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Abstract 

Reinforcement learning (RL) problems are a fundamental part of machine learning theory, 

and neural networks are one of the best known and most successful general tools for solving 

machine learning problems. Despite this, there is relatively little research concerning the 

combination of these two fundamental ideas. A few successful combined frameworks have 

been developed (Lin, 1992), but researchers often find that their implementations have 

unexpectedly poor performance (Rivest & Precup, 2003). One explanation for this is 

Catastrophic Forgetting (CF), a problem usually faced by neural networks when solving 

supervised sequential learning problems, made even more pressing in reinforcement learning. 

There are several techniques designed to alleviate the problem in supervised research, and this 

research investigates how useful they are in an RL context. 

Previous researchers have comprehensively investigated Catastrophic Forgetting in many 

different types of supervised learning networks, and consequently this research focuses on the 

problem of CF in RL agents using neural networks for function approximation. There has 

been some previous research on CF in RL problems, but it has tended to be incomplete 

(Rivest & Precup, 2003), or involve complex many-layered, recurrent, constructive neural 

networks which can be difficult to understand and even more difficult to implement (Ring, 

1994). Instead, this research aims to investigate CF in RL agents using simple feed-forward 

neural networks with a single hidden layer, and to apply the relatively simple approach of 

pseudorehearsal to solve reinforcement learning problems effectively. By doing so, we 

provide an easily implemented benchmark for more sophisticated continual learning RL 

agents, or a simple, „good enough‟ continual learning agent that can avoid the problem of CF 

with reasonable efficiency. The open source RL-Glue framework was adopted for this 

research in an attempt to make the results more accessible to the RL research community 

(Tanner, 2008). 
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Glossary 

CF Catastrophic Forgetting 

CHILD Continual, Hierarchical, Incremental Learning and Development 

DFR Discounted Future Reward 

DP Dynamic Programming 

FFBN Feed-Forward Backpropagation (neural) Network 

MDP Markov Decision Problem 

MLP Multi-Layer Perceptron 

NN Neural Network 

POMDP Partially Observable Markov Decision Problem 

RL Reinforcement Learning 

TD Temporal Difference 

TTH Temporal Transition Hierarchies 
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1. Introduction 

Humans, and nearly all other animals, are highly effective sequential learners. For example, a 

human can easily learn to tie his shoelaces, and then at some later date, to make spaghetti. If 

he is even slightly intelligent, he should be able to continue making use of these skills even 

after learning many more skills over the course of his life. This impressive talent is called 

sequential or lifelong learning ability, and is an active area of research in the artificial 

intelligence community. 

Suppose you built a humanoid robot and endowed it with any widely used or well known 

machine learning system. A sensible way to do this would be to combine a neural network to 

give it memory and basic “reasoning”, and a temporal difference algorithm to enable it to 

learn motor control skills and explore its environment. Both neural networks (Rumelhart & 

McClelland, 1986) and learning by temporal difference (Schmidt, 2005) are analogous to 

processes in our own brains, and the algorithms are able to solve complex learning problems. 

Suppose you succeed in teaching it to tie its shoelaces and go on to teach it to make spaghetti. 

If you ask your robot to tie its shoelaces again, you will find it has completely forgotten how. 

In the field of neural network machine learning, this problem is called Catastrophic 

Forgetting, and it is as dramatic as the name suggests. In fact, even if after teaching it to tie its 

shoelaces you only attempt to teach it the tiny additional task of double knotting them so they 

stay tied for longer, you would have the same problem (to a slightly lesser degree). 

Clearly, this must be resolved if we wish to build intelligent agents that can learn to solve a 

variety of real-world tasks. If our agent‟s past knowledge is too easily disrupted then it cannot 

transfer its experiences to new problems. While a human child has the luxury of learning to 

walk before it learns to run, our agent has to continually struggle to solve difficult problems 

with little or no help from previous experiences. 

On the other hand, there are already a few learning algorithms and systems that may be used 

to allow an agent to learn behaviours sequentially with minimal forgetting. Hierarchical 

reinforcement learning is one active avenue of research in this area (Russell & Norvig, 2003), 

and Temporal Transition Hierarchies (Ring, 1994), are one successful example of that type. 

There exist other potential solutions, such as Explanation Based Neural Networks, and 

Lifelong Learning Cell Structures. However, all of these algorithms are complex and some are 

only designed to solve certain specialised types of problems. 
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Fortunately, it may also be possible to learn and perform tasks in a sequential manner by 

simpler and more general methods, and even ones analogous to successful biological 

processes. Many researchers have investigated the simpler solutions that could be employed, 

but usually only in supervised function approximation problems (Robins, 2004; Robins, 1995; 

Ans, Rousset, Musca, & French, 2003; Sharkey & Sharkey, 1995). We will extend this 

research to problems with a different perspective, where we focus on the transfer of 

knowledge and lifelong learning ability of intelligent agents acting in virtual environments.  

1.1 Machine learning 

There are three major machine learning classes, largely distinguished by the level of feedback 

provided to the learning agent by its environment or teacher during the learning process. 

These are: unsupervised learning, reinforcement learning, and supervised learning, of which 

auto-associative learning/memorisation problems are a subclass. 

In supervised learning problems there are, in general, a set of input patterns, a set of output 

patterns, and a teacher that knows the correct mappings between inputs and outputs. The 

agent in such a problem is tasked with learning a function that approximates the mapping that 

the teacher already knows. Learning proceeds as the agent is presented with an input pattern 

and predicts the associated output pattern. When the agent makes an error the teacher provides 

the correct output, and so the agent is able to tell exactly where it went wrong. Auto-

associative problems are a subclass of supervised learning problems where the goal is for an 

agent to memorise a set of input patterns, for example to provide a content addressable 

memory (if the agent is able to generalise, it will return a correctly learned memory given a 

partial or corrupted pattern). Feedback in supervised problems tends to be much more 

complete and accurate relative to the other classes, meaning that learning is also more 

efficient. 

Unsupervised problems lie at the other end of the feedback spectrum, and involve no feedback 

whatsoever from a teacher. They generally involve detecting statistical regularities in a dataset 

or population. 

Reinforcement learning (RL) problems are the focus of this thesis, and they lie in the middle 

of the spectrum. As in supervised tasks, agents in reinforcement tasks are required to learn a 

mapping between inputs and outputs. Often the problem is stated differently, such that an 

agent is presented with inputs corresponding to observations of states in an environment (or 

similarly, readings provided by its sensors), and it is required to learn the optimal action to 

take given each input state. In contrast to supervised tasks, the RL agent is only provided with 
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a „measure of goodness‟ for its chosen action (output) instead of being told exactly what the 

optimal action was. Because there is less feedback, good solutions to RL problems are much 

harder to learn than in supervised problems. To make matters worse, feedback from the 

environment is often delayed for several steps, so the agent must learn to take actions that it 

predicts will eventually lead to the highest reward, instead of just choosing the action with the 

highest immediate return (a model called “greedy” action selection).  

1.2 Project goals 

This project aims to: 

1. Investigate the problem of Catastrophic Forgetting (CF) as experienced by 

reinforcement learning agents with neural networks for function approximation. 

2. Attempt to avoid CF in an RL agent by modifying a simple feed-forward neural 

network to use pseudorehearsal during learning. 

3. Compare and contrast this result with other approaches, including basic rehearsal, 

context biasing, and Temporal Transition Hierarchies. 

4. Use RL-glue as a platform to develop a simple neural-network based, function-

approximating temporal-difference learning agent that avoids CF, for benchmarking 

against further RL and continual learning research. 

1.3 Structure of this thesis 

Chapter 2 is a brief introduction to the subject of neural networks and the multi-layer 

perceptrons used in this thesis. It also explains the problem of catastrophic forgetting in neural 

networks and the main classes of algorithms that cope better with the problem.  

Chapter 3 explains the fundamental problem that this thesis is concerned with, and that 

autonomous intelligent agents need to be able to solve. It explains the various commonly used 

methods for solving reinforcement learning problems, and how agents using those methods 

model their environment and produce solutions. It also explains the more advanced 

complications to the basic problem and how the elementary solution methods can be adapted 

to it by using the algorithms presented in Chapter 2. 

Chapter 4 is a description of the main investigation, including implementation of a set of 

sequential learning tasks, a reinforcement learning agent to solve them, and modifications that 

can improve its performance on these tasks. It details the experimental methods that were 

used and presents the results they generated. Chapter 5 is an analysis of these results and a 

discussion of their implications.  
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2. Neural Networks 

This chapter introduces the neural network, a type of learning system that can be used to solve 

supervised learning problems, and that can generalise from things it has already learnt to 

novel situations. The usual definition of a neural network is an interconnected assembly of 

simple processing elements, units or nodes whose functionality is loosely based on the 

biological neuron. The processing ability of the network is stored in the inter-unit connection 

strengths, or weights, obtained by a process of adaptation to, or learning from, a set of training 

patterns (Gurney, 2007). 

 

The basic component of a neural network is a unit such as the one depicted in Figure 1. Each 

unit is linked to other units by directed connections which may either be inputs to or outputs 

from the unit. Additionally, each connection has an associated weight   describing the 

strength of the connection. The unit computes a weighted sum    of its inputs in the form: 

           

 

   

 Eqn. (1) 

It then applies an activation function f to    to derive the unit‟s output        . The 

activation function for the unit in Figure 1 is a sigmoid function, so that for most values of the 

weighted sum the unit will be either inactive (output approximately 0), or active 

(approximately 1). However, there are many other possible activation functions, and a step 

function or sigmoid function (as in Figure 1) is often used for this task. A bias weight    is 

also often used to influence the threshold of the activation function. 

Figure 1: A neural network node  , following the model in Russell & Norvig (2003, p. 

737) 
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One of these units is sufficient to represent simple functions, or perform simple classification 

tasks. For example, we can represent the Boolean AND function by setting the weights of a 

unit with a step function for activation and two inputs as shown in Figure 2. The right hand 

side of the figure is a chart of the “space” of possible inputs (the four possible combinations 

of the binary inputs) and the desired output for each (1 (black) for [1, 1], and 0 (white) 

otherwise). The line represents the decision boundary created by the unit. In general, the input 

weights set the orientation of the surface and the bias weight sets the surface‟s position 

relative to the origin. In this case the unit correctly classifies every combination of inputs as a 

Boolean AND function would, so we can say it approximates (perfectly, in this case) the 

function. We also could use an array of units to compute a series of functions on an input 

pattern to test whether specific features are present in an input pattern. 

However, a single unit or layer of units suffers from the key limitation that it can only solve 

linearly separable tasks. This means that it must be possible to place a single dividing surface 

in the input space that correctly separates the inputs according the classification we want the 

network to make (Russell & Norvig, 2003). In two dimensions this surface is simply a line, 

while in N dimensions it is a hyperplane. This division is possible for the Boolean AND 

function as shown, but not for many other functions. The simplest example of the problem is 

Boolean XOR, shown in Figure 3. In that case there is no way to divide the input space 

correctly with a single line, so the unit (or any number of units in a single layer) is unable to 

classify the inputs correctly. Fortunately, we can work around this by building a slightly more 

complicated network of units, also shown in Figure 3. 

Figure 2: A neural network solving       , and a graph of the decision surface it 

creates 

1.0 
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There are a vast number of possible architectures for a neural network, and no attempt will be 

made to explain them all here. The main investigation of this thesis starts with what is 

probably the most basic and standard of all NNs: a deterministic, fully-connected, 

feedforward network with one hidden layer, using the standard generalised delta rule 

combined with backpropagation
1
 for supervised learning (Rumelhart & McClelland, 1986). 

This type of neural network is also called a Multi-Layer Perceptron (MLP). 

2.1 Multi-layer perceptron learning 

The example in Figure 3 is a simple Multi-Layer Perceptron with a solution to the XOR 

problem encoded in its connection weights. But how can we find the solution if we do not 

already know what the values of the weights should be? Normally when we create the 

network we initialise each of the weights to a small random value
2
, and then train them to the 

final result. 

The basic supervised learning approach to training is to set the input layer activations of the 

MLP to match a pattern we want to learn, and then propagate the inputs forward until the 

output layer is reached. The activation of each unit in each layer must be calculated in turn 

using the weighted sum formula in Equation 1 and the activation function for the node. At the 

end of this process we can compare the output layer to the final result we want the network to 

output, and alter the weights of the network to be closer to that ideal. 

This is not quite as simple as it sounds however, because if an output node has an incorrect 

activation it is not immediately apparent if the error was caused by poorly trained weights on 

that node, or whether the error was in the activation of one of the hidden units supplying that 

                                                 
1
 Hereafter, this thesis adopts the common convention of referring to the combination of the generalised delta 

rule and backpropagation as the “backpropagation algorithm” 
2
 The reason for starting with the network with random weights instead of just zero values is to prevent the 

problem of “symmetry locking” (Rumelhart & McClelland, 1986). 

Figure 3: Boolean XOR and a neural network that solves it (bias weights noted inside 

units) 
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node. This is called the structural credit assignment problem (Gurney, 2007, p. 343). There 

are a variety of algorithms that decide how to correct the errors in network output, but the 

most fundamental and widely applicable is backpropagation. 

 

2.2 Backpropagation 

The basic idea of this algorithm is to reduce the error in each layer of the network in turn, 

starting with the output layer. The error in a single unit   in the output layer is            

       ; that is, the derived activation function applied to the unit‟s input, multiplied by the 

difference between the actual and desired output for that node. This error is used to update 

every input weight connecting a node   in the hidden layer to the node  , using the rule      

                . The symbol   is a learning rate parameter that controls how large 

the changes to the weights are in proportion to the error, and is usually kept small to avoid 

overshooting and oscillating around the correct value. The component        refers to the 

activation of the unit in the previous layer connected to   by the weight     . After the output 

layer‟s error has been corrected we backpropagate the error through each hidden layer, by 

calculating the error    for each node in the layer  , which represents what fraction of the 

error that node is “responsible” for. The formula for    is                   . We can then 

update each unit‟s weights using the same update rule, and repeat the process for each layer 

until the input layer is reached (Russell & Norvig, 2003, p. 746). 

To train the network completely we simply carry out this update process on each example in 

our training set in turn, and repeat it until the total error for all of the training examples is 

acceptably small. The total error of the network is the sum of the square of each individual 

error in the output (to avoid errors of different signs cancelling each other out), which we can 

use to calculate the error over the entire population of input-output examples. This is 

something of an oversimplification as in reality determining when to stop training can actually 

be quite difficult. Over-training affects the capability of the network to generalise and under-

training allows unnecessary error. Strategies for choosing the right amount of training in a 

systematic way are outlined in Deco & Obradovic (1996, p. 31). 
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2.3 Continual learning and catastrophic forgetting 

The MLP and learning algorithm described above fits readily into the usual model of 

supervised learning, where we have a representative set of input and output examples that we 

want to use to approximate a function or model a concept. However, as was briefly noted in 

the introductory sections of this thesis, neural networks perform very poorly when used for 

continual (also called serial or sequential) learning (Sharkey & Sharkey, 1995). Normal usage 

of the backpropagation algorithm is to have all of the data available at once and presented in 

sequence repeatedly, a situation known as concurrent learning (Eastman, 2005). However, as 

Eastman also explains, there may be times when this ideal situation is not possible. This could 

be the case if the training set is too large to conveniently fit in memory for the duration of 

training. Another example is if the training data is growing or changing over time, so that 

ongoing learning is required to maintain performance as the current version of dataset 

changes. 

The problem is that a standard MLP using backpropagation for learning has excessive 

plasticity, meaning that it changes too quickly and too easily (Robins, 1995). Changes to 

incorporate new data, even small amounts of it, tend to affect the entire network and quickly 

disrupt the patterns already stored in the network weights. Figure 4 is an example of the 

process of catastrophic forgetting, adapted from Frean & Robins (1998). The network used to 

learn the training data had only a single input and a single output value (so the function it 

modelled could be easily plotted), but 20 hidden units. Each point on the graphs represents a 

mapping between an input (0-1) and an output (0-1), while the curve shows the output that the 

network gives for input values not explicitly taught to the network. Figure 4 (a) shows the 

network trained on six data points. Figure 4 (b) Shows the state of the network after learning a 

single new data point. Note that the network returns the correct value for the new data point, 

but all of the old data points have been disrupted. Figure 4 (c) shows the ideal state of the 

network, where catastrophic forgetting has not occurred and the correct value is returned at 

every point. In this case, the final figure is the result of training using a pseudorehearsal 

scheme, explained in Section 2.4.2. 



18 

 

 

Figure 4: Functions learned by a network (five replications) adapted from Frean & 

Robins (1998) 

 

Fixed-architecture feedforward MLPs are not the only type of neural network that suffers 

from the problem of catastrophic forgetting. In fact, it seems to be a general property of nearly 

every type of supervised network learning algorithm that was not specifically designed or 

modified to avoid it. It was noted by Eastman (2005) that constructive networks (specifically 

cascade correlation networks, but quite likely others as well) have the same problem despite 

predictions to the contrary, and Robins & McCallum (1998) discovered that Hopfield 

networks are equally susceptible. Similarly, recurrent (Elman) networks have the same 

weakness (Ans , Rousset, French, & Musca, 2002). Consequently, there has been a great deal 

of research into mitigating or avoiding its effects. 
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2.4 Methods for avoiding CF in MLPs 

We already know that MLPs are good at concurrently learning a training set by 

backpropagation. It should be obvious then, that the simplest way to make a network retain its 

existing knowledge when it is required to learn a new mapping is to just add the mapping to 

the set of mappings it has already learned, and concurrently retrain the network on the entire 

set. This would be called full rehearsal, and would fit the new pattern into the function the 

network has learned without damaging recall of the existing mappings. However, this 

approach is not very efficient and it would be foolish to retrain the network completely if we 

only wanted to add one mapping to a set of thousands. 

 

2.4.1 Rehearsal-based methods 

There are several schemes that attempt to preserve the shape of the function the network 

approximates without preserving every single mapping the network has learned, by adding a 

new mapping to a set of existing mappings that are representative of the function contained in 

the network. These schemes are described more completely in Robins (1995). The best of 

these schemes was sweep rehearsal, where patterns are all stored separate to the network as 

they are encountered, but only a small number are used in a dynamic training buffer while 

learning new items. The buffer is populated by randomly selecting a number (Robins used a 

3:1 rehearsal to novel item ratio) of trained patterns from the store, and is repopulated each 

epoch (a single presentation of the new item and every item in the rehearsal buffer). This 

scheme gives a “broad but shallow” sort of rehearsal, since more of the stored items are 

presented but none of them are trained completely (not counting the new item being trained). 

This system displays an impressive ability to maintain an existing (base) population of 

mappings while learning new items, but it has a number of drawbacks: 

 It is necessary to retain all of the items learned by the network, which might not be 

feasible (for large populations), and arguably makes the network redundant as a 

memory store. Since neural networks are usually employed for their powers of 

generalisation and not their data-storing abilities this is not necessarily an issue, but it 

is worthy of consideration.  

 Additionally, in situations where there is significant conceptual drift (target mappings 

change over time), there is a serious question: what do we do when the target for a 

mapping changes? We could store a new version of the pattern with the new target, 

but then we could wind up with an infinite number of slightly different mappings in 
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the store. We could also discard the old target, discard the new target, or maintain 

some sort of running average of the target. Which is used would likely depend on the 

specific problem being solved. 

 Since we have already trained the network to perfection on the original population, 

training with them again in the rehearsal stage introduces the serious risk of 

overtraining the network on the base population. This could damage the network‟s 

ability to generalise to new data (Deco & Obradovic, 1996). 

 

2.4.2 Pseudorehearsal 

Robins suggests an alternative scheme dubbed pseudorehearsal that overcomes the above 

mentioned drawbacks of sweep rehearsal. In this case we carry out the same training regimen 

as in sweep rehearsal, but instead of populating the rehearsal buffer with stored items it 

should be filled with pseudoitems (hence the name). Pseudoitems are purely abstract 

mappings generated by feeding a random input into the network (for example, random ones 

and zeroes into a binary network) and using whatever the network outputs as the target for the 

input. The inputs used to generate the items do not have to be taken from examples that the 

network has already been presented, and they do not even have to be valid or sensible inputs 

for the problem at hand (for example, where inputs map to sensor readings or game or FSM 

states). However, Baddeley (2008) suggested that making an effort to approximate the input 

distribution may improve learning performance in at least some cases. 

The performance of this scheme is marginally worse at maintaining a base population since 

we are only using the network‟s approximation and not the actual base population. However, 

this may actually turn out to be beneficial. As long as we use pseudoitems we are only 

rehearsing knowledge the network already has, so there can be no risk of overtraining the 

network on actual items
3
. Additionally, we no longer need to keep a store of rehearsal items 

because we can simply produce as many pseudoitems as we wish to use whenever we need 

them. Finally, this scheme conveniently deals with the problem of conceptual drift by 

eliminating any possibility of choice on the part of the implementer; targets are simply 

whatever the network has converged on. 

A considerable amount of work has gone into designing neural networks that avoid 

catastrophic forgetting by employing pseudopatterns internally, instead of the standard 

                                                 
3
 Simply training a network on a set of pseudoitems containing no new mappings would be equivalent to 

applying the identity function to the network‟s weight matrix. 
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scheme explained above, where the pseudopattern rehearsal is an external process acting on 

the network (Robins, 2004, p. 19 has a review of these algorithms). The goal of this research 

is to make it easier to compare this strategy for continual learning to structures and processes 

residing within human brains, to better establish how continual learning works in actual 

brains. The most recent new system in the area was presented in Ans (2004). This system uses 

a more biologically realistic learning rule (compared to backpropagation) and has a “self-

refreshing memory”, where clusters of units and recurrent weights are used to generate 

pseudopatterns and train the forward weights with them during learning to avoid interference. 

As Robins (2004) states, these systems generally exhibit worse performance than the basic 

scheme, in part because they are designed less for performance and more for biological 

plausibility and other measures. They are also equivalent in concept to the basic scheme, so 

there is no real benefit in reproducing them in this research.  

 

2.4.3 Transfer of knowledge 

Another type of lifelong learning strategy is based on the idea of improving learning by 

transferring knowledge between related tasks. Explanation based neural network learning 

(Thrun & Mitchell, 1995) is a learning algorithm that works with a feedforward MLP, 

designed to quickly learn a series of robotics navigation and control tasks (inside a Q-learning 

agent system
4
) by drawing on their earlier experience solving related tasks. The idea is similar 

to a rehearsal scheme, except that “support sets” are used to speed up learning and increase 

generalisation on new data, instead of a rehearsal buffer being used to prevent disruption of 

old data. Support sets are a collection of previous training examples that are deliberately 

similar to the current task being faced. By using similar training examples, new examples tend 

to adopt similar representations to the support sets, so learning is a matter of fine-tuning and 

generalisation is more robust. Most research in this area does not concern itself directly with 

the problem of catastrophic forgetting, but EBNNs are apparently successful at serial learning 

tasks. 

 

 

                                                 
4
 Section 3.4 has an explanation of the details of Q-learning. 
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2.4.4 Methods of avoiding forgetting in standard neural networks 

Backpropagation is a global learning algorithm, meaning that updates can easily affect the 

entire network. Consequently, different mappings learned by a network during normal 

concurrent training will tend to have considerable overlap in the way they are represented in 

the network. Changing or introducing any single pattern will tend to disrupt all of the others to 

some degree, depending on the level of overlap and the magnitude of the change. Several 

authors (French, 1999; Kanerva, 1988; Kruschke, 1991) have demonstrated that serial 

learning performance can be improved by reducing the overlap between (“orthogonalising”) 

the representations of patterns in a neural network.  

French (1991) suggested measuring this representational overlap as the degree of overlap in 

the activations of the hidden-layer nodes created by each input pattern. The interesting thing 

about this is that the actual information learned by a neural network is stored in the network‟s 

weights; the hidden layer activations are a highly transient phenomenon, representing a partial 

working that the network generates as a side-effect of retrieving information. French suggests 

that the hidden layer activations indicate which weights are most relevant to the pattern (since 

if a hidden layer node has no activation then it does not matter what value the weights 

connected to it have) and so this indicates which region of the weight space is used in the 

representation of that pattern. 

French (1991) also developed the technique of activation sharpening, a good example of a 

simple strategy for reducing overlap in network representations. The goal of activation 

sharpening is to reliably produce semi-distributed representations that are local enough to 

overcome catastrophic forgetting yet are sufficiently distributed to permit generalization. 

Essentially, this is done by slightly increasing the activation of the most active hidden units, 

slightly decreasing the activation of the other units, and then changing the input-to-hidden 

layer weights to accommodate the modifications. The activation adustments use the formula: 

                      for the nodes to be sharpened; 

                   for all other nodes. 
Eqn. (2) 

α is the sharpening factor. The weight adjustment is calculated by taking the difference 

between the old and new activations as the error for each node and performing standard 

backpropagation from the hidden to the input layer. After this extra initial step the usual 

execution and backpropagation procedure is performed for the pattern. 
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2.4.4.1 Context biasing 

However, as French (1994) notes, restricting the representation space of the hidden layer also 

tends to reduce the capactiy of the network (so that a larger network is needed for the same 

task, resulting in decreased performance) and in some cases may actually reduce sequential 

learning performance. He attempted to improve on this by forcing hidden layer 

representations to be both well separated (orthogonal) and also distributed across the hidden 

layer, with a system called context-biasing.  

Context biasing is the same as activation sharpening except that the Hamming distance
5
 

between the new target (the “teacher”, in supervised learning) and the previous one is used in 

the activation modification rule. The new representation is separated from the previous one by 

modifying the hidden layer activation (A) of each node of the new representation according to 

the rule: 

                                             

                                             
Eqn. (3) 

Where α is the Hamming distance and β is a biasing coefficient. Instead of continually 

retraining the output of the network to prevent it being disrupted, these systems aim to 

improve serial learning performance by changing the way knowledge is represented in the 

network. Robins (2004)  notes that reduced overlap methods do not actually prevent CF when 

measured by the ability of the network to correctly reproduce previously learned outputs. 

Instead, they mitigate its effects to the extent that after new learning, old information can be 

more quickly relearned by the network (a “savings” measure). However, French found that 

relearning time was reduced by 50% with this method, and initial training time was decreased 

as well. 

2.4.4.2 Lifelong learning Cell Structures 

Another similar idea, introduced by Hamker (2001), is lifelong-learning Cell Structures, 

which he describes as a constructive Radial Basis Function-like system that has the same 

orthogonalising properties combined with the ability to add units to allow “lifelong” learning 

as with Temporal Transition Hierarchies (cf. Section 2.4.5). Hamker chose a Radial Basis 

Function system because the learning algorithm is relatively local compared to the global 

backpropagation algorithm, and so interference may be reduced compared to 

backpropagation. 

                                                 
5
 The Hamming distance between two binary strings is the number of bits that must be changed to transform one 

string into the other. 
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2.4.5 Temporal Transition Hierarchies 

Another neural-network based system for serial learning is Temporal Transition Hierarchies 

(TTH), introduced in Ring (1994). The TTH algorithm uses neither a standard nonlinear MLP 

nor backpropagation, but it is highly efficient at solving Partially Observable Markov 

Decision Problems (refer to Section 3.7 for details) when used with a standard Q-learning 

algorithm (Section 3.8). 

 

Figure 5: The initial structure of a Temporal Transition Hierarchies network 

 

The initial structure of a TTH network (Figure 5) is a fully connected network (with no 

hidden layer) comprised of units with linear activation functions. The connection weights are 

at first improved as much as possible by the standard delta learning rule. When a connection 

weight is unable to converge adequately (determined by statistics that keep track of how often 

a weight is changed), a hidden unit is added with the sole purpose of reducing the error of that 

weight. The hidden unit is also connected to all of the agent senses. However, instead of 

directly propagating its activation forward as in an MLP, its activation modifies the 

connection weight it is assigned to, positively or negatively. This modification takes effect in 

the next time step, effectively causing the normal input to be amplified or reduced based on 

what the higher level unit sensed in the previous time step. 
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Figure 6: A simple maze test, where the agent has only four senses, and no positional 

knowledge 

 

Figure 6 shows a simple grid-maze problem of the type which TTH is well-suited to solving. 

The task is to find the goal (13) from the start position (1) (or any random position in the 

maze) by choosing to move north, south, east or west. The agent moving around the maze has 

sensors for hot, cold, light and dark and receives their input before choosing the next step, but 

no other information is provided to it. The problem is a temporal one, because if the agent 

senses light it can only know whether to move north or south if it remembers what it sensed in 

the previous step.  

 

Figure 7: A TTH network trained to solve a maze task. Black, grey, and white 

represent -1, 0, and 1, respectively 
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Figure 7 shows a TTH network that can find the goal from every place in the maze 

(connection weights excluded). It has inputs SC, SL, SD and SH to sense cold, light, dark, and 

heat, and outputs MN, ME, MW, MS that serve as commands to move in each compass 

direction. It also has two high-level units that allow the network to make the context-sensitive 

decisions necessary to solve the problem. For example, at position 4 in the maze at time t-1 

unit 9 (MN, SL) is positively activated because heat was sensed, and unit 10 (MS, SL) is 

negatively activated for the same reason. These activations persist until the next step t, where 

they increase that agent‟s tendency to choose north and decrease its tendency to choose to 

move south. The solid black line in Figure 7 (RHS) shows the positively modified connection, 

while the dotted line shows the negatively activated connection. 

High-level units can also be assigned to modify the connection weights of other (lower level) 

high level units. These units‟ activations reach further back into the past the further away they 

are from the initial units (action units), allowing the network to incorporate knowledge from 

the arbitrarily distant past and therefore solve arbitrarily complex temporal problems. 

 

2.5 Summary 

This chapter introduced the class of supervised machine learning problems (in the context of 

neural networks) and techniques for solving them, including some of the basic supervised 

neural network algorithms. We also introduced the sub-problem of continual supervised 

learning, and catastrophic forgetting, a particular limitation of neural networks which is 

exposed by the continual learning problems. Several methods for overcoming catastrophic 

forgetting were discussed, including rehearsal, pseudorehearsal, context biasing, Temporal 

Transition Hierarchies, and others.  
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3. Reinforcement learning 

Chapter Two gave an introduction to the class of supervised machine learning problems, 

which were first mentioned in Section 1.1. Supervised learning is probably the most often 

studied problem in the field of ML research, and most learning systems are developed to solve 

that type of problem. However, it is relatively rare to find tasks in the real world that can be 

easily framed as a supervised learning problem, simply because of the high level of feedback 

involved. For most problems, if the agent solving the task makes a mistake or sub-optimal 

decision there is no all-knowing teacher to describe exactly what should have been done 

instead, but this is exactly what is required to use supervised learning techniques (such as 

backpropagation) directly. More often, a teacher will be only able to provide limited 

feedback, possibly only after the task has been completed.  

For example, when a (literal) teacher evaluates a student‟s paper they give it a grade and 

maybe attach some comments, but they would normally stop short of rewriting the entire 

paper, suggesting exactly which word should have gone where. They certainly would not 

stand over the student while he writes his paper and correct him each time he writes the wrong 

word, although we would need this perfect feedback for a supervised agent.  

Alternatively, feedback can come directly from the environment. For example, an animal will 

quickly learn not to injure itself because when it is hurt it feels pain, a negative feedback 

signal resulting from its actions. However, the environment is unable to tell the animal how 

exactly that pain could have been avoided; the animal needs to work it out on its own. In 

studying reinforcement learning problems it is convenient to treat the „agent‟ as just the brain 

or controller of the larger system, robot or creature, with any wheels, arms or anything else 

treated as part of the environment. Then we only need to concern ourselves with developing a 

mapping between inputs and outputs (which are connected to sensors and actuators) that allow 

the agent to perform some desired task. 

The ability to learn to perform a simple task and then use that knowledge to solve a related 

but slightly harder task is especially important for learning agents. This incremental method is 

commonly called shaping and is a type of reinforcement learning. For example, the usual way 

to train a pigeon in a cage to push a button is to start by rewarding it whenever it crosses into 

the half of the cage where the button is located. When it has learned to stay in that half of the 

cage, the reward area can be reduced until the pigeon stays near the button, and then only 

when its beak moves near the button. Eventually, even when placed in an unfamiliar cage, the 

bird should make a beeline for any buttons in sight (Ring, 1994, p. 103).   
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3.1 Formal problems in RL 

The examples above are informal and not precisely stated, but in fact the theory of RL sits on 

a solid mathematical foundation, and the most important problems are more exactly specified. 

The simplest and most fundamental formally stated problem in RL is known as the “n-armed 

bandit problem”, named after the “one armed bandit” slot machines of casinos. Sutton & 

Barto (2005) explains it simply: Imagine you are repeatedly faced with a choice among n 

different options, or actions. After each choice you receive a numerical reward chosen from a 

stationary probability distribution that depends on the action you selected. Your objective is to 

maximize the expected total reward over some time period, for example, over 1000 action 

selections. Each action selection is called a play. How do you go about maximising your 

return? 

This simple problem turns out to contain a great deal of underlying complexity, and it 

generalises to the more sophisticated problems we are interested in solving in this research. 

The defining feature of this type of problem is that there is no-one to tell you what lever you 

should have pulled at each play; instead, the environment functions as a teacher giving limited 

feedback. In addition, you have to choose between exploiting actions (lever selections) that 

appear to give good returns and trying new things to see if they work better. 

3.2 Markov decision problems 

Consider an RL agent trying to learn the task of behaving in the Wumpus World, pictured in 

Figure 8: 

 

Figure 8: The Wumpus World 
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In this simple environment there are several pits, a monster, a reward/goal, and the agent 

(starting in the bottom left corner). If the agent blunders into the monster it receives a very 

large negative feedback (or punishment, for being eaten), a small negative feedback for falling 

in a pit (for being delayed/hurt), or a large positive reward for finding the goal. However, in 

the unmarked tiles the agent receives no feedback at all! To perform well in this environment, 

the agent would need to learn to take actions that lead to the goal, and avoid moving 

anywhere dangerous. 

The Wumpus World is an example of a sequential decision problem, named as such because 

the agent needs to make a sequence of decisions to obtain a result and earlier decisions can 

have an effect on later decisions. Sequential decision problems are defined by three 

components: an initial state, a reward function (the reward associated with each state), and a 

transition model (the probability of reaching a state    if action   is taken from a state  ). The 

transition models used in this research are deterministic, so that if the agent takes an action   

in a state   it will always reach the same   , but this need not be the case in general. 

One important point about this environment is that it can be viewed as a collection of n-armed 

bandit problems, where each state is an n-armed bandit and each action is one of the arms. 

The difference is that each play takes you to a whole new bandit with a completely new 

probability distribution. Learning to behave in this sort of environment is very difficult, even 

with the simplified probability distribution of the Wumpus World. 

The problems this research is concerned with are called Markov Decision Problems (MDPs), 

which are sequential decision problems with the added restriction of a Markovian transition 

model. This simply means that the probability of reaching state s‟ from s depends only on s 

and not on any earlier states. Study of MDPs makes up the majority of research into 

fundamental reinforcement learning methods (Sutton & Barto, 2005), and accordingly, they 

are the primary focus of this research. 

There are a wide variety of methods for solving Markov Decision Problems, as they are very 

common in the real world. For example chess and checkers are MDPs and so are most other 

board games, particularly those where the player can see everything about the current state of 

the game by looking at the board. Chess and checkers are very familiar games to us, and most 

people have a great deal of contextual knowledge ranging from psychology to logic to 

military strategy that they can draw on when playing these games. Machines are not normally 

so lucky, and usually have to work with little or no prior knowledge. As Russell & Norvig 

(2003) explains, a machine‟s view of the problem is more like: Imagine playing a game 
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whose rules you don‟t know; after a hundred or so moves, your opponent announces “You 

lose”. This is reinforcement learning in a nutshell. Surprisingly, even with such difficult 

problems posed to them, RL algorithms have had considerable success. 

 

3.3 Value functions 

As Russell & Norvig (2003; §21.1) explains, the best way to solve an MDP is to learn an 

optimal policy for behaving in the environment, and then follow it. A policy is simply a 

mapping from every state in the environment to the optimal action to take in that state. The 

logical way to learn a policy is to learn the value of a utility function       for each state s, or 

an action-value function       , giving the expected utility of taking a given action in a given 

state. An optimal utility agent can use its utility function to select the optimal action at each 

step, and therefore follow an optimal policy. This is done by using a model of the 

environment to find those states adjacent to the agent‟s current position and choosing the 

action leading to the state with the highest value. The utility values the agent uses are 

typically the discounted future reward (DFR) that an agent following an optimal policy would 

expect to receive from that point onward, although other models of optimality are possible 

(Kaebling, Littman, & Moore, 1996). Formally, the utility function that the agent aims to 

learn is: 

                

 

   

  Eqn. (4) 

The function        is the expected value of the sum of        for all   from zero to infinity. 

The variable   is the discount factor and r is the scalar reward value. In other words, the 

utility agent attempts to learn the DFR it expects to receive by behaving optimally, starting 

from a state   at a time  . In contrast, an action-value agent, learns a function          that 

describes the DFR the agent will eventually receive (by continuing to follow the optimal 

policy) if it takes action   in state  . The optimal policy in this case is just to choose the action 

with the maximum q-value in the current state. The q-function is therefore: 

                   

 

   

  Eqn. (5) 

When the values are correct,    
 

                so utility based and action-value 

learning are able to converge on the same behaviours. However, there are specific benefits 

and drawbacks to each approach, and there is no absolute rule for deciding which to use (see 
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Russell & Norvig, 2003). In general, the main drawback of learning a utility function is that 

the agent also needs a transition function to know what the next state is, while the action-

value agent does not. It must either learn the model, which takes longer and is difficult, or be 

given one, which puts a greater burden on the programmer. On the other hand, the action-

value agent will end up having to learn redundant utility values (if there is more than one way 

to get to a state, it will have to learn a value for each), which is slower and takes more 

memory. Additionally it cannot perform look-ahead search because it has no way of knowing 

what the next input/state will be (though the utility agent might not either, if the values are not 

deterministic). On the other hand, it is the simplest, and sufficient for our purposes. 

 

3.4 Learning algorithms 

The fundamental methods used to learn these value functions are dynamic programming, 

Monte Carlo methods, and the method of temporal difference. All of the methods can solve 

reinforcement learning problems, but they have their individual strengths and weaknesses. 

Dynamic Programming (DP) is a well established collection of algorithms that can be used to 

compute optimal policies for a Markov Decision Problem. Because they need a perfect model 

of the environment to function they are called model based algorithms. The classical DP 

algorithms, including policy evaluation and policy iteration, are broadly considered the 

foundation of reinforcement learning (Sutton & Barto, 2005), and the later methods can be 

viewed as attempts to achieve much the same effect, only with less computation and without 

assuming a perfect model of the environment. 

More sophisticated model based algorithms do not start with the assumption of a perfect 

model of the environment, but learn the model through experience of the environment, and 

then use that to compute the optimal policy. These include certainty equivalent methods and 

adaptive dynamic programming (particularly with the prioritised sweeping heuristic), which 

are explained fully in Russell & Norvig (2003). In general, model based algorithms make 

more efficient use of the data they collect at each step, and so they are able to learn good 

policies in fewer steps than model based environments. This makes them suitable for 

environments where it is relatively expensive, difficult or slow to collect new data, such as in 

embodied agents.  

Model-free algorithms also start with no model of the environment, but instead of learning 

one they aim to determine the value function directly through experience (Schmidt, 2005). 

They are generally simpler to implement and work at least as well as alternative methods in 
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simulated environments, so they are used for the continual learning experiments in this 

research. 

Monte Carlo methods are an established group of model free algorithms, but they can only be 

used for episodic tasks, and are therefore undesirable for experimenting with continual 

learning. The other basic model free algorithm, temporal difference (TD) learning, is 

effectively an approximation of dynamic programming that avoids the need to learn the 

environment‟s transition model. It therefore requires far less computation per step, which 

makes it more tractable in large spaces. 

The essential idea of TD learning methods is that an agent‟s predictions of how to achieve the 

best outcome will become more accurate over time (as the outcome grows nearer). This 

means that the agent can use its newest predictions to update older predictions in a process 

called bootstrapping, instead of waiting until the end of an episode to integrate its experiences 

into a predictive function. Bootstrapping is particularly important for lifelong learning agents, 

as real life cannot easily be divided into episodes, and without bootstrapping these agents 

would be unable to learn anything at all. This is an important reason for using TD methods in 

continual or lifelong learning research. 
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3.4.1 Temporal difference learning 

To build a policy using TD methods, the agent only needs to explore the environment and use 

TD-updates to incorporate the feedback it receives at each step into its state-value function. 

The basic TD update has the form: 

                                   Eqn. (6) 

This just means that the last prediction       is modified by the reward r plus the difference 

between the current prediction         (representing the future reward, discounted by  ) and 

the last prediction. The magnitude of the update is moderated by a constant  . The current 

prediction should be more accurate than the last one, and so the value function should 

eventually converge to        and the agent can behave optimally. 

All of the fundamental dynamic programming, Monte Carlo and temporal difference methods 

were developed from well-justified mathematical theory. However, TD learning is unique in 

that it appears to have biological analogues in human and animal brains. One example is from 

Schmidt (2005), who found that the activity of midbrain dopamine neurons in reward-related 

learning has properties very similar to temporal difference reinforcement learning. It is hard to 

say exactly how relevant or important this is in the context of building artificially intelligent 

learning agents, but it is encouraging that this type of algorithm can scale up to the 

enormously complex learning tasks faced by real biological brains. 
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3.5 Control 

The basic algorithms that use TD methods to control an agent are Adaptive Heuristic Critic 

(AHC) and Q-learning. In effect, they ensure that the agent continues to explore its 

environment and improve its policy whilst simultaneously exploiting its existing knowledge 

of the environment value function to maximise its return while converging. Both algorithms 

can be used to learn good policies but Q-learning is easier to implement and has the 

theoretical advantage that it is proven to always converge on an optimal policy (though this 

does not apply in the general case where function approximation is used). This property of 

convergence is documented in Baird (1995). 

Q-learning agents learn a value function       , which approximates the discounted future 

reward (DFR) that the agent predicts it will receive by performing action   in state s. So in the 

Wumpus world, moves leading to the goal should have a high value, and moves leading to the 

Wumpus should be low value. The update rule in Q learning is: 

                              
 

                    Eqn. (7) 

This update is calculated whenever an action    is executed in state    leading to      and 

resulting in a reward     . The values of future rewards should also be discounted by a 

factor  , which describes the agent‟s preference for current over future rewards. Because our 

problem formulation assumes an infinite horizon for decision making, meaning that we care 

about significant events arbitrarily far into the past, future rewards would tend towards 

infinity if we did not discount them. If that happened we would be unable to compare states 

(since every state would be either plus or minus infinity) and further learning would be 

impossible. 

Once the agent has learned the function (or optimal policy) correctly it can simply use a one-

step look ahead to choose the best action to take. However, while the agent is still learning, it 

has a problem. The agent‟s learned model of the environment is different to the environment 

itself, so actions it predicts will lead to the highest reward may not do so in reality. If the 

agent always chooses the best action (called greedy behaviour) then it may ultimately receive 

suboptimal rewards. More importantly, the agent may fail to find new states in the 

environment that lead to an even higher reward. To avoid this problem, the agent needs to 

actively explore the environment. It is often sufficient to simply have the agent behave 

randomly a small proportion of the time during learning, although more sophisticated schemes 

are possible. 
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3.6 Learning with Approximation and Generalisation 

The problem described in section 3.2 is called a discrete MDP because there are a finite 

number of states in the environment and the agent‟s transitions between them are 

instantaneous (in that the agent‟s position can never be described as partway between two 

states). As there are only a small number of states in that problem it is sufficient to use Q-

learning with a simple lookup table to store the value of each state, and visit each state in the 

environment until we are convinced we have found a sufficiently good policy. 

However in many problems (including the real world), environment states are not discrete, 

and it is possible to be in any of an infinite number of states. One early and widely studied RL 

problem often implemented in real world agents is called the cart pole problem, pictured in 

Figure 9.  

 

Figure 9: The cart pole problem, as described in Sutton & Barto (2005; §3.3) 

 

The goal in cart pole is simply to keep the pole balanced upright for as long as possible by 

driving the cart back and forth on a track. In this case the actions available to the agent are 

discrete (pulse the motors left, right, or do nothing) but the environment has infinitely many 

states (described by the angle between the pole and the horizontal, and the position of the 

agent on the track). 

In this case it is clearly impossible to represent the Q-function over all possible states and 

actions in the environment using a lookup table because that would require an infinite amount 

of storage. Instead we are forced to make do by visiting some finite subset of the infinite 

variety of states, and using that data to generalise to new states as we encounter them. This 

type of generalisation is an example of function approximation and it is a type of supervised 

learning. Generalisation is a complex topic that is studied in several fields, including machine 

learning, artificial neural networks, pattern recognition, and statistical curve fitting. For the 
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most part, however, we only need to work out how to modify RL techniques to draw upon 

existing research, such as the neural network function approximation introduced in Chapter 2. 

There are some additional difficulties as Boyan & Moore (1995) noted, since the value 

functions of RL agents using generalisation are no longer guaranteed to converge to the 

optimal policy in some cases. However, they also noted that those cases can be avoided by 

problem-specific hand tuning. Additionally, Baird (1995) found that it is possible to use 

generalisation and still guarantee convergence in general, by slightly modifying the learning 

algorithm with his residual gradient technique. 

While generalisation is essential in continuously valued environments, it can also be very 

useful in complex or large discretely valued environments. Possibly the most famous example 

of this is Garry Tesauro‟s TD-Gammon system (Tesauro, 1994). TD-Gammon used TD 

learning with nonlinear function approximation using a multilayer neural network in a manner 

similar to the system described in §3.3. There are approximately      discrete states in 

backgammon (Kaebling, Littman, & Moore, 1996, p. 270) and the game tree has a branching 

factor of around 400, making it too large for the conventional heuristic search methods used 

successfully in games like chess and checkers at the time. However, using TD learning and 

generalisation, TD-Gammon learned to generalise by playing 300,000 games of backgammon 

against itself, while visiting only a small fraction of the total state space. Impressively, 

Tesauro‟s system learned to play backgammon competitively against world-class human 

players. 
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3.6.1 Tile coding 

The simplest way to add generalisation to a temporal difference agent is to employ a linear 

method such as tile coding to learn the value function. The non-generalising agent uses a table 

with one entry for every possible state in the environment, which as noted above is 

impractical for large and infinite spaces. However, by using tile coding we can still use the 

same linear structure. Essentially all we have to do is divide the state space up into a finite 

number of non-overlapping regions or “tiles” that exhaustively cover the space. Then we 

simply associate every possible state in the tile with a single value (expected DFR, as above). 

For example, in the cart pole problem above, we could use the tiling shown in Figure 10. In 

this scheme, every possible configuration of the cart and the pole can be described by a pair 

(corresponding to a region of the state space), for example                 and so on, 

with the current state being E2. Now we can easily store a value for each region using a small 

one or two dimensional array. Then we can carry out TD learning as usual, just by performing 

updates on the entire current region instead of just the current state. 

 

 

Figure 10: A sketch of a tile-coding for cart pole 

 

Figure 10 shows the agent in state (E2). In this state the agent would likely learn to pulse the 

motors right, but in state A5 it would learn to pulse left. After learning, we could expect the 

agent to have learnt to move left in states including A-C pole positions, and right in F-H 

positions. 
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3.6.1.1 Limitations of tile-coding 

The simple tile coding scheme above is more than sufficient to solve the cart pole problem. 

However, single cart pole is a simple problem and is considered a standard test that any 

generally useful dynamic control system should be able to pass. The current state of the art in 

embodied agents is a so-called variable universe adaptive fuzzy control algorithm (Hongxing, 

Jiayin, Yundong, & Yanbin, 2004) that is able to successfully balance a robotic cart pole 

system with a quadruple articulated arm, physically constructed and tested in the researchers‟ 

laboratory. This feat is almost certainly far beyond the reach of tile coding Q-learning. It may 

be possible to perform the task if a more sophisticated function approximation system were 

used, but it would still be very difficult, as Lee & Perkins (2008) found when trying to solve 

the triple jointed cart pole problem. 

The main problem with tile coding is that it only really works well if you can ensure that for 

each tile, every state within that tile has roughly the same value, or at least the same optimal 

action. This means that the value function either needs to be very smooth or we need a good 

idea of the shape of the value function before we solve the problem. It is also possible to 

randomly try a variety of hashing schemes until we find one that works, and we can divide the 

space into a larger number of tiles if we use the trick of hashing tiles to reduce memory 

requirements, as Sutton & Barto (2005; §8.3.2) suggests. However this can only take us so 

far, after which we must turn to a more intelligent generalisation system to handle more 

complex tasks.  
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3.6.2 Other methods of generalisation 

One way of providing more powerful generalisation capabilities to a TD agent is to use a 

neural network to approximate the value function instead of a table or array. The standard 

way of achieving this is described in Lin (1991). Since this is the method used in later 

sections of this work, it is described in detail in §3.8. 

Another type of generalising RL algorithm is called G-learning, described fully in Chapman 

& Kaelbling (1991). G-learning is a standard Q-learning system that uses a decision tree for 

generalisation. Effectively, this allows the agent to calculate the best way to tile the state 

space and how large to make the tiles, an approach that is far more efficient than choosing a 

tiling randomly or by hand. It also has an advantage over neural network generalisation 

because we do not need to choose the network architecture before learning. Chapman and 

Kaelbling found G-learning worked very well on a range of problems, even on problems 

where an agent with a neural network for generalisation failed to find the optimal policy. 

However, they also found that there are some environments to which generalisation using 

backpropagation is especially well suited, such as the one used in Lin (1991). They also found 

that G-learning is unsuited to the same problem, due to the nature of the decision tree learning 

algorithm. 

It may be possible to obtain some of the best of both worlds by using a system that combines 

the advantages of both decision trees and neural networks, such as the one presented in 

Rountree (2007). In his thesis, Rountree developed a method for initialising a multi-layer 

perceptron (feed-forward neural networks are MLPs) by first training a decision tree on the 

input examples. Then he applied another algorithm to use the knowledge contained in the 

decision tree to set the initial architecture and connection weights of an MLP. The resultant 

network trained significantly faster than a standard MLP. His methods were only tested on 

supervised function approximation problems, but they should also be applicable to 

reinforcement learning by autonomous agents. However, at the present time there does not 

appear to be any published research investigating this possibility. 
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3.7 Non-Markov environments 

The learning methods described above are widely used to solve Markov Decision Problems, 

and some of them are even mathematically guaranteed to solve MDPs optimally under 

reasonable conditions. 

However, not all real-world problems are Markovian. In many real-world problems it is not 

possible for the agent to know exactly what state of the environment it is in. There might be 

some underlying variable invisible to the agent that nevertheless affects the parts of the 

environment that the agent can directly perceive. Other times, the agent‟s current sensory 

input from the environment (or perception
6
) may be limited, distorted, or ambiguous, so that it 

is only possible to know exactly where the agent is by examining the steps leading up to the 

current perception, as shown below. 

 

 

Figure 11: A grid environment with ambiguous sensory input, adapted from Ring 

(1994)  

 

In this example, the only input the agent receives is the number on each square, representing 

the configuration of the walls around that square. For example, a 6 means there are walls to 

the east and west, but not north and south. If the agent receives a 9 as input, it cannot be sure 

which state it is in. However, if it remembers seeing a 0 or 4 just previously, then it can be 

sure it is in the northernmost 9 state. For reference, the basis for the numbering scheme used 

here is described in full in Figure 17. 

                                                 
6
 The agent‟s current (possibly limited or distorted) sensory inputs are called a „perception‟ of the environment. 

In a Partially Observable Markov Decision Problem, the agent‟s goal is to disambiguate the current perception, 

allowing it to see the exact state of the environment. 
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In either case the agent needs to solve a Partially Observable Markov Decision Problem, or 

POMDP (Kaebling, Littman, & Moore, 1996, pp. 267-269). These problems are an active area 

of research because standard learning methods, including the Q-learning method described in 

Section 3.5, require complete observability to learn or they may oscillate around inadequate 

solutions. Another reason is that it is generally much harder to work with POMDPs than 

MDPs. In fact, Russell & Norvig (2003, p. 627) states that even finding approximately 

optimal policies to complex POMDPs is PSPACE-hard
7
 (that is, so hard that finding the 

optimal solution for problems even with only a few dozen states may be infeasible). 

CHILD (Ring, 1994) is one system that attempts to solve temporal POMDPs by determining 

the context for the current perception. It does so by building „context units‟ that work as a 

short term memory, enabling it to draw on perceptions from the arbitrarily distant past to help 

disambiguate the present input, and therefore behave correctly. 

3.7.1 Delay lines 

The simplest general method for solving POMDPs is to use a technique called delay lines 

(Ring, 1994, p. 26) that allow the agent to disambiguate its perceptions. The technique is 

widely used in temporal problems, but due to its simplicity it is not always referred to by that 

name, as in Schmidt (2005, p. 26). Delay lines achieve the same goal as the Temporal 

Transition Hierarchies (TTH) method that CHILD uses, but in a simpler fashion. With the 

delay lines technique, the agent simply keeps a window of the past N perceptions in a buffer 

and presents them to its learning system simultaneously, so that all of the necessary contextual 

information is directly available. 

If the agent is using a neural network as a function approximation with an input representation 

of M units then we only need to modify it to have N*M input units, and then encode the 

contents of the perception buffer into the input layer of the network in order. The key 

advantage of this method is that it is really only a clever way of encoding a state vector, so it 

works with existing non-temporal algorithms without modification. This is much simpler than 

a whole new architecture like TTH and is still sufficient for many purposes. However, it has 

some disadvantages (not present in TTH) that prevent delay lines from being an ideal general 

solution. Firstly, we need to correctly choose how many previous inputs the agent will 

remember to disambiguate its state. Secondly, we need to remember the entire representation 

of the entire set of perceptions, even if it turned out that only one or two features of the input 

                                                 
7
 PSPACE is a computational complexity class greater (that is, more complex) than the well-known NP 

complexity class, of which the Travelling Salesman and 3-SAT problems are members. 
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were necessary to provide the context. Third, the agent has no way of changing or controlling 

which perceptions to remember. If the correct behaviour for the current state depended on a 

single perception 100 steps ago then the agent would need to store all of the last 100 steps to 

learn it, whereas a TTH agent would (in theory) need to keep far less information. However, 

none of the environments Ring (1994) used to test CHILD require a memory of more than the 

last one or two states to learn a successful policy. 

  



43 

 

3.8 Q-Learning with neural network-based function approximation 

The backpropagation algorithm (described in section 2.2) works well for supervised learning 

problems, but we may also wish to apply neural networks to the task of solving MDPs in an 

RL context. Just as we can improve on the basic TD or Q-learning algorithms by using tile 

coding or a decision tree to represent the value function in those algorithms, we can use a 

neural network to achieve generalisation in the value function of an RL agent. The agent 

architecture necessary for this is shown in Figure 12. 

 

 

Figure 12: A model of the interactions in a Q-learning agent system, adapted from 

Lin (1992) 

 

The stochastic action selector is only necessary during learning, to allow the agent to explore 

the environment and discover a more accurate value function. Instead of just choosing the 

action with the highest utility (“greedy” action selection, which can be used after learning), 
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actions are chosen randomly according to a probability distribution determined by the utilities 

of the actions, using the formula in Equation 8. 

          
  

  

  
  

   
   

  
Eqn. (8) 

Where the variable    is the utility of action    and the temperature T adjusts the randomness 

of action selection. This optimisation (as in a simulated annealing search) ensures that the 

network will eventually converge on the optimal solution (although this may require infinite 

training) where a greedy search may get stuck in a local minimum of the state space (Shang & 

Wah, 1996). Lin suggested using an individual network for each possible discrete action 

available to the agent. His idea is that this should reduce representational overlap and 

therefore prevent the values of different actions in the same state from interfering with each 

other (Lin, 1992). However, using separate networks also isolates the knowledge they each 

contain, and that may hurt the overall efficiency and generalisation capability of the agent. An 

alternative solution would be to use an algorithm such as Context Biasing to reduce 

representational overlap, or pseudorehearsal to reduce forgetting. In any case, the algorithm 

for Q-learning with a neural network approximating the action-value function works as 

outlined in Figure 13. 

 

1.                   

                                 

2.                 

3.                   

                                          

4.                                                    

                                      
                   

                         
  

5.          

Figure 13: A generalising Q-learning algorithm 

 

 



45 

 

In short, the steps are: find the utilities of each action, select one according to equation 8, 

perform the Q-learning update, backpropagate the difference between the old and new 

predictions, and repeat. The           step is calculated by executing the current 

state/observation vector on the network (the forward pass of the standard feed-forward 

backpropagation network training regimen). It also sets the network up for the 

backpropagation step which occurs after an action is chosen by            , where U is the 

set of predicted DFRs and T is the temperature variable. A noteworthy point about this 

method is that it only works for problems where there are a finite number of discrete actions 

available to the agent, for example to move North, South, East or West. This model can also 

be adapted to continuous actions by pairing the state and an action in that state as the input to 

the network, and then having the output (a single continuous node) represent the value of 

taking that action in that state. 

Learning with a neural network in this way has some subtle but important differences to 

supervised training. The update is only a single backpropagation step, so the 

environment/DFR pair is not trained until the error is reduced to near-zero, as it would be in 

batch learning (normally used in supervised MLPs). In other words, this scheme must use an 

online learning neural network. It is possible to use a batch-update neural network in a Q-

learning system, but it cannot be used to learn the Q-values directly from the environment. 

Instead, a lookup table must be used as a short term cache to collect Q-value pairs from the 

agent‟s explorations until there are enough to teach them to the network. An example of this 

system is Rivest & Precup (2003). One possible reason why this alternative is not widely used 

is that catastrophic forgetting problems seem to be far more severe than with the former 

system. In fact, the cited authors found their agents often had terrible performance unless the 

cache was made so large that the agent was effectively just a tabular learner; they speculated 

that the problem could be catastrophic forgetting. 
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3.8.1 Catastrophic forgetting is still an issue 

It happens that the situation described in Section 2.3 (also called conceptual drift) is exactly 

the problem inevitably faced by a neural network when it is used as a value function 

approximator in the system described above. The input-output pairs taught to the network are 

generated by the Q-algorithm from the agent‟s experiences of the environment and the 

network‟s own value predictions, which are initially just random nonsense. Logically it 

follows that the initial mappings presented to the network will be wildly different to the 

mappings generated by the Q-algorithm when the agent has had a chance to thoroughly 

explore the environment. The reason for this is that initially the network has received no 

feedback for taking any action in its current state, so it will predict a small, random positive or 

negative DFR. When the agent has reached the goal state a few times and has had a chance to 

incorporate that prediction into the current state and action, the DFR will be very different, 

and the network has to be taught the new value. Recently, Baddeley (2008) theorised that a 

standard MLP‟s inability to handle conceptual drift may be a significant problem for Q-

learning MLP-type systems that could slow learning and even prevent it entirely. 

The already serious problem of handling conceptual drift in this type of system is naturally 

compounded when we try to perform serial learning with an RL agent. One reason why we 

might try to do this is if we want to teach an agent to behave in several similar but distinct 

environments, with different optimal policies. Another reason is to try to emulate the 

technique of shaping (described at the beginning of Chapter 3). An example of useful serial 

learning would be if we had an autonomous robot vehicle that we wanted to teach to drive on 

windy mountain roads (slowly and carefully) but also on high-speed motorways, where the 

same basic driving skills are needed but a different speed, level of caution and so on, are 

called for. Ring‟s (1994) main result is another example of a sequential MDP-learning task. 

3.9 Summary 

Chapter 3 introduced the second class of machine learning problem: reinforcement learning 

(RL), and the subclass of Markov Decision Problems (MDP). The framework and theoretical 

model by which RL problems are solved was briefly introduced. Several different 

reinforcement learning algorithms were explained; including Q-learning (which is used in the 

next section). Variations on the basic MDP were discussed, such as problems with continuous 

inputs and outputs, and temporal problems, or Partially Observable MDPs. Finally, the details 

of how to combine Q-learning with the neural network algorithms of Chapter 2 were 

explained, and the practical consequences of learning by this method. 
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4. Investigation 

Chapter 2 examined how neural networks can be used to solve supervised machine learning 

problems. It also explored how neural networks can perform poorly when used for online or 

continual learning, and introduced the main types of algorithms used to improve performance 

in those scenarios. Chapter 3 introduced the class of reinforcement learning problems, and 

also the possibility of employing neural networks to solve them. Reinforcement learning 

problems are the type of problems that this research is primarily dedicated to solving, since 

they are the type most often encountered by intelligent learning agents in the real world. 

Similarly, we are interested in solving those problems using neural networks for memory and 

generalisation. This is partly because less powerful algorithms may not scale to RL problems 

large enough to be useful, and partly because we know that memory systems resembling 

neural networks are successfully employed by intelligent agents in the real world. Finally, we 

are interested in solving sequential RL problems, because intelligent agents clearly need to be 

able to solve many sequential, related, and unrelated problems over the course of their 

existence. 

Surprisingly, given this context, the problem of catastrophic forgetting in neural networks has 

almost exclusively been studied in relation to supervised learning. However, there has been 

some related research in the RL community. Rivest & Precup (2003) noted that catastrophic 

forgetting could be damaging the performance of their RL approximation algorithm, but did 

not perform a systematic investigation. Baddeley (2008) found that preventing catastrophic 

forgetting improved the performance of a neural network Q-learning algorithm on a single 

reinforcement learning task, but did not investigate the class of lifelong learning and long 

term recall problems that this research is interested in exploring. Ring (1994) did investigate 

continual and lifelong RL problems, but used a novel and unconventional
8
 type of linear 

constructive network to solve them, instead of the common and well understood Feed-

Forward Back Propagation network (FFBN) we intend to use. With all of that in mind, this 

chapter is an attempt to investigate the problem of lifelong learning in relation to 

reinforcement learning, using the type of Q-learning agents with neural network function 

approximation introduced in section 3.8. 

  

                                                 
8
Ring also noted that the network is not biologically plausible, despite its effectiveness. 
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4.1 RL-Glue 

The experiments carried out in this investigation were for the most part written in Java, using 

the RL-Glue framework. RL-Glue is a highly modular, multiple language capable distributed 

framework for carrying out research on the subject of single agent reinforcement learning and 

in programming contests (Tanner, 2008). The basic framework is organised around sets of 

interchangeable agents, environments, and experiments, each of which have no direct contact 

with the others. Instead, the components pass messages to and from the RL-Glue framework, 

which coordinates their interactions, as shown in Figure 14. 

 

 

Figure 14: RL-Glue high-level architecture, adapted from Tanner (2008) 

 

In this scheme the experiment component acts as a script for a run, the environment as a stage, 

and the agent the performer. Time passes as a series of discrete steps taken in response to 

decisions made by the agent, and the agent‟s input and feedback is received from the 

environment as an observation of the current state. If the environment is fully observable then 

the observation received by the agent will simply be the current state of the environment. 

However, this is not the case in a POMDP, so the framework passes around observations (or 

perceptions) instead of states. 
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4.2 Environments 

Given the framework in Section 4.1, the major components of this investigation are the 

environments, the agents that operate within them, and the experiments that make it possible 

to measure their effectiveness. Two different environments were used, in order to separately 

study the project goals of Section 1.2. 

4.2.1 Sequential maze environment 

The environment used to investigate this question was broadly analogous to the dataset 

Robins (1995) used in his experiments with pseudorehearsal in supervised agents. Those 

experiments started by teaching a neural network a sizeable base population of random input-

output mappings, and then trained the network completely on one new random mapping at a 

time. As each pattern was learnt, the error of the network on the base population was 

measured to determine the extent of the forgetting.  

Similarly, this RL environment consists of a base population (a large maze) and incremental 

units of new knowledge (small mazes). Of course this is not an exact translation of Robins‟ 

supervised data to an RL context, but it is close enough to allow us to explore the same 

concepts. The key differences are that the Robins‟ mappings were entirely independent of 

each other and presented in random order with uniform frequency. The states in this 

experiment are naturally grouped by their adjacency in the maze, and states 1, 8, 56, and 63 

will be visited much less often than states 28, 35, 36, and 43. 

  

 

The sense perception that the agent receives at each step in this environment is a random 

unique fixed-width binary integer mapped to the unique identifier for each state. There are 

four possible output actions, representing a decision to move north, south, east, or west (no 
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Figure 15: A problem consisting of a set of simple mazes to be solved sequentially 
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diagonal moves are allowed). Note that even if there are only two or three sensible moves to 

make (as in a corner or against a wall of the base maze), or even only one move (as in a mini-

maze), all four actions are available to the agent, and it is not obvious to the agent (without 

look-ahead or a transition model, which the Q-learning agent does not use) which moves will 

fail. If the agent attempts to move somewhere inaccessible, i.e., off the map (“bumping into a 

wall”) it remains in the same state but does not receive any indication that the movement 

failed. When the terminal goal state is reached a reward of +1.0 is given, or +0.0 otherwise, 

with a limit of 50 steps allowed before terminating the episode with no reward. 

These mazes are deliberately trivial, and represent roughly the smallest decision an agent can 

learn to make, i.e., “in state X take action Y”. Because we are using Q-learning, we would 

expect a successful agent‟s solution to the first miniature maze to look like       

                   (if 0.9 was the discount factor for future rewards). Since the maximum 

number of steps is large relative to the maps‟ size, a random agent or an agent with a 

stochastic action selection policy should be able to consistently reach the goal in the 

environments within the maximum number of steps without having to learn anything. Testing 

is therefore performed with deterministic (greedy) action selection enabled so that agents will 

have to learn some sort of useful mapping in order to reliably find the goal. Note that the 

colours are an indication of the distance from each cell to the goal, and therefore show the 

relative value that the agent will assign to each cell (or rather, moves that will take it to that 

cell). 

An important point about this environment is that it effectively makes a standard rehearsal 

scheme impossible. If rehearsal was done with actual input and output pairs, the output 

portion would always be zero, except for the actions that lead directly to the goal. If the 

network value function learned environment feedback directly it could not behave optimally, 

because it would view all actions that do not directly and immediately lead to a positive 

reward state as equally useless. In order to capture the DFR values that the agent needs to 

remember to perform optimally, we have to ask the agent for its DFR predictions for each 

actual state of the environment. The resulting input-output pairs are pseudoitems, because the 

outputs do not correspond to actual feedback from the environment. Additionally, the neural 

networks in the agents used in the later sections of this chapter all have 4 output units, one for 

each possible action it could take. To generate complete input-output items from the 

environment, we would have to collate examples of the feedback received by taking each 

action in each state to be rehearsed, which would be unwieldy (and still non-optimal, because 

the network‟s goal is to learn DFRs, not to learn feedback directly).  
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4.2.2 Continual learning environment 

The second RL environment used in this research is a replica of the continual mazes 

environment from Ring (1994), instead of the sequential maze problem used in the previous 

sections of this chapter. Ring‟s CHILD agent performs well on this test, so it makes for a 

fairer comparison against the other agents we developed. It is also a good example of a 

continual reinforcement learning problem, as opposed to the more common episodic RL 

problems (such as cart pole, mentioned in Section 3.6). Figure 16 shows a diagram of the 

continual mazes that were adapted to the RL-Glue interface. 

 

 

Figure 16: A continual learning environment series, adapted from Ring (1994) 
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The input the agent receives in each cell is simply the number shown on that cell, and moving 

and bumping into walls and obstacles is handled exactly as it was in the first environment 

(Section 4.2.1). These mazes are plainly more complicated than the deliberately simple mazes 

in Section 4.2.1, have many obstacles and more problematically for the agent, ambiguous 

sensory input. The numbering of the cells follows a rule described by the cells or obstacles in 

the neighbouring cells, described below: 

 

 

Figure 17: Description of agent senses 

 

Because this is the only information provided to the agent it must learn to distinguish the 

identical sensory perceptions to determine the best action to take in all positions of each maze. 

The logical way to do this is to take into account a history of where the agent has recently 

been to determine the probable current state. Although any two identical sense states must 

also have identical neighbouring states (given the definition in Figure 17), the states adjacent 

to the neighbouring states are not usually identical in both cases, and this allows the agent to 

disambiguate the current state. 

The mazes are deliberately similar, and each one is only gradually more complex than the last. 

The intention of this design is that the optimal value function for each maze should have 

considerable overlap with that of the previous maze. A successful continual learning agent 

should therefore be able to transfer its existing knowledge to the new task, and in doing so 

speed up learning. 
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4.3 Agent design 

Because these experiments were designed to compare a number of different schemes for 

continual learning in scalar reinforcement problems the continual learning systems were all 

based on a single modular Q-learning reinforcement agent. This agent uses the scheme 

described in Figure 13, but instead of performing the execution and backpropagation steps on 

the neural network directly it communicates through an interface to a supervised learning 

algorithm, which is chosen dynamically and initialised at runtime.  

The generalised algorithm for this agent is the same as the neural network specific one, except 

that the update and execute functions are generic, and implemented by each supervised 

learning algorithm class according to their type. Any type of algorithm can be used as long as 

it can support basic operations such as execute, update, clone, and reset. The temperature, 

discount factor, and learning rate parameters are therefore part of the Q-learning agent, while 

algorithm-specific configuration such as the number of hidden units to use are part of the 

dynamic algorithm object it contains. 

A feed-forward neural network, Ring‟s Temporal Transition Hierarchies, a simple tabular 

algorithm, and a random number „algorithm‟ (for benchmarking and testing) were 

implemented according to their descriptions in Chapters 2 and 3 and tested in the course of 

this research. In this section, special consideration is given to the pseudorehearsal and context 

biasing agents, since they are relatively novel compared to the other agents implemented in 

the course of this research. 

 

4.3.1 Pseudorehearsal 

The pseudorehearsal learning agent is a reasonably straightforward addition to the basic 

neural network agent, which was implemented more or less exactly as described in Section 

3.8, by implementing a neural network version of the generic value function component for 

the modular Q-learning agent described above. Once the neural network agent is in place, 

adding pseudorehearsal to enable continual learning is just a matter of generating pseudoitem 

pairs and learning them alongside the normal environment/reward pairs. Despite this 

simplicity, there are a number of possibilities, optimisations, and variables to account for, and 

some important differences to the pseudorehearsal algorithm developed for supervised 

learning problems. 
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The best all-around performer of the pseudorehearsal schemes
9
 Robins (1995) tested was 

sweep pseudorehearsal, followed closely by random pseudorehearsal, and this research uses 

schemes that are similar to both. In both of his systems and our own, a collection (buffer) of 

pseudoitems is selected or generated every time a backpropagation is performed on an actual 

item. However, in Robins‟ system the actual item remains the same until it is fully trained, 

whereas in our system the actual item must change every step, as the agent navigates around 

the environment. 

Another matter requiring consideration is the method by which new pseudoitems are 

generated, and how often. The possibilities are: 

1. A large batch of pseudoitems, generated only once, after the initial base population 

(i.e., the first maze of either environment above) is learned 

2. Generate a batch at some other logical interval, such as when a new environment is 

entered or a new task is started (sweep pseudorehearsal) 

3. Generate just enough pseudoitems to fill the buffer every time the agent takes a step 

(random pseudorehearsal) 

All three possibilities have different benefits and drawbacks.  

The first method has the least computational overhead (from generating new pseudoitems) 

relative to ordinary backpropagation, but it has the conspicuous flaw that anything learnt after 

the initial population is learnt will be subject to catastrophic forgetting. Also, many problems 

will not have a large initial population that absolutely must be remembered anyway. However, 

it makes some sense to try this in problems such as the one described in Section 4.2.1, which 

was deliberately designed to be similar to the experiments of Robins (1995). 

The second method should be slower by some degree, but it makes a great deal more sense as 

nothing important should be forgotten. However, it works best when there is a sensible 

interval to use to decide when to generate new pseudoitems, and there needs to be some sort 

of signal from the environment to tell the agent to refresh the buffer. An alternative algorithm 

could generate new items every time the agent has taken some arbitrarily or empirically 

chosen number of steps, but there is not usually any guarantee that the agent will learn things 

at a strictly linear pace (since it moves in a non-deterministic way), so it may be hard to find a 

reliably good interval. It can be made to work in problems like those described in Section 

4.2.1 at least, and it might also be good enough in other situations. 

                                                 
9
 The rehearsal schemes (which had similar performance) were ruled out due to the problems with selecting and 

caching mappings for rehearsal in an environment with significant conceptual drift, described in Section 2.4.1. 
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Finally, the third solution is the most generally applicable, and it guarantees that everything 

the agent learns will be used at some point by the rehearsal mechanism. However, it is also 

the slowest, as so many more pseudoitems will need to be generated. Performance measured 

in steps taken may also be slightly worse, because the pseudoitem pairs may reinforce 

partially learned or temporarily incorrect information captured by the network. Robins (1995) 

found random pseudorehearsal to be generally less effective. 

There are also the additional questions of how large the batches and the active buffer should 

be, and whether it is better to always backpropagate the actual item before the pseudoitems, or 

if randomly interleaving actual items and pseudoitems has some benefit. 

4.3.2 Context biasing 

Context biasing fits readily into a Q-learning neural network agent, because all we have to do 

is add in the weight adjustment step before the normal backpropagation for each step. 

However, the same issue occurs as with pseudorehearsal, where the order in which training 

pairs are received from the environment in reinforcement learning is a lot less predictable than 

in supervised learning. As previously mentioned in Section 2.4.4.1, context biasing does not 

do well on standard tests of recall, so in the studies reported in Section 4.7 an additional test 

of French‟s savings measure was introduced to measure its performance. 

4.4 Experimental design 

The experiments measure the performance of a continual learning agent along three different 

metrics: 

1. Ability to retain knowledge while acquiring new information 

2. Ability to relearn information that is naturally lost over time in any finite system 

3. Ability to generalise, by exploiting knowledge transfer to perform better in new 

situations 

Baddeley (2008) investigates another metric; namely, the speed of convergence of a MLP 

agent on learned values. He concludes that catastrophic forgetting is a significant handicap in 

the learning process of a MLP agent, and that a pseudopattern rehearsal strategy may be quite 

beneficial. 

The experiments described in the following sections test the essential memory and learning 

characteristics that an intelligent agent needs to possess. Additionally, comparing several 

continual learning systems allows us to determine the best way to solve sequential 

reinforcement learning tasks. 
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4.5 Investigation of pseudorehearsal 

An important question that must be addressed is whether a neural network solving an RL 

problem will have a noticeably different learning profile to a network solving supervised 

problems. In particular we are concerned with whether it will be subject to catastrophic 

forgetting to a greater or lesser degree, and whether the pattern of sudden degradation is 

similar despite the data being structured in a significantly different way and presented in a 

different manner. 

4.5.1 Experimental procedure 

The goal of this experiment was to determine if catastrophic forgetting is a problem for a 

basic Q-learning neural network agent, whether pseudorehearsal could alleviate the problem, 

and what variations of the rehearsal algorithm work best. The procedure for measuring the 

impact of catastrophic forgetting on learning agents was therefore as follows: 

1. Learn the base population maze 

2. Learn a new mini-maze 

3. Test and record the performance of the learning agent on the original maze 

4. Repeat steps 2 and 3 for 32 more mini-mazes in random, non-repeating order (without 

resetting the agent) 

The experiment was repeated 50 times with a new agent each time (i.e., a new instance of the 

agent class with a newly initialised state but with all of the same parameters). The process for 

learning a maze is to start the agent from a random position in the maze, allow it to explore 

the maze until it reaches the goal or until 50 steps have passed (the mazes are small so this 

limit is quite reasonable), and repeat, periodically testing its deterministic performance on the 

maze, until it passes perfectly or it eventually fails to converge (after failing the test 50 times). 

For efficiency, the initial maze was tested at a long interval (100 trials), while the smaller 

mazes were tested after every learning trial. 

An agent‟s performance on a maze is tested by first disabling its stochastic action selection
10

, 

then starting it from every valid position in the maze in turn and recording whether or not it 

reaches the goal from each position within 50 steps. Its performance is the fraction successes / 

(successes + failures). This simple test setup was performed with a variety of agent types and 

configurations and produced a range of results. 

                                                 
10

 The effect of this is to make the agent always choose the action with the highest predicted DFR, i.e., it will 

behave as a greedy agent and make no attempt to explore the environment 
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4.5.2 Results 

Figure 18 shows the performance of a Q-learning agent using a standard three-layer 

perceptron with 32 hidden units while executing the learning task in section 4.5.1 in the 

environment depicted in Figure 15 (except for Figure 19, all figures in this section refer to that 

problem exclusively). The agent used a learning rate of 0.1, a discount factor of 0.9, and 

momentum of 0.5, and the trial was repeated 50 times to ensure a representative result. For 

this test the network has 7 binary input units (for example, the network input 0000101 

corresponds to state 5), which are needed to represent the 96 state inputs in binary, and 4 

output units. Each of the four outputs corresponds to a prediction of the DFR the agent 

expects from taking that action in the current state (importantly: not the actual reward values, 

which are usually just zero), as explained in Section 3.8. The vertical bars attached to each 

data point show a single standard deviation above and below the mean to indicate the 

variation in the different instances of the trial. 

For the RL experiment, average chance performance is approximately 0.3 when the tests are 

carried out with a neural network agent with an entirely random set of fixed mappings (i.e., 

the performance of a completely untrained agent, without stochastic action selection). This 

line of effectively zero performance is marked in bold in the figure. 

 

Figure 18: Measurement of recall for a basic neural network agent learning new 

items 
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This result is comparable to Robins (1995) results with an unmodified neural network 

attempting to recall an original dataset while learning new information. Those results are 

reproduced below, for comparison. 

 

 

Figure 19: Fall in base population goodness as new items are introduced (x-axis), 

adapted from Ring (1995). Figure shows results for base populations sizes (number 

of patterns) of 1, 4, and 20. 

 

The results from the Q-learning trial appear closest to the “base 4” series in Robins‟ 

supervised trial, although exact numerical comparison is impossible because the experiments 

used different measures of performance, different problems, and Robins‟ results are 

normalised between chance and perfect performance (as opposed to ranging from zero to 

perfect performance, since in practice performance is always above zero in his test). However, 

the trend is very similar. The Q-learning agent‟s performance drops to around 0.5 very 

quickly and then only gradually declines as new items are introduced. This result shows MLP 

Q-learning agents are at least as susceptible to catastrophic forgetting as supervised MLP 

learners, if not more so. However, it is still possible to avoid the problem, as the results in 

Figure 20 show. Note that the purpose of this test was to establish the limit of best possible 

performance that could be achieved. As such, the parameters used are not necessarily practical 

or realistic for larger problems. 
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Figure 20: Performance of agents using pseudorehearsal to avoid catastrophic 

forgetting 

 

Figure 20 shows the performance of a Q-learning agent with a neural network modified to use 

pseudorehearsal. Three different configurations are shown (alongside the non-pseudorehearsal 

agent, for reference), the difference being how often the pseudorehearsal buffer is regenerated 

from the network‟s stored knowledge. The other parameters were the same as for the 

unmodified network, and the vertical bars are also one standard deviation, although there is 

considerable overlap. In the once only (the “one buffer”) configuration, the pseudo-population 

was generated only after the base maze had been solved, since generating it immediately 

would only force the agent to rehearse the random function represented by its initial weight 

configuration.  

There are 63 states in the base population, so one pseudoitem was generated for each sense 

input the agent encountered in the maze and all 63 were rehearsed along with each new sense 

input the agent received thereafter. In this section we refer to this as “full pseudorehearsal”, 

even though it would be possible to generate additional pseudoitems for inputs the agent did 

not encounter, and for states that the network input layer can represent, but which the 

environment cannot generate (i.e., anything between 96 and 127). The performance is already 
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perfect for this agent, and the other agents showed no improvement with larger numbers of 

pseudoitems
11

. 

These results show that catastrophic forgetting of a base population
12

 can be completely 

avoided by using pseudorehearsal, since the base recall performance of the “one buffer” agent 

still averages nearly 1.0 even after all of the new mazes have been solved (learned). However, 

it appears that for the algorithm to work perfectly you must be able to rehearse with as many 

pseudoitems as there were discrete states in the base population, be able to store all of those 

pseudoitems indefinitely, and you must not care about catastrophic forgetting in everything 

learned after the base population (because the other series in the figure do not have perfect 

performance). None of these provisions are entirely reasonable for large problems, so it is 

worthwhile to investigate compromises that may still allow acceptable reinforcement learning 

performance. 

The other two series in Figure 20, “buffer each step” and “buffer each map”, show an agent 

using a completely new pseudo-population after each new item is learned, and an agent using 

completely new pseudoitems every time they are needed (at every step/transition where the 

agent receives feedback from the environment) respectively. The former has the advantage 

that it captures all of the new knowledge acquired by the network with minimal effort spent 

generating pseudoitems, while the latter has the advantage of never needing a long term 

memory store outside of the network. Unfortunately, the continual learning performance of 

the “buffer each step” agent is nearly as bad as the unmodified agent, so some external 

memory is clearly required. The performance of the “buffer each map” agent (which 

effectively has a separate short term memory) is reasonably good, remaining over 90%. 

However, for many continual RL problems it is not obvious exactly when a new „item‟ has 

been learned, so some other way of periodically refreshing the pseudo-population store is 

required. The other logical option is to refresh the memory after some fixed arbitrary number 

of steps (call it N). Figure 21 shows the performance of identical agents using different values 

of N. 

                                                 
11

 Note: “full pseudorehearsal” is still pseudorehearsal, because the output portions of the input-output rehearsal 

items comes from the network, instead of being cached from actual feedbacks received from the environment. 
12

 In this case, the base population is the state → DFR utility value function the agent learned while exploring 

the large beginning maze. 
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Figure 21: Performance using pseudorehearsal with a new pseudo-population every 

N steps 

 

Figure 21 shows the results of testing with full pseudorehearsal and a range of values for N. 

To help summarise these results, Figure 22 shows the final recall performance of each agent 

plotted as a single line. As Figure 21 shows, this metric roughly orders agents by their overall 

performance. Note that each episode or trial run of the agent exploring the maze has a 

maximum number of steps, after which the trial is terminated, and N can be greater than that 

number. When to regenerate the maze is based on the number of steps the agent has taken 

during the current “learning phase” (intervening these phases are the “test phases” where the 

performance of the agent set to use a deterministic action selection function is used to decide 

whether it has learned the maze). 

There is a clear relationship between the refresh period and continual learning ability. The 

performance of N=32 is comparable to the „each new map‟ method, while anything more 

converges on the performance of the single pseudo-population agent
13

. However, the each 

map method is still theoretically preferable, because then it is certain that nothing important 

escaped the pseudorehearsal process, and any pseudoitems corresponding to new items will 

                                                 
13

 This is because the delay until the second pseudo population is needed (N steps) will eventually be longer the 

total length of the test, for increasing values of N. 
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represent „completely learned‟ knowledge, rather than half formed or temporarily incorrect 

predictions. 

 

Figure 22: Final recall performance using pseudorehearsal with a new pseudo-

population every N steps 

 

4.5.3 Full-pseudorehearsal performance 

Generating a pseudoitem for every state the network encounters (and actively rehearsing all of 
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Figure 24 shows the average time taken for the different configurations to finish a trial, 
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using total CPU thread time used by the agent process in order to avoid random interference 

by other applications, and were repeated (50 times, as before) to ensure consistency. The 

exact times taken should only be considered instructive only relative to each other, since their 

parameters and programming are not perfectly optimised and the machine running them is not 

overly powerful. 
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Figure 23: The average number of movement steps taken by different agent 

configurations in each trial  

 

As Figure 23 shows, the agents using pseudorehearsal need between two and 8 times as many 

steps as the basic neural network agent to complete a trial, when the base population steps are 

excluded (because that number will always be approximately the same for all of the agents). 

 

Figure 24: The average CPU time taken for different neural network agent 

configurations to complete a trial 
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takes longer due to the rehearsal operations. In fact, when using full pseudorehearsal it takes 

longer to learn a few independent items (separate mini-mazes) than it does to learn a large set 

of interdependent ones (i.e., the large base maze). 

The number of steps is so much greater because the sheer amount of rehearsal being 

performed at each step interferes with the actual data that needs to be learned. Additionally, 

the „buffer each map‟ agent takes so many more steps than the single population („one 

buffer‟) agent because that agent needs to rehearse a larger set of items (the once only agent 

has a set of 64 pseudoitems instead of up to 96 when the 32 mini-mazes are included), and the 

extra items interfere with learning even more. However at the same time, the agent using all-

new pseudoitems each step does not take that much longer, despite using the maximum 

possible number of pseudoitems, because those pseudoitems interfere with actual learning 

less. This is because the more recently the items were generated, the smaller the difference 

between them and the current shape of the network value function (this is also the reason why 

that agent is so poor at preventing catastrophic forgetting).  

 

 

Figure 25: The number of steps taken while learning the new items, with an agent 

using a new pseudo population every N steps 
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Figure 25 demonstrates the continuum generated by the tension explained above, by plotting 

the average number of steps taken by an agent using a new buffer every N steps, for a range 

of values of N. Performance steadily worsens as the pseudoitem data becomes further 

removed from the data coming in from the environment (on average) as new mazes are 

encountered, until the balance tips in favour of a smaller, less changeable dataset. Figure 26 

(included for reference) is an expanded version of Figure 22, showing a continuation of the 

same trend as before. 

 

 

Figure 26: the same as Figure 22, but for larger values of N 
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4.6 Making pseudorehearsal more efficient 

The figures above show that pseudorehearsal can effectively prevent catastrophic forgetting, 

but they also show that too much of it used in the wrong way is time consuming. This may not 

be important for all agents (in embodied agents for example, the number of steps is often 

more important than computing time), but it is still an issue in general. Given this problem, is 

there a way we can find a balance between minimal computational effort and maximum 

continual learning performance?  

 

4.6.1 Using fewer pseudoitems 

For agents using an infrequently generated pseudo-population, effort could be avoided either 

by generating fewer pseudoitems or by rehearsing with a smaller active buffer
14

. The 

experiments in this section focus on the „new buffer each map‟ type of pseudorehearsal agent, 

because we have shown the other types to be either theoretically or in practice unsuitable for 

continual learning: 

 The „once only‟ agent has excellent continual learning performance, but is not 

generally useful if it can never permanently learn anything new 

 The „each step‟ agent has terrible continual learning performance, even though it has 

the theoretical advantage of not needing a persistent pseudoitem store 

 The „N steps‟ agent works reasonably well at some values of N, but is less reliable 

than the „each map‟ agent because the data is less consistent (and a good value for N is 

hard to pin down) 

                                                 
14

 The “active buffer” is the set of pseudoitems scheduled to be rehearsed along with the next real input. Where 

the active buffer size is smaller than the pseudo-population size, it is good practice to cycle the active buffer 

through the pseudo-population (as in Robins‟ sweep pseudorehearsal). 
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Figure 27: Performance of an agent using one new pseudo-population each map, 

with different pseudo-population sizes 

Figure 27 shows the result of solving the same continual learning task with several different 

size pseudo-populations. These results show that without a medium- to large-sized pseudo-

population, performance is not significantly improved relative to an unmodified neural 

network. At least 16 pseudoitems must be rehearsed along with each real item to give the 

agent noticeably better recall, and for nearly perfect recall (~90%) the agent must use a 

pseudo-population of 64 items. 

 

Figure 28: Performance of an agent using a new pseudo-population each map, with 

different active pseudo-buffer sizes 
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Instead of generating fewer pseudoitems to reduce computational overhead, another possible 

approach is to separate the pseudoitem population and the buffer used to actively rehearse 

pseudoitems. Figure 28 shows the result of solving the same task with an agent using a full-

sized pseudo-population regenerated every time the agent finishes learning a new item, but 

with an active buffer of varying sizes. Performance is slightly better, but overall they are not 

significantly different. For comparison, the final recall of each agent for each of the different 

sizes is shown in Figure 29. 

 

Figure 29: Comparison of Figures 27 and 28 

Just as the continual learning performance of both strategies is roughly the same for both 

strategies, they also require a similar number of steps and CPU time to complete a trial. 

  

Figure 30: Steps and CPU time taken for both strategies 
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4.6.2 Using a different input representation 

Section 4.6.1 showed us that, for this problem, partial pseudorehearsal was not really 

sufficient to avoid catastrophic forgetting, and the manner in which it was carried out had no 

effect on its efficacy. However, Section 4.5.3 showed us that full pseudorehearsal was not 

really a good option either, because it has a major detrimental effect on general learning 

performance (despite making continual learning possible). 

The main contributor to this apparent failure may be the binary input representation used for 

this problem. Generally, it is very difficult for a neural network to learn associations between 

large sets of arbitrary binary inputs, because the data has a high degree of overlap. It is much 

easier for a neural network to learn mappings between inputs and outputs using a unary 

encoding, because the input mappings are orthogonal (i.e., there is no overlap between them). 

For our research, the term „unary encoding‟ means that the network has one unit for each 

possible input, so if there were 32 states we would have 32 input units, and the state with 

number 17 would be represented as 00000000000000001000000000000000. For a binary 

encoding of the same range we would need 6 units and 17 would be encoded as 010001. 

Unfortunately, it is often impossible to use a unary encoding in a machine learning problem. 

If the states in the sequential maze problem of section 4.2.1 were numbered using random 32-

bit integers (instead of 7-bit sequential binary integers), then a network using a unary input 

encoding would need millions of input units, instead of just 32 for a binary encoding. On the 

other hand, if you know that there are not too many distinct states in a problem, it may be 

possible to avoid needing a binary representation by „hashing‟ each distinct state to a unique 

integer small enough to use a unary encoding. 

In this problem there are only 96 sequentially-numbered unique states
15

 anyway, and it is not 

too infeasible to use 96 inputs instead of 8 or 32. This section examines the same problem, but 

with a unary input encoding for states.  

The results depicted in Figure 31 show a comparison between an agent using a binary input 

representation and one using a unary representation. The unary agent has better continual 

learning performance, although it is still quite poor in absolute terms. The greater difference, 

however, is in the speed of learning by the two agents. 

                                                 
15

 Counting the 64 states in the large „base population‟ maze and each new state in the 32 mini-mazes 



70 

 

 

Figure 31: Recall performance for basic neural network agents using a distributed or 

localist encoding (i.e., a binary or unary input representation) 

 

 

 

Figure 32: Times with various sized pseudo-populations for rehearsal, shown as a 
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Figure 32 compares the performance of agents using unary and binary input representation. 

The agent using a binary input representation needs to take twice as many steps to learn the 

new items, and three times as many to learn the large base population. The cause of this is the 

same as the reason why the full-pseudorehearsal agents in Section 4.5.3 took so many more 

steps than the basic agent. Increased interference while learning decreases performance, 

combined with the fact that the network needs a more finely balanced weight configuration to 

learn non-orthogonal inputs than orthogonal ones. Due to the larger number of steps it needs 

to learn, the binary network also takes longer in milliseconds to complete the trials. However, 

the difference is largely mitigated by the increased computation per step with the unary agent 

(since the input layer has ten times as many units in the input layer, there are many more 

weights to process during learning). 

 

Figure 33: Comparison of recall performance with full-pseudorehearsal agents using 

a binary or unary input representation 

 

While the difference between the unmodified neural nets when using a unary instead of binary 

encoding is significant, the difference between the full-pseudorehearsal agents is even more 

dramatic. Both the „each step‟ and „each map‟ agents have essentially perfect recall (>99%) at 

the end of each trial. CPU Performance is also improved, but less dramatically (Figure 34). 

The „each step‟ agents take roughly the same time and steps to complete the trial (even though 

the unary agent has far better recall at the end), while the unary „each map‟ agent is faster than 

the binary one (although they have similar recall performance). 
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Figure 34: Comparison of performance with full-pseudorehearsal agents using a 

binary or unary input representation 

 

Using a more orthogonal input encoding solves the problems of poor recall and poor 

performance for the full-pseudorehearsal agents. However, the unary agents are still slower 

(though less so) at learning than non-continual agents, and their perfect performance makes it 

clear that a lot of unnecessary rehearsal is being carried out. Figure 35 shows the results of 

reproducing the experiments of Figures 27 and 28 with a unary input encoding 

4.6.3 A combination of techniques 

Figure 35 shows the performance of agents using a variable-sized combined pseudo-

population and active buffer (a), a separate full-sized pseudo-population and variable active 

buffer (b), and a pseudo-population regenerated every time the agent takes a step (c). 
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Figure 35: Performance of agents using variable-sized new pseudo-populations each 

map or each step, with a unary input encoding 
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Figures 25(a) and 35(b) match Figures 27 and 28, duplicating the results with a unary input 

representation. This time B is noticeably better than A, and B is twice as good as C (in terms 

of how many pseudoitems must be rehearsed to achieve a given performance level). 

Figure 36 shows the time the agents take to learn the new maps (i.e., not counting the base 

map) in milliseconds (a) or total steps (b), and a summary of Figure 35 (c). The differences 

shown in Figure 35 are notable, but they are not nearly as dramatic as the differences in 

performance seen with the binary-coded input scheme. The reason for this is in Figure 36(b): 

every variation of the agent takes around 200 steps to learn the 32 new items, or around 6 

steps per item. Generating the pseudo-population every 6 steps instead of every single step 

improves performance, but the difference is not extreme. Similarly, Figure 36(b) is better than 

36(a), but the difference is only that in 36(b) the pseudoitems are cycled out every step instead 

of every 6 steps, on average. 
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Figure 36: Performance of an agent using a new pseudo-population each step and a 

unary input encoding 
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4.6.4 Summary 

The investigation in this section shows that pseudorehearsal can be used to overcome 

catastrophic forgetting in reinforcement learning problems when combined with a Q-learning 

agent.  

However, the results also show that the technique can cause serious performance problems in 

certain situations. Neural networks are generally highly sensitive to the representation used to 

encode the current item (in this case, the current state) in the network‟s input layer, and using 

a different representation for the same value (for example, unary instead of binary) can have 

very significant effects. Pseudorehearsal magnifies this effect considerably (at least in this 

problem), by causing interference between real- and pseudo-items, which the network then 

has to overcome. Because of this the input representation should be as sparse as possible, and 

ideally the patterns are completely orthogonal. 

When a sufficiently sparse representation is possible, pseudorehearsal can allow a neural 

network agent to learn many new items sequentially, without significant catastrophic 

forgetting and without an unreasonable performance penalty. However, the size of that 

penalty is problem-specific, and there are trade-offs between speed, continual learning 

performance, and storage outside the network to consider. In general, it is best to use 

pseudorehearsal with a large pseudo-population and a small active buffer of pseudoitems, and 

to replace the population at an interval that will stop new items being forgotten. We can also 

avoid the need to keep a separate store of pseudoitems by generating them instantaneously at 

every step, but this decreases performance. 
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4.7 Does pseudorehearsal speed up learning? 

Baddeley (2008) found that a pseudopattern rehearsal strategy could speed up learning in 

certain types of (non-continual) reinforcement learning tasks. In our continual learning tasks 

we found that pseudorehearsal generally slowed things down instead. However, we would not 

necessarily expect pseudorehearsal to speed learning in those cases, since the new states were 

learned entirely independently of the network‟s existing knowledge. 

If we restrict the problem used in Section 5.2 to just the base maze, and enable 

pseudorehearsal during learning, we can attempt to reproduce the trend Baddeley found in his 

results (but with a different type of problem and learning algorithm, of course). The neural 

network agents in this section used a learning constant of 0.3, momentum of 0.5, temperature 

set to 0.0, a unary input encoding, 32 hidden units, and the experiment was repeated 50 times 

and averaged to make the results more representative. 

 As in Section 4.5.1, training is stopped when the agent passes a test by finding its way to the 

goal in less than the maximum number of steps from every position in the maze. Although 

accuracy could be quantified during learning by measuring the proportion of successful test 

episodes, the average number of steps per test trial, or some combination thereof, the figures 

below only show total training time. Baddeley‟s (2008) main thesis was that total training 

speed was reduced due to catastrophic forgetting, and besides plotting the „goodness‟ during 

training of a few different agent configurations, he made no attempt to quantify whether the 

„rate of goodness increase‟ was improved with his pseudopattern strategy, only total training 

time. 
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Figure 37: The number of steps taken to learn a single maze from scratch, using a 

variety of pseudorehearsal configurations 

 

Figure 37 shows the number of steps taken during training by agents learning just the single 

large base maze, with a number of different pseudorehearsal configurations. The results show 

that for at least some configurations, pseudorehearsal provides a significant speed benefit. 

However, other settings can cause severe performance problems, and for some, the agent may 

completely fail to converge (meaning the bar would be infinite). 
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Figure 38: The same as Figure 35, with only the more effective configurations shown 

 

Figure 38 shows the more effective configurations for using pseudorehearsal during initial 

(i.e., non-continual) learning. Small numbers of actively rehearsed pseudoitems regularly 

regenerated works best, and one of the pseudorehearsal agents was 40% faster than the 

standard agent.  

On the other hand, the same agent took 2.5 times longer than the basic agent to complete the 

training (Figure 39). The best all-round agent using 1 active item regenerate every 100 steps 

took only slightly more steps than the most efficient agent, but it still took slightly longer than 

the basic agent to finish the trial. 
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Figure 39: Time taken in milliseconds by the agents in Figure 38 

 

4.7.1 Summary 

The results in this section show that pseudorehearsal agents can in principle learn faster than 

standard neural network RL agents, when measured in the number of steps they needed to 

take before they were able to solve the maze perfectly, and they can be up to 40% faster. This 

is in line with the results from Baddeley (2008), which found a dramatic increase in 

performance. However, the improvement was far less drastic than Baddeley‟s, which was 

greater than 90%. 

In contrast to Baddeley (2008), the agents were still generally slower than their non-continual 

counterpart in thread CPU time needed, due to the additional computation pseudorehearsal 

requires. On the other hand, the agents in this trial were not optimised in the same way as 

Baddeley‟s were, and the learning algorithms were not identical. It is likely careful parameter 

optimisation could reduce the performance gap further. 
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4.8 Relearning effect investigation 

The review in Robins (2004) pointed out that context biasing agents are unable to retain 

information learned sequentially well enough to recall it adequately without retraining, so 

they do not perform well on supervised continual learning experiments testing exact recall. 

However, the results in Section 5.2 showed that orthogonalising the data in the input layer of 

the network improved the continual-learning performance of the basic neural network RL 

agent. In a similar manner, Context Biasing works by orthogonalising the data in the hidden 

layer of a neural network. It is therefore not unreasonable to expect the use of Context Biasing 

to have a positive effect on continual-learning performance compared to a standard agent. 

However, the continual learning performance of a context biasing agent may still be worse 

than a pseudorehearsal agent. 

 

4.8.1 Replicating French’s results 

Before testing the Context Biasing algorithm in a reinforcement-learning context, we must 

implement it and attempt to replicate the main result from French (1994). The purpose of this 

experiment is therefore to give us some assurance that the basic supervised implementation is 

correct. 

For his experiments, French used a subset of the 1984 US Congressional Voting Records 

dataset. He did not state exactly what subset, or exactly how he generated his secondary 

dataset, so a reasonable approximation of his dataset was used (included in Appendix A). 

French trained a 16-10-1 feedforward backpropagation network to associate 50 different 

voting patterns with party affiliation. He then invented a small set of ten "maverick" members 

of Congress, members who, on six key issues, voted like Democrats but declared themselves 

to be Republicans or vice-versa. He had the network learn this new set and then re-tested its 

performance on the original set of fifty associations, which he found was completely 

forgotten. Following this, he retrained the network on the original dataset. French called the 

speed with which the network relearned the original data a “measure of savings”, showing 

how completely the network had forgotten the original data. This “relearning effect” is 

discussed in more detail in French (1999). 

Figure 40 shows the result of replicating French‟s experiment. As expected, the results are 

nearly identical. 
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Figure 40: The results (above) from replicating the experiment in French (1994), 

with the original result for comparison (below) 
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4.8.2 Continual learning experiment 

As mentioned by French (1999), one interesting property of neural networks is that although 

they may easily forget a base population while learning a new population, it is often the case 

that the same network can be re-taught the disrupted base population in less time than it took 

to learn that population originally. This experiment measures that property, called the 

relearning effect. The environment used in this experiment is identical to the last, only the 

method of experimentation is slightly changed: 

For N from 1 to 20, repeat: 

 Learn the base population maze 

 Learn N new mini-mazes sequentially, in random order 

 Measure and record how long it takes the agent to relearn the original maze 

This experiment was also repeated 50 times, with the same process for training and testing the 

agent. 

4.8.3 Continual learning performance 

Despite the improvements shown in the supervised results above, the RL context biasing 

agent performs no better than the basic neural net agent, even with a range of different 

parameter settings. The best result, (shown in Figure 41) with β=0.5 and the other parameters 

as in Figure 40, is comparable to the basic agent. Apart from the additional parameter β, both 

results shown here were generated with agents using the same settings as in Figure 18. 

 

Figure 41: Comparison of performance between a basic neural net and a context 

biasing agent, for the continual learning experiment 
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4.8.4 Relearning 

Since context biasing is generally poor at maintaining perfect recall, we attempted to gauge 

the „measure of savings‟ French (1991) introduces by using the relearning experiment from 

Section 4.7.2. This experiment measures the amount of training needed (measured by 

recording the number of steps taken during training) for an RL agent to relearn a base 

population after learning N intervening items. 

This experiment was carried out with a standard neural network agent, a context biasing agent 

(both using the same settings as before), and a pseudorehearsal agent (using full 

pseudorehearsal as in Figure 18, with an active buffer regenerated after each new item). 

Figure 42 shows the results of that experiment. The context biasing agent is modestly faster 

than the basic neural net agent, but compared to the pseudorehearsal agent, it has poor 

performance in this trial. 

 

Figure 42: Comparison of agents completing the relearning experiment 

 

4.8.5 Summary 

In this section we successfully reproduced French‟s Context Biasing neural network 

algorithm, and also incorporated it into a Q-learning RL agent. Despite the significantly 

improved performance in the supervised test (Figure 38), the RL agent is not greatly superior 

to a basic neural net RL agent, while the pseudorehearsal agent has far better recall and 

relearning performance than the other agents. 
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4.9 Continual learning POMDP experiment 

One of the most important reasons why a continual learning agent is useful is that it can draw 

on its existing knowledge to learn new tasks quickly, just as intelligent biological agents can. 

The tests in this section quantify that ability using a version of the experimental maze design 

of Ring (1994). 

4.9.1 Continual learning experiments 

This experiment was essentially a duplication of the experimental setup Mark Ring used in 

section 7.3 of his thesis (Ring, 1994). Ring‟s experiments are a carefully designed test of 

continual learning (transfer of knowledge) performance, and it allows us to make a fair 

comparison to his Temporal Transition Hierarchies algorithm. 

For each of the nine maps from Figure 16: 

1. Train the agent through 100 trials of the map (stochastic action selection) 

2. Test the agent on the map for 100 trials (deterministic actions) 

3. If the agent reached the goal on every trial of the test, go to the next map, otherwise go 

back to 1. 

The test was repeated as with the others, to get a more representative measurement for each 

agent. Two versions of this experiment were run. In the first, the agent was completely reset at 

the start of each new map it encountered. In the second, the agent was allowed to keep its 

existing knowledge. Comparing these results allows us to determine whether the continual 

learning agents are able to successfully transfer their knowledge to new tasks, by measuring 

training times relative to the non-continual version of the experiment. 

4.9.2 Agent configuration and parameters 

The representation of each state in this problem is derived solely from the presence or absence 

of four walls around the agent, so it would be possible to use four binary units to encode the 

current state in the network‟s input layer. This has the theoretical advantage of allowing the 

network to recognise similarities between distinct states based on the presence or absence of 

specific surrounding obstacles, possibly increasing learning and generalisation. However, the 

investigation in Section 4.5.2 shows that the neural network agents are likely to be too 

sensitive to interference between closely overlapping units to take advantage of this, and the 

continual learning results in Ring (1994) also use a unary input representation. To avoid 

unfairly handicapping any of the agents in this test, all of them used unary representation for 
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the experiments in this section, and the TTH agent used exactly the same parameters as Ring 

(1994). 

 

4.9.3 Results 

Figure 43 shows the performance of an agent using Ring‟s Temporal Transition Hierarchies to 

solve each maze in Ring‟s continual learning task from scratch. Also shown is a Q-learning 

agent using a simple lookup table
16

 and delay lines (introduced in Section 3.7.1) to allow it to 

“remember” the three previously visited states. The tabular agent used a learning constant of 

0.3, temperature constant of 2.1, and a discount factor of 0.9. 

 

Figure 43: Performance of a CHILD and a Tabular agent learning each maze in 

Ring’s continual learning problem from scratch 

 

The results suggest that delay lines are an adequate tool for use in POMDPs, but they may be 

less efficient than the constructive perceptual window effect of TTH, which learns to optimise 

the exact number of states to recall. Alternatively, it may simply be the case that TTH 

converges significantly faster than a Tabular algorithm. 

                                                 
16

 Actually, the agent‟s internal representation is a hash table keyed by state histories (integer arrays). 
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Figure 44: The same as Figure 43, but with a rescaled vertical axis and including a 

basic neural network Q-learning agent 

 

Figure 44 shows the performance of a basic neural network Q-learning agent with parameters 

optimised for the maze environments. It used 64 hidden units, a learning constant of 0.3, 

temperature constant of 2.1, and a discount factor of 0.9, and a delay line window of 3 (the 

same as the tabular agent). The agent has comparable performance to the others for the first 

five mazes, but it is almost incapable of solving the more difficult tasks, taking around 100 

times longer on the last maze. However, the continual learning case (Figure 45) is very 

different to the picture shown by Figure 44. 
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Figure 45: The same as Figure 44, but the agents are not reset after solving each 

maze 

 

Not surprisingly, the tabular agent performs very well on the continual version of Ring‟s 

experiments, with results essentially identical to CHILD. The performance of the neural 

network agent is much closer to the other agents in this case as well, with performance only 

being 4 to 5 times worse, instead of 100 times slower. This is somewhat surprising as Ring 

(1994) concluded that CHILD was an effective continual learning agent on the basis that it is 

able to learn the mazes more quickly sequentially rather than learning each one from scratch. 

However, as we demonstrated in Section 5.1, an unmodified neural network RL agent has 

very poor sequential learning ability. Instead, the improvement appears to be the result of the 

phenomenon of shaping, which Ring also describes. The earlier simple mazes act as a rough 

template for the difficult mazes, and it is much easier for the network to fill in the details that 

way than to solve the difficult problems without a guide. This effect was also documented in 

detail by Rountree (2007), which pioneered the use of decision trees as a rough approximation 

to initialise a neural network (for supervised problems). 

Even so, the basic neural network agent has poor performance compared to the TTH agent, 

and this may (at least in part) be due to catastrophic forgetting. If so, then pseudorehearsal 

could be useful for improving the performance of the neural network agent. Full 
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pseudorehearsal (generating a pseudoitem for every visited state) is certainly not possible in 

this case because for that the agent would need to rehearse 65,536       pseudoitems for each 

real item
17

. Figure 46 shows the relative performance of the more useful pseudorehearsal 

configurations, with the pseudoitem population refreshed after each map, after every step, and 

every 100 steps (N=100 was found to be the most effective setting by trial and error, in this 

case). The pseudorehearsal agents used an active buffer of 8 items. A context biasing agent 

(β=0.5 had the best performance) is also included. 

 

 

Figure 46: The same as Figure 44, but with three differently configured 

pseudorehearsal RL agents added 

 

The different pseudorehearsal schemes have varying performance, and surprisingly the worst 

is the „each step‟ agent, which is actually worse than the standard NN agent. Context Biasing 

is only slightly better than the unmodified agent. The best performer is the agent using a new 

pseudo-population every 100 steps. Even though it learns the difficult mazes more slowly 

than the TTH and tabular agents it is much closer (around 10 times) than the non-
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 Assuming that the RL agent is configured so that the current input is presented to the network along with the 

three previous input states, there would be 16 possible inputs for each of the 4 states in the „perception window‟, 

for a total of     states 
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pseudorehearsal neural network agents, and is reasonably close to the TTH agent, with less 

than an order of magnitude difference between them. 

 

Figure 47: The best performing agents from Figure 46, with a rescaled vertical axis 

 

 

Figure 48: The same as Figure 45, but with pseudorehearsal and context biasing 

agents 
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In Ring‟s continual learning test (the same as Figure 45), the N=100 agent is also the best 

performing pseudorehearsal agent. Despite having less exhaustively optimised parameter 

settings, the agent is only around three times slower than CHILD (all of the pseudorehearsal 

agents used the same settings as in Figure 47). 

 

4.9.4 Summary 

The final stage of the investigation in this thesis was to directly compare a Q-learning neural 

network agent (using pseudorehearsal and delay lines) to other continual learning RL agents, 

with the POMDP in Ring (1994) as a benchmark. The pseudorehearsal agent was shown to be 

significantly slower than the much more complicated and finely tuned Temporal Transition 

Hierarchies agent. However, even without exhaustively optimising the pseudorehearsal 

agent‟s parameters, it is only around two to five times slower than TTH; close enough for it to 

be considered adequate, and it is certainly far simpler to use. 
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5. Discussion 

The aim of this research was to investigate the types of problems that intelligent agents need 

to solve to operate in the real world. In particular, those agents need to efficiently solve 

problems involving only limited reinforcement-level feedback. These problems are more 

difficult in contrast to entirely supervised problems (with perfect feedback), which tend to be 

vanishingly rare outside of artificial settings. We also considered the issue of solving RL 

problems continually, throughout the life of the agent, without excessive inefficiency or 

interference. Additionally, we investigated solving lifelong RL problems with neural 

networks, which make for a promising avenue of research given the success of the source of 

their inspiration, the large body of existing research on them, and their well understood yet 

powerful learning capability. 

Successful examples of continual learning neural networks (Robins, 2004) and RL agents that 

use neural networks (Tesauro, 1994) are not new. Individually, reinforcement learning, neural 

networks, and continual/lifelong learning are well-studied problems, but the combination of 

the disciplines is only beginning to be researched. 

Although research on RL agents employing neural network systems to solve sequential or 

continual learning problems is relatively uncommon, there is some existing research in this 

area. In particular, Baddeley (2008) studied the application of the pseudopattern strategy to 

RL problems, and Ring (1994) developed a specialised type of neural network RL agent 

capable of efficiently solving certain types of continual RL problems. However, Baddeley did 

not investigate solving continual RL problems, and only observed that catastrophic forgetting 

appeared to be degrading the performance of an RL agent learning to solve a non-continual 

problem. Ring‟s system, CHILD, was very successful at solving the problems he designed to 

test it, but it used a complicated constructive temporal learning algorithm with an unusual 

linear network design that (from experience) is difficult to implement and use reliably. Other 

researchers (Provost, 2007; Mitchell, 2003) have noted that CHILD could be very useful for 

solving continual reinforcement learning problems, but there has not been much actual 

experimentation, possibly due to the difficulty of implementation. 

Therefore, one important goal of this research was to investigate ways of solving continual 

RL problems that were simpler to use and benchmark against, but still powerful enough to 

solve interesting problems
18

. For this reason, the practical experimentation of this work was 

                                                 
18

 Note: a simple Q-learning agent with a lookup table utility store is perfectly capable of continual learning 

(since its entirely local representations are not subject to interference), but it lacks generalisation and does not 
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implemented in Java using the RL-Glue framework, a modular cross platform framework 

designed to encourage open research and foster academic collaboration in the machine 

learning community. 

 

5.1 Results 

The results in Section 4.4 showed that catastrophic forgetting is still a serious problem for RL 

agents using a neural network as a value function approximator, just as it is an issue for 

directly learning supervised mappings with a neural network. However, it appears to be the 

case that the forgetting in RL is more gradual, which is why a non-continual agent can still be 

reasonably successful despite the issue of conceptual drift (see Section 3.8) 

One reason why CF is more gradual is because the goal of reinforcement learning is usually
19

 

different to the goal of supervised learning. Instead of perfectly reproducing a mapping 

between supervised inputs and outputs, the RL agent only has to generate predictions of future 

reward (DFR) that are accurate enough for it to behave acceptably well. So even if the optimal 

DFR vector for the actions available in a given state is something like                     , 

the agent could get away with learning                      as long as its behaviour and the 

transition function of the environment are both deterministic. Because the agent needs to be 

less finely tuned, catastrophic forgetting may not arise so quickly. Therefore, one useful rule 

for reducing CF in RL problems is to stop training as early as possible, since overtraining 

seriously degrades continual learning performance. This can be more difficult than in 

supervised learning, because techniques like cross-validation are not always applicable (in the 

case of problems involving a single monolithic environment, for example). 

In some circumstances however, catastrophic forgetting may be even more of an issue for 

neural net based RL agents than for supervised networks. As Baddeley discovered, and as this 

research subsequently confirmed, CF is a problem even for RL agents solving non-continual 

episodic problems, whereas CF is only a significant problem for supervised networks solving 

continual problems. As we have seen, avoiding this interference can speed up RL learning 

significantly. 

                                                                                                                                                         
scale to complex problems. Therefore, a more sophisticated approach is desirable (like a neural network, for 

example). 
19

 In theory, any supervised problem can be rephrased as an RL problem, simply by changing (limiting) the 

feedback to the agent. In practice, doing so would be counterproductive and much slower than supervised 

learning, so the types of problem encountered in either domain are different by necessity. 
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Fortunately, there are several ways to reduce or entirely prevent catastrophic forgetting in RL 

problems, and in particular continual/lifelong RL problems. Before even attempting to use a 

continual learning algorithm, CF can be reduced by avoiding over-training, and by 

orthogonalising the input layer as much as reasonably possible and practical. The relatively 

simple Context Biasing algorithm can be used to modestly improve continual learning 

performance and training times. 

For even better results, pseudorehearsal can be adapted into an RL agent, and it can 

completely eliminate CF. However, care must be taken in configuring the pseudorehearsal 

algorithm for use in RL, because small changes can have a large effect on performance. 

Finally, although the pseudorehearsal agent is a powerful continual learner, CHILD from 

Ring (1994) is still a faster and more capable continual learner. On the other hand, CHILD is 

disproportionately complicated and difficult to implement; so much so that the author was 

unable to find any other example of a working version of the algorithm detailed in published 

literature (despite several researchers noting its apparent sophistication). 

 

5.2 Future work and extensions 

Pseudorehearsal allows a standard neural network RL agent to be used successfully as a 

continual learning agent, and it may even speed up non-continual reinforcement learning. 

Despite its success, it still lacks some of the flexibility that a true lifelong learning intelligent 

agent needs. However, care should be taken to avoid unnecessarily complicating the agent, 

because over-optimisation can make an algorithm more difficult for other researchers to use, 

contrary to the aims of this project. 

 

5.2.1 Scaling to more difficult problems 

Although the problems implemented in this research are relatively simple with only a few 

dozen distinct states each, it still takes a significant amount of time for agents to learn to solve 

them by reinforcement (especially when the results need to be repeated to find a 

representative average). Even in these problems, the neural network agents are noticeably 

slower than a tabular or TTH agent, and they seem disproportionately slower when solving 

the harder problems from scratch. The main problem seems to be that the neural agents are 

especially bad at tackling the larger problems without any previous experience, because they 
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do not seem disproportionately slower in the continual learning tests, when there is some prior 

knowledge to build on. 

The trend is likely to continue for even harder problems, and this should also be investigated. 

Considering the extremely poor performance of some of the neural networks trying to learn 

the final maze in Section 4.8.1 from scratch, it will probably be necessary to bootstrap neural 

network agents with some sort of prior knowledge, even on non-continual and episodic 

problems. One innovative method for this is discussed in Rountree (2007), section 3.6.2. 

Unfortunately, decision trees are a batch learning algorithm and could be difficult to adapt to 

work in an RL agent, which typically requires an online system to learn utility values. 

However, for at least some problems it could be possible to use a tabular agent to quickly 

generate some prior knowledge. Just as a decision tree can initialise a supervised neural 

network, the neural network utility function of an RL agent could be initialised by teaching 

some or all of the mappings acquired by the tabular agent to a neural net utility function 

directly, by supervised learning. 

 

5.2.2 “Lifelong” continual learning 

The basic pseudorehearsal RL agent explored in Chapter 4 uses a fixed and pre-defined neural 

architecture. However, for lifelong learning it is unreasonable to expect to always be able to 

predict the maximum needed size of the network upon its creation. Additionally, it is 

inefficient to allocate more computing resources than are needed initially, and using an overly 

large network can lead to over-fitting to the dataset or environment. 

A more general approach to lifelong learning is to add a constructive neural architecture to the 

RL pseudorehearsal agent. The Temporal Transition Hierarchies algorithm used by CHILD is 

constructive, so the idea works well in theory. The simplest way to accomplish this would be 

to incorporate the work of Eastman (2005), which extended the use of pseudorehearsal to a 

constructive neural algorithm (specifically, Cascade Correlation). However, Eastman found 

the algorithm tricky to develop and reported unstable results, so further research is needed. 

 

5.2.3 Solving arbitrarily complex POMDPs 

In addition to employing a practically unbounded constructive memory, intelligent agents 

need to be able to deal with ambiguous sensory data. In the field of RL, ambiguous hidden 

state problems are normally studied as POMDPs. To solve a POMDP, agents need to make 
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use of some amount of recent or historical sensory inputs that they have received to 

disambiguate the current input. The RL pseudorehearsal agent is able to solve POMDPs by 

using delay lines to include recent sense inputs in the current sensory window, but it has 

several limitations. Using delay lines requires that we know the exact number of previous 

states we need to disambiguate, which is not realistic. However, adding to the context 

unnecessarily quickly increases the size and complexity of a network. 

CHILD does not suffer from these limitations because the TTH algorithm incorporates a 

dynamic context window, created from the hierarchical structure of the algorithm. The RL 

pseudorehearsal agent could incorporate a dynamically increasing context window by 

incrementing its size whenever the current context was determined to be insufficient. 

However, using a dynamically increasing context is nearly as tricky as using a fully 

constructive architecture and it is hard to balance efficiently finding the right size with 

avoiding runaway increases due to elements during learning. 

 

5.3 Summary 

This research investigated in detail continual reinforcement learning problems, which 

(relatively speaking) have been less extensively studied than their supervised counterparts. 

When we implemented agents with neural network utility functions to solve problems of this 

type, we found that they suffered from catastrophic forgetting just as supervised neural 

networks do. In an attempt to overcome the problem, we implemented (in a Q-learning agent) 

and compared three types of neural network algorithms designed for continual learning: 

Temporal Transition Hierarchies (TTH), context biasing, and pseudorehearsal. 

Our results show that TTH agents are the most efficient at this kind of task, but they are also 

by far more complicated and difficult to implement than pseudorehearsal, which is still 

efficient enough to be useful for practical purposes. Even though we found it has some unique 

complications when used in the context of an RL agent, pseudorehearsal is by contrast a 

straightforward modification to a well-understood and widely recognised algorithm. For these 

reasons, we believe that pseudorehearsal is more likely to be useful for reinforcement learning 

and intelligent agent research. To help foster potential collaboration, the agents and 

environments in Chapter 4 were all developed with RL-Glue, an open source framework 

developed to improve collaboration among RL community researchers. 
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Appendix A: French94 Dataset 

Original Records Maverick Records 
D 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 D 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 
D 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 D 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 
D 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 D 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 
D 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 D 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 
D 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 D 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 
D 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 R 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 
D 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 R 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 
D 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 R 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 
D 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 R 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 
D 1 0 1 0 0 0 1 1 1 1 1 0 1 0 1 1 R 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 
D 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 

                
  

D 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 
                

  
D 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 

                
  

D 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 
                

  
D 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 

                
  

D 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 
                

  
D 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 

                
  

D 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 
                

  
D 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 

                
  

D 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 
                

  
D 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 

                
  

D 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1 
                

  
D 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 

                
  

D 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 
                

  
D 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 

                
  

R 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 
                

  
R 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 

                
  

R 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 
                

  
R 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 

                
  

R 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 
                

  
R 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 

                
  

R 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 
                

  
R 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 

                
  

R 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 
                

  
R 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 

                
  

R 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 
                

  
R 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 

                
  

R 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 
                

  
R 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 

                
  

R 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 
                

  
R 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 

                
  

R 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 
                

  
R 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 

                
  

R 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 
                

  
R 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 

                
  

R 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 
                

  
R 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 

                
  

R 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 
                

  
R 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 

                
  

R 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1                                   
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