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We analyze the Gaussian approximation as a method to obiifirst and second moments of a stochastic
process described by a master equation. We justify the utdesoipproximation with ideas coming from van
Kampen’s expansion approach (the fact that the probaldigtiribution is Gaussian at first order). We analyze
the scaling of the error with a large parameter of the systethcampare it with van Kampen’s method. Our
theoretical analysis and the study of several examples shiwat the Gaussian approximation turns out to be
more accurate. This could be specially important for pnatglénvolving stochastic processes in systems with a
small number of particles.

PACS numbers:

INTRODUCTION

Master equations are a convenient tool to treat stochastikkd¥ processes[L| 2]. In some cases, they offer an alteenat
approach to the Chapman-Kolmogorov equation and have bsmhextensively in discrete-jumps, or birth-death, preess
such as chemical reactions (including those happenindérestell), population dynamics or other ecology probleinsj3inion
formation and cultural transmission in the field of sociogibg[4], etc. In all these cases, it is important to consitlat the
population number (whether molecules, individuals, agjertt.) might not be very large (maybe ranging in the tensindreds)
and the fluctuations, that typically scale as the squareafdbe inverse of this number, can not be considered as nielglidt is
therefore, of the greatest importance to derive evolutiguragons for the average behavior and the fluctuations. mMipeitant
work by van Kampen|[1] offers a systematic way of derivingsth@quations from an expansion of the master equation in a
parameteg, typically the system volume. Th@-expansion is mostly used in its lowest order form, in whicte @an prove
that the error in the average value, the second moment arftltheations (the variance), scale at mos¥s Q! andQ?/2,
respectively. The van Kampe®-expansion, furthermore, shows that, at this lowest oftherfluctuations follow a Gaussian
distribution. In this paper, we take this result of van Kamipg¢heory and, considering from the very beginning thattélatons
are Gaussian, we derive a closed system of equations fovénage value and the second moment. This Gaussian clostire of
hierarchy of moments turns out to be more accurate thate&pansion as the above-mentioned errors scale at m@st'a3,
QY2 andQY/2, respectively. Furthermore, the Gaussian closure scherery simple to carry on in practice and can be easily
generalized to systems described by more than one variable.

The paper is organized as follows: In the following sectiae, will briefly review theQ-expansion and derive the main
equations for the Gaussian closure approximation. Thesafdboth methods are discussed in section . In sections aed ,
will give examples of the application of the method in theesasf a binary chemical reaction and an autocatalytic reacti
The results of these two examples confirm the error-anghgsi®rmed before. For both processes we compare with thi#tses
coming from the exact solution of the master equation in tataary regime (derived in the appendix for the binaryroteal
reaction), and the results of numerical simulations udiegGillespie algorithm in the time-dependent evolutionséation we
present an application to a recently introduced model fariop formation which requires two variables for its fullsteiption.
Finally, in section we end with a brief summary of the work.

FORMULATION
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Let P(n,t) be the probability that at timethe population number takes the valueWe consider that it evolves according to
a general master equation of the form:

dP(n,t)

ot = Z(Ek_l) [OK(n;Q)P(nvt)]v (1)

whereE is the linear step operator such ti{ f (n)] = f (n+ k) andk runs over the integer numbers. Besidethe coefficients
C«(n; Q) depend o, which is a large parameter of the system (typically theesystolume). We consider that these functions
are polynomials or can be expanded in power serigsasiCi(n; Q) = 5 ,C2(Q)n? where the coefficient§?(Q) scale as

Ca(Q) =012 (cﬁo+ O+, 0%+ ) Master equations of this form appear in the descriptiorheingical reactions
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[3], ecological systems [5] and opinion dynamics [6], amomany other cases. More specific examples will be considered i
the next sections.

In a seminal work, van Kampen[1] has given a way of finding goragimate solution of Eq[{1). The approximation is based
upon the splitting of the variable using the ansata = Q(t) + Q2¢&, whereg(t) ~ O(Q") is a function of time accounting
for the deterministic part afi andé ~ O(QP) corresponds to the fluctuations. Changing variables inamé in Eq. (1), and
expanding in powers d@ one obtains a Fokker-Planck equation for the probabilisgritiution (& ,t) of the new variabl€ :

ONEY [ oap.ai|dEN o K .| 0% 1
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where the macroscopic variahgesatisfies
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From Eq[(2) we obtain the first and second moments of the fitictos:
7}
2 —»[};cioka4ﬁll<s>, @
0(&? k2
ft ) _ -2 [%Cﬁ"okaqoal] (E%)+2 %C?,OEfpal : %)

As proven by van Kampen, the solution of the Fokker-Planakaéiqn [2) is a Gaussian distribution. Therefore, fhe
expansion method tells us that, up to corrections of oﬂjerlr, the fluctuations of the variablefollow a Gaussian distribution.
It suffices, then, to know the first and second moments of tistsilbution. Our intention is to use from the very beginnthe
Gaussian property in order to obtain a closed system of emsdfor the first two moment$) and(n?).

From [1) we get the (exact) equations for these first two maspas:
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After substitution of the series expansiG(n; Q) = 5 ,C2(Q)n? in the right hand side of these equations, one obtains higher
order momentgn™) for m> 3. The Gaussian closure replaces these higher order momiéimthe expressioné™)¢ that hold
in the case of a Gaussian distribution, i) = (n), ("’)g = (n?) and
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for m> 3. The first moments are explicitly shown in tafle I.

Moment|Gaussian approximation
(n® |3(n*){n) —2(n)*
(n®) [3(n?)? —2(n)*
(n°) 15(n*)2(n) —20(n?) (m)® + 6(n)°
(nB) |15(n?)3 — 30(n?)(n)* 4 45(n)6

(n2np) |(n2)(np) + 2(ny)(nang) — 2(ny)?(np)

(n2n3) | (n8)(ng) +2(nng)® —2(n1)2(n2)?

(n3ny) |3(n2)(niny) — 2(n1)3(n2)

(rdn2) 6(n1n2)?(ng) +6(n1)3(n2)2 4 6(n1n2) (np) ((ng)? — 2(ny )

—6(ng) (n2)*(m) +3(ng) (n6) (M) — 2(m)*(nf)

TABLE |: Gaussian moments

The van Kampen ansatz= Qg(t) + Q%E allows us to find the error of this approximation. It follovist:
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In the Gaussian approximation, the first three terms of the b= 0,1, 2 are exact and the terim= 3 scales a® /2, or:
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+0(QY?). 9)
If we use this result in each of the terms of E§.(6) &ath; Q) = Qlfa(cﬁ"o +0(Q1)) we obtain

d(n)

5 = (), () +0(QY?), (10)
with g; = — Z (kC(n; Q)) - Similarly, one finds
2

L~ galin), (7)) + 0@, (1)

with g, = Z(k(k— MG Q).

This Gaussian approximation scheme (or equivalently,figidihierarchy of equations for the cumulants and neglettiosg
of order greater than two) has been used many times in thatlite in different contexts|[7, 8]. We will show in the negttion
that the direct use of Eqs_(J[L0]11) has a smaller error tleatise of Eqs.[{B15). Before showing this, we will generalkds t
procedure for the case of two-variable problems. Let usidens master equation of the following form:

dP(nl, nz,t)

ot - kgz(ElflEiz(z — 1) [Cig o (N1,N2; Q)P(Ng, M2, )] . w2

The evolution equations for the first, second order momenrdslae correlations are:

d(n
% == k§2<kick1,k2(n17n2;9)>, 13)

2
% = k§2<ka(ka—ni)Ckl,kz(nl,nz;Q)% (14)
d<r(111tnz> - k§2<(k1k2—k2n1—klnz)Ckl,kz(nl,nz;Q»’ (15)

(i=1,2). Again, the Gaussian closure consists in repla¢i§yny?) by the expressiofn]*ny?)g that holds assuming that the
joint distributionP(n1, ny,t) is Gaussian. This can be computed using Wick's theoremidable [J) we write the expression of
some of the terms.

ERROR OF THE METHOD

We now calculate the error of the Gaussian approximationcanapare it with the one of th@-expansion. In Eqs[(1[0-11)
we have shown that the errors we introduce in the equatiarthkéanoments when performing the Gaussian approximaten ar
of orderO(Q~1/2) for (n) andO(QY/?) for (n?). The Gaussian approximation scheme proceeds by consicdgsproximations
ua(t), o(t) to the true momentén(t)), (n?(t)). These approximations are defined as the solution of theiwnlequations
(a11):

dps

_ dpz
Tl O1(H1, M2),

i O2(H1, H2). (16)

Defining the errorg;, & as: (n) = py + &, (n?) = W + &; expanding in first order i\; ande,, and using equationg ({{0311)
and [16) we get:

der _ 0Gu(pp2) 091 (M1, ko)
dt o !

dp
de2 _ 99a(Mi ko) ., OG2(Ha Ho)
dt o ! o

£+0(Q 713, a7

£+ 0(QY?). (18)




Taking into account thaty, g; ~ O(Q), H2,d2 ~ O(Q?), we have:

% = 0(Q%e;+0(Q He, +0(Q Y2, (19)
% = 0O(Q)e; +0(Q% e, + O(QY?). (20)

If we sete; ~ O(Q?), &, ~ O(QP), and the initial conditions are known, so that initiatly= &, = 0, equationd (19)[(20) imply
thata< —1/2 andb < 1/2, a scaling respected during the time evolution.

In conclusion, solving equations (I0}11), we ge} and (n?) with errors of orders; = O(Q~%2) and &, = O(Q/2), or
smaller. Using the equatioris[(8-5) of first order van Kamgempansion the error is of higher order in both cag¥€2°) for (n)
andO(Q?) for (n?). However, for the variance? = (n?) — (n)2, both approximations have an error of or@¥Q%/2). We will
show in the next sections that the Gaussian approximatisiieaextra advantage that it is easier to derive for manyl@nab
of practical interest.

One might be tempted to go to higher order schemes, whereagteats all the cumulants of order greater thawith m > 2,
and in this way obtain a closed set of equations for the firatoments. For example, if we neglect all the cumulants of orde
greater than 3, applying the same analysis as before, issilgle to derive that the errors in the first, second and thivchents
are of ordelO(Q 1, Q0 Q1), respectively.

A word of caution is needed here. When truncating beyondehbersd cumulant, it is not ensured that the resulting prdibabi
distribution is positive definite [10]. This means that omelld get from such an scheme inconsistent results, e.g. aineg
variance. Nevertheless, according to our analysis, theiitapce of these spurious results would decreaseWitls indicated,
so one can still get useful results from higher order schemes

In the following sections we will compare the Gaussian agpnation presented here with the first orderexpansion in
some specific examples.

BINARY REACTION A+ B — C

Chemical reactions are suitable processes for a stocluestaription. The stochastic approach is specially necgsdzen
the number of molecules considered is small, as it is thaufetly addressed case of chemical reactions inside a eelyuse
in this situation fluctuations can be very important.

We consider the general process- B é C, limited by reaction. This means that any two partiokeandB have the same

probability of reaction. Denoting b&(t) aoﬁdB(t), respectively, the number of molecules of thandB substances, the rate for
theA+B — Creaction is§A(t)B(t). For the reverse reaction, it is assumed @éaas a constant concentration, and hence the
rate iswQ. In these expressiort® is proportional to the total volume accessible. SiBg — A(t) = A is a constant, one only
needs to consider one variable, for example, the numbAmoblecules at timé. Let us denote byP(n,t) the probability that
there aren A-molecules at timé. The master equation describing the processiis:

dP(nt) «

i o [(n+1)(A+n+1)P(n+1,t) —n(n+A)P(n,t)|+ wQ[P(n—1,t) — P(n,t)], (21)

which is the basis of the subsequent analysis. Note thaethiation can be written in the forinl (1) setti@g(n; Q) = §n(n+
A),C_1(n; Q) = wQ.

In the irreversible casep = 0, this master equation can be solved exactly using the geéngirfunction technique. In the
general casap # 0, an exact solution can also be found for the stationarg g{%@ = 0. Details of the calculation are given
in the appendix. We will compare the results obtained from@aussian approximation and the first or@eexpansion with
the exact results, when available.

The equations for the first two moments, using (6), are:

d(n K
% = -3 ((n?) + () + Qu, (22)
d{n?) K 3 2
i 5(—2<n )+ (1—20)(n“) + A(n)) — 2Qw(n) + Q. (23)
Using the Gaussian approximation, the evolution equafionthe moments are:
dup K
gt = " glHetAu)+Qw, (24)
H2

K
gt = o4~ Btiaph + (1—20) ko -+ Bpiy) + 20w + Q. (25)



And the first ordef-expansion gives:

do

Gt = Kele+o)tw, 26)
% = KQ@*—K(8+2¢)(n) + Quw, 27)
d(dntz> = —2K(290+8)(nN*) + Q[Kkp(@+8)(1—2(n)) +

2(KQEP(20+ 8) + w((n) + 1+ wg))], (28)

whered = 5.
Q
We compare the two approximations in the time-dependeptwih results obtained by averaging over single realizetiof
the process, obtained numerically using the Gillespierglyn[3]. In the next figures we compare the exact resulth wibse
obtained from the Gaussian approximation (computed by nigadéntegration of equatioris P4,125) afdexpansion (equations

[26128).
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FIG. 1: (n(t)), (n?(t)) ando?(t) for the binary reactiol + B ~ C with parameterg = 1, w = 1, Q = 10 and initial conditions(0) = 100,

0 = 1. For the first two moments the Gaussian approximao%iond)smivery close to the results obtained with the Gillespgoethm (dot-
dashed, obtained averaging over one million realizatiang)the exact stationary value (thin ling), whifé drderQ-expansion (dashed) gives
clearly different values. Fas?, the Q-expansion gives more accurate results but both approixinsatliffer from the exact values.
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FIG. 2: Errorin(n), (n?) andg? in the stationary state in the same case than ififFig.1. Thigktrthin lines are fits to the data and have slope
—1, 0 or 1. For the Gaussian approximation (solid), the efirofgn), (n?), a2) scale agQ 1, Q%, Q). For theQ-expansion (dashed), the
errors scale agQP, Q1, Q7).

Figure [1) shows that the Gaussian approximation repradbetter the exact results for the first two moments; for the
variance, theR-expansion gives more accurate results but both approxingadliffer from the exact values. Figuid (2) shows
that the errors in the stationary state, coming from the Gaosapproximation for the mean value, the second momenthend
variance scale a1, Q° QY), respectively, while the errors of thfe-expansion at first order scale 62°, Q*, Q). This
scaling is consistent with the previous analysis, as themapts of the errors are smaller than the obtained bounds.



K
AUTOCATALYTIC REACTION A 5 X,2X — B

The master equation describing this process is[1]:

dP[(;[],t) = Q@k[P(n—1,t) — P(n,t)] + g[(n—i— 2)(n+1)P(n+2,t) —n(n—1)P(n,t)], (29)

where the concentration éfparticles is consider to be constant with a vajueThis equation if of the forni{1) witl_;(n; Q) =

Qkgn,Co(n; Q) + %n(n— 1). The general solution for this equation is not known, butsteionary solutiorP!(n) can be
obtained using the generating function technigue[1]. Ttaetequations for the first moments are:

dim _ {m (%)

o = Qk(pA+2k’6—2k’T, (30)
2 !

d<d”t> = Qk(pA(2<n>+1)—%(4<n3>—8<n2>+4<n>). (31)

Performing the Gaussian approximation, we get:

du KL B2

L= Qg 2k -, (32)
dup K 3

gt = Cken(Zpr+1) - & (12U — 8y — 8Btz + 4. (33)

While first orderQ-expansion approach leads to:

?j_qt" — kgA— 2K, .
% = Q(kgn+2K'¢?) — 4 p(n), .
%n? = —8Kp(n) + Q(2ken + 4K @) () + Q(kgn + 4K @) %)

In the next figures we show the results obtained with the Gamsgpproximation (computed by numerical integration of
equation§ 32-33Q-expansion (equatiohsi84136), the Gillespie algorithnd, thie exact stationary solution.
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FIG. 3: (n(t)), (n(t)2) ando?(t) for the autocatalytic reactio 5 X, 2X £ Bwith kgn = 1,K = 1/2,Q = 10 and initial conditiom(0) = 0.
For the first two moments the Gaussian approximation (sididry close to the results coming from the Gillespie aldyoni (dot-dashed) and
the exact value in the stationary case (thin line) wherea®tkxpansion result (dashed) is clearly different, althofagho? the Q-expansion
provides more accurate results.

As in the previous example, we see that the Gaussian appatirinfits better the evolution of the moments, but the vagan
is somehow better approximated by the first or@eexpansion. In figurd{4) we show the errors in the statiosgate for the
two approximations as a function 6f. We see that the errors if{n), (n), 0°) decay agQ 1, Q~1,Q0) for the Gaussian
approximation, while the first-ord€-expansion leads to errors that scal¢@$, Q*, Q°). Again, this scaling is consistent with
the analysis of the approximations performed.
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FIG. 4: Error in(n), (n?) anda? in the stationary state as a function®fin the same case than in £iy.3. The thin lines have slope0 or
1. For the Gaussian approximation (solid), the error§/in, (n?), 02) scale (asymptotically) a1, Q~1, Q0). For theQ-expansion, the
errors scale a&®, Q1, Q7).

OPINION FORMATION

In the last few years there has been a growing interest inghkcation of methods and techniques coming from stattic
physics to the study of complex phenomena in fields tradifigriar from physics research, particularly in biology, digne,
information technology or social systems. In particular &pplication of the physical approach to social phenomesdken
discussed in several reviews [4, 11} 12]. As an example ofitieeof master equations in this field, we mention a recentrpape
[6] in which the process of opinion formation in a society isdeled as follows: Society is divided in two parties, A angBis
an “intermediate” group of undecided agents I. The supp®d€A and B do not interact among them, but only through their
interaction with the group |, convincing one of its memberdwa given probability. In addition there is a nonzero proibigy
of a spontaneous change of opinion from I to the other twagxaend vice-versa. More specificallyif g, is the number of
supporters of party A(B)y is the number of undecided agents &b the total number of individuals, the possible transiion
are:

spontaneous chandge— |, occurring with a raterina,

spontaneous chandge~ A, occurring with a rater,n;,

spontaneous chan@e— |, occurring with a ratersng,

spontaneous changde B, occurring with a rateisn;,

convincing ruleA+ | — 2A, occurring with a rate%1 nany,

convincing ruleB+ | — 2B, occurring with a rate%2 ngnN;.

As the total number of individual<X = na + ng + n;) is fixed, there are only two independent variables, sagndng. The
master equation of the process is:

7]

EP(nA’ ng,t) = a1(na+ 1)P(na+ 1,ng,t) + az(ng + 1)P(na, N + 1,t) (37)
+02(Q—na—ng+1)P(na— 1,ng,t) + 04(Q — na— ng+ 1)P(na,ng — 1,t)

+(2- e+ )| 20— P(u- L0 + 2 (- 1P ne - 1.0

Bina+ B2ng

— [alnA+ azng+ (024 04)(Q —na—ng) + 0

(@) P(na.ne. ).

We note that this master equation can be written in the géfera (12) by settingCio = aina , Cop = asng , C_10 =
(Q—np—ng)(a2+ %nA) andCp_1=(Q—na—np)(as+ %nB).

An exact solution of this master equation is not known. Infth®wing, we will apply to this problem the Gaussian apgrox
mation scheme and compare it with the results of®hexpansion. The exact equations for the first moments are:



B B1

AL~ (ar+ o By m) + 2@~ () ~ 20— ), (38)
W) — (s + a4~ o) ) + aa(@— () — 228) — 2, 39)
RO — {01+ 0o(20 - 1)+ ) o)+ @20 (1) — 200+ 02— B+ L))

(20t + By ) 22 ) — 22 0, (40)
WBO) — (g3-+ au(20 1)+ o)) + @a(@ — (1w) - 2005+ 0a -~ Bo+ £2)(8)
~2au+E2)ane) - 22240 - 22 ), @)
TN (a4t + 3+ s — B~ o) () + a2((re) — (7B)
raa(@ — (8) ~ PP (g 1 (). (42)

Denoting byAq, Az, B, B,,C the Gaussian approximations to the momenjs, (nZ), (ng), (n3) and the correlatiorinang),
respectively, and using the results in teble |, we obtain:

d Aq Bl Bl

r T —(a1+ 02— Pr)AL+02Q — a2B1 — EAZ_ 5 @)
dB
d—tl = —(az+ 04— B2)B1+ a4Q — a4A; — [22282 l;zc 49
dA B
G = (a1+02(20 1)+ By)AL+a2(Q — By) — 2(a1+ a2 — Py + ZQ)AZ
2
—(202+ = & )C — ﬂ(3A1Az 2A3) — ﬂ(AzBl +2A1C - 2A7By), (45)
dB, B
= = (aa+aa(2Q~ 1)+ Bu)B1+ as(Q— Ar) — 2(ds+ G — B+ 5.5 )B2
~(2as+ 22)c - 22 (33,8, - 283) - 22 By, + 2BiC— 283, (46)
dc
5t = (@1t 02+ as+as— B — Bo)C+ a2(QB1 — By) “n

+a4(QA; — Ag) — [B1A2 + BoAy + 2(Aq + A2)C — 2ATA, — 2B2B; | .

B+ B
Q

In van Kampen's expansion method, we defigs), éas) such thahag) = Qqug) + QY %Eap)
The equations for the macroscopic components. are [6]:

% = —a1@a+[02+ B (1— oa— @B), (48)
Ao —a3@+ [as+ Bo@s](1— on — @), (49)

dt



and for the fluctuations:

@ = —[o1+ a2+ Bi(2gn+ @) — B1](Ea) — (024 Bign) (€B), (50)
d<dEtB> = —[az+as+ B2+ @) — Bo] (&) — (as+ Ba@s) (&), (51)
2
d§A> = —2a1(8) — 2(a2+ Brn) ((8R) + (EndB)) + 2B1(ER) (1 — o — @)
Fo1gn+ (024 Bagn) (1— on — @), (52)
2
d<(i8> = —203(&8) — 2(as+ Bags) ((E5) + (€aB)) + 2B2(&3) (1 — on — &)
+a3@s+ (as+ Bo@B)(1— gr— @), (53)
d<EdAtEB> = —(01+ 03)(End) — (a2 + o) ((Ende) + (E8)) — (aa+ Botis) ((EadB) + (ER))
+(1—on— @) (BL+ B2)(éndB)- (54)

From those we can recover the original varialiigs, (t).

In the next figures we compare the results coming from bothegdmations (obtained by numerical integration of the joag
equations) and from simulations of the process using thiespile algorithm, for some representative values of tharpaters
and initial conditions. Again, the Gaussian approximatiggroduces better the values for the average and the secamemh
whereas in this case both methods perform very similarlytferfluctuations and correlation.
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FIG. 5: (na(t)), (NA(t)), 0A(t) and 024(t) = (nang) — (Na)(ng) for the opinion formation model of reference [6], far = B = 1,Q = 10,
and initial conditionsa(0) = 0, ng(0) = Q. For the averagéna(t)), the Gaussian approximation (solid) follows very accuyetee Gillespie
simulation results (dot-dashed), whereastexpansion (dashed) differs clearly. For the second moxma(it)2) the Gaussian approximation
performs clearly better as well, while for the variam:ﬂt) and correlationsrﬁB(t), the Gaussian approximation and feexpansion give
very similar results, although both are far from the sirmatatata.

CONCLUSIONS

In this paper, we have given explicit expressions for theaéiqus for the first and second moments of a stochastic pgoces
defined by a general class of master equations using the i@awgsproximation closure. The approach is motivated by van
Kampen'sQ-expansion result that, at lowest order, the fluctuatioes@aussian. We have shown that the Gaussian closure is
simple to perform and leads to errors in the average valeesé¢oond moment and the fluctuations (the variance), thit ata
mostagQ 12, Q%2 Q1/2), respectively. This is to be compared with eexpansion result in which the respective errors scale
at most agQ®, Q! Q%/2). Therefore, the Gaussian approximation is more accuratiehviurns out to be important, specially
for small values of2. We have checked these results by comparing the perforneditive two methods in three examples: (i) a
binary chemical reaction, (ii) an autocatalytic reactiod &ii) a model for opinion formation. In all cases studigte Gaussian



10

closure has given a better approximation to the averagehwmticond moment, although teexpansion, due to a cancellation
of errors, yields a somehow smaller numerical error in thgawae. In general, the Gaussian closure scheme is veryeibmp
carry on in practice and this simplicity and the improvenadrihe predictive power is more apparent in many-variabstesys.
We believe that this method can be usefully applied to theéystii other problems of recent interest in the literaturelaing
stochastic processes in systems with a small number otjeati

APPENDIX: REACTION-LIMITED PROCESS

We now find the solution of the master equatibnl (21) in the ldayiim state for the general case, and the full dynamical
solution for the irreversible cage = 0. Without loss of generality, let us rescales kt/Q andw — wQ?/k to get the simpler
equation:

dP(n,t)
dt

= (N+1)(A+n+1)P(N+1t) —n(n+A)P(n,t) + wP(n— 1,t) — P(n,t)]. (55)

Furthermore, only the cage> 0 needs to be considered.Af< 0 the chang®' = n— A leaves invariant the previous equation
provided that we make the identificati®?{n,t) — P(n+ A,t). This means that the solutions in both cases are related by
P(n,t;A) =P(n—A,t;-4).

The generating function

[

f(st) = z P(n,t)s", (56)
n=0
satisfies the partial differential equation:
of dzf of
5t =(1-9)|s ¥ (1+A)0 —of|. (57)

Let us first discuss the equilibrium solution in the geneeaaiec

Theequilibrium solution

By setting% = 0 one gets the differential equation:

0°f of
sa52 (1+A)a——wf_0. (58)

The solution around the singular regular pairt 0 can be found by the Frobenius method as a power sgfiesa,s™V. The
regular solution satisfying the boundary conditififs = 1) = 1 is[13]:

S) = M’ (59)

la (2y/ws)
and the equilibrium probabilities, rescaling back to thigioal parameters, are:
(wQZ/K)nJrA/Z

In (29\/w_/;<) (N+A)!

from where the first two moments can be computed as:

_ las1 (ZQ\/OO—/K)
s (22/@/K)

P(n) =

(60)

QVwk, (n?)=Q%w/k— AQ\/w/kK. (61)
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Thetime-dependent solution

We now study how the system relaxes towards equilibrium. \Mer@strict ourselves to the irreversible cage= 0. This
corresponds to the proceAs- B — 0, inert. The partial differential equatidn {57) can be sdlby the technique of separation
of variables by trying solutions of the forifi(s,t) = f1(s) f2(t). This leads to the pair of ordinary differential equations:

S(1-9)f{ +(1-9)(1+D)f1+A%f1 = O, (62)
f54+A%f, = 0, (63)

beingA? the constant arising from the method of separation of viggbThe solution of the time dependent functionid’®
and the solution of the-function is the hypergeometric function[18] — 1, to; A+ 1;s). The explicit series is:

< (=H)n(2)n "

F(—p1, o, A+1;5) = ) —————. 64
(=M1, 2 ) n;) Br 1), n (64)
(a)n is the Pochhammer’s symbdh), = '_(r?;"), or(a)p=1,(ajn=a(@+1)...(a+n-1)forn>0, and we have introduced
—A+ VD2 +4A% A+ N2+ 4)2
M=, Ho=——"F— (65)

The solution for the functiorfi(s,t) is obtained by linear combination of the elementary sohgifound above:

f(st) = Y CyF (— . oA+ 1;9)e . (66)
A

This function is, in general, an infinite series on the vdgab In fact the coefficients, according 0 {56) are nothing Imet t
time-dependent probabilities. However, in this irrevielesicase, the probability of having mofemolecules that the initial
number at = 0, sayM, has to be zero. Therefore the series must be truncatedtlaétgrowers™. This implies that in the
previous expression only hypergeometric functions thatagent a polynomial incan be accepted. This is achieved by forcing
U =k=0,1,2...,M, since the serie§ (4) becomes then a polynomial of ddgré&be conditionu; = k is equivalent to the
parameteA adopting one of the possible valuls= /k(k+ A). Finally, noticing thaiu, — u1 = A, the solution can be written
as:

f(st) = kinickm, M)e KB, (1), (67)

The notation emphasizes th@t depends both oA andM but By, x depends only od:

(Kn(k+A)0

Bnk(8) = — A+ D)

(68)

All that remains is to impose the initial condition. We staith M A-molecules at time¢ = 0, such thaff (s;t = 0) = s. This
implies that the coefficients, must satisfy:

M
> BniCi=nm, (69)
k=n

forn=0,1,...,M. The solution starts by finding fir€y = 1/Bu m and then proceeds backwards to figl 1,Cy_2,...,Coin

a recursive manner. After some lengthy algebra, the result i

2K+ A (K+1)a (M — K+ 1),

Cu&,M) = (=1) ktA A (M+A+1)y

(70)

(in the casel = k = 0 the correct interpretation of the undetermined expressi€ = 1). Going back to the original time
variable, we now give the expression for the probabilities:

P(n,t) = %ck(A,M)Bn,k(A)e*k“*A”“/Q. (71)

k=n
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k
The normalization conditioy ; Px(t) = 1 is verified with the help of the relatiopX_,Bnx = &o. The reIationZ)an,k =
n=

I
(—1)‘%% (the indetermination arising whel = k = 0 must be resolved as 0) helps to find the average of the nunfiber o
A
particles:
M M—Kk+1)k
_ —k(k+A)kt/Q
(n(t)) kZl(ZM—A) (M+A+1)ke . (72)
The second momerth(t)2) can be found with the help of EG{(22) &¥t)?) = —% d<r(;(tt)> —A(n(t)), or:
M
2 2, (M —K+D)k__kiapt/o
(n(t)°) = kZl(2k+A)(k +(k 1)A)7(M+A+1)ke . (73)
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