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We analyze the Gaussian approximation as a method to obtain the first and second moments of a stochastic
process described by a master equation. We justify the use ofthis approximation with ideas coming from van
Kampen’s expansion approach (the fact that the probabilitydistribution is Gaussian at first order). We analyze
the scaling of the error with a large parameter of the system and compare it with van Kampen’s method. Our
theoretical analysis and the study of several examples shows that the Gaussian approximation turns out to be
more accurate. This could be specially important for problems involving stochastic processes in systems with a
small number of particles.

PACS numbers:

INTRODUCTION

Master equations are a convenient tool to treat stochastic Markov processes[1, 2]. In some cases, they offer an alternative
approach to the Chapman-Kolmogorov equation and have been used extensively in discrete-jumps, or birth-death, processes,
such as chemical reactions (including those happening inside a cell), population dynamics or other ecology problems[3], opinion
formation and cultural transmission in the field of sociophysics[4], etc. In all these cases, it is important to considerthat the
population number (whether molecules, individuals, agents, etc.) might not be very large (maybe ranging in the tens or hundreds)
and the fluctuations, that typically scale as the square rootof the inverse of this number, can not be considered as negligible. It is
therefore, of the greatest importance to derive evolution equations for the average behavior and the fluctuations. The important
work by van Kampen[1] offers a systematic way of deriving these equations from an expansion of the master equation in a
parameterΩ, typically the system volume. TheΩ-expansion is mostly used in its lowest order form, in which one can prove
that the error in the average value, the second moment and thefluctuations (the variance), scale at most asΩ0, Ω1 andΩ1/2,
respectively. The van KampenΩ-expansion, furthermore, shows that, at this lowest order,the fluctuations follow a Gaussian
distribution. In this paper, we take this result of van Kampen’s theory and, considering from the very beginning that fluctuations
are Gaussian, we derive a closed system of equations for the average value and the second moment. This Gaussian closure ofthe
hierarchy of moments turns out to be more accurate that theΩ-expansion as the above-mentioned errors scale at most asΩ−1/2,
Ω1/2 andΩ1/2, respectively. Furthermore, the Gaussian closure scheme is very simple to carry on in practice and can be easily
generalized to systems described by more than one variable.

The paper is organized as follows: In the following section,we will briefly review theΩ-expansion and derive the main
equations for the Gaussian closure approximation. The errors of both methods are discussed in section . In sections and ,we
will give examples of the application of the method in the cases of a binary chemical reaction and an autocatalytic reaction.
The results of these two examples confirm the error-analysisperformed before. For both processes we compare with the results
coming from the exact solution of the master equation in the stationary regime (derived in the appendix for the binary chemical
reaction), and the results of numerical simulations using the Gillespie algorithm in the time-dependent evolution. Insection we
present an application to a recently introduced model for opinion formation which requires two variables for its full description.
Finally, in section we end with a brief summary of the work.

FORMULATION

Let P(n, t) be the probability that at timet the population number takes the valuen. We consider that it evolves according to
a general master equation of the form:

∂P(n, t)
∂ t

= ∑
k

(Ek−1) [Ck(n;Ω)P(n, t)] , (1)

whereE is the linear step operator such thatEk[ f (n)]≡ f (n+k) andk runs over the integer numbers. Besidesn, the coefficients
Ck(n;Ω) depend onΩ, which is a large parameter of the system (typically the system volume). We consider that these functions
are polynomials or can be expanded in power series ofn asCk(n;Ω) = ∑aCa

k(Ω)na where the coefficientsCa
k(Ω) scale as

Ca
k(Ω) = Ω1−a

(

ca
k,0+ ca

k,1Ω−1+ ca
k,2Ω−2+ . . .

)

. Master equations of this form appear in the description of chemical reactions
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[3], ecological systems [5] and opinion dynamics [6], amongmany other cases. More specific examples will be considered in
the next sections.

In a seminal work, van Kampen[1] has given a way of finding an approximate solution of Eq. (1). The approximation is based
upon the splitting of the variablen using the ansatzn = Ωφ(t)+Ω

1
2 ξ , whereφ(t) ∼ O(Ω0) is a function of time accounting

for the deterministic part ofn andξ ∼ O(Ω0) corresponds to the fluctuations. Changing variables fromn to ξ in Eq. (1), and
expanding in powers ofΩ one obtains a Fokker-Planck equation for the probability distributionΠ(ξ , t) of the new variableξ :

∂Π(ξ , t)
∂ t

=

[

∑
a,k

ca
k,0kaφa−1

]

∂ (ξ Π)

∂ξ
+

[

∑
a,k

ca
k,0

k2

2
φa

]

∂ 2Π
∂ξ 2 +O(Ω−

1
2 ), (2)

where the macroscopic variableφ satisfies

dφ(t)
dt

= ∑
a,k

kca
k,0φa. (3)

From Eq.(2) we obtain the first and second moments of the fluctuations:

∂ 〈ξ 〉
∂ t

= −
[

∑
a,k

ca
k,0kaφa−1

]

〈ξ 〉, (4)

∂ 〈ξ 2〉
∂ t

= −2

[

∑
a,k

ca
k,0kaφa−1

]

〈ξ 2〉+2

[

∑
a,k

ca
k,0

k2

2
φa

]

. (5)

As proven by van Kampen, the solution of the Fokker-Planck equation (2) is a Gaussian distribution. Therefore, theΩ-
expansion method tells us that, up to corrections of orderΩ− 1

2 , the fluctuations of the variablen follow a Gaussian distribution.
It suffices, then, to know the first and second moments of this distribution. Our intention is to use from the very beginningthe
Gaussian property in order to obtain a closed system of equations for the first two moments〈n〉 and〈n2〉.

From (1) we get the (exact) equations for these first two moments, as:

d〈n〉
dt

=−∑
k

〈kCk(n;Ω)〉 , d〈n2〉
dt

= ∑
k

〈k(k−n)Ck(n;Ω)〉 . (6)

After substitution of the series expansionCk(n;Ω) = ∑aCa
k(Ω)na in the right hand side of these equations, one obtains higher

order moments〈nm〉 for m≥ 3. The Gaussian closure replaces these higher order momentswith the expressions〈nm〉G that hold
in the case of a Gaussian distribution, i.e.〈n〉G = 〈n〉, 〈n2〉G = 〈n2〉 and

〈nm〉G = 〈n〉m+
[m

2 ]

∑
k=1

(

m
2k

)

(2k−1)!!〈n〉m−2k[〈n2〉− 〈n〉2
]k

(7)

for m≥ 3. The first moments are explicitly shown in table I.

Moment Gaussian approximation

〈n3〉 3〈n2〉〈n〉−2〈n〉3
〈n4〉 3〈n2〉2−2〈n〉4
〈n5〉 15〈n2〉2〈n〉−20〈n2〉〈n〉3+6〈n〉5
〈n6〉 15〈n2〉3−30〈n2〉〈n〉4+45〈n〉6
〈n2

1n2〉 〈n2
1〉〈n2〉+2〈n1〉〈n1n2〉−2〈n1〉2〈n2〉

〈n2
1n2

2〉 〈n2
1〉〈n2

2〉+2〈n1n2〉2−2〈n1〉2〈n2〉2
〈n3

1n2〉 3〈n2
1〉〈n1n2〉−2〈n1〉3〈n2〉

〈n3
1n2

2〉
6〈n1n2〉2〈n1〉+6〈n1〉3〈n2〉2+6〈n1n2〉〈n2〉(〈n1〉2−2〈n1〉2
−6〈n2

1〉〈n2〉2〈n1〉+3〈n2
1〉〈n2

2〉〈n1〉−2〈n1〉3〈n2
2〉

TABLE I: Gaussian moments

The van Kampen ansatzn= Ωφ(t)+Ω
1
2 ξ allows us to find the error of this approximation. It follows that:

〈nm〉
Ωm−1 =

m

∑
l=0

(

m
l

)

Ω1−l/2φm−l 〈ξ l 〉. (8)
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In the Gaussian approximation, the first three terms of the sum, l = 0,1,2 are exact and the terml = 3 scales asΩ−1/2, or:

〈nm〉
Ωm−1 =

〈nm〉G
Ωm−1 +O(Ω−1/2). (9)

If we use this result in each of the terms of Eq.(6) andCk(n;Ω) = Ω1−a(ca
k,0+O(Ω−1)) we obtain

d〈n〉
dt

= g1(〈n〉,〈n2〉)+O(Ω−1/2), (10)

with g1≡−∑
k

〈kCk(n;Ω)〉G. Similarly, one finds

d〈n2〉
dt

= g2(〈n〉,〈n2〉)+O(Ω1/2), (11)

with g2≡∑
k

〈k(k−n)Ck(n;Ω)〉G.

This Gaussian approximation scheme (or equivalently, finding a hierarchy of equations for the cumulants and neglectingthose
of order greater than two) has been used many times in the literature in different contexts [7, 8]. We will show in the next section
that the direct use of Eqs. (10,11) has a smaller error that the use of Eqs. (3-5). Before showing this, we will generalize this
procedure for the case of two-variable problems. Let us consider a master equation of the following form:

∂P(n1,n2, t)
∂ t

= ∑
k1,k2

(Ek1
1 Ek2

2 −1)
[

Ck1,k2(n1,n2;Ω)P(n1,n2, t)
]

. (12)

The evolution equations for the first, second order moments and the correlations are:

d〈ni〉
dt

=− ∑
k1,k2

〈

kiCk1,k2(n1,n2;Ω)
〉

, (13)

d〈n2
i 〉

dt
= ∑

k1,k2

〈

ki(ki−ni)Ck1,k2(n1,n2;Ω)
〉

, (14)

d〈n1n2〉
dt

= ∑
k1,k2

〈

(k1k2− k2n1− k1n2)Ck1,k2(n1,n2;Ω)
〉

, (15)

(i = 1,2). Again, the Gaussian closure consists in replacing〈nm1
1 nm2

2 〉 by the expression〈nm1
1 nm2

2 〉G that holds assuming that the
joint distributionP(n1,n2, t) is Gaussian. This can be computed using Wick’s theorem[9]. In table (I) we write the expression of
some of the terms.

ERROR OF THE METHOD

We now calculate the error of the Gaussian approximation andcompare it with the one of theΩ-expansion. In Eqs. (10-11)
we have shown that the errors we introduce in the equations for the moments when performing the Gaussian approximation are
of orderO(Ω−1/2) for 〈n〉 andO(Ω1/2) for 〈n2〉. The Gaussian approximation scheme proceeds by considering approximations
µ1(t), µ2(t) to the true moments〈n(t)〉, 〈n2(t)〉. These approximations are defined as the solution of the evolution equations
(10,11):

dµ1

dt
= g1(µ1,µ2),

dµ2

dt
= g2(µ1,µ2). (16)

Defining the errorsε1,ε2 as: 〈n〉 = µ1+ ε1, 〈n2〉 = µ2+ ε2; expanding in first order inε1 andε2, and using equations (10-11)
and (16) we get:

dε1

dt
=

∂g1(µ1,µ2)

∂ µ1
ε1+

∂g1(µ1,µ2)

∂ µ2
ε2+O(Ω−1/2), (17)

dε2

dt
=

∂g2(µ1,µ2)

∂ µ1
ε1+

∂g2(µ1,µ2)

∂ µ2
ε2+O(Ω1/2). (18)



4

Taking into account thatµ1,g1∼O(Ω), µ2,g2∼O(Ω2), we have:

dε1

dt
= O(Ω0)ε1+O(Ω−1)ε2+O(Ω−1/2), (19)

dε2

dt
= O(Ω)ε1+O(Ω0)ε2+O(Ω1/2). (20)

If we setε1 ∼O(Ωa), ε2 ∼O(Ωb), and the initial conditions are known, so that initiallyε1 = ε2 = 0, equations (19), (20) imply
thata≤−1/2 andb≤ 1/2, a scaling respected during the time evolution.

In conclusion, solving equations (10-11), we get〈n〉 and 〈n2〉 with errors of orderε1 = O(Ω−1/2) andε2 = O(Ω1/2), or
smaller. Using the equations (3-5) of first order van Kampen’s expansion the error is of higher order in both cases:O(Ω0) for 〈n〉
andO(Ω1) for 〈n2〉. However, for the variance,σ2≡ 〈n2〉− 〈n〉2, both approximations have an error of orderO(Ω1/2). We will
show in the next sections that the Gaussian approximation has the extra advantage that it is easier to derive for many problems
of practical interest.

One might be tempted to go to higher order schemes, where one neglects all the cumulants of order greater thanmwith m> 2,
and in this way obtain a closed set of equations for the firstm moments. For example, if we neglect all the cumulants of order
greater than 3, applying the same analysis as before, it is possible to derive that the errors in the first, second and thirdmoments
are of orderO(Ω−1,Ω0,Ω1), respectively.

A word of caution is needed here. When truncating beyond the second cumulant, it is not ensured that the resulting probability
distribution is positive definite [10]. This means that one could get from such an scheme inconsistent results, e.g. a negative
variance. Nevertheless, according to our analysis, the importance of these spurious results would decrease withΩ as indicated,
so one can still get useful results from higher order schemes.

In the following sections we will compare the Gaussian approximation presented here with the first orderΩ-expansion in
some specific examples.

BINARY REACTION A+B
κ
−→←−
ω

C

Chemical reactions are suitable processes for a stochasticdescription. The stochastic approach is specially necessary when
the number of molecules considered is small, as it is the frequently addressed case of chemical reactions inside a cell, because
in this situation fluctuations can be very important.

We consider the general processA+B
κ
−→←−
ω

C, limited by reaction. This means that any two particlesA andB have the same

probability of reaction. Denoting byA(t) andB(t), respectively, the number of molecules of theA andB substances, the rate for
theA+B−→C reaction isκ

Ω A(t)B(t). For the reverse reaction, it is assumed thatC has a constant concentration, and hence the
rate isωΩ. In these expressionsΩ is proportional to the total volume accessible. SinceB(t)−A(t)≡ ∆ is a constant, one only
needs to consider one variable, for example, the number ofA molecules at timet. Let us denote byP(n, t) the probability that
there aren A-molecules at timet. The master equation describing the process is:

dP(n, t)
dt

=
κ
Ω
[(n+1)(∆+n+1)P(n+1, t)−n(n+∆)P(n, t)]+ωΩ[P(n−1, t)−P(n, t)], (21)

which is the basis of the subsequent analysis. Note that thisequation can be written in the form (1) settingC1(n;Ω) = κ
Ω n(n+

∆),C−1(n;Ω) = ωΩ.
In the irreversible case,ω = 0, this master equation can be solved exactly using the generating function technique. In the

general case,ω 6= 0, an exact solution can also be found for the stationary state ∂P(n,t)
∂ t = 0. Details of the calculation are given

in the appendix. We will compare the results obtained from the Gaussian approximation and the first orderΩ-expansion with
the exact results, when available.

The equations for the first two moments, using (6), are:

d〈n〉
dt

= − κ
Ω
(

〈n2〉+∆〈n〉
)

+Ωω , (22)

d〈n2〉
dt

=
κ
Ω
(−2〈n3〉+(1−2∆)〈n2〉+∆〈n〉)−2Ωω〈n〉+Ωω . (23)

Using the Gaussian approximation, the evolution equationsfor the moments are:

dµ1

dt
= − κ

Ω
(µ2+∆µ1)+Ωω , (24)

µ2

dt
=

κ
Ω
(4µ3

1−6µ2µ1+(1−2∆)µ2+∆µ1)+2Ωωµ1+Ωω . (25)
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And the first orderΩ-expansion gives:

dφ
dt

= −κφ(φ + δ )+ω , (26)

d〈n〉
dt

= κΩφ2−κ(δ +2φ)〈n〉+Ωω , (27)

d〈n2〉
dt

= −2κ(2φ + δ )〈n2〉+Ω [κφ(φ + δ )(1−2〈n〉) +
2(κΩφ2(2φ + δ )+ω(〈n〉+1+ωφ))

]

, (28)

whereδ = ∆
Ω .

We compare the two approximations in the time-dependent case with results obtained by averaging over single realizations of
the process, obtained numerically using the Gillespie algorithm[3]. In the next figures we compare the exact results with those
obtained from the Gaussian approximation (computed by numerical integration of equations 24, 25) andΩ-expansion (equations
26-28).

3 6 9
t

6

6.1

6.2

Gaussian
Ω-Expansion

Gillespie

Exact stationary

3 6 9
t

40

41

42

3 6 9
t

4.4

4.5

4.6
<n> <n

2
> σ2

FIG. 1: 〈n(t)〉, 〈n2(t)〉 andσ2(t) for the binary reactionA+B
κ
−→←−
ω

C with parametersκ = 1, ω = 1, Ω = 10 and initial conditionsn(0) = 100,

δ = 1. For the first two moments the Gaussian approximation (solid) is very close to the results obtained with the Gillespie algorithm (dot-
dashed, obtained averaging over one million realizations)and the exact stationary value (thin line), while 1st orderΩ-expansion (dashed) gives
clearly different values. Forσ2, theΩ-expansion gives more accurate results but both approximations differ from the exact values.

1 10 100 1000 10000
Ω

1e-05

0.0001

0.001

0.01

0.1
Gaussian
Ω -Expansion

1 10 100 1000 10000
Ω

1

1000

1 10 100 1000 10000
Ω

0.1

Error in <n> Error in <n
2
> Error in σ2

FIG. 2: Error in〈n〉, 〈n2〉 andσ2 in the stationary state in the same case than in Fig.1. The straight thin lines are fits to the data and have slope
−1, 0 or 1. For the Gaussian approximation (solid), the errorsin (〈n〉, 〈n2〉, σ2) scale as(Ω−1, Ω0, Ω0). For theΩ-expansion (dashed), the
errors scale as(Ω0, Ω1, Ω0).

Figure (1) shows that the Gaussian approximation reproduces better the exact results for the first two moments; for the
variance, theΩ-expansion gives more accurate results but both approximations differ from the exact values. Figure (2) shows
that the errors in the stationary state, coming from the Gaussian approximation for the mean value, the second moment andthe
variance scale as(Ω−1, Ω0, Ω0), respectively, while the errors of theΩ-expansion at first order scale as(Ω0, Ω1, Ω0). This
scaling is consistent with the previous analysis, as the exponents of the errors are smaller than the obtained bounds.
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AUTOCATALYTIC REACTION A
k
−→ X, 2X

k′
−→ B

The master equation describing this process is[1]:

∂P(n, t)
∂ t

= ΩφAk[P(n−1, t)−P(n, t)]+
k′

Ω
[(n+2)(n+1)P(n+2, t)−n(n−1)P(n, t)], (29)

where the concentration ofA particles is consider to be constant with a valueφA. This equation if of the form (1) withC−1(n;Ω) =

ΩkφA,C2(n;Ω) + k′
Ω n(n− 1). The general solution for this equation is not known, but thestationary solutionPst(n) can be

obtained using the generating function technique[1]. The exact equations for the first moments are:

d〈n〉
dt

= ΩkφA+2k′
〈n〉
Ω
−2k′

〈n2〉
Ω

, (30)

d〈n2〉
dt

= ΩkφA(2〈n〉+1)− k′

Ω
(4〈n3〉−8〈n2〉+4〈n〉). (31)

Performing the Gaussian approximation, we get:

dµ1

dt
= ΩkφA+2k′

µ1

Ω
−2k′

µ2

Ω
, (32)

dµ2

dt
= ΩkφA(2µ1+1)− k′

Ω
(12µ2µ1−8µ3

1−8µ2+4µ1). (33)

While first orderΩ-expansion approach leads to:

dφ
dt

= kφA−2k′φ2, (34)

d〈n〉
dt

= Ω(kφA+2k′φ2)−4k′φ〈n〉, (35)

d〈n2〉
dt

= −8k′φ〈n2〉+Ω(2kφA+4k′φ2)〈n〉+Ω(kφA+4k′φ2). (36)

In the next figures we show the results obtained with the Gaussian approximation (computed by numerical integration of
equations 32-33),Ω-expansion (equations 34-36), the Gillespie algorithm, and the exact stationary solution.

4 6 8
t

10

10.1

4 6 8 10
t

108

110

2 4 6 8
t

7.6

7.8

<n> <n
2
> σ2

FIG. 3: 〈n(t)〉, 〈n(t)2〉 andσ2(t) for the autocatalytic reactionA
k
−→ X, 2X

k′
−→ B with kφA = 1, k′ = 1/2, Ω = 10 and initial conditionn(0) = 0.

For the first two moments the Gaussian approximation (solid)is very close to the results coming from the Gillespie algorithm (dot-dashed) and
the exact value in the stationary case (thin line) whereas the Ω-expansion result (dashed) is clearly different, althoughfor σ2 theΩ-expansion
provides more accurate results.

As in the previous example, we see that the Gaussian approximation fits better the evolution of the moments, but the variance
is somehow better approximated by the first orderΩ-expansion. In figure (4) we show the errors in the stationarystate for the
two approximations as a function ofΩ. We see that the errors in(〈n〉, 〈n2〉, σ2) decay as(Ω−1, Ω−1,Ω0) for the Gaussian
approximation, while the first-orderΩ-expansion leads to errors that scale as(Ω0, Ω1,Ω0). Again, this scaling is consistent with
the analysis of the approximations performed.
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0.0001
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FIG. 4: Error in〈n〉,〈n2〉 andσ2 in the stationary state as a function ofΩ in the same case than in Fig.3. The thin lines have slope−1, 0 or
1. For the Gaussian approximation (solid), the errors in(〈n〉,〈n2〉,σ2) scale (asymptotically) as(Ω−1, Ω−1, Ω0). For theΩ-expansion, the
errors scale as(Ω0, Ω1, Ω0).

OPINION FORMATION

In the last few years there has been a growing interest in the application of methods and techniques coming from statistical
physics to the study of complex phenomena in fields traditionally far from physics research, particularly in biology, medicine,
information technology or social systems. In particular the application of the physical approach to social phenomena has been
discussed in several reviews [4, 11, 12]. As an example of theuse of master equations in this field, we mention a recent paper
[6] in which the process of opinion formation in a society is modeled as follows: Society is divided in two parties, A and B,plus
an “intermediate“ group of undecided agents I. The supporters of A and B do not interact among them, but only through their
interaction with the group I, convincing one of its members with a given probability. In addition there is a nonzero probability
of a spontaneous change of opinion from I to the other two parties and vice-versa. More specifically, ifnA(B) is the number of
supporters of party A(B),nI is the number of undecided agents andΩ is the total number of individuals, the possible transitions
are:

spontaneous changeA→ I , occurring with a rateα1nA,
spontaneous changeI → A, occurring with a rateα2nI ,
spontaneous changeB→ I , occurring with a rateα3nB,
spontaneous changeI → B, occurring with a rateα4nI ,
convincing ruleA+ I → 2A, occurring with a rateβ1

Ω nAnI ,

convincing ruleB+ I → 2B, occurring with a rateβ2
Ω nBnI .

As the total number of individuals (Ω = nA+nB+nI ) is fixed, there are only two independent variables, saynA andnB. The
master equation of the process is:

∂
∂ t

P(nA,nB, t) = α1(nA+1)P(nA+1,nB, t)+α3(nB+1)P(nA,nB+1, t) (37)

+α2(Ω−nA−nB+1)P(nA−1,nB, t)+α4(Ω−nA−nB+1)P(nA,nB−1, t)

+(Ω−nA−nB+1)

[

β1

Ω
(nA−1)P(nA−1,nB, t)+

β2

Ω
(nB−1)P(nA,nB−1, t)

]

−
[

α1nA+α3nB+(α2+α4)(Ω−nA−nB)+
β1nA+β2nB

Ω
(Ω−nA−nB)

]

P(nA,nB, t).

We note that this master equation can be written in the general form (12) by settingC1,0 = α1nA , C0,1 = α3nB , C−1,0 =

(Ω−nA−nB)(α2+
β1
Ω nA) andC0,−1 = (Ω−nA−nB)(α4+

β2
Ω nB).

An exact solution of this master equation is not known. In thefollowing, we will apply to this problem the Gaussian approxi-
mation scheme and compare it with the results of theΩ-expansion. The exact equations for the first moments are:
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d〈nA(t)〉
dt

= −(α1+α2−β1)〈nA〉+α2(Ω−〈nB〉)−
β1

Ω
〈n2

A〉−
β1

Ω
〈nAnB〉, (38)

d〈nB(t)〉
dt

= −(α3+α4−β2)〈nB〉+α4(Ω−〈nA〉)−
β2

Ω
〈n2

B〉−
β2

Ω
〈nAnB〉, (39)

d〈n2
A(t)〉
dt

= (α1+α2(2Ω−1)+β1)〈nA〉+α2(Ω−〈nB〉)−2(α1+α2−β1+
β1

2Ω
)〈n2

A〉

−(2α2+
β1

Ω
)〈nAnB〉−

2β1

Ω
〈n3

A〉−
2β1

Ω
〈n2

AnB〉, (40)

d〈n2
B(t)〉
dt

= (α3+α4(2Ω−1)+β2)〈nB〉+α4(Ω−〈nA〉)−2(α3+α4−β2+
β2

2Ω
)〈n2

B〉

−(2α4+
β2

Ω
)〈nAnB〉−

2β2

Ω
〈n3

B〉−
2β2

Ω
〈nAn2

B〉, (41)

d〈nA(t)nB(t)〉
dt

= −(α1+α2+α3+α4−β1−β2)〈nAnB〉+α2(Ω〈nB〉− 〈n2
B〉)

+α4(Ω〈nA〉− 〈n2
A〉)−

β1+β2

Ω
(〈n2

AnB〉+ 〈nAn2
B〉). (42)

Denoting byA1,A2,B1,B2,C the Gaussian approximations to the moments〈nA〉,〈n2
A〉,〈nB〉,〈n2

B〉 and the correlation〈nAnB〉,
respectively, and using the results in table I, we obtain:

dA1

dt
= −(α1+α2−β1)A1+α2Ω−α2B1−

β1

Ω
A2−

β1

Ω
C, (43)

dB1

dt
= −(α3+α4−β2)B1+α4Ω−α4A1−

β2

Ω
B2−

β2

Ω
C, (44)

dA2

dt
= (α1+α2(2Ω−1)+β1)A1+α2(Ω−B1)−2(α1+α2−β1+

β1

2Ω
)A2

−(2α2+
β1

Ω
)C− 2β1

Ω
(3A1A2−2A3

1)−
2β1

Ω
(A2B1+2A1C−2A2

1B1), (45)

dB2

dt
= (α3+α4(2Ω−1)+β1)B1+α4(Ω−A1)−2(α3+α4−β2+

β2

2Ω
)B2

−(2α4+
β2

Ω
)C− 2β2

Ω
(3B1B2−2B3

1)−
2β2

Ω
(B2A1+2B1C−2B2

1A1), (46)

dC
dt

= −(α1+α2+α3+α4−β1−β2)C+α2(ΩB1−B2) (47)

+α4(ΩA1−A2)−
β1+β2

Ω
[

B1A2+B2A1+2(A1+A2)C−2A2
1A2−2B2

1B2
]

.

In van Kampen’s expansion method, we defineφA(B),ξA(B) such thatnA(B) = ΩφA(B)+Ω1/2ξA(B).
The equations for the macroscopic components are [6]:

dφA

dt
= −α1φA+[α2+β1φA](1−φA−φB), (48)

dφB

dt
= −α3φB+[α4+β2φB](1−φA−φB), (49)
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and for the fluctuations:

d〈ξA〉
dt

= −[α1+α2+β1(2φA+φB)−β1]〈ξA〉− (α2+β1φA)〈ξB〉, (50)

d〈ξB〉
dt

= −[α3+α4+β2(2φB+φA)−β2]〈ξB〉− (α4+β2φB)〈ξA〉, (51)

d〈ξ 2
A〉

dt
= −2α1〈ξ 2

A〉−2(α2+β1φA)(〈ξ 2
A〉+ 〈ξAξB〉)+2β1〈ξ 2

A〉(1−φA−φB)

+α1φA+(α2+β1φA)(1−φA−φB), (52)

d〈ξ 2
B〉

dt
= −2α3〈ξ 2

B〉−2(α4+β2φB)(〈ξ 2
B〉+ 〈ξAξB〉)+2β2〈ξ 2

B〉(1−φA−φB)

+α3φB+(α4+β2φB)(1−φA−φB), (53)

d〈ξAξB〉
dt

= −(α1+α3)〈ξAξB〉− (α2+β1φA)(〈ξAξB〉+ 〈ξ 2
B〉)− (α4+β2φB)(〈ξAξB〉+ 〈ξ 2

A〉)
+(1−φA−φB)(β1+β2)〈ξAξB〉. (54)

From those we can recover the original variablesnA(B)(t).
In the next figures we compare the results coming from both approximations (obtained by numerical integration of the previous

equations) and from simulations of the process using the Gillespie algorithm, for some representative values of the parameters
and initial conditions. Again, the Gaussian approximationreproduces better the values for the average and the second moment
whereas in this case both methods perform very similarly forthe fluctuations and correlation.

9 12 15

3.63

3.66

<
n A

>

Gaussian
Ω-Expansion
Gillespie

6 9 12 15

16

16.5

<
n2 A

>

5 10 15
t

2.9

3

σ2 Α

5 10 15
t

-2

-1.8

σ2 Α
,Β

FIG. 5: 〈nA(t)〉,〈n2
A(t)〉, σ2

A(t) andσ2
AB(t) ≡ 〈nAnB〉− 〈nA〉〈nB〉 for the opinion formation model of reference [6], forαi = βi = 1,Ω = 10,

and initial conditionsnA(0) = 0, nB(0) = Ω. For the average〈nA(t)〉, the Gaussian approximation (solid) follows very accurately the Gillespie
simulation results (dot-dashed), whereas theΩ-expansion (dashed) differs clearly. For the second moment〈nA(t)2〉 the Gaussian approximation
performs clearly better as well, while for the varianceσ2

A(t) and correlationsσ2
AB(t), the Gaussian approximation and theΩ-expansion give

very similar results, although both are far from the simulation data.

CONCLUSIONS

In this paper, we have given explicit expressions for the equations for the first and second moments of a stochastic process
defined by a general class of master equations using the Gaussian approximation closure. The approach is motivated by van
Kampen’sΩ-expansion result that, at lowest order, the fluctuations are Gaussian. We have shown that the Gaussian closure is
simple to perform and leads to errors in the average value, the second moment and the fluctuations (the variance), that scale at
most as(Ω−1/2, Ω1/2, Ω1/2), respectively. This is to be compared with theΩ-expansion result in which the respective errors scale
at most as(Ω0, Ω1, Ω1/2). Therefore, the Gaussian approximation is more accurate, which turns out to be important, specially
for small values ofΩ. We have checked these results by comparing the performanceof the two methods in three examples: (i) a
binary chemical reaction, (ii) an autocatalytic reaction and (iii) a model for opinion formation. In all cases studied,the Gaussian
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closure has given a better approximation to the average and the second moment, although theΩ-expansion, due to a cancellation
of errors, yields a somehow smaller numerical error in the variance. In general, the Gaussian closure scheme is very simple to
carry on in practice and this simplicity and the improvementof the predictive power is more apparent in many-variable systems.
We believe that this method can be usefully applied to the study of other problems of recent interest in the literature involving
stochastic processes in systems with a small number of particles.

APPENDIX: REACTION-LIMITED PROCESS

We now find the solution of the master equation (21) in the equilibrium state for the general case, and the full dynamical
solution for the irreversible caseω = 0. Without loss of generality, let us rescalet → κt/Ω andω → ωΩ2/κ to get the simpler
equation:

dP(n, t)
dt

= (n+1)(∆+n+1)P(n+1, t)−n(n+∆)P(n, t)+ω [P(n−1, t)−P(n, t)]. (55)

Furthermore, only the case∆≥ 0 needs to be considered. If∆ < 0 the changen′ = n−∆ leaves invariant the previous equation
provided that we make the identificationP(n, t)→ P(n+ ∆, t). This means that the solutions in both cases are related by
P(n, t;∆) = P(n−∆, t;−∆).

The generating function

f (s, t) =
∞

∑
n=0

P(n, t)sn, (56)

satisfies the partial differential equation:

∂ f
∂ t

= (1− s)

[

s
∂ 2 f
∂s2 +(1+∆)

∂ f
∂s
−ω f

]

. (57)

Let us first discuss the equilibrium solution in the general case.

The equilibrium solution

By setting∂ f
∂ t = 0 one gets the differential equation:

s
∂ 2 f
∂s2 +(1+∆)

∂ f
∂s
−ω f = 0. (58)

The solution around the singular regular points= 0 can be found by the Frobenius method as a power series∑∞
n=0ansn+ν . The

regular solution satisfying the boundary conditionf (s= 1) = 1 is[13]:

f (s) =
s−∆/2I∆

(

2
√

ωs
)

I∆
(

2
√

ωs
) , (59)

and the equilibrium probabilities, rescaling back to the original parameters, are:

P(n) =
(ωΩ2/κ)n+∆/2

I∆

(

2Ω
√

ω/κ
)

n!(n+∆)!
, (60)

from where the first two moments can be computed as:

〈n〉=
I∆+1

(

2Ω
√

ω/κ
)

I∆

(

2Ω
√

ω/κ
) Ω
√

ωκ, 〈n2〉= Ω2ω/κ−
I∆+1

(

2Ω
√

ω/κ
)

I∆

(

2Ω
√

ω/κ
) ∆Ω

√

ω/κ. (61)
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The time-dependent solution

We now study how the system relaxes towards equilibrium. We will restrict ourselves to the irreversible caseω = 0. This
corresponds to the processA+B→ 0, inert. The partial differential equation (57) can be solved by the technique of separation
of variables by trying solutions of the formf (s, t) = f1(s) f2(t). This leads to the pair of ordinary differential equations:

s(1− s) f ′′1 +(1− s)(1+∆) f ′1+λ 2 f1 = 0, (62)

f ′2+λ 2 f2 = 0, (63)

beingλ 2 the constant arising from the method of separation of variables. The solution of the time dependent function is e−λ 2t

and the solution of thes-function is the hypergeometric function[14]F(−µ1,µ2;∆+1;s). The explicit series is:

F(−µ1,µ2;∆+1;s) =
∞

∑
n=0

(−µ1)n(µ2)n

(∆+1)n

sn

n!
. (64)

(a)n is the Pochhammer’s symbol:(a)n =
Γ(a+n)

Γ(a) , or (a)0 = 1, (a)n = a(a+1) . . .(a+n−1) for n> 0, and we have introduced

µ1 =
−∆+

√
∆2+4λ 2

2
, µ2 =

∆+
√

∆2+4λ 2

2
. (65)

The solution for the functionf (s, t) is obtained by linear combination of the elementary solutions found above:

f (s, t) = ∑
λ

Cλ F(−µ1,µ2;∆+1;s)e−λ 2t . (66)

This function is, in general, an infinite series on the variable s. In fact the coefficients, according to (56) are nothing but the
time-dependent probabilities. However, in this irreversible case, the probability of having moreA-molecules that the initial
number att = 0, sayM, has to be zero. Therefore the series must be truncated afterthe powersM. This implies that in the
previous expression only hypergeometric functions that represent a polynomial inscan be accepted. This is achieved by forcing
µ1 = k = 0,1,2. . . ,M, since the series (64) becomes then a polynomial of degreek. The conditionµ1 = k is equivalent to the
parameterλ adopting one of the possible valuesλk =

√

k(k+∆). Finally, noticing thatµ2−µ1 = ∆, the solution can be written
as:

f (s, t) =
M

∑
k=0

k

∑
n=0

Ck(∆,M)e−k(k+∆)tBn,k(∆)sn. (67)

The notation emphasizes thatCk depends both on∆ andM butBn,k depends only on∆:

Bn,k(∆) =
(−k)n(k+∆)n

n!(∆+1)n
. (68)

All that remains is to impose the initial condition. We startwith M A-molecules at timet = 0, such thatf (s, t = 0) = sM. This
implies that the coefficientsCk must satisfy:

M

∑
k=n

Bn,kCk = δn,M, (69)

for n= 0,1, . . . ,M. The solution starts by finding firstCM = 1/BM,M and then proceeds backwards to findCM−1,CM−2, . . . ,C0 in
a recursive manner. After some lengthy algebra, the result is:

Ck(∆,M) = (−1)k 2k+∆
k+∆

(k+1)∆
∆!

(M− k+1)k

(M+∆+1)k
, (70)

(in the case∆ = k = 0 the correct interpretation of the undetermined expression is C0 = 1). Going back to the original time
variable, we now give the expression for the probabilities:

P(n, t) =
M

∑
k=n

Ck(∆,M)Bn,k(∆)e−k(k+∆)κt/Ω. (71)
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The normalization condition∑M
n=0Pn(t) = 1 is verified with the help of the relation∑k

n=0Bn,k = δk,0. The relation
k

∑
n=0

nBn,k =

(−1)kk
∆!
(k)∆

(the indetermination arising when∆ = k = 0 must be resolved as 0) helps to find the average of the number of

particles:

〈n(t)〉=
M

∑
k=1

(2k+∆)
(M− k+1)k

(M+∆+1)k
e−k(k+∆)κt/Ω. (72)

The second moment〈n(t)2〉 can be found with the help of Eq.(22) as〈n(t)2〉=−Ω
κ

d〈n(t)〉
dt

−∆〈n(t)〉, or:

〈n(t)2〉=
M

∑
k=1

(2k+∆)(k2+(k−1)∆)
(M− k+1)k

(M+∆+1)k
e−k(k+∆)κt/Ω. (73)
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