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Ship investment under uncertainty: a real option approach.

Introduction

Discounted cash flow (DCF) methodology has long been advocated as the appropriate
theoretical  underpinning  for  maritime  investments  (Bendall,  1979;  Evans,  1984;
Gardner, Goss and Marlow, 1984). However, its limitations are also well-known and
can relegate its practical use to a confirmatory role, or management may override its
results in favour of an alternative preferred strategy (Teisberg, 1995; Bendall, 2002).
Uncertainty, and the difficulty to value the flexibility that management has in adapting
plans after a project is underway are significant limiting factors. This paper considers a
maritime investment where there is uncertainty and alternative strategies, and uses real
option analysis to value a flexible strategy that adapts to conditions as uncertainty is
resolved.

The proposed investment is  a new service based on a new technology:  high speed
container ships (Bendall and Stent, 1998). The service would be based in South East
Asia with Singapore as a hub port and offer fast turn-around times to  neighbouring
ports, Klang and Penang. The level of service that is offered depends on the number of
ships purchased for the project. Being a new technology they must be purchased new
and, clearly, in discrete units. There is a one year time to build. The demand for the
service is the main uncertainty. Besides day to day variations in demand and economic
cycles which affect long run achievable load factors, there are the initial uncertainties
associated with the new type of service and technology. While market research might
reduce  this  latter uncertainty,  it  can only be resolved over  time as  customers  gain
experience  and adapt  or otherwise  to the particular characteristics.  It  could be,  for
instance, that an eventual high level of demand would favour putting two ships on the
service whereas an eventual low level of demand might favour just one. Competition is
a  consideration.  Offering  an  inadequate  level  of  service  to  either  port  leaves  an
opportunity for a competitor and adversely affects a strategy such as servicing just one
port initially with a view to extending the service to the other port if conditions prove
favourable. Freight rates also have a significant bearing upon the decision. The paper
considers the case where demand for the service as well as freight rates are uncertain. It
provides a methodology using Real Option Analysis for adapting the number of ships
employed to actual market experience.

Real  option analysis,  ROA,  is  a  methodology for  valuing  flexible  strategies  in  an
uncertain world (Trigeorgis, 1995). It builds on the traditional DCF technique. It owes
its quantitative antecedents to the seminal works of Black and Scholes (1973), Merton
(1973) and to the binomial approach of Cox, Ross and Rubinstein (1979) in pricing
financial options.  Like financial  options,  real  options are  the owner’s  right  but  not
obligation  to  trade  an  underlying  asset  or  income  stream  under  predetermined
conditions. The simplest financial options are the right to buy (call) or sell (put) the
asset at a predetermined price (exercise price) for a predetermined period of time (life
of the option). Real option parallels are management’s ability to expand or contract a
project  in  light  of  actual  outcomes  after  it  is  underway.  Like  financial  options,
management’s strategies can be far more complex than simple calls and puts, such as
abandoning or delaying a project. The methodology, including risk-neutral valuation as
a general principle, has evolved to price complex financial options and can be applied to
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real options too. There is the matter of selecting an appropriate underlying asset which
spans the project’s uncertain states. Although projects are not usually traded per se, the
process of capital budgeting models the market value of their cash flows (Kasanen and
Trigeorgis, 1993). Copeland and Antikarov (2000) advance the concept of Marketable
Asset  Disclaimer  to  justify  the  use  of  the  present  value  of  inflexible  strategies,
estimated  by  the  traditional  discounted  cash  flow  techniques,  as  the  appropriate
underlying asset. No stronger assumption is required than for the traditional analysis. 

This is the method employed to value the strategies in the present paper. A simulation
model is first built to model particular fixed services. These are the underlying assets.
The model provides estimates of their present values which are used as market prices. It
also provides estimates of their volatilities and correlations which are used to model the
evolution of their prices in a second step when options are valued. The particular option
used in the paper is that to exchange one risky income stream for another. The different
income streams are the alternative services which are to be valued as a flexible strategy.
The methodology is applied to a hub and spoke system. It is readily adaptable to other
situations.

The traditional DCF analysis.

STRATEGIES

Three strategies for a hub and spoke system, using 100 TEU high speed container ships
centred at  Singapore and serving two ports,  are first  explored in a traditional DCF
analysis. The data are taken from the earlier paper (Bendall and Stent, 2001) where they
are explained in more detail. The three strategies are summarised in Table 1. In the first
strategy there are two round voyages from Singapore to Klang each week, two round
voyages  from Singapore  to  Penang,  and  three  voyages  from Singapore  to  Klang,
proceeding to Penang and then returning to Singapore. The total time to complete these
seven voyages is 144 hrs. This strategy requires just one ship, with the remaining 24
hours to make up the 168 hours available in the week (seven days at 24 hours per day)
being used for scheduled maintenance. 

----------Table 1 about here----------

Table 1: Three strategies for a hub and spoke system
Voyages per week Total Number

Klang Penang Klang/Penang Time of Ships PV†
(14hrs)‡ (22hrs) (24hrs)

Strategy 1   2 2 3 144 hrs 1 61.06
Strategy 2   9 7 0 280 hrs 2 121.00
Strategy 3 10 0 0 140 hrs 1 67.56
† USD Million.
‡ Round voyage times including turn-around.

The other two strategies in Table 1 are explained similarly. Strategy 2 would deploy
two ships while strategy 3 would deploy one, both strategies leaving a few spare hours
per week after allowing 24 hours per ship per week for scheduled maintenance.
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The Present Values (PVs) in Table 1 are derived from the following model for annual
cash flows:

nchRwYXF
qp
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,

))(( (1)

where, for a given strategy and year t:

tF  is the calculated free cash flow,

ptqX  is the number of TEUs carried out from the hub to spoke port p in quarter q,

ptqY  is the number of TEUs carried in from spoke port p to the hub in quarter q,

ptqR  is the base freight rate per TEU carried to or from port p in quarter q,

pw is a loading factor for port p,
h is the variable cost per TEU carried,
n is the number of ships deployed in the strategy, and
c is the operating cost of a ship per annum.

The number of TEUs carried ( ptqX , ptqY ) and base freight rates ( ptqR ) are modelled as

stochastic variables with quantities measured in quarters to allow variation within years.
The other variables, denoted by lower case letters, are modelled as fixed parameters. A
15-year time horizon is adopted as this is the life of a ship. Stochastic simulation is
performed to estimate average annual cash flows for the strategy, ,,...,, 1521 FFF  and the
PV calculated:
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where k is the cost of capital.

STOCHASTIC VARIABLES

For a TEU to be carried there must be both a demand and available ship capacity. Thus
simulated  values  for  ptqX  and  ptqY  are  calculated as  the  minimum of  simulated
quarterly demands and ship capacity. For each port p, the quarterly demand for carrying
TEUs out from the hub to the port, and in to the hub from the port are denoted by ptqA

and ptqB  respectively. These demands, and the stochastic base freight rates  ptqR , are

modelled as triangular probability distributions with three parameters each, namely the
two extremes values (best and worst cases) and the most likely value. The parameters
express management judgement and are listed in Table 2. The triangular distribution
can take a wide range of shapes and is often used for a subjective distribution (Law and
Kelton, 1991). 

----------Table 2 about here----------
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Table 2: Parameters for triangular distributions
Worst case Most likely Best case

Demand, TEUs per week†
Port From hub To hub From hub To hub From hub To hub
Klang 400 500 700 750 1000 1100
Penang 200 300 600 650   900 1000
Base freight rates per TEU‡
Klang 200 USD 240 USD 260 USD
Penang 200 USD 260 USD 300 USD
† TEUs per week are multiplied by 13 to get quarterly parameters.
‡ The same rate is used for both from the hub and to the hub.

Two sources of dependencies are modelled. The first recognises dependencies between
stochastic variables, such as positively correlated demands between ports. If demand at
one port is high due to positive economic conditions, then it is likely to be high at the
second port too. Such between-variable correlation is modelled using a normal copula
function.1 The second source of dependency allows correlation over time, such as that
attributable to the business cycle: periods of positive or negative economic conditions
tend  to  persist.  This  type  of  dependency  is  modelled  by  generating  first  order
autocorrelated standard normal variates as inputs to the method of copulas above. The
parameters used to induce both type of dependencies are listed in Table 3. The actual
values have just a small effect on the average cash flows estimated for Equation (2) and
thus  on the  present  values  estimated for  strategies.  However,  they  do  effect  their
estimated volatilities and correlations and hence option values. A sensitivity analysis is
performed below.

----------Table 3 about here----------

Table 3: Correlation coefficients
Demand between and within (to and from hub) ports 0.30
Between freight rates 0.30
Between demands and freight rates 0.40
First order autocorrelation 0.70

At the time of writing economic conditions have been negative with freight rates at the
lower end of those in Table 2. The copula function’s normal variates for base freight
rates in quarter  1,  year 1 were therefore initialised to their 5th percentiles for each
simulated run.2

Observations on the number of TEUs carried per quarter,  ptqX  and ptqY , for Equation

(1) were calculated from the simulated demands, ptqA  and ptqB , as follows:

)1300,(min pptqptq nlAX = , )1300,(min pptqptq nlBY = (3)

where the factor 1300 is the product of the 13 weeks in a quarter and the 100 TEU size
of a ship, n is the number of ships deployed in the strategy, and pl  is a loading factor to
recognise that even under the best  conditions, with stochastic demands full  loading
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might not be achieved. The factors used in the analysis are %96=pl  for voyages each

way to single ports, Klang or Penang alone, and the lower value %94=pl  for a joint
voyage to Klang/Penang.

FIXED PARAMETERS

The values used for the remaining variables, in lower case letters in Equations (1) and
(2), are summarised in Table 4. The loading factor is applied to base freight rates and
reflects the regular, high-speed characteristics of the service. Penang, being a longer
journey, supports the higher premium. Voyage costs were calculated as the sum of port
costs of 1000 USD per port visited, and fuel costs based on an average cruising speed of
45 knots, an engine power rating of 58,000 kW and a fuel cost of 160 USD per tonne.
All dollar values were modelled in constant real terms over time.

----------Table 4 about here----------

Table 4: Fixed parameters

pw Loading factor  - to/from Klang 1.40

                          - to/from Penang 1.60
 h Variable cost per TEU 50 USD
 c Annual operating cost per ship, made up of:

    Crew, supplies, per week 8500 USD
    Voyage: per voyage to Klang 20,622 USD†
                  per voyage to Penang 36,212 USD†
                  per voyage to Klang/Penang 37,645 USD†
    Ship maintenance 400,000 USD
    Ship insurance 1.75% of ship cost

 k Cost of capital 10% PA
† Port costs plus fuel costs, explained further in the text.

THE SIMULATION

A  simulation  of  15,000  iterations  was  performed.3 To  minimise  random variation
between strategies the same sample of demands and freight rates stochastic values was
used to compute cash flows for each of the three strategies. Cash flows were calculated
using  Equation  (1)  for  the  first  five  years.  To  model  the  decrease  in  uncertainty
expected as the new service becomes familiar, the years 3, 4 and 5 cash flows were
averaged for each iteration and the average was used for its following ten years (years 6
though 15). Since PVs are calculated from expected cash flows, estimated by averaging
over the iterations, this has little effect on the values estimated for them. However, it
does limit the volatility of returns estimated for option values.

NET PRESENT VALUES (NPV)
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A period of one year, the time to build a ship, elapses between the decision to commit
to a particular strategy and the commencement of its cash flow. NPVs are therefore
evaluated in Table 5 by discounting PVs back a further year at the cost of capital, and
subtracting the cost of the ship expressed as the delivery price discounted at the risk-
free rate, 5%.

----------Table 5 about here----------

Table 5: NPVs (millions USD)
Service PV(Table 1) Ship Cost† NPV‡

Strategy 1 Both ports, 1 ship 61.06 60 –1.63
Strategy 2 Both ports, 2 ships 121.00 120 –4.29
Strategy 3 Klang only, 1 ship 67.56 60 4.27
†60 million USD per ship due when it is delivered.
‡ PV/(1+k) – Ship Cost/(1+r)

The third strategy, employing one ship and servicing Klang only, is the only strategy
with a positive NPV. This is  consistent with the  earlier  paper where all  variables,
including demands and freight rates, were modelled as deterministic quantities. Klang is
the closer port to Singapore and can fit in more journeys per week. Providing demand is
there to service it will be preferred. 4

NPVs are  averaged  over  a  range  of  possible  paths  for  demands  and freight  rates
whereas in reality just one path will be followed. Should Penang demands or rates turn
out to be in their upper ranges then servicing Penang can be highly profitable. This is
demonstrated  in  Table 6  where  NPV has  been  recalculated under  more favourable
conditions for Penang. In fact, the second strategy happens to be the best in more than
27% of simulated iterations. While interesting and suggestive of further strategies that
explore servicing Penang, a static NPV analysis is not the appropriate tool. There is no
theoretical justification to apply the same cost of capital that was deemed appropriate
for the original levels of uncertainty, 10%, to individual paths or to compute conditional
NPVs as in Table 6. 

----------Table 6 about here----------

Table 6: NPV millions USD, recalculated for strategy 2 (two ships).
Penang Original demand High demand†
Original freight rates –4.29 17.87
High freight rates† 14.06 39.71
† For ”High” scenarios rates and demands were modelled as centered triangular
distributions with limits taking the original most likely and best case values.

Real option analysis (ROA)
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A FLEXIBLE STRATEGY

The flexible strategy valued here is to proceed to service both ports Klang and Penang
with one ship (original strategy 1), and expand to two ships (original strategy 2) or
change to servicing  Klang  only  (original  strategy  3)  as  uncertainty  is  resolved.  A
regular  service is  provided initially  with five visits  to each port per week.  This is
sufficient for a high-speed service,  though capacity is limited as three of the visits
would include both ports on the one round voyage – see Table 1. Experience would be
gained with both markets and the ship operator well placed to preempt competition. It is
possible that conditions turn out to favour one ship continuing to service both ports and
the decision to continue with the first strategy remains. Another option would be to
terminate the project completely if conditions warrant this. This is unlikely to add much
value in the present circumstances and is not carried through here.

ROA is  used  to value the  flexible strategy  outlined.  The original strategy  1 had a
negative NPV of –$1.63 million. The options add value which ROA calculates. If the
combined value of the NPV and the options exceeds the NPV of the original strategy 3,
then it is the better. 

AN OPTION ON THE MAXIMUM OF THREE ASSETS

The ship operator proceeds with the original strategy 1 and has the option to change to
strategies 2 or 3.  The ship operator will exchange strategies to adopt that with the
maximum market value.  While analytical formulas have been developed for pricing
European-style  options  on  the  maximum  of  several  non-dividend  paying  assets
(Johnson, 1987), these are not applicable here. The decision to change strategies is not
restricted to a fixed point in time, and more significantly, the asset is depreciating. The
life of the ship is finite and its value reduces as the project  goes forward in time;
dividends must be included in the model. Numerical procedures can cope with both
these  features.  An  efficient  multinomial  lattice  model  developed  by  Kamrad  and
Ritchken (1991) is used to calculate the option value.5

Adapting the ROA methodology in Copeland and Antikarov (2000) the present values
of  the  three  strategies,  estimated  by  simulation  above,  are  market  prices.  Their
movements over time are modelled as multivariate geometric Brownian motion with
drift being the risk-free rate of return, and with volatilities and correlations estimated
from the first year of the simulation. 

ESTIMATION OF VOLATILITIES AND CORRELATIONS

The present value of ith strategy at starting time, 0iP , is from Equation (2) above:

)1(/
15

1
0 k tFP

t
iti += ∑

=
(4)

where the subscript  i,  i=1,2,3, has added to the average cash flow in year  t,  itF , to
denote the strategy. In particular, for each strategy and year t:
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where j runs over the N iterations of the simulation and ijtF  is the cash flow calculated
for  strategy  i,  iteration  j of  year  t.  It  will  be  recalled  that  while  iterations  are
independent, the same simulated demands and freight rates for each iteration  j were
used to calculate the cash flows for each strategy. This dependency between strategies
is required for the estimation of their covariances below. For strategy i and iteration j
the present value of the cash flows at the start of year 1, denoted 1ijP , is estimated as:

)1(/
15

2
1 k tFP

t
ijtij += ∑

=
(6)

and the return for that strategy and iteration:

))ln((
011 /

iijijij PPFz += (7)

The 3xN sample of returns )( ijz  contains one column for each strategy and one row for
each iteration. It is an estimate of the variance-covariance matrix of market returns, and
thus volatilities  and  correlation coefficients.  The  latter  estimates, from the present
simulation, are shown in Table 7.

----------Table 7 about here----------

Table 7: Statistics estimated for market returns
Strategy 1 Strategy 2 Strategy 3

Volatility 0.0976 PA 0.2320 PA 0.2185 PA
Correlation coefficients

Strategy 1 0.8813 0.7023
Strategy 2 0.8438

OTHER CHARACTERISTICS OF THE OPTION

Other assumptions needed to value the option are summarised in Table 8.

----------Table 8 about here----------

Table 8: Other assumptions
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Life time of option 3 years
Decision periods Every six months
Dividends Market  values  reduced  by the  ratio  of average  present

values each six months.
Ship depreciation Straight line.
Risk free rate of interest 5% effective PA

The option is valued over three years with the decision whether to exercise modelled at
regular six-monthly intervals. Three years is a reasonable timeframe for making a final
decision. There is a reason for keeping this period short, namely to limit the potential
increases in market values that are modelled.  Ship capacity is finite. Although it  is
feasible that demand can turn out to be very favourable, practical loading factors bound
the number of TEUs that can be carried. Equation (3) imposes this constraint in the
simulation model, but asset prices in the market are modelled as geometric Brownian
motion with no such explicit  constraint.  The volatilities in Table 7 are assumed to
remain constant over time. That the range of asset prices in the market model continue
to be consistent with the simulation model, at  least over a period of three years,  is
supported by  some simple calculations.  The upper  ranges  of  asset  prices  over this
period  remain  less  than  present  values  calculated  with  demands  and  freight  rates
varying in their upper ranges.6

Dividends are modelled by scaling down the market values of assets over time in the
same ratios that the present values of cash flows diminish in Equation (4). The scaling is
done in the multinomial lattice during the numerical calculation of the option value, at
points after making exercise decisions.7 The modelling of dividends is an important
feature of the option valuation because of the finite life of a ship. The longer a decision
to change strategies is delayed, the less will be the time for its benefits to accrue. For
instance, if expectations continue as modelled for Table 1 then delaying a change to
strategy 3 is foregoing value.
 
The shipper requires one ship to proceed with the first strategy. This ship is retained
should the decision be made to change to either of the other two strategies, so its cost is
left from the calculation of the option value. However, the cost of a second ship must be
deducted on a change to the second strategy. Since the earliest that such a change could
occur is after six months plus another one year time to build, and the life of a ship is the
same as that of the project,  a second ship will  have a terminal value.  Straight  line
depreciation is assumed to derive the terminal value. The latter is discounted at the cost
of capital, 10%, then deducted from the ship’s price to model the cost of the second
ship.

THE OPTION VALUE

The formula for valuing the option is at the end of the multinomial tree (time denoted
by T) is

),)1/()1/(,0max( 1312 TTTTT MMMrskM −−+−+ (8)

where iTM  is the generated market value of the original strategy i. Since the value of
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the second strategy is subject to the one-year time to build, its value is discounted one
year, and the discounted cost of the second ship, as calculated above, deducted. Folding
back is performed in the usual manner using risk-neutral probabilities from Kamrad and
Ritchken (1991) and the risk-free rate. At a decision step, every 6-months folding back,
the option value is the maximum of usual fold-back value (wait) and the early exercise
value calculated as in Equation 8. 

THE RESULT

The calculated value of the option is $13.43 million. The additional value it adds to the
NPV of strategy 1 is shown in Table 9. Since the NPV of the flexible strategy exceeds
that of the original strategy 3, $4.27 million, it is preferable.

----------Table 9 about here----------

Table 9: NPV of flexible strategy (millions USD)

Service
(Per Table 5)
Inflexible Flexible

Strategy 1 Initially serve both ports with 1 ship 61.06 61.06
Options Increase service to 2 ships or change to Klang only 13.43

61.06 74.49
Ship cost 60.00 60.00
NPV† –1.63 10.58
† PV/(1+k) – Ship Cost/(1+r)

SENSITIVITY ANALYSIS

As noted previously, the option value is dependent on the correlation coefficients in
Table 3. A sensitivity analysis was performed. The option value was recalculated after
increasing all the coefficients by 0.1, and again after decreasing all the coefficients by
0.1. Table 10 contains the results.

----------Table 10 about here----------

Table 10: Sensitivity analysis (millions USD)
Correlations (Table 3): Lower Original Greater

PV of original strategy 1 61.92 61.06 59.83
Value of options 11.06 13.43 18.61
NPV of flexible strategy 9.20 10.58 14.16

Summary and conclusions.
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ROA can be applied to value flexible strategies in conditions of uncertainty.

It has been applied to value a new venture with new technology and new markets in
shipping.

A flexible strategy of servicing two markets, Klang and Penang, with one ship, with the
option to expand the service by employing two ships, or contracting to Klang alone as
uncertainty is resolved, was valued as an option to exchange one risky income stream
for the best of two others. This flexible strategy was found to be more valuable than
either of three alternative, inflexible strategies.

ROA is a useful tool for decision makers

ENDNOTES

1  Correlated standard normal variates are first generated; the resulting observations on
their cumulative densities become the inputs for the Inverse Transformation Method
which is then applied in the usual manner to generate observations on the individual
marginal  distributions.  While  the  originating  normal  variates  have  the  specified
correlation coefficients,  when  measured  for  generated  marginal  distributions  their
values are perturbed slightly. A reference to copula functions is Dall’Aglio, Kotz, and
Salinetti (1991).

2  Other stochastic variables were initialised randomly. Since all stochastic variables are
dependent  the initial  freight  rates  are random, too. In almost all  runs their  initial
values were in the left side of their triangular distribution (Table 2). Their average
initial value was near their 10th percentiles.

3  Thirty  independent  batches  of  500  iterations  each,  which  facilitates  the  later
measurement of sampling error in the option value.  The model was written  and
simulations performed using the Matlab program (The MathWorks, Inc, Natick, MA,
USA). 

4  The  negative  contribution  from  servicing  Penang  would  manifest  directly  by
including an additional strategy servicing Penang alone.   This strategy has not been
included as it is an extremely unlikely outcome. Also, going beyond three states (one
ship Klang/Penang, two ships Klang/Penang, one ship Klang) essentially prohibits the
numerical calculation of option values below with the available desktop computing
facilities.

5  The model was coded in C++ and tested against known analytical results. It was also
tested against an alternative numerical procedure developed by Boyle et.al. (1989),
which was coded in C++ as well for the purpose. The method is iterative with both
the storage required for intermediate calculations and the total number of calculations
growing exponentially as the number of states and iterations is increased. This is the
limiting factor referred to in Note 4 above. With three states,  n=75 iterations were
performed to obtain the option values in the study. Varying n slightly about this value
had little effect on the values obtained. The method also needs a value for a parameter
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λ.  The  value  1.25 was used.  The  option values obtained were insensitive to  this
parameter.

6  From Table 7, the “up” factors over three years for a binomial model, σ3e , are 1.19,
1.53 and 1.48 for the three strategies respectively. Recalculating present values as
was done in Table  5  with “high”  demands  and freight rates  for  both Klang and
Penang, scales them by the greater factors 1.21, 1.67 and 1.73 respectively. While the
meaning of such values is imprecise they do support the validity of the market model.
Capacity constraints are not a significant issue over a three year period.

7 Copeland and Antikarov (2000), Chapters 5 and  9. For the purpose of calculating 6-
montly ratios, annual cash flows were assumed to fall evenly over the year. Further,
since the ratios did not differ much over the three strategies the same value,  the
maximum, was used for each. The ratios are, expressed as percentage decreases in
value for the first six months, the second six months, etc, in sequence: 5.2%, 5.4%,
6.0%, 6.4%, 6.3%, 6.7%.
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