only of type K+S- and type K-S-, the “No-

sharing” result is obtained.

We have experimented with different percentages of agents with K and maintaining the

percentage of those with S constant at 50%. We observed that using initial K populations

of 20%, 50% and 75% the likelihood of obtaining the “All-sharing” result increased as we

incremented the value of K. It is shown in Figure 4.7.

We have experimented with different percentage of agents with S and maintaining the

percentage of those with knowledge, K constant at 50%. We observed that using initial

S populations of 20%, 50% and 75% the likelihood of obtaining the “All-sharing” result

increased as we incremented the value of S. It is shown in Figure 4.8.

Note that these are values averaged over 1000 runs. The percentage of getting “All-

sharing” results is an approximation calculated by averaging these results. For this setup,

we received 22.3% of “All-sharing” results (1000 runs). It can be observed from the two

figures that an increase in either S or K produces better “All-sharing” results. And also from

these two figures (Figures 4.7 and 4.8) we can observe that the “All-sharing” result is more

sensitive to varying S than K.

4.3.7 Conversion model

We developed another mechanism which works in the same fashion as the Tag-and-trait

model, but differs in the reproduction phase. It employs a conversion mechanism instead.

The behaviour (S bit) is not inherited by the offspring.

The conversion process at the end of each iteration works in the following way. 10% of

the population is picked randomly, paired and compared by wealth score. With every pair
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the high scorer in wealth gets the chance to convert the low scorer to its tag group. If both

players are of the same wealth in a pair, one of them gets to convert by random selection.

The winning agent converts the losing agent by adding the agent to its group (i.e the

low scorer joins the tag group of the high scorer). The converted agent does not have the

knowledge (its K bit value is 0) when joining the new group. The converted agent retains its

original sharing behaviour (S bit).

The new agents wind up acquiring knowledge whenever they interact with other agents

in the population that have knowledge and the same tag and also have the tendency to share

their knowledge. By this process, after each iteration 5% of the population gets converted.

The population thus has a steady state population with a value fixed of 100. The overall

process of the conversion model is described in Algorithm 4.4.

Algorithm 4.4: Pseudocode for the Conversion model

foreach generation do1

foreach player do2

Play with a random player;3

if tags match then4

Interact;5

Share based on the behaviour (S);6

Collect payoff;7

end8

end9

Select 10% of the population;10

Pair them for comparison of wealth (payoff);11

foreach pair do12

Stronger converts Weaker ;13

Converted one gets Stronger’s tag (T);14

Converted one retains its behaviour (S);15

end16

end17
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4.3.8 Result for the Conversion model experiment

In our results, when we say that ‘knowledge is sustained’ we mean that more than 80% of

the agent population has the knowledge and that knowledge is constantly being transferred

by conversions, to newcomers arriving each iteration.

The final population (at the end of the run) belongs almost entirely to a single tag group

which is the strongest (has the greatest wealth), and all other agents previously belonging to

other groups have been converted to the winning group.

Our results for this configuration (Figures 4.9 and 4.10), show that the knowledge could

be sustained in the population even with the presence of selfish agents. This result con-

trasts significantly with earlier experiments with the Tag-and-trait model where the agent

population was able to sustain knowledge only when one of the groups attained the winning

condition.

Figure 4.9: The K line shows the knowledge and the S line shows the

sharing.

Figure 4.9 shows the average of 30 runs. It shows that the number of sharers is always

50 (see the S line) and the knowledge is sustained (see the K line) in the society. Figure 4.10

shows a sample run which depicts the distribution of the 4 types of players at the end of the

run.

The distinguishing feature of the conversion model which brings about distinctly differ-

ent results when compared with the Tag-and-trait model is in the agent interaction mecha-
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Figure 4.10: Four types of agents at the end of the iterations.

nism. In this configuration converted agents retain their behaviour, but just the tag changes. It

means the group tag changes to that of the stronger player, instead of inheriting the behaviour

of the dominant player with its tag as in the previous Tag-and-trait model.

In order to elucidate these results, we examine the agent interaction operator in detail.

Note that agents possessing the (K+S-) attributes are likely to have a high wealth since they

never share, and thereby never incur the 0.1 cost of sharing.

In this conversion model, the newcomer (converted agent) retains its own behaviour and

inherits the tag of the dominant mate. If the newcomer is a non-sharer, it comes to the new

group as a non-sharer (without knowledge). If it is a sharer, it comes as a sharer (without

knowledge). Both cases are advantages in the current mechanism. They are listed below.

• If a sharer comes to the group and receives knowledge from an existing sharer in this

group, it starts sharing within the group as well (K-S+ becomes K+S+).

• If a non-sharer comes to the group and receives knowledge from an existing sharer

in this group, its wealth becomes 1 (K-S- becomes K+S-). Since it never shares, its

wealth is high, and it converts other players and brings new members to this group.

The number of sharers and non-sharers remained the same in this situation, but the
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knowledge-sharing was still made possible and was sustained and passed on for future gen-

erations.

4.3.9 Experiment on individual cost bearing versus group cost sharing

We have also performed experiments comparing individual cost bearing versus group cost

sharing. In the setup explained so far, the sharer always incurs a cost for its donation, which

reduces its wealth. So we have examined an alternative mechanism whereby the cost is not

incurred individually by the sharer alone, but distributed across the entire group and shared

by everyone. Everyone’s wealth is reduced by cost/n where n is the number of members.

We experimented with both of these cost-bearing mechanisms (Individual vs. Group cost-

sharing) to compare the performances2.

We tested 2 types of cost-bearing with 2 sets in a population. Each set has 4 groups.

They play the knowledge-sharing game within their group. In the previous experiments, the

game is played with 8 tag groups and with individual cost sharing. In the current experiment

out of 8 groups, 4 play with individual cost sharing and 4 play with group cost sharing. We

wanted to see which group type performed better. Except for these two differing cost-bearing

mechanisms, with one group “Set 1” subject to individual cost-bearing and “Set 2” subject

to group cost-bearing, everything else in the experiment was the same as that described in

Section 4.3.7. Algorithm 4.5 shows the pseudocode schematically comparing the two cost

sharing approaches.
Algorithm 4.5: Pseudocode for the process of cost sharing

if group belongs to Set 1 then1

Sharer bears the cost;2

Receiver receives the benefit;3

end4

if group belongs to Set 2 then5

Group members bear the cost;6

Receiver receives the benefit;7

end8

2Performance is measured by wealth.
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4.3.10 Result for the individual versus group cost sharing experiment

Our results in this competitive comparison indicated that groups from Set 1 (individual cost-

bearing) won most of the times. This is because when the cost is borne just by a single sharer

during a game, only one agent’s wealth is reduced; hence its survival chance is low. It could

be converted to another group if it gets picked against a wealthier player.

Figure 4.11: Tag groups from 2 sets.

In the contrasting case where the cost is shared by everyone in the group, everyone loses a

little of their individual wealth, every time there is a sharing in the group. It makes the whole

group weaker and more of the members are prone to be converted when playing against

wealthier players.

In this experiment we observed that the individual cost-bearing was more effective in

terms of knowledge sharing. This was due to the fact that only a few agents lose their wealth

by bearing the cost and the remaining group members who are not sharing the cost are

relatively stronger, so they can convert weaker players from other groups. Thus the winner

is always a group from Set 1. A sample result is shown in Figure 4.11. Thus out of 8 groups

from 2 sets, the tag group 001 from set 1 became the winner which ended up with all the

players getting converted to its group and sustained the knowledge in the population.

Group cost sharing under these particular conditions weakened the groups. Individual
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cost-bearing did not. Thus in this model it was good for the society to have some people who

sacrifice for the well-being of the group, instead of everyone in the society contributing to

cost sharing.

4.4 Discussion

Mutation is usually a rare, one-off event that happens in the evolutionary cycle of an organism

if the environment triggers it. Mutation may sometimes lead to behavioural trait more suited

to the survivability of the organism in its environment. Mutation may have either positive or

negative effects depending on external factors as well. So we have used a low probability of

mutation in our experiments. In this work mutation did not play any significant role, because

it always disadvantaged the mutant. During interaction, the knowledge-sharing happens if

the tags match. If the mutant is the only one with a particular tag in the society, then there is

no matching partner for him to gain knowledge. If no knowledge then no wealth. Hence the

mutant cannot survive without wealth and will be replaced by stronger ones. Even if there

is another matching tag partner for the mutant, the mutant will get knowledge only if the

matching partner has knowledge and shares it. We note that this will not affect the overall

behaviour of the system. The winner in this system will still be the group which is stronger

than all others.

In this work we used only tag mutation. The system behaviour could vary if we introduce

mutation for the sharing bit, but in our work, behaviour (S bit) is just a single bit entity. We

will consider mutation for behaviour in future work. Further in this domain, we intend to

investigate the linkage between tag length and the population size. From previous literature

(McDonald and Sen, 2005) we know that for cooperation to evolve in larger populations

longer tag bits are needed. It will be interesting to find what tag length would be enough for a

given population to converge towards altruism in a particular system model (domain). In this

work the knowledge is modeled as a single entity. We are also interested in experimenting

with an agent population having multiple types of knowledge. It would be interesting to see

in this context how effectively different types of knowledge or skills can be shared in an

agent society.
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4.5 Summary

The main differences in these four different experiments and their results in terms of sharing

the knowledge are shown in Table 4.1. The experiment on the cost-sharing model is not

listed in Table 4.1, because it had the same setup as the conversion model. In Table 4.1, tag

inheritance indicates whether tags are present/inherited in the system. Sharing bit present

indicates whether the S bit is present. Behaviour inheritance indicates whether the S bit is

inherited. Knowledge preserved indicates whether the knowledge is being shared and passed

to the next generations.

Experiment Tag Sharing bit Behaviour Knowledge

inheritance present inheritance preserved

Tagless model No Yes Yes No

Tag model Yes No Yes Yes

Tag-and-trait model Yes Yes Yes Yes & No

Conversion model Yes Yes No Yes

Table 4.1: The main differences in the four sharing systems.

In this chapter we have shown how altruism based on tags can be used in different systems

of independent agents. In the context of the knowledge-sharing game, we have shown that

tagging can help sustain the knowledge possessed within the society.

Through our experiments, we have shown that sharing does not happen without tags in

the Tagless model. We have also shown in Tag model, that the use of tags can do better

in improving sharing than when the sharing decision is just based on tag matching, when

only group tags are inherited from the parents. It could still fail to preserve knowledge if the

sharing includes the tendency (trait), the sharing behaviour (S bit) when inheritance involves

both the group tag and the sharing behaviour (S bit) as demonstrated in Tag-and-trait model.

In the Conversion model, we have presented our results about how a society could share

and sustain knowledge even in the presence of selfish agents that are present in equal pro-

portions. We have also shown that bearing the cost individually can be a better option than

bearing the cost across the whole group under certain experimental conditions.

Overall, the focus of this chapter was to demonstrate how knowledge is shared among
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individual agents in a system controlled environment (centralised society). Though central

monitoring and controlling can be beneficial in facilitating social control, these systems are

limited in scalability and flexibility. Thus the focus of the next chapter is to investigate a

semi-centralised approach for facilitating social control.
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Chapter 5

Self-organisation in semi-centralised

systems

5.1 Introduction

When autonomous agent communication is employed in artificial agent societies, the com-

municating agents need to share a common ontology with respect to the terms and relations

that are contained in the bodies of messages. Approaches are needed to ensure that individ-

ual agents do not act in ways that negatively affect the system goals. A structure observed in

natural ecosystems that would evidently be useful for addressing these issues is that of a so-

ciety or group of agents that interact according to an agreed-upon set of policies or norms of

the group (Aldewereld, Vázquez-Salceda, Dignum, and Meyer, 2006). Research in the area

of open autonomous agent norms and institutions has focused on ontological considerations

with respect to institutional commitments (Singh, 1999; Colombetti et al., 2002; Oliveira,

Purvis, Cranefield, and Nowostawski, 2004) and sanctions that may be imposed when com-

mitments are not upheld. Sierra and his team (Arcos et al., 2005), working with more tightly

controlled systems, have implemented agent-based institutional systems with centrally ad-

ministered mechanisms that maintain strict control of individual agent interactions within the

institutions. In this chapter, we describe our own semi-centralised approach which differs

from the above.

In our approach, we are concerned not only with agents that break institutional laws, but
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also those that merely fail to contribute to the common good. We employ simple tags because

of the complexity and intricacies associated with using detailed ontologies for specifying

institutional goals and rules. We have developed mechanisms inspired by social concepts

such as voting and referral and also use monitoring agents (semi-centralised control) locally

at the group level. The objective of this work is to avoid cooperative sharers being exploited

by uncooperative freeriders and improve societal performance by restricting freeriding.

By nature’s design different kinds of people exist in a society. Every society has co-

operative and uncooperative members. In the real world it is not possible to get rid of all

uncooperative members from the society. However, by imposing strict control it is possible

to exclude people with certain behaviour (uncooperative) from the society, but this is not

what we want to achieve here, because measures of strict control are not scalable for larger

societies. Our goal is to restrict the performance of uncooperative members and prevent the

cooperative members from being exploited rather than excluding exploiters out of the soci-

ety. The uncooperative members not only take advantage of cooperative members, but also

cause damage to the common good. Special mechanisms need to be designed and deployed

to control the behaviour of such groups in electronic societies. To avoid exploitation, we can

separate good and bad within the society without excluding them.

This work uses simple tags for the self-organisation of cooperative and uncooperative

groups by employing monitoring agents for each group. It also includes the voting mecha-

nism on top of the referral mechanism. Additionally, we show that the resource restriction

for uncooperative groups improves the societal benefit. In this chapter, we investigate these

mechanisms in reducing the performance (wealth) of uncooperative members and increasing

the overall societal benefit.

This chapter is organised as follows. In Section 5.2 we present our experiments which

make use of monitoring agents, tags, voting, referral and resource restriction mechanisms.

In Section 5.3, we summarise this chapter.

5.2 System design and experiments

In our system, an artificial agent society is partitioned into groups, with a special monitor

agent for each group. Each monitor agent computes an overall performance measure of the
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group that it maintains and supervises group access and membership. The context of agent

interaction is the Prisoners Dilemma game which is explained in Section 2.3.1.1. The payoff

values are shown in Table 5.1.

Players 1 / 2 Cooperate Defect

Cooperate 2,2 0,3

Defect 3,0 1,1

Table 5.1: Payoff values for Prisoner’s Dilemma.

5.2.1 System 1 using tags

In the first set of experiments, an artificial agent simulation environment was set up with

a society of 100 agents divided into 5 groups of 20 agents each. Individual game-playing

agents were programmed to have an internal parameter which determined their tendency to

cooperate or defect, degree of cooperation, (dc) that was randomly initialised to have a value

between 0 and 1. At the outset of the game, each of the five groups was populated with a

random collection of players having various tendencies to cooperate or defect.

In each group, each agent played a round of games (Prisoner’s Dilemma) with other

agents in its group, after which the group monitor would conduct a voting among the group

members to determine which ones are the most cooperative and least cooperative members

of the group. When a group member pairs off with a playing partner, it plays 5 games with

that player, so each member plays 95 (19 other agents*5) games in a round. Players get

scores for their played strategies as shown in the Table 5.1.

Based on the 5 games a player plays with other members, it can compute a cooperation

score for each player it played with. But members only know about the games they them-

selves played, and they know nothing about how much other agents may have cooperated

with one another. The performance of an individual agent is measured by its individual

score and is denoted as p. At the end of each round, the voting is performed. Voting is the

process of ranking group members based on their degree of cooperativeness (dc) with other

members it played with for that round . The score of an individual member p is different from

its own degree of cooperation denoted as dc. For instance, in the Prisoner’s Dilemma game,
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an uncooperative group member may defect its fellow members and achieve a high score p

(as per Prisoner’s Dilemma payoff matrix in Table 5.1), even though being considered to be

least cooperative by its fellow group members (having a low value of dc).

An agent is considered to be cooperative if dc is grater than or equal to a cooperation

threshold value ct. In our case we set ct=0.5. An agent was considered to be cooperative if it

cooperated at least 50% of the time (which corresponded to having a degree of cooperation

(dc =0.5). For instance if an agent has dc=0.4, it cooperates 4 times out of 10. Since its dc

value is less than ct, it is considered to be uncooperative.

An agent’s vote is based on its individual playing experiences with all the other agents

in the society. Players vote for best and worst cooperators based on their experience. When

all the votes based on individual member experiences are tallied by the group monitor at the

end of the round, there will be a ranking of group members based on their degree of coop-

erativeness (dc) for that round. Group members vote for their best and worst cooperators.

Thus after tallying the votes, the monitor will know its most cooperative (highest dc) and

least cooperative (lowest dc) member for that round. The monitor uses this information to

get rid of the least cooperative member and promote the most cooperative member to other

groups. It can be assumed as getting a ticket from the group monitor to leave the group.

In addition, for each round, the five groups rank themselves in terms of their overall

performance (op), which is the sum of the individual scores (p) of all of its members in the

group. The performance score of a player p is the sum of all the scores it scored in that

round.

To determine movement between groups, the procedure given below is followed:

• The highest ranked group in terms of op kicks out its least cooperative member.

• The 2nd, 3rd, and 4th groups in terms of op also kick out their least cooperative mem-

bers, but also promote their most cooperative members for movement to a new group.

• The lowest ranked group in terms of op promotes its most cooperative member for

movement to a new group.

There are, thus, eight agents that have been placed into a separated pool for moving to

another group: four promoted from the 2nd, 3rd, 4th, and 5th ranked groups and four kicked
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Algorithm 5.1: Pseudocode for System 1 (using tags)

begin1

initialisation;2

bootstrap agents in groups;3

foreach round do4

foreach group do5

foreach agent do6

play five games with every other agent in the group;7

rank them based on their cooperativeness;8

end9

performance of the group is calculated;10

voting is performed;11

group monitor collects votes and ranks players;12

end13

Groups are sorted based on performance;14

while elimination from group do15

best cooperative player is taken out from the worst performing group and16

given blue tag;

worst cooperative player is taken out from the best performing group and17

given red tag;

worst cooperative and best cooperative players are taken from medium18

performing groups and given red tags and blue tags respectively ;

end19

players who were out of their groups are in a temporary pool;20

group monitor chooses the agents from the pool;21

while selection from pool do22

The high performing groups get blue tagged players;23

The low performing groups get red tagged players;24

The medium performing groups get blue tagged players and red tagged25

players;

end26

end27

end28
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out of the 1st, 2nd, 3rd, and 4th ranked groups. Now tagging is employed. The four promoted

agents are given blue tags, signifying promotion, and the four kicked-out agents are given

red tags, signifying demotion. This procedure is illustrated in Figure 5.1.

Figure 5.1: Elimination from group.

Commonly in tag-related works (Hales and Edmonds, 2003a,b; Hales, 2004a,b; Riolo,

1997; Riolo et al., 2001) tags serve the purpose of showing the identity of the agent and

specify which group the agent belongs to. Here our purpose of using tags is just to represent

the status of an agent which is currently in the pool. The status could be high (promoted)

represented by blue tags or low (demoted) represented by red tags.

The monitor agent chooses players with blue tags in preference to players with red tags

without knowing the performance scores of the players in the pool. The monitor agent takes

players with blue tags if they are still available when it comes to its turn to choose. The

monitors of the groups pick the players from the pool starting from the highest ranked group.

• At this stage, the highest ranked group gets one agent among the pool members in

order to replace the member that has been kicked out. (1st group gets 1 blue tagged

agent).
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• Then the 2nd, 3rd, and 4th ranked groups get two agents to replace the two agents that

they have lost. (2nd group gets 2 blue tagged agents, 3rd group gets a blue tagged and

a red tagged agent and the 4th group gets 2 red tagged agents).

• Finally, the lowest ranked group winds up with the remaining agent of the pool. (5th

group gets a red tagged agent).

Figure 5.2: Selection from pool.

Thus groups always have the same number of members. The procedure for selection

from the pool is illustrated in Figure 5.2. With the new groups now constituted, another

round of play is commenced. The pseudocode is given in Algorithm 5.1.

The goal of the experiments is to see how well this mechanism established and main-

tained groups that separated and protected ‘good-guy’ cooperative agents from ‘bad-guy’

defecting agents.

From Figure 5.3, we can see the separation of groups in terms of number of cooperators

(from iteration 10 onwards). Two groups with full of cooperators and two groups with almost
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Figure 5.3: Prisoner’s Dilemma with tagging.

Figure 5.4: Cooperativeness and score of groups.
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all defectors and a middle group with both cooperators and noncooperators. This graph

shows the clear separation of these groups.

Figure 5.4 shows the groups in descending order (from left to right) based on the number

of cooperators. This figure shows the association between the number of cooperators in the

group and the average score of the group. The groups with more cooperators had higher

scores. The group without any cooperators (Group 5) had the lowest score compared to all

other groups (Groups 1 to 4). The differences in the average group scores between groups 1

to 4 are small. The difference in the average group score between groups 4 and 5 is high (a

difference of 10.49).

A paired t-test was conducted to prove the separation of groups based on cooperativeness.

The standard deviation of number of cooperators in groups at the start and end of each run

was calculated for 30 runs. With 95% confidence level we can say that there is a significant

difference in the groups at the start and end, t(29)=36.81, two-tail p = 6.72*10−26.

5.2.2 System 2 without using tags

A second experiment was performed, again with agents playing the Prisoner’s Dilemma

game, but with a different selection process this time. Although the player pool after each

round was set up as before, with four players having been kicked-out of their groups for low

cooperation and four players promoted into the pool for high-cooperation, on this occasion,

the blue and red tags (indicating whether a player had been promoted or kicked-out of its

group) were not used. Instead, players are placed in the pool based on the player’s individual

performance scores. The monitors of the groups pick the players from the pool starting

from the highest ranked group. They chose players from the top of the pool. The highest

performing group chose the player from the pool with the highest individual performance

score (top one from the pool), and the subsequently ranked groups chose the remaining

highest-scoring player available when their turns came up.

The changed process is outlined in Algorithm 5.2. In Algorithm 5.1 the lines between 22

and 26 are replaced by Algorithm 5.2 in this experiment.
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Figure 5.5: Prisoner’s Dilemma without tagging.

Algorithm 5.2: Pseudocode for System 2 (without using tags)

begin1

while selection from pool do2

highest performing group chooses the player with highest individual3

performance score;

subsequently ranked groups choose the remaining highest-scoring player4

available;
end5

end6

Under these circumstances, when the group monitor agents chose high-performing agents

from the pool, there was no separation into cooperative and noncooperative groups because

the best performers (i.e. agents with high scores) are usually the noncooperators. This result

is shown in Figure 5.5.

Thus when monitor agents select new group members based on their individual perfor-
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mance, rather than by cooperation (signified by tags), there is no observed separation of

groups.

5.2.3 System 3 using referral combined with System 1

Referrals have been shown to provide valuable information about an agent’s behaviour (Can-

dale and Sen, 2005; Yu and Singh, 2002; Yu et al., 2004; Yolum and Singh, 2003b,a). The

goal of this experiment is to increase the performance (score) of cooperators by using refer-

rals along with separating groups.

In this experimental setup, an artificial agent simulation environment has been set with

a society of 100 agents divided into 5 groups of 20 agents each. In each group, each agent

played 10 games with 19 other agents in its group. Among these 10 games, we call the first

5 games as the first half and the next 5 games as the second half. In the first half, agents

play using their degree of cooperation dc, randomly assigned to them. Every agent keeps

the history of the first half which can be referenced during the second half, so they know

who cooperated or defected in the past 5 games. But they know nothing about how much the

other agents might have cooperated with each other. In the second half each agent asks for

a referral about the opponent from its best 5 cooperators it has played with in the first half.

Among five of them, if at least 3 of them say that the opponent is a cooperator, the agent will

cooperate, otherwise it defects. So each agent plays 190 (19 *10) games in a round. Then

the group monitor will conduct a voting among the group members to determine which are

the most cooperative and least cooperative members of each group. It promotes the most

cooperative member and demotes the least cooperative member (similar fashion to System

1). With the newly created groups another round of play is initiated. Remember the agents

use the assigned constant dc value to select the strategy in the first half of every game. In the

second half, they use referral scheme to select the strategy.

Thus in this experiment we have studied the effect of adding referrals to the tag based

system described in Section 5.2.1 of Algorithm 5.1. The difference between Algorithm 5.1

and this experimental setup is in lines 6 to 9. Those lines are replaced by the pseudocode

given in Algorithm 5.3.

From this experiment we are interested in seeing how well the performance of noncoop-
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erators can be restricted by using referrals. We also seek to examine whether societal benefit

can accrue by using referrals and letting the agents change their playing strategies based on

the opponent’s past behaviour (from the referral information).

Algorithm 5.3: Pseudocode for System 3 (using referral combined with System 1)

begin1

foreach agent do2

while firsthalf do3

play with every other agent in the group;4

keep the history about the other agents;5

end6

while secondhalf do7

before playing, the agent asks for referral about the playing partner;8

if partner is a cooperator then9

cooperate;10

else11

defect;12

end13

end14

rank the partners based on their cooperativeness;15

end16

end17

The game was played over 100 rounds; initially every group had roughly an equal number

of cooperators and defectors. As the play progressed, the groups started separating and we

could clearly distinguish different groups (similar to Figure 5.3) at the end with different

degrees of cooperativeness. There were:

• two groups that had almost all cooperators

• two other groups that had mostly defectors

• a middle group that had about half cooperators and half defectors.
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With the separation of groups (based on their cooperativeness) we compared the scores

in the first-half of the game with the second-half. Our general observation when using the

referral scheme is that the groups that have more cooperators in the population gain higher

scores than what they scored in the first-half. The most uncooperative groups (full of defec-

tors) score less than what they obtained in the first half. In such groups, by using referrals,

every agent comes to know that its potential partner is a defector, so they all defect and get a

low score. Because of this, their group score is also low. The performance of a group which

has an equal number of cooperators and defectors is determined by its overall tendency to

cooperate/defect (which is based on the individual cooperativeness of all the members of a

group). If the tendency to cooperate is higher than defection, the group increases its score

over its first-half score. This is also the same for the groups which have very small differ-

ence in the number of cooperators and defectors. For instance, a group with 8 defectors and

12 cooperators can get a lesser score in the second half, if the group’s overall tendency to

cooperate (adding individual’s cooperativeness together) is less than to defect.

Groups (ranked by Overall Performance) 1 2 3 4 5

Cooperators : Defectors 18:2 16:4 10:10 4:16 0:20

Score in First half 3397 3293 2961 2688 2247

Score in Second half 3531 3374 3147 2636 2174

Table 5.2: Different groups and their performance.

Table 5.2 shows the values from a sample run. From Table 5.2 we can see the number

of cooperators in each group and the group’s score in the first and second halves. The first

two groups had mostly cooperators, the middle group had both cooperators and defectors

in equal numbers, the fourth group had only 4 cooperators and the fifth group was full of

defectors. For the first 3 groups the score increased in the second half. For the remaining 2

groups the score decreased since many agents in the group were defectors.

In the second half a cooperator cooperates only with other cooperators. Thus, the co-

operator avoids bad transactions with defectors. This shows the referral scheme works well

enough to improve the scores of cooperators, which is beneficial for the society.
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5.2.4 System 4 using resource restriction combined with System 1

For agent societies to operate effectively, all agents within the society must play by its rules.

When some of them do not abide by the rules and exploit the common resource, they must be

restricted from doing so. A related issue is that of exploitation of common pool resources. To

deal with this problem, the resource access for the exploiters must be limited for the welfare

of the entire society. The experimental setup described in this section describes the resource

restriction approach in which the ‘number of games allowed to play’ is considered as a

resource. For the noncooperators the number of games is restricted based on their behaviour.

We conducted two types of experiments, one with resource restriction and the other with-

out resource restriction. We compared the performance of the society based on average

scores.

5.2.4.1 Experiment without resource restriction

The first experiment conducted was without resource restriction. It was conducted with the

same environment as System 1 described in Section 5.2.1. There were 100 agents divided

into five groups each having 20 agents. They played 100 rounds. Each agent played five

games in a round with other agents in its group. After 15 rounds, the groups started sepa-

rating similar to the result shown in Figure 5.3. The five groups separate with two groups

full of mostly cooperators, two groups full of mostly defectors, and a middle group having

half of both. The total score of the system was calculated by adding together the overall

performance, op, for each group. The average score for each group is calculated by dividing

the overall performance, op by number of games (five). The sum of these average scores of

the five groups is calculated and we call it the average without resource restriction.

5.2.4.2 Experiment with resource restriction

The number of games played is treated as the resource. We limit the resource (number of

games) for the groups that are not performing well. The limitation for using the resource

varies between groups according to the group’s cooperativeness. Groups are ranked based

on their cooperativeness. The 1st ranked group is allowed to play 5 games as usual, since it is

the best performer. The 2nd ranked group is restricted to play 4 games, the 3rd ranked group
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to play 3 games, the 4th ranked group to play 2 games and the 5th ranked group to play just

1 game, since it is the worst performer. The total score of the system is calculated by adding

together the op for each group. The average score for each group is calculated by dividing

the op by the number of games (1 to 5 based on the group’s rank). The sum of these average

scores of the five groups is calculated and we call this the average with resource restriction.

Algorithm 5.4: Pseudocode for System 4 (using resource restriction combined with

System 1)

begin1

foreach group do2

5 games for first ranked group;3

4 games for second ranked group;4

3 games for third ranked group;5

2 games for fourth ranked group;6

1 game for fifth ranked group;7

end8

end9

The pseudocode of resource restriction for groups is given in Algorithm 5.4. The lines

given in Algorithm 5.4 should be inserted between lines 26 and 27 of Algorithm 5.1 to

illustrate the overall procedure.

We compared the scores of both (with and without resource restriction), the scores with

resource restriction is higher because of limiting the exploitation by having restriction on

games played (for noncooperators). The comparison of these two results (with and without

resource restriction) are presented as boxplots in Figure 5.6. The depicted values are mini-

mum (min), quartile1(Q1), maximum (max), median and quartile3(Q3). These results show

that restricting resources for exploiters is beneficial for the society.

A paired t-test was conducted to determine if the resource restriction was effective in

improving the societal performance by comparing the average scores (with and without re-

source restriction). The paired t-test was performed with null hypothesis over 30 sample

runs. The mean societal performance (M=51.7, SD =33.96, N= 30) was significantly greater
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Figure 5.6: Comparison of results in boxplot.

than zero, t(29)=8.33, one-tail p = 1.7 ∗ 10−9, providing evidence that the resource restric-

tion is effective to increase societal performance with a 95% confidence interval.

5.3 Summary

In this chapter, we have described mechanisms that help to restrict exploitation and improve

societal performance in a multi agent society that has both cooperative and uncooperative

agents. These mechanisms use monitoring agents locally within the group, which makes our

system semi-centralised. Our first mechanism used tags and voting, and the system showed

self-organisation. When tags were not used, there was no self-organisation observed.

Some of our experiments used referrals along with tags. The previous history from the

first half was used to make decisions in the second half. This has improved the results

of the second half. We have also investigated resource restriction mechanisms and have

demonstrated that group level resource restriction can be used to improve the overall societal

performance. The referral mechanism is used to restrict the individual noncooperators. The

resource restriction mechanism is used to restrict groups with uncooperative behaviour. We

have demonstrated that our proposed mechanisms help in improving the societal benefit and

restricting exploitation. Our experiments encourage the forming of groups with differing
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degrees of cooperation among its members. This can make it easier to deal with a variety of

agent behaviours and still maintain an agent society that is open to new membership. Agents

with lower reputations can be restricted to operate within groups that may have less access

to system resources. As agents “prove themselves” and improve their reputations, they may

be gradually given access to more desirable groups within the society.

Our overall conclusion, then, is that with the agent-based mechanisms that employ tags,

monitor agents, and some constraints on accessing other groups and together with other

social mechanisms, it is possible to foster more cooperative group behaviour within highly

interconnected agent societies. But still there is a need to move from semi-centralised to

decentralised mechanisms for establishing social control in distributed societies. This forms

the focus of the next chapter.
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Chapter 6

Self-organisation in decentralised closed

systems

6.1 Introduction

One of the most persistent problems in P2P networks is freeriding (Ramaswamy and Liu,

2003; Krishnan, Smith, Tang, and Telang, 2004; Feldman and Chuang, 2005). There are

published examples of centralised approaches in facilitating cooperation that employ cen-

tralised regulations to control freeriders (Esteva et al., 2004). These researchers have used

monitoring agents or governor agents to control agent behaviour. Even though centralised

systems have several advantages, such as direct control and access, they have several lim-

itations as well. They suffer from bottlenecks when the number of agents increases in the

system. They are computationally expensive, because of the cost associated with avoiding

performance bottlenecks, and they are prone to a single-point-of-failure.

With the increase in processing power and storage capacity of low-cost, lightweight com-

puting devices such as smart phones, the arena of computing is becoming much more dis-

tributed. The clients of file-sharing systems are not only personal computers but also smaller

devices, such as smart phones (Moya, 2010). There is a need for decentralised solutions to

deal with the freeriders in these distributed societies.

In this chapter we develop social mechanisms for self-organisation of agents in a peer-

to-peer like environment and present our simulation results. We investigate how the self-
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organisation of distributed groups based on performance can be achieved. Such a system

would self-organise to protect cooperators from being exploited by the non-cooperators. It

would also restrict the non-cooperators from taking advantage of cooperators by restricting

their access to better groups, where the quality of service or performance is higher. By doing

so the performance of the whole system can be improved, because resources can be dis-

tributed in greater proportion to the better performing groups. Otherwise, it will be difficult

to shield the cooperators from the defectors who hardly or never share their resources.

To that extent, this chapter proposes a decentralised solution that makes use of social

mechanisms such as tags, gossip and ostracism. The inspiration to use social mechanisms

for our work comes from the human societies, which have evolved over time to work ef-

fectively in groups (if need arises). For human beings, group mechanisms provide social

machinery that supports cooperation and collaboration. Social control can be employed

through leadership mechanisms. For example, the leader can impose rules on his followers.

The disadvantage of such an approach is that it is centralised. On the other hand, it is known

that social control can also be achieved by decentralised approaches.

A gossip-based mechanism can be used to achieve social control, as it serves as a dis-

tributed referral mechanism where information about a person is spread informally among

the agents. Another social mechanism that can be employed to deal with freeriders is os-

tracism. Members that do not adhere to the values, expectations, or norms of the groups can

be sanctioned by other agents by their refusal to interact with those agents.

In this chapter we demonstrate how these social mechanisms can be developed and em-

ployed for agents in a closed and decentralised society which has several groups.

Similar to the objective of the previous chapter, our aim here is to restrict exploitation or

in other words restrict uncooperative behaviour by separating groups based on performance.

Thus we investigate decentralised mechanisms to facilitate self-organisation of groups.

6.2 Proposed mechanisms for self-organisation of groups

The five proposed mechanisms are:

• Rank-based grouping mechanism (Section 6.4)
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• Dynamic grouping mechanism (Section 6.5)

• Random hopping mechanism (Section 6.6)

• Individual group history mechanism (Section 6.7)

• Sharing group history mechanism (Section 6.8)

We have developed them one after another to overcome the drawback of the previous

mechanism. Our motivation in all these mechanisms are to achieve self-organisation of

groups (separation based on cooperativeness). These mechanisms are explained in detail

in their separate sections which also explains why they were selected or preferred over the

previous mechanism. Common steps in the proposed mechanisms are

• Gossip interaction

This step deals with how agents gossip and how they make use of the gossip informa-

tion.

• Leaving a group

In this step agents may leave a group. There are certain conditions under which agents

leave a group.

• Choosing a group to join

In this step agents decide which group to join next.

• Entry criteria

This step is to set the entry criteria (eligibility condition) to join a group.

All these steps are explained in detail in their separate sections within the proposed mech-

anism. These proposed mechanisms and their differences are tabulated in Table 6.1.

6.3 Agent attributes in our experimental setup

For this experimental model we have used agents which have fixed, randomly assigned at-

tribute values which represent how they behave.
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• Cooperativeness

This attribute specifies how cooperative an agent is. An agent has a randomly assigned

cooperation value between 0 and 10 that represents how much it cooperates (shares),

with 0 representing an agent that never cooperates and 10 representing an agent that

cooperates every time. This value is known as the cooperativeness of the agent.

• Gossip blackboard length

Each agent has a gossip blackboard of certain length to store the gossip messages from

other agents of its group. This blackboard will be used by an agent to post the gossip

information provided by other agents. For example agent A posts the gossip it heard

from agents B and C on their interactions with agents D and E respectively. These are

individual blackboards for agents, but can be referred by other agents.

• Cost and benefit for sharing

Agents share files. Whenever a file is shared, the receiving agent receives 1 as benefit

while the sharing agent loses 0.1 as cost (cost is associated with sharing since the

sharing agent loses time and bandwidth for sharing).

• Tag groups

In the initial setup agents are put into random groups. Each group is represented by

a tag (badge). Agents within a group have the same tag. They interact within their

group, and they can also move to other groups under certain conditions. In such cases

they join the other, jumped-to group, and the tag changes accordingly.
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6.4 Rank-based grouping mechanism

In our simulation model agents are engaged in the sharing of digital goods in a simulated P2P

environment of an artificial agent society. In the initial setup 100 (Number of agents) agents

are randomly divided into 5 (Number of groups) groups, 20 each. Each agent is initialised

with a random cooperative value between 0-10. Each agent has a blackboard with a size

of 10 (Gossip blackboard size), which is a blackboard for storing gossip information. After

reaching the limit, it rolls over based on First-In-First-Out (FIFO) algorithm. This setup

updates old gossip information as new gossip information comes in. These blackboards are

individual blackboards for agents. We do not model them as common blackboards because if

a common blackboard fails, then that would affect a group of agents (Balaji and Srinivasan,

2010). The interaction between the agents is in the context of sharing files.

The experimental parameters are listed in Table 6.2.

Parameters Values

Number of agents 100

Number of groups 5

Number of iterations 1000

Cost for donation -0.1

Benefit for receiving 1

Number of iterations before hopping 100

Number of gossip requests 5

Minimum number of games in a group before hopping 10

Gossip blackboard size 10

Table 6.2: Experimental parameters for rank-based grouping mechanism.

6.4.1 Gossip interaction

An agent can make a request for a file to its fellow group agent. Whether the agent gets the

requested file or not, it can gossip about the outcome to another agent in its group. In the

gossip mechanism, there is no lying. It is assumed that the agents report honestly, since this
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happens within the group. In this fashion, every transaction is reported (gossiped about) to

one of the other agents in the group. Thus the total system has some partial information about

every agent, maintained in a distributed way. The first one-tenth of the iterations were played

in this manner to build up a distributed gossip repository among agents. For simplicity, the

operation of how agents gossip within the group is outlined in Algorithm 6.1. Consider

agents A, B and C.
Algorithm 6.1: Pseudocode for gossip.

/* A gossips about B to C */

begin1

A requests for file to B ;2

if B shares then3

A gossips positively about B to C;4

else5

A gossips negatively about B to C;6

end7

end8

6.4.2 Leaving a group

After 100 iterations (Number of iterations before hopping), agents are able to hop groups if

they have played 10 games (Minimum number of games in a group before hopping) in their

group. We call the agent that tries to hop to a new group a ‘hopping peer’. It is assumed that

an agent may hop because either it is not satisfied with the performance of the group or it

wants to explore other options (i.e. moves to other groups hoping for better personal utility).

6.4.3 Choosing a group to join

The hopping peer makes a request to a random agent of the new group to be permitted entry

to its group. We call this agent from the new group a ‘new-group peer’. For example,

consider agents X and Y. X is the hopping peer, and Y is the new-group peer. In order to

allow X into its group, Y asks 5 (Number of gossip requests) random agents in X’s group
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for gossip about X. The value of cooperativeness of X is calculated by this collected gossip

information. This would be a value between 0 and 10. This value is called the ‘estimated

cooperativeness’ for X. The value is calculated by considering the worst-case scenario, and

can be calculated as below.

Estimated cooperativeness =
number of times cooperated

1 + number of times played
∗ 10 (6.1)

For example, if an agent has cooperated 3 out of 4 times then its estimated cooperative-

ness will be 6 based on the above formula. We add 1 to the number of times played because

we want to calculate by assuming the agent defects in the next play (worst-case scenario).

This way the agent which played just one game and cooperated in that game and an agent

which played 2 games and cooperated in both the games would not be assessed equally (even

though they both cooperated 100%).

An agent which cooperated 1/1 will get a score of 5.0 by Equation 6.1.

1

1 + 1
∗ 10 = 5.0 (6.2)

An agent which cooperated 2/2 will get a score of 6.6 by Equation 6.1.

2

1 + 2
∗ 10 = 6.6 (6.3)

Again Y asks 5 agents in its own group, to report their cooperation history and it calcu-

lates their cooperativeness together. This is called Y’s ‘group’s calculated cooperativeness’.

If X’s estimated cooperativeness is higher than Y’s group’s calculated cooperativeness value,

then X is allowed entry to the new group, otherwise it is rejected. If rejected, X can apply to

other groups in the same manner (including its previous group). There would be one group

in the system which accepts all the agents regardless of their cooperativeness value, which is
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the lowest performing group. By this process, an agent will get into a group only if its coop-

erativeness is eligible to get into that group. The process of joining a new group is outlined

in Algorithm 6.2.
Algorithm 6.2: Pseudocode of the process of an agent joining another group.

/* X asks Y if it can join Y’s group */

begin1

Y requests for gossip information about X from 5 other players in X’s group;2

Y computes X’s estimated cooperativeness based on the gossip information3

obtained;

Y requests 5 other players in its own group to report their cooperation history for4

computing the entry value (group’s calculated cooperativeness);

if X’s estimated cooperativeness >Y’s group’s calculated cooperativeness then5

X gains entry;6

else7

X does not gain entry;8

end9

end10

The process that has been described so far would only allow or deny entry to agents of

other groups based on their estimated cooperativeness. But it will not get rid of low perform-

ing players from their current group. For that to happen, the system needs a sophisticated

mechanism which could expel poor performing agents.

Agents can estimate the cooperativeness or performance1 of their own groups. It is cal-

culated by using all the available gossip in the group. The cooperativeness of every agent

in the group is calculated and the average is known as ‘group’s calculated cooperativeness’.

But the agents have no idea about the performance of other groups. How good your group

is compared to other groups can be determined only if you know about the performance of

other groups. For setting an entry value for the group, agents in a particular group ask agents

in other groups about their group performance. This process is explained in Section 6.4.4.

1The performance of the group depends on the cooperativeness of its members.
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6.4.4 Entry criteria

In order to achieve the desired maintenance (cooperation standard) of a group’s population,

in every group, a random agent is selected on each iteration after the 100th iteration (i.e.

after one-tenth of the iterations), for a fitness check to decide whether an in-group agent is

up to the standards of the group or not. We call this agent the ‘chosen peer’. The chosen

peer contacts randomly one of the agents in its group for the checking. The agent who

checks is called the ‘checking peer’. Now the checking peer must decide whether to let the

chosen peer stay in the group, based on the group’s performance. The group’s rank can be

determined only after knowing the performance of other groups. An agent has no idea about

other groups’ performance. So the checking peer asks another random agent in each of the

other groups in order to obtain an estimated value of those other groups’ cooperativeness

which is a calculated value based on the gossip information available in the group. The

random agent in that group collects the gossip information from everyone in its group and

calculates the cooperativeness of every agent in the group through the gossip. The average of

these cooperative values of all the group members is considered to be the ‘group’s calculated

cooperativeness’. After getting the information from the agents in other groups about their

group’s calculated cooperativeness, it ranks its own group (as shown in Table 6.3) based

on the cooperativeness and chooses the entry value for its group. The highest performing

group sets the highest value as its entry value, and so on. Agents who want to remain in

this group should have a cooperative value (calculated through gossip) above the group’s

entry value in order to stay in this group. Otherwise, the agent is not allowed to stay in the

group. This is a kind of ‘ostracism’. Group order and their entry values are shown in Table

6.32. The checking peer also checks for gossip information about the past behaviour of the

chosen peer in the chosen peer’s group. Now if the chosen peer’s estimated cooperativeness

is higher than the entry value for the group, then it allows the agent to stay, otherwise it is

rejected/ostracised. In a similar fashion, a chosen agent is randomly selected and checked in

every iteration (after the 100th iteration). This filtering process is outlined in Algorithm 6.3.

2We could choose the range of separation by setting the entry value. For example, each group could have

20% of members of the whole population. The top group can have the top 20% of the cooperators, the next top

group can have the next 20% of the cooperators and so on.
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This filtering process expels the low performers from the group. But the lowest performing

group does not have any filtering; hence it will accept anyone (usually the poor performers).

Groups Order by performance 1 2 3 4 5

Group Entry Value >8 >6 >4 >2 0-10

Table 6.3: Group order and entry value.

Algorithm 6.3: Pseudocode of the filtering process.

foreach chosen peer contacts checking peer do1

checking peer gets chosen peer’s estimated cooperativeness;2

checking peer requests a random agent in each of the other groups for their3

group’s calculated cooperativeness;

checking peer receives other groups’ calculated cooperativeness;4

checking peer sets the entry value for its group (based on Table 6.3);5

if chosen peer’s estimated cooperativeness > entry value then6

chosen peer stays;7

else8

chosen peer leaves;9

end10

end11

The whole process is repeated for several iterations. At the end of all the iterations the

separation of groups based on cooperativeness is achieved. The whole process is outlined in

Algorithm 6.4.

6.4.5 Results of experiments

It can be observed from Figure 6.1 when we performed an empirical test using simulation,

that different ranges of cooperative peers were located in different groups. Initially all the

groups started with roughly similar cooperativeness. They ended up showing different ranges

of cooperativeness as shown in Table 6.4 and Figure 6.1.

Table 6.4 shows the initial and final cooperativeness of groups which is also depicted in

Figure 6.1.
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Algorithm 6.4: Pseudocode for rank-based grouping mechanism.

initialisation;1

bootstrap agents in groups;2

foreach iteration do3

select random number of agents;4

foreach selected agent do5

play with another agent in the group;6

collect payoff;7

gossip ; // Algorithm 6.18

end9

if iteration ≤ 100 & selected agent has played a minimum number of games then10

allow selected agent to leave and join another group ; // Algorithm 6.211

end12

if iteration > 100 then13

Collect other group’s calculated cooperativeness;14

Rank the groups based on Table 6.3;15

foreach group do16

check a random agent for group standards ; // Algorithm 6.317

if group standards met then18

agent stays in the group;19

else20

agent leaves and joins another group ; // Algorithm 6.221

end22

end23

end24

end25

98



Groups 1 2 3 4 5

Initial cooperation value 5.8 5.4 5.3 4.5 4.3

Final cooperation value 9 7.4 6.6 5.8 1.8

Table 6.4: Initial and final cooperation value of groups.

Figure 6.1: Self-organisation of groups using rank-based grouping mech-

anism.

This system filters out the worst peers well and restricts them from accessing contents

from groups of cooperators. This also helps to protect cooperators from not being exploited

by freeriders. The best agents get to access or enter into any group and finally end up in the

best group.

Using the gossip mechanism, agents share their interaction experiences with some other

agents. Unlike reputation mechanisms, where agents keep track of all the reputation infor-

mation of other agents, only some individuals have this gossip information. This mechanism

allows for the partial-view of truth about the world states which is a realistic and scalable

feature of agent societies. Even if a peer leaves a group, not a lot of information is lost, but

only a very small proportion.

In this experimental setup, the agents get the information about the performance of other

groups. Relying on that information, they rank the groups and set their group’s entry value as

shown in Table 6.3. Even though this mechanism facilitates a separation of groups based on
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their cooperativeness, the mechanism for determining a group’s entry value based on Table

6.3 can be viewed as a constraint specified a priori (i.e. at design time). This is suited

for systems where the designer wants to decide the range of separation based on particular

values (similar to the ones shown in Table 6.3). If the number of groups change at runtime

the values for the range of separation can not be changed accordingly. However these values

for separation range could be calculated during run time based on a group’s current state

which is explained in the next experiment in Section 6.5

6.5 Dynamic grouping mechanism

In order to address a potential weakness of the previous mechanism (Section 6.4), we inves-

tigate a mechanism based on dynamic group forming which does not follow a priori values.

Instead the range of separation is derived by considering the current state of the group. This

experiment has some changes from the previous experiment. For one thing, this experiment

has 5000 iterations. In addition, agents in this experiment have two more attributes, called

‘tolerance level’ and ‘rejection limit’.

The tolerance level is a value between 1 and 10, which characterises how much non-

cooperation the agent can tolerate before it decides to leave the group. A value of 1 identifies

the least tolerant agent, and 10 identifies the most tolerant agent. An agent with a tolerance

value of 1 leaves the group after experiencing defection once and an agent with a tolerance

value of 10 leaves the group only after 10 defections. Each time the agent experiences a

defection it increases its tolerance count. The agent decides to leave the group when its

tolerance count reaches its tolerance level.

The rejection limit is an attribute of an agent which represents how many rejections

(rejections are described below) the agent can face before it decides to leave for another

group. Every time it is rejected from the play, it increases its rejection count. The agent

decides to leave the group when its rejection count reaches its rejection limit.
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6.5.1 Gossip interaction

Gossip interaction takes place like the previous mechanism explained in Section 6.4.1. But

the agents use this gossip information to avoid playing with the worst player of their group.

When a player requests a file, the giving player can check with five other random agents

(asking them what they know from the gossip information they have received) whether this

asking-player (taking-player) is the worst cooperator of their group. The worst player is

the one who has been uncooperative the most often in its group (according to the available

gossip information). If the taking-player is the worst player, the giving player refuses to

interact with (i.e. rejects) the taking-player. Otherwise this giving player interacts (sharing

a file or not based on its own cooperativeness). The operation of how peers use gossip is

outlined in Algorithm 6.5, where D and E are the players in the group. Assume here that E

is the taking-player, D is the giving-player, and D checks with any 5 players in the group in

order to see whether E is the worst player in their group.
Algorithm 6.5: Pseudocode to avoid the worst player.

begin1

D makes a request to 5 other players for gossip about E ;2

D receives gossip;3

if E is the worst player then4

D refuses to play with E;5

else6

D plays with E ;7

end8

end9

When only a few agents (less than 5) have gossip about a taking-player, then only the

available information is taken into consideration. Sometimes it can be the case that none of

the players has gossip information about the taking-player. In such a case the taking-player

is considered not to be the worst player, a privilege similar to what happens when a new

player joins a group.
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6.5.2 Leaving a group

A player can leave a group because of two reasons. First if an agent’s tolerance level is

exceeded, which means the agent is in a group where others do not cooperate as much as the

agent’s expectation. After a number of defections from the group members, the agent may

decide to leave that group. The agent asks other groups about their cooperativeness and tries

to enter into the group whose cooperativeness is better than its current group. If the better

groups don’t allow the agent in, then since it does not want to move to lower groups, it stays

in its current group and its tolerance count is reset to 0.

Second, an agent can move to another group based on its rejection limit. Agents can

refuse to interact (i.e. share resources) with an agent if that agent is identified as the “worst”,

(i.e. the least cooperative agent) in the group. Instead of picking an agent randomly and

checking it for cooperativeness (as mentioned in the previous mechanism in Section 6.4.4),

the agents in this setup stop playing with a worst player (as shown in Algorithm 6.5) hence af-

ter being rejected for a certain number of times (the rejection limit), the worst agent chooses

to leave that group and moves to another group.

6.5.3 Choosing a group to join

The leaving agent asks other groups about their group’s calculated cooperativeness and tries

starting from best to next best and so on, seeking to find a group which allows it in. If none

of the groups allow it, then it stays in its current group.

The criteria for a group accepting or rejecting an agent depends on the situation of that

group. In this setup a group’s entry value is calculated based on the group’s standards which

are the group’s current size and cooperativeness. Based on these two factors the entry value is

determined and the agents seeking entry are assessed (remember in the previous mechanism

the entry level was set to a particular value based on group rank using Table 6.3).

Determining a group’s entry value is described in the next section (Section 6.5.4).
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6.5.4 Entry criteria

The hopping peer asks any randomly chosen agent in the group to which it seeks permission

to enter. We call this permission-granting agent in the group to which entry is sought, the

‘checking peer’. The hopping peer will gain permission to enter the group whenever its

cooperativeness is greater than or equal to the group’s entry value calculated by the following

formula:

EV = C− (C1/(SL− S)C2) + C3(S−SU) (6.4)

The group Entry Value (EV) is calculated considering the given group’s calculated Co-

operativeness (C) and its group Size (S). C is the group’s calculated Cooperativeness through

the gossip information and S is the size of the group. C1, C2, C3 are constants whose values

in our experiments were 25, 2, 10, respectively. These constants were adjusted to make the

EV expression appropriate for two ”boundary values”, the upper size limit of a group (SU)

and the lower size limit of a group (SL). It is inappropriate or inefficient for groups of play-

ers or traders to become too big or too small. If a group becomes too big, then it becomes

unmanageable. If a group becomes too small, below a certain value, then the group is not

considered to be an active group. There should be at least a certain number (minimum value)

of players in it to be considered as a team (e.g. a sports team may have a certain number

of players as a minimum for the existence of a team/group. Thus a volleyball team must

have at least 6 players. If there are fewer than 6 players, then it is not considered to be a

team/group). In our experiments, SU was set to be 25, and SL was set to be 10. That means

that if the size of the group is 10 or below, the entry qualification value will be set to a low

value, making entry into the group very easy to obtain. If the size is 25 or above the entry

qualification value is set to a high value and that would make it difficult for any but the most

cooperative agents to join. Any values of the EV expression that fall below 0 are set to 0, and

entry values above 10 are set to 10. Thus a group’s entry value is always between 0 and 10.

Figure 6.2 shows the range of entry values for groups with different group sizes and

cooperativeness. A simple example illustrates the use of this formula. Consider that a group’s

calculated cooperativeness (C) is 6. When the group size (S) is 14 the group Entry Value

(EV) is 4.43. When the group size (S) is 25 the Group Entry Value (EV) is 6.88. This can
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be identified in Figure 6.2 by examining the line Avg6 for size 14 and for size 25. It can be

inferred that if the group size becomes large (closer to SU), the group is strict about who it

lets in and if the group size is small (closer to SL) it lets almost anyone into the group. When

the group size is 10, the entry value is 0.

In our system, the checking peer needs to get an estimate of the cooperativeness of the

hopping peer (the agent seeking entry). So the checking peer asks 5 randomly chosen play-

ers from the hopping peer’s group about the hopping peer’s cooperation. It is thus asking

for gossip information from the hopping peer’s group in order to assess the request of the

hopping peer to join its group.

Consider a case where G and F are in different groups. G is the checking peer, and F

is the hopping peer that wants to enter G’s group. F asks G for entry, then G asks 5 other

randomly chosen players in F’s group for gossip information about F’s cooperativeness. If

F’s estimated cooperativeness calculated through this gossip information is greater than or

equal to the entry value (EV) of G’s group, G allows entry for F; otherwise it denies. If it

is denied entry to a group, F will try to enter into other groups. This process is outlined in

Algorithm 6.6. The hopping peer will ultimately get into a group where its cooperativeness

makes it eligible to enter. If no such group is available, the hopping peer stays in its current

group.
Algorithm 6.6: Pseudocode for using gossip information to hop between groups.

/* Agent F seeks entry into the group of agent G */

begin1

G requests 5 other players in F’s group for gossip about F ;2

G receives gossip about F and calculates F’s estimated cooperativeness;3

G calculates entry value based on Formula 6.4;4

if F’s estimated cooperativeness ≥ entry value then5

F gets entry;6

else7

F does not get entry ;8

end9

end10
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6.5.5 Results of experiments

The entire process explained so far is repeated for 5000 iterations, and over time, the agents

collect into groups where there are agents with similar cooperativeness to them. Because

of this process some groups will emerge as elite groups with many cooperators, and other

groups will have less cooperative players. As a consequence, this mechanism achieves a

separation of groups based on performance. Figure 6.3 shows the self-organisation of groups

based on their cooperativeness.

The main differences between the previous mechanism and the current mechanism are

that: (a) this mechanism uses gossip information to avoid interacting with the worst agent,

and (b) an agent decides to leave the group based on its tolerance level and rejection limit,

and (c) in this mechanism the entry value is determined by group size and cooperativeness of

a group at run time (whereas it was determined at design time in the previous mechanism).

According to the number of groups, the specific values for group entry need to be specified at

design time in the previously described mechanism, but for the current mechanism no such

requirements are necessary.

Figure 6.3: Self-organisation of groups using dynamic grouping mecha-

nism.
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6.6 Random hopping mechanism

We conducted this experiment to investigate whether random hopping of agents would lead

to some kind of behaviour pattern in the system. This experiment has the same experimental

setup as the previous experiment, except for a few changes. The agents do not have in-

formation about the other groups’ performance (group’s calculated cooperativeness) and so

they decide to hop to another random group. After playing a certain number of games in

a group (10), agents try to hop to another random group. The entry criterion is the same

as the previous mechanism as explained in Section 6.5.4. This mechanism did not result in

the separation of groups, since the agents are hopping randomly and they never settle down

in a group. Due to this there is no separation of groups based on cooperativeness like the

previous mechanisms.

Figure 6.4: No self-organisation of groups based on cooperativeness using

random hopping mechanism.

From Figure 6.4, we can see that there is not much difference between groups to dis-

tinguish them as most and least cooperative groups. The groups did not change much from

their initial setup in terms of cooperativeness. This can be understood when the difference

(in spread of groups) is observed in the graph of the previous experiment (Figure 6.3).
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6.7 Individual group history mechanism

In order to overcome the random hopping issue, we developed a mechanism in which agents

can keep the memory of their previous groups. Each agent has a memory of a certain number

of previous groups to which it belonged. In all the three mechanisms we have explained so

far, an agent has no memory of the previous groups it has belonged to. In this mechanism,

agents keep the memory about previous groups’ cooperativeness.

The information about other groups that an agent has been to previously, might be helpful

to make decisions. By keeping the history of the performance of previous groups an agent

bases its decision solely on its own experience with other groups. We believe this could

potentially lead to self-organisation. We investigated the role of keeping the history of pre-

viously visited groups in this experiment. We have conducted two experiments, one with

memory of just the previous group only and another with memory of all previous groups an

agent has been a member of.

6.7.1 Memory of last group only

Figure 6.5: Group history mechanism with memory of last group only.

In this experiment agents have just one memory slot to store the information about its
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previous group. After a certain number of games in a group, the agent compares its current

group’s cooperativeness and the previous group’s cooperativeness. If the previous one was

better, it tries to hop back to the previous group. Otherwise it stays in the current group.

This experiment did not show significant self-organisation in terms of separation into groups

of different cooperation values (see Figure 6.5), since the agents keep on hopping back and

forth between previous and current groups.

6.7.2 Memory of all previous groups

Figure 6.6: Group history mechanism with memory of all previous groups.

Instead of keeping just one memory the agents in this setup have memory of all their

previous groups. The agent compares its current group’s cooperativeness with the other

groups in its memory. If its current group is not the best, then it tries to move to the best

group in its memory. If not allowed, then it tries the next best group and so on. If it is not

allowed in any of the better groups, then it stays in the current group.

For example, the group with best cooperativeness at iteration 1000 may later (say at the

3000th iteration) be the worst group and the agent does not know that. The agent left that

group at iteration 1000, but later the group’s cooperativeness has been changed because of
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arrival and departure of agents over time.

Figure 6.6 shows there was no evident self-organisation of groups based on cooperative-

ness. Thus this mechanism also did not achieve significant self-organisation of groups based

on cooperativeness since the agents keep on moving to different groups. The main reason

for this is the agents not having the latest information about other groups. This is because

the group’s size and cooperativeness change from time to time. But agents have the memory

from their previous experience which may not be recent. So this mechanism did not achieve

self-organisation.

6.8 Sharing group history mechanism

As the previous mechanism (Section 6.7) did not lead to self-organisation because of agents

hopping to other groups based on their own memory of cooperativeness, we investigated a

mechanism where agents share the information and follow the recent information available.

We call this mechanism the “sharing group history” mechanism. This experiment differs

from the previous experiment in several respects, which are described in the appropriate

sections below.

6.8.1 Gossip interaction

The gossip interaction takes place in the same manner as described in connection with Al-

gorithm 6.1. Every transaction is reported (gossiped about) to one of the other agents in the

group. Thus the overall system has some partial information about the cooperativeness of

each agent, maintained in a distributed way. The first 500 iterations (1/10th out of 5000) are

played in this manner to build up a distributed gossip repository among the players.

After 500 iterations, the agents begin using the received gossip information to decide

whether or not to play with a taking-player. If the requesting agent is the worst cooperator in

the group, the player refuses to play with him (in the same manner as described in connection

with Algorithm 6.5).
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6.8.2 Leaving a group

A player can leave a group if its tolerance level is surpassed or when its wealth (score) has not

increased (remember every time the agent receives a file, it adds up 1 (benefit for receiving)

to the score). If the agent’s tolerance limit is reached, the agent will decide to leave that

group and move to another group.

In addition, when other agents reject to play with the worst agent, and it is regularly

rejected from play, then, of course, that agent’s score will not increase. If, over a given

period of play opportunities (e.g. 15 iterations), an agent’s wealth (score) has not increased,

then it will choose to leave that group and move to another group. Since the other players in

its current group are not playing with it, it will be better off (i.e. able to increase its wealth)

by moving to another group.

6.8.3 Choosing a group to join

The hopping peer then collects information about other groups from their group members.

Then it decides from which group to request admission. Every agent has a memory record

of its most recent groups (in our experiments the memory capacity was set to 4 past experi-

ences).

For example, assume agent E has been in 3 other groups before, as shown in Table 6.5.

The first row of Table 6.5 shows that E has left group 1 at the 560th iteration, and the coop-

eration value of that group was 4.5 at that time. E left group 3 at the 700th iteration when

that group’s cooperativeness was 6 and group 2 at the 1200th iteration when that group’s

cooperativeness was 6.4. Since the composition of groups invariably change over time, the

cooperativeness of any group will change as time progresses (but can canverge as shown in

the previous experiment). So it is likely that the recent information will be more accurate

reflection of the cooperativeness of those groups. Since all agents have a memory of their

previous groups, the hopping peer can collect this information from all its group members

and calculates the latest information about other groups. In particular, the agents get to see

which agent has moved into this group recently from other groups. Taking into consideration

the most recent information available, the agent decides where to move. For example assum-

ing the current iteration is 1400, the latest information collected from the group members is
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given in Table 6.6.

Group No Iteration No Cooperativeness

1 560 4.5

3 700 6.0

2 1200 6.4

Table 6.5: Previous group history.

Group No Iteration No Cooperativeness

5 1330 8.1

3 1170 7.5

2 1200 6.4

1 1199 3.8

Table 6.6: Latest available information.

Assume here that agent L intends leaving group 4, and group 4’s cooperativeness is

6.6 (group’s calculated cooperativeness) at that moment. From the latest information agent

L knows about other groups and their cooperation values. For agent L, groups 5 and 3 are

better, since the cooperation value in those groups appear to be higher than L’s current group.

Groups 2 and 1 are lower-ranked groups. So agent L chooses to move to the groups in the

order of their ranking.

If L is intolerant of its current group (which means it is not happy about the cooperative-

ness of its current group), it will try to enter into the best group that it can find. This is the

case of an agent being “too good” (more cooperative) for its current group and wanting to

move to a more cooperative group. But if the better groups on its list don’t allow entry into

their groups, then the intolerant agent L may determine that there is no group available that is

better than its current group, and it will remain in its current group. In this case its tolerance

count is reset to 0.

On the other hand, an agent may not be good enough for its current group - it is being

shunned by the other members for being the worst member of its group. Because of play

rejections, its wealth will not improve, and it will want to leave and find some other group
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in which it can find players to play with. If the better groups do not allow entry, the agent

will go to lower and lower groups, since it is better off moving to any new group rather than

staying in the current group where it is known as the worst player and therefore shunned.
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Algorithm 6.7: Pseudocode for sharing group history mechanism.

begin1

initialisation;2

bootstrap agents in groups;3

foreach iteration do4

select random number of agents;5

if iteration is less than 500 then6

foreach selected agent do7

play with another agent in the group;8

collect payoff;9

gossip; // Algorithm 6.110

end11

else12

foreach selected agent do13

play with another agent based on gossip; // Algorithm 6.514

collect payoff;15

gossip; // Algorithm 6.116

if selected agent’s tolerance level is met then17

collects recent information about other groups from group18

members;

selected agent leaves the group;19

joins another group under certain condition; // Algorithm6.620

end21

if selected agent’s wealth has not increased then22

collects recent information about other groups from group23

members;

selected agent leaves the group;24

joins another group under certain condition; // Algorithm6.625

end26

end27

end28

end29

end30
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6.8.4 Entry criteria

How a player gets entry to another group (entry criteria) is as explained in Section 6.5.4.

The entire process is repeated for many iterations in this configuration and the separation

of groups is observed. The overall process of this experiment is outlined in Algorithm 6.7.

6.8.5 Results of experiments

We present our results in Figure 6.7. Initially all the five groups were randomly seeded and

started with roughly similar average cooperativeness values among their members. They

ended up showing a separation among the groups based on their cooperativeness. Group

4 contained mostly the best cooperators, groups 2 and 3 had mostly non-cooperators, and

groups 1 and 5 had moderate ones.

The snapshots of composition of groups at the start and end of the experiment can be seen

in Figures 6.8 and 6.9 respectively. This partitioning was achieved using social mechanisms

without central control. The larger green circles represent groups. Agents are color coded

based on their cooperativeness which are represented by smaller circles inside the larger

green circle. The range of cooperativeness values and their color code are: 0-2 is Red, 3-

4 is Orange, 5-6 is Yellow, 7-8 is Green and 9-10 is Blue. In Figure 6.8 we can see that

there were mixed colors in all five groups (at the start). In Figure 6.9 we can see that the

agents have self-organised themselves into different groups based on their cooperativeness

(showing predominantly different colors at the end). A demo video can be seen on UniTube

(see (Savarimuthu, 2010a) for the link).

A paired-samples t-test was conducted to compare the separation of groups based on

cooperativeness (standard deviation of cooperativeness of groups) at the start and end of the

runs. The paired t-test was performed with null hypothesis (for 30 sample runs) that there

is no significant difference between the standard deviations at the start and the end of the

experiments. The standard deviation of the groups’ cooperativeness at the start and end of

the run were measured. There was a significant difference in the values at the start (M=0.71,

SD=0.25) and at the end (M=3.27, SD=0.31) conditions. The average difference between
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Figure 6.7: Self-organisation of groups using sharing group history mech-

anism.

the mean values (M=2.55, SD=0.07, N=30) was significantly greater than zero, t=33.77,

one-tail p=(3.89*10−25), providing evidence that our mechanism is effective in producing

the separation of groups based on cooperativeness with a 95% confidence interval.

We also experimented by varying the number of agents that are contacted to collect gos-

sip. The number of agents from which gossip was provided varied. We experimented with

2, 5 and 15. From the 30 sample runs collected, the means of the standard deviations of

groups at the end of the experiments, for gossip sizes 2, 5 and 15 were 2.80, 3.22 and 3.23

respectively. We noticed significant differences when we compared gossip sizes 2 with 5.

Collecting gossip from 5 agents resulted in better separation than from 2 agents. But when

we compared 5 with 15 there was not much difference in the separation. Collecting gos-

sip from 15 agents (or less, if there are less than 15 agents in that particular group) has

slightly improved the separation, but the difference was very small. This suggests that par-

tial information is sufficient to establish group separation, and thus one can avoid additional

computation, because asking 15 agents instead of 5 will require much more message passing

and computing in an agent society.

116



Figure 6.8: Composition of groups with agents at the start.
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Figure 6.9: Composition of groups with agents at the end.
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6.9 Summary

In this chapter we have explored five mechanisms which are suitable for closed societies and

which could potentially lead to self-organisation or separation of groups based on degrees of

cooperativeness.

• The rank-based grouping mechanism achieves self-organisation and it is suitable for

systems in which the performance of the other groups are directly revealed to the

agents in the society.

• The dynamic grouping mechanism also achieves self-organisation and it has been en-

hanced for systems to set entry values dynamically considering the current system

state.

• The random hopping mechanism does not lead to separation of groups because of

random hopping and agents not settling.

• The group history mechanism also does not lead to separation because of lack of latest

information about other groups.

• The sharing group history mechanism leads to self-organisation or separation of groups

based on cooperativeness. Agents share their information about other groups, hence

the latest information is available.

This system is suitable for sharing digital goods in P2P systems, where the aim is to

restrict freeriding. It has produced self-organisation, or the so called self-balancing of P2P

systems, in a distributed and dynamic manner in closed societies. This system setup takes

advantage of social mechanisms, such as tagging to form groups, gossip to pass information,

and ostracism to shun bad behaviour. As a result, it shows the self-organisation of groups

based on behaviour (cooperativeness) in closed societies, without any control at the top level.

One of the requirements of modern P2P systems is that they are open which allow agents

to join and leave distributed societies. This issue forms the focus of the next chapter.
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Chapter 7

Self-organisation in decentralised open

systems

7.1 Introduction

The openness of the Internet allows users to dynamically join and leave the system at any

point of time. So, a solution to the freeriding problem should take into account the open,

dynamic, and distributed nature of modern software systems. P2P systems are increasingly

attractive due to continually improving bandwidth and processing capabilities of distributed

and mobile platforms.

The aim of the work discussed in this chapter was to develop a self-organising open and

dynamic system, where new agents may come into the society and also agents may leave the

society at any time. A truly open and dynamic system will allow the formation of new groups

and dismantling of existing groups according to the population size. Our aim was to achieve

that in a decentralised manner without explicit control at the top level. Forming groups using

tags is helpful, since it is scalable and robust (Hales, 2004b). For higher numbers of peers,

more tag groups can be formed, and that process will scale well for any number of peers

(i.e. if there are more peers, more groups will be formed, and if there are fewer peers, fewer

groups will be formed). Now, in the new arrangement, agents are set to have lifespans, which

determines how long the agents remain in the society and when they leave (i.e. “die”). At any

time a new agent could join the society and an existing agent could leave when its lifespan
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is over. Thus we added openness to the society (agents can arrive and leave).

7.2 Open system

New unknown peers are allowed to join the society by gaining entry into the lowest ranked

group. They can build their way up to higher groups, based on how well they perform in the

eyes of their peers. This experiment has the same setup as the previous experiment in the

previous chapter (Section 6.8). The additional agent attibute is lifespan.

Since the number of agents in the society at any time is dynamic, the system adapts itself

to form new groups if more agents join. It also dismantles groups if there are fewer agents

in the society (less than the lower size limit of a group).

The motivation for splitting and dismantling comes from real life societies. For example,

when the size of a group becomes too large, it becomes unmanageable. Larger hunter-

gatherer groups split because of reasons such as seasonal change or inequality in resource

sharing (e.g. when food was not shared equally/due to disagreements) (Lee, 1972).

In our approach, a group splits into two if the size of the group reaches a certain limit (40

in our case). Based on the local gossip information in the splitting group, the top cooperators

(first half) form one group and the rest (second half) form the other group. If the size of the

group decreases and goes below a certain limit (5 in our case) then the group is dismantled.

The remaining agents in the dismantled group go to the lowest scoring remaining group.

This is similar to a society where it can be functional only if the society has a certain size.

For example in hunter-gatherer societies, in order to hunt larger prey, a group has to have

a minimum size. Otherwise, the prey cannot be hunted. The same holds in the context of

playing a sport. For example, a team playing volleyball has to have six players. Otherwise,

the team cannot exist.

It should be noted that the splitting and dismantling functionalities account for the scala-

bility of the system and its robustness.
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7.2.1 Results of experiments

A sample experimental run that demonstrates the self-organisation of groups in the open

society is shown in Figure 7.1. A sample run for 5000 iterations is presented. Out of 5

initial groups, Group 4 dismantled. Group 3, which is the most cooperative group, split into

two most cooperative groups, Group 6 and 7. Group 5 also split into two Groups 8 and 9, of

which group 9 was the lowest group. Note that the new groups formed by splitting have some

difference in their cooperativeness, since the most cooperative ones from the splitting group

team up to form one group, and the rest form the other group. This is an ongoing process,

because further groups will be formed and dismantled based on the arrival and leaving rates

of the agents.

To test the scalability, we ran the experiment for 10000 iterations by having the initial

population set to be 100 in 5 initial groups and also having hundreds of agents enter the scene

randomly over subsequent periods. Agents also leave the society when their lifespan is over.

This experiment has scaled well by forming 23 groups over 10000 iterations, in which 11 of

them dismantled or split and the others were operational groups by the end of the iterations. It

shows the system can scale well for a larger number of agents just by forming or dismantling

groups dynamically. In open societies like these, agents cannot have a global view of all the

groups. They have a limited view, which means they only know about the groups where the

agents themselves and its group members have been before.
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7.3 Enhanced open system

The experimental setup for the enhanced open systems was similar to the previous mecha-

nism (Section 7.2), except for a few differences. The differences are explained in Section

7.4. The experimental parameters are listed in Table 7.1.

Experimental parameters Values

Number of agents to start with 100

Number of groups to start with 5

Number of iterations 500

Agent’s cooperative value 0-10 (random)

Agent’s tolerance value 1-10 (random)

Agent’s rejection limit 10

Agent’s gossip blackboard length 10

Agent’s group memory limit 5

Agent’s lifespan Varies

Number of gossip requests 5

Group’s size for dismantling 5

Group’s size for splitting 40

Cost for sharing -0.1

Benefit for receiving 1

Table 7.1: Experimental parameters for open society.

The group splitting and dismantling processes are also the same as the previous experi-

ment (Section 7.2). A group splits into two if the size of the group reaches a certain limit

(40) and the group dismantles if the size of the group decreases and goes below a certain

limit (5). In this experimental setup, the remaining agents in the group (from the dismantling

group) go to random groups where they could enter.
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7.3.1 Experiment 1 - Self-organisation in an open society

We have conducted experiments on an open system by varying the arrival and departure rate

of the agents. Initially we started with 100 agents in 5 groups. After that agents could join

(new arrivals) or leave (if lifespan is over) the society.

The two graphs together in Figure 7.2 show the dynamic behaviour of the system (the

formation of new groups and dismantling of old groups). In Figure 7.2 there are two graphs

which share the same x-axis. The x-axis shows the number of iterations. In the top graph the

y-axis shows the cooperativeness of groups. Each diamond shown in the graph represents the

cooperativeness of a particular group. For a given iteration number in the x-axis, the y-axis

shows the cooperativeness of all the groups that were present in that iteration. For example,

in iteration 100, there were 6 groups (represented by diamonds), with different levels of

cooperativeness. The graph given in the bottom of Figure 7.2 shows the total number of

agents (agents alive) in the society for a given iteration. For example, in iteration 100 there

were 130 agents in the society.

It can be observed that at the start there were five groups and the groups had an average

cooperativeness value of 5 approximately. As the number of agents increased, new groups

were formed (see iteration 100). As the number of agents decreased (iteration 200), the

number of groups decreased. The separation between the good (cooperative) groups and the

bad (uncooperative) groups is distinct. When the total number of agents was about 40 in

iteration 300, there were fewer groups. Note that the cooperativeness of these groups was

about 5 at that point. As the number of agents in the societies then increased, there were

more groups and the separation between the good and the bad groups is evident. We note

this process can be appreciated better by viewing the video on UniTube (see (Savarimuthu,

2010d) for the link).

Figure 7.3 shows the graphical output of the result shown in Figure 7.2. The top left

window shows the state of the system at iteration 1, the top right shows the snapshot of

the system at iteration 100, bottom left shows iteration 400 and the bottom right shows

iteration 500. The larger green circles represent groups. Agents are color coded based on

their cooperativeness which are represented inside the larger green circle. The range of

cooperativeness values and their color code are: 0-2 is Red, 3-4 is Orange, 5-6 is Yellow, 7-8
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Figure 7.2: Self-organisation of an open system when agents’ arrival and

departure rates are dynamic.
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Figure 7.3: Snapshot of the groups at different iterations.
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is Green and 9-10 is Blue. For example, in iteration 500 (bottom-right one of Figure 7.3),

there are five groups. There are two good groups with a majority of blue and green agents.

There are two other groups with mostly red agents and another group has agents with mixed

colors (agents with different cooperation values).

There are two kinds of behaviour that can be observed in the system. Firstly, the system

dynamically enlarges or shrinks by creating more groups or dismantling groups based on

the number of agents in the system. Secondly, it also forms groups based on cooperative-

ness. Cooperators move towards other cooperators, and non-cooperators end up with other

non-cooperators. The agents self-organise into groups that have different ranges of coopera-

tiveness. Thus this system restricts the non-cooperators taking advantage of cooperators by

restricting their access to better groups.

7.3.2 Experiment 2 - Arrival rate greater than departure rate

We conducted further experiments by setting the arrival rate greater than the departure rate.

An example experimental run of this arrangement is shown in Figure 7.4. It can be observed

that when the number of agents increased, the system was able to dynamically create more

groups, and also these groups are separated based on the cooperativeness of the agents. This

demonstrates the scalability of the system.
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7.3.3 Experiment 3 - Arrival rate equal to departure rate

When the number of newcomers is roughly the same as the number of leaving agents in the

system, the system will have same number of agents and the number of groups remains the

same. However, new agents who join the society may have different levels of cooperative-

ness. Because of this the composition of groups and the cooperativeness of groups change

over time. Figure 7.5 shows the cooperativeness of five different groups over 500 iterations.

The cooperativeness of these groups varies depending upon the net effect of the coopera-

tiveness of the agents that are present in the society. A new agent whose cooperativeness

value of nine joining a group whose average cooperativeness value is five will increase the

group’s average. In the same way, a bad agent leaving a good group will increase the group’s

cooperativeness average. Figure 7.5 shows that there were only five groups all the time and

how these five groups change over time based on the number of agents (composition of the

group) and the cooperativeness of agents present in the system over time.

130



Fi
gu

re
7.

5:
Se

lf
-o

rg
an

is
at

io
n

of
an

op
en

sy
st

em
w

he
n

th
e

ar
riv

al
ra

te
is

eq
ua

lt
o

th
e

de
pa

rt
ur

e
ra

te
of

th
e

ag
en

ts
.

131



7.3.4 Experiment 4 - Varying lifespans of agents

Figure 7.6: Group formation with minimum TTL = 300.

We varied the lifespan of the agents in order to investigate the impact of the lifespan of

agents on the system’s behaviour. We conducted two experiments by varying the lifespan.

The lifespan of an agent is governed by the lifespan parameter. The minimum lifespan in

one of the experiments was set to 300 and the other was set to 500. Figures 7.6 and 7.7 show

the cooperativeness values of the groups for these two values of minimum lifespan for 1000

iterations. From these results it can be observed that having longer lifetime (agents being in

the society for longer period of time) helps to achieve better segregation of groups. This is

because when the lifespan is longer, agents have a longer period to gather and use gossip.

Furthermore, when agents live for a shorter period of time, the system has a comparatively

shorter period of time to segregate into groups than the system where the agents live longer.

This can be observed by comparing the results for iterations 400 and 500. The separation of

groups is better when minimum lifespan=500. The same can also be observed in the circled

regions of these two figures. The videos of these simulations can be seen in these links on

UniTube (see (Savarimuthu, 2010b,c) ).
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Figure 7.7: Group formation with minimum TTL = 500.

7.4 Differences

This mechanism presented in this chapter shows the self-organisation of groups using similar

social mechanisms used in the previous chapter (Chapter 6). In this chapter, for enhanced

open systems (Section 7.3), the mechanism presented in Section 7.2 (which has similar setup

as the sharing group history mechanism (Section 6.8) with added openness) has been im-

proved upon. The differences between this and the previous system (described in Section

7.2) are as follows.

• In the previous mechanism, the game was played for certain iterations (1/10th) and

the gossip information was stored. Later the agents use the stored gossip information

when they play. In the current setup the agents start using the gossip right from the

start. If there is no information the agent is considered as a new player and allowed to

play. As they play the gossip is also stored and used.

• In the previous mechanism wealth (score) has been taken into account. If the wealth

of an agent has not increased over a certain period of iterations, then the agent decides

to move. In the current setup, instead of wealth, if the rejection limit is met then the

agent decides to move. We found that using a rejection limit works better for group
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separation than basing the decision on wealth, since it is likely that the wealth will

increase for a certain number of iterations (because the agents play with bad agents

if the gossip information was not available, hence the wealth of the bad agents might

increase).

• In the previous mechanism the remaining agents in a dismantling group go to the

lowest performing group. In the current setup, they can apply to other groups and go

to the group that accepts them. If they are not allowed then they keep trying to get

entry into one of the groups.

• In the previous mechanism new players are introduced into the lowest group in the

society and they are expected to build their way up to the higher groups based on

their behaviour (cooperativeness). For that it was necessary to keep track of the lowest

group of the system all the time, which is not a preferred practice if we want to achieve

a decentralised open environment. In the current setup new agents go to random groups

in the society. Because they are new, they have no past behaviour to track and they are

allowed in to any group to which they seek entry. Eventually they will end up in an

appropriate group based on their behaviour.

7.5 Summary

This chapter demonstrates how we have achieved self-organisation of groups in an open

agent society. The mechanisms presented in this chapter facilitate splitting and dismantling

of groups that lead to the formation and destruction of groups respectively. Additionally the

groups are also formed with agents of similar cooperativeness. Thus systems using our mech-

anisms are scalable, adaptive, self-organising and decentralised. We have also investigated

the effects of arrival rates of agents on the separation of groups based on their cooperative-

ness.

Using the gossip mechanism, agents share their interaction experience with some other

agents. Unlike most reputation mechanisms, where agents keep track of all the reputation

information of other agents, our system distributes a subset of this information among the

individuals in the group. This mechanism operates and converges to satisfactory results in

134



the context of a partial-view of truth about the world states, which is a realistic and scalable

feature of open agent societies. If any peer leaves a group, only a limited amount of informa-

tion is lost, which ensures the robustness of the system. Peers might leave the society (due to

bad behaviour) and try to re-enter again. But our system filters out peers in separate groups,

based on their behaviour. It does not matter how many times an uncooperative agent would

enter, it will inevitably end up in the worst group.

The system presented is suitable for sharing digital goods in open P2P systems where the

aim is to restrict freeriding. It has produced self-organisation, or the so called self-balancing

of P2P systems, in a distributed and dynamic manner in open agent societies.

Our system takes advantage of social mechanisms, such as tagging to form groups, gos-

sip to pass information, and ostracism to shun bad behaviour. As a result, it shows the

self-organisation of groups based on behaviour in open agent societies. These mechanisms

can also be applied to virtual worlds and electronic online communities. For example, in

digital environments such as SecondLife (2003), tagging can be used by avatars to organize

themselves into groups and gossip can be used to pass information about one another, and

ostracism can be used to shun bad behaviour.

The next part of the thesis presents the discussion and conclusion.
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Part III - Discussion and Conclusion
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Chapter 8

Discussion

The discussion in this chapter is arranged in two sections. First, the contributions of this

thesis are summarised in Section 8.1. Second, the limitations and future research directions

are discussed in Section 8.2.

8.1 Contributions of this thesis

The overarching theme of this thesis (Section 1.2) is to facilitate separation or segregation

of groups in different types of artificial agent societies in order to ensure that exploitation

is restricted and resources are provided in sufficient supply to cooperative members of the

societies. A society is divided into several groups in order to address the problem of non-

cooperation, where the groups are formed based on cooperativeness.

Towards achieving this goal three main aspects have been considered when modeling

artificial agent societies. They are

• Nature of societies: Societies may either allow or disallow new agents. Two types of

societies considered by this thesis are the open and closed agent societies. The most

dynamic and responsive modern agent societies are open societies, and most work in

multi-agent systems is towards facilitating open agent societies. However, closed soci-

eties also exist in domains where external agents are not typically allowed (e.g. robotic

rescue scenarios), since trust is a key aspect for the system to operate (i.e. untrusted

new agents may hamper rescue operations). Figure 8.1 shows the progression from
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closed to open agent societies (same as Figure 2.3).

• Type of control in societies: Societies have monitoring and controlling mechanisms

to enable their improvement. Towards this end, this thesis considers centralised, semi-

centralised and decentralised mechanisms. While centralised control is possible in

closed agent societies, there is a need to move towards decentralised societies, since

contemporary agent societies are open and dynamic in nature (e.g massively multi-

player games where avatars can be viewed as autonomous agents and electronic auc-

tions where agents can simultaneously participate in several auctions). This thesis has

considered all these three types of control in agent societies gradually progressing from

centralised control to decentralised control from Chapters 4 to 7 (see Figure 8.1).

• Social mechanisms for control: The controls in agent societies have been facilitated

through several social mechanisms inspired by human societies. These include tagging

for group formation, gossip for spreading information about agent behaviour, referral

and voting for recommending agents based on their past behaviour, and resource re-

striction and ostracism for controlling agents.

Figure 8.2 shows the social mechanisms and processes implemented in Chapters 4 to 7

(note that Figure 8.2 is the same as Figure 3.1).

The research presented in this thesis has resulted in eight peer-reviewed publications and

are listed in Table 1.1.

8.1.1 Highlight overview of the chapters

This subsection provides a summary of the important aspects of the core experimental chap-

ters of this thesis. Figure 8.3 highlights the mechanisms developed in each experimental

chapter of this thesis .

• Chapter 4

In this chapter it has been shown that tags can be used in a society of independent

agents using a system-level control approach. This chapter identifies the condition

under which tagging can help in sustaining the knowledge possessed within the society

(e.g. the winning condition was identified).
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Figure 8.1: Progression of the experimental chapters.
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Figure 8.2: Processes employed in this thesis.

140



Figure 8.3: Mechanisms developed in this thesis.
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• Chapter 5

This chapter employed semi-centralised monitoring and controlling agents called group

monitors. By using group monitors (semi-centralised control) this chapter discussed

mechanisms that helped to avoid exploitation and improve overall societal perfor-

mance in a multi agent society that had both cooperative and uncooperative agents.

These are achieved through the segregation of groups based on cooperativeness of

members in the society.

Tagging was used for group formation, and referrals and voting were used for rec-

ommending agents. A resource restriction based mechanism was used to control the

non-cooperating agents. It has been demonstrated that the proposed mechanisms help

in improving the societal benefit.

• Chapter 6

This chapter demonstrated how decentralised monitoring and controlling mechanisms

can be used in closed agent societies. The primary mechanism investigated is the

gossip-based mechanism for decentralised information spreading. The information

collected using gossip can be used for making decisions, and agents can then use the

information to decide whether to interact with other agents. These mechanisms were

investigated in the context of sharing digital goods in a decentralised manner. Five

different mechanisms were explored, and the results obtained were discussed.

• Chapter 7

This chapter investigated the self-organisation of groups in an open system where

agents can join and leave a society. This resulted in dynamic formation and the col-

lapse of groups, which is necessary for dynamically changing systems. The system

exhibited self-organising behaviour of groups based on cooperativeness. Additionally,

this chapter also investigated the impact of arrival rates of agents on self-organisation.

Similar to Chapter 6, social mechanisms such as tags, gossip, and ostracism were de-

veloped and implemented.

This chapter thus describes how self-organisation of groups can be achieved in an open

agent society that is scalable (i.e. the number of agents can be large), dynamic (i.e.
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agents can come and go), and employs decentralised notions for monitoring and con-

trol (i.e. social mechanisms that are decentralised). These properties make the system

suitable for deployment in contemporary electronic societies such as P2P societies.

8.2 Limitations and Future Work

The research area of cooperation in distributed societies of autonomous software agents is

wide and there are many aspects that were outside the scope of the present work.

• Consideration of agents changing behaviour: In this thesis we have not considered

agents changing their behaviour in their life time. In real life, bad agents may redeem

themselves or may be forced to cooperate through institutional punishment mecha-

nisms. In our future work, we intend to examine more advanced situations in which

agents can dynamically alter their cooperation strategies. That would mean that a peer

could start with a certain cooperative value, but later based on the circumstances (e.g.

based on learning), decide to change its behaviour. For example, an agent could try

to enhance its performance by becoming a “bad guy” temporarily and then returning

to being a “good guy”, since it may estimate that its potential rewards could be even

higher because of occasional cheating in a good group of agents. Such behaviour

changing mechanisms can be investigated in the future.

• Lying problem: The systems investigated in this thesis make use of recommendations

from other agents to decide whether to interact with another agent or not and also to

know the performances of other groups, relying on the fact that the other group agents

are honest in revealing the information about their group (i.e. these agents do not lie).

However, this may not be the case in general. Agents being autonomous (and intel-

ligently self-interested) may not want to share their group information (e.g. coopera-

tiveness of the group) with outsiders and, worse still, may lie when such information is

requested. This behaviour may lead to an undesired state of affairs in a society. Addi-

tionally, bad agents can spread false gossip which may also have deleterious effect in

segregation of groups. Our intention is to examine these issues in our future investiga-

tions. Another interesting avenue for research is to investigate additional mechanisms
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for handling these types of misbehaviours in agent societies.

• Varying gossip type: In the future, we intend to examine the types of gossip in the

system to determine conditions under which the gossip mechanism leads to separa-

tion of groups and conditions under which it does not lead to the separation (i.e. by

experimenting with different types of gossip (e.g. about other groups, about other

agents’ cooperativeness, about other agents’ trustworthiness in providing gossip infor-

mation)).

• Usage of tags: Further investigations on tag-based mechanisms can be undertaken

in the future. Tags cannot only be used as simple identifiers with a simple meaning

attached to them but also to the extreme of more fully stereotyping agents in societies.

Agents can be tagged based on their behaviour (e.g. associating ‘red’ colored agents as

the non-cooperators). Agents can also tag other agents in multiple dimensions based

on different behavioural attributes. We will consider these aspects for future work.
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Chapter 9

Conclusion

Human societies have long developed and evolved social mechanisms for facilitating coop-

eration among individual members and subgroups. The advent of dynamic societies of the

technological world, in particular the large and rapidly changing electronic societies, call for

the use of new mechanisms to facilitate cooperation among artificial agents that can be mod-

eled after those employed in human societies. One of the problems this thesis addresses is

the problem of non-cooperation among agents commonly observed in the form of freeriding.

This thesis has developed several solutions to this problem by facilitating the segregation of

agents in a single society into several groups based on the cooperativeness of agents.

Towards facilitating cooperation in agent societies, new techniques developed in this

thesis have addressed issues associated with several aspects of artificial societies including

closed and open nature of societies and the types of control mechanisms such as centralised,

semi-centralised, and decentralised mechanisms. This thesis investigates a tag-based ap-

proach for group formation, referral with voting and gossip-based approach for spreading

information and resource restriction, ostracism for controlling agents in societies.

This thesis has developed new techniques that employ several social mechanisms that

lead to grouping agents based on their cooperativeness. These mechanisms help in the sepa-

ration of better performing groups from not-so-good groups. This also reduces the likelihood

of bad agents exploiting the good agents in the better groups. It has been demonstrated that

the performance of the groups is better when the social mechanisms developed here are

adopted in an agent society.
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This thesis has systematically developed a range of social cooperation mechanisms that

can be applied to a spectrum of artificial agent societies with varying demands placed on

them in connection with efficiency and control. These societies under study have ranges

from closed, more tightly controlled agent groupings all the way to fully open systems that

may contain vast number of agents and cannot accommodate the inefficiencies of centralised

control in order to scale up appropriately in size. This issue of scalability is crucial and has

been emphasised in this thesis so that social systems of autonomous software agents can

accommodate growing populations of agents and still be responsive to dynamic conditions

in their environment (including the allowing of new agents to enter and leave the society).

We note that, since not all societies are open and decentralised, the range of solutions

investigated in this thesis can be applied in situations that warrant them (i.e. based on the

nature of the societies that are investigated). We have also discussed the future extensions to

the work carried out in this thesis.

Overall, this thesis offers new socially-inspired mechanisms that offer solutions towards

restricting exploitation of freeriders in artificial societies through the segregation of groups.

These mechanisms result in the improvement of the overall societal performance in a society

that has both cooperative and uncooperative agents. We believe some of the mechanisms

developed here in this thesis can be applied effectively to future ICT systems in order to

make them more responsive to the likely vicissitudes of future conditions.
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Appendix A

Software Specifications

The software tools used are listed below:

• All the experiments were written in Java using JDK 1.6 (Java Development Kit) with

the help of IDE (Integrated Development Environment), Eclipse 3.2.

• Graphs were created using either Gnuplot 4.2 or Microsoft Excel 2003/2007.

• Videos were captured using CamStudio 2.0.

• Thesis was written in LaTex with miktex 2.9 using the LaTex editor TeXnicCenter 1.0.
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Appendix B

Source Code

The source code for Experiment 4.3.1 (the very first experiment of the thesis presented
in Chapter 4) is given below. This experiment has three class files namely Game.java,
Player.java and Gameconstant.java. Game.java is the main file to run. The output, kcount and
scount are written in separate text files, outfileK and outfileS respectively. The values from
these files can be plotted as a line graph similar to the graph shown in Figure 4.1 (Tagless
model).

B.1 Game.java
1 import java.io.BufferedWriter;

import java.io.FileWriter;
import java.io.IOException;
import java.io.File;
import java.util.ArrayList;
import java.util.Random;

public class Game {

10 /**
* @param args
*/

private Player players[];
public static void main(String[] args) {

// TODO Auto-generated method stub
Game main=new Game();

for(int run=0;run<Gameconstants.noOfRuns;run++)
{

20 main.createPlayers();
BufferedWriter outK,outS;
try
{
//file path
String filename="D:\\SharmilaS\\EclipseWorkspace" +

"\\Experiment_notag\\";
//file to store K
outK = new BufferedWriter(new FileWriter

(filename+"outfileK.txt"));
30 //file to store S

outS = new BufferedWriter(new FileWriter
(filename+"outfileS.txt"));

for (int i = 0; i < Gameconstants.noOfIterations; i++)
{

main.playgame(i);
main.reproduction();
main.display(i,outK,outS);

}

40 outK.close();
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outS.close();
}
catch(IOException e)
{

e.printStackTrace();
}

}
}

50 //To create agents
private void createPlayers()
{

players = new Player[Gameconstants.noOfPlayers];

int K,sharingstring;
ArrayList sharerslist=generatuniquenos
(Gameconstants.noOfPlayers_startS);
for (int j = 0; j < Gameconstants.noOfPlayers; j++) {

60 if(sharerslist.contains(j))
{

sharingstring=1;
}
else
{

sharingstring=0;
}
if(j<Gameconstants.noOfPlayers_startK)
{

70 K=1;
}
else
{

K=0;
}

players[j] = new Player(j,K,sharingstring);
if(j<Gameconstants.noOfPlayers_startK)
{

80 players[j].addScore(players[j],
Gameconstants.benefit);

}
else
{

players[j].addScore(players[j],0);
}

}
}

90 //To perform reproduction
public void reproduction()
{

ArrayList playersreplist=playersreplist();
ArrayList playerslist1= new ArrayList();
ArrayList playerslist2= new ArrayList();
int halfsize=playersreplist.size()/2;
for(int fill=0;fill<halfsize;fill++)
{

playerslist1.add(playersreplist.get(fill));
100 }

for(int full=halfsize;full<playersreplist.size();full++)
{

playerslist2.add(playersreplist.get(full));
}
for (int i = 0; i <playerslist1.size() ; i++)
{

Player player1=players[((Integer)playerslist1.get(i))];
Player player2=players[((Integer)playerslist2.get(i))];

110 double score1=player1.getScore(player1);
double score2=player2.getScore(player2);
if(score1>score2)
{//System.out.println(" winner :"+player1.getId());

player2.setK(0);
int sharingbit=player1.getSharingbit();
player2.setSharingbit(sharingbit);
player2.clearscoremap_entry(player2,0);
player2.clearPlaycount();

165



}
120 else

{//System.out.println(" winner :"+player2.getId());
player1.setK(0);
int sharingbit=player2.getSharingbit();
player1.setSharingbit(sharingbit);
player1.clearscoremap_entry(player1,0);
player1.clearPlaycount();

}
}

}
130

//To play game (share or not) between agents
public void playgame(int iterationno)
{

int sharercount=0;
ArrayList allplayers=playersarraylist();
ArrayList reverseallplayers=reversearraylist(allplayers);
for (int i = 0; i <Gameconstants.noOfPlayers ; i++)
{
Player player1=players[((Integer)allplayers.get(i))];

140 Player player2=players[((Integer)reverseallplayers.get(i))];
player1.addPlaycount();

player2.addPlaycount();
int k1=player1.getK();
int k2=player2.getK();
int s1=player1.getSharingbit();
if(s1==1)
{

sharercount=sharercount+1;
}

150 if(k1==1 && s1==1 && k2==0 )
{
player1.addScore(player1,Gameconstants.cost);
player2.addScore(player2,Gameconstants.benefit);
player2.setK(1);
}

}
}

//To write scount and kcount in the files at the end of each iteration
160 private void display(int itrNo,BufferedWriter outK,BufferedWriter outS)

{
int kcount=0,scount=0;
try {

for (int i = 0; i < Gameconstants.noOfPlayers; i++)
{

if(players[i].getSharingbit()==1)
{

scount++;
}

170 if(players[i].getK()==1)
{

kcount++;
}

}
outK.write(kcount+"\n");
outS.write(scount+"\n");

}
catch(IOException e)
{

180 e.printStackTrace();

}
}

//To choose agents (10%) for reproduction
private ArrayList playersreplist()
{

ArrayList replist=new ArrayList();
int n;

190 int size=Gameconstants.noOfPlayers/10;
for (int i = 0; i < size; i++)
{

do {
n=new Random().nextInt(Gameconstants.noOfPlayers);
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}while(replist.contains(n));
replist.add(n);

}
return replist;

}
200

//Arraylist with agents
private ArrayList playersarraylist()
{

ArrayList no=new ArrayList();
ArrayList allplayers=new ArrayList();
int n;
for (int i = 0; i < Gameconstants.noOfPlayers; i++)
{

do {
210 n=new Random().nextInt(Gameconstants.noOfPlayers);

}while(no.contains(n));
no.add(n);
allplayers.add(n);

}
return allplayers;

}

//Reverse (half) of the Arraylist with agents
private ArrayList reversearraylist(ArrayList arraylist)

220 {
ArrayList reverseallplayers=new ArrayList();
int halfsize=arraylist.size()/2;
int n=arraylist.size()-1;
for (int i=n; i>=halfsize; i--)
{

reverseallplayers.add(arraylist.get(i));

}
int revarrsize=reverseallplayers.size();

230 for (int i=0; i<halfsize; i++)
{

reverseallplayers.add(revarrsize,arraylist.get(i));
revarrsize++;

}
return reverseallplayers;

}
//To select random (50%) to set S
private ArrayList generatuniquenos(int sharers)

240 {
ArrayList sharerlist=new ArrayList();
int n;

for (int i = 0; i < sharers; i++)
{

do {
n=new Random().nextInt(Gameconstants.noOfPlayers);

}while(sharerlist.contains(n));
sharerlist.add(n);

250 }
return sharerlist;

}
}

B.2 Player.java
1

import java.util.HashMap;

public class Player {
private int id;
private int K;
private int Sharingbit;
private int playcount=0;

10 private HashMap playerScore=new HashMap();

public Player(int id, int K, int Sharingbit)
{
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this.setId(id);
this.setK(K);
this.setSharingbit(Sharingbit);

}

public int getId() {
20 return id;

}

public void setId(int id) {
this.id = id;

}

public void setSharingbit(int Sharingbit )
{

this.Sharingbit=Sharingbit;
30 }

public int getSharingbit( )
{

return Sharingbit;
}

public void setK(int K)
{

this.K=K;
40 }

public int getK()
{

return K;
}

public void clearPlaycount()
{

playcount=0;
50 }

public void addPlaycount()
{

this.playcount=playcount+1;
}

public int getPlaycount(Player player)
{

return playcount;
60 }

public double getScore(Player player)
{

if(playerScore.get(player)== null)
{

return 0;
}
else
{

70 double score=(Double)playerScore.get(player);
return score;
}

}

public void addScore(Player player, double score)
{

if(playerScore.get(player)== null)
{

playerScore.put(player, score);
80 }

else
{

double value = (Double)playerScore.get(player);
value+= score;
playerScore.put(player, value);

}
}

public void clearscoremap_entry(Player player, double value)
90 {

playerScore.put(player,value);
}

}
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B.3 GameConstants.java
1

public class Gameconstants {

public static final int noOfPlayers = 100;
public static final int noOfPlayers_startK = 20;
public static final int noOfPlayers_startS = 50;
public static final int noOfIterations = 1000;
public static final int noOfRuns=1;
public static final double benefit=1;

10 public static final double cost=-0.1;
}

169


