
Using Multiple Representations

Within a Viewpoint

Nigel James Stanger

A thesis submitted for the degree of

Doctor of Philosophy

at the University of Otago, Dunedin,

New Zealand.

November 30, 1999

Dedicated to the memory of my father.

Abstract

There are many different types of information to be considered when designing

an information system, and a wide variety of modelling approaches and notations (or

representations) have been developed to describe these different types of information.

Some types of information are better expressed by some representations than others,

so it is sensible to use multiple representations to describe a real-world phenomenon.

Reconciling and integrating descriptions expressed using different representations is

therefore an important part of the design process.

The objective of this research is to aid this reconciliation and integration within the

context of information systems design. That is, to facilitate the use of multiple modelling

representations for describing a phenomenon. To achieve this objective, the author has

chosen an approach based upon translating descriptions of a phenomenon between

different representations.

This thesis provides several important contributions in the area of information sys-

tem design using multiple representations. Related work in the area is reviewed, and

from this review is derived a terminology based on viewpoint-oriented methods that

provides a consistent framework for the discussion of multiple representations.

Previous research into the use of multiple representations has focused on semantic

data models. This is extended in this thesis to include diverse modelling representa-

tions such as functional dependencies and data flow modelling.

The process of translating between different representations is explored in depth,

and several important issues identified. Translations are defined by a collection of rules

that specify the mappings between constructs of representations. An abstract notation

is developed for expressing these translations, and an extended version of Amor’s

(1997) View Mapping Language is defined for the purpose of building detailed rule

specifications.

Heuristics and enrichment are proposed as two methods of improving the quality of

translations. A measure for determining the relative quality of translations is devel-

oped to show that heuristics do indeed enhance translation quality.

In addition, a method is developed for using translations to highlight potential de-

sign inconsistencies by translating descriptions expressed using different representa-

tions into the same form and comparing them.

v

Acknowledgements

The last four years have been a testing time, and this thesis could not have been

completed without the help of a remarkable group of people.

First and foremost, I would like to thank my supervisor, Dr. Richard Pascoe. With-

out his vigilant supervision and constant ‘encouragement’ this document would prob-

ably not have been anywhere near as good as it is. I would also like to thank my second

supervisor, Prof. Philip Sallis, for his continuing support and especially for granting

me a semester’s leave from teaching in order to write most of this thesis. Without it

this would have easily taken another year to complete.

I would like to thank to George Benwell for reading an earlier version of my ram-

blings and providing insightful comments and constructive criticism. I would like

to thank Dr. Robert Amor for his help with VML, and Drs. John Grundy and John

Hosking for their interest and encouragement. I would also like to thank my thesis

examiners for their helpful comments.

A big hi to Kevin, Nicola, Mike, Judi, Roy, Matthew, Kaaren and Ruth for providing

me with something at least vaguely resembling a social life during the last two years.

Saturday night has been my only real ‘night off’ for a long time, and it’s great to be

able to share that with friends. Thanks also go to Richard Kilgour and Brendon Sly for

providing a source of music while I worked.

Donald Arseneau provided the macros to generate the →� and ⇀� operators, and

other useful TEX and LATEX help; and Denis Girou provided answers to weird PSTricks

questions.

Last, but not least, I would like to thank my mother and the other members of my

family for their support and love. Thank you all.

Of course, the best part is that I no longer have to put up with people asking me

“so is it finished yet?”.

This thesis was produced using OzTEX on a Macintosh. Figures were produced

using various LATEX packages, Microsoft PowerPoint and Excel 98, Claris MacDraw

Pro and MicroFrontier’s Color-It!. Entity-relationship and data flow diagrams were

produced using Visible Systems’ EasyCASE running under Windows NT.

vii

Contents

Abstract v

Acknowledgements vii

List of Tables xvii

List of Figures xix

List of Algorithms xxvii

Chapter 1 Introduction 1

Chapter 2 Related research 7

2.1 Introduction . 7

2.2 Multiple representations for data modelling 8

2.2.1 The multiple views approach . 9

2.2.2 The multiple-data-model (MDM) approach 12

2.2.3 The object-oriented rule-based (ORECOM) approach 13

2.3 Viewpoint-oriented methods . 15

2.3.1 Origin of viewpoints . 15

2.3.2 Viewpoint terminology . 17

2.3.3 Viewpoint integration . 20

2.4 Data translation methods . 27

2.4.1 Translation quality . 28

2.4.2 Translation performance . 29

2.4.3 Interfacing strategies . 30

2.4.4 Interface specification languages 32

2.5 Summary . 35

ix

Chapter 3 Using multiple representations to describe a viewpoint 39

3.1 Introduction . 39

3.2 Extending the viewpoint framework . 42

3.2.1 Representations . 42

3.2.2 Descriptions . 44

3.2.3 Constructs and elements . 46

3.3 A notation to express representations, descriptions, constructs and ele-

ments . 47

3.3.1 Description and representation notation 47

3.3.2 Construct and element notation 49

3.4 Defining constructs within representations 49

3.5 Expressive power of representations . 55

3.6 Maintaining consistency among descriptions 58

3.7 Summary . 64

Chapter 4 Translating descriptions within a viewpoint 67

4.1 Introduction . 67

4.2 Rules and heuristics . 68

4.2.1 Specialisation of rules and heuristics 71

4.3 Properties of translations . 73

4.3.1 Type . 74

4.3.2 Completeness . 75

4.3.3 Composition . 76

4.3.4 Direction . 77

4.4 Notations for specifying translations . 78

4.4.1 Requirements for translation operators 79

4.4.2 A high-level notation for expressing translations 80

4.4.3 Examples of translation decomposition 84

4.5 Highlighting potential viewpoint inconsistencies 86

4.6 Improving translation quality . 91

4.7 The translation process . 94

4.7.1 Rule exclusion . 98

x

4.8 Summary . 103

Chapter 5 Definition of translations 107

5.1 Introduction . 107

5.1.1 Notation used in this chapter . 108

5.2 Example viewpoints . 109

5.2.1 The used cars viewpoint . 109

5.2.2 The agricultural research institute viewpoint 110

5.2.3 The assessment marks viewpoint 112

5.3 Re(E -R,ERDMartin)� Rr(Relational , SQL/92) 114

5.3.1 Scheme-level rules . 116

5.3.2 Additional scheme-level rules . 126

5.3.3 Heuristics . 126

5.3.4 Technique-level rules . 127

5.3.5 Discussion . 129

5.4 Rf → Re/Rf ↽ Re . 135

5.4.1 Normalisation effect . 135

5.4.2 Partial rules . 138

5.4.3 Unidirectional and excluded rules 138

5.4.4 Observations . 139

5.5 Re � Rd . 141

5.5.1 Observations . 142

5.6 Summary . 142

Chapter 6 Prototype implementation 145

6.1 Introduction . 145

6.2 The implementation architecture of Swift 146

6.2.1 Implementation language(s) . 149

6.3 The description modelling unit . 152

6.3.1 Design issues . 152

6.3.2 Implementation issues . 153

6.4 The translation unit . 156

6.4.1 Translation specification in Swift 157

xi

6.4.2 Rule evaluation in Swift . 159

6.4.3 Implementation . 160

6.5 The repository unit . 162

6.6 Miscellaneous implementation issues . 170

6.6.1 Logging of operations . 170

6.6.2 Extensibility . 170

6.7 Example of Swift in use . 171

6.7.1 The effect of heuristics on translations 175

6.8 Summary . 175

Chapter 7 Translations using VML-S 179

7.1 Introduction . 179

7.2 An overview of VML . 180

7.2.1 Using VML to specify translations between representations . . . 184

7.3 Outstanding issues with VML . 184

7.3.1 Unidirectional rules . 185

7.3.2 Rule exclusion . 190

7.3.3 Translating construct lists . 192

7.3.4 Using the same construct multiple times 193

7.4 Converting the abstract notation into VML-S 194

7.4.1 Specification of Re � Rr rule S8 197

7.5 Extensions to the translation process . 201

7.5.1 Building subsumption/exclusion graphs 205

7.5.2 Modified algorithms for mapping list structures 207

7.6 Summary . 210

Chapter 8 Measuring the quality of translations 213

8.1 Introduction . 213

8.2 Relative information capacity (Hull, 1986) 214

8.2.1 Building schema intension graphs (Miller, Ioannidis and Ramakr-

ishnan, 1994b) . 215

8.2.2 Comparing schema intension graphs (Miller et al., 1994b) 218

8.3 Categorising expressive overlap using schema intension graphs 223

xii

8.3.1 Example of determining expressive overlap 227

8.3.2 Analysis . 230

8.4 Measuring the relative quality of translations 232

8.4.1 Initial analysis . 234

8.4.2 Improving the relative quality measurement 236

8.5 The effect of heuristics on translation quality 238

8.6 Summary . 243

Chapter 9 Evaluation of the proposed modelling approach 245

9.1 Introduction . 245

9.2 Case study . 246

9.2.1 Discussion . 251

9.3 Novelty of the approach . 252

9.3.1 Survey of ‘conventional’ CASE tools 253

9.3.2 The MViews approach . 255

9.3.3 The MDM approach . 258

9.3.4 The ORECOM approach . 261

9.3.5 Discussion . 264

9.4 Practicability of the approach . 267

9.4.1 Tractability of translations . 268

9.4.2 Complexity testing . 273

9.5 Summary . 278

Chapter 10 Further research 279

10.1 Introduction . 279

10.2 Representation issues . 280

10.3 Quality improvement . 282

10.4 Implementation issues . 286

10.5 Schema generation from multiple descriptions 289

10.6 Consistency maintenance . 291

10.7 Outstanding issues with VML-S . 294

10.8 Other issues . 295

10.9 Summary . 297

xiii

Chapter 11 Conclusion 299

11.1 Improving the depth and detail of a viewpoint 299

11.2 Using translations to facilitate the use of multiple representations 300

11.3 Terminology framework . 301

11.4 Translation specification . 302

11.5 Highlighting potential inconsistencies within a viewpoint 302

11.6 Improving translation quality . 303

11.7 Novelty and practicability of the approach 305

11.7.1 Practicability . 306

11.8 Closing remarks . 307

References 309

Glossary 327

Appendix A Notations and terminology 335

A.1 Introduction . 335

A.2 Martin/EasyCASE ERD notation . 335

A.3 Gane & Sarson/EasyCASE DFD notation 335

A.4 Original translation notation . 335

A.4.1 Description translations . 336

A.4.2 Constructs . 337

A.4.3 Construct translations . 338

A.4.4 Heuristic construct translations . 339

A.4.5 Composite and atomic translations 339

A.5 CASE tool survey . 340

A.5.1 Visible Systems EasyCASE . 340

A.5.2 Visible Systems Visible Analyst . 341

A.5.3 Visible Systems EasyER/EasyOBJECT 343

A.5.4 Sybase Deft . 345

xiv

Appendix B Modifications to Smith’s Method 347

B.1 Introduction . 347

B.2 Smith’s Method — an overview . 348

B.2.1 The notation . 348

B.2.2 Deriving a set of relations from an FDD 349

B.3 The problem with deriving foreign keys 352

B.4 The solution . 354

B.5 Example — university marks . 356

Appendix C Example viewpoints 359

C.1 Used cars viewpoint . 359

C.2 Agricultural research institute viewpoint 364

C.3 Assessment marks viewpoint . 369

Appendix D Technique and representation definitions 375

D.1 Introduction . 375

D.2 Entity-relationship technique . 376

D.2.1 Martin ERD definition . 379

D.3 Functional dependency technique . 380

D.3.1 Smith FDD definition . 383

D.4 Relational technique . 384

D.4.1 SQL/92 definition . 386

D.5 Data flow modelling technique . 389

D.5.1 Gane & Sarson DFD definition . 391

Appendix E Additional translations 395

E.1 Rf → Re/Rf ↽ Re . 395

E.1.1 Technique-level rules . 396

E.1.2 Scheme-level rules . 398

E.1.3 Heuristics . 408

E.1.4 Expressive overlap . 410

E.1.5 Relative quality . 410

E.2 Re � Rd . 414

xv

E.2.1 Technique-level rules . 414

E.2.2 Scheme-level rules . 414

E.2.3 Heuristics . 415

E.2.4 Expressive overlap . 416

E.2.5 Relative quality . 416

E.3 Re � Rr . 418

E.3.1 Expressive overlap . 418

E.3.2 Relative quality . 421

Appendix F VML-S syntax and specifications 423

F.1 VML-S BNF syntax definition . 423

F.2 Example of a complete VML-S translation 427

F.3 Full VML-S translation specifications . 435

F.3.1 Re(E -R,ERDMartin)� Rr(Relational , SQL/92) 435

F.3.2 Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin)/Rf ↽ Re 440

F.3.3 Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S) 448

Appendix G The Swift repository 451

G.1 Glossary of representation tags . 451

G.1.1 Rf (FuncDep,FDDSmith) . 451

G.1.2 Re(E -R,ERDMartin) . 452

G.1.3 Rd(DataFlow ,DFDG&S) . 454

G.1.4 Rr(Relational , SQL/92) . 455

G.2 Full repository schema . 456

G.2.1 repository.sql . 456

G.2.2 functions.sql . 459

G.2.3 staticdata.sql . 460

Appendix H Swift class hierarchy 463

xvi

List of Tables

2.1 Approaches to resolving viewpoint conflicts 25

3.1 Examples of construct and element expressions 50

3.2 Construct properties of the entity-relationship technique 54

3.3 Construct properties of the representation Re(E -R,ERDMartin) 55

3.4 Summary of representation and description terminology 65

3.5 Summary of representation and description notation 66

4.1 Summary of representation, description and translation notation 104

5.1 Summary of translations . 108

5.2 Correspondences between the properties of the MARTINREGULAREN-

TITY and SQL92TABLE constructs . 117

5.3 Summary of Re(E -R,ERDMartin)� Rr(Relational , SQL/92) rules 130

5.4 Summary of Rf → Re/Rf ↽ Re rules . 136

5.5 Summary of Re � Rd rules . 141

6.1 Features of Java, C++ and Tcl/Tk with respect to implementing Swift . . 150

6.2 Correspondence between repository entities and Swift classes 165

6.3 Repository database schema (PostgreSQL) 168

7.1 VML-S specification of Re �Rr rule S8 202

8.1 Summary of SIG transformations . 219

8.2 Relative quality measurements for the Re � Rd translation 234

8.3 Relative quality measurements for the Rf → Re/Re ⇀ Rf translation

using the modified measurement method 238

8.4 Relative quality measurements for the Rf → Re/Re ⇀ Rf translation

(with heuristics) . 241

xvii

9.1 Attributes for D1(Vconf ,DataFlow ,DFDG&S) 247

9.2 Summary of ‘conventional’ CASE tool features 254

9.3 Comparison of research approaches . 267

9.4 Summary of test viewpoints . 274

A.1 Summary of the Martin/EasyCASE ERD notation 336

A.2 Martin/EasyCASE notation for relationship cardinalities 336

A.3 Summary of the Gane & Sarson/EasyCASE DFD notation 337

A.4 Examples of constructs . 338

A.5 Representations supported by EasyCASE 342

A.6 Representations supported by Visible Analyst 343

A.7 Representations supported by EasyER/EasyOBJECT 344

A.8 Representations supported by Deft . 345

A.9 Representations supported by MetaEdit 346

D.1 Construct properties for the E-R technique 378

D.2 Construct properties of Re(E -R,ERDMartin) 381

D.3 Construct properties of the functional dependency technique 383

D.4 Construct properties of Rf(FuncDep,FDDSmith) 385

D.5 Construct properties of the relational technique 387

D.6 Construct properties of Rr(Relational , SQL/92) 389

D.7 Construct properties of the data flow modelling technique 391

D.8 Construct properties of Rd(DataFlow ,DFDG&S) 393

E.1 Relative quality measurements for the Rf → Re/Rf ↽ Re translation . 412

E.2 Relative quality measurements for the Re � Rd translation 418

E.3 Relative quality measurements for the Re � Rr translation 421

F.1 Initial element lists for the Sheep entity 430

F.2 Filtered element combinations for the Sheep entity 430

F.3 Generating element combinations for rule S12 431

F.4 Summary of mappings in the example translation 434

xviii

List of Figures

2.1 Relationship between perspectives, viewpoints and representations . . . 18

2.2 Possible states for a library book . 23

2.3 Interfacing strategies . 30

3.1 Extending the perspective/viewpoint/representation framework 43

3.2 Multiple schemes within a technique . 43

3.3 Four descriptions of the same viewpoint 45

3.4 Properties of a construct . 47

3.5 Definition of the entity-relationship technique 53

3.6 Definition of the representation Re(E -R,ERDMartin) 54

3.7 Unique and shared constructs . 56

3.8 Four categories of expressive overlap . 57

3.9 Asymmetric expressive overlap . 57

3.10 Sensitivity of a description to changes . 61

3.11 Unexpected structural changes caused by a translation 62

4.1 Example of applying a heuristic . 70

4.2 Specialisation of technique-level rules . 72

4.3 A trivial scheme translation . 75

4.4 A complex VML-G specification . 79

4.5 Specialisation of translation operators . 83

4.6 Translating a MARTINREGULARENTITY to a functional dependency di-

agram . 85

4.7 Decomposing a translation . 85

4.8 Consistency checking strategies using different representations 87

4.9 Two potentially inconsistent descriptions of a viewpoint 89

4.10 Two potentially inconsistent descriptions of a viewpoint after translat-

ing them into the same representation . 90

xix

4.11 The translation process . 95

4.12 Translating an FDD description to an ERD description 97

4.13 Applying multiple rules to the same source structure 99

4.14 Results of applying multiple rules to the same source structure 100

4.15 ‘Forward’ subsumption/exclusion graph for the example translation . . 102

5.1 Martin E-R description of the used cars viewpoint 110

5.2 SQL/92 description of the used cars viewpoint 111

5.3 Normalised Martin E-R description of the agricultural research institute

viewpoint . 112

5.4 SQL/92 description of the agricultural research institute viewpoint . . . 113

5.5 Normalised Martin E-R description of the assessment marks viewpoint . 114

5.6 SQL/92 description of the assessment marks viewpoint 115

5.7 Translating a regular entity to and from SQL/92 117

5.8 Translating a one-to-many relationship (mandatory-optional) to and from

SQL/92 . 119

5.9 Translating a one-to-one relationship (mandatory-mandatory) to and from

SQL/92 . 120

5.10 Translating a one-to-one relationship (optional-mandatory) to and from

SQL/92 . 121

5.11 Translating a many-to-many relationship to and from SQL/92 122

5.12 Translating a type hierarchy to SQL/92 123

5.13 Translating a one-to-many relationship (optional-optional) to and from

SQL/92 . 125

5.14 Translating a weak entity and dependent relationship to SQL/92 125

5.15 Translating a one-to-one relationship (optional-optional) to and from

SQL/92 . 127

5.16 Loss of information inRe ↔Rr . 131

5.17 Subsumption/exclusion graphs for the Re � Rr translation 132

5.18 SQL/92 constraints not generated by EasyCASE 133

5.19 Normalisation caused by the Rf → Re/Rf ↽ Re translation 137

5.20 Subsumption/exclusion graphs for the Rf → Re/Rf ↽ Re translation . 139

xx

5.21 Loss of information when translating from Re to Rf 140

5.22 Subsumption/exclusion graphs for the Re � Rd translation 141

6.1 Swift’s implementation architecture . 148

6.2 The user interface to Swift . 154

6.3 Java class hierarchy to implement Rd(DataFlow , DFDG&S) in Swift . . . 155

6.4 The Translate menu . 161

6.5 Enrichment during a translation . 162

6.6 Rearranging the symbols of a description after a translation 163

6.7 Structure of the repository . 166

6.8 Loading a viewpoint in Swift . 171

6.9 Loading a description in Swift . 172

6.10 The Translate menu for an FDD . 172

6.11 The beginning and end of the translation process 173

6.12 The target description . 174

6.13 Effect of heuristics on the Rf →Re translation 175

6.14 Effect of heuristics on the Re→ Rd translation 176

7.1 Example of a VML mapping specification 181

7.2 BNF syntax of the VML-S inter class definition 185

7.3 Unidirectional translations that cannot be fully specified using VML . . 187

7.4 The direction clause . 188

7.5 New directional equivalence operators . 189

7.7 An example of rule exclusion . 190

7.8 The label clause . 191

7.9 The excludes clause . 192

7.10 Aliases for constructs in the inter class header 195

7.11 Translating many-to-many relationships (Re� Rr) 198

7.12 Amor’s four-pass translation process . 203

7.13 The modified translation process . 205

8.1 E-R description of the used cars viewpoint and corresponding schema

intension graph . 217

xxi

8.2 Alternate E-R description of the used cars viewpoint and corresponding

SIG . 221

8.3 Transforming a subgraph of a SIG . 222

8.4 SIGs for Re(E -R,ERDMartin) andRd(DataFlow ,DFDG&S) 228

8.5 Transforming subgraphs of the Rd SIG . 229

8.6 Isomorphism between SIG subgraphs . 231

8.7 Expressive overlap between Re and Rd 233

8.8 Summary of initial relative translation quality measurements (without

heuristics) . 235

8.9 Applying the modified relative quality measurement (ignoring heuristics)237

8.10 Summary of modified relative translation quality measurements 239

8.11 Applying the relative quality measurement (with heuristics) 240

8.12 Impact of heuristics on relative translation quality 242

9.1 DFD descriptionD1(Vconf ,DataFlow ,DFDG&S) for the process of assign-

ing conference sessions to rooms . 247

9.2 ERD description D2(Vconf ,E -R,ERDMartin) produced by translating de-

scription D1 . 248

9.3 ERD description D′

2 produced by modifying D2 249

9.4 FDD description D3(Vconf ,FuncDep,FDDSmith) 250

9.5 ERD description D4(Vconf ,E -R,ERDMartin) produced by translating de-

scription D3 . 250

9.6 ERD description D′′

2 produced by correcting inconsistencies 251

9.7 The interconnectedness of elements in a description 271

9.8 Descriptions used for translation time testing 272

9.9 Results of Swift translation time testing 276

10.1 Rr(Relational , SQL/92) definition using CoCoA 282

10.2 Rr(Relational , SQL/92) as defined in this thesis 283

10.3 Schema generation from multiple representations 289

10.4 Progressive refinement of a generated schema 290

10.5 Effects of asynchronous translations . 293

10.6 Two description fragments that are consistent but not equivalent 295

xxii

B.1 Example of a dependency-list statement 348

B.2 Attributes and bubbles . 349

B.3 Single- and multivalued dependencies . 349

B.4 Multiple bubbles and domain flags . 350

B.5 Deriving a relation from a single-valued dependency 350

B.6 Deriving a relation from an end-key dependency 351

B.7 Correcting an impracticable FDD . 352

B.8 Foreign keys that cannot be derived using the existing rules 353

B.9 Derivation of invalid foreign keys . 354

B.10 ‘Target’ attribute domain flag notation . 355

C.1 E-R description of the used cars viewpoint (unnormalised) 360

C.2 E-R description of the used cars viewpoint (normalised) 361

C.3 Functional dependency description of the used cars viewpoint 362

C.4 SQL/92 description of the used cars viewpoint 363

C.5 Data flow description of the used cars viewpoint 364

C.6 E-R description of the agricultural research institute viewpoint (unnor-

malised) . 365

C.7 E-R description of the agricultural research institute viewpoint (norma-

lised) . 365

C.8 Functional dependency description of the agricultural research institute

viewpoint . 367

C.9 SQL/92 description of the agricultural research institute viewpoint . . . 368

C.10 Data flow description of the agricultural research institute viewpoint . . 369

C.11 E-R description of the assessment marks viewpoint (unnormalised) . . . 370

C.12 E-R description of the assessment marks viewpoint (normalised) 370

C.13 Functional dependency description of the assessment marks viewpoint . 372

C.14 Data flow description of the assessment marks viewpoint 372

C.15 SQL/92 description of the assessment marks viewpoint 373

D.1 Definition of the E-R technique . 377

D.2 Definition of the representation Re(E -R,ERDMartin) 379

D.3 Definition of the functional dependency technique 381

xxiii

D.4 Definition of the representation Rf (FuncDep,FDDSmith) 384

D.5 Definition of the relational technique . 386

D.6 Definition of the representation Rr(Relational , SQL/92) 388

D.7 Definition of the data flow modelling technique 390

D.8 Definition of the representation Rd(DataFlow ,DFDG&S) 392

E.1 Translating a single-valued dependency to and from a Martin ERD (rule

S1) . 398

E.2 Translating a multivalued dependency to and from a Martin ERD (rule

S2) . 399

E.3 Translating a single-key bubble between an FDD and an ERD (rule S3) . 399

E.4 Translating an isolated bubble to and from a Martin ERD (rule S4) 400

E.5 Translating a weak entity to an FDD (rule S7) 400

E.6 Translating a weak entity to an FDD (rule S8) 401

E.7 Translating a weak entity to an FDD (rule S9) 402

E.8 Translating a weak entity to an FDD (rule S10) 402

E.9 Translating one-to-one relationships between an ERD and an FDD (rule

S11) . 403

E.10 Translating one-to-many relationships between an ERD and an FDD

(rule S12) . 404

E.11 Translating many-to-many relationships from an ERD to an FDD (rule

S13) . 405

E.12 Translating a domain flag from an FDD to an ERD (rule S14) 406

E.13 Translating a domain flag from an FDD to an ERD (rule S15) 406

E.14 Translating a contained single-key bubble from an FDD to an ERD (rule

S16) . 407

E.15 Translating a contained isolated bubble from an FDD to an ERD (rule S17)408

E.16 Translating a contained single-key bubble from an FDD to an ERD (rule

S18) . 408

E.17 Translating a contained isolated bubble from an FDD to an ERD (rule S19)409

E.18 Translating a circular multi-valued dependency from an FDD to an ERD

(heuristic H1) . 409

xxiv

E.19 Deriving a type hierarchy from an FDD (heuristic H2) 410

E.20 SIGs for Rf (FuncDep,FDDSmith) andRe(E -R,ERDMartin) 411

E.21 Transformed SIG for Rf (FuncDep,FDDSmith) 411

E.22 Expressive overlap for Re(E -R,ERDMartin) and Rf(FuncDep,FDDSmith) . 412

E.23 Relative quality analysis for Re → Rf /Re ↽ Rf 413

E.24 Translating an associative entity that represents an activity into a data

process and data store (heuristic H1) . 415

E.25 Translating data flows into a relationship (heuristic H2) 416

E.26 Relative quality analysis for Re � Rd . 417

E.27 SIGs for Re(E -R,ERDMartin) andRr(Relational , SQL/92) 419

E.28 Transformed SIG for Rr(Relational , SQL/92) 419

E.29 Expressive overlap for Re(E -R,ERDMartin) and Rr(Relational , SQL/92) . 420

E.30 Relative quality analysis for Re � Rr . 422

F.1 Complex internal structure of the Experiment entity 429

F.2 Translating elements associated with the Sheep element 430

F.3 Translating elements associated with the Paddock detail element 432

F.4 Further mappings in the example translation: I 433

F.5 Further mappings in the example translation: II 433

F.6 Final FDD description produced by the example translation 434

H.1 Key for interpreting class diagrams . 464

H.2 Swift class hierarchy: swift.dd package . 464

H.3 Swift class hierarchy: swift.event package 464

H.4 Swift class hierarchy: swift.model package 464

H.5 Swift class hierarchy: swift.repn package 465

H.6 Swift class hierarchy: swift.repn.erm mrtc package 465

H.7 Swift class hierarchy: swift.repn.fdepsmit package 466

H.8 Swift class hierarchy: swift.repn.procgnsn package 467

H.9 Swift class hierarchy: swift.trans packages 467

H.10 Swift class hierarchy: swift.ui package . 468

H.11 Swift class hierarchy: swift.util package . 468

xxv

List of Algorithms

7.1 Modified translation algorithm . 204

7.2 Build a subsumption/exclusion graph for a translation 206

7.3 Determine whether one rule subsumes another 206

7.4 Determine initial element groups . 209

7.5 Generate element combinations for the inter class 210

7.6 Combine two lists of elements . 210

xxvii

Chapter 1

Introduction

There are many different types of information that should be considered when design-

ing an information system, particularly when designing a system to solve complex

business problems. A wide variety of modelling approaches and notations have been

developed to model these different types of information, such as entity-relationship di-

agrams, functional dependencies, data flow diagrams, object diagrams, the relational

model, state-transition diagrams, petri nets, formal methods and so on. Problems can

arise when information is not included in a design that should be. For example, a typi-

cal approach to building an information system is to design the underlying data struc-

tures and semantics using entity-relationship diagrams, and implement these struc-

tures in a relational database management system. These structural models often form

a basis for the user interface design, which is implemented atop the database using a

rapid application development environment. Consider a systems analyst who designs

and implements a system using this approach. Good design practices are followed

throughout, yet the end-users find the finished application difficult to use. Some of the

more commonly used data-entry forms have multiple states, but because the analyst

did not think to include state information in the system design, the transitions between

these states are not clear to users. Use of state-transition diagrams during the design

phase could have resolved this problem before implementation.

While this is a purely theoretical example, it serves to illustrate an important point.

Information systems are typically created to handle the data processing requirements

of some real-world phenomenon. Such real-world phenomena may often be too com-

plex to describe using a single modelling approach or representation. This is supported

by the plethora of representations that currently exist, including those that model the

structure of data (such as entity-relationship modelling and functional dependencies),

1

and those that model how data move around a system (such as data flow diagrams).

This implies that in order to completely model a phenomenon, multiple descriptions

of the phenomenon expressed using different representations are required.

Using multiple representations to describe a phenomenon is also important in other

ways. If multiple developers are working on a project, each may prefer or be required

to use a different representation to describe their particular part of the project (Atzeni

and Torlone, 1993; Atzeni and Torlone, 1996a). Particular subproblems may also be bet-

ter described using some representations than others (Easterbrook, 1991a, p. 56). Mul-

tiple representations are also important when integrating heterogeneous data sources

to form a federated or distributed system (Atzeni and Torlone, 1996a), as each data

source may potentially use a different logical data model (such as relational, network

or object-oriented). Reconciling and integrating descriptions expressed using different

representations is therefore an important part of the design process.

An important goal of this research is to aid this reconciliation and integration within

the context of information system design. That is, to facilitate the use of multiple modelling

representations for describing a phenomenon, with the purpose of building an informa-

tion system to model that phenomenon. To achieve this goal, the author has chosen

an approach based upon translating descriptions of a phenomenon between different

representations. This goal and the approach taken provide three main threads to the

thesis: using multiple representations to describe a phenomenon, translating between

representations to facilitate this use, and measuring the efficacy of these translations.

The first thread of the thesis, using multiple representations to describe a pheno-

menon, brings together the work of other researchers in this area, and research into

viewpoint-oriented methods. A well-documented problem in the area of information sys-

tem design is that developers may build a design that models a phenomenon from

only a single perspective, when it should really be modelled from multiple perspec-

tives (Finkelstein et al., 1989; Easterbrook, 1991a). This can lead to important aspects of

the phenomenon either not being modelled, or being modelled as exceptions instead

of a fully-integrated component of the design (Finkelstein and Sommerville, 1996; Eas-

terbrook, 1991a). Viewpoint-oriented methods, introduced in Chapter 2, were de-

veloped as a solution to this problem, and seek to model a phenomenon from sev-

eral different viewpoints simultaneously. This is somewhat analogous to the approach

2

taken by the Soft Systems Methodology (Checkland, 1981). The multiple-viewpoint

approach lessens the possibility of important design information being discarded or

lost (Finkelstein and Sommerville, 1996; Easterbrook, 1991a; Easterbrook and Nusei-

beh, 1996).

Each viewpoint will typically comprise one or more descriptions of a phenomenon,

which may be expressed using the same representation, or different representations. It

has already been noted that using multiple representations to describe a phenomenon

is useful, but this is difficult if each viewpoint uses only a single representation. An

obvious solution is to define multiple viewpoints, each of which uses a different rep-

resentation, but this is somewhat cumbersome; using multiple representations within

a viewpoint is a more flexible approach. It can be argued that using multiple rep-

resentations within a single viewpoint is analogous to using multiple viewpoints to

model a phenomenon, and can produce greater depth and detail than if only a sin-

gle representation were used within the viewpoint (Finkelstein et al., 1989; Darke and

Shanks, 1995a; Easterbrook, 1991a). This research will be focused on the use of multiple

representations within a single viewpoint.

Research into the effective use of multiple representations to model real-world phe-

nomena is scarce. Viewpoint researchers have been promoting the idea of using mul-

tiple representations to describe a single viewpoint for nearly ten years (Finkelstein

et al., 1989), yet surprisingly little research has resulted. Outside the viewpoints field,

the author is aware of only three other groups who have worked in this area (Atzeni

and Torlone, 1993; Grundy, 1993; Su et al., 1992), whose work is briefly reviewed in

Chapter 2. Independent research efforts have resulted in a disparate, and sometimes

conflicting, collection of terms for similar concepts. Viewpoint concepts provide a use-

ful framework within which to discuss the use of multiple representations, and a con-

sistent terminology based on these concepts is defined by the author in Chapter 3.

The second thread of the thesis, using translations between multiple representa-

tions in order to facilitate their use, is the major thread of the thesis. Translating de-

scriptions of a viewpoint between representations is a special case of the more general

problem of data translation, which is reviewed in Chapter 2. The promotion of a more

comprehensive design is important when designing information systems, and the use

of multiple representations to describe a viewpoint should provide greater depth and

3

detail than if only a single representation were used. Providing the ability to translate

descriptions from one representation to another should facilitate the use of multiple

representations, as this allows the effective re-use of information stored in existing

descriptions and provides a greater degree of integration between different represen-

tations. Translations can also provide a mechanism for keeping related descriptions

consistent, as described in Chapter 3. In addition, translating descriptions expressed

using different representations into the same representation can provide a mechanism

for highlighting potential inconsistencies within a viewpoint, which is discussed in

Chapter 4.

The definition of translations in this thesis follows the individual interfacing strat-

egy. That is, translations are defined between representations in a pairwise fashion,

rather than through some intermediate representation or interchange format. This ap-

proach provides greater flexibility and allows translations to be better tailored to the

corresponding representations. It also provides the opportunity when defining a new

translation to leverage the functionality of existing translations, which is discussed in

Chapter 5. For example, instead of implementing normalisation in every translation

that requires it, it could be implemented in a single translation that then provides nor-

malisation ‘services’ to other translations.

A translation comprises a collection of rules that define mappings between the con-

structs of two representations. A translation is ‘executed’ by applying its rules to the

components of some ‘source’ description; this process and the issues arising from it are

discussed in Chapter 4. A variant of this translation process has been implemented in

a simple prototype modelling environment, described in Chapter 6. Known as Swift,

this environment was written in Java and supports translations between four represen-

tations: Martin entity-relationship diagrams, SQL/92, Smith functional dependency

diagrams1 and Gane & Sarson data flow diagrams.

The efficacy of a translation is measured by its quality, which is determined by how

well it maps the constructs of one representation onto the constructs of another rep-

resentation. An important goal of this research is therefore to improve the quality of

translations, in order to reduce the amount of new material that must be provided by

the designer. Two approaches to improving translation quality are described in Chap-

1This representation is described in Appendix B.

4

ter 4: the use of heuristic rules, which can make explicit semantics that are implicit in

the source description, but can sometimes produce inconsistent results due to their

heuristic nature; and the use of enrichment to provide additional information to the

translation process that could not normally be obtained.

Translations must be specified using some notation in order to be of any use. A

high-level notation is defined in Chapters 3 and 4 to provide a concise means of speci-

fying representation, description and translation expressions, and is used in Chapter 5

and Appendix E to define three translations. This notation is not enough, however,

to fully specify the details of a translation. Translations in the Swift prototype were

defined in an ad hoc manner based on the rules described in Chapter 5. This is not

a flexible approach; a more useful solution would be to use some form of translation

specification language. Amor’s (1997) View Mapping Language (VML) is a declarative

language for specifying mappings between schemas. This language is extended in

Chapter 7 to deal with the translation issues identified in Chapter 4.

The third thread of the thesis, measuring the efficacy of translations, brings together

the first two threads, and provides verification that heuristics improve the quality of

translations. The approach presented in Chapter 8 is based on the concepts of rela-

tive information capacity (Hull, 1986; Miller, 1994) and schema intension graphs (Miller

et al., 1994b), which were originally designed to aid with schema integration. The rel-

ative information capacity of a representation is effectively the same as the expressive

power of that representation, that is, it determines the limits of what may be expressed

using the representation. The expressive powers of two representations may overlap

in various ways, which determines how well constructs may be mapped from one

representation to another (see Chapter 3). That is, the overlap in expressive power of

two representations affects the quality of translations between those representations.

Methods for determining the expressive overlap of representations and measuring the

relative quality of translations between representations are defined by the author and

applied in Chapter 8. The relative quality measure is used to show that the use of

heuristics has a positive impact on translation quality.

The approach taken in this thesis is evaluated in Chapter 9. First, a case study us-

ing Swift is presented, showing how the approach presented here promotes some of

the goals of the thesis. Second, the novelty of the approach is evaluated by comparing

5

it with similar approaches by Atzeni and Torlone (1993; 1995; 1997), Su et al. (1992) and

Grundy (1993; 1994; 1995a; 1997). A survey of ‘conventional’ computer-aided software

engineering (CASE) tools is also undertaken to show that although existing tools gen-

erally support the use of multiple representations, they typically do not facilitate this

use. Finally, a general discussion of the tractability of the approach is presented, fol-

lowed by a series of experiments to test the time complexity of translations in the Swift

environment and show that the approach presented here is practicable.

Many issues are identified and discussed in this thesis, but some have been left as

areas for future research, and are discussed in Chapter 10. The results of the research

are summarised and conclusions are presented in Chapter 11.

In summary, the author has identified the following goals for this thesis:

1. Improve a viewpoint in terms of depth and detail by using multiple representa-

tions to describe the viewpoint.

2. Facilitate the use of multiple representations within a viewpoint by translating

descriptions between representations.

3. Develop a consistent and unified terminology for discussing representations and

translations between them.

4. Develop effective ways of specifying translations.

5. Use translations to enable the highlighting of potential inconsistencies between

descriptions of a viewpoint.

6. Identify ways of improving translation quality.

7. Show that the approach presented here is novel and practicable.

6

Chapter 2

Related research

2.1 Introduction

As was discussed in the previous chapter, it is often useful (or necessary) to use multi-

ple representations to describe a real-world phenomenon, for instance:

• A more complete description of a viewpoint may be built using multiple repre-

sentations than if only a single representation were used.

• The use of multiple representations allows developers to use the representations

that they are most familiar with.

• The methodology being followed may require developers to use particular rep-

resentations for various aspects of the problem.

• Some representations are better suited to particular problems than others.

• Heterogeneous data sources to be integrated may be expressed using different

representations.

Thus, the use of multiple representations to describe a phenomenon is an important

issue. In this thesis, a phenomenon is modelled by a viewpoint, which can be informally

defined as a particular interpretation of the phenomenon. An important goal to be

addressed in this thesis is that of facilitating the use of multiple modelling representations

within a single viewpoint. To achieve this goal, the author has chosen an approach based

on translating between models expressed using different representations.

In the remainder of this chapter is provided a review of relevant research to support

this approach. Facilitating the use of multiple representations is a fairly new area of

7

research, and there is as yet only a small amount of literature relating specifically to

it, as identified by Atzeni and Torlone (1993, p. 350). Nevertheless, there are several

related areas that are useful to the approach taken in this thesis. The idea of facilitating

the use of multiple representations has been identified as a useful problem by several

authors, in particular Grundy (1993), Atzeni and Torlone (1993) and Su et al. (1992). In

Section 2.2, related work by these and other authors is reviewed.

The approach followed in this thesis is based on a framework derived from the

area of viewpoint-oriented methods, which are discussed in Section 2.3. The concepts of

viewpoint and representation are introduced, and the issues that arise from building and

integrating multiple viewpoints of a phenomenon are discussed. Concepts relating to

viewpoint integration will be used in Chapter 8 as a basis for a method of measuring

the relative quality of translations.

Since the author is advocating an approach based on translations between models,

the area of data translation is also important. In Section 2.4 the concepts of translation

quality and performance are introduced, and possible interfacing strategies are discussed.

Some means of specifying translations is also required, so specialised languages for

specifying translations are also discussed.

2.2 Multiple representations for data modelling

The idea of using multiple representations to model a phenomenon is not new, other-

wise there would not be the plethora of different modelling representations in existence

today (Tsichritzis and Lochovsky, 1982; Hull and King, 1987). Viewpoint researchers

have also been suggesting the use of multiple representations to model viewpoints for

nearly ten years (Finkelstein et al., 1989). Facilitating the use of these multiple repre-

sentations is, however, a more recent idea.

Grundy (1993) developed an interest in facilitating the use of multiple representa-

tions, and took an approach based on maintaining consistency across multiple views

of an underlying model. Work in this area is described in Section 2.2.1.

Atzeni and Torlone (1993) suggested the idea of translating between different repre-

sentations as a means of facilitating the use of multiple representations. They proposed

a formal model based on lattice theory which allowed them to express many different

8

data modelling approaches using the same representation. Their work is described in

Section 2.2.2.

Su et al. (1992) approached the use of multiple representations from the point of

view of integrating heterogeneous data sources in order to build federated and dis-

tributed databases. Their approach is similar in many respects to that taken by Atzeni

and Torlone, but the key difference is that the model used by Su et al. is object-oriented

rather than mathematically based. Their work is described in Section 2.2.3.

2.2.1 The multiple views approach

The development of large information systems generally requires the services of many

people working in different roles, such as designers, programmers and testers. Each

of these people may have a different view of the system, and these different views

may comprise both textual and graphical information. For example, programmers

may view the system at the code level using a language such as C++, while designers

may view the system using high-level structured diagrams. Meyers (1991, p. 50) notes

that it can be very useful to simultaneously view a system in several different ways,

especially when multiple people are working on the system. Some way is therefore

needed of integrating these multiple views.

Reiss’s (1985) PECAN environment was an early attempt to address some of the

issues associated with providing multiple views of an information system. PECAN

could display several views of a Pascal program (many of which were read-only), in-

cluding a syntax-directed editor and several semantic views, such as expression trees

and flow graphs. All of these views were derived from an underlying abstract syntax

tree. That is, each view was effectively a different visualisation of the same underlying

representation.

FIELD (Reiss, 1990a; Reiss, 1990b) addressed the problem of integrating several rel-

atively distinct development tools, where each tool effectively constituted a different

‘view’ of the system being developed. There was no underlying representation as there

was in PECAN; integration was achieved by passing messages between tools via a cen-

tral message server. When a developer made a change in one tool, this change was se-

lectively broadcast to other tools by the message server, and these tools then updated

9

their ‘views’ of the system appropriately. In a sense, FIELD could be said to ‘simulate’

multiple views of a system rather than directly supporting them.

Brown’s (1992) Zeus was a system for implementing algorithm animation, but could

also be used to implement multi-view editing systems. In Zeus, an ‘algorithm’ main-

tained shared data structures that were displayed appropriately by each view. When

a user altered a view, the view would generate a feedback event that was sent to the

‘algorithm’, which made the appropriate changes to the shared data structures. The ‘al-

gorithm’ would then generate and send output events to each of its associated views,

which would update themselves appropriately. As with PECAN, views in Zeus were

different visualisations of the same underlying representation.

MultiView (Altmann et al., 1988) was a multi-view environment that supported

multiple views of Modula-2 programs. As with PECAN, different views were derived

from an underlying abstract syntax tree. Changes were propagated from view to view

by a message-passing mechanism through a central program database (cf. FIELD and

Zeus). The key innovations introduced in MultiView were the ability to edit multiple

different views concurrently, and the parallel nature of the environment which facili-

tated multi-user access. Later work (Jacobs and Marlin, 1995) extended the notion of

multiple views to modelling the software development process in addition to individ-

ual programs.

MViews is an object-oriented framework for implementing integrated software de-

velopment environments (Grundy, 1993; Grundy and Hosking, 1993a; Grundy and

Venable, 1995b; Grundy and Hosking, 1997). It incorporates many of the ideas from

earlier environments and adds a robust mechanism for maintaining consistency across

multiple graphical and textual views. Environments built using MViews allow devel-

opers to view an underlying model in several different ways at once, and to modify any

of these views. Where possible, changes are automatically propagated across views to

keep them consistent. For example, a developer might have both entity-relationship

and SQL views of a model on screen. Changes made to the E-R view would (where

possible) be propagated to the SQL view and vice versa.

In effect, MViews supports the implementation of environments that support multi-

ple modelling representations, and the use of these representations is facilitated by us-

ing an automatic translation mechanism to propagate changes between related views.

10

Although it is not required, most of the environments built using MViews use a single

integrated data model to store schemas (Grundy and Venable, 1995b).

MViews was originally implemented in an object-oriented variant of Prolog called

Snart (Grundy, 1993), and a Java version (called JViews) has been constructed (Grundy

et al., 1997b). Several environments have been built using the MViews framework,

such as:

• The Snart Programming Environment, or SPE (Grundy and Hosking, 1993b) is

an environment for visualising class structures in Snart programs.

• OOEER (Grundy and Venable, 1995b) combines object-oriented analysis and de-

sign (OOA/D) with extended entity-relationship (EER) modelling.

• NIAMER (Venable and Grundy, 1995) combines entity-relationship modelling

and object-role modelling.

• EPE (Amor et al., 1995) supports the construction of EXPRESS specifications and

associated EXPRESS-G diagrams.

• MViewsDP (Grundy et al., 1996) is a graphical user interface builder for dialog

boxes that uses textual representations for specifying the dialog interface and

validation rules.

The main focus of the MViews research is on the issues involved with building tools

that make use of multiple representations, in particular (Grundy et al., 1996; Grundy

and Hosking, 1996; Grundy, 1998; Hosking and Grundy, 1995; Hosking et al., 1995):

• architectural support for multiple modelling representations;

• maintaining consistency between multiple graphical and textual views;

• human interface issues, such as how to present inconsistencies to users, how to

support their interaction with inconsistencies, and so on;

• collaborative multiple viewpoint system issues; and

• various applications — mostly software engineering, but also building/architec-

tural design, user interfaces and process modelling.

11

Although translating views from one representation to another is obviously an im-

portant part of this, work with MViews has focused on the issue of maintaining consis-

tency across multiple views (Grundy and Hosking, 1996). Related work has also been

undertaken in the area of specifying translations (Amor, 1997), which will be discussed

in Section 2.4.4.

2.2.2 The multiple-data-model (MDM) approach

While working on a larger project to define an integrated information system design

and development environment, Atzeni and Torlone (1993) realised that in order to be

more adaptable to the needs of different developers, such an environment must sup-

port multiple representations (referred to by them as ‘data models’ or simply ‘models’).

The problem then became one of managing these multiple representations, that is, fa-

cilitating their use. The main goal of their research was to build a tool that allows

schemas (referred to by them as ‘schemes’) to be translated from one representation to

another. A tool called MDM (multiple-data-model) has been developed (Atzeni and

Torlone, 1997) that provides this functionality.

Atzeni and Torlone (1993) argued that most data models use a limited set of con-

structs that fall into one of six types described by Hull and King (1987): lexical types,

abstract types, aggregations, grouping constructs, functions and generalisations. With

this in mind they defined a metamodel based on these construct types (or metaconstructs)

that can be used to define any model that also uses these construct types. They have

demonstrated this metamodel being used to define entity-relationship, relational and

functional models (Atzeni and Torlone, 1993; Atzeni and Torlone, 1996a; Atzeni and

Torlone, 1996c) and argue that their metamodel can be used to manage a wide range

of models. This is done by using the metamodel to define a supermodel that subsumes

all the models to be managed (Atzeni and Torlone, 1996a; Atzeni and Torlone, 1997).

Valid schemas are then expressed using the appropriate subset of the supermodel. The

supermodel is analogous in concept to the integrated model of MViews, although it is

implemented differently.

Atzeni and Torlone (1996a) introduce the notions of model (representation) and

scheme (schema) within a formal graph-theoretic framework. A model is defined by

12

a set of labelled trees, where the nodes and edges are elements of the metamodel and

the labels represent the names of the constructs of the model (such as Entity or Re-

lation). Similarly, a scheme is defined by a labelled directed acyclic graph where the

nodes and edges are elements of the metamodel and the labels represent the concepts

of the scheme (such as Staff and Sale). Schemes are said to be allowed in a particular

model if they form an instance of that model.

Translations between models are derived automatically from a collection of basic

predefined rules that are defined by a person or collection of people known as the

model engineer (Atzeni and Torlone, 1993; Atzeni and Torlone, 1996a). These transla-

tions follow a pragmatic approach to the semantics of constructs: if two constructs

from different models correspond to the same metaconstruct, they are assumed to have

the same semantics (Atzeni and Torlone, 1996a). Translations can be shown to be cor-

rect and complete, and their quality, defined as how well they exploit the constructs of

the target model, may also be measured (Atzeni and Torlone, 1995, Section 4).

The prototype MDM system comprises a collection of modules for manipulating

and managing models, schemas and translations (Atzeni and Torlone, 1997). Models

are defined using a menu-driven model definition language, which the model man-

ager uses to generate a model-specific scheme definition language. This language is

then used to define schemes. Translations from the supermodel to a particular model

are automatically derived by the translation generator when the model is created; a

translation from a model to the supermodel is not required as all models are subsets of

the supermodel. If a new model is defined that is not subsumed by the supermodel,

the model manager automatically generates a new supermodel.

2.2.3 The object-oriented rule-based (ORECOM) approach

ORECOM (Object-oriented Rule-based Extensible COre Model) is an object-oriented

model that has been used to support the integration of multiple heterogeneous data

sources and/or schemas, and the exploration of translations between object-oriented

and some of the richer semantic data models (Su et al., 1992; Su and Fang, 1993). A

data model is expressed in ORECOM by decomposing its constructs and semantic con-

straints into collections of primitive ORECOM constructs and constraints. ORECOM

13

has three primitive constructs: objects and classes, which are very similar to the concepts

of object and class in object-oriented programming; and associations, which are binary

relationships between classes.

Semantic constraints of data models (such as cardinality and inheritance) are ex-

pressed in ORECOM by a collection of primitive constraints known as micro-rules.

These are triggered by certain operations on a class, and capture those semantic con-

straints that are not captured by the structural constructs. Micro-rules may be com-

bined to form macros, which model higher-level semantic constraints that occur across

many different data models. ORECOM is a highly-extensible model as a consequence

of its object-oriented basis. When a new data model introduces constructs and con-

straints that cannot be decomposed into ORECOM constructs and constraints, ORE-

COM may be extended by defining new primitive constructs and constraints.

An environment for performing schema translations has been built around ORE-

COM. Since all representations are defined using ORECOM primitives, the data model

translation system can readily compare the constructs and constraints of the source

and target representations. This comparison is used to build an equivalence matrix

that identifies the closest matches between constructs in each representation. This

matrix is then used by the schema translation system to translate schemas from one

representation to the other.

The overall approach followed by ORECOM is similar to that taken by Atzeni and

Torlone (1993) in that both use an abstract metamodel to define representations, and

translations between representations are automatically derived from representation

definitions. The major difference is that ORECOM is based on an object-oriented model

rather than a mathematical one. Su and Fang (1993) have identified the following pos-

sible applications for their model:

• schema sharing;

• schema translation in the context of a heterogeneous DBMS;

• schema integration;

• schema verification and optimisation;

14

• semantics modification and extension before conversion, that is, extending the

semantics of a schema before translating it to another representation; and

• helping users to learn new modelling representations, as all representations are

decomposed into a standard form, making it easier to compare them.

2.3 Viewpoint-oriented methods

Viewpoint-oriented methods are an important element of the approach taken in this

thesis, because they provide a useful framework within which to discuss the use of

multiple representations to model a phenomenon. The concept of a viewpoint was first

developed in the CORE method (Mullery, 1979), which was designed as a controlled

method for expressing requirements for information systems. The CORE method and

the rationale behind viewpoints are briefly described in Section 2.3.1.

A viewpoint can be thought of as a formalisation of the perceptions of a stakeholder

group with respect to some real-world phenomenon that is being modelled. This and

other associated terms are defined in Section 2.3.2.

An important part of any viewpoint-oriented approach is combining potentially

conflicting viewpoints in a coherent manner, which is a process similar in many re-

spects to schema integration. The issues surrounding viewpoint integration and some

possible approaches for integrating viewpoints are the discussed in Section 2.3.3. Tech-

niques developed to help with the problem of viewpoint integration will be used in

Chapter 8 as a basis for a method of measuring relative translation quality.

2.3.1 Origin of viewpoints

The first viewpoint-oriented method was the CORE (COntrolled Requirements Expres-

sion) method (Mullery, 1979). This method identified the need for “several expressions

of requirement” during the requirements definition phase of the systems development

life cycle. These expressions correspond to different viewpoints of the system, such as

(Mullery, 1979, p. 127):

• “a life cycle view (e.g. production plans, information and money flows)

15

• an environment view (e.g. user interfaces, interfaces with other systems, physical

operating conditions such as temperature, power supply, location)

• an operator view (e.g. interfaces between the system and its ‘servants’ — i.e. peo-

ple whose jobs exist because the system exists)

• a reliability view (e.g. acceptable failure rates, fault tolerance measures required,

recovery and back-up facilities required).”

The CORE method comprises the following activities:

1. Propose relevant viewpoints: In this activity, a small number of relevant view-

points are determined (generally between two and five). If more than five view-

points are found, then viewpoints are combined until there are no more than five

viewpoints.

2. Define relevant viewpoints: In this activity, specific requirements are developed

for each proposed viewpoint.

3. Confirm relevant viewpoints: This activity has two aims:

(a) Combining viewpoints: The viewpoints are reconciled and combined to

produce a single viewpoint for the system; and

(b) Defining reliability: The reliability requirements of the combined view-

point are determined.

The CORE method was derived from several years of practical experiment by Mul-

lery, so the concepts involved are not based on any formal model. Mullery also as-

sumes that viewpoints do not overlap (Easterbrook, 1991a, p. 54), and therefore they

cannot conflict. This may not always correct, however, as will be shown in Section 2.3.3

on page 22.

The basic notion of a viewpoint has changed little since the CORE method was

introduced. Finkelstein et al. (1989) proposed a more formal definition of the concept,

and also suggested that viewpoints need not be consistent with each other, that is,

viewpoints may conflict. This can conceivably lead to situations where it is difficult, if

not impossible, to reconcile differing viewpoints. Easterbrook (1991b; 1994) continued

16

this work by developing methods for resolving conflicts between viewpoints using

computer-supported negotiation. Recent research has also focused on how viewpoints

are represented (Darke and Shanks, 1995b), and particularly on the use of multiple

representations to describe viewpoints.

The viewpoint terminology of Finkelstein et al. (1989), Easterbrook (1991a) and

Darke and Shanks (1995b) will now be described.

2.3.2 Viewpoint terminology

Viewpoint-oriented methods were originally developed to assist with requirements

definition in a software engineering environment (Mullery, 1979), and subsequent re-

search has followed a similar direction (Easterbrook, 1991a; Kotonya and Sommer-

ville, 1996; Leite and Freeman, 1991; Nuseibeh et al., 1994). Recent work has examined

the process of resolving inconsistencies between viewpoints in an evolving specifica-

tion (Easterbrook and Nuseibeh, 1995; Easterbrook and Nuseibeh, 1996). The focus

of this thesis, however, is on how to facilitate the use of multiple representations to

describe a single viewpoint. This is an area that has only recently begun to receive

attention (Darke and Shanks, 1995b).

In Figure 2.1 on the next page the relationships between the concepts of viewpoint-

oriented methods are shown. This framework is derived by the author from the work

of Finkelstein et al. (1989), Easterbrook (1991a) and Darke and Shanks (1995b).

In the previous discussion, the terms viewpoint and representation were used infor-

mally. The concepts of perspective, viewpoint and representation are now introduced.

Perspectives and viewpoints

Easterbrook (1991a, p. 54) defines a perspective as “a description of an area of knowl-

edge which has internal consistency and an identifiable focus of attention”. Dur-

ing the requirements definition phase of systems analysis, developers may encounter

many different perspectives on the problem being modelled. Perspectives may overlap

and/or conflict with each other in various ways. Part of the process of information sys-

tem development is determining how to deal with these multiple perspectives. This is

an active area of research and has been discussed already by several authors (Kotonya

17

Rep’n Rep’n

Technique

Scheme

Technique

Scheme

Technique

Scheme

Representation Representation Representation

Information system design environment using multiple viewpoint representations

Real-world phenomena

formalised as a

using one or moreViewpoint integration

viewed from several

Perspective Perspective Perspective

Viewpoint Viewpoint Viewpoint

Scheme Scheme

Technique

Figure 2.1: Relationship between perspectives, viewpoints and representations

and Sommerville, 1996; Leite and Freeman, 1991; Easterbrook et al., 1994).

Finkelstein et al. (1989, p. 43) describe a viewpoint as comprising the following parts:

• “a style, the representation scheme in which the ViewPoint [sic] expresses what

it can see (examples of styles are data flow analysis, entity-relationship-attribute

modelling, Petri nets, equational logic, and so on);

• a domain defines which part of the ‘world’ delineated in the style (given that the

style defines a structured representation) can be seen by the ViewPoint (for exam-

ple, a lift-control system would include domains such as user, lift and controller);

• a specification, the statements expressed in the ViewPoint’s style describing par-

ticular domains;

• a work plan, how and in what circumstances the contents of the specification can

be changed; [and]

• a work record, an account of the current state of the development.”

18

Easterbrook (1991a, p. 54) simplifies Finkelstein et al.’s (1989) description by defin-

ing a viewpoint as “the formatted representation of a perspective”, and notes that a

perspective is a “more abstract version of a viewpoint”. In effect, a viewpoint is the

formalisation of a particular perspective, so there is a one-to-one correspondence be-

tween a viewpoint and the perspective it formalises, as illustrated in Figure 2.1.

Note that the concept of a viewpoint is different from that of a ‘view’ produced by

a multi-view development environment (see Section 2.2.1 on page 9). The similarity of

the terms has led to some confusion: the terms ‘viewpoint’ and ‘view’ have been used

interchangeably in the past (Jacobs and Marlin, 1995, p. 586). The concept of a ‘view’,

however, is more akin to the concept of a description, which is introduced in Chapter 3.

Darke and Shanks (1995b, p. 279) define two main types of viewpoint:

1. user viewpoints that capture “the perceptions and domain knowledge of a par-

ticular user group, reflecting the particular portion of the application domain

relevant to that group”; and

2. developer viewpoints that capture “the perceptions, domain knowledge and mod-

elling perspective relevant to a systems analyst or other developer responsible

for producing some component of the requirements specification”.

Since a viewpoint is the formalisation of a perspective, some form of model is re-

quired to provide the formalised structure. The concept of a representation provides

this.

Representations

Darke and Shanks (1994, p. 4) note that viewpoints may be described using different

representation techniques, within each of which there may be available a number of

representation schemes. Neither Darke and Shanks (1994) nor Finkelstein et al. (1989)

clearly define the terms ‘representation’, ‘technique’ or ‘scheme’; rather, they intro-

duce each term by means of examples. This has led to some confusion in the use of

this terminology. Darke and Shanks (1994, pp. 4–5) use the terms ‘representation’ and

‘representation technique’ interchangeably, while Finkelstein et al. (1989), as can be

seen in their definition of a ‘style’, use the term ‘representation scheme’ in a similar

way.

19

The intent of both Finkelstein et al. (1989) and Darke and Shanks (1994) appears to

be that a representation should be thought of as a structured modelling approach that

can be used to describe the content of a viewpoint. In order to clarify the confusion in

terminology, the author has refined this informal definition and defined a representation

as the combination of a particular technique and scheme to describe a viewpoint. This

will be discussed further in Chapter 3.

Darke and Shanks (1995b, p. 280) group representations into three general cate-

gories:

• informal representations that form unstructured descriptions, often expressed us-

ing a natural language or simple diagrams;

• semi-formal representations that form structured descriptions, such as entity-rela-

tionship modelling or data flow diagrams; and

• formal representations that form structured descriptions, and include a set of op-

erators for processing these descriptions, such as the relational model (Codd,

1970) and logic-based models (Gallaire and Minker, 1978; Date, 1995).

Unlike informal representations, which are often ill-defined, inconsistent and am-

biguous, semi-formal and formal representations are well-defined, consistent and gen-

erally unambiguous. A key feature of formal representations that is lacking in semi-

formal representations is the inclusion of operators which allow assertions to be made

about the viewpoints being described; Greenspan et al. (1994) describe this as the abil-

ity to ‘reason’ about representations. User viewpoints are typically defined using infor-

mal representations, whereas developer viewpoints are typically defined using semi-

formal or formal representations.

2.3.3 Viewpoint integration

Viewpoint-oriented methods by definition produce a collection of differing viewpoints.

Elements of these viewpoints may conflict with each other; in extreme cases, different

stakeholder groups may have widely divergent perspectives on the phenomenon being

modelled. To produce a useful information system, these differing viewpoints must be

integrated in some way.

20

In the correct context, the viewpoint integration and schema integration processes

are basically identical (Batini et al., 1986). This is to be expected, as both viewpoints and

schemas are formalised means of describing real-world phenomena. The viewpoint

and schema integration processes both suffer from similar problems with conflicting

viewpoints or schemas. The connection between viewpoint integration and schema

integration is briefly examined in this section, and some of the possible sources of

conflict identified.

Viewpoint integration can be considered as a process of resolving the conflicts

among viewpoints. The issues arising from this resolution process are also discussed

in this section.

The correspondence between schema and viewpoint integration suggests that ap-

proaches and tools developed for schema integration will also be useful for viewpoint

integration. One such approach, relative information capacity (Hull, 1986), will be used

as the basis of a method for measuring relative translation quality in Chapter 8.

Viewpoints and schema integration

Schema integration is the process of combining two or more schemas to form a single

consistent schema. Batini et al. (1986, p. 324) noted that schema integration can occur

in two contexts:

1. “View integration (in database design) produces a global conceptual description

of a proposed database.

2. Database integration (in distributed database management) produces the global

schema of a collection of databases. This global schema is a virtual view of all

databases taken together in a distributed database environment.”

The second context is probably more familiar, due to the current popularity of inte-

grating heterogeneous legacy databases. The former context, however, is more relevant

to viewpoint integration, and indeed, Batini et al.’s (1986, pp. 326–327) description of

view integration implies that viewpoint integration and view integration are the same

activity. Both processes involve the integration of several different views of a system to

form a consistent design, and both take place during similar phases of the development

cycle (Batini et al., 1986, Figure 1).

21

Problems arise when attempting to integrate diverse schemas. There are many

causes of diversity in schemas, such as (Batini et al., 1986, Section 1.2):

Different perspectives This corresponds directly to the idea of multiple perspectives

outlined in Section 2.3.2.

Equivalence among constructs of the model The same concepts may be modelled in

different ways in different schemas, for example, a type hierarchy of staff entities

as opposed to a single staff entity with a job code attribute.

Incompatible design specifications There may be design errors in one or more of the

schemas to be integrated.

In addition to these causes of diversity, there is also the issue of identifying com-

mon concepts in each source schema and determining how they are related to each

other. The kind of problems that can arise include synonyms (similar concepts with

different names) and homonyms (different concepts with similar names). There is also

the issue of inter-schema relationships. Suppose one schema defines a person entity,

while another defines an employee entity. It may be that the employee entity should be a

subset of the person entity, but this relationship obviously cannot exist in either of the

source schemas alone; rather it is an inter-schema relationship.

All these problems can cause conflicts between viewpoints. Since view integration

and viewpoint integration are basically the same activity, it should be possible to ap-

ply similar methodologies, such as those of Kahn (1979), Batini and Lenzerini (1984)

and Navathe and Gadgil (1982). Recent work in viewpoint integration, however, has

focused more on the conflict resolution process.

Conflict resolution

In general, inconsistency arises when two parts of a specification or design do not obey

some relationship that should, in theory, hold between them (Easterbrook and Nusei-

beh, 1996). Easterbrook (1991a, p. 95) gave the following example of two librarians

who are asked to describe the possible states of a book:

Two possible state transition diagrams for the books of the library are given [see

Figure 2.2], which may have been elicited from two different librarians. One gives

22

a description based roughly on a book’s physical whereabouts, whereas the other

gives a description based on how a book can be accessed. While it may appear that

there are a number of correspondences between the two descriptions, these are

not as simple as they seem. For example, the concepts ON SHELF and AVAILABLE

are similar, except that the latter includes books waiting to be shelved: it assumes

that librarians are able to locate unshelved books for loan. OUT and LENT are also

similar, except that the former includes books being used within the library, while

the latter only includes such books if they are from the reserve collection. To make

things worse, both could have used the same terminology.

The elicited viewpoints are both equally valid interpretations of the same problem, but

are inconsistent with each other, that is, a conflict exists between the two viewpoints.

On
Shelf

At
Binders Out

On
returned
stack

borrow

return

shelve

send to repair

return

send to repair

(a)

Out of
Circulation Available

On
reserve Recalled

Lent
re-stock

repair/missing

reserve

ca
nc

el
re

se
rv

e

reserve

return

issue

re
ca

ll

issue

reserve

(b)

Figure 2.2: Possible states for a library book: (a) from the perspective of physical
whereabouts; (b) from the perspective of accessibility of a book (Easterbrook, 1991a,
Figure 6.3)

Conflict resolution is an important part of viewpoint-oriented methods. Histori-

cally, viewpoints have not been recognised as first-class citizens in the systems devel-

23

opment process (Finkelstein and Sommerville, 1996). Instead, developers have typi-

cally chosen a single ‘correct’ viewpoint and effectively forced the various other view-

points to fit within the framework of the chosen viewpoint (Easterbrook, 1991a, pp. 18–

19, 34). Inconsistencies which cannot be made to fit are assumed to be anomalies and

either discarded or, more likely, dealt with as ‘special cases’ during the implementa-

tion phase. This approach effectively sacrifices diversity of perspectives for the sake of

consistency and coherence.

Easterbrook (1991a, Section 2.2.4) notes, however, that suppressing inconsistency in

this manner can cause problems, for example, a systems analyst may impose her own

preconceived solution on the problem, even though it may not be the best. If there is an

inconsistency between two viewpoints, then there is presumably some valid reason for

this inconsistency (assuming that it is not a genuine error); this is an important aspect

of the phenomenon being modelled and should therefore be documented. Easterbrook

and Nuseibeh (1996) note that inconsistency between viewpoints can often imply that

there is some information missing that the analyst still needs to extract, suggesting that

these areas of inconsistency are precisely those that systems analysts should spend the

most time on. If inconsistencies are ignored during the requirements definition and

design phases, they are likely to cause problems during the implementation phase.

Viewpoint-oriented methods consider viewpoints as distinct entities within the de-

velopment process. Viewpoints may be manipulated in various ways, and relation-

ships may be defined between them. Note, however, that viewpoint-oriented methods

do not sacrifice consistency and coherence for the sake of perspective diversity. Rather,

a balance must be struck between the two. The overlaps and conflicts among view-

points must be explicitly resolved in some way to result in a useful system. Finkelstein

and Sommerville (1996, p. 2) argue that the consistency of the final result need not be

complete, as long as it is sufficient to meet the goals of the development effort. Con-

flicts may be dealt with by either integrating the viewpoints in a single operation, or

resolving conflicts as they arise on a case-by-case basis. Superficially, this is similar to

the approach taken in conventional methods, but the two key differences are:

1. conflict resolution is carried out during the requirements definition and design

phases, as opposed to during the implementation phase; and

24

2. multiple viewpoints are allowed to coexist, as opposed to enforcing a single ‘cor-

rect’ viewpoint.

The previous discussion implies the existence of two main approaches to conflict

resolution, although it would probably be more accurate to say that there is a spectrum

of conflict resolution approaches, with these two approaches at the extremes. These

two approaches, which are summarised in Table 2.1, are:

1. choosing a single ‘correct’ viewpoint and suppressing conflicts; and

2. allowing multiple viewpoints to coexist and resolving conflicts between them.

Table 2.1: Approaches to resolving viewpoint conflicts

Single ‘correct’ Multiple conflicting
viewpoint viewpoints

Paradigm Objectivist Subjectivist

Phase of systems
Implementation

Requirements
development life cycle definition and design

Source of conflict
Inconsistency with Inconsistency between

‘discarded’ viewpoints defined viewpoints

Resolution method ‘Special case’ handling
Viewpoint conflict

resolution

Documentation of
Sometimes Yes

resolution

The first approach is an example of the objectivist paradigm (Klein and Hirschheim,

1987) of data modelling, which effectively states that there is always some kind of un-

derlying ‘truth’ to be found when modelling reality. In other words, a single, ‘correct’

solution can always be found. Conversely, the second approach is an example of the

subjectivist paradigm (Klein and Hirschheim, 1987), which states that there is no un-

derlying ‘truth’, only interpretations of reality, constructed according to the viewpoint

holder’s particular social and organisational context (Darke and Shanks, 1995a, p. 2).

As noted above, a typical approach to inconsistency during the requirements def-

inition and design phases has been to apply an objectivist approach and avoid the

25

inconsistency by either ignoring it completely, or by settling on a single, consistent

viewpoint and treating the inconsistency as a special case during the implementation

phase. There are notable exceptions to this, such as the Object-Oriented Software En-

gineering (OOSE) approach1 of Jacobson et al. (1992), in which use cases model the

differing viewpoints of various actors.

Easterbrook (1991a, Section 3.3.1) refers to the avoidance of inconsistency as ‘the

single viewpoint bias’ and notes that it has been criticised by several authors. If the

conflict is caused by a genuine misunderstanding or error, then resolving the conflict is

simply a matter of correcting the error. There may, however, often be several different,

but equally ‘correct’, solutions to any but the most trivial of data modelling problems.

Easterbrook’s (1991a) library example shown in Figure 2.2 on page 23 illustrates this.

The process of generating a single ‘correct’ viewpoint may result in much useful in-

formation being discarded, especially when different viewpoints conflict, as there is

usually some valid reason for such conflicts. If the conflict is a result of differing per-

spectives, then an objectivist approach can result in two major problems:

1. a potential reduction in the efficacy of the final system; and

2. there may be no way of determining at a later date how a conflict was resolved,

as there is often no documentation of the resolution.

The first problem arises because the analyst may be ignoring real and important

aspects of the phenomenon being modelled. Suppose an analyst elicits three non-

overlapping viewpoints of a problem. If only one of these is chosen as the ‘correct’

viewpoint, it will make the final system virtually useless for dealing with the other

viewpoints. As a result, users would either have to drop their use of the alternate

viewpoints, or not use the system at all.

The second problem (that of no documentation of the conflict resolution) will typi-

cally not manifest itself until the system requires maintenance, although it could arise

during the specification process if the specification goes through considerable revision.

If a conflict is dealt with using an objectivist approach, then it is possible that no record

will be kept of the fact that there even was a conflict, let alone how it was resolved
1OOSE later merged with the OMT and Booch object-oriented approaches to form the Unified Mod-

elling Language or UML (Rational Software Corporation, 1997).

26

(Easterbrook, 1991a, pp. 91–92). When the problem is revisited at a later date, and the

conflict is rediscovered, the maintainers may not be able to determine how the conflict

was originally resolved, thus wasting effort in resolving the conflict for a second time.

If the original conflict was implemented as a special case, there may be comments in

the application source code documenting this, but this is by no means guaranteed.

Easterbrook (1991b) and Easterbrook and Nuseibeh (1995; 1996) have examined

these problems in depth, and Easterbrook (1991a) has developed a framework and

tools for negotiated resolution of conflicts among viewpoints. Other researchers have

approached the problem of conflict resolution from a formal basis. In particular, Miller

(1994) has explored the problem of resolving conflicts among schemas using the con-

cept of relative information capacity, which will be discussed further in Chapter 8.

2.4 Data translation methods

The approach taken by this research is to facilitate the use of multiple representations

within a viewpoint by translating models from one representation to another. Relevant

aspects of the field of data translation must therefore be reviewed.

Data translation is an important part of everyday computing activities. Data are

translated from one data format to another by an interface (Pascoe and Penny, 1995)

that translates elements of the source format into elements of the target format.

Several issues arise when translating data from one form to another, for example

(Pascoe and Penny, 1990; Gawkowski and Mamrak, 1992):

• Data formats may use different encoding schemes (for example, ASCII versus

EBCDIC). This issue is not particularly relevant to translating between represen-

tations, and will not be discussed further.

• Translating from one format to another may result in a loss of information if the

target format is not as expressive as the source format. This determines the quality

of that translation, and is discussed in Section 2.4.1.

• An interface between two specific formats may not exist, requiring either a new

interface to be generated, or the translation to be made via some other format(s),

27

according to some interfacing strategy. This determines the performance of a trans-

lation, and is discussed in Section 2.4.2. Interfacing strategies are discussed in

Section 2.4.3.

• Many interfaces are generated manually in an ad hoc fashion, when they could

be generated automatically, thus reducing the potential for coding errors. This

issue may be alleviated by the use of interface specification languages, which are

discussed in Section 2.4.4.

2.4.1 Translation quality

When translating from one format to another, information may be lost. The quality

of a translation is determined by how well it deals with this information loss (Pascoe

and Penny, 1990). In practical terms this refers to how completely a translation maps

items and structures from the source format to the target format. It is important to

note that loss of information during a translation is often unavoidable, as the target

format may not be able to express the same set of information as the source format.

For example, when translating from an entity-relationship diagram (ERD) to a func-

tional dependency diagram, it is likely that the entity names cannot be translated to

anything meaningful, as functional dependencies have no concept of ‘entity’. This loss

of information is not the fault of the translation; rather it is because of a mismatch in

the expressive powers of the source and target formats. The impact of this mismatch

on facilitating the use of multiple representations is discussed further in Chapter 3.

For a translation to be of the highest quality possible, any potential loss of informa-

tion must be minimised, that is, a translation must translate all of the information that

can conceivably be translated, not just that which is expedient or convenient. As the

amount of information translated decreases below this maximum, so does the quality

of the translation. For example, when translating from an ERD to an SQL schema, it

is possible to automatically generate SQL foreign keys from the ERD by examining

the optionality and cardinality of the relationships between entities (see Section 5.3 on

page 114). Many CASE tools, however, do not do this; instead they require developers

to explicitly define all foreign keys in the ERD. If these foreign keys are not defined,

then they are not generated in the resultant SQL, despite the fact that it is possible to

28

do so. The ERD to SQL translations used by many CASE tools are therefore of lower

quality than they could be.

Translation quality is also affected by the number of interfaces required to translate

from the source format to the target format. Each interface may potentially result in

a loss of information, so the total loss of information will tend to increase with the

number of interfaces (Pascoe and Penny, 1990, pp. 152–153). It is therefore important

to minimise the total number of interfaces required to perform a translation between

two formats. This number is determined to a large extent by the interfacing strategy

used.

One of the goals of this research is to improve the quality of translations, which is

achieved in two ways in this thesis. Translations in this thesis are defined by a collec-

tion of rules. A special type of rule, known as a heuristic, can improve the quality of a

translation by translating information that would otherwise not be translated. Heuris-

tics are introduced in Section 4.2 on page 68, and their effect on translation quality is

discussed in Chapter 8. It is also possible to improve the quality of a translation by

adding extra information or metadata to the source, thus providing additional hints to

the translation. Missing information could also be acquired from the user during the

translation. This process is known as enrichment, and is discussed further in Section 4.6

on page 91.

2.4.2 Translation performance

The performance of a translation is determined by the number of distinct interfaces re-

quired to translate from one format to another (Pascoe and Penny, 1990). For example,

suppose there is no interface between formats P and R, but there are interfaces be-

tween P and Q, and between Q and R. It is thus possible to translate from P to R

by translating data first into format Q, then into format R. This will usually be less

efficient than translating directly from P to R, and may also affect the quality of the

translation, as noted above. Performance is directly affected by the interfacing strategy

used, as this determines the number of distinct interfaces that are required between

each pair of formats.

29

2.4.3 Interfacing strategies

Fosnight and van Roessel (1985) identify three possible interfacing strategies (illus-

trated in Figure 2.3) for performing translations:

1. The individual interfacing strategy, where separate interfaces are constructed be-

tween each pair of formats. This is also known as the pairwise technique (Mamrak

and Barnes, 1994) or the direct translation approach (Su et al., 1992).

2. The ring interfacing strategy, where individual formats in a group are connected

in series.

3. The interchange format interfacing strategy, where translations are performed via

an intermediate format. This is also known as the intermediate-form technique

(Mamrak and Barnes, 1994) or the indirect translation approach (Su et al., 1992).

a data format

(a) Individual

an interface

(b) Ring

an interchange
format

(c) Interchange format

Figure 2.3: Interfacing strategies

Pascoe and Penny (1990) show that the individual interfacing strategy is the best of

the three with respect to the quality and performance of the translation. The individual

strategy also has the advantage that an environment based on it is easily extensible.

Adding a new format does not require changes to any other format, although it does

require the definition of at least two interfaces in order to be useful (one ‘to’ the format

and one ‘from’). This is, however, the individual strategy’s major disadvantage: to

provide a complete set of translations, a potentially large number of of interfaces must

30

be constructed. For n formats, n(n− 1)/2 interfaces must be constructed to implement

all possible translations.

The ring interfacing strategy is the worst with respect to performance (in the worst

case, n − 1 translations are required), and as a result, also the worst with respect to

quality. It does however share the advantage of being able to construct easily extensible

translation environments — as with the individual strategy, changes are not required

to other formats, and only two additional interfaces need to be defined for each new

format. The number of distinct interfaces required is better than that of the individual

interfacing strategy — for n formats, at most n distinct interfaces are required.

The interchange format interfacing strategy provides a reasonable compromise —

performance is good (exactly two interfaces per format), and at most 2n distinct inter-

faces are required. The main argument against this strategy is the effect it can have on

the quality of the translations. Su et al. (1992, p. 7) state that “the expressive power of

the intermediate model has to be at least as strong as the sum of all the data models

to be handled by the translation system”. Defining an interchange format in terms of

the formats currently in use may result in the interchange format becoming a ‘moving

target’ — as new formats are added, the interchange format may often need to be be

updated to handle them (Pascoe and Penny, 1990). This can lead to a proliferation of

potentially incompatible versions. It may also be difficult to combine different formats

into a coherent interchange format because of incompatibilities and differing levels of

abstraction across formats (Su et al., 1992).

Consider the situation that exists with SQL. Originally designed as a language for

accessing and defining relational databases, SQL has evolved into a standard language

for building, manipulating and communicating among relational database manage-

ment systems (Date and Darwen, 1993, p. 7). Despite early efforts at standardisation

(ISO-IEC, 1987; ISO-IEC, 1989), SQL splintered into a disparate collection of incompat-

ible dialects as database vendors attempted to differentiate their products (the CASE

tool EasyCASE supports 31 distinct dialects of SQL, for instance). The efficacy of SQL

as a standard interchange format for relational databases was thus diluted. Attempts

have been made to remedy this situation with newer versions of the SQL standard,

such as SQL/92 (ISO-IEC, 1992a) and the forthcoming SQL3, by incorporating many

of the previously proprietary features developed by vendors. This has ameliorated the

31

incompatibility problem, but has produced a highly complex standard that is difficult

for vendors to understand and implement (Date and Darwen, 1993, p. vii).

Complexity can also be a common feature of interchange formats, as they need

to handle the many different constructs and conventions that other formats provide

(Su et al., 1992, p. 7). The Standard Generalised Markup Language (SGML) for struc-

turing documents is a powerful, extensible language that is capable of handling any

document structuring convention that can be described in a coherent manner, but as a

result, it is extremely complex, making it very difficult and time-consuming to develop

SGML tools (Tittel, 1998).

Another example of this complexity is the CASE Data Interchange Format (CDIF)

defined by the Electronic Industries Association (CDIF Technical Committee, 1994a;

Ernst, 1997). This is an interchange format designed to allow CASE tools to exchange

data. It consists of an extensible meta-model (CDIF Technical Committee, 1994b) that

is partitioned into several subject areas, such as data modelling, data flow analysis and

project management. As with SGML, this model is extremely complex, and becomes

even more so as new subject areas are added, especially when those subject areas

overlap in some way. For instance, both the data modelling (CDIF Technical Com-

mittee, 1996a) and data flow model (CDIF Technical Committee, 1995b) subject areas

include the concept of an attribute. The approach taken by the EIA to solve this prob-

lem is to make all elements of a subject area subclasses of elements in the ‘foundation’

subject area (CDIF Technical Committee, 1994c).

Because of the issues with the interchange format and ring interfacing strategies

outlined above, the individual interfacing strategy has been chosen for this research.

This will typically provide higher quality and higher performance translations, albeit

at the expense of requiring a greater number of interfaces. It may, however, be possible

to reduce somewhat the number of interfaces without compromising translation qual-

ity; this has been left as an area for future research and will be discussed in Chapter 10.

2.4.4 Interface specification languages

In the past, the process of creating new interfaces has often been an ad hoc process

in which programmers must manually code each individual interface (Amor, 1997,

32

p. 64). This approach to interface implementation has the advantages of using stan-

dard programming languages and providing direct control over the functionality of

the interface. It does, however, have the following distinct disadvantages:

• the efficacy of an interface can be reduced by coding errors;

• interfaces can be difficult to maintain;

• different interfaces may not be specified in a consistent manner (for example,

different languages, coding styles or paradigms);

• interfaces may be coded to take advantage of specific machine or operating sys-

tem functionality, thus reducing portability;

• interface implementations may be removed from the semantics of the problem

domain (Amor, 1997, p. 63); and

• it may be harder to involve domain experts in the specification process (Amor,

1997, p. 63).

A possible solution to several of these problems is to use a high-level interface spec-

ification language to define interfaces (also known as a mapping specification language).

Interfaces may be specified in a consistent manner using a single language, and these

specifications may then be used to generate (that is, implement) translators for particu-

lar situations. This solves the problems of specification consistency and portability, and

should help reduce the effect of coding errors and improve maintainability by reduc-

ing the amount of code required. Interface specifications will be focused more on the

semantics of the problem domain and less on the implementation details, which makes

it easier to include domain experts in the specification process (Amor, 1997, p. 63).

Amor (1997, pp. 67–69) has proposed the following list of requirements for an ideal

interface specification language:

Language level: The language should use a high-level notation.

Language notation and modelling environment: Both a textual and a graphical nota-

tion should be provided, which are supported by an appropriate modelling tool.

33

Language style: A declarative notation is likely to provide the highest level of specifi-

cation, but some mappings may also require a procedural notation.

Bidirectionality: Interfaces may be bidirectional or unidirectional, that is, they may be

executed either in both ‘directions’, or in one ‘direction’ only. Any specification

language should therefore support both types.

Conditional mapping: Different mappings may apply based on certain conditions, so

any language must allow the specification of constraints on the applicability of a

given mapping.

Aggregation: Some means of aggregating information to go from a very detailed for-

mat to a less detailed format must be provided.

Relationship handling: The ability to manipulate relationships in a schema is needed.

Initialisers: These provide the ability to initialise new objects that are created by the

interface, and also provide a means of making explicit some assumptions that are

implicitly specified in a schema.

Unit handling: The ability to convert values between different unit types is required,

as different schemas may use different units or magnitudes of units.

Type handling: Different formats may use different data types or structures to express

the same information. Some means of mapping between these types is therefore

required.

Amor (1997, Section 4.2) reviewed several interface specification languages and

mapping methods with respect to these requirements, including three variants of the

EXPRESS language (ISO-IEC, 1992b), Transformr (Clark, 1992), EDM-2 (Eastman et al.,

1995), KIF (Genesereth and Fikes, 1992), Superviews (Motro, 1987) and relational views,

and found that all of them violate one or more of the requirements. These deficiencies

in existing interface specification languages led him to develop the View Mapping Lan-

guage (VML). VML is a high-level declarative language for specifying mappings be-

tween schemas (Amor, 1997, Chapter 5). It was designed to address many of the short-

comings with other languages and meets all of the requirements listed above. VML is

34

based on an object-oriented derivative of Prolog known as Snart (Grundy, 1993), thus

inheriting the declarative nature of Prolog, while also providing the advantages of an

object-oriented programming language, such as complex type handling and inheri-

tance.

VML specifications define the mappings between classes of objects in the source

and target schemas. Mappings may have constraints associated with them (known in

VML as invariants) that limit the applicability of a particular mapping. A mapping be-

tween classes comprises a collection of equivalences that define the mappings between

the individual attributes of the objects. VML also has many other powerful features

(Amor, 1997):

• VML allows the specification of arbitrary mappings. Most mappings may be

specified declaratively, but a procedural syntax is provided for more complex

mappings.

• A graphical notation is defined to allow expression of mappings at a high level

of abstraction.

• VML is a declarative language, so mappings may be applied in arbitrary order.

• Mappings between schemas may be unidirectional (that is, either schema A →

schema B, or schema B→ schema A) or bidirectional (that is, schema A↔ schema

B).

• Mappings may either create a new schema, or incrementally update an existing

schema.

An extended version of VML will be used in Chapter 5 to specify the details of

translations between different representations.

2.5 Summary

In this chapter have been reviewed three areas of research that are related to the objec-

tive of facilitating the use of multiple modelling representations. These areas are: the

use of multiple representations for data modelling, viewpoint-oriented methods and

data translation.

35

In Section 2.2 three research projects were discussed that deal with the use of multi-

ple representations for data modelling in different ways. The first approach, developed

by Grundy, is derived from work on multi-view editing systems, and centres on the

concept of maintaining consistency among multiple graphical and textual views of an

underlying model. Modelling representations are defined within the framework of an

integrated data model, and consistency among views is maintained by propagating

changes from one view to another via the integrated model. This approach has been

implemented in an application development framework called MViews.

The second approach, developed by Atzeni and Torlone, is based on a formal graph

theoretic framework in which modelling representations are defined using an abstract

metamodel comprising six generic constructs. Translations between representations

are achieved by deriving translations from a collection of predefined ‘standard’ trans-

lations. This approach has been implemented in a tool known as MDM.

The third approach, developed by Su et al., is based on an object-oriented rule-

based meta-model called ORECOM that is used to define representations. Translations

between representations are automatically derived by comparing representations to

determine the mappings between constructs. These three approaches were only briefly

reviewed in this chapter. They will be examined in more detail in Chapter 9, and

compared with the approach taken in this thesis.

In Section 2.3 the concepts and issues of viewpoint-oriented methods were dis-

cussed. The concepts of viewpoint, representation, technique and scheme were introduced.

Viewpoint integration was identified as an important element of viewpoint-oriented

methods. The process of resolving conflicts between overlapping viewpoints was dis-

cussed, and a comparison was drawn between viewpoint integration and schema inte-

gration. A tool developed to aid the schema integration process, relative information

capacity (Hull, 1986; Miller, 1994), will be used in Chapter 8 as the basis for a method

of measuring the relative quality of translations.

The approach taken by this thesis to the goal of facilitating the use of multiple rep-

resentations is to perform translations between the instances of these representations.

This is related to the more general problem of data translation, and hence a discus-

sion of the issues associated with data translation was presented in Section 2.4. The

concepts of translation quality and performance were introduced and discussed. Both of

36

these are affected by the interfacing strategy used, so three major interfacing strategies

(individual, ring and interchange format) were also introduced and the advantages

and disadvantages of each strategy discussed. The individual interfacing strategy was

chosen for use in this research. Interface specification languages were introduced as a

tool for helping with the problem of defining interfaces. The requirements of an ideal

interface specification language were described, and a language that meets these re-

quirements, the View Mapping Language (VML), was introduced. An extended version

of VML will be defined in Chapter 7 for the purpose of specifying translations between

representations.

This completes the background review for this research. The concepts introduced in

this chapter will now be extended and enhanced. The use of multiple representations

has an impact on many of the concepts introduced in this chapter, and is discussed

further in the next chapter.

37

Chapter 3

Using multiple representations to

describe a viewpoint

3.1 Introduction

It was stated in Section 2.3.2 on page 19 that viewpoints may be described using any

of a large number of different representations. There are several arguments in favour

of using multiple representations to describe a viewpoint, and several authors have

proposed this approach (Finkelstein et al., 1989; Darke and Shanks, 1995a; Easter-

brook, 1991a). Darke and Shanks (1995a) in particular argue for the use of multiple

representations within a single viewpoint. The use of multiple representations to de-

scribe a single viewpoint provides three important advantages:

• a more thorough understanding of a viewpoint;

• a means of highlighting potential inconsistencies within a viewpoint; and

• the opportunity for designers to describe a viewpoint using the most appropriate

tools.

Multiple representations allow the description of a viewpoint in many different

ways. It can be argued that no single representation will be adequate to fully describe

a viewpoint (Darke and Shanks, 1995a, p. 4), and indeed, the current plethora of mod-

elling approaches suggests that a single representation is inadequate to fully describe

even a single viewpoint, except in trivial cases. It is therefore reasonable to expect that

using multiple representations will result in a more complete description of a view-

point, which in turn implies that a more thorough understanding of a viewpoint could

be built using multiple representations than if just a single representation was used.

39

Environments that facilitate the use of multiple representations must deal with the

issue of maintaining consistency across descriptions. This is particularly important

within a single viewpoint, as a viewpoint is by definition internally consistent (see Sec-

tion 2.3.2 on page 17). Two approaches to consistency maintenance and the issues aris-

ing from these approaches are discussed in Section 3.6. It is also important to be able

to identify and correct inconsistencies that may arise between different descriptions

of a viewpoint. Potential inconsistencies between descriptions may be highlighted by

translating the descriptions so that they are expressed using the same representation.

Suppose a developer describes a viewpoint using an entity-relationship diagram (a

semi-formal technique), from which he derives a collection of relations. If the devel-

oper describes the same viewpoint using a functional dependency diagram, he can

use approaches such as Smith’s Method (Smith, 1985) to generate a second collection

of normalised relations. The second collection can then be compared against the first

collection for obvious discrepancies. This provides a useful aid for evaluating the con-

sistency of a viewpoint and will be discussed further in Section 4.5 on page 86.

The third advantage of using multiple representations is that designers are able

to choose the representation that is most appropriate to the part of the problem they

are working on at the time. They could even choose to use the representation that

they best understand or prefer (Atzeni and Torlone, 1996a); for example, designers

who naturally think in graphical terms might be more comfortable with a graphical

style of representation, such as entity-relationship modelling, whereas non-graphical

thinkers may prefer a formal representation, such as the relational model (Batra and

Srinivasan, 1992; Batra and Antony, 1994). Easterbrook (1991a, p. 56) also points out

that different representations “are more suited to particular areas of knowledge, in

the same way that different programming languages suit particular problems”, while

Atzeni and Torlone (1993, p. 349) note that different representations may be useful at

different levels of abstraction.

The use of multiple representations has already been identified as a useful area of

research (Atzeni and Torlone, 1996a; Grundy, 1993, see also Section 2.2), and the use of

multiple representations within a single viewpoint was suggested as early as 1989 by

Finkelstein et al. It is therefore interesting to note that despite the potential advantages

outlined above and the encouragement of several authors, Darke and Shanks (1996,

40

p. 101) found in a review of twelve different viewpoint development approaches that

only two supported multiple representations to describe a single viewpoint. These

two approaches were the Soft Systems methodology (Checkland, 1981) and Scenario

Analysis (Hsia et al., 1994), both of which are user viewpoint approaches rather than

developer viewpoint approaches.

Consequently, this research will follow the approach of using multiple representa-

tions to describe a single developer viewpoint. The focus will be on developer view-

points described using formal and semi-formal representations. Informal represen-

tations are not included because of their unstructured and often ill-defined nature,

which makes them inherently more difficult to translate in an automated manner than

the structured and well-defined formal and semi-formal representations. Since user

viewpoints are often described using informal representations, they have also been

excluded. The inclusion of informal representations is an interesting line of future re-

search that will be discussed further in Chapter 10.

The viewpoint framework introduced in Chapter 2 provides a useful context for

discussing representations and translations between them, but some confusion over

the definition of the term ‘representation’ was identified. This confusion is addressed

in Section 3.2, and the basic framework is extended with the concepts of descriptions,

constructs of representations and elements of descriptions. A notation for expressing

these items is described in Section 3.3. This notation provides a concise and consistent

means of expressing representations, descriptions, and particularly constructs and el-

ements, which would be cumbersome to express using natural language.

A representation comprises a collection of constructs that have certain properties

and are associated in various ways. Thus, in order to define a representation, one must

define its constructs and the associations between them. An approach to defining the

constructs of a representation, the properties of those constructs and the associations

between constructs is described in Section 3.4.

The definition of a representation and its constructs determines what may be ex-

pressed using that representation; this is termed here the expressive power of a represen-

tation, which is discussed in Section 3.5. The expressive powers of two representations

will typically overlap in some way, which has an effect on the quality of translations

between those representations.

41

3.2 Extending the viewpoint framework

3.2.1 Representations

In Section 2.3.2 on page 19, some confusion was identified over the use of the terms

‘representation’, ‘technique’ and ‘scheme’, and an informal definition of the concept of

a representation was presented. This confusion will now be addressed, and all three

terms formally defined (see also Stanger and Pascoe, 1997a).

Informally, a data modelling representation can be thought of as comprising two

main parts:

1. a generic part that specifies the generic constructs that may be used to describe a

viewpoint, such as entities, relations, and so on; which then determines

2. a specialised part that specifies the constructs peculiar to the representation, along

with their visual appearance or notation, such as boxes for entities, lines for rela-

tionships, and so on.

Finkelstein et al.’s (1989) use of the term ‘style’ does not clearly distinguish between

these two parts; conversely, the ‘techniques’ and ‘schemes’ of Darke and Shanks (1994)

seem to match these two parts quite well. It is therefore proposed to use the term tech-

nique to refer to the generic part of a representation, and the term scheme to refer to the

specialised part of a representation. As noted by Darke and Shanks (1994), each tech-

nique may have a number of schemes associated with it. In practical terms, a technique

can be thought of as a modelling ‘approach’, such as the entity-relationship approach

or the relational model, and a scheme can be thought of as a particular ‘notation’ within

that approach, such as a particular entity-relationship notation or relational calculus.

A representation can thus be formally defined as the combination of a particular

technique and a particular scheme, as shown in Figure 3.1, and is analogous to Atzeni

and Torlone’s (1993) concept of a ‘model’. In general, a technique may have one or

more associated schemes, but each combination of a technique and a scheme forms

a distinct representation. For example, the relational model is a technique, with SQL

and QUEL being two possible schemes, but the combinations (Relational , SQL)1 and

(Relational ,QUEL) form two distinct representations, as shown in Figure 3.2. Similarly,
1In practice, the many dialects of SQL will form many different representations. This has been ig-

nored here in the interests of clarity.

42

 T2

Description Description Description

Information system design environment using multiple viewpoint representations

Real-world phenomena

formalised as a

viewed from several

Perspective Perspective Perspective

Viewpoint Viewpoint

 T2

 T3

technique

scheme

Representation Representation Representation

Process

Data store

Data flow
Weak entity

Attribute

Relationship

Attribute

Dependency

Attribute set

emp_no
EMP_NO

A+B
create table
 staff ...

emp_no char(7)

primary key
 (emp_no)

Process modelling

G&S DFD Smith FDD

Functional Dep.

Martin ERD

ERM

SQL QUEL

{
{

 T1 T4

Rep’n Rep’n

Table
Attribute

Primary key

Relational

Description

Viewpoint

described by one or more

 T3 T1 T4

expressed using expressed usingexpressed usingexpressed using

“s
pe

ci
al

is
ed

”
co

ns
tr

uc
ts

“g
en

er
ic

”
co

ns
tr

uc
ts

el
em

en
ts

 ...
create table result
(result_id integer,
 element_id integer not null,
 student_id char(7) not null,
 staff_id char(8) not null,
 date_submitted date,
 date_marked date,
 raw_mark smallint,
 comments char(500),

 primary key (result_id),
 foreign key (element_id)
 references element,
 foreign key (student_id)
 references student,
 foreign key (staff_id)
 references staff
); ...

Viewpoint integration

a

Student

P1

Mark
assignment

D1 Staff

Received
assignments

P2

Return
results

D3 Element

D4 Assignment

D2 Student

assignment

staff IDstudent ID

marking details

results

resultsresults

Student

Assignment Assessment
ElementStaff

marks

CRITERION_NAME

ADJUSTMENT_NO

ASSIGN_ID

DATE_SUBMITTED

DATE_MARKED
RAW_MARK

COMMENTS

MARK + COMMENTS

PARENT_ANSWER

REASON +
AMOUNT

2

ANSWER_ID
MARK +

COMMENTS

NAME +
TOTAL_MARK +

PERCENT + DUE_DATE +
LATE_PENALTY

ELEMENT_ID

2

NUMBER + MARKS +
GUIDELINES

PARENT_QUESTION 1

QUESTION_ID 1

STAFF_ID

STUDENT_ID

NAME +
PASSWORD

NAME +
PASSWORD

Figure 3.1: Extending the perspective/viewpoint/representation framework [after
Stanger and Pascoe (1997a)]

Martin Chen

Entity-relationship

SQL QUEL

Relational

Representation Representation

Figure 3.2: Multiple schemes within a technique

43

the entity-relationship approach (E -R) is a technique, with ERDMartin and ERDChen as

two possible schemes. The combinations (E -R,ERDMartin) and (E -R,ERDChen) again

form two distinct representations.

It expected that a technique will not attempt to specify all the possible concepts for

all possible schemes within that technique. Such an approach would suffer from the

same problems as interchange formats, in that the technique could potentially need to

be modified every time a new scheme was added. Rather, a technique defines the ‘base’

model, which is then specialised and extended by schemes to form a representation.

This implies that a scheme may provide constructs to a representation that have no

analogue in the technique. For example, the relational technique (Codd, 1970) does not

include constraints, but they are an important feature of the relational scheme SQL/92.

Similarly, type hierarchies are not part of the E-R technique (Chen, 1976; Chen, 1977),

but they do appear in some E-R schemes.

3.2.2 Descriptions

Representations are an abstract concept, so they must be instantiated in some way in

order to describe the content of a viewpoint. Such an instantiation is analogous to

Atzeni and Torlone’s (1995, p. 8) concept of an ‘allowed scheme’, that is, a schema

that is valid within a particular model. Another way of viewing the instantiation of

a representation is as the set of ‘statements’ that describe a viewpoint or some subset

thereof. Finkelstein et al. (1989, p. 43; see also Section 2.3.2 on page 17) refer to this as

a specification or description; Easterbrook (1991a, p. 54) also refers to this concept as a

description. The author has adopted the term ‘description’ as it emphasises the idea

that they are used to describe a viewpoint.

A viewpoint is thus specified by a set of descriptions, each expressed using some

representation, as shown in Figure 3.1. Each description may describe either the whole

viewpoint or some subset of the viewpoint; this is analogous to the concept of a ‘view’

in multi-view editing environments (see Section 2.2.1 on page 9). In Figure 3.3 is shown

a developer viewpoint of a simplified used car dealership, specified by the union of

four descriptions (the D(V, T, S) notation is described in Section 3.3):

(a) an entity-relationship description expressed using Martin E-R diagram notation

(see Appendix A; Martin, 1990; Evergreen Software Tools, 1995b);

44

Staff

Wage_staff Salary_staffSalesrep

Feature

CustomerPurchase Sale

Car

buys sells

sells buys

bought sold

car
features

(a) D1(Vcars ,E -R,ERDMartin)

MAKE + MODEL +
YEAR + COLOUR + ODOMETER +

MILES_KM + LIST_PRICE

SALE_ID

NAME + ADDRESS +
PHONE

CUSTOMER_NO

COMMISSION_RATE

REGISTRATION

NAME + ADDRESS +
PHONE

SALARY

HOURLY_RATE +
HOURS_PER_WEEK

WAGE_STAFF_ID1

SALARY_STAFF_ID1

1 Employee number

SALESREP_ID 1

IRD_NUMBER11

SALE_DATE

SALE_PRICE

PURCHASE_DATE

PURCHASE_PRICE

PURCHASE_ID

FEATURE_CODE

DESCRIPTION

VIN

(b) D2(Vcars ,FuncDep,FDDSmith)

...
create table car
(registration char(6),

vin char(20) not null unique,
make char(20),
model char(20),
year smallint,
colour char(20),
odometer integer,
miles_km char(1),
list_price integer,
purchase_id char(6) not null unique,
sale_id char(6) unique,

primary key (registration),
foreign key (purchase_id)

references purchase,
foreign key (sale_id)

references sale
);

create table purchase
(purchase_id char(6),

purchase_date date,
purchase_price integer,
customer_no char(6) not null,
salesrep_id char(7) not null,
registration char(6) not null unique,

primary key (purchase_id),
foreign key (customer_no)

references customer,
foreign key (salesrep_id)

references salesrep
foreign key (registration)

references car
);

...

(c) D3(Vcars ,Relational ,SQL/92)

a

Customer

P1

Enter
customer
details

D1 Customer

P2

Process
sale

D2 Car

D3 Sale

P3

Pay
salesrep

P4

Transfer
ownership

b

Salesrep

D4 Salesrep

customer
details

customer
details customer number

car details

sale details

ownership
details

payslip

sale price

commission
rate

ownership
papers

salesrep id

(d) D4(Vcars ,DataFlow ,DFDG&S)

Figure 3.3: Four descriptions of the same viewpoint

45

(b) a functional dependency description expressed using Smith functional depen-

dency diagram notation (see Appendix B; Smith, 1985);

(c) a relational description expressed using SQL/92 (Date and Darwen, 1993); and

(d) a data flow description expressed using Gane & Sarson data flow diagram nota-

tion (see Appendix A; Gane and Sarson, 1979; Evergreen Software Tools, 1995b).

Similarly, a user viewpoint might be specified by the union of a natural language

description and a collection of diagrammatic descriptions. Descriptions may be dis-

tinct from each other, or they may overlap, in a way analogous to the way viewpoints

overlap. Such redundancy can be useful in exposing conflicts, as noted by Easterbrook

(1991a, p. 56).

While a translation specifies a mapping from the constructs of one representation

to those of another, it is not the representations that are translated; rather it is the

descriptions expressed using those representations that are translated.

3.2.3 Constructs and elements

Every representation comprises a collection of constructs, which are analogous to At-

zeni and Torlone’s (1993, p. 350) concept of a construct. These may be divided into

constructs associated with the technique (technique-level constructs) and constructs as-

sociated with the scheme (scheme-level constructs), as shown in Figure 3.1. The nature of

a construct is defined by its associations with other constructs, and its properties, such

as name, domain or cardinality. For instance, as illustrated in Figure 3.4, a data store

in a data flow diagram might have the properties name (the name of the data store),

label and fields (a list of data fields in the data store). The flows property specifies an

association between the data store construct and a list of data flow constructs.

In the same way that a description is an instantiation of a representation, an element

is an instantiation of a construct; elements are combined to build descriptions. Exam-

ples of constructs include entities, processes and attributes; elements corresponding

to these constructs could be Staff, Generate invoice and address. The translation of a

description from one representation to another can be decomposed into a collection of

translations of elements or groups of elements (Atzeni and Torlone, 1995, p. 3).

46

purchase_id
purchase_date
purchase_price
customer_no
salesrep_id
registration

D1 Purchase

fields

flowsname

label

Figure 3.4: Properties of a construct

3.3 A notation to express representations, descriptions,

constructs and elements

It can be cumbersome to discuss aspects of representations and descriptions using nat-

ural language, for example, ‘the Staff regular entity element of the description D1

(expressed using Martin entity-relationship notation) of the used cars viewpoint’. A

concise notation for expressing representations, descriptions, constructs of representa-

tions and elements of descriptions is therefore defined in this section. This notation is

modelled in part on the data transfer notation of Pascoe and Penny (1995). Using the

notation, the statement above would be expressed as:

D1(Vcars ,E -R,ERDMartin) [staff : MARTINREGULARENTITY] .

3.3.1 Description and representation notation

The notation D(V, T, S) denotes that description D of viewpoint V is expressed using

constructs of technique T and scheme S (this may be abbreviated to D when V , T and

S are clear). Thus, D1(Vp,E -R,ERDMartin) denotes a description D1 of the viewpoint

Vp that is expressed using constructs of the entity-relationship technique (E -R) and the

Martin ERD scheme (ERDMartin). A viewpoint V may be specified using n possibly

overlapping descriptions Di:

V =
n⋃

i=1

Di

47

The notation R(T, S) denotes a representation R that comprises a collection of con-

structs defined by the combination of technique T and scheme S (this may be abbrevi-

ated to R when T and S are clear). Thus, Re(E -R,ERDMartin) denotes the representa-

tion Re formed by combining the constructs of the entity-relationship technique (E -R)

with the Martin ERD scheme (ERDMartin)2. This notation is similar to that used by

Finkelstein et al. (1989) to describe viewpoint styles, but focuses on the technique and

scheme used rather than individual constructs within a representation.

The combination of technique T and scheme S forms the representation R(T, S),

so it is also possible to denote the description D(V, T, S) by D(V,R(T, S)), or simply

D(V,R). Thus, the notations D1(Vp,E -R,ERDMartin), D1(Vp,Re(E -R,ERDMartin)) and

D1(Vp,Re) are equivalent. The first form is preferred in this thesis as it clearly distin-

guishes between the technique and scheme, which will prove useful in Chapter 4.

Representations may differ in both the technique and scheme used, or they may

share the same technique and differ only in the scheme. Thus, two descriptionsD1 and

D2 of viewpoint V that are expressed using representations having different schemes

Si and Sj are denoted by D1(V, T, Si) and D2(V, T, Sj) respectively. Similarly, two de-

scriptions D3 and D4 of viewpoint V that are expressed using representations having

different techniques (Tk, Tl) and schemes (Sm, Sn) are denoted by D3(V, Tk, Sm) and

D4(V, Tl, Sn) respectively.

Consider a viewpoint Vq that has three descriptions D1,D2 andD3. D1 is expressed

using the entity-relationship technique and the Martin ERD scheme, and is denoted by

D1(Vq,E -R,ERDMartin). D2 is expressed using the functional dependency technique

and the Smith functional dependency diagram (FDD) scheme3, and is denoted by

D2(Vq,FuncDep,FDDSmith). D1 and D2 differ in both the technique and the scheme

used. D3 is expressed using the entity-relationship technique and the Chen scheme

(Chen, 1976), and is denoted by D3(Vq,E -R,ERDChen). D3 differs from D1 only in the

scheme used.

If the viewpoint, technique or scheme are unspecified, they may be omitted from

the notation. Thus, the notation Rr(Relational ,) denotes any relational representation,

and D1(,FuncDep,FDDSmith) denotes a Smith FDD in an unspecified viewpoint.

2Martin notation (Martin, 1990) is described in Appendix A.
3The Smith FDD notation is described in Appendix B.

48

As noted in the introduction to this chapter, this research follows the approach

of using multiple representations to describe a single developer viewpoint. In other

words, given any description Di(V, Tj, Sk), V remains constant for all values of i, j

and k. This prevents straying into the areas of viewpoint integration and conflict reso-

lution, which are beyond the scope of this thesis.

3.3.2 Construct and element notation

Constructs are the fundamental components of a representation, whereas elements are

the fundamental components of a description. Given a representation R(T, S), a con-

struct CON of R is denoted by R(T, S) [CON], or, if T and S are clear, simply R [CON].

Much of the time, R will also be clear from the context, allowing the R [] notation to

also be omitted, leaving just CON. The name of the construct itself is denoted by SMALL

CAPS; construct names for four representations are defined in Appendix D.

The construct CON can be thought of as analogous to the concept of a relational

domain in that it specifies a pool of possible ‘values’ from which an element e may be

drawn. The notation e : CON is used here to denote that e is a member of the set of

all possible elements corresponding to the construct CON. This use of the ‘:’ notation

is similar to both domain calculus (Date, 1995, p. 204) and Z (Brien and Nicholls, 1992,

p. 6), where it is interpreted as meaning ‘e is a member of the set CON’.

Now consider a description D(V, T, S) (or D(V,R(T, S))). An element e (instanti-

ated from construct R [CON]) of D is denoted by D(V, T, S) [e : CON], or, if T and S are

clear, simply D [e : CON]. The construct may also be omitted if it is clear from the con-

text, that is, D [e]. The representation R is omitted from the construct CON because R

is implied by T and S in the description and would therefore be redundant.

Some examples of construct and element expressions are given in Table 3.1 on the

next page. Both types of expression may specify a list, as illustrated by the last two

examples.

3.4 Defining constructs within representations

There has as yet been no discussion of how to define the properties of constructs within

a representation, or the associations between these constructs. One approach is to use

49

Table 3.1: Examples of construct and element expressions

Re(E -R,ERDMartin) [ERENTITYTYPE] denotes the generic entity construct
of the E-R/Martin representationRe

D1(V,FuncDep,FDDSmith) [s : SSSINGLEVALUED] denotes a single-valued dependency
element in the Smith notation func-
tional dependency description D1

D2(V,Relational ,SQL/92) [c1, . . . , cn : SQL92COLUMN] denotes a collection of column ele-
ments in the SQL/92 description D2

Rd(DataFlow ,DFDG&S)[DFDATASTORE, DFDATAFLOW] denotes the data store construct and
the data flow construct of the data
flow modelling/Gane & Sarson rep-
resentation Rd

an abstract metamodel to define representations, in which constructs are decomposed

into collections of simpler, primitive constructs. This is the approach taken by At-

zeni and Torlone (1993), who use a metamodel comprising only six abstract metacon-

structs (such as lexical types and functions), which they claim can be used to define

the constructs of most representations. Su and Fang (1993) use an extensible object-

oriented core model that comprises three structural constructs (objects, classes and

associations), and a collection of rules for defining the behaviour of constructs.

A similar approach is taken by the CASE Data Interchange Format (CDIF), which

defines a generic, object-oriented metamodel (CDIF Technical Committee, 1994c; CDIF

Technical Committee, 1995a) from which specific representations are specialised (for

example, CDIF Technical Committee, 1996a; CDIF Technical Committee, 1995b; CDIF

Technical Committee, 1996b). Unfortunately, the CDIF standard rather confusingly ap-

plies the term ‘meta-model’ to mean a representation and the term ‘model’ to mean a

description (CDIF Technical Committee, 1994a, Figure 4). Compare this with Atzeni

and Torlone (1993), who use the term ‘model’ to mean a representation and the term

‘scheme’ to mean a description. The MDM concept of a metamodel therefore does not

correspond to the CDIF concept of a meta-model; rather it corresponds to the CDIF

concept of a ‘meta-meta-model’. A correspondence between the various terminology

used by different groups and the terminology used in this thesis can be found in Ta-

ble 3.4 on page 65.

The object-oriented approach to defining representations used by the CDIF stan-

50

dard and Su and Fang (1993) provides a useful and easily extensible means of defining

representations and their constructs. The CDIF standard defines representations using

a variant of the entity-relationship approach that supports object-oriented concepts

(CDIF Technical Committee, 1996a). It was initially intended to use the unmodified

CDIF meta-models as representation definitions in this thesis, but several issues were

encountered, such as:

• The data modelling meta-model has an unfortunate relational bias, for example,

“a relational ‘Table’ is also represented by Entity” (CDIF Technical Committee,

1996a, p. 17). That is, CDIF entities are assumed to be normalised, which may

limit their efficacy for modelling purposes.

• Participation of entities in relationships seems inadequate — the way that the

meta-model is structured seems to imply that entities may only participate in a

single relationship (CDIF Technical Committee, 1996a, p. 71).

• The CDIF meta-models do not clearly reflect the technique/scheme division iden-

tified earlier.

The approach proposed here is to define the representations and the properties

of their constructs in an object-oriented manner, using a combination of an entity-

relationship diagram to define the associations between constructs, and a data dic-

tionary style table to define the properties of constructs. This provides the opportu-

nity to define representations using standard CASE tools, and also allows the defi-

nition of translations between representations using mapping specification languages

like Amor’s (1997) View Mapping Language (VML). This approach is similar to that

taken by Venable’s (1993) meta-modelling language CoCoA (from COmplex COver-

ing Aggregation), which uses an extended entity-relationship approach to support the

modelling of complex problem domains (Grundy and Venable, 1996). Unfortunately,

this language was discovered too late to be of use in this research, but may be useful

for future work (see Chapter 10).

Techniques are independent of schemes, which means that it is possible to define

techniques in isolation. It is not, however, possible to define schemes separately, be-

cause schemes are dependent on their technique. A scheme is a specialisation of its

51

technique, similar to the way that CDIF subject areas are specialisations of the generic

CDIF metamodel. Any attempt to build a separate scheme definition would need to

include the constructs of the technique to provide the correct context, thus turning the

scheme definition into a definition of the entire representation.

The definition of the E-R technique and the representation Re(E -R,ERDMartin)will

be summarised here. Complete definitions of the techniques and representations used

in this thesis may be found in Appendix D. The definitions of techniques have been

derived as much as possible from the ‘canonical’ definition of the approach, with some

minor alterations.

The definition of the E-R technique is shown in Figure 3.5 and comprises the ‘core’

constructs ERENTITYTYPE, ERWEAKENTITYTYPE, ERRELATIONSHIPTYPE, ERIDEN-

TIFIER, ERATTRIBUTE and ERVALUETYPE, plus some extra constructs to simplify some

aspects of the definition. The key points to note about this definition are:

• The ERTYPEITEM construct is a generalisation of the ERENTITYTYPE and ERRE-

LATIONSHIPTYPE constructs, and is provided for convenience.

• The ERATTRIBUTEGROUP construct has been introduced to support composite

attributes. Composite attributes are not explicitly mentioned in Chen’s (1977)

original definition of the E-R approach, but neither are they specifically ruled

out. The ERATTRIBUTEITEM construct is a generalisation of both this construct

and the ERATTRIBUTE construct.

• The ERRELATIONSHIPTYPE construct denotes an association between a collec-

tion of ERENTITYTYPE constructs, and may have attributes. A link between en-

tities is implied by the existence of an ERRELATIONSHIPTYPE construct between

those entities. It is thus not necessary to explicitly include ‘linking’ attributes in

the entities in order to define the link.

• The ERVALUETYPE construct is analogous to the concept of a domain.

• Type hierarchies are not included in the technique because Chen’s (1977) original

definition does not include them.

• Repeating groups are modelled by the boolean repeating property of the ERAT-

TRIBUTEITEM construct.

52

ER
Relationship
Type

ER
Entity
Type

ER
Identifier

ER
Attribute

ER
Value
Type

ER
Weak
Entity
Type

ER
Type
Item

ER
Attribute
Group

ER
Attribute
Item

associates

contains3

identifies

contains2

contains1

drawn from

contains1-s1

Figure 3.5: Definition of the entity-relationship technique

The properties of the E-R technique’s constructs are summarised in Table 3.2 on

the next page; a complete description of their meanings may be found in Appendix D.

Each construct has a collection of properties that define the nature of the construct.

Each property has a nominal ‘data type’, which may be a simple scalar type such as

string or integer, an enumerated type, a construct or a list of any of these. The keyword

specialises is used here to indicate that a construct is a specialisation of some other

construct and inherits all the properties of the construct that it specialises. Specialised

constructs may also add new properties that are peculiar to that construct.

The definition of the representationRe(E -R,ERDMartin), shown in Figure 3.6 on the

following page, extends the E-R technique definition with the following:

• The MARTINREGULARENTITY and MARTINWEAKENTITY constructs are further

specialisations of the ERENTITYTYPE and ERWEAKENTITYTYPE constructs re-

spectively. MARTINWEAKENTITY elements may be ‘embedded’ within other en-

tity types, to allow for composite attributes that have relationships attached to

them. This is analogous to the concept of a ‘repeating group’ within an entity.

• MARTINRELATIONSHIP and MARTINASSOCIATIVEENTITY are further specialisa-

53

Table 3.2: Construct properties of the entity-relationship technique

ERTYPEITEM

name string
attributes list(ERATTRIBUTEITEM)
identifier ERIDENTIFIER

ERENTITYTYPE

specialises ERTYPEITEM

relationships list(ERRELATIONSHIPTYPE)

ERWEAKENTITYTYPE

specialises ERENTITYTYPE

dependentVia ERRELATIONSHIPTYPE

ERRELATIONSHIPTYPE

specialises ERTYPEITEM

entities list(ERENTITYTYPE)
cardinalities list(integer)
existence dependent boolean
id dependent boolean

ERVALUETYPE

name string
datatype enumerator
size integer

dp integer
attributes list(ERATTRIBUTE)

ERATTRIBUTEITEM

name string
containingItem ERTYPEITEM

attributeGroups list(ERATTRIBUTEGROUP)
repeating boolean

ERATTRIBUTEGROUP

specialises ERATTRIBUTEITEM

attributeItems list(ERATTRIBUTEITEM)

ERATTRIBUTE

specialises ERATTRIBUTEITEM

valueType ERVALUETYPE

identifier ERIDENTIFIER

ERIDENTIFIER

name string
identifiedItem ERTYPEITEM

partial boolean
attributes list(ERATTRIBUTE)

ER
Identifier

ER
Attribute

ER
Value
Type

ER
Type
Item

Martin
Regular
Entity

Martin
Weak
Entity

ER
Attribute
Group

Martin
Associative
Entity

Martin
Relationship

Martin
Attribute

Martin
Attribute
Group

Martin
Identifier

associates

identifies

contains2

contains1

drawn from

contains3

supertype of

subtype of

contains1-s1

target
source

ER
Entity
Type

ER
Weak
Entity
Type

ER
Attribute
Item

ER
Relationship
Type

Martin
Type
Hierarchy

Figure 3.6: Definition of the representation Re(E -R,ERDMartin)

54

tions of the ERRELATIONSHIPTYPE construct. A MARTINRELATIONSHIP con-

struct differs from other specialisations of ERRELATIONSHIPTYPE in that it has

no attributes, and allows only binary associations. The MARTINASSOCIATIVE-

ENTITY construct corresponds more closely to the original definition.

• MARTINATTRIBUTE and MARTINATTRIBUTEGROUP are specialisations of ERAT-

TRIBUTE and ERATTRIBUTEGROUP, respectively.

• MARTINIDENTIFIER is a specialisation of ERIDENTIFIER.

• The ERVALUETYPE construct is not used in Re and is therefore not specialised.

• MARTINTYPEHIERARCHY is a specialisation of the ERRELATIONSHIPTYPE con-

struct and adds support for type hierarchies. It represents a generalisation asso-

ciation between ERENTITYTYPE constructs.

The specialised constructs introduced by the Martin ERD scheme are highlighted in

bold in Figure 3.6, and their properties are summarised in Table 3.3.

Table 3.3: Construct properties of the representation Re(E -R,ERDMartin)

MARTINREGULARENTITY

specialises ERRENTITYTYPE

typeHierarchy MARTINTYPEHIERARCHY

embeddedEntities list(MARTINWEAKENTITY)

MARTINWEAKENTITY

specialises ERWEAKENTITYTYPE

embedded boolean
embeddedEntities list(MARTINWEAKENTITY)

MARTINASSOCIATIVEENTITY

specialises ERRELATIONSHIPTYPE

embeddedEntities list(MARTINWEAKENTITY)

MARTINRELATIONSHIP

specialises ERRELATIONSHIPTYPE

source ERTYPEITEM

target ERTYPEITEM

srcCard integer

srcOpt integer
dstCard integer
dstOpt integer

MARTINTYPEHIERARCHY

specialises MARTINRELATIONSHIPTYPE

supertype MARTINREGULARENTITY

subtypes list(MARTINREGULARENTITY)
exclusive boolean

MARTINATTRIBUTE

specialises ERATTRIBUTE

MARTINATTRIBUTEGROUP

specialises ERATTRIBUTEGROUP

MARTINIDENTIFIER

specialises ERIDENTIFIER

3.5 Expressive power of representations

Every representation has boundaries to what may be expressed using the constructs

of that representation. These boundaries define what is referred to here as the expres-

sive power of a representation. The expressive power of a representation covers the

55

constructs of a representation and any semantic constraints that may exist between

constructs. Representations may overlap in terms of expressive power, that is, some

subset of the constructs of one representation can be mapped to constructs of another

representation. This concept is referred to here as the expressive overlap between two

representations. The concept of expressive overlap results in two distinct categories of

representation constructs:

• unique constructs that are peculiar to a particular representation; and

• shared constructs that are shared across two or more representations.

The relationship between these two categories of constructs is shown in Figure 3.7

for two representations Rp and Rq. The ovals denote the expressive power of the rep-

resentations Rp and Rq.

unique constructs
shared constructs

U

�

Rp Rq

Figure 3.7: Unique and shared constructs

The nature of the expressive overlap between a particular pair of representations

Rp(Ti, Sj) and Rq(Tk, Sl) can fall into one of four categories, as illustrated in Figure 3.8

and described below. The category of expressive overlap between two representations

determines the theoretical best mapping of constructs from the source representation

to constructs of the target representation. The aim is to make the ‘implemented’ quality

of translations as close to this theoretical maximum as possible.

The four categories of expressive overlap are:

Disjoint Both Rp and Rq have unique constructs and there are no shared constructs,

as shown in Figure 3.8(a). That is, there is no expressive overlap betweenRp and

Rq , and translating descriptions between them is therefore typically impossible.

56

Rp Rq

(a) Disjoint

Rp Rq

(b) Intersecting

Rp Rq

(c) Inclusive

Rp Rq

(d) Equivalent

Figure 3.8: Four categories of expressive overlap

Intersecting Both Rp and Rq have some unique constructs and there are some shared

constructs, as shown in Figure 3.8(b). That is, there is a partial expressive overlap

betweenRp andRq, and it is therefore possible to partially translate descriptions

from Rp to Rq, and vice versa. The degree of expressive overlap may, of course,

vary considerably. If the expressive powers of Rp and Rq have greatly different

‘capacities’, as shown in Figure 3.9, then the translation of a description from Rq

to Rp will generally be more complete than the translation of a description from

Rp to Rq. This is because a relatively greater proportion of the constructs of Rq

may participate in the translation.

Rp Rq

Figure 3.9: Asymmetric expressive overlap

Inclusive Rp has some unique constructs and some shared constructs, butRq has only

shared constructs, or vice versa, as shown in Figure 3.8(c). That is, one represen-

57

tation is contained entirely within the other, or more formally, one representation

is a proper subset (Borowski and Borwein, 1989) of the other (Rq ⊂ Rp in Fig-

ure 3.8(c)). That is, anything that can be expressed using constructs of Rq may

also be expressed using constructs of Rp, but not vice versa. It is therefore pos-

sible to translate descriptions completely from Rq to Rp, but only partially from

Rp to Rq .

Equivalent Neither Rp nor Rq have unique constructs — all constructs are shared, as

shown in Figure 3.8(d). This means that anything that can be expressed using

constructs of Rp can also be expressed using constructs of Rq , and vice versa. It

is therefore possible to translate descriptions completely in either direction.

The expressive overlap of a pair of representations thus determines the maximum

amount of information that may be translated from one representation to the other,

which effectively determines the maximum quality of any translation between those

representations. The intersecting and inclusive categories are of the most interest, be-

cause of the differences in expressive power. Translating a description from a more

expressive representation to a less expressive one can result in a ‘loss’ of information,

whereas the reverse translation can result in the need to ‘gain’ information during the

translation in order to build a sensible target description. The extent of this loss or gain

can be affected by how the elements of the source description are translated, which

will be discussed further in Chapter 4.

3.6 Maintaining consistency among descriptions

An important issue that arises from the use of multiple representations is the need to

maintain consistency among the descriptions expressed using these representations.

Suppose that a developer describes a viewpoint using a functional dependency dia-

gram (FDD), then translates that into an entity-relationship diagram (ERD). After ex-

amining the ERD, the developer may identify some additional entities and alter the

ERD appropriately. If the two descriptions are to remain consistent with each other,

these changes should be propagated back to the original FDD.

Two approaches to maintaining consistency among descriptions are discussed in

this section: the synchronous approach, where associated descriptions are kept con-

58

sistent at all times; and the asynchronous approach, where associated descriptions are

made consistent with each other only when a translation is initiated.

In the synchronous approach, changes made to one description are automatically

propagated to all associated descriptions as appropriate. For example, as attributes

and candidate keys are added to the ERD, the FDD will be concurrently updated

with appropriate attributes and dependencies. This approach is exemplified by the

MViews framework (Grundy, 1993; Grundy and Hosking, 1993a; Grundy and Ven-

able, 1995b; Grundy and Hosking, 1997), which is an object-oriented framework for

implementing integrated software development environments that support multiple

consistent graphical and textual views. Change propagation is generally synchronous

(although this is not required) and facilitated by means of an update record mechanism

(Grundy, 1993, Section 5.3.3).

The major advantage of the synchronous approach is that descriptions remain as

consistent as possible at all times. Sometimes, however, it may not be possible to prop-

agate a change (Grundy, 1993, p.69). MViews addresses this issue by expressing the

relevant update record in human-readable form; this is used to alert the user to the

need to modify the affected description(s).

A disadvantage of the synchronous approach is that translations are ‘active’ at all

times. That is, every time a change is made to a description, a translation must be

activated to propagate the changes to associated descriptions. These translations may

in turn trigger other translations, which could result in considerable background pro-

cessing that can degrade the overall performance of a modelling environment. Another

issue is that a developer may sometimes deliberately wish to build a description that

is inconsistent with other descriptions, perhaps to explore an alternative design path.

This could be difficult under a purely synchronous approach.

In the asynchronous approach, a series of changes are made to one description, then

all of these changes are propagated at once to the associated descriptions. For exam-

ple, the developer adds several new entities to the ERD, then initiates a translation to

propagate these changes to the FDD. An advantage of the asynchronous approach is

that the amount of background processing required to maintain consistency is reduced.

This is because translations are only activated when needed, thus localising translation

processing to well-defined periods.

59

The main issue with the asynchronous approach is that descriptions are not al-

ways consistent with each other. Until a translation is applied, it is more likely that

descriptions will be inconsistent with each other, albeit temporarily. In this sense,

the asynchronous approach is similar to the transaction mechanism used by database

management systems (DBMSs). Transaction boundaries define consistent states of the

database, but during the course of a transaction the database may be in an inconsis-

tent state (Date, 1995, p. 379). If the asynchronous approach is treated in this manner,

the issue of description inconsistency can be ameliorated. The asynchronous approach

also allows developers to deliberately build inconsistent descriptions.

The choice between synchronous versus asynchronous can be influenced to some

extent by the interfacing strategy used. The increased processing required to manage a

synchronous approach can be ameliorated by following the interchange format inter-

facing strategy, as all information in a viewpoint can be stored using a single represen-

tation. This is the approach taken by most MViews tools (Grundy and Venable, 1995b):

descriptions are stored using an integrated data model, and views of this model are

‘rendered’ in various representations by the environment.

The individual interfacing strategy is more suited to an asynchronous approach,

as the information stored in each description will usually be stored using different

representations. This is the approach followed by the author, and will be discussed

further in Chapter 6.

Translating descriptions between multiple representations can create some inter-

esting difficulties for maintaining consistency among descriptions, regardless of the

approach used. Consider the situation illustrated in Figure 3.10, where a developer is

building a simple ERD containing two entities connected by a relationship. This ERD is

associated with a functional dependency diagram (FDD) that must be kept consistent.

Adding the first entity produces the FDD structure shown in Figure 3.10(a). Adding the

second entity produces an additional FDD structure, shown in Figure 3.10(b). Adding

the relationship between the two entities, however, requires a complete rearrangement

of the existing FDD structures, as shown in Figure 3.10(c).

In this example, defining the two entities and the relationship between them forms

a single cognitive unit of work (again, this is similar to the concept of a DBMS trans-

action). It is unlikely that the boundaries of cognitive units could be determined in an

60

E1
ABC

=⇒ A BC

(a) Add entity E1

E1
ABC

E2
DEF

=⇒

A BC

DE F

(b) Add entity E2

E1
ABC

E2
DEF

R =⇒

A

F

BC

DE

(c) Add relationship R

Figure 3.10: Sensitivity of a description to changes

automated fashion, however, as these boundaries are dependent on the order in which

the developer defines objects. Because of this lack of determinability, a synchronous en-

vironment would be more affected by this issue. Asynchronous environments also suf-

fer from this issue, but the effect is likely to be lessened because the developer knows

the boundaries of the cognitive units, and can thus activate translations at appropriate

points. An alternative solution would be to provide some form of explicit transaction

management, similar to that used by Amor (1997) in the mapping system for his View

Mapping Language (see Section 2.4.4 on page 32).

A more serious issue arises when a description translation produces unexpected

changes. Consider the situation illustrated in Figure 3.11 on the following page. A de-

veloper builds the unnormalised ERD description shown in Figure 3.11(a) and trans-

lates this to the FDD description shown in Figure 3.11(b). The developer then adds

61

Feature

Customer Sale

Car

(a) Unnormalised ERD
D1(Vcars ,E -R,ERDMartin)

SALE_ID
NAME + ADDRESS +

PHONE

CUSTOMER_NO

REGISTRATION

SALE_DATE

SALE_PRICE

FEATURE_CODE

DESCRIPTION

(b) Equivalent FDD
D2(Vcars ,FuncDep,FDDSmith)

SALE_ID
NAME + ADDRESS +

PHONE

CUSTOMER_NO

COMMISSION_RATE

SALESREP_ID
SALE_DATE

SALE_PRICE

FEATURE_CODE

DESCRIPTION

REGISTRATION

(c) Modified FDD
D′2(Vcars ,FuncDep,FDDSmith)

Salesrep

Feature

Customer

Car_Feature

Car

Sale

(d) Normalised ERD
D′1(Vcars ,E -R,ERDMartin)

translate

add unrela
ted

ele
ments

translate

Figure 3.11: Unexpected structural changes caused by a translation

62

some elements to the FDD that are unrelated to the Car and Feature entities, as shown

in Figure 3.11(c). The problem arises when these changes are propagated back to the

ERD, as shown in Figure 3.11(d). The FDD to ERD translation produces a normalised

ERD with a different structure to the original ERD, and may not be what the developer

expected or intended. Again, this issue may occur with both approaches.

An important part of maintaining consistency between descriptions of a viewpoint

is the ability to identify correspondences between the constructs of different represen-

tations. The better this correspondence, the easier it will be to meaningfully compare

and model interchangeably in the different representations. This correspondence can

be specified by mapping the constructs of one representation onto those of another. As

will be discussed in the next chapter, such a mapping defines a translation between the

two representations.

The degree of correspondence between the constructs of two different represen-

tations can be characterised by the expressive overlap of those representations (see

Section 3.5 on page 55). The degree of expressive overlap between two representations

determines the amount of information that may be translated from one representation

to the other, and will therefore also determine the ease of maintaining consistency be-

tween descriptions expressed using those representations. Thus, maintaining consis-

tency among descriptions will typically be impossible if the corresponding representa-

tions have a disjoint expressive overlap. As the degree of expressive overlap increases,

so too will the ease of consistency maintenance.

The expressive overlap between two representations effectively determines the ‘max-

imum quality’ of any translation between those representations. Translation quality is

therefore an important factor in the efficacy of any consistency maintenance scheme;

this is another argument in favour of the individual interfacing strategy, as this strat-

egy can provide higher quality translations (Pascoe and Penny, 1990). It is also im-

portant to identify ways of improving translation quality, in order to produce better

correspondences between representations. Methods for improving translation quality

will be discussed in Chapter 4 and the efficacy of these methods will be discussed in

Chapter 8.

Maintaining consistency among descriptions should be an important element of

any modelling environment that supports the use of multiple representations, but

63

it is not part of the translation process per se. Rather the opposite situation holds,

that is, the translation process forms an important part of the consistency mainte-

nance mechanism. The major emphasis of this research is on facilitating the use of

multiple representations using a translation-based approach, not maintaining consis-

tency among descriptions, which has already been well-researched by other authors

(Grundy and Hosking, 1994; Grundy et al., 1996; Grundy and Hosking, 1996; Hosking

and Grundy, 1995). The prototype modelling environment developed for this research

(see Chapter 6) does not implement a consistency maintenance mechanism because

it was developed mainly as a tool for exploring the issues arising from the transla-

tion process, rather than for use by end-users. The only consistency maintenance in

the prototype is the basic asynchronous approach implied by executing a translation.

That is, when a description is translated from one representation to another, the new

description will be consistent with the original.

Consistency maintenance cannot be completely disregarded, of course, and some

possible solutions to the issues outlined above are suggested in Chapter 10.

3.7 Summary

In this chapter, the implications of using multiple representations to describe a view-

point were discussed, in particular the impact on the viewpoint discussion from Sec-

tion 2.3 and the data translation discussion from Section 2.4.

The concepts of representation, technique and scheme were clarified and formally de-

fined, and the viewpoint framework introduced in Chapter 2 was extended with the

concepts of construct, description and element. The terminology introduced in this chap-

ter is summarised in Table 3.4, which also indicates the correspondence between the

terms used in this thesis and those used by other authors. A notation for expressing

these concepts was also defined, and is summarised in Table 3.5 on page 66.

An entity-relationship based method for defining the structure of representations

and the properties of their constructs was proposed. The concept of the expressive power

of a representation was introduced and discussed, and it was shown how the expres-

sive overlap between two representations falls into one of four categories, which de-

termines the maximum quality of translations between those representations.

64

Ta
b

le
3.

4:
Su

m
m

ar
y

of
re

pr
es

en
ta

ti
on

an
d

d
es

cr
ip

ti
on

te
rm

in
ol

og
y

Te
rm

u
se

d
C

or
re

sp
on

d
in

g
te

rm
u

se
d

b
y:

in
th

is
th

es
is

M
ea

n
in

g
E

xa
m

p
le

Fi
n

k
el

st
ei

n
E

as
te

rb
ro

ok
D

ar
k

e
&

S
h

an
k

s
G

ru
n

d
y

et
al

.
A

tz
en

i&
To

rl
on

e
S

u
et

al
.

C
D

IF

pe
rs

pe
ct

iv
e

A
d

es
cr

ip
ti

on
of

a
re

al
-w

or
ld

ph
en

o-
m

en
on

th
at

ha
s

in
te

rn
al

co
ns

is
te

nc
y

an
d

an
id

en
ti

fia
bl

e
fo

cu
s.

–
–

pe
rs

pe
ct

iv
e

pe
rs

pe
ct

iv
e

–
–

–
–

vi
ew

po
in

t
T

he
fo

rm
at

te
d

d
es

cr
ip

ti
on

of
a

pe
rs

pe
c-

ti
ve

.
–

V
ie

w
Po

in
t

vi
ew

po
in

t
vi

ew
po

in
t

–
–

–
–

te
ch

ni
qu

e
A

co
lle

ct
io

n
of

ab
st

ra
ct

co
ns

tr
uc

ts
th

at
fo

rm
a

m
od

el
lin

g
‘m

et
ho

d
’.

re
la

ti
on

al
m

od
el

st
yl

e

st
yl

e

te
ch

ni
qu

e
–

m
od

el

d
at

a
m

od
el

m
et

a-
m

od
el

sc
he

m
e

A
co

lle
ct

io
n

of
co

nc
re

te
co

ns
tr

uc
ts

th
at

fo
rm

a
m

od
el

lin
g

‘n
ot

at
io

n’
.

SQ
L

/
92

sc
he

m
e

–

re
pr

es
en

ta
ti

on
T

he
co

m
bi

na
ti

on
of

a
pa

rt
ic

ul
ar

te
ch

ni
qu

e
an

d
sc

he
m

e.
re

la
ti

on
al

m
od

el
+

SQ
L

/
92

re
pr

es
en

ta
ti

on
re

pr
es

en
ta

ti
on

d
es

cr
ip

ti
on

A
n

in
st

an
ti

at
io

n
of

a
re

pr
es

en
ta

ti
on

.
SQ

L
/

92
sc

he
m

a
sp

ec
ifi

ca
ti

on
d

es
cr

ip
ti

on
–

vi
ew

sc
he

m
e

sc
he

m
a

m
od

el

co
ns

tr
uc

t
T

he
ba

si
c

un
it

of
a

re
pr

es
en

ta
ti

on
.

a
re

la
ti

on
–

–
–

–
co

ns
tr

uc
t

cl
as

sa
m

et
a-

en
ti

ty

el
em

en
t

A
n

in
st

an
ti

at
io

n
of

a
co

ns
tr

uc
t

w
it

hi
n

a
pa

rt
ic

ul
ar

d
es

cr
ip

ti
on

.
S

ta
ff

ta
bl

e
–

–
–

co
m

po
ne

nt
va

ri
es

b
ob

je
ct

en
ti

ty

re
pr

es
en

ta
ti

on
d

efi
ni

ti
on

c
A

n
ab

st
ra

ct
re

pr
es

en
ta

ti
on

us
ed

to
d

efi
ne

ot
he

r
re

pr
es

en
ta

ti
on

s.
M

D
M

m
et

am
od

el
d

V
ie

w
Po

in
t

te
m

pl
at

ec
–

–
m

et
a-

m
od

el
m

et
am

od
el

co
re

m
od

el
e

m
et

a-
m

et
a-

m
od

el

–
A

co
ns

tr
uc

to
fa

m
et

am
od

el
.

ag
gr

eg
at

io
n

d
–

–
–

co
nc

ep
t

m
et

ac
on

st
ru

ct
pr

im
it

iv
e

co
ns

tr
uc

tf
m

et
a-

m
et

a-
en

ti
ty

N
ot

es
on

Ta
b

le
3.

4:
a

A
ls

o
‘c

on
st

ru
ct

’.
b

Te
rm

s
us

ed
in

cl
ud

e
‘c

om
po

ne
nt

’,
‘e

le
m

en
t’

an
d

‘c
on

ce
pt

’.
c

T
hi

s
is

no
tq

ui
te

th
e

sa
m

e
as

a
m

et
am

od
el

,b
ut

it
is

si
m

ila
r

in
in

te
nt

.
d

Se
e

A
tz

en
ia

nd
To

rl
on

e
(1

99
6a

).
e

A
ls

o
‘in

te
rm

ed
ia

te
m

od
el

’.
f

A
ls

o
in

cl
ud

es
‘m

ic
ro

-r
ul

e’
an

d
‘m

ac
ro

’,
al

be
it

w
it

h
a

so
m

ew
ha

td
if

fe
re

nt
m

ea
ni

ng
.

‘–
’i

nd
ic

at
es

th
at

a
te

rm
is

no
tu

se
d

by
th

at
au

th
or

.

65

Table 3.5: Summary of representation and description notation

Notation Associated term Definition

V A viewpoint A formatted expression of a description of a real-world
phenomenon.

T A technique A collection of generic constructs that form a modelling
‘method’, for example, the relational model or entity-
relationship approach.

S A scheme A collection of specialised constructs that form a mod-
elling ‘notation’, for example, SQL/92 or Martin ERD no-
tation.

R(T, S) or R A representation Representation R comprises constructs defined by the
combination of technique T and scheme S.

D(V, T, S) or D A description Description D of viewpoint V is expressed using con-
structs of technique T and scheme S.

R(T, S) [CON], A construct of a CON specifies a construct of representationR(T, S).
R [CON], or CON representation

D(V, T, S) [e : CON], An element of a e specifies an element (instantiated from construct CON)
D [e : CON], or D [e] description of description D(V, T, S).

Rb � Ra Expressive power The expressive power of representationRb is inclusive of
the expressive power of representationRa.a

Ra ≡ Rb Expressive power The expressive power of representation Rb is equivalent
to the expressive power of representationRa.a

Notes on Table 3.5:
a Defined in Chapter 8.

The problem of maintaining consistency between descriptions was also discussed,

and it was shown that the ease of maintaining consistency across descriptions is de-

termined by the expressive overlap of the corresponding representations. The cor-

respondences between constructs of two different representations effectively define a

translation between those representations, so translation quality is an important factor

affecting the ease of consistency maintenance.

In this chapter has been discussed the impact of the use of multiple representations

on the translation process, but the translation process itself has not been explored. This

will be done in the next chapter.

66

Chapter 4

Translating descriptions within a

viewpoint

4.1 Introduction

An important goal of this research is to facilitate the use of multiple representations for

modelling a single viewpoint, and the approach taken here is to perform translations

between descriptions within a single viewpoint. This approach is similar to that pro-

posed by Atzeni and Torlone (1995), in that a translation comprises a collection of rules

that specify how the constructs of one representation map onto the constructs of an-

other. The concept of a rule is discussed in Section 4.2, and the concept of a heuristic rule

is proposed as a means of translating additional information that is not normally trans-

lated. Translations also have several properties, which are discussed in Section 4.3.

Translations may be specified in many ways, including natural language, abstract

notations such as predicate logic and specification languages such as Amor’s (1997)

View Mapping Language (VML). An abstract notation for specifying translations of

descriptions and elements is defined in Section 4.4. This notation, while useful for the

high-level specification of translations, does not however allow the detailed specifica-

tion of rules. The issue of how to specify the details of rules will be discussed further

in Chapters 6 and 7.

Another goal of this thesis is to show that the translation of descriptions between

representations can be used as a means of highlighting potential inconsistencies within

a viewpoint. Descriptions expressed using different representations may be translated

into the same representation, then compared for obvious discrepancies. This process

and its implications are discussed in Section 4.5.

67

Identifying ways of improving translation quality is also a goal of the thesis. Heuris-

tics are one method for improving translation quality; another is enrichment, which is

discussed in Section 4.6. (A method for comparing the relative quality of translations

will be defined in Chapter 8).

4.2 Rules and heuristics

A representation comprises a collection of constructs that are instantiated to form the

elements of descriptions. The translation of a description from a source representa-

tion Rs to a target representation Rt can therefore be decomposed into a collection of

translations of the elements that make up the description. The translation of an ele-

ment (or group of elements) of one description to an element (or group of elements) of

a second description is defined by a rule that specifies a mapping from a collection of

constructs ofRs to some collection of constructs ofRt (Atzeni and Torlone, 1995; Atzeni

and Torlone, 1996a). This mapping may have constraints attached to it specifying pre-

and post-conditions that elements translated by the rule must meet. Pre-conditions are

used to ensure that a rule is only applied to appropriate collections of source elements.

Thus, if a collection of elements does not meet the pre-conditions of a rule, the rule can-

not be applied to those elements. Post-conditions are used to enforce the semantics of

the target representation. That is, they are used to ensure that any groups of elements

generated by a rule make sense in the context of the target representation. Amor (1997)

refers to both pre- and post-conditions as invariants, as a pre-condition when a rule is

applied in one direction (‘left-to-right’) can become a post-condition when the rule is

applied in the opposite direction (‘right-to-left’). Amor’s term will be adopted here to

avoid confusion.

The application of a rule will always result in a target structure that is semantically

consistent with the source description, but the differences in expressive overlap noted

in the previous chapter place limits on the efficacy of rules, as the degree of expressive

overlap determines the how well constructs may be mapped from one representation

to another, and hence the extent of the set of rules. If Rs and Rt do not have equiv-

alent or inclusive expressive powers, it is unlikely that the set of rules will define a

complete translation from the source to the target. This is because some constructs of

68

Rs may not be directly mappable onto constructs of Rt, or vice-versa. This mismatch

can sometimes be ameliorated by the use of heuristic rules, or simply heuristics, which

are used in much the same way as rules, except that the application of a heuristic will

generally result in a target structure that is semantically consistent with the source, but

not always. Heuristics can be thought of as ‘rules of thumb’ that usually produce the

correct result, but not always.

Rules generally only translate the structure or syntax of a description. Heuristics

also translate structure, but can also affect the semantics of the encompassing view-

point, as they can make explicit semantics that may be implicit in the original descrip-

tion. Consider the functional dependency description D1(Vcars ,FuncDep,FDDSmith)1

shown in Figure 4.1(a), which has a collection of domain flag elements that all refer-

ence the same attribute element (IRD NUMBER). Now suppose there is a rule specify-

ing that a domain flag maps to a relationship. The descriptionD2(Vcars ,E -R,ERDMartin)

that results from applying this rule is shown in Figure 4.1(b). ExaminingD2, it becomes

apparent that the Salary staff, Wage staff and Salesrep entities are in fact subtypes of

the Staff entity. A rule cannot be defined to this effect, however, because it may not

always be correct.

Instead, a heuristic could be defined that specifies a mapping from a collection of

domain flags to a type hierarchy. The likelihood of this being the correct interpretation

increases as the number of domain flags referencing the attribute increases. A reason-

able assumption is that if three or more domain flags reference the same attribute, they

should be mapped to a type hierarchy. The result of applying this heuristic is shown in

Figure 4.1(c). Compare D2 and D3 — without the use of a heuristic, the type hierarchy

implicit inD1 and D2 would not be drawn out inD3. This heuristic will, of course, not

always apply, but it will usually produce the correct result.

In effect, the application of heuristics can cause an increase in the explicit seman-

tic content of a viewpoint, by drawing out semantics that are implicit in the source

description. Thus, in the example shown in Figure 4.1 on the next page, the explicit

semantic content of the viewpoint is increased by making explicit the type hierarchy

implicit in the source FDD. Taken in isolation, a translation may result in a target de-

scription with less semantic content than the source, but the semantic content of the

1Extracted from the used cars viewpoint defined in Appendix C.

69

COMMISSION_RATE

NAME + ADDRESS +
PHONE

SALARY

HOURLY_RATE +
HOURS_PER_WEEK

WAGE_STAFF_ID1

SALARY_STAFF_ID1

1 Employee number

SALESREP_ID1

IRD_NUMBER11

(a) Source FDD D1(Vcars ,FuncDep,FDDSmith)

Staff

Wage_staff Salary_staffSalesrep

(b) Target ERD
D2(Vcars ,E -R,ERDMartin)

Staff

Wage_staff Salary_staffSalesrep

(c) Target ERD
D3(Vcars ,E -R,ERDMartin)

ru
le

heuristic

Figure 4.1: Example of applying a heuristic

encompassing viewpoint will never decrease, as the ‘lost’ content is still present in the

source description.

It could be argued that altering the viewpoint’s semantics in this manner effectively

creates a new viewpoint, thus contradicting the focus of this thesis on translations

within a single viewpoint. It should be noted, however, that a viewpoint is internally

consistent (Easterbrook, 1991a, p. 54), so a new viewpoint is only created if a translation

generates a description that is in some way inconsistent with the rest of the viewpoint

(this will be discussed further in Section 4.5).

In summary, the translation of a description from one representation to another can

be decomposed into a collection of translations of elements. These element transla-

tions are defined by a collection of rules and heuristics, which specify mappings be-

tween collections of constructs in the source and target representations. Rules always

produce semantically consistent results, whereas heuristics can sometimes produce se-

mantically inconsistent results.

In order to fully specify a translation, some form of notation is required. Before this

70

can be defined, however, the properties of translations must be examined in order to

determine the types of operators required (see Section 4.3).

4.2.1 Specialisation of rules and heuristics

The rules and heuristics of a translation may be divided into two categories in the

same way as the constructs of a representation: those that define a mapping between

technique-level constructs only (technique-level rules/heuristics), and those that define

a mapping between scheme-level constructs only (scheme-level rules/heuristics). This

reinforces the distinction between the technique and scheme components of represen-

tations, remembering that it is the scheme of a representation that distinguishes it from

other representations that share the same technique. Scheme-level rules and heuris-

tics are therefore unique to a particular translation, whereas technique-level rules may

be shared across translations in the same way that a technique may be shared across

representations.

Technique-level rules thus specify the ‘generic’ translation between two represen-

tations at the technique level, which can then be specialised to specify a translation at

the scheme level. Technique-level rules that will be used in a specific translation must

be specialised for that translation in the same way that technique-level constructs are

specialised for a specific representation. This allows a scheme-level rule to introduce

additional mappings that do not exist in the corresponding technique-level rule.

Note that the existence of a technique-level rule does not imply that it will be spe-

cialised in all translations involving that technique, in the same way that a representa-

tion may not specialise all of its technique-level constructs. For example, suppose the

E-R technique was extended with an ERCANDIDATEKEY construct. Any description

translation from a relational representation to an E-R representation could then include

a technique-level rule that maps RMALTERNATEKEY constructs to ERCANDIDATEKEY

constructs2. The translation fromRr(Relational , SQL/92) toRe(E -R,ERDMartin)would

not, however, specialise this rule because Rr does not specialise the RMALTERNATE-

KEY construct. In addition, not all scheme-level rules are specialisations of technique-

level rules, as schemes can introduce constructs into a representation that do not exist

2These constructs are defined in Appendix D.

71

in the technique. For example, the scheme of representation Rf(FuncDep, FDDSmith)

introduces the SSDOMAINFLAG construct, which has no analogue in the functional

dependency technique (see Figures D.3 and D.4 in Appendix D). Any translation spec-

ification will thus comprise a collection of generic technique-level rules, specialised

scheme-level rules and non-specialised scheme-level rules.

Fragments of the three representation Re(E -R,ERDMartin), Rc(E -R,ERDChen) and

Rr(Relational , SQL/92) are shown in Figure 4.2. There are two possible technique

translations between these representations, and the technique-level rules r1 and r2 are

shared across both translations. The translation between Rc and Rr specialises both

r1 and r2 (to scheme-level rules r′1 and r′2 respectively). The translation between Re

and Rr does not use r1 at all, because Re does not specialise the ERVALUETYPE con-

struct. This translation does, however, specialise r2 (to scheme-level rule r′′2) and also

introduces a new, non-specialised scheme-level rule r3.

E -R Relational

ERDMartin ERDChen SQL/92

ERVALUETYPE

ERATTRIBUTE

MARTINATTRIBUTE

MARTINTYPEHIERARCHY

CHENVALUETYPE

CHENATTRIBUTE

RMDOMAIN

RMATTRIBUTE

RMFOREIGNKEY

SQL92DOMAIN
 SQL92COLUMN

SQL92FOREIGNKEY

r1

r2

r
′

1

r
′

2

r
′′

2

r3

Re(E -R,ERDMartin) Rc(E -R,ERDChen) Rr(Relational , SQL/92)

Figure 4.2: Specialisation of technique-level rules

At the start of this section, it was stated that scheme-level rules define mappings

between scheme-level constructs only. In practice, this can sometimes lead to an explo-

sion in the number of rules required. Consider a set of rules for translating MARTIN-

RELATIONSHIP constructs into SQL92FOREIGNKEY constructs. Taking into account

the cardinality and optionality of the relationship, there are six cases to be accounted

for: optional one to optional one; optional one to mandatory one; mandatory one to

mandatory one; optional one to many (optionality makes no difference for the ‘many’

side of a relationship — see Chapter 5); mandatory one to many; and many to many.

If rules for these situations were specified in the obvious manner, there would need

72

to be at least thirty-six of them (six basic situations, two entities per situation and three

types of entity: weak, regular and associative), many of which would be almost iden-

tical. The six basic situations could be defined as technique-level rules, but they would

still need to be specialised for the specific cases, so this would not solve the prob-

lem. Instead, an object-oriented programming technique can be borrowed to reduce

the number of rules required. A programmer working with an object-oriented lan-

guage such as C++ might define the object class Staff, which has the subclasses Waged,

Salesrep and Salaried. While the instances of each subclass are of distinct types, they

may also be treated as instances of the Staff class.

This approach also applies to the scheme-level constructs of a representation, as

they are defined as subclasses of the technique-level constructs. Thus, in the example

above, the number of rules could be reduced dramatically by using technique-level

constructs at appropriate points in the rule definitions. For example, instead of defin-

ing three otherwise identical rules for MARTINREGULARENTITY, MARTINASSOCIA-

TIVEENTITY and MARTINWEAKENTITY constructs, a single rule could be defined that

refers to the ERTYPEITEM construct, which is the common superclass of all three. This

is interpreted as meaning any subclass of the ERTYPEITEM construct may be used in

its place (limited, of course, to those within the representation in question). That is,

a MARTINREGULARENTITY, MARTINWEAKENTITY or MARTINASSOCIATIVEENTITY

may be used wherever ERTYPEITEM appears in a rule. Applying this approach to the

example above reduces the number of rules required to just six, which is the minimum

possible for this example.

4.3 Properties of translations

In the context of this research, the goal of a translation is to translate a description

or element(s) from a source representation Rs to a target representation Rt. For conve-

nience, the translation of a description from one representation to another is referred to

here as a description translation, and the translation of an element or group of elements

from one representation to another is referred to as an element translation (this can be

thought of as the ‘instantiation’ of a rule or heuristic). Any description translation will

comprise a collection of element translations.

73

The author has identified four major properties that are shared by description and

element translations:

1. the type of the translation (Section 4.3.1);

2. the completeness of the translation (Section 4.3.2);

3. the composition of the translation (Section 4.3.3); and

4. the direction of the translation (Section 4.3.4).

These properties are not mutually exclusive, and it is expected that translations will

have several, if not all, of these properties.

4.3.1 Type

How a translation is applied depends on whether it is a description translation or an

element translation. Element translations fall into two types: those specified by rules

and those specified by heuristics. Rules and heuristics have already been discussed in

Section 4.2, so no further discussion is required here.

Description translations also fall into two types: those that change both the tech-

nique and the scheme, and those that change just the scheme. These two types are

termed technique translations and scheme translations respectively. Thus, a translation

from Rc(E -R,ERDChen) to Rr(Relational , SQL/92) is a technique translation, whereas

a translation from Rc(E -R,ERDChen) to Re(E -R,ERDMartin) is a scheme translation.

A scheme translation is trivial if the source and target representations have identical

expressive powers and identical constructs, but the constructs of one representation are

presented differently from those of the other representation (that is, only the notations

differ). An example of a trivial scheme translation is shown in Figure 4.3, which merely

changes the appearance of attribute collections in a functional dependency diagram.

Technique translations are never trivial; if two techniques have identical expressive

powers and identical constructs, then they are the same technique.

On first inspection, it might appear that all scheme translations are trivial. This is

not always true, however, as some schemes do not fully adhere to their associated tech-

nique. For instance, SQL does not fully adhere to the definition of the relational model

74

STUDENT_ID

NAME +
PASSWORD

(a)

⇔
STUDENT_ID

NAME +
PASSWORD

(b)

Figure 4.3: A trivial scheme translation between: (a) a Smith-style FDD using bubbles
(Rf (FuncDep,FDDSmith)); (b) a Date-style FDD using boxes (Rg(FuncDep,FDDDate))

(Codd, 1988a; Codd, 1988b; Date, 1990b; Date, 1990a; Date and Darwen, 1993). This can

cause the representation definition to have different associations between constructs

than the technique definition. In the relational technique, for example, all attributes

must be drawn from a domain, whereas in the SQL/92 scheme, attribute domains are

optional (see Figure D.6 on page 388).

In addition, some schemes add new constructs that are not present in the technique,

and may therefore be able to express more information than other schemes for the

same technique. For example, the Gane & Sarson data flow diagram representation

Rd(DataFlow ,DFDG&S) can express resource flows (that is, flows of physical resources

instead of data), whereas the Yourdon DFD representation Ry(DataFlow ,DFDYourdon)

cannot. Although scheme translations cannot be disregarded, this research will focus

on technique translations, as they contribute more to the goal of improving the depth

and detail of a viewpoint.

4.3.2 Completeness

The completeness of a description translation is determined by the expressive over-

lap of the source and target representations (see Section 3.5). A translation is complete

if it is possible to map the entire expressive power of the source representation into

the target representation. Conversely, a translation is partial if only part of the source

representation’s expressive power can be mapped. Thus, as noted in Section 3.5 on

page 55, translations between representations of equivalent expressive power will al-

ways be complete, whereas translations between representations with intersecting ex-

75

pressive powers will always be partial. If the expressive power of one representation

is inclusive of the other, then translations from the ‘containing’ representation to the

‘contained’ will be partial, and translations from the ‘contained’ to the ‘containing’

representation will be complete.

Element translations may also be categorised as complete or partial, depending on

what proportion of the properties of an element are translated. An informal way of

determining the completeness of an element translation is to translate a set of elements

from the source representation (Rs) to the target representation (Rt) and back again

(that is, es ⇒ et followed by et ⇒ e
′

s), and then check whether the new set of elements

(e′s) is identical to, or a superset of, the original set (es). If so, then the rule is complete

when translating from Rs to Rt, as enough information was translated to reconstruct

the original set of elements.

4.3.3 Composition

Consider a description translation that translates from the representationRd(DataFlow ,

DFDG&S) to the representationRr(Relational , SQL/92) by first translating descriptions

to Re(E -R,ERDMartin) and then translating from Re to Rr. This description translation

can be decomposed into two smaller description translations, the first from Rd to Re

and the second from Re to Rr.

This property is not unique to description translations. Consider the translation

of a regular entity element (representation Re(E -R,ERDMartin)) and its associated at-

tributes and identifiers into appropriate functional dependency elements (representa-

tion Rf(FuncDep,FDDSmith)). This element translation can be decomposed into three

smaller element translations, one that translates the entity itself, one that translates

individual attributes and one that translates individual identifiers.

A translation that can be decomposed in this manner is referred to as a composite

translation. An atomic translation is one that cannot be decomposed in this manner.

Specifically, a description translation is composite if it may be decomposed into a col-

lection of description translations, and an element translation is composite if it may be

decomposed into a collection of element translations. Note that individual represen-

tations and constructs in a translation are considered indivisible in this definition. For

76

example, a MARTINIDENTIFIER construct comprises a collection of MARTINATTRIBUTE

constructs, but this does not mean that an element translation involving a MARTINI-

DENTIFIER can be decomposed into one or more rules involving MARTINATTRIBUTE

constructs.

The examples given above will be revisited in Section 4.4.3 on page 84, following

the definition of the translation notation.

4.3.4 Direction

Consider a translation that may only be applied in a single direction, either from ‘left

to right’ or ‘right to left’. Such a translation is termed a unidirectional translation. Con-

versely, a translation that may be applied in either direction is termed bidirectional.

When a rule is applied in a particular direction, the constructs on the side of the rule

that corresponds to the source representation are referred to as the source constructs of

the rule, and the constructs on the other side are referred to as the target constructs. If

the rule is applied in the opposite direction, the source and target constructs will thus

be exchanged.

Any translation may be either unidirectional or bidirectional, with the exception of

heuristics, which are always unidirectional. This is because the result of applying a

heuristic is not always guaranteed to be semantically consistent, so allowing them to

be applied in the opposite direction would not be appropriate. Any ‘new’ information

that might be generated by a heuristic will presumably be translated by a rule (if it is

possible to translate it at all) when translating in the opposite direction.

Unidirectional description translations will typically be uncommon in practice — if

it is possible to map constructs in one direction, then it is reasonable to assume that it

will be possible to map the same constructs in the opposite direction, but this may vary

depending on the approach taken. For example, all translations in Atzeni and Torlone’s

(1996b, slides 1-29–1-30) MDM environment are unidirectional because every represen-

tation is a subset of the ‘supermodel’ (that is, the expressive power of the supermodel

is inclusive of the expressive powers of all the other representations). Translations

from each representation to the supermodel are not required, as every description is

by definition an instance of both its ‘native’ representation and the supermodel.

77

Unidirectional element translations will often arise when translating between inter-

secting or inclusive representations. This is because there may be information which is

possible to derive in one direction, but not in the other. This is particularly relevant to

inclusive representations when translating from the ‘containing’ representation to the

‘contained’ representation, as there is more scope for information ‘loss’. Conflicts be-

tween rules may also result in unidirectional rules, as will be discussed in Section 4.7.1.

4.4 Notations for specifying translations

Representations and their constructs are defined in this thesis using an E-R based

model, as described in Section 3.4 on page 49. This means that a representation defini-

tion is effectively a schema, so translation specification languages designed for specify-

ing mappings between schemas may also be used to specify mappings between repre-

sentations. The translation specification language VML was developed in response to

perceived deficiencies in existing translation specification languages (see Section 2.4.4

on page 32) and provides many features that are useful for specifying translations be-

tween representations, such as declarative specification and bidirectionality. The use

of VML for specifying the details of translations will be discussed further in Chapters 6

and 7.

VML specifications are quite detailed, and it can sometimes be difficult to obtain

a high-level understanding of what a particular mapping actually does. The original

VML specification defines a graphical notation (VML-G) for displaying VML speci-

fications at a higher level (Amor, 1997), but for complicated mappings even this can

become difficult to read due to the large numbers of connections among the various

parts of the mapping (see Figure 4.4). In addition, VML-G cannot specify any of the

translation properties identified in the previous section.

It was therefore decided to develop an abstract notation for expressing translations.

The translation properties identified in Section 4.3 can be used as a basis for deter-

mining the required translation operators, which are discussed in Section 4.4.1. The

abstract notation for expressing translations is developed around these requirements

and described in Section 4.4.2.

78

=

martinrelationship

name
attributes
identifier
entities
cardinalities
id_dependent
existence_dependent
source
target
srcOpt
srcCard
dstOpt
dstCard

erentitytype

name
attributes
identifier
relationships

invariants
sql92table

name
primaryKey
attributes
alternateKeys
foreignKeys
refFKs

sql92primarykey

name
relation
attributes
refFKs

sql92foreignkey

name
relation
attributes
refPK
refTable

func

func

eqn

eqn

=

=

func

=

=

func

=

func

equivalences

proc

=

func

=

=

=

initialisers

=

=

=

Figure 4.4: A complex VML-G specification

4.4.1 Requirements for translation operators

The type of a translation effectively specifies how the translation is carried out, that

is, scheme versus technique translations for descriptions, and rules versus heuristics

for elements. The type of description translations can be determined simply by noting

whether the technique and/or scheme are different in the source and target descrip-

tions. Consider the three representations Re(E -R,ERDMartin), Rd(DataFlow ,DFDG&S)

andRc(E -R,ERDChen). Any description translation fromRe toRd is a technique trans-

lation, as both the technique and scheme change. Conversely, any description transla-

tion from Re to Rc is a scheme translation, as only the scheme changes. Since this is

obvious merely by inspecting the descriptions or representations, there is no need to

introduce a special operator to distinguish between technique and scheme translations.

There is, however, no equivalent way of determining the type of element transla-

tions; there is no consistent change in notation that may be examined, as there is with

description translations. For example, translating an E-R entity into a data store in a

data flow diagram is achieved by use of a rule, while translating a collection of do-

main flags in a Smith FDD to a type hierarchy in a Martin ERD is achieved by use of

79

a heuristic. There is no way to tell which is which merely by examining the constructs

involved. Since heuristics may sometimes produce semantically inconsistent results, it

is important to be able to identify them, so a notation will need to provide some means

of distinguishing rules and heuristics.

The expressive overlap between two representations is a major determinant of the

quality of any translations between those representations, so it would be useful to be

able to distinguish between complete and partial translations.

Although the distinction between composite and atomic translations is not explored

in depth in this thesis, it may be useful to know which translations can be decomposed

further (an example of decomposition may be found in Section 4.4.3).

As noted above, many representations are intersecting or inclusive, so both uni-

directional and bidirectional element translations will be reasonably common. Some

form of notational support is thus required.

4.4.2 A high-level notation for expressing translations

Early in this research, before the author encountered languages such as VML, an at-

tempt was made to define a declarative notation for fully expressing both description

and element translations. This original notation is described in its entirety in Ap-

pendix A and briefly summarised here. The notation had a rewrite rule-like syntax

and allowed the specification of both description and element translations. Invariants

could be attached to element translations to specify constraints that elements had to

satisfy. Although this notation initially appeared to work well, further investigation

revealed several problems:

• The original notation was too abstract for the intended purpose — while useful

for expressing description translations, the full expression of element translations

was problematic. Many constraints were difficult to express, and there was no

way to express procedural translations or user-defined functions.

• The original notation was concise for simple translations, but rapidly became un-

wieldy and difficult to understand when specifying complex rules. For example,

the translation of a MARTINIDENTIFIER element to an SQL92UNIQUE element

was denoted by:

80

S

Ck : MARTINIDENTIFIER |

 ∃S [Ek : MARTINENTITY] ,

S [{ak, . . . , al} : MARTINATTRIBUTE]

 S [Ck] ∈ S [Ek] ,

{S [ak] , . . . ,S [al]} ∈ S [Ck]

→

T

Ak : SQL92UNIQUE |

 ∃T [Tk : SQL92TABLE] ,

T [{ck, . . . , cl} : SQL92CCOLUMN]

T [Ak] ∈ T [Tk] ,

{T [ck] , . . . ,T [cl]} ∈ T [Ak] ,

∀T [{cm, . . . , cn} : SQL92COLUMN] ,
l⋃
i=k

ci 	=
n⋃

j=m

cj

• There were insufficient differences between the proposed notation and existing

approaches such as VML to warrant further development.

Despite these problems, the original notation did provide a convenient shorthand

for expressing both description and element translations in an abstract way. It was

therefore decided to remove those elements of the notation that dealt with the detailed

specification of element translations, such as invariants. The construct/element no-

tation was simplified (see Section 3.3 on page 47) and the translation operators were

retained; these operators will now be defined.

Translation expressions

The generic translation operator is denoted by the symbol → and can be used to de-

note both description and element translations. The translation of a specific source

description Ds(V, Ti, Sj) into a specific target description Dt(V, Tk, Sl) is denoted by:

Ds(V, Ti, Sj)→ Dt(V, Tk, Sl).

For example, the translation of the SQL/92 description D1 into a QUEL description D2

is denoted by:

D1(V,Relational , SQL/92)→ D2(V,Relational ,QUEL),

The translation of a set of elements {em, . . . , en} of Ds into a corresponding set of

elements {ep, . . . , eq} of Dt is denoted by:

Ds(V, Ti, Sj) [em, . . . , en : CONs]→ Dt(V, Tk, Sl) [ep, . . . , eq : CONt]

where CONs and CONt are constructs of Rs(Ti, Sj) and Rt(Tk, Sl) respectively. Note

that the element sets may include elements drawn from more than one construct —

81

this was omitted from the above expression for clarity. Thus, the translation of the

MARTINREGULARENTITY element student of Martin ERD D3 into a corresponding set

of elements of Smith FDD D4 is denoted by:

D3(V,E -R,ERDMartin) [student : MARTINREGULARENTITY]→

D4(V,FuncDep,FDDSmith)[s src : SSSINGLEKEYBUBBLE,

s dst : SSTARGETBUBBLE,

s dep : SSSINGLEVALUED].

Such expressions refer only to specific descriptions and elements, however. Rules

and heuristics should not be concerned with specific descriptions or elements; rather

they should be defined in terms of the representations and constructs involved. To this

end, a translation of an unspecified description from a source representation Rs(Ti, Sj)

to a target representation Rt(Tk, Sl) is denoted by:

Rs(Ti, Sj)→ Rt(Tk, Sl).

Similarly, the translation of an unspecified element from Rs to Rt is denoted by:

Rs(Ti, Sj) [CONs]→ Rt(Tk, Sl) [CONt]

where CONs and CONt are constructs of Rs and Rt respectively (once again, multiple

constructs of different types are allowed).

Thus, the translation of any SQL/92 description into a QUEL description is denoted

by:

Rr(Relational , SQL/92)→ Rq(Relational ,QUEL).

and the translation of any MARTINREGULARENTITY element of a Martin ERD into

corresponding elements of a Smith FDD is denoted by:

Re(E -R,ERDMartin) [MARTINREGULARENTITY]→

Rf (FuncDep,FDDSmith)[SSSINGLEKEYBUBBLE, SSTARGETBUBBLE,

SSSINGLEVALUED].

Multiple occurrences of the same construct are distinguished by subscripts, for ex-

ample, FDATTRIBUTE1 , FDATTRIBUTE2 , FDATTRIBUTE3 , and so on.

82

Translation operators

The generic translation operator → may be specialised according to the properties

identified in Section 4.3 (see Figure 4.5). Unless otherwise specified, a translation is

assumed to be complete, defined by a rule (for element translations) and atomic. A

partial translation is denoted by the operator ⇀; an element translation that is defined

by a heuristic is denoted by→� (complete) or ⇀� (partial); and a composite translation

is denoted by ◦
→ (complete) or ◦

⇀ (partial). The direction of a translation is indicated

in the obvious way, that is, → and ⇀ denote ‘forward’ unidirectional translations, ←

and↽ denote ‘reverse’ unidirectional translations, and↔ and� denote bidirectional

complete and partial translations respectively.

→,↔
(complete, rule,

atomic)

⇀,�
(partial, rule,

atomic)

completeness

◦
⇀,

◦�
(partial, rule,
composite)

composition

⇀� ,��
(partial, heuristic,

atomic)

type

◦
⇀� ,

◦��
(partial, heuristic,

composite)

composition

◦
→, ◦↔

(complete, rule,
composite)

composition

→� ,↔�
(complete,

heuristic, atomic)

type

◦
→� , ◦↔�

(complete, heuristic,
composite)

composition

Figure 4.5: Specialisation of translation operators

83

The→ operator thus denotes a complete, atomic, unidirectional description transla-

tion, or a complete, atomic, rule-based, unidirectional element translation, depending

on the operands. Additional variations may be achieved by combining the operators

in an intuitive manner: ◦→� (complete) and ◦
⇀� (partial) denote composite, heuristic, uni-

directional translations, while ◦
↔ (complete) and

◦� (partial) denote composite, bidi-

rectional translations.

4.4.3 Examples of translation decomposition

In Section 4.3.3 on page 76 were presented two examples of composite translations.

These examples will now be revisited using the translation notation defined above.

The first example was a composite description translation from the representation

Rd(DataFlow ,DFDG&S) to the representation Rr(Relational , SQL/92) via the represen-

tation Re(E -R,ERDMartin). This translation is denoted:

Rd(FuncDep,DFDG&S)
◦
⇀ Rr(Relational , SQL/92),

and can be decomposed into the following two atomic description translations:

Rd(FuncDep,DFDG&S)⇀ Re(E -R,ERDMartin), and

Re(E -R,ERDMartin)⇀ Rr(Relational , SQL/92).

The decomposition of element translations can be more complex. The second exam-

ple presented in Section 4.3.3 on page 76 was the translation of a regular entity element

(MARTINREGULARENTITY) and its associated attributes and identifiers (MARTINAT-

TRIBUTE and MARTINIDENTIFIER respectively) into equivalent functional dependency

elements (in this case, an SSSINGLEKEYBUBBLE and an SSTARGETBUBBLE connected

by an SSSINGLEVALUED, and a collection of SSATTRIBUTE elements). This is illus-

trated in Figure 4.6.

This translation could be denoted by:

Re[MARTINREGULARENTITY,MARTINIDENTIFIER,

MARTINATTRIBUTE1, . . . ,MARTINATTRIBUTEn]
◦
→

Rf [SSSINGLEKEYBUBBLE, SSTARGETBUBBLE ,

SSATTRIBUTE1, . . . , SSATTRIBUTEn, SSSINGLEVALUED]
(D1)

84

PQ RST PQ RST

Figure 4.6: Translating a MARTINREGULARENTITY to a functional dependency dia-
gram

which could be decomposed into the following three atomic translations:

Re [MARTINREGULARENTITY]⇀

Rf [SSSINGLEKEYBUBBLE, SSTARGETBUBBLE, SSSINGLEVALUED], (D2)

Re [MARTINIDENTIFIER]→ Rf [SSSINGLEKEYBUBBLE] and (D3)

Re [MARTINATTRIBUTE]→ Rf [SSATTRIBUTE] (D4)

This decomposition is illustrated in Figure 4.7.

Initial translation: (D1) PQ RST
◦
→ PQ RST

(D1) decomposes to:

(D2) ⇀

(D3) PQ → PQ

(D4) Q → Q

Figure 4.7: Decomposing a translation

Translation D2 is of particular interest, as it is atomic despite having multiple con-

structs on the right-hand side of the translation. This is because the translation would

not make sense without all three constructs on the right-hand side. That is, the three

constructs on the right-hand side form an indivisible unit. Translations D3 and D4

are atomic because individual constructs are considered indivisible for the purposes of

decomposition, as noted in Section 4.3.3 on page 76.

85

4.5 Highlighting potential viewpoint inconsistencies

Suppose a developer uses a single representation to build a description of a view-

point. How can they verify the consistency of this viewpoint? In the past, a design

would often be developed and implemented, and only then discovered to be inade-

quate (Brooks, 1975). One solution to this problem is to adopt a prototyping method-

ology (Sallis et al., 1995), which, although potentially time-consuming, can lessen the

discontinuity between the original requirements and the final system.

If the same developer used an environment that facilitated the use of multiple rep-

resentations, they could use different descriptions to help in evaluating the consis-

tency of viewpoints. This is supported by Easterbrook (1991a, p. 56), who suggests

that multiple descriptions expressed using different representations can “help reduce

misunderstandings and discover conflicts.” It can be difficult, however, to compare

descriptions expressed using different representations. Translations between repre-

sentations can help with the process of conflict discovery by allowing descriptions

to be compared in a more uniform manner. For example, consider an environment

that supports the three representations Re(E -R,ERDMartin), Rf (FuncDep,FDDSmith)

andRr(Relational , SQL/92), and suppose that two descriptions D1(V,E -R,ERDMartin)

and D2(V,FuncDep,FDDSmith) are independently created. As shown in Figure 4.8(a),

the consistency of the combination could be evaluated by translating D1 and D2 into

the relational descriptions D3 andD4 respectively, and comparing D3 withD4. That is,

given:

D1(V,E -R,ERDMartin)→ D3(V,Relational , SQL/92) and

D2(V,FuncDep,FDDSmith)→ D4(V,Relational , SQL/92),

it becomes possible to meaningfully compare D3 with D4 to see if they are consistent

with each other.

Alternatively, as shown in Figure 4.8(b), D1 could be translated into the functional

dependency description D5, which could then be compared with D2. That is, given:

D1(V,E -R,ERDMartin)→ D5(V,FuncDep,FDDSmith) and

D2(V,FuncDep,FDDSmith),

it becomes possible to meaningfully compare D5 with D2.

86

D1(V,Re(E -R,ERDMartin)) D2(V,Rf (FuncDep,FDDSmith))

D3(V,Rr(Relational ,SQL/92)) D4(V,Rr(Relational ,SQL/92))

translate

translate
compare

(a)

D1(V,Re(E -R,ERDMartin)) D2(V,Rf (FuncDep,FDDSmith))

D5(V,Rf (FuncDep,FDDSmith))

translate

com
pare

(b)

Figure 4.8: Consistency checking strategies using different representations

If, in either of the examples above, the resulting descriptions are not consistent,

then there is a potential viewpoint inconsistency between the two original descriptions,

that is, either D1 or D2 may be inconsistent with the definition of the viewpoint V . If

this proves to be an actual inconsistency within the viewpoint, it must be addressed by

altering either D1 or D2. A viewpoint is internally consistent (Easterbrook, 1991a), so

descriptions within a viewpoint should be consistent with each other. Alternatively,D1

or D2 may actually describe a new viewpoint V2, that is, either D1(V2,E -R,ERDMartin)

or D2(V2,FuncDep,FDDSmith). Such a situation could arise for many reasons, such as a

developer wishing to explore a divergent design path, but situations involving multi-

ple viewpoints are beyond the scope of this research and will not be discussed further.

Note that although two descriptions might be consistent, this does not necessarily

imply that they are equivalent. There are two main causes of this lack of equivalence:

1. one of the descriptions does not describe exactly the same parts of the viewpoint

as the other; and/or

2. the corresponding representations (Re and Rf in the example above) are either

87

intersecting or inclusive, that is, Re can represent some information that Rf can-

not, or vice versa.

For example, suppose that two developers are building a viewpoint for an assess-

ment marks recording system (this example is a slight variation on the assessment

marks viewpoint described in Appendix C), and suppose that they independently de-

fine two descriptions of the viewpoint. A basic part of the viewpoint is the recording

of students’ marks for assessment elements. The first developer assumes that students’

marks for an assessment element are stored separately from the data for the assessment

element, whereas the second assumes that the marks are stored with the assessment el-

ement data. The first developer then builds descriptionD1(Vmarks ,FuncDep,FDDSmith),

and the second developer builds description D2(Vmarks ,DataFlow ,DFDG&S), both of

which are shown in Figure 4.9.

The first developer suspects thatD2 is not consistent withD1. To test this suspicion,

she decides to translate both descriptions into entity-relationship diagrams using the

representation Re(E -R,ERDMartin). The resultant descriptions (D3 and D4) are shown

in Figure 4.10 on page 90.

D2 describes the marking process. Students submit assessment elements as assign-

ments, which are marked by staff members. It would therefore be reasonable to expect

D4 to have entities corresponding to the Staff, Student, Assessment and Assignment

entities of D3. D3 is normalised because it was derived from a collection of functional

dependencies, whereas D4 may not be normalised. Despite this, there is an obvious

discrepancy between the two descriptions: D4 has no entity corresponding to the As-

signment entity of D33. This is a consequence of the second developer’s assumption

that results are stored with the assessment element, as illustrated by the data flows

between the Mark assignment process and the Assessment data store in Figure 4.9(b).

As noted above, both interpretations could be valid, which means the developers are

actually dealing with two viewpoints, Vmarks1 and Vmarks2 . Regardless, the use of trans-

lations has provided an opportunity to highlight a potential inconsistency between the

two descriptions. Another example of the use of translations to highlight potential

inconsistencies will be presented in Chapter 9.
3This discrepancy would be more obvious if D3 were compared with the unnormalised marks ERD

in Figure C.11 on page 370.

88

(a) D1(Vmarks,FuncDep,FDDSmith)

(b) D2(Vmarks,DataFlow ,DFDG&S)

Figure 4.9: Two potentially inconsistent descriptions of a viewpoint

89

(a) D3(Vmarks,E -R,ERDMartin)

(b) D3(Vmarks,E -R,ERDMartin)

Figure 4.10: Two potentially inconsistent descriptions of a viewpoint after translating
them into the same representation

90

While the use of translations can provide a means of highlighting potential incon-

sistencies within a viewpoint, it is difficult to determine how well this process could

be automated. The problem of automatically determining the consistency of two de-

scriptions is by no means trivial. As the above example shows, even though the two

descriptions are expressed using the same representation, they may still be quite dif-

ferent, depending on the translations used to generate them. In the example above,

one of the descriptions is normalised while the other may not be, which complicates

the process of determining consistency. It seems likely that the use of translations will

be limited to providing a platform for highlighting potential inconsistencies to the de-

signer, who must then determine the actual nature of the inconsistencies from their

contextual and semantic knowledge of the phenomenon being modelled.

The efficacy of any comparison also depends to a large extent on the target rep-

resentation chosen for comparison. If D2 above was translated directly to an FDD

description D5(Vmarks ,FuncDep,FDDSmith), it might be easier to compare D1 with D5

than to compare D3 with D4.

In summary, translations between representations within a viewpoint can be used

as a support mechanism for highlighting potential inconsistencies among different de-

scriptions of the viewpoint, although it is unclear how easy this process would be to

automate.

4.6 Improving translation quality

In an environment that facilitates the use of multiple representations, information loss

may not be as great a concern as it is in more typical data translation problems. This

is because the information that is ‘lost’ during a description translation is still held in

the source description. All descriptions will presumably be held in the same repos-

itory, so it may sometimes be possible to ‘restore’ information that is ‘lost’ during a

translation when the translation is applied in the reverse direction. For instance, if the

data flow description D1(V,DataFlow ,DFDG&S) is translated into the functional de-

pendency description D2(V,FuncDep,FDDSmith), the names of data stores may not be

translated because of differences in the expressive powers of the two representations.

The data store names still exist inD1, however, so ifD2 is at some later stage translated

91

back to D1 (that is, used to incrementally update D1), or to a new DFD D3, then it is

in principle possible to extract the data store names from the original D1. This would

require some means of tracking the translation ‘history’ of descriptions.

A less obvious concern that arises when performing description translations, how-

ever, is that it may be necessary to ‘gain’ information that does not already exist when

performing a translation. For example, when translating from a functional dependency

description to an entity-relationship description, the names of the entities that are cre-

ated must be generated or acquired in some way. This sort of situation would most

commonly occur with inclusive representations when translating a description from

the ‘contained’ representation to the ‘containing’ representation, but could also occur

with intersecting representations.

Information ‘gain’ is a particular problem with technique translations, as the ex-

pressive powers of two representations with different techniques are more likely to

be divergent than the expressive powers of two representations that share the same

technique. The problem will therefore be less severe in scheme translations, as the

technique does not change.

The problem is determining what information can and cannot be generated au-

tomatically during a translation, and why. Information that cannot be automatically

generated and that is essential to build a syntactically correct target description (such

as the names of tables in SQL) must be acquired somehow, otherwise it will not be pos-

sible to complete the translation. Although semantically important, information that

is not essential to build a syntactically correct target description (such as the names

of data flows in a DFD) may be ignored, although it would obviously be preferable

to include it. One way to improve the quality of a translation would therefore be to

acquire information from the user in some way. This process of acquiring information

is termed enrichment, and may occur before, during and after a translation.

Enrichment performed before a translation (‘pre-enrichment’) involves pre-popu-

lating the viewpoint with information that will be useful to the target description, and

is analogous to Su and Fang’s (1993) notion of modifying and extending the seman-

tics of a schema before translating it. For example, before translating from an FDD

to an ERD, entities with appropriate names but no attributes could be created; these

could then be filled in by the translation. The example viewpoints used in this thesis

92

(see Appendix C) are all pre-enriched to some extent; for instance, all dependencies in

the functional dependency descriptions have names associated with them that may be

used to automatically derive entity or table names.

Enrichment performed during a translation requires the user to at least supply any

information that is essential to properly build the target description, and that has not

already been supplied. Using the same example as above, if the entity names were

not defined prior to the translation, then the user would be requested to enter suitable

names for each entity as it was generated by the translation. Non-essential information

could also be included at this stage.

Enrichment after a translation (‘post-enrichment’) involves adding any remaining

missing information that was not automatically generated during the translation or

entered prior to the translation. In effect, the user is refining the resultant description.

Another way to improve the quality of a translation is the application of heuristics.

Heuristics allow the automatic translation of more information than would normally

be possible using rules, by making explicit semantics that are implicit in the source

description, as noted in Section 4.2. Adding heuristics can reduce the amount of en-

richment that is required. This produces an improvement in translation quality, as less

information is lost or needs to be gained during the translation.

An important issue with the use of heuristics is that they may sometimes produce

semantically inconsistent results, which could result in an invalid viewpoint. This is-

sue will typically arise when heuristics are applied without regard to the context in

which they are being applied. That is, semantically inconsistent results will be pro-

duced in cases where the heuristic was not appropriate and should not have been ap-

plied. The applicability of a particular heuristic, however, will typically be difficult

(if not impossible) to determine in an automatic manner. Fortunately, the enrichment

process provides a practical solution to this issue. Rather than applying heuristics re-

gardless of context, the user can be notified that a heuristic is about to be applied and

what the result of applying the heuristic will be. The user can then use their contextual

and semantic knowledge of the viewpoint to determine whether this is a correct result,

and thus choose whether or not the heuristic should be applied.

Heuristics can increase the explicit semantic content of a viewpoint, so ensuring

that heuristics are explicitly activated by the user provides the benefit of making the

93

user aware of the semantic changes that are occurring during the translation. This pro-

cess may also help identify possibilities that the user may not otherwise have consid-

ered, thus promoting a more complete understanding by the user of the phenomenon

being modelled.

An interesting discovery was made while defining the representations used in this

thesis: it was found that a small change to a representation definition can result in

a marked increase in the quality of translations to and from that representation. For

example, the functional dependency diagram (FDD) notation used in this thesis is a

minor variant of Smith’s (1985) bubble notation. Smith’s original notation includes the

concept of a domain flag for tagging attributes that are drawn from the same domain.

Smith’s method for deriving relations from an FDD makes use of this domain flag in-

formation to derive foreign keys. Smith’s original notation has been augmented by the

author (see Appendix B) to indicate that one of the tagged attributes is the ‘referenced’

attribute. This information is not particularly important in the FDD itself, as all that is

required is to indicate that all the tagged attributes share the same domain. This small

piece of extra information is, however, vitally important when performing translations

to the relational model, as it is otherwise impossible to automatically determine which

attribute should be the one to be referenced by foreign keys.

Thus, a small change to a representation can result in a noticeable improvement in

the quality of some translations to and from that technique. Any such changes should,

however, be very small and should only be used when the benefits of the change are

large relative to the extent of the change. This will ensure that representations do not

deviate too much from their canonical definitions.

4.7 The translation process

It was noted in Section 4.2 that a description translation comprises a collection of ele-

ment translations, which are defined using rules and heuristics. There has, however,

been no discussion of how these rules and heuristics are actually used during a trans-

lation. In this section, the translation process and the issues arising from it will be dis-

cussed. Note that the following discussion, while referring mainly to rules, is equally

applicable to heuristics unless otherwise specified.

94

The set of rules could be thought of as analogous to a ‘program’, and the evaluation

of these rules in order to perform a translation is analogous to the ‘execution’ of the

program. The translation process takes as input the elements of the source descrip-

tion and the rules of a translation, and produces as output the elements of the target

description, as illustrated in Figure 4.11.

Source
representation Translation

Target
representation

Source
description

Translation
process

Target
description

elements elements

rules & heuristics

constructs

constructs

constructs

constructs

Figure 4.11: The translation process

There are two obvious strategies for evaluating a set of rules and heuristics against

a source description:

1. For each rule, find all collections of elements that match the source constructs of

the rule, then apply the rule to each such collection; or

2. For each element, determine all rules that may apply to that element, then gen-

erate all possible element collections that match each rule. Delete all rules that

cannot be matched, and apply the rest.

There may be other evaluation strategies, but they are not crucial to this thesis and will

be left as an area for future research. The VML mapping system follows the second

strategy, and is adopted in this thesis, as an extended version of VML will be defined

in Chapter 7 for the purpose of specifying translations.

The VML mapping system iterates through all the elements of a description, and

for each element, identifies all rules whose source constructs include the element’s

construct. For each rule identified in this manner, possible combinations of elements

matching the source constructs are generated, using the original element as a place-

holder in the rule. If no such combinations can be generated for a rule, it is removed

from consideration. Next, each generated combination of elements is tested against the

95

rule’s invariants. Any combinations failing to satisfy the invariants are removed from

consideration. The rule is applied to any combinations that remain at the end of this

process.

For example, consider a modelling environment that supports the two representa-

tions Rf (FuncDep,FDDSmith) and Re(E -R,ERDMartin), and the description translation

Rf ↔ Re. Suppose this translation is specified by the following rules (ignoring com-

pleteness and composition for the sake of clarity):

Rf [SSSINGLEKEYBUBBLE]↔ Re [MARTINIDENTIFIER] (R1)

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED , SSTARGETBUBBLE]↔

Re [MARTINREGULARENTITY] (R2)

Rf [SSMULTIKEYBUBBLE, SSMULTIVALUED, SSENDKEYBUBBLE]↔

Re [MARTINREGULARENTITY] (R3)

Rf [SSSINGLEKEYBUBBLE1 , SSSINGLEKEYBUBBLE2 ,

SSSINGLEVALUED1 , SSSINGLEVALUED2 ,

SSTARGETBUBBLE1 , SSTARGETBUBBLE2]↔

Re[MARTINRELATIONSHIP,MARTINREGULARENTITY1 ,

MARTINREGULARENTITY2]
(R4)

The following invariants are associated with these rules to ensure that the translation

produces sensible results:

Rule R2: the SSSINGLEVALUED element must point from the SSSINGLEKEYBUBBLE

element to the SSTARGETBUBBLE element.

Rule R3: the SSMULTIVALUED element must point from the SSMULTIKEYBUBBLE el-

ement to the SSENDKEYBUBBLE element.

Rule R4: SSSINGLEVALUED1 must point from SSSINGLEKEYBUBBLE1 to SSTARGET-

BUBBLE1 ; SSSINGLEVALUED2 must point from SSSINGLEKEYBUBBLE2 to SSTAR-

GETBUBBLE2 ; SSTARGETBUBBLE1 must contain SSSINGLEKEYBUBBLE2 ; and the

96

MARTINRELATIONSHIP element must connect MARTINREGULARENTITY1 and

MARTINREGULARENTITY2 .

Now suppose that a developer wishes to translate the functional dependency de-

scription D1 shown in Figure 4.12(a) into an E-R description (this example is extracted

from the university marks viewpoint; see Appendix C).

k1 STAFF ID STUDENT ID k2

t1

NAME +
PASSWORD

NAME +
PASSWORD t2

s1 s2

(a) D1(Vmarks ,FuncDep,FDDSmith)

i1

e1

Staff Student
STAFF ID

NAME
PASSWORD

STUDENT ID

NAME
PASSWORD

i2

e2

(b) D2(Vmarks ,E -R,ERDMartin)

Figure 4.12: Translating an FDD description to an ERD description

Consider the SSSINGLEKEYBUBBLE element k1. Rule R3 is the only rule that does

not have the SSSINGLEKEYBUBBLE construct in its source constructs, so the set of po-

tentially applicable rules for element k1 is {R1, R2, R4}. Using k1 as a placeholder in

the source constructs of rule R1, it can be seen that the only possible combination of

elements that can be generated for this rule is {k1}. Since the rule has no invariants, it

can be applied to this combination of elements.

The possible combinations of elements for rule R2 are {k1, s1, t1}, {k1, s1, t2}, {k1, s2,

t1} and {k1, s2, t2}. The invariant for rule R2 eliminates the latter three combinations,

leaving only {k1, s1, t1}, to which the rule is applied.

The possible combinations of elements for rule R4 are {k1, k2, s1, s2, t1, t2}, {k1, k2,

s1, s2, t2, t1}, {k1, k2, s2, s1, t1, t2}, {k2, k1, s1, s2, t1, t2}, {k1, k2, s2, s1, t2, t1}, {k2, k1, s1,

s2, t2, t1}, {k2, k1, s2, s1, t1, t2} and {k2, k1, s2, s1, t2, t1}. None of these combinations

satisfy the invariants for rule R4, so they are all eliminated, leaving nothing to which

the rule may be applied.

97

Thus, rule R1 is applied to element k1, resulting in the creation of the MARTINI-

DENTIFIER element i1 in the target description, as shown in Figure 4.12(b), and rule R2

is applied to the combination of elements {k1, s1, t1}, resulting in the creation of the

MARTINREGULARENTITY element e1 in the target description. A similar process is

carried out for the remaining elements of D1, resulting in the E-R description shown

in Figure 4.12(b). Elements that have already been created in the target description are

re-used as appropriate.

This process only works as long as there are no conflicts among the rules. Some-

times it is possible for the use of one rule to exclude the use of another, which will now

be discussed.

4.7.1 Rule exclusion

One rule is said to exclude the use of another if applying both rules would lead to an

incorrect result. This can happen in two ways:

1. the result is syntactically incorrect, that is, an impossible target structure is pro-

duced; or

2. the result is semantically incorrect, because overlapping groups of elements in

the source description may be translated in slightly different ways by different

rules.

Note that the second case is different from what happens with heuristics — a heuristic

may produce a semantically incorrect result, but this is a result of applying the heuristic

alone, and is expected. The inconsistency in case 2 above is a direct consequence of

applying multiple rules and/or heuristics in combination, and is unexpected.

The first case can arise when two or more rules map the same collection of source

constructs to mutually exclusive collections of target constructs. Returning to the ex-

ample in the previous section, suppose the following rule is added to the existing trans-

lation:

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED , SSTARGETBUBBLE]↔

Re [MARTINASSOCIATIVEENTITY] , (R5)

98

and suppose that this rule has invariants identical to those of rule R2. The addi-

tion of this rule causes a conflict: rule R2 maps the collection of source constructs

{SSSINGLEKEYBUBBLE, SSSINGLEVALUED, SSTARGETBUBBLE} onto the target con-

struct MARTINREGULARENTITY, whereas rule R5 maps the same collection of source

constructs onto the target construct MARTINASSOCIATIVEENTITY. It is impossible for

an element to be both a MARTINREGULARENTITY and a MARTINASSOCIATIVEENTITY

simultaneously, in the same way that it is impossible for variables in a strongly-typed

programming language to have more than one declared data type. The result of apply-

ing both rules is thus syntactically impossible in the target representation. (In practice,

the rule that is applied second will override the result of the first rule, but this does not

solve the problem, as the order of rule evaluation cannot be guaranteed.)

Conversely, consider the new rule:

Rf [SSSINGLEKEYBUBBLE]↔ Re[MARTINATTRIBUTE1 . . . ,MARTINATTRIBUTEn], (R6)

which has no invariants. Despite having source constructs identical to rule R1, R6 does

not conflict with R1, as the results of applying each rule are independent of each other.

It is thus possible to apply both rules to an appropriate collection of source elements.

The second case can arise when two or more rules map the same collection of source

elements to different, non-mutually exclusive collections of target elements. Consider

the description D2 shown in Figure 4.13. As can be seen from the figure, rules R1, R2,

R4, R5 and R6 may all be applied to different parts of the description.

RAW_MARK

NAME +
PASSWORD

RESULT_ID

STUDENT_ID k2

s2

t2k3

s3

t3

Rules R1, R6
Rules R2, R5
Rule R4

Figure 4.13: Applying multiple rules to the same source structure

Suppose that rules R2 and R4 are applied in isolation. This results in two different

E-R structures, as shown in Figures 4.14(a) and 4.14(b) on the next page. Both of these

structures are semantically consistent with the original description when considered

99

in isolation, but the semantics of the first are different from those of the second, as

the bottom entity has slightly different attributes in each ERD. The order in which the

rules are applied also has an impact on the result — applying rule R4 before rule R2 will

also result in the structure shown in Figure 4.14(b), whereas applying rule R2 before

rule R4 will result in the structure shown in Figure 4.14(c). The structure that best

corresponds to the semantics of original description is that shown in Figure 4.14(b), so

in this example, only rule R4 should be applied. In effect, rule R4 should be checked

before rule R2, that is, there is an implied ordering to rule evaluation in this situation.

STUDENT ID +
NAME +

PASSWORD

RESULT ID +
RAW MARK +
STUDENT ID

(a) Rule R2 alone

STUDENT ID +
NAME +

PASSWORD

RESULT ID +
RAW MARK

(b) Rule R4 alone and
rule R4 before rule R2

STUDENT ID +
NAME +

PASSWORD

RESULT ID +
RAW MARK +
STUDENT ID

(c) Rule R2 before rule
R4

Figure 4.14: Results of applying multiple rules to the same source structure

In both cases 1 and 2 described at the beginning of this section, it is impossible to

determine which rule(s) should be applied when presented with a matching set of el-

ements. In the absence of any additional information, the only solution is to choose

one of the rules as the ‘default’, and ensure that the remaining rules cannot be applied

in the same direction (if the excluded rules were already unidirectional, this will effec-

tively delete the excluded rules). While this is appropriate for the first case, it may not

always be appropriate for the second. A better approach would therefore be to explic-

itly specify the exclusions among rules. This would make it possible to filter a set of

potentially applicable rules by removing from consideration all rules that are excluded

by others.

The problem thus becomes one of determining which rules may potentially conflict

when applied in a particular direction. This can be done by finding those rules whose

source constructs are subsets of the source constructs of other rules. A rule ri is said to

be subsumed by another rule rs in a particular direction d if:

100

• the source constructs of ri are a subset (⊆) of the source constructs of rs; and

• both rules may be applied in the direction d; and

• the invariants for both rules are not contradictory.

Consider rules R1 and R2 above. The source constructs of rule R2 are {SSSIN-

GLEKEYBUBBLE, SSSINGLEVALUED, SSTARGETBUBBLE}, and the source constructs of

rule R1 are {SSSINGLEKEYBUBBLE}, which are obviously a subset of the source con-

structs of rule R2. Both rules are bidirectional, and there are no contradictory invari-

ants, so rule R1 is subsumed by rule R2 and there is a potential for the two to conflict.

Examining the rules, however, shows that the results of applying the rules are inde-

pendent, so no exclusion is required.

Now consider rules R2 and R4. The source constructs of R4 are {SSSINGLEKEYBUB-

BLE1, SSSINGLEKEYBUBBLE2 , SSSINGLEVALUED1 , SSSINGLEVALUED2 , SSTARGETBU-

BBLE1, SSTARGETBUBBLE2}, which form a superset of the source constructs of rule R2.

Both rules are bidirectional and there are no contradictory invariants, so rule R2 is

subsumed by rule R4. Applying both rules can produce the semantically incorrect

structure shown in Figure 4.14(c), so rule R4 should exclude the use of rule R2.

It is possible to express rule subsumption by means of a directed graph G = (V, E)

with no loops4, where V is a set of labelled vertices representing rules, and E is a set of

directed edges representing rule subsumption. Each vertex vi corresponds to a rule ri.

An edge eij : vi → vj indicates that rule ri subsumes rule rj. The edges of this graph

may then be manually annotated to indicate which rules exclude others, producing

what is termed here a subsumption/exclusion graph for a translation. The annotation ρ

on an edge indicates rule exclusion, thus an edge ekl : vk
ρ
→ vl indicates that rule rk

subsumes and excludes the use of rule rl. Each translation will have two subsump-

tion/exclusion graphs, one for the forward direction (
→

G) and one for the reverse (
←

G).

Subsumption/exclusion graphs for the translations defined in this thesis may be found

in Chapter 5.

In Figure 4.15 on the following page is shown the subsumption/exclusion graph
→

G

for the forward direction of the translation used in the examples above. The numbers

in the vertices correspond to rule numbers. Note the pair of opposing exclusion edges
4A loop is an edge that starts and ends at the same vertex (Diestel, 1997, p. 24).

101

between R2 and R5. This makes it impossible to determine in which order these two

rules should be evaluated, and is an indication that both rules should not be used in

the forward direction. It would therefore be sensible to make rule R5 unidirectional in

the reverse direction, that is:

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED , SSTARGETBUBBLE]←

Re [MARTINASSOCIATIVEENTITY] (R5)

This would remove rule R5 and its associated edges from the graph, because unidirec-

tional rules only appear in the graph appropriate to their direction.

R6 R1 R3

R2 R4

R5

ρ

ρ

ρρ

Figure 4.15: ‘Forward’ subsumption/exclusion graph for the example translation

Rule subsumption may be determined automatically from a set of rules, and an

algorithm for building subsumption/exclusion graphs is presented in Section 7.5.1.

Rule exclusion cannot be determined automatically and must therefore be explicitly

specified by translations. Once subsumption/exclusion graphs have been built, the

translation process can use this information to more effectively filter the set of rules

that may apply to a particular source structure, and also to determine the order in

which rules should be evaluated. In particular, rules that are not subsumed by others

should be evaluated first.

In summary, the issue of rule exclusion arises because it is possible for multiple

rules to be applied to similar groups of source elements. When the source constructs

of one rule subsume the source constructs of another, there is potential for the rules

to conflict. If the rules do not conflict, then no special treatment is required, but if the

rules do conflict, the ‘subsuming’ rule should be evaluated before the subsumed rule. If

102

the subsuming rule can be applied to the collection of source elements under consider-

ation, then any conflicting subsumed rules should be excluded from further evaluation

against those elements. The subsumption/exclusion graphs for a translation provide a

means of encoding this information so that the mapping system can determine the cor-

rect order in which to evaluate rules against source elements. Reducing the amount of

overlap among rules would obviously ameliorate the rule exclusion problem; ideally,

each rule would translate only a single source element into a single target element, but

in practice the complexity of the mappings between source and target elements pre-

cludes this. The FDD to ERD translation (which will be fully defined in Section 5.4 on

page 135) is a particularly good example of this complexity.

4.8 Summary

In this chapter, the issues arising from the process of translating between different

viewpoint representations were examined. In particular, it was shown that the trans-

lation of a description from one representation to another may be defined in terms of

a collection of rules and heuristics, which specify mappings between the constructs of

the source and target representations. Rules are guaranteed to produce a result that

is semantically consistent with the source description, whereas heuristics may some-

times produce a semantically inconsistent result. Heuristics may also affect the se-

mantics of the viewpoint by making explicit semantics that are implicit in the source

description. Rules may be categorised as technique- or scheme-level rules, in the

same way that constructs may be categorised as either technique- or scheme-level con-

structs. Technique-level rules define the generic translation between two techniques,

and scheme-level rules specialise this to produce a translation between a specific pair

of representations.

A high-level abstract notation was defined for specifying description and element

translations, and is summarised in Table 4.1 on the following page (the representa-

tion and description notation defined in Chapter 3 is repeated here for completeness).

The operators of this notation were derived from four properties of translations: type

(technique/scheme for descriptions, rule/heuristic for elements), completeness (partial

or complete), composition (atomic or composite) and direction (unidirectional or bidirec-

103

Tab
le

4.1:Sum
m

ary
ofrepresentation,d

escription
and

translation
notation

N
otation

A
ssociated

term
D

efi
n

ition

V
A

view
point

.....................
A

form
atted

expression
ofa

d
escription

ofa
real-w

orld
phenom

enon. a

T
A

technique
......................

A
collection

of
generic

constructs
that

form
a

m
od

elling
‘m

ethod
’,for

exam
ple,the

relational
m

od
el

or
entity-relationship

approach. a

S
A

schem
e

........................
A

collection
of

specialised
constructs

that
form

a
m

od
elling

‘notation’,
for

exam
ple,

SQ
L

/
92

or
M

artin
E

R
D

notation. a

R
(T

,S
)

or
R

A
representation

.................
R

epresentation
R

com
prises

constructs
d

efined
by

the
com

bination
oftechnique

T
and

schem
e

S
. a

D
(V

,T
,S
)

or
D

A
d

escription
....................

D
escription

D
ofview

point
V

is
expressed

using
constructs

oftechnique
T

and
schem

e
S

. a

R
(T

,S
)
[C

O
N
],

}
A

constructofa
representation

C
O

N
specifies

a
constructofrepresentation

R
(T

,S
). a

R
[C

O
N
],or

C
O

N

D
(V

,T
,S
)
[e
:

C
O

N
],

}
A

n
elem

entofa
d

escription
..

e
specifies

an
elem

ent(instantiated
from

construct
C

O
N

)ofd
escription

D
(V

,T
,S
). a

D
[e
:

C
O

N
],or

D
[e]

R
b
�
R
a

E
xpressive

pow
er

(inclusive)
.....

T
he

expressive
pow

er
ofrepresentation

R
b

is
inclusive

of(d
om

inates)the
expressive

pow
er

ofrepresen-
tation

R
a . c

R
a
≡
R
b

E
xpressive

pow
er

(equivalent)
...

T
he

expressive
pow

er
ofrepresentation

R
b

is
equivalentto

the
expressive

pow
er

ofrepresentation
R
a . c

→
A

translation
.....................

T
he

translation
ofan

entire
d

escription
from

one
representation

to
another;or

the
translation

ofan
entire

elem
entfrom

one
representation

to
another

using
a

rule. b

⇀
A

partialtranslation
.............

T
he

translation
ofpartofa

d
escription

from
one

representation
to

another;or
the

translation
ofpartofan

elem
entfrom

one
representation

to
another

using
a

rule. b

→
�

,
⇀
�

A
heuristic

translation
...........

T
he

com
plete

or
partialtranslation

ofan
elem

entfrom
one

representation
to

another
using

a
heuristic. b

◦→
,
◦⇀

A
com

posite
translation

..........
A

translation
ofa

d
escription

or
elem

entfrom
one

representation
to

another
thatcan

be
d

ecom
posed

into
a

collection
of‘sub-translations’.

�→
A

refinem
ent

....................
T

he
com

bination
of

severalinputd
escriptions

to
prod

uce
a

single
outputd

escription
d

uring
the

schem
a

generation
process. d

N
otes

on
Tab

le
4.1:

a
D

efined
in

Section
3.3

on
page

47.
b

T
he

translation
cannotbe

d
ecom

posed
into

sub-translations.
c

D
efined

in
C

hapter
8.

d
D

iscussed
in

Section
10.5

on
page

289.

104

tional). This notation is useful for expressing translations in a concise manner; more

detailed specification of translations will use a modified variant of VML, discussed in

Chapter 7.

Also discussed was a potentially beneficial side-effect of the translation process:

translating descriptions that are expressed using different representations makes it eas-

ier to highlight potential inconsistencies between the descriptions. The quality of trans-

lations will obviously have an impact on this process. Heuristics are one method of

improving the quality of a translation (this improvement will be shown in Chapter 8);

another method is enrichment, which provides the opportunity to elicit additional infor-

mation from the user before, during and after a translation. Enrichment also provides

a practical solution to the problem of heuristics generating semantically inconsistent

results.

The translation process itself was also described, and the issue of rule exclusion was

raised. The concept of rule subsumption was defined as a means of detecting rules that

may potentially conflict with each other, and the subsumption/exclusion graph was

introduced as a method of encoding rule subsumption and exclusion information.

In the next chapter, the abstract translation notation is used to define the rules

for the Re(E -R,ERDMartin) � Rr(Relational , SQL/92) translation. Issues arising from

these rules and those for two other translations will also be discussed.

105

Chapter 5

Definition of translations

5.1 Introduction

In this chapter the three technique translations:

• Re(E -R,ERDMartin)� Rr(Relational , SQL/92),

• Rf(FuncDep,FDDSmith)→ Re(E -R,ERDMartin)/Rf ↽ Re and

• Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S)

are examined and a set of rules and heuristics defined for performing the first trans-

lation. The remaining two translations are presented here in summary form only, but

full definitions of these translations may be found in Appendix E.

The first translation (Re � Rr) was chosen as an example of a well-known and

understood translation between two representations with a relatively large expressive

overlap. It is interesting to note, however, that despite being a well-understood prob-

lem, analysis of the rules presented here reveals aspects of the translation that are often

not included in tools that implement this translation (see Section 5.3.5 for details).

The second translation (Rf → Re/Rf ↽ Re) was chosen as an example of a less

familiar but still reasonably conventional translation between two representations with

a moderate to high expressive overlap. Functional dependencies are usually used to

derive relational structures, but using them to generate E-R structures is equally valid.

The third translation (Re � Rd) was chosen as an example of an unusual translation

between two representations with a relatively small expressive overlap. Because of this

small expressive overlap it was expected that there would be very little information

that could be translated between the two representations.

107

The translations are summarised in Table 5.1. The table lists the translation, the type

of each representation (formal, semi-formal or informal) and the estimated expressive

overlap between the two representations. The completeness of the translation in each

direction is indicated by the translation operators in the first column.

Table 5.1: Summary of translations

Expressive
Translation Representations overlap

Re(E -R,ERDMartin)� Rr(Relational ,SQL/92)
Re (semi-formal) high
Rr (formal)

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin) Rf (formal) moderate
Rf (FuncDep,FDDSmith) ↽ Re(E -R,ERDMartin) Re (semi-formal) to high

Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S)
Re (semi-formal) low
Rd (semi-formal)

The rules for the Re � Rr translation are defined in the context of three example

viewpoints, which are briefly described in Section 5.2. Full details of these viewpoints

may be found in Appendix C. The Re � Rr translation is defined in detail in Sec-

tion 5.3, followed by summaries of the Rf → Re/Rf ↽ Re and Re � Rd translations

in Sections 5.4 and 5.5 respectively.

5.1.1 Notation used in this chapter

Translation and rule definitions use the abstract notation defined in Chapters 3 and 4.

SMALL CAPS denote constructs of representations, which are defined in detail in Ap-

pendix D.

Many of the rule definitions are illustrated using diagrams. Some representations

allow the definition of unique identifiers for ‘objects’, for example, primary keys in

relational representations. Where appropriate, the notation AB denotes that the at-

tributes A and B are components of the unique identifier of some object.

Rules within a translation are numbered in the order they are presented. The rule

numbers for scheme-level rules are prefixed by the letter ‘S’ (S1, S2, . . .), those for

technique-level rules by the letter ‘T’ (T1, T2, . . .), and those for heuristics by the letter

‘H’ (H1, H2, . . .).

108

5.2 Example viewpoints

Three unrelated viewpoints are used in the examples in this chapter and elsewhere

in the thesis: a viewpoint of a simple used cars dealership, a viewpoint of an agri-

cultural research institute and a viewpoint of a course assessment marks database.

These viewpoints are drawn from examples developed for teaching over the course

of several years, and are thus well-defined and understood. Since only the Re � Rr

translation is fully detailed in this chapter, only Martin E-R and SQL/92 descriptions

are presented here. Other descriptions and full details of the viewpoints may be found

in Appendix C.

5.2.1 The used cars viewpoint

The first viewpoint to be examined (Vcars) is of a small used car dealership. A full

explanation of this viewpoint may be found in Section C.1 on page 359. The main

points may be summarised as follows:

• The business purchases cars from and sells cars to customers. Purchases and sales

are always for a single car and are dealt with exclusively by sales representatives.

• The business needs to know which sales representative was involved in a sale or

purchase for the purposes of recording commissions.

• Sales representatives are paid commissions, while other staff are paid salary or

wages.

• A list of non-standard features is kept for each car (such as air conditioning or

alloy wheels); some cars have several features, some have none.

A Martin E-R description (D1) of the viewpoint is shown in Figure 5.1 on the following

page and an SQL/92 description (D2) is shown in Figure 5.2 on page 111. Note in

Figure 5.1 that the various types of staff have been modelled as subtypes of the Staff

entity.

109

Staff

Wage_staff Salary_staffSalesrep

Feature

CustomerPurchase Sale

Car

buys sells

sells buys

bought sold

car
features

Figure 5.1: Martin E-R descriptionD1(Vcars ,E -R,ERDMartin) of the used cars viewpoint

5.2.2 The agricultural research institute viewpoint

The second viewpoint to be examined (Vagri) is of an agricultural research institute. A

full explanation of this viewpoint may be found in Section C.2 on page 364. The main

points may be summarised as follows:

• The institute carries out research under contract to clients; each contract is for a

single client.

• A contract comprises a series of experiments. These experiments are to evaluate

the effect of a collection of fertilisers on the growth rate of various breeds of sheep

grazing on various grass types. Each experiment is run by a single scientist.

• Each experiment takes place in several paddocks, each of which is sown with a

particular grass type and treated with a particular fertiliser (or no fertiliser as a

control).

• A flock of sheep of the same breed is placed in each paddock.

110

create table staff
(ird_number char(7),
name char(80),
address char(80),
phone char(12),

primary key (ird_number)
);

create table wage_staff
(wage_staff_id char(7),
hourly_rate smallint,
hours_per_week integer(2),

primary key (wage_staff_id),
foreign key (wage_staff_id)

references staff (ird_number)
);

create table salary_staff
(salary_staff_id char(7),
salary smallint,

primary key (salary_staff_id),
foreign key (salary_staff_id)

references staff (ird_number)
);

create table salesrep
(salesrep_id char(7),
commission_rate integer(2),

primary key (salesrep_id),
foreign key (salesrep_id)

references staff (ird_number)
);

create table customer
(customer_no char(6),
name char(80),
address char(80),
phone char(12),

primary key (customer_no)
);

create table car
(registration char(6),
vin char(20) not null unique,
make char(20),
model char(20),
year smallint,
colour char(20),
odometer integer,
miles_km char(1),
list_price integer,
purchase_id char(6) not null unique,
sale_id char(6) unique,

primary key (registration),
foreign key (purchase_id)

references purchase,
foreign key (sale_id)

references sale
);

create table feature
(feature_code char(6),

description char(80),

primary key (feature_code)
);

create table car_feature
(feature_code char(6),

registration char(6),

primary key (feature_code, registration),
foreign key (feature_code)
references feature,

foreign key (registration)
references car

);

create table purchase
(purchase_id char(6),

purchase_date date,
purchase_price integer,
customer_no char(6) not null,
salesrep_id char(7) not null,
registration char(6) not null unique,

primary key (purchase_id),
foreign key (customer_no)
references customer,

foreign key (salesrep_id)
references salesrep

foreign key (registration)
references car

);

create table sale
(sale_id char(6),

sale_date date,
sale_price integer,
customer_no char(6) not null,
salesrep_id char(7) not null,
registration char(6) not null unique,

primary key (sale_id),
foreign key (customer_no)
references customer,

foreign key (salesrep_id)
references salesrep

foreign key (registration)
references car

);

Figure 5.2: SQL/92 description D2(Vcars ,Relational , SQL/92) of the used cars view-
point

111

A normalised Martin E-R description (D3) of this viewpoint is shown in Figure 5.3, and

an SQL/92 description (D4) of the viewpoint is shown in Figure 5.4. Note in Figure 5.3

the assumption that details of the sheep associated with an experiment are dependent

on the paddock details.

Client

Experiment

Contract

Staff

Sheep

Fertiliser

Grass

PaddockPaddock_detail

Sheep_detail

Breed

signs

runs

used

flock

comprises

paddocks

sheep

tested

applied

sown

Figure 5.3: Normalised Martin E-R description D3(Vagri ,E -R,ERDMartin) of the agri-
cultural research institute viewpoint

5.2.3 The assessment marks viewpoint

The third viewpoint to be examined (Vmarks) is of a teacher recording assessment marks

for a course. A full explanation of this viewpoint may be found in Section C.3 on

page 369. The main points may be summarised as follows:

• The course assessment package comprises several assessment elements; students

complete and submit each as an assignment.

• Each assessment element comprises several questions, and each question in turn

may comprise several sub-questions. Similarly, an assignment comprises several

answers which in turn may comprise several sub-answers.

112

create table staff
(staff_id char(10),
name char(20),
address char(20),
gender char(1),
dob date,
title char(15),
salary decimal(6,2),

primary key (staff_id)
);

create table client
(client_id char(10),
name char(20),
address char(20),
category char(1),

primary key (client_id)
);

create table fertiliser
(fertiliser_id char(10),
name char(20),
supplier char(20),

primary key (fertiliser_id)
);

create table grass
(grass_id char(10),
name char(20),

primary key (grass_id)
);

create table paddock
(paddock_id char(10),
address char(20),
area smallint,
moisture smallint,
sunshine smallint,

primary key (paddock_id)
);

create table breed
(breed_name char(20),
details char(20),
flock_size smallint,

primary key (breed_name)
);

create table sheep
(sheep_id char(10),
breed_name char(20) not null,
dob date,
gender char(1),
health char(1),

primary key (sheep_id),
foreign key(breed_name)

references breed
);

create table contract
(contract_id char(10),

client_id char(10) not null,
details char(20),
fee decimal(8,2),
gst decimal(8,2),
sign_date date not null,
finish_date date,

primary key (contract_id),
foreign key (client_id)
references client

);

create table experiment
(experiment_id char(10),

contract_id char(10) not null,
staff_id char(10) not null,
finish_date date,
start_date date,

primary key (experiment_id),
foreign key (contract_id)
references contract,

foreign key(staff_id)
references staff

);

create table paddock_detail
(experiment_id char(10),

paddock_id char(10) not null,
fertiliser_id char(10),
grass_id char(10) not null,

primary key (experiment_id, paddock_id),
foreign key (experiment_id)
references experiment,

foreign key (paddock_id)
references paddock,

foreign key (fertiliser_id)
references fertiliser,

foreign key (grass_id)
references grass

);

create table sheep_detail
(experiment_id char(10),

paddock_id char(10),
sheep_id char(10),
finish_weight smallint,
start_weight smallint,

primary key (experiment_id, paddock_id,
sheep_id),

foreign key (experiment_id)
references experiment(experiment_id),
foreign key (sheep_id)
references sheep,

foreign key (experiment_id, paddock_id)
references paddock_detail

);

Figure 5.4: SQL/92 description D4(Vagri ,Relational , SQL/92) of the agricultural re-
search institute viewpoint

113

• An assignment is marked by a single staff member and an overall mark awarded.

This mark may be broken down into marks for each individual answer.

• The mark for each answer is determined according to a marking schedule that

specifies several criteria and a mark allocation for each criterion.

• Marks may be adjusted at a later date for reasons such as illness or technical

difficulties.

A normalised Martin E-R description (D5) of the viewpoint is shown in Figure 5.5,

and an SQL/92 description (D6) of the viewpoint is shown in Figure 5.6. Note that the

Question and Answer weak entities have been given their own unique entity identifiers

rather than a partial identifier in order to facilitate questions having sub-questions and

answers having sub-answers.

Staff

Assignment

Student

Mark
Adjustment

Answer

Assessment
Element

Question

Marking
Schedule

comprises comprises

marks

marked using

comprises

comprises

Figure 5.5: Normalised Martin E-R description D5(Vmarks ,E -R,ERDMartin) of the as-
sessment marks viewpoint

5.3 Re(E -R,ERDMartin)� Rr(Relational , SQL/92)

In this translation descriptions are translated between the entity-relationship approach

expressed using Martin ERD notation and the relational model expressed using ANSI

114

create table staff
(staff_id char(8),
name char(80),
password char(20),

primary key (staff_id)
);

create table student
(student_id char(7),
name char(80),
password char(20),

primary key (student_id)
);

create table element
(element_id integer,
name char(80),
total_mark smallint,
percent smallint,
due_date date,
late_penalty smallint,

primary key (element_id)
);

create table question
(question_id integer,
element_id integer not null,
number char(5),
marks smallint,
guidelines char(500),
parent_question integer,

primary key (question_id),
foreign key (element_id)

references element,
foreign key (parent_question)

references question
);

create table assignment
(assign_id integer,
element_id integer not null,
student_id char(7) not null,
staff_id char(8) not null,
date_submitted date,
date_marked date,
raw_mark smallint,
comments char(500),

primary key (assign_id),
foreign key (element_id)
references element,

foreign key (student_id)
references student,

foreign key (staff_id)
references staff

);

create table adjustment
(assign_id integer,

adjustment_no integer,
reason char(200),
amount smallint,

primary key (assign_id,
adjustment_no),

foreign key (assign_id)
references assignment

);

create table answer
(answer_id integer,

assign_id integer not null,
question_id integer not null,
mark smallint,
comments char(500),
parent_answer integer,

primary key (answer_id),
foreign key (assign_id)
references assignment,

foreign key (question_id)
references question,

foreign key (parent_answer)
references answer

);

create table marking_schedule
(answer_id integer,

criterion_name char(30),
mark smallint,
comments char(500),

primary key (answer_id,
criterion_name),

foreign key (answer_id)
references answer

);

Figure 5.6: SQL/92 descriptionD6(Vmarks ,Relational , SQL/92) of the assessment marks
viewpoint

115

SQL/92. The translation is partial in both directions because some of the rules are

partial in each direction. That is:

Re(E -R,ERDMartin)� Rr(Relational , SQL/92)

In the forward direction, Re ⇀ Rr is effectively SQL schema generation from an

ERD and is a common operation performed by many CASE tools. The reverse transla-

tion Rr ⇀ Re corresponds to reverse engineering of an SQL schema into an ERD, and

is illustrated by the arrow labelled T4 in Figure 3.1 on page 43. When translating in the

forward direction, the input ERD must be normalised (although many-to-many rela-

tionships are allowed), for reasons that will be discussed in Section 5.3.5 on page 129.

Scheme-level rules for this translation are defined in Section 5.3.1, in the context of

the example viewpoints described above. Rules that are applicable to the used cars

viewpoint are considered first, followed by additional rules applicable to the agricul-

tural and assessment marks viewpoints. Other scheme-level rules that are not applica-

ble to any of the example viewpoints are defined in Section 5.3.2, followed by heuristics

in Section 5.3.3. Generalisations of the rules are then identified in Section 5.3.4 to pro-

duce a list of technique-level rules for the translation. The translation is summarised

and some interesting features of it are discussed in Section 5.3.5.

5.3.1 Scheme-level rules

The two descriptions shown in Figure 5.1 on page 110 and Figure 5.2 on page 111 will

now be compared to identify possible rules. The first correspondence is between a

regular entity and a table, as shown in Figure 5.7. The Staff regular entity translates di-

rectly to the staff table and vice versa. The correspondences between the properties

of the appropriate representation constructs (MARTINREGULARENTITY and SQL92-

TABLE respectively) are shown in Table 5.2. Note that the alternateKeys property of

SQL92TABLE has no corresponding property in MARTINREGULARENTITY, and the

typeHierarchy property of MARTINREGULARENTITY has no corresponding property

in SQL92TABLE. Consequently, this rule is partial in both directions. That is:

Re [MARTINREGULARENTITY]� Rr [SQL92TABLE] (S1)

116

Staff
IRD NUMBER,

NAME, PHONE,
ADDRESS

create table staff
(ird number char(7),

name char(80),
address char(80),
phone char(12),

primary key (ird number)
);

Figure 5.7: Translating a regular entity to and from SQL/92 (rule S1)

Table 5.2: Correspondences between the properties of the MARTINREGULARENTITY
and SQL92TABLE constructs

MARTINREGULARENTITY SQL92TABLE

name ↔ name
attributes ↔ attributesa

identifier ↔ primaryKey
relationships � refFKs/foreignKeysb

– alternateKeys
typeHierarchy –

Notes on Table 5.2:
a The attributes property is inherited from the RMRELATION construct and contains

the columns of the table.
b This is not an exact correspondence, but is close enough for the purposes of this

comparison.
Definitions of the properties of representation constructs may be found in Appendix D.

Rule S1 may also be extended to associative entities such as the Purchase entity. In

the forward direction, an associative entity translates to an SQL/92 table in a manner

identical to a regular entity. In the reverse direction, however, it is impossible to deter-

mine whether an SQL/92 table corresponds to a regular entity or an associative entity,

as the representation Rr cannot express this information. This leads to a case 1 conflict

as described in Section 4.7.1 on page 98: two rules with the same source constructs but

different incompatible target constructs. To avoid this conflict, the rule for associative

entities is unidirectional in the forward direction. That is:

Re [MARTINASSOCIATIVEENTITY]⇀ Rr [SQL92TABLE] (S2)

Two further correspondences may be identified from rule S1. First, an attribute of

an entity translates directly to an SQL/92 column and vice versa, as shown in Fig-

ure 5.7. The repeating and attributeGroups properties of the MARTINATTRIBUTE con-

struct have no corresponding properties in SQL92COLUMN, so this rule is partial in

the forward direction. In the reverse direction, there is no MARTINATTRIBUTE property

117

corresponding to the SQL92COLUMN constraints property, so the rule is also partial in

the reverse direction. That is:

Re [MARTINATTRIBUTE]� Rr [SQL92COLUMN] (S3)

Second, the entity identifier of an entity translates to the primary key of an SQL/92

table and vice versa, as illustrated by the IRD NUMBER attribute in Figure 5.7. This

rule is complete in the forward direction, but partial in the reverse direction, as there

is no MARTINIDENTIFIER property corresponding to the SQL92PRIMARYKEY refFKs

property. That is:

Re [MARTINIDENTIFIER]→ Rr [SQL92PRIMARYKEY]

Re [MARTINIDENTIFIER]↽ Rr [SQL92PRIMARYKEY]
(S4)

The next elements to consider in the used cars viewpoint are the relationships be-

tween entities. The rules for these vary depending on the optionality and cardinality

of the relationships, as will be seen below. Consider the sells one-to-many relation-

ship shown on the left of Figure 5.8. A relationship between two entities of any sort

will typically translate to a foreign key linking the two corresponding tables and vice

versa. For a one-to-many relationship, the foreign key must appear in the table corre-

sponding to the ‘many’ entity, and reference the table corresponding to the ‘one’ entity,

as illustrated by the foreign key to salesrep in the purchase table on the right of

Figure 5.8. Placing the foreign key in the other table would result in an unnormalised

structure, which is impossible in SQL/92.

Foreign keys are designed to support referential integrity, which states that a for-

eign key must either refer to a valid primary key value in the referenced table, or it

must be null (Codd, 1990, p. 23). The ‘one’ end of the sells relationship is manda-

tory, which means that the foreign key cannot be null. Thus, a not null constraint is

placed on the columns of the foreign key, as illustrated by the salesrep id column

in Figure 5.8.

Nothing has been said about the optionality of the ‘many’ end of the relationship.

Examining the SQL/92 code in Figure 5.8, it can be seen that optionality of the ‘one’

end of the relationship is expressed in SQL/92 by the existence (or not) of a not null

constraint on the columns of the foreign key in the ‘many’ table. There is no foreign

118

Salesrep

SALESREP ID,

COMMISSION RATE

sells

PURCHASE ID,

PURCHASE DATE,
PURCHASE PRICE,

. . .

Purchase

create table salesrep
(salesrep id char(7),

commission rate integer(2),

primary key (salesrep id),
foreign key (salesrep id) references staff

);

create table purchase
(purchase id char(6),

purchase date date,
purchase price integer,
customer no char(6) not null,
salesrep id char(7) not null,
registration char(6) not null unique,

primary key (purchase id),
foreign key (customer no) references customer,
foreign key (salesrep id) references salesrep
foreign key (registration) references car

);

Figure 5.8: Translating a one-to-many relationship (mandatory-optional) to and from
SQL/92 (rule S5)

key in the ‘one’ table, so there is nothing with which to express the optionality of the

‘many’ end. That is, the optionality of the ‘many’ end of the relationship is lost in the

translation, and the rule is consequently partial in the forward direction. In the reverse

direction, however, the rule is complete. That is:

Re[MARTINRELATIONSHIP ,ERTYPEITEM1 , ERTYPEITEM2]⇀

Rr [SQL92FOREIGNKEY, SQL92NOTNULL]

Re[MARTINRELATIONSHIP ,ERTYPEITEM1 , ERTYPEITEM2]←

Rr [SQL92FOREIGNKEY, SQL92NOTNULL]

(S5)

Now consider the bought one-to-one relationship between Purchase and Car. For

this relationship, the corresponding foreign key could be placed in either table, or in-

deed, foreign keys could be placed in both tables. Placing foreign keys in both tables

provides greater flexibility, and is the approach adopted here, as shown in Figure 5.9

on the next page. The relationship is mandatory at both ends, so both foreign keys

have not null constraints on their columns. In addition, the cardinality of both ends

of the relationship is ‘one’, which means that there is a one-to-one mapping between

the values of the foreign keys and the values of the primary keys that they reference.

The values of the primary keys are unique by definition, so the values of the foreign

keys must also be unique. This is represented by unique constraints on the columns

of both foreign keys in Figure 5.9.

119

Purchase
PURCHASE ID,

PURCHASE DATE,
PURCHASE PRICE,

. . .

bought

REGISTRATION,

MAKE, MODEL,
. . .

Car

create table purchase
(purchase id char(6),

purchase date date,
purchase price integer,
customer no char(6) not null,
salesrep id char(7) not null,
registration char(6) not null unique,

primary key (purchase id),
foreign key (customer no) references customer,
foreign key (salesrep id) references salesrep
foreign key (registration) references car

);

create table car
(registration char(6),

vin char(20) not null unique,
...,

purchase id char(6) not null unique,
sale id char(6) unique,

primary key (registration),
foreign key (purchase id) references purchase,
foreign key (sale id) references sale

);

Figure 5.9: Translating a one-to-one relationship (mandatory-mandatory) to and from
SQL/92 (rule S6)

The advantage of placing foreign keys in both tables is that it allows the optionality

of both ends of the relationship to be translated, that is, there is no loss of optional-

ity information as there was with rule S5. As a result, the rule is complete in both

directions. That is:

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]↔

Rr[SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2 , SQL92UNIQUE1 ,

SQL92UNIQUE2 , SQL92NOTNULL1 , SQL92NOTNULL2]

(S6)

The sold relationship between Sale and Car is almost identical to that between

Purchase and Car, except that the Sale end of the relationship is optional rather than

mandatory. This means that there is no not null constraint on the foreign key in the

car table, as shown in Figure 5.10. Foreign keys are still included in both tables, which

could result in nulls being stored in the car foreign key. The advantage of retaining

optionality information should outweigh any disadvantages of allowing nulls in the

foreign key. As with rule S6, this rule is complete in both directions. That is:

120

Sale
SALE ID,

SALE DATE,
SALE PRICE,

. . .

sold

REGISTRATION,

MAKE, MODEL,
. . .

Car

create table sale
(sale id char(6),
sale date date,
sale price integer,
sale no char(6) not null,
salesrep id char(7) not null,
registration char(6) not null unique,

primary key (purchase id),
foreign key (customer no) references customer,
foreign key (salesrep id) references salesrep
foreign key (registration) references car

);

create table car
(registration char(6),
vin char(20) not null unique,

...,
purchase id char(6) not null unique,
sale id char(6) unique,

primary key (registration),
foreign key (purchase id) references purchase,
foreign key (sale id) references sale

);

Figure 5.10: Translating a one-to-one relationship (optional-mandatory) to and from
SQL/92 (rule S7)

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]↔

Rr[SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2 ,

SQL92UNIQUE1 , SQL92UNIQUE2 , SQL92NOTNULL]

(S7)

It was stated in the introduction to this translation that the source ERD must be nor-

malised, but that many-to-many relationship are allowed. This is not a contradiction,

becauseRe(E -R,ERDMartin) defines the links between entities using relationships only.

That is, explicit attributes to ‘implement’ the relationship are not required, as they of-

ten are in CASE tools; rather, these attributes are implied by the relationship. Many-to-

many relationships like car features between Car and Feature cannot be translated to

SQL/92 in the same way as the relationships discussed above, however, as this would

result in the generation of multi-valued (repeating) columns in the car and feature

tables. Instead, an intermediate table must be generated to link the car and fea-

ture tables, as shown in Figure 5.11 on the following page. This table (car feature)

contains only the attributes from the primary keys of car and feature, which are

concatenated to form the primary key. In addition, the attributes from car form a

foreign key to car and the attributes from feature form a foreign key to feature.

121

Car

REGISTRATION,

MAKE, MODEL,
. . .

car features

FEATURE CODE,

DESCRIPTION

Feature

create table car
(registration char(6),

vin char(20) not null unique,
...,

purchase id char(6) not null unique,
sale id char(6) unique,

primary key (registration),
foreign key (purchase id) references purchase,
foreign key (sale id) references sale

);

create table car feature
(registration char(6),

feature code char(6),

primary key (registration, feature code),
foreign key (registration) references car,
foreign key (feature code) references feature

);

create table feature
(feature code char(6),

description char(80),

primary key (feature code)
);

Figure 5.11: Translating a many-to-many relationship to and from SQL/92 (rule S8)

Rule S5 for one-to-many relationships loses the optionality of the ‘many’ end of the

relationship. It follows from this that the translation of a many-to-many relationship

loses the optionality of both ends of the relationship, as the many-to-many relationship

effectively becomes two one-to-many relationships. The rule is therefore partial in the

forward direction, but complete in the reverse direction. That is:

Re[MARTINRELATIONSHIP , ERTYPEITEM1 , ERTYPEITEM2]⇀

Rr[SQL92TABLE, SQL92PRIMARYKEY ,

SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2]

Re[MARTINRELATIONSHIP , ERTYPEITEM1 , ERTYPEITEM2]←

Rr[SQL92TABLE, SQL92PRIMARYKEY ,

SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2]

(S8)

The only remaining structure in description D1 that has not been considered is the

type hierarchy associating the Staff entity (the supertype) and the entities Wage staff,

Salesrep and Salary staff (the subtypes). This can be treated as if there were one-

to-one relationships between supertype entity (mandatory) and each of the subtypes

(optional). This is similar to rule S7, except that a foreign key is not placed in the staff

122

table. Rather, foreign keys are only placed in the tables corresponding to the subtypes,

as shown in Figure 5.12 for the salesrep table.

Staff

IRD NUMBER,

NAME, PHONE,
ADDRESS

WAGE STAFF ID,

HOURLY RATE,
HOURS PER WEEK

Wage staff

SALESREP ID

COMMISSION RATE

Salesrep

SALARY STAFF ID

SALARY

Salary staff

create table staff
(ird number char(7),
name char(80),
address char(80),
phone char(12),

primary key (ird number)
);

create table salesrep
(salesrep id char(7),

commission rate integer(2),

foreign key (salesrep id)
references staff (ird number),

primary key (salesrep id)
);

Figure 5.12: Translating a type hierarchy to SQL/92 (rule S9)

In this example, the subtypes and the supertype share the same identifier, albeit

with different names. This means that no unique or not null constraints are re-

quired on the foreign key attributes of salesrep, because these are also the primary

key attributes, which are unique and not null by definition. In general, however, there

is no guarantee that the supertype and the subtypes will share the same identifier,

so the rule for this translation should therefore generate unique and not null con-

straints regardless. This may sometimes lead to redundant constraints in the resultant

SQL code.

The only property of the MARTINTYPEHIERARCHY construct that cannot be trans-

lated to SQL is the exclusivity of the type hierarchy, that is, whether a given instance of

an entity may fall into multiple subtypes or only one subtype. SQL has no concept of

generalisation/specialisation, and hence no concept of mutually exclusive subtypes.

Consequently, this rule is partial in the forward direction, but it is complete in the

123

reverse direction. That is:

Re[MARTINTYPEHIERARCHY,MARTINREGULARENTITYp ,

MARTINREGULARENTITYc]⇀ Rr[SQL92FOREIGNKEY, SQL92UNIQUE ,

SQL92NOTNULL]

Re[MARTINTYPEHIERARCHY,MARTINREGULARENTITYp ,

MARTINREGULARENTITYc]← Rr[SQL92FOREIGNKEY, SQL92UNIQUE,

SQL92NOTNULL]

(S9)

The rules that have been defined thus far are adequate to translate the structures

appearing in descriptions D1 and D2 of the used cars viewpoint, but there are other

structures that have not yet been considered. There are two additional E-R structures in

description D3(Vagri ,E -R,ERDMartin) (see Figure 5.3 on page 112) that do not appear in

description D1. The first of these is the comprises one-to-many mandatory-mandatory

relationship between the Contract and Experiment entities. Since the optionality of

the ‘many’ end of a one-to-many relationship is lost when translated to SQL, this is

effectively identical to the situation for rule S5 on page 119. That is, rule S5 will serve

for both one-to-many mandatory-mandatory and mandatory-optional relationships.

The second additional structure to be considered in description D3 is the applied

one-to-many optional-optional relationship between the Fertiliser and Paddock detail

entities. As with rule S5, this translates to a foreign key in the paddock detail table.

The result is, however, slightly different: since the ‘one’ end of the relationship is op-

tional, the columns of the foreign key are allowed to be null, so there is no not null

constraint on them, as shown in Figure 5.13. Otherwise, this rule is identical to rule S5:

it is partial in the forward direction and complete in the reverse direction. That is:

Re[MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]⇀

Rr [SQL92FOREIGNKEY]

Re[MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]←

Rr [SQL92FOREIGNKEY]

(S10)

Only one additional structure is introduced by D5(Vmarks ,E -R,ERDMartin): weak

entities that are dependent on some other ‘parent’ entity. One example of this is the

relationship between the Assignment associative entity and the Mark adjustment weak

124

Fertiliser

FERTILISER ID,

NAME,
SUPPLIER

applied

EXPERIMENT ID,

PADDOCK ID,
FERTILISER ID,

GRASS ID

Paddock detail

create table fertiliser
(fertiliser id char(10),

name char(20),
supplier char(20),

primary key (fertiliser id)
);

create table paddock detail
(experiment id char(10),

paddock id char(10) not null,
fertiliser id char(10),
grass id char(10) not null,

primary key (experiment id, paddock id),
foreign key (experiment id) references experiment,
foreign key (paddock id) references paddock,
foreign key (fertiliser id) references fertiliser,
foreign key (grass id) references grass

);

Figure 5.13: Translating a one-to-many relationship (optional-optional) to and from
SQL/92 (rule S10)

entity illustrated in Figure 5.14. The weak entity Mark adjustment translates directly

to the table adjustment. Note, however, that a weak entity will typically not have

a unique identifier of its own, although it may have a partial identifier, such as the

attribute ADJUSTMENT NO in the entity Mark adjustment. The primary key of the

adjustment table is thus formed by concatenating the identifying attributes of the

Mark adjustment weak entity with the entity identifier of the entity it depends upon

(Assignment), as illustrated in Figure 5.14. This may produce a non-minimal primary

key if the weak entity does have a unique identifier.

Assignment

ASSIGN ID,

DATE SUBMITTED,
DATE MARKED,

. . .

ADJUSTMENT NO,

REASON,
AMOUNT

Mark adjustment

create table assignment
(assign id integer,

element id integer not null,
...,

raw mark smallint,
comments char(500),

primary key (assign id),
foreign key (element id) references element,
foreign key (student id) references student,
foreign key (staff id) references staff

);

create table adjustment
(assign id integer,

adjustment no integer,
reason char(200),
amount smallint,

primary key (assign id, adjustment no),
foreign key (assign id) references assignment

);

Figure 5.14: Translating a weak entity and dependent relationship to SQL/92 (rule S11)

125

This rule is partial in the forward direction for similar reasons to rules S1 and S2.

The reverse direction is more complex, however. Although the right-hand side of this

rule is different from every other rule defined to this point (and is in fact is different

from every rule in the translation), in practice it is impossible in the reverse direction to

distinguish this rule from rule S1. Every SQL/92 table must have a unique primary key,

regardless of the type of entity that the table corresponds to, which means that an SQL

table could either be translated to a weak entity by this rule or to a regular entity by

rule S1. This is a case 1 conflict as discussed in Section 4.7.1 on page 98. Consequently,

this rule is unidirectional in the forward direction. That is:

Re [MARTINWEAKENTITY, ERENTITYTYPE, MARTINRELATIONSHIP]⇀

Rr [SQL92TABLE, SQL92PRIMARYKEY] (S11)

5.3.2 Additional scheme-level rules

In addition to the rules defined above, there is one rule that is not applicable to the

descriptions in any of the three viewpoints. Consider a one-to-one relationship that

is optional at both ends. This is similar to rule S7, except that there is no not null

constraint in either of the generated SQL tables. A modification to the example for

rule S7 is shown in Figure 5.15. This rule is complete in both directions. That is:

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]↔

Rr[SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2 ,

SQL92UNIQUE1 , SQL92UNIQUE2]

(S12)

5.3.3 Heuristics

The author has at present only identified one heuristic for this translation. The rela-

tional model has the notion of an alternate key, which is an alternative unique identifier

for a relation. Although SQL/92 does not explicitly use this construct, alternate keys

may be simulated in SQL/92 using unique constraints. It is possible to translate such

a constraint to an E-R entity identifier, although this may not always produce a seman-

tically correct result, as not all unique constraints may represent alternate keys. This

126

Sale
SALE ID,

SALE DATE,
SALE PRICE,

. . .

sold

REGISTRATION,

MAKE, MODEL,
. . .

Car

create table sale
(sale id char(6),
sale date date,
sale price integer,
sale no char(6) not null,
salesrep id char(7) not null,
registration char(6) unique,

primary key (purchase id),
foreign key (customer no) references customer,
foreign key (salesrep id) references salesrep
foreign key (registration) references car

);

create table car
(registration char(6),
vin char(20) not null unique,

...,
purchase id char(6) not null unique,
sale id char(6) unique,

primary key (registration),
foreign key (purchase id) references purchase,
foreign key (sale id) references sale

);

Figure 5.15: Translating a one-to-one relationship (optional-optional) to and from
SQL/92 (rule S12)

is to be expected for a heuristic, however. For example, the vin column of the car ta-

ble has a unique constraint attached to it, so it can be translated to an entity identifier

for the Car entity. This happens to be a correct result, as vin is in fact an alternate key

for car.

The use of this heuristic can result in entities that have multiple entity identifiers. It

is unclear from Chen’s (1977) definition of the E-R approach as to whether this is illegal

— while not explicitly disallowed, the implication is that each entity has only a single

entity identifier. The heuristic is complete. That is:

Re [MARTINIDENTIFIER]←� Rr [SQL92UNIQUE] (H1)

5.3.4 Technique-level rules

The scheme-level rules defined above will now be examined to determine whether

they may be generalised into technique-level rules, and two technique-level rules that

are not specialised by this translation will also be defined. Note that a technique by

definition has no notation associated with it, so no examples of these rules are given.

Of the rules defined above, S1–S4, S8, S10 and S11 can potentially be generalised,

as they do not include any scheme-specific constructs. Rules S8 and S10 are not con-

127

sidered here, however, because the definition of the E-R technique allows for relation-

ships with degree greater than two, whereas all relationships inRe are binary only. The

technique-level rules would thus have to deal with n-ary relationships in order to be

of any use. Since no other E-R representations are currently being used by the author,

technique-level rules for n-ary relationships have not been defined in order to reduce

the complexity of the translation. It is expected that appropriate technique-level rules

will be defined at a later date.

The MARTINREGULARENTITY construct generalises to the ERENTITYTYPE con-

struct and the SQL92TABLE construct generalises to the RMRELATION construct, so

rule S1 may be generalised to:

Re [ERENTITYTYPE]� Rr [RMRELATION] (T1)

Note that the ERENTITYTYPE element in this rule should not be a weak entity type, as

these are dealt with by rule T5 below.

Associative entities (construct MARTINASSOCIATIVEENTITY) are specialisations of

the ERRELATIONSHIPTYPE construct rather than the ERENTITYTYPE construct. In ef-

fect, an associative entity is a relationship type that has attributes. Rule S2 may there-

fore be generalised to:

Re [ERRELATIONSHIPTYPE]⇀ Rr [RMRELATION] (T2)

The MARTINATTRIBUTE construct generalises to ERATTRIBUTE, and SQL92CO-

LUMN generalises to RMATTRIBUTE, so rule S3 may be generalised to:

Re [ERATTRIBUTE]� Rr [RMATTRIBUTE] (T3)

The MARTINIDENTIFIER construct generalises to ERIDENTIFIER, and SQL92PRI-

MARYKEY generalises to RMPRIMARYKEY, so rule S4 may be generalised to:

Re [ERIDENTIFIER]→ Rr [RMPRIMARYKEY]

Re [ERIDENTIFIER]↽ Rr [RMPRIMARYKEY]
(T4)

The MARTINWEAKENTITY construct generalises to ERWEAKENTITYTYPE, and the

MARTINRELATIONSHIP construct generalises to ERRELATIONSHIPTYPE, so rule S11

may be generalised to:

Re [ERWEAKENTITYTYPE, ERENTITYTYPE, ERRELATIONSHIPTYPE]⇀

Rr [RMRELATION, RMPRIMARYKEY] (T5)

128

An additional technique-level rule may be derived from heuristic H1, which was

designed to translate alternate keys simulated by unique constraints. The relational

technique explicitly includes the RMALTERNATEKEY construct, so it is possible to de-

fine a technique-level rule that performs the appropriate translation. This is not a gen-

eralisation of heuristic H1, however, because the heuristic refers to a construct (SQL92-

UNIQUE) that does not exist in the technique. This rule is unidirectional and partial in

the reverse direction, to avoid a case 1 conflict with rule T4 in the forward direction.

That is:

Re [ERIDENTIFIER]↽ Rr [RMALTERNATEKEY] (T6)

Finally, an additional technique-level rule may be identified directly from the E-

R and relational techniques themselves. The E-R technique includes the ERVALUE-

TYPE construct, which is not specialised by Re(E -R,ERDMartin). The E-R concept of a

value type corresponds directly to the relational concept of a domain (construct RM-

DOMAIN). This rule is complete in both directions. That is:

Re [ERVALUETYPE]↔ Rr [RMDOMAIN] (T7)

5.3.5 Discussion

The rules and heuristics for this translation are summarised in Table 5.3 on the fol-

lowing page. The Spec. column of this table indicates which technique-level rule a

scheme-level rule specialises, if any. Rules that refer to relationships use an abbre-

viated notation to signify cardinality and optionality. The notation 0:1–1:N indicates

that the relationship is optional-one (0:1) to mandatory-many (1:N). An asterisk (‘*’) is

used to denote unspecified optionality or cardinality, for example, the notation *:M–1:1

denotes an unspecified-many (*:M) to mandatory-one (1:1) relationship.

Information loss during the translation

As noted under the description of rule S5 on page 119, when a one-to-many relation-

ship is translated to equivalent SQL/92 constructs, the optionality of the ‘many’ side of

the relationship is lost because there is no construct in SQL/92 that can be used to ex-

press this information. With a many-to-many relationship, the optionality of both ends

129

Table 5.3: Summary of Re(E -R,ERDMartin)� Rr(Relational , SQL/92) rules

Rule Spec. ↔ Re construct(s) Rr construct(s)

T1 – � non-weak, normalised ERENTITYTYPE RMRELATION
T2 – ⇀ normalised ERRELATIONSHIPTYPE with

attributes
RMRELATION

T3 – � non-repeating ERATTRIBUTE RMATTRIBUTE
T4 – →/↽ non-partial ERIDENTIFIER RMPRIMARYKEY
T5 – ⇀ normalised ERWEAKENTITYTYPE +

normalised ERENTITYTYPE + normalised
ERRELATIONSHIPTYPE

RMRELATION + RMPRIMARYKEY

T6 – ↽ non-partial ERIDENTIFIER RMALTERNATEKEY
T7 – ↔ ERVALUETYPE RMDOMAIN

S1 T1 � normalised MARTINREGULARENTITY SQL92TABLE
S2 T2 ⇀ normalised MARTINASSOCIATIVEENTITY SQL92TABLE
S3 T3 � MARTINATTRIBUTE SQL92COLUMN
S4 T4 →/↽ non-partial MARTINIDENTIFIER SQL92PRIMARYKEY
S5 – ⇀/← 1:1–*:N MARTINRELATIONSHIP +

2 normalised ERTYPEITEM
SQL92FOREIGNKEY + SQL92NOTNULL

S6 – ↔ 1:1–1:1 MARTINRELATIONSHIP +
2 normalised ERTYPEITEM

2 SQL92FOREIGNKEY + 2 SQL92UNIQUE +
2 SQL92NOTNULL

S7 – ↔ 0:1–1:1 MARTINRELATIONSHIP +
2 normalised ERTYPEITEM

2 SQL92FOREIGNKEY + 2 SQL92UNIQUE +
SQL92NOTNULL

S8 – ⇀/← *:M–*:N MARTINRELATIONSHIP +
2 normalised ERTYPEITEM

SQL92TABLE + SQL92PRIMARYKEY +
2 SQL92FOREIGNKEY

S9 – ⇀/← MARTINTYPEHIERARCHY +
2 MARTINREGULARENTITY

SQL92FOREIGNKEY + SQL92UNIQUE +
SQL92NOTNULL

S10 – ⇀/← 0:1–*:N MARTINRELATIONSHIP +
2 normalised ERTYPEITEM

SQL92FOREIGNKEY

S11 T5 ⇀ normalised MARTINWEAKENTITY +
normalised ERENTITYTYPE + 1:1–*:N
MARTINRELATIONSHIP

SQL92TABLE + SQL92PRIMARYKEY

S12 – ↔ 0:1–0:1 MARTINRELATIONSHIP +
2 normalised ERTYPEITEM

2 SQL92FOREIGNKEY + 2 SQL92UNIQUE

H1 – ←� non-partial MARTINIDENTIFIER SQL92UNIQUE

130

of the relationship is lost. This loss of information is illustrated in Figure 5.16 for the

assessment marks viewpoint; in this figure, description D5(Vmarks ,E -R,ERDMartin) is

being translated into description D6(Vmarks ,Relational , SQL/92), and then back to de-

scription D7(Vmarks ,E -R,ERDMartin). The example starts in Figure 5.16(a) with a one-

to-many mandatory-mandatory relationship between the Assessment Element and

Question entities. Note also that the Question entity is changed from a weak entity

to a regular entity, due to the inability of SQL/92 to express this information.

comprises

Assessment
Element

Question

(a) D5

create table element
(element id integer,

name char(80),
...,

primary key (element id)
);

??

create table question
(question id integer,

element id integer not null,
...,

primary key (question id),
foreign key (element id)

references element,
...

);

(b) D6

comprises

Assessment
Element

Question

(c) D7

Figure 5.16: Loss of information when translating between Re and Rr (assessment
marks viewpoint)

Unidirectional and excluded rules

The subsumption/exclusion graphs for this translation are shown in Figure 5.17 on the

following page. Several rules in this translation have been defined as unidirectional,

as they fall into the first case described in Section 4.7.1 on page 98. That is, rules that

would produce syntactically incorrect results if they were applied together. For exam-

ple, rules S2 and S11 have been defined as unidirectional in the forward direction to

prevent conflicts with rule S1 in the reverse direction. Translating a table to a regular

entity is the most sensible default, which is why rule S1 was chosen to be bidirectional.

There are also a large number of exclusions in the reverse direction, as shown in Fig-

ure 5.17(b), for rules that fall into the second case described in Section 4.7.1 on page 98.

131

S9 S5 S3 S4

S1 S11 S2

S6 S7 S8 S10 S12

(a) ⇀

S3 H1

S1 S7 S9 S12

S8 S10 S6

S4 S5

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

(b) ↽

Figure 5.17: Subsumption/exclusion graphs for the Re � Rr translation

That is, rules that would generate semantically incorrect descriptions if they were ap-

plied together. It is interesting to note that there are no exclusions in the forward di-

rection, as the rules are relatively independent of each other in this direction. The large

number of exclusions in the reverse direction is presumably a direct consequence of

the large collection of rules that deal with translating foreign keys.

Observations

Two interesting points can be identified from the rules for this translation:

1. A one-to-anything relationship between two entities implies a foreign key in the

table corresponding to the ‘anything’ entity. If the ‘one’ end of the relationship

is optional, this foreign key is allowed to be null; conversely, if the ‘one’ end

of the relationship is mandatory, then the foreign key must not be null. This is

implemented in SQL/92 by placing a not null constraint on the foreign key

columns. This is an important aspect of referential integrity that can easily be

overlooked and it is interesting to note that none of the CASE tools surveyed in

Chapter 9 appear to implement this.

2. If the relationship described in point 1 is one-to-one, then the foreign key should

also be unique. This is expressed in SQL/92 by placing a unique constraint

132

on the foreign key columns. Again, none of the surveyed CASE tools appear to

implement this.

As shown in Figure 5.18, the CASE tool EasyCASE does not deal with either of these

points when SQL is generated from the ERD for the used cars viewpoint. The original

ERD structure (from D1) is shown in Figure 5.18(a). The expected SQL/92 code from

applying the rules defined above is shown in Figure 5.18(b), and the corresponding

SQL/92 code generated by EasyCASE is shown in Figure 5.18(c).

Purchase

Car

(a) D1

create table purchase
(purchase id char(6),
purchase date date,

...,
registration char(6)

not null unique,
primary key (purchase id),

...,
foreign key (registration)

references car);

create table car
(registration char(6),
vin char(20) not null unique,
make char(20),

...,
purchase id char(6)

not null unique,
sale id char(6)

not null unique,
primary key (registration),
foreign key (purchase id)

references purchase,
foreign key (sale id)

references sale
);

(b) Expected SQL

(c) Actual SQL

Figure 5.18: SQL/92 constraints not generated by EasyCASE (used cars viewpoint)

It was stated in the introduction to this translation (see page 114) that the forward

translation assumes the input ERD is normalised (that is, no repeating groups or multi-

valued attributes). The main reason for this assumption is to reduce the complexity of

the translation. SQL/92 assumes a normalised structure, so the translation of an un-

normalised entity will obviously require some kind of normalisation process. The defi-

nition ofRe(E -R,ERDMartin) in Appendix D allows for the possibility of unnormalised

entities, but in order to translate such structures additional rules would be required.

133

All of these new rules would be unidirectional, as there is no way to determine whether

a table corresponds to an entity or a repeating group within an entity.

In addition, the E-R technique as defined in Appendix D does not explicitly include

foreign keys; rather it is assumed that foreign key links are implied by the relationships

between entities. This assumption fails in the face of unnormalised ERDs, however, as

there is no way to determine whether a given relationship is associated with the entity

as a whole, or with a repeating group embedded within that entity (as occurs the agri-

cultural viewpoint). This is remedied here by allowing weak entities to be embedded

within other entities; relationships may then be attached to these entities as appropri-

ate. The exclusion of explicit foreign keys from the E-R technique definition means that

there is no need for foreign key attributes in entities, so many-to-many relationships

do not result in multi-valued attributes. That is, the ERD effectively remains norma-

lised, even though many-to-many relationships are allowed. This also means that it is

possible to ‘reconstruct’ many-to-many relationships when translating in the reverse

direction, as illustrated by rule S8.

Another reason for restricting this translation to ‘normalised’ ERDs is that normal-

isation also takes place during the translation of an ERD to an FDD. Assuming that

both the translations Re(E -R,ERDMartin) � Rr(Relational , SQL/92) and Rf (FuncDep,

FDDSmith) → Re(E -R,ERDMartin)/Rf ↽ Re are available, including normalisation in

the Re � Rr translation is an unnecessary duplication of effort, as an ERD can be

normalised by a composite translation ‘through’ Rf . The resultant normalised ERD

can then be translated into SQL if desired. The normalisation step could produce a

new ERD, or it could modify the original ERD. It is also likely that the normalisation

performed by the Rf → Re/Rf ↽ Re translation will be more effective than that per-

formed by the Re � Rr translation, as the former explicitly manipulates functional

dependencies, which form the theoretical basis for normalisation, whereas the latter

does not. Leveraging existing translations in this way can lead to the following bene-

fits:

• unnecessary duplication of effort is reduced;

• translation size and complexity can be reduced by not including unnecessary

functionality; and

134

• the quality of individual translations may be improved, partly because of the

reduction of duplication, and partly because of the use of more specialised trans-

lations.

5.4 Rf → Re/Rf ↽ Re

In this translation, descriptions are translated between functional dependencies ex-

pressed using a functional dependency diagram in Smith notation and the entity-

relationship approach expressed using Martin notation. This translation is complete

in the forward direction and partial in the reverse direction. That is:

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin) and

Rf (FuncDep,FDDSmith)↽ Re(E -R,ERDMartin).

In the forward direction, the input to this translation is a Smith functional depen-

dency diagram with no dependency chains, that is, each bubble has only a single de-

pendency attached to it (see Appendix B). The output of the translation is a normalised

ERD in at least fourth normal form. There are no restrictions in the reverse direction.

The rules for this translation are not presented here to conserve space — they may

be found in Appendix E, and are summarised in Table 5.4 on the next page.

5.4.1 Normalisation effect

If an ERD is translated to an FDD, and the resulting FDD is translated back to an ERD,

the original ERD is effectively normalised, as shown in Figure 5.19 on page 137 for the

agricultural viewpoint. In this example, the unnormalised description D7(Vagri ,E -R,

ERDMartin) of the agricultural viewpoint is translated to description D8(Vagri ,FuncDep,

FDDSmith), and back to the description D9(Vagri ,E -R,ERDMartin).

The Experiment entity has a complex internal structure comprising two nested re-

peating groups, as shown in Figure 5.19(b) (the dashed lines indicate the unnorma-

lised relationships). This internal structure is translated into an appropriate FDD (D8),

shown in Figure 5.19(c). When this FDD is translated back to an ERD (D9), the result

is the normalised ERD shown in Figure 5.19(d). The resulting ERD will be in at least

135

Table 5.4: Summary of Rf → Re/Rf ↽ Re rules

Rule Spec. ↔ Rf construct(s) Re construct(s)

T1 – →/↽ FDFUNCTIONALSOURCE + FDFUNC-
TIONAL + FDFUNCTIONALTARGET

ERENTITYTYPE (not all key)

T2 – →/↽ FDMULTISOURCE + FDMULTIVALUED +
FDMULTITARGET

ERENTITYTYPE (all key, 2 attributes) + non-
partial ERIDENTIFIER

T3 – →/↽ FDATTRIBUTE ERATTRIBUTE
T4 – →/↽ 2 FDFUNCTIONALSOURCE + 2 FDFUNC-

TIONAL + 2 FDFUNCTIONALTARGET
2 ERENTITYTYPE + ERRELATIONSHIPTYPE

T5 – ↽ 2 FDFUNCTIONALSOURCE + 2 FDFUNC-
TIONAL + 2 FDFUNCTIONALTARGET 2 FD-
MULTISOURCE + 2 FDMULTIVALUED +
2 FDMULTITARGET

2 ERENTITYTYPE + many-to-many ERRE-
LATIONSHIPTYPE

T6 – →/↽ FDFUNCTIONALSOURCE non-partial ERIDENTIFIER
T7 – ↽ FDFUNCTIONALSOURCE + FDFUNC-

TIONAL + FDFUNCTIONALTARGET
ERWEAKENTITYTYPE + dependent ERRE-
LATIONSHIPTYPE + ERENTITYTYPE

S1 T1 →/↽ SSSINGLEKEYBUBBLE + SSTARGETBUBBLE
+ SSSINGLEVALUED

MARTINREGULARENTITY (not all key)

S2 T2 →/↽ SSMULTIKEYBUBBLE + SSENDKEYBUBBLE
+ SSMULTIVALUED

MARTINREGULARENTITY (all key, 2 at-
tributes) + non-partial MARTINIDENTIFIER

S3 T6 →/↽ SSSINGLEKEYBUBBLE non-partial MARTINIDENTIFIER
S4 – →/↽ SSISOLATEDBUBBLE MARTINREGULARENTITY (all key, 	= 2 at-

tributes)
S5 T3 →/↽ SSATTRIBUTE MARTINATTRIBUTE
S6 – ↽ SSSINGLEKEYBUBBLE + SSTARGETBUBBLE

+ SSSINGLEVALUED
MARTINASSOCIATIVEENTITY

S7 T7 ↽ SSSINGLEKEYBUBBLE + SSTARGETBUBBLE
+ SSSINGLEVALUED

MARTINWEAKENTITY (attributes, partial
key) + 1:1–*:N dependent MARTINRELA-
TIONSHIP + ERTYPEITEM

S8 T7 ↽ SSSINGLEKEYBUBBLE + SSTARGETBUBBLE
+ SSSINGLEVALUED

MARTINWEAKENTITY (attributes, partial
key, n relationships) + 1:1–*:N dependent
MARTINRELATIONSHIP + ERTYPEITEM

S9 T7 ↽ SSSINGLEKEYBUBBLE + SSTARGETBUBBLE
+ SSSINGLEVALUED

MARTINWEAKENTITY (attributes, n rela-
tionships) + 1:1–*:N dependent MARTINRE-
LATIONSHIP + ERTYPEITEM

S10 T7 ↽ SSISOLATEDBUBBLE MARTINWEAKENTITY (no attributes, n rela-
tionships) + 1:1–*:N dependent MARTINRE-
LATIONSHIP + ERTYPEITEM

S11 T4 →/↽ 2 SSSINGLEKEYBUBBLE + 2 SSTARGETBUB-
BLE + 2 SSSINGLEVALUED (configuration 1)

2 non-weak ERTYPEITEM + *:1–*:1 MARTIN-
RELATIONSHIP

S12 T4 →/↽ 2 SSSINGLEKEYBUBBLE + 2 SSTARGETBUB-
BLE + 2 SSSINGLEVALUED (configuration 2)

2 non-weak ERTYPEITEM + *:1–*:N MAR-
TINRELATIONSHIP

S13 T5 ↽ 2 SSSINGLEKEYBUBBLE + 2 SSSINGLEVA-
LUED + 2 SSTARGETBUBBLE + 2 SSMULTI-
KEYBUBBLE + 2 SSMULTIVALUED + 2 SS-
ENDKEYBUBBLE

2 non-weak ERTYPEITEM + *:M–*:N MAR-
TINRELATIONSHIP

S14 – → non-isolated FDATTRIBUTESET + SSDO-
MAINFLAG + SSSINGLEKEYBUBBLE + 2 SS-
ATTRIBUTE

:1–:N MARTINRELATIONSHIP

S15 – → SSISOLATEDBUBBLE + SSDOMAINFLAG +
SSSINGLEKEYBUBBLE + 2 SSATTRIBUTE

:1–:N MARTINRELATIONSHIP

S16 – → non-isolated FDATTRIBUTESET contains SS-
SINGLEKEYBUBBLE

2 ERTYPEITEM + *:1–*:N MARTINRELA-
TIONSHIP

S17 – → non-isolated FDATTRIBUTESET contains SS-
ISOLATEDBUBBLE

2 ERTYPEITEM + *:1–*:N MARTINRELA-
TIONSHIP

S18 – → SSISOLATEDBUBBLE contains SSSINGLE-
KEYBUBBLE

2 ERTYPEITEM + *:1–*:N MARTINRELA-
TIONSHIP

S19 – → SSISOLATEDBUBBLE contains SSISOLATED-
BUBBLE

2 ERTYPEITEM + *:1–*:N MARTINRELA-
TIONSHIP

H1 – →� 2 SSMULTIKEYBUBBLE + 2 SSMULTIVAL-
UED + 2 SSENDKEYBUBBLE

MARTINASSOCIATIVEENTITY + MARTINI-
DENTIFIER

H2 – →� n FDATTRIBUTESET (single-key or isolated)
+ SSDOMAINFLAG + SSSINGLEKEYBUBBLE
+ n SSATTRIBUTE (n > 2)

MARTINTYPEHIERARCHY

136

Client

Experiment

Contract

Staff

Sheep

Fertiliser

Grass

Paddock

Breed

runs

signs

comprises

flock

applied

sown

used

tested

(a) Unnormalised ERD D7

ClientContract

Experiment

Fertiliser

Grass

Paddock

Sheep Breed

Staff

PADDOCK_ID
FERTILISER_ID
GRASS_ID

SHEEP_ID
START_WEIGHT
FINISH_WEIGHT

EXPERIMENT_ID
…

runs

signs

sown

applied

used

flock

tested

dep1

comprises

dep2

(b) Experiment internal structure

FERTILISER_ID
NAME + SUPPLIER

GRASS_ID NAME

DOB +
GENDER +

HEALTH

BREED_NAME

DETAILS +
FLOCK_SIZE

PADDOCK_ID

EXPERIMENT_ID

ADDRESS + AREA +
MOISTURE + SUNSHINE

START_DATE

FINISH_DATE

NAME + ADDRESS +
CATEGORY

FEE

DETAILS

CLIENT_IDGST

FINISH_DATE

SIGN_DATE

CONTRACT_ID

SHEEP_ID

START_WEIGHT +
FINISH_WEIGHTSTAFF_ID

NAME + ADDRESS +
GENDER + DOB +
TITLE + SALARY

(c) Equivalent FDD D8

Client

Experiment

Contract

Staff

Sheep

Fertiliser

Grass

PaddockPaddock_detail

Sheep_detail

Breed

signs

runs

used

flock

comprises

paddocks

sheep

tested

applied

sown

(d) Normalised ERD D9

Figure 5.19: Normalisation caused by the Rf → Re/Rf ↽ Re translation (agricultural
viewpoint)

137

fourth normal form, as the rules for this translation (see Section E.1.2 on page 398) are

based on Smith’s method (Smith, 1985), which claims to produce fully normalised re-

lations from a set of functional dependencies. Higher normal forms may be possible,

depending on the structure of the FDD.

5.4.2 Partial rules

Rules S1, S2 and S6 are all partial in the reverse direction because the name of the

entity cannot be translated. In addition, rule S2 may only be applied in the reverse

direction when the number of attributes in the regular entity is two. If there are more

than two attributes, it is impossible to determine how they should be split to form a

multi-key bubble and an end-key bubble (although this could perhaps be implemented

by a heuristic).

Rule S3 is partial in the reverse direction because the entity identified by an entity

identifier element is not translated. Rule S4 is partial in the reverse direction because

the relationships associated with the regular entity are not translated. Rule S5 is partial

in the reverse direction because the data type information of an E-R attribute cannot

be expressed in Rf . Rules S7–S10 are all partial because the name of the weak entity

cannot be translated. Finally, rules S11–S13 are partial in the reverse direction as the

entity names and optionalities of the relationship are not translated.

5.4.3 Unidirectional and excluded rules

The subsumption/exclusion graphs for both directions of this translation are shown in

Figure 5.20. Rule S6 is unidirectional because it is at best very difficult to determine

whether a given FDD construct translates to an associative entity. Rules S7–S10 could

possibly be made bidirectional, but this would remove the normalisation effect, which

is one of the more interesting features of this translation. The rules would also have

to exclude each other in the forward direction. Rule S13 is unidirectional because the

reverse translation is already dealt with by a combination of other rules (case 2 con-

flict). There are only five exclusions in the forward direction, and none in the reverse

direction, as shown in Figure 5.20.

While not an exclusion per se, the implementations of rules S11–S13 should ignore

138

S19 S4 S15 S5 H2

H1 S17 S14

S2 S18 S3

S1 S12

S11 S16

ρ

ρ

ρ

ρ

ρ

(a)→

S7 S8 S9 S10

S2 S1 S4 S6 S5

S3 S11 S12 S13

(b) ↽

Figure 5.20: Subsumption/exclusion graphs for the Rf → Re/Rf ↽ Re translation

relationships that are terminated by weak entities because these are already dealt with

by rules S7–S10. This restriction prevents the generation of redundant structures, and

can be dealt with by defining appropriate invariants.

5.4.4 Observations

Although this translation is complete in the forward direction, this only implies that

all information in Rf may be mapped to Re. There is still some information useful to

Re that cannot be derived from Rf , for example:

• FDDs do not have any concept of entities, so there is little from which to derive

meaningful entity names.

• It is impossible to accurately determine the optionality of a derived relationship.

• In general, the uniqueness of individual attributes within a bubble cannot be

determined.

• The optionality of relationships is generally ambiguous. There will be no many-

to-many relationships in the derived ERD because it is in at least fourth normal

form as a result of the translation. One-to-many relationships may be inferred

139

from rule S16. Heuristic H2 may imply a one-to-one relationship, but this is not

guaranteed (it is more likely if there is only one referencing domain flag).

• Type hierarchies are difficult to derive. If there are three or more domain flags

referencing a single attribute (heuristic H2), then it is likely that this represents a

type hierarchy, but there is no guaranteed way to determine this.

• There is no way of determining whether a derived type hierarchy is mutually

exclusive or not, as functional dependencies cannot express this information.

Some of the information that cannot be expressed by Rf is shown in Figure 5.21 for

the assessment marks viewpoint. In this example, a description has been translated

from Re toRf , then back to Re. Note that the Assignment associative entity becomes a

regular entity when the FDD is translated back into an ERD.

Staff
STAFF ID,

NAME,
PASSWORD

marks

ASSIGN ID,

RAW MARK,
COMMENTS,

. . .

Assignment

STAFF ID

RAW MARK +

COMMENTS +

. . .

NAME + PASSWORD

ASSIGN ID

??
STAFF ID,

NAME,
PASSWORD

??

ASSIGN ID,

RAW MARK,
COMMENTS,

. . .

??

(a) Information that can be expressed in Rf

Staff
STAFF ID,

NAME,
PASSWORD

marks

ASSIGN ID,

RAW MARK,
COMMENTS,

. . .

Assignment

STAFF ID

RAW MARK +

COMMENTS +

. . .

NAME + PASSWORD

ASSIGN ID

??

??

??

??

??
STAFF ID,

NAME,
PASSWORD

??

ASSIGN ID,

RAW MARK,
COMMENTS,

. . .

??

(b) Information that cannot be expressed in Rf

Figure 5.21: Loss of information when translating from Re to Rf (assessment marks
viewpoint)

140

5.5 Re � Rd

In this translation, descriptions are translated between an entity-relationship diagram

expressed in Martin notation and a data flow diagram expressed in Gane and Sarson

notation (Gane and Sarson, 1979). This translation is partial in both directions. That is:

Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S).

There are no restrictions on this translation in either direction. The rules and heuris-

tics for this translation are not presented here to conserve space, and are summarised

in Table 5.5 (full details of the rules may be found in Appendix E). The subsump-

tion/exclusion graphs for both directions of the translation are shown in Figure 5.22.

Table 5.5: Summary of Re � Rd rules

Rule Spec. ↔ Re construct(s) Rd construct(s)

T1 – � non-weak ERENTITYTYPE DFDATASTORE
T2 – � ERATTRIBUTEITEM DFFIELDITEM

S1 T1 � MARTINREGULARENTITY GNSDATASTORE
S2 – ⇀ MARTINASSOCIATIVEENTITY GNSDATASTORE
S3 T1 ⇀ non-embedded

MARTINWEAKENTITY
GNSDATASTORE

S4 T2 � MARTINATTRIBUTE GNSFIELD
S5 T2 � MARTINATTRIBUTEGROUP GNSFIELDGROUP
S6 – ⇀ embedded

MARTINWEAKENTITY
GNSFIELDGROUP

H1 – ⇀� MARTINASSOCIATIVEENTITY GNSDATAPROCESS + GNSDATASTORE +
GNSDATAFLOW

H2 – ↽� MARTINRELATIONSHIP +
2 MARTINREGULARENTITY

GNSDATAPROCESS + 2 GNSDATASTORE +
2 GNSDATAFLOW

H1 S2 S3 S6

S1 S4 S5

(a) ⇀

H2 S1

S4 S5

(b) ↽

Figure 5.22: Subsumption/exclusion graphs for the Re � Rd translation

All rules in this translation are partial, due to the relatively low expressive over-

lap between the two representations. Rules S2 and S3 are unidirectional because it is

141

impossible to determine what type of entity a data store corresponds to. There are no

excluded rules in either direction.

5.5.1 Observations

Rule S1 translates a regular entity to a data store (construct GNSDATASTORE). It could

be argued that a regular entity may also map to an external entity (construct GNS-

EXTERNALENTITY), but this is unlikely because external entities refer to things that

are by definition ‘outside’ the description (Gane and Sarson, 1979; Evergreen Software

Tools, 1995b). Similarly, resource stores are not considered, as they represent the stor-

age of physical objects rather than data (Evergreen Software Tools, 1995b).

Data flows cannot be derived from an ERD, except in a somewhat limited fash-

ion by heuristic H1, but once data flows have been defined manually (which could be

achieved through enrichment), it may be possible to automatically determine the con-

tents of data flows by comparing the contents of both the source and target elements

for common fields. This would effectively be a form of post-translation enrichment. In

the reverse direction, it is difficult to derive relationships from a DFD, but heuristic H2

can often produce useful relationships from collections of data stores and processes

linked by data flows.

Resource flows cannot be derived from an ERD because resource flows model the

movement of actual physical items as opposed to data, and are therefore outside the

scope of an ERD. Similarly, multiple data processes cannot be derived from an ERD,

as ERDs have little or no expression of process, let alone process parallelism. Some

ordinary data processes may be derived using heuristic H1.

In summary, only a relatively small amount of information may be translated from

a DFD to an ERD, in particular data stores. Data flows cannot normally be translated,

as ERDs cannot express the flow of data, and similarly for processes. Some of this

information can be made use of by heuristics, however.

5.6 Summary

In this chapter, the following translations were discussed:

• Re(E -R,ERDMartin)� Rr(Relational , SQL/92),

142

• Rf(FuncDep,FDDSmith)→ Re(E -R,ERDMartin)/Rf ↽ Re and

• Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S).

Rules and heuristics were defined for the first translation; those for the remaining two

translations are defined in Appendix E. Issues arising from the rules and heuristics,

and restrictions on the translations were identified and discussed. From the rules de-

fined, it appears that the first two translations will be of generally higher quality than

the third, which will be verified in Chapter 8.

The rules in this chapter were expressed using the abstract translation notation de-

veloped in Chapters 3 and 4, but this notation is only useful (and intended) for dis-

cussing rules at a high level — it cannot be used to specify the implementation details

of the rules. To implement a translation, these rules must be converted either manually

or automatically into some form of program that can be executed.

In the next chapter is described the implementation of a prototype environment

called Swift. Swift implements some of the translations defined in this thesis and has

been used to test the translation-based approach to facilitating the use of multiple rep-

resentations.

143

Chapter 6

Prototype implementation

6.1 Introduction

As part of the experimental work of this research, a prototype modelling environment

that facilitates the use of multiple representations, known as Swift, was implemented

by the author in order to test various aspects of the approach taken. In this chapter,

the architecture of Swift and the issues arising from its implementation are discussed.

Some of the work presented in this chapter has also been published by Stanger and

Pascoe (1997b; 1997c).

The implementation architecture of Swift, which comprises three logical units, is

discussed in general in Section 6.2. The description modelling unit, described in Sec-

tion 6.3, provides the functionality for displaying and manipulating viewpoints and

descriptions. The translation unit, described in Section 6.4, provides the ability to trans-

late descriptions from one representation to another. The repository unit, described in

Section 6.5, provides a persistent store for data dictionary information and an API for

accessing this information.

Swift is implemented in Java. Java is a recent development in object-oriented pro-

gramming, and the use of this language provides some useful benefits:

• Swift has potentially good cross-platform compatibility, as it may be run in any

Java-compliant run-time environment.

• Swift is implemented as a client/server system, that is, the description modelling

and translation units act as clients to the repository. In theory, these units could

communicate with the repository across a network.

The latter point ties in with one of the design goals of Java, which is to support dynamic

145

loading of classes at run-time, including across a network (Gosling and McGilton,

1996). This provides the opportunity to extend the client with a new representation by

adding classes at the server end that implement the new representation. These classes

may then be loaded across the network at run-time by the client. This notion of loading

representation-specific code at run-time is conceptually similar to the approach taken

by Informix’s DataBlades (Keeler, 1996; Informix Software, 1996), and to the approach

taken by Configurable Data Modelling Systems (CDMSs), which allow the developer

to customise the data model they are using to a particular domain (Cooper, 1991; Ser-

rano, 1994).

The repository is stored in a PostgreSQL1 database. PostgreSQL was chosen be-

cause of its object capabilities and ready availability. The combination of loading Java

classes across a network and PostgreSQL’s large object features also provides the op-

portunity to store parts of Swift’s code as attribute values in the repository itself.

The translations implemented in Swift are based on the rules defined in the previ-

ous chapter, but they have been implemented in an ad hoc manner. A more flexible

approach would be to define translations using some form of specification language.

The interface specification language VML (introduced in Chapter 2) was a possible

candidate, and an attempt was made to integrate VML into Swift. This attempt and

the issues arising from it are documented in Section 6.4.1.

Other miscellaneous implementation issues are discussed in Section 6.6, and an

example of Swift in use is presented in Section 6.7, which includes a demonstration of

the effect of heuristics on translations.

6.2 The implementation architecture of Swift

The primary goal of Swift is to facilitate the use of multiple data modelling repre-

sentations to describe a single viewpoint, which is done by performing translations of

descriptions between representations. The Swift environment should therefore include

at least the following:

• a means of managing viewpoints, representations and descriptions;

1Formerly known as Postgres95.

146

• a means of managing translations;

• a means of managing the persistent storage of viewpoint data; and

• a user interface module.

In Figure 6.1 on the following page is shown an architecture for Swift that includes

all of these parts. Swift itself can be divided into three logical units. The description mod-

elling unit deals with the manipulation of viewpoints, representations and descriptions;

the translation unit controls the translation process; and the repository unit manages the

storage of and access to viewpoint data. In practice, the description modelling and

translation units are implemented as components of a single front-end Java applica-

tion, as illustrated by the top half of Figure 6.1. This application also provides the user

interface for manipulating viewpoints and descriptions, and initiating and controlling

translations.

The lower half of Figure 6.1 depicts the repository unit of Swift, which comprises

two parts. The first of these is the repository itself, which can be further subdivided

into three sub-parts:

1. the data dictionary stores information about viewpoints and descriptions, and is

shown in black in the lower centre of Figure 6.1;

2. the translation store contains the Java classes that implement translations, and is

shown in orange in the lower left of Figure 6.1; and

3. the representation store contains the Java classes that implement representations,

and is shown in green in the lower right of Figure 6.1.

The last two sub-parts have not been implemented in Swift because of limitations in

the Java to PostgreSQL interface at the time of implementation. These sub-parts are,

however, peripheral to the translation process, so omitting them has little effect on the

ability to perform translations with Swift.

The second part of the repository unit is the repository API (denoted by the arrows

in Figure 6.1), which is used by the front end to access the data stored in the repository.

Both the repository and the repository API are described in Section 6.5 on page 162.

147

ERD → DFD DFD → FDD

Relationship

SubtypeChild

SubtypeParent

AssociativeEntity

MutualExclusivity

NonMutualExclusivity

RegularEntity

WeakEntity

erm_mrtc MartinERD

MultiValued

SingleValued

Attribute

Bubble

DomainFlag

DomainFlagDesc

DomainFlagSource

MultiBubble

fdepsmit SmithFDD

DataFlow

ResourceFlow

DataProcess

DataStore

ExternalEntity

Interface

MultiDataProcess

RepDataStore

RepExternalEntity

ResourceStore

procgnsn GaneSarsonDFD

SplitMerge

data dictionary (descriptions)

 .
 .
 .

boolean pk = false, fk = false;
LinkRef link = new LinkRef();

// look for PKs
if (thisItem.isType(BUBBLE))
{
 if (!suppressPKs)
 {
 if (((Bubble)thisItem).isKind(TARGET))
 suppressPKs = true;
 else
 {
 pk = true;
 // suppress further generation of PK elements
 // if this is a single-key bubble
 suppressPKs = (((Bubble)thisItem).isKind(SINGLEKEY));
 } // if !((Bubble)thisItem).isKind(TARGET)
 }
 // check for associated single-key bubbles
 suppressDFs = fk = findSingleKey(thisItem, srcItem, link, 0);
} // if thisItem.isType(BUBBLE)
else if (thisItem.isType(FATTRIBUTE) && !suppressDFs)
{
 fk = findDomainFlag(thisItem, srcItem, rootItem, link);
} // else if thisItem is an 'fatr'
 .
 .
 .

Description
modelling unit

Translation
unit

Swift front-end application

Repository unit

translation store

FDD → SQLSQL → ERD

DFD/G&S

FDD/Smith

ERD/Martin

Relational/SQL

 .
 .
 .
public class SmithFDD extends Representation
 implements SmithConstants
{
 public Symbol constructSymbol(Object parent, String OID,
 String iname, String itype,
 String label, int flags,
 Rectangle bounds)
 {
 if (itype.compareTo(BUBBLE) == 0) // bubble
 return new Bubble(parent, OID, iname, itype, label,
 flags, bounds);
 else if (itype.compareTo(DOMAINFLAG) == 0) // domain flag
 return new DomainFlag(parent, OID, iname, itype, label,
 flags, bounds);
 else if (itype.compareTo(DOMAINFLAGDESC) == 0)
 return new DomainFlagDesc(parent, OID, iname, itype,
 label, flags, bounds);
 else if (itype.compareTo(DOMAINFLAGSOURCE) == 0)
 return new DomainFlagSource(parent, OID, iname, itype,
 label, flags, bounds);
 else if (itype.compareTo(FATTRIBUTE) == 0) // attribute
 return new Attribute(parent, OID, iname, itype, label,
 flags, bounds);
 } // constructSymbol()
 .
 .
 .

representation store

R

T T

T T

R e p o s i t o r y A P I

s_repository_
item

s_description s_construct
s_construct_
link

s_dictionary_
construct

s_graphic_
construct

s_symbol

s_connector

s_record

s_attribute

s_domain

s_constraint

s_definition

s_textblock

s_translation
s_
representation

s_construct_
glossary

s_datatype

s_event_log

parent

child

parent

source

destination

s_viewpoint

Figure 6.1: Swift’s implementation architecture

148

6.2.1 Implementation language(s)

Java was chosen as the implementation language for Swift for several reasons, which

will now be detailed. The implementation architecture to some degree determined the

choice of language, but choosing Java also affected the implementation architecture.

The initial criteria for the implementation language were:

• the language should be readily portable to different platforms;

• the language should be relatively easy to develop in;

• good user interface development tools should be available; and

• the language should preferably be object-oriented.

The first three criteria were chosen for fairly obvious reasons: portability of the re-

sulting environment, and reduction of code complexity and development time. The

fourth criterion provided the opportunity to make some additional useful design deci-

sions within the implementation architecture. For example, the description modelling

unit could define a set of generic methods for manipulating and presenting constructs

that could then be overridden by methods contained within the classes for a particular

representation.

Three languages were considered for implementing Swift: C++, Java and Tcl/Tk.

The relevant features of each of these languages are summarised in Table 6.1 on the

following page. C++ had the advantages of being familiar to the author, and of having

a large code base available. Developing a system in C++ can be daunting, however,

because of the sheer complexity of the language. A CASE tool is relatively simple in

principle, so it would seem that the full power and complexity of C++ is not necessarily

required. C++ also tends to be less portable than the other two languages, and the

availability of user interface development tools varies depending on the development

environment.

Java had the disadvantage of being new to the author, but was similar enough to

C++ that this was not a major problem. Java is highly portable because of the Java

Virtual Machine architecture, and is less complex than C++ while still retaining many

of the useful features of C++. The standard Java development suite also includes a

complete application framework for building user interfaces.

149

Table 6.1: Features of Java, C++ and Tcl/Tk with respect to implementing Swift

Feature Java C++ Tcl/Tk

Portability excellent good excellent
Development time moderate long short
Complexity moderate high low to moderate
Object-oriented yes yes no
Application robustness excellent good excellent
Familiarity similar to C++ yes no
Run-time performance good excellent good
Dynamic class loading yes no n/a
Built-in networking yes no unknown
Packages yes no unknown
UI framework yes varies yes

Tcl/Tk also had the disadvantage of being unknown to the author, but it is highly

portable, and it is generally faster and easier to develop systems with Tcl/Tk than

with languages like C++ and Java (Ousterhout, 1998). Building user interfaces is also

relatively easy with Tcl/Tk. The complete unfamiliarity of the language and its lack

of object-oriented features argued against this choice, however. Tcl/Tk is also oriented

more toward integrating existing tools rather than building new applications.

Having narrowed the choice to C++ and Java, attention was then focused on spe-

cific features of each language. Java has a distinct advantage over C++ in terms of ro-

bustness of applications because of its lack of pointers, which removes an entire class

of errors related to memory management (Gosling and McGilton, 1996, Section 1.2.2).

Conversely, applications developed in C++ are generally faster, although this was not

a major concern for Swift.

Java provides some additional features that C++ does not, that were considered

advantageous for the implementation of Swift, in particular:

• the ability to load classes dynamically at run-time;

• built-in network features; and

• the ability to group related source files into packages.

Java’s ability to load classes dynamically at run-time means that only the required

classes need to be loaded at any given time. This is particularly useful for the classes

150

that implement a representation, as they only need to be loaded when that represen-

tation is actually in use. Combining dynamic loading with Java’s networking features

means that it is possible to load classes across a network. This makes it possible to

completely separate the front-end application from the repository, possibly even run-

ning them in a client/server fashion on separate machines. It also becomes possible

to store the classes for representations and translations in the repository, reducing the

size of the front-end application. While all of these things are possible in C++, they

are not built-in features of the language and would require more code to be written in

order to emulate them.

In addition, Java’s package mechanism provides a useful means of grouping related

classes together, for example, all the classes relating to a particular representation may

be placed in the same package. Classes that are members of the same package may

make reference to other classes within the same package without having to first import

them (Flanagan, 1997). Packages may also be formed into hierarchies, for example, the

java.awt.event package is a ‘sub-package’ of the java.awt package.

In conclusion, Java2 was used because:

• It is relatively less complex to develop in than C++.

• Applications developed in Java tend to be more robust due to Java’s elimination

of pointer errors and memory leaks (Gosling and McGilton, 1996).

• Java is more portable than C++. There are some compatibility issues with differ-

ent virtual machines, but this was not considered to be a major problem.

• Java is sufficiently similar to C++ that the learning curve was relatively small

compared to that for Tcl/Tk.

• Java’s networking features and dynamic loading of classes at runtime allow Swift

to be distributed in a client/server fashion.

• Java provides other useful features such as the package mechanism that C++ does

not provide.

2Specifically, version 1.1.3 of Sun’s Java Development kit (JDK).

151

6.3 The description modelling unit

The ultimate aim of Swift is to provide a complete design environment that facilitates

the use of multiple representations to describe a viewpoint. The functionality for ma-

nipulating viewpoints and descriptions is provided by the description modelling unit.

The implementation architecture described earlier implies that the user interface for

Swift is handled separately from both the translation and description modelling units.

In practice, the design of the user interface is so intertwined with the mechanics of

the description modelling unit that they cannot be easily separated. Design issues af-

fecting the user interface are discussed in Section 6.3.1. Other implementation issues

associated with the description modelling unit are discussed in Section 6.3.2.

6.3.1 Design issues

Swift’s description modelling unit is used to manipulate and display constructs of a

particular representation. There were two main choices of how to implement the user

interface to this unit:

1. create a separate, specialised user interface module for each representation; or

2. create a single, generic user interface module and create separate ‘plug-ins’ for

each representation.

The first approach has been implemented by several CASE tools, such as Sybase’s

Deft (O’Brien, 1992), and has the advantage of allowing the user interface to be tailored

for each representation. This approach will generally only be practical if there are a

small number of representations, however, because writing a custom user interface

module for each new representation can be a relatively labour-intensive task. Deft has

only a small number of representations (see Section A.5.4 on page 345), each of which

is implemented as a separate Macintosh application. Even with code reuse, creating

and maintaining these separate applications would not be a simple task. It is also

possible that adding a new module may require modifications to existing modules to

enable them to interoperate correctly. The end result is a user interface that is difficult

to extend in a modular fashion.

152

The second approach, by contrast, provides better extensibility, and is an approach

that has also been implemented by several CASE tools, such as Visible Systems’ Easy-

CASE (Evergreen Software Tools, 1995c). A generic user interface module is developed

that is then specialised according to the type of description being edited. In EasyCASE,

this is done by populating the toolbar with symbols appropriate to the representation

currently in use. Adding a new representation requires only the construction of an ap-

propriate tool set and the definition of the structure and presentation of each construct

in the representation.

Facilitating the use of multiple representations is an important goal of this research,

so it was important that this be reflected by Swift. Accordingly, the second approach

was adopted, as it provides greater flexibility when implementing a user interface to

handle multiple representations. Swift’s user interface changes as different descrip-

tions are loaded, as shown in Figure 6.2 on the following page.

6.3.2 Implementation issues

The description modelling unit of Swift comprises a collection of classes that imple-

ment the user interface, and classes that manipulate viewpoints, representations, de-

scriptions and constructs. The user interface of the description modelling unit was

implemented using the Java 1.1 abstract windowing toolkit (AWT). The JavaBeans

component software framework was also considered (Flanagan, 1997, Chapter 10), but

discarded because at the time of implementation it was still fairly new and unproven.

Viewpoints are implemented by the class swift.model.Viewpoint. Each viewpoint

has associated with it a collection of constructs that are shared across all descriptions

within that viewpoint, such as attributes, record structures and domains. This en-

forces a measure of consistency among descriptions, for example, the attribute address

only needs to be defined once, and will have the same properties in all descriptions

that reference it. These ‘data dictionary’ constructs are implemented as subclasses of

the abstract class swift.repn.DConstruct and are loaded from the repository when the

viewpoint is opened.

Descriptions are implemented by the class swift.model.Description. Each descrip-

tion has associated with it a particular representation and a collection of elements in-

153

(a) Generic interface

(b)Re(E -R,ERDMartin) interface (c)Rf(FuncDep,FDDSmith) interface

Figure 6.2: The user interface to Swift

154

stantiated from the constructs of that representation (see below).

Each representation is implemented as a subclass of the abstract class swift.repn.Re-

presentation. All the classes relating to a representation are placed in the same package,

for example, the representationRd(DataFlow ,DFDG&S) is implemented by a collection

of classes in the package swift.repn.procgnsn, as shown in Figure 6.3. (The complete

class hierarchy for Swift may be found in Appendix H.)

The ‘graphic’ constructs of a particular representation are implemented as sub-

classes of swift.repn.Symbol and swift.repn.Connector (which are both subclasses of

swift.repn.GConstruct). Thus, the GNSEXTERNALENTITY construct of Rd is imple-

mented by the class swift.repn.procgnsn.ExternalEntity, and the GNSRESOURCEFLOW

construct is implemented by the class swift.repn.procgnsn.ResourceFlow.

swift.ui

swift.repn.procgnsn

java.util

java.lang

Connector

ListResourceBundle

Representation

SwiftTool

Symbol

GaneSarsonConstants

GaneSarsonToolResources

MultiProcessTool

ProcessTool

ExternalTool

DataFlowTool

DataStoreTool

RepDataStoreTool

DataProcess

DataStore

ExternalEntity

Interface

MultiDataProcess

DataFlow

ResourceFlow

GaneSarsonDFD

swift.repn

RepresentationAccess

RepExternalTool

RepDataStore

RepExternalEntity

ResourceStore

SplitMerge

ResourceFlowTool

ResourceStoreTool

SplitMergeTool

Key:

Class

Abstract

Interface

extends
implements

Figure 6.3: Java class hierarchy to implement the representation Rd(DataFlow ,
DFDG&S) in Swift

The description modelling unit loads descriptions from the repository, where they

are stored in a generic form (see Section 6.5 on page 162), and stores them in memory

155

using the classes outlined above. The procedure for loading and displaying a descrip-

tion is as follows:

1. Locate the data for the description in the repository.

2. Determine the description’s representation and load the correct Java class files.

3. Load the data for each element of the description in turn, and pass them to a

‘constructor’ method in the representation class that returns an instance of the

appropriate construct subclass.

Swift at present does not allow the sharing of techniques across multiple represen-

tations (see Figure 3.2 on page 43), as the core code of a representation is implemented

in a single class combining both the technique and the scheme. This obviously implies

code redundancy when implementing representations that share the same technique.

This deficiency could be remedied by creating separate Technique and Scheme classes

that either replace or enhance the existing Representation class.

Swift implements the representations Rr(Relational , SQL/92),Re(E -R,ERDMartin),

Rf (FuncDep,FDDSmith) andRd(DataFlow ,DFDG&S). The representationRs(DataFlow ,

CDFDSOFL) has also been partially implemented. This small number of representations

is enough to produce a reasonable initial number of translations, discussed next.

6.4 The translation unit

The translation unit of Swift provides the capability to translate descriptions from one

representation to another. Translations in Swift follow the individual interfacing strat-

egy, as noted in Section 2.4.3 on page 30, so a separate translation must be implemented

for each pair of representations.

Translations in Swift are activated in an asynchronous manner, that is, the user must

manually activate the translation as opposed to the environment activating the trans-

lation automatically. The effects this approach can have on maintaining consistency

among related descriptions have already been discussed in Section 3.6 on page 58, but

it should be reiterated here that Swift does not implement any form of consistency

156

maintenance, as the main reason for developing Swift was to test various ideas associ-

ated with the translation-based approach to facilitating the use of multiple representa-

tions. If Swift were to be developed further to become a full design environment, some

form of consistency maintenance scheme would obviously need to be implemented.

One issue that has not been dealt with to this point is the issue of generating a

schema from multiple descriptions. The translations discussed here translate a single

source description into a single target description, that is, they are effectively one-to-

one translations. Generating a schema could involve the translation of many source de-

scriptions to a single target description, that is, a many-to-one translation. Swift does

not as yet implement such many-to-one translations, due to the need to further ex-

amine the issues associated with performing many-to-one translations. Some of these

issues are discussed in Section 10.5 on page 289.

Translations in Swift are currently defined in an ad hoc manner. A more flexible

approach would be to use some form of specification language such as Amor’s (1997)

View Mapping Language (VML). An attempt by the author to integrate VML into Swift

is discussed in Section 6.4.1. The rule evaluation strategy of Swift is discussed in Sec-

tion 6.4.2, and other implementation details are discussed in Section 6.4.3.

6.4.1 Translation specification in Swift

The translations in Chapter 5 are specified using the abstract rule notation, while Swift

is implemented in Java. It was therefore necessary to convert the abstract rules into

code that could be executed by Swift. For the purposes of the prototype, the rules were

implemented directly in Java code in an ad hoc fashion. While relatively simple to

implement, ad hoc translation specification is not an ideal solution and lacks flexibility.

A better alternative would be to adopt some form of language for specifying the

rules of a translation. This translation specification could then be interpreted or com-

piled by Swift and used to perform translations. In Chapter 3 it was suggested that in-

terface specification languages such as Amor’s (1997) View Mapping Language (VML)

could be used to specify translations of descriptions between representations. The au-

thor therefore decided that it would be useful to integrate some form of VML support

into Swift.

157

Implementing a full VML parser in Swift was not feasible due to time constraints,

so instead a copy of Amor’s (1997) existing VML mapping system was obtained. This

system was implemented in Snart, an object-oriented dialect of Prolog developed by

Grundy (1993), which was in turn implemented on top of LPA MacProlog32 running

under Mac OS. The author’s intent was to use the VML mapping system to implement

translations that had not been directly implemented in Swift, and then develop tools

for translating between the Swift repository structures and the Snart persistent object

format (Grundy, 1993; Amor, 1997).

Unfortunately, attempts to perform translations were thwarted by the VML map-

ping system running out of memory, even when allocated extremely large amounts

(up to 200Mb). This problem persisted across several different hardware and software

configurations, including different versions of the operating system (Mac OS 7.1, 7.5.2

and 8.1), different versions of the MacProlog32 environment (1.08d and 1.25)3, differ-

ent hardware (a Power Macintosh G3/233, a Power Computing PowerWave 604/150,

a Centris 660AV and an LCIII) and different RAM configurations. Attempts to run the

system under an almost identical configuration to that used by Amor (1998, personal

communication) also failed. At best, only a small part of any particular mapping could

be executed before the mapping system overflowed the available heap space. The map-

pings tested by the author were less complex than several successfully tested by Amor

using the same system, so the cause of these problems remains unknown. Even Amor

(1998, personal communication) himself was unable to explain these results.

Despite these problems, several simple rules were successfully tested (for example,

translating an E-R entity to a DFD data store), but more complex rules could not be

tested. These results suggest that using VML to specify the details of translations is a

valid approach, but this cannot be fully confirmed until a more robust mapping system

is available.

One possible solution was to attempt to fix the existing mapping system, as the

complete Prolog source code was available. This option was discarded, however, as the

system was slow, memory-intensive and somewhat fragile. The mapping system was

also tied to a single development platform (LPA MacProlog32 running under Mac OS),

3The author would like to thank Dr. John Grundy for providing access to version 1.08d of the MacPro-
log32 environment for testing purposes.

158

so it was not a general long-term solution. Other researchers are currently working

toward implementing VML mapping systems using mainstream programming lan-

guages such as C++ (Price, 1995) and Java (Grundy, 1998), so it was felt that any further

exploration in this direction by the author was an unnecessary duplication of effort.

It also became apparent during the attempts to use the VML mapping system that

VML is not fully adequate to specify the translation of descriptions between repre-

sentations. In particular, it is impossible in VML to specify both unidirectional rules

and rule exclusion (see Chapter 4). In order to be useful for specifying the details of

translations, VML would first need to be extended to deal with these issues.

Finally, the existing Swift implementation was sufficient to test the translation-

based approach to facilitating the use of multiple representations (an example of Swift

in use may be found in Section 6.7). Implementing a translation specification language

in Swift, while useful, would not have generated any new insights, so the author de-

cided to focus instead on defining extensions to VML in order to deal with issues such

as rule exclusion. The outstanding issues with VML and the extensions required to

address them will be described in Chapter 7. This extended version of VML is known

as VML-S (the ‘S’ standing for ‘Swift’).

6.4.2 Rule evaluation in Swift

Amor’s (1997) VML mapping system evaluates rules by finding all rules that can po-

tentially affect a particular element, then attempting to generate element combinations

that match the rules’ headers and invariants (this process was described in Section 4.7

on page 94). It is expected that a VML-S mapping system will be similar, although this

is not required. The rule evaluation process must be extended to handle exclusions

among rules. If there are no exclusions among rules, then rules in a VML-S specifi-

cation may be applied in any order, and the same rule may be applied several times

during the translation. Exclusions will imply an ordering for the affected rules, but

rules that are not affected by exclusions may still be applied in arbitrary order. Ex-

tensions to the original VML algorithms to deal with rule exclusions are described in

Section 7.5 on page 201.

Translations in Swift are currently defined in an ad hoc fashion, and are free to

159

use whichever rule evaluation strategy seems appropriate. Most of the translations

currently implemented in Swift follow the strategy of fully processing a single rule

until there are no more construct collections that match that rule, which was noted as

an alternate rule evaluation strategy in Section 4.7 on page 94. It is also sometimes

more efficient to combine the processing of several similar rules into a single unit, and

this is an approach that has also been used in Swift’s translations.

For example, Swift’s FDD to ERD translation activates rules in the following order:

1. All rules/heuristics that pertain to single-valued dependencies are processed.

2. All rules/heuristics that pertain to multivalued dependencies are processed.

3. All rules/heuristics that pertain to isolated bubbles are processed.

4. Any remaining rules/heuristics that do not fall into one of the above groups are

processed.

This ordering reflects the translation’s genesis from a modified form of Smith’s Method

for generating normalised relations from an FDD (Smith, 1985), and has proven to be

an effective ordering.

Rule exclusion implies the removal of some rules from consideration when the

rule(s) that exclude them are executed on a collection of elements. This has been

achieved in Swift’s translations by marking elements as they are processed. Rules that

are activated later can, if necessary, check whether an element has already been pro-

cessed, and terminate their execution if so. At present elements are marked as either

‘processed’ or ‘not processed’ using a boolean flag. A more general solution would be

to tag elements with the rules that have processed them, allowing later rules to filter

themselves if any rules that exclude them have already been applied to those elements.

6.4.3 Implementation

Translations in Swift are implemented in a similar manner to representations. A trans-

lation between two representations is implemented by a subclass of a generic Transla-

tion class, and is dynamically loaded when required. Each translation subclass com-

prises code that implements the rules and heuristics of that translation.

160

This approach is particularly effective when applied to the individual interfacing

strategy that Swift follows, as each new representation requires the addition of a po-

tentially large number of new translations. As noted in Section 2.4.3 on page 30, if there

are n existing representations, and a new representation is added, up to n new trans-

lations must potentially be created. Defining each translation in its own class makes

it easier to manage the collection of existing translations, and new translations may be

added at any time without affecting other translations.

The description modelling unit includes a Translate menu, shown in Figure 6.4.

This menu contains all the translations that are applicable to the representation of

the current description (the Use heuristics menu item allows the heuristics of trans-

lations to be turned on and off.). In Figure 6.4, the active description is the Martin ERD

D1(Vagri , E -R,ERDMartin), and the Translate menu contains two translations:

1. Re(E -R,ERDMartin)→ Rr(Relational , SQL/92); and

2. Re(E -R,ERDMartin)→ Rd(DataFlow ,DFDG&S).

Figure 6.4: The Translate menu

Translations are initiated by choosing them from the Translate menu. This causes

the appropriate translation class to be loaded into memory, and the translate() method

of that class is called. This method takes the source description as an argument and

returns the target description.

A major issue with translations identified in Section 4.6 on page 91 is the problem of

information ‘gain’ during a translation. This can be solved by the enrichment process

whereby ‘missing’ information is collected from the user in some way (see Section 4.6).

Pre-translation enrichment can be performed by populating the repository with appro-

priate data prior to initiating a translation. The three example viewpoints used in this

thesis are all ‘pre-enriched’ to some extent. Enrichment during the translation requires

161

user input. Since Swift is at present running primarily in a Unix environment, this

input is dealt with using a basic text prompt, as can be seen in Figure 6.5, in which is

shown the mid-point of a translation from an FDD to an ERD. Post-translation enrich-

ment is performed by manipulating the description after the translation is complete.

Figure 6.5: Enrichment during a translation

Only a small attempt has been made to rearrange the descriptions generated by

translations into a more ‘readable’ form. Although many algorithms exist for lay-

ing out graph-like diagrams (such as Batini et al., 1985; Tamassia, 1985; Coleman and

Parker, 1996; Cimikowski and Shope, 1996; DiBattista et al., 1997)4, Swift takes the sim-

ple (and quick) approach of positioning the symbols on a grid in the order in which

they appear in memory, as shown in Figure 6.6. The user must then finish rearranging

the description manually, which could prove unwieldy for large descriptions.

6.5 The repository unit

The repository unit comprises two parts, the repository itself, which is a persistent data

store for all data relating to a particular viewpoint; and the repository API, which is

used by external applications to access the data stored in the repository.

4The Java Development Kit also includes four applets that implement what appears to be a genetic
algorithm for laying out graphs (Sun Microsystems, 1997).

162

(a) Immediately after translation

(b) After manual rearrangement

Figure 6.6: Rearranging the symbols of a description after a translation (Rf → Re on
the university marks viewpoint)

163

The repository stores all information relating to descriptions, such as the elements

of descriptions. Ultimately, it is intended that the repository will also store the Java

classes for representations and translations, and possibly even parts of Swift itself.

There are two ways of implementing such a repository:

• internally, that is, build a set of custom data structures and/or files for storing the

repository data; or

• externally, that is, use already existing data management software, such as a data-

base management system (DBMS), to store the repository data.

The latter option has the advantage of reducing the amount of work required to

implement the repository, but the performance of a DBMS-based repository may not

be as good as that of a custom-built repository that is tuned specifically for handling

these kinds of data. This will generally be outweighed by the implementation ad-

vantages gained by using a DBMS, such as the ability to share models among several

users with full concurrency and security control. Some CASE tools already follow a

similar approach: EasyCASE stores its repository data in dBASE III Plus database files

(Evergreen Software Tools, 1995c).

The repository stores data dictionary information about four main categories of

object:

• Viewpoints, which correspond to the concept of a viewpoint discussed in Chap-

ter 2.

• Descriptions, which correspond to the concept of a description discussed in Chap-

ter 3. Typical descriptions might include entity-relationship diagrams or data

flow diagrams.

• Graphic constructs, which are the ‘visual’ elements of a representation (for exam-

ple, entities, data flows and attributes). Graphic constructs are a specialisation of

a generic construct class, and are specialised further into three subclasses:

– Symbols, for example, entities or data stores;

– Connectors that link symbols, for example, data flows or relationships; and

– Text blocks that contain blocks of text (not implemented in Swift).

164

• Dictionary constructs, which are the ‘non-visual’ elements of a representation (for

example, attributes, domains, constraints). Dictionary constructs are also a spe-

cialisation of the generic construct class, and are specialised further into the fol-

lowing subclasses: attributes, domains, records, constraints and definitions.

These objects are stored within a database structure that is designed to be as generic

as possible; an ERD for this database structure is shown in Figure 6.7 on the next page.

In memory, the description modelling unit stores elements as instances of subclasses

of either the Symbol or Connector classes, and ideally a similar situation would hold

in the repository. This would reduce the impedance mismatch (Cattell, 1991) between

the description modelling unit and the repository unit, as they would both be using

nearly identical data structures. This of course depends on the type of DBMS used to

implement the repository. A purely relational DBMS has no concept of subclasses, so

some other approach would be required if a relational repository was used. The cor-

respondences between repository entities and the Java classes used in the description

modelling unit are listed in Table 6.2.

Table 6.2: Correspondence between repository entities and Swift classes

Repository entity Swift class

s repository item n/a — internal to repository
s viewpoint swift.model.Viewpoint
s description swift.model.Description
s construct swift.repn.Construct
s graphic construct swift.repn.GConstruct
s connector swift.repn.Connector
s symbol swift.repn.Symbol
s textblock not supported
s dictionary construct swift.repn.DConstruct
s attribute swift.repn.Attribute
s domain not supported
s record swift.repn.Record
s constraint swift.repn.Constraint
s definition not supported
s construct link n/a — built into Swift classes
s representation swift.repn.Representation
s translation swift.repn.Translation
s datatype partially supported but no class
s construct glossary n/a — reference only
s event log not supported

165

s_repository_
item

s_description
s_construct

s_construct_
link

s_dictionary_
construct

s_graphic_
construct

s_sym
bol

s_connector

s_record

s_attribute

s_dom
ain

s_constraint

s_definition

s_textblock

s_translation
s_representation

s_construct_
glossary

s_datatype

s_event_log

parent

child

parent

source

destination

s_view
point

Figu
re

6.7:Structure
ofthe

repository

166

Four choices were available for implementing the repository unit: Oracle 7.2 run-

ning under Windows NT; PostgreSQL or Interbase running under Solaris; and Rdb 6.2

running under OpenVMS. Although the author was most familiar with Rdb, choosing

Java as the implementation language immediately removed Rdb from the list, as there

was at the time no means for communicating between a Java application and Rdb.

The next best options were Oracle and PostgreSQL. PostgreSQL was chosen over

Oracle because of its object capabilities and the availability of source code, which al-

lowed the potential for further tailoring of the DBMS in addition to PostgreSQL’s ab-

stract data type facilities. Interfaces were also readily available to allow Java to com-

municate with PostgreSQL.

It was expected that using PostgreSQL would allow the repository to be imple-

mented in an object-oriented fashion as described above, but this was found not to be

the case. Although PostgreSQL is an object-relational DBMS, it is at present more ‘rela-

tional’ than ‘object’. For example, in a typical object-oriented environment, an instance

of a class is also an instance of its superclass, for example, an instance of DataStore is

also an instance of Symbol. Thus, a query to retrieve all instances of Symbol would

be expected to also retrieve all instances of DataStore. This does not happen in Post-

greSQL, however — the SQL query select * from s symbol would not retrieve

data from the s datastore table, as these tables are not connected in any way apart from

the super/subclass relationship. This means that there is no simple way to retrieve all

symbols for a description, as the modelling unit would be required to query all the

representation-specific subclasses in the repository.

As a result, the PostgreSQL repository does not implement representation-specific

construct subclasses. Instead, elements are stored as instances of either the s symbol or

s connector classes. Each instance is parameterised by a four-character construct type

(the ctype attribute), which is used by the description modelling unit to parse the ele-

ment data (Appendix G on page 451 lists details of the construct types that are defined

for each representation). This is a useful approach that has been used in configurable

data modelling systems (Serrano, 1994).

The structure of the repository as implemented in PostgreSQL is shown in Table 6.3

on the next page. The lack of representation-specific construct subclasses increases the

impedance mismatch between the repository unit and the description modelling unit,

167

Table 6.3: Repository database schema (PostgreSQL)

s repository itema

deleted bool

s viewpoint
vname text
creator text

s description
dname text
dtypeb char4
representation oid
parent idc oid
viewpoint id oid

s construct
cname text
ctype char4
flagsd int4

s graphic construct
labele text
desc id oid

s connector
src flagsd int4
dst flagsd int4
src portf int2
dst portf int2
cpathf point[]

s symbol
bounds box

s textblockf

bounds box
value text

s dictionary construct
viewpoint id oid

s attribute
datatypeg oid
size smallint
dp smallint

s domainf

datatypeg oid
size smallint
dp smallint

s record
(no additional attributes)

s constraint
contype char4

s definitionf

value text

s construct linkh

parent oid
child oid
description oid
linktype char4
flags int4

s representation
technique char4
techname text
scheme char4
schemename text
javaclassi text

s translation
source oid
destination oid
javaclassi text

s datatypeg

tcode char4
tname char(20)
tdesc text

s construct glossaryf

representation oid
ctype char4
fullname text

s event logf

when abstime
what char4
affects oid
event oid

Notes on Table 6.3:
a s repository item is the generic root class for all ‘non-static’ repository classes.
b dtype is a four-character code that denotes the generic type of the description, for example

‘erd ’ for an entity-relationship diagram.
c parent id is the object identifier of the parent description, if any. This provides support for

levelled descriptions such as data flow diagrams.
d Flags are used to store representation-specific modifiers to an element’s appearance or be-

haviour. For example, the cardinality and optionality of an E-R relationship is encoded in
its src flags and dst flags.

e label is a text value drawn on screen with the construct, for example, the name of a data
store. If the label is empty, nothing is displayed. This is distinct from the construct’s name,
which is internal to Swift and not normally seen by the user.

f Not supported in the current version of Swift.
g s datatype is a lookup table encoding data types for use in s attribute and s domain. The

schema generation process will use this information to generate appropriate data type defi-
nitions.

h This table encodes the links between constructs: record contains attribute, symbol is source
of connector, and so on.

i javaclass will eventually contain the compiled Java class for the representation or trans-
lation. At present it contains only the class name, for example SmithFDD. The rep-
resentation’s package name is constructed by concatenating the technique and scheme
attributes, for example, ‘fdep’ + ‘smit’. This produces the fully qualified class name
swift.repn.fdepsmit.SmithFDD, as all representations fall under the swift.repn package. A
similar process occurs for translations.

168

which requires extra work on the part of the description modelling unit to parse the

repository data. If Swift were to be ported to a true object-based repository such as

ObjectStore (Object Design, 1999), this would probably change.

The repository API consists of a set of ‘wrapper’ calls layered on the Java Database

Connectivity (JDBC) libraries of Java (Sun Microsystems, 1998b), and acts as an abstrac-

tion layer between the other units and the repository. The basic API is defined in the

Repository class, which is then subclassed for specific DBMS types, such as relational

or object DBMSs. At present, the only such subclass is SQLRepository for SQL-based

relational DBMSs. These generic DBMS subclasses may then be further subclassed for

specific DBMS products, such as PostgreSQL, which is implemented in Swift by the

classes Postgres95101 and PostgreSQL621 for versions 1.0.1 and 6.2.1 respectively.

This abstraction allows the internal structure of the repository to be changed with-

out overly affecting the other units, and also allows support for new repository DBMSs

to be added without having to change the repository classes in the front end. The Post-

greSQL repository classes use the JavaPostgres95 JDBC driver (McLean et al., 1997),

which was originally developed as a Java implementation of PostgreSQL’s libpq pro-

gramming interface (Lockhart, 1999), but has since evolved into a full JDBC driver.

The repository is currently managed by direct manipulation using SQL, but it is

intended that a repository management unit will eventually be implemented as part of

the Swift front-end to provide repository management facilities similar to that offered

by commercial CASE tools.

It is also intended that the repository will eventually store many of the compiled

Java classes that make up Swift, as noted in Table 6.3. This is particularly useful for

the classes that define a representation’s behaviour, as these are not loaded until they

are actually needed. This was not possible at the time of implementation, however,

because the JavaPostgres95 driver did not fully support PostgreSQL’s large object fea-

tures. This has therefore been left as an area for future work, and some ideas are out-

lined in Chapter 10. At present, the Java class name is stored in the repository as a

string, which is retrieved and used to locate the appropriate Java class file at runtime.

169

6.6 Miscellaneous implementation issues

6.6.1 Logging of operations

At present Swift does not support the logging of operations on descriptions and view-

points. This would be useful in order to provide an audit trail and a means of rolling

back changes to descriptions. The logging mechanism would obviously need to be

related to any consistency maintenance mechanism that was implemented.

Translations are carried out in the MViews framework by propagating update re-

cords throughout the affected viewpoint. These update records may be logged to show

a series of updates made to a description (Grundy et al., 1997a). This is particularly im-

portant in MViews-based environments when information cannot be translated from

one description to another (usually because of a mismatch in the expressive powers

of the representations involved). The update records are expanded into a human-

readable form that can be used as a basis for applying appropriate changes manually.

Although Swift does not implement a logging system, support for this has been

included in the repository in the s event log class. This class is designed to track events

as they occur in the repository (inserts, updates and deletes). It is intended that this will

be maintained automatically via some form of trigger mechanism. The Swift front-end

may then interpret this information as appropriate.

6.6.2 Extensibility

A useful feature of an environment that supports multiple representations is the ability

to easily add new representations. Adding new representations to Swift requires defin-

ing the Java classes that implement the representation and its constructs, and adding

an entry to the s representation class in the repository that defines the Swift internal

identifiers for the representation and the name of the appropriate Java class. A similar

process is undertaken to add new translations. Adding a new representation or trans-

lation in this way requires no changes to the Swift ‘kernel’, and is totally transparent

to the user.

Shifting the repository to a different DBMS should also be relatively easy because

of the generalised repository API. All that is required for a new repository DBMS is

170

to define a subclass of the appropriate Repository subclass. If an entirely new class of

DBMSs is to be introduced, a new Repository subclass must also be defined. Repository

subclasses that could be defined include object-oriented, object/relational, flat files and

ODBC (Microsoft’s Open Database Connectivity middleware).

Extending Swift with new logical units in addition to the three already defined

should also not be particularly difficult because of the modular nature of the applica-

tion. The only bottleneck here is that the user interface for all the units is presently

combined in the front-end application. This would require altering the front-end in

order to add a new unit. This is not likely to happen very often, however.

It is anticipated that moving Swift to a component architecture such as JavaBeans

(Flanagan, 1997, Chapter 10) will further enhance the extensibility of the environment.

6.7 Example of Swift in use

In this section is presented a brief example illustrating the use of Swift. Although some

previous figures have shown screenshots from Swift, there has not been a complete

example showing Swift being used to perform a translation.

Swift groups related descriptions together into a viewpoint. The used cars view-

point is shown being loaded in Figure 6.8. Once a viewpoint has been loaded, individ-

ual descriptions within that viewpoint may be loaded. In Figure 6.9 on the following

page the Smith FDD description D1(Vcars ,FuncDep,FDDSmith) of the used cars view-

point is shown being loaded. As this description is loaded, the classes for the represen-

tationRf(FuncDep, FDDSmith) are also loaded so that the description may be displayed

on the screen and the user interface customised appropriately.

Figure 6.8: Loading a viewpoint in Swift

After a description is loaded, the Translate menu is populated with translations ap-

propriate to the representation of the active description. In this example, as illustrated

171

Figure 6.9: Loading a description in Swift

in Figure 6.10, the Translate menu contains two translations:

1. Rf (FuncDep,FDDSmith)→ Rr(Relational , SQL/92); and

2. Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin).

Figure 6.10: The Translate menu for an FDD

Suppose the second translation is chosen. The correct translation class is loaded

and the active description is passed to the translation’s translate() method. Although

it is possible in the Rf → Re translation to derive default names for entities from the

internal names of the FDD’s dependencies, this may not always give the best result

depending on the extent of pre-enrichment in the source description. User input may

therefore be required to acquire meaningful entity names, as shown in Figure 6.11.

When the translation is complete, the symbols of the new description are partially

rearranged and the description is displayed on the screen, as shown in Figure 6.12(a)

on page 174. The user may then manually rearrange the description as required, as

shown in Figure 6.12(b).

This example has briefly shown how Swift may be used to manipulate existing

viewpoints. A more comprehensive case study showing how Swift may be used to

build a new viewpoint is presented in Chapter 9.

172

Figure 6.11: The beginning and end of the translation process

173

(a)

(b)

Figure 6.12: The target description: (a) as generated by Swift; (b) after manual rear-
rangement by the user

174

6.7.1 The effect of heuristics on translations

The example above was executed with heuristics active. If heuristics are deactivated,

the Rf → Re translation produces the description shown in Figure 6.13. When com-

pared with the description in Figure 6.12(b), it can be seen that the type hierarchy be-

tween the Staff, Wage staff, Salesrep and Salary staff entities has not been generated.

Figure 6.13: Effect of heuristics on the Rf → Re translation (used cars viewpoint)

A similar effect can be seen in the Re(E -R,ERDMartin) ⇀ Rd(DataFlow ,DFDG&S)

translation, as illustrated in Figure 6.14 on the following page. Note the generation of

process elements in Figure 6.14(a) when heuristics are active.

From these examples, it can be intuitively seen that heuristics do have a positive

impact on the quality of the translations. A method for measuring relative translation

quality will be developed in Chapter 8 to verify this intuition.

6.8 Summary

In this chapter was discussed the implementation of a prototype modelling environ-

ment (called Swift) that facilitates the use of multiple representations. Swift is imple-

mented in Java and comprises three logical units: the description modelling unit, the

175

(a)

(b)

Figure 6.14: Effect of heuristics on the Re → Rd translation: (a) with heuristics; (b)
without heuristics

176

translation unit and the repository unit. The former two units are implemented as a

single application that communicates with the repository, which is stored in a Post-

greSQL database. Swift takes advantage of the dynamic class loading capabilities of

Java to allow representation and translation classes to be loaded at runtime.

Swift provides a useful demonstration of the approach followed in this research,

namely using translations between representations to facilitate the use of multiple rep-

resentations. Two major issues have been identified that need to be explored further.

First, a need for some form of translation specification language was identified. VML

was selected for this purpose, but was found to be lacking with respect to some of

the issues identified in Chapter 4, in particular rule exclusion and the specification of

unidirectional rules. Some modifications must also be made to the translation process

described in Chapter 4, due to limitations in Amor’s (1997) implementation of VML.

An extended version of VML, known as VML-S, is defined in the next chapter.

The second issue arising from this chapter is measuring the effect that heuristics

have on translation quality. Experimentation with Swift has shown intuitively that

heuristics have a positive impact on translation quality. A formal means of verifying

this intuition will be developed and applied in Chapter 8.

177

Chapter 7

Translations using VML-S

7.1 Introduction

In Chapter 5, rules for the translation Re(E -R,ERDMartin) � Re(Relational , SQL/92)

were defined using the abstract translation notation from Chapter 4. This notation

does not, however, allow the detailed specification of the mappings between the con-

structs in a rule, and in particular does not allow the specification of mappings be-

tween the properties of those constructs, so some other form of language or notation

is required. It was decided in Chapter 6 that Amor’s (1997) View Mapping Language

(VML) would provide a useful way to specify a translation between two representa-

tions. An overview of the language is presented in Section 7.2.

As discussed in Chapter 6, however, an attempt by the author to integrate VML

support into Swift highlighted some outstanding issues with VML that complicate the

use of VML in the context of specifying description and element translations. These

issues are partly a result of VML’s orientation towards schema translation rather than

defining mappings between constructs of representations, and partly a result of incom-

plete specification in some areas that were not central to Amor’s research. Extensions

to VML are therefore defined in Section 7.3 to deal with these issues. This extended

version of VML is named VML-S (‘S’ stands for ‘Swift’), and can be used to specify

translations between different representations in a more detailed manner.

While the abstract notation cannot be used to specify the details of rules, it has

proven to be useful in the initial stages of developing a VML-S specification. A cor-

respondence between the abstract notation and VML-S specifications is identified in

Section 7.4.

None of the extensions defined in Section 7.3 have as yet been incorporated into

179

a VML implementation, but the implementation issues arising from these extensions

have been examined, and algorithms have been developed to support the extensions.

These issues and algorithms are presented in Section 7.5.

7.2 An overview of VML

The View Mapping Language (VML) is a high-level declarative language for specify-

ing mappings between schemas (Amor, 1997, Chapter 5). It was designed to address

many of the shortcomings with other languages identified by Amor (1997, Section 4.2),

and meets all of Amor’s requirements for translation specification languages listed in

Section 2.4.4 on page 32. VML was originally implemented using an object-oriented

derivative of Prolog known as Snart (Grundy, 1993), and thus inherits the declarative

syntax of Prolog, while also providing some object-oriented features, such as complex

type handling.

A mapping specification in VML comprises an inter view definition, followed by a

collection of inter class definitions. The inter view definition specifies the schemas that

are to be mapped between and some simple constraints on the mapping, while the

inter class definitions specify how to map particular objects between the two schemas.

In Figure 7.1 is shown an example of a mapping specification that maps staff data

from a relational schema to an object-oriented schema (this example is derived from

the used cars viewpoint described in Appendix C). In the relational schema, staff data

are stored in a single Staff table, whereas in the object-oriented schema, staff data are

stored in instances of one of three subclasses of the Employee class.

The first four items of an inter view definition specify the model ids of the two sche-

mas to be mapped between and what is known as the model type for each schema.

Each schema is identified by a schema name and an optional version number enclosed

in braces ({}). In Figure 7.1(c), the model ids are usedcars SQL and usedcars ODL

respectively. The model type entries for each schema effectively specify the directions

in which the mapping may be applied, and must be one of the following:

• read only, meaning that data may be mapped out of the schema, but not into it;

• read write, meaning that data may be mapped both into and out of the schema; or

180

create table staff
(employee_no char(7),
name char(80),
address char(80),
phone char(12),
job_code char(2)

check (job_code in
(’SR’, ’WS’, ’SS’)),

-- salesrep columns
commission_rate numeric(3, 2),
-- salary staff columns
salary integer,
-- wage staff columns
hourly_rate numeric(5, 2),
hours_per_week numeric(4, 2)
primary key (employee_no)

);

(a) Relational (SQL/92)
schema

interface employee
{ extent employees;

key IRD_number;
attribute character[7] IRD_number;
attribute character[70] name;
attribute character[100] address;
attribute character[12] phone;

}

interface salesrep:employee
{ extent salesreps;

key employee::IRD_number;
attribute integer[4,2] commission;

}

interface waged:employee
{ extent wagedstaff;

key employee::IRD_number;
attribute integer[5,2] rate;
attribute integer[3,1] normal_hrs;
attribute integer[3,1] timehalf_hrs;
attribute integer[3,1] double_hrs;

}

interface salaried:employee
{ extent salariedstaff;

key employee::IRD_number;
attribute integer salary;

}

(b) Object-oriented
(ODL) schema

inter_view(usedcars_SQL, read_write, usedcars_ODL, read_write, complete).

inter_class
([staff], [employee],

equivalences
(employee_no = ird_number,

name = name,
address = address,
phone = phone

)
).

inter_class
([staff], [salesrep],

inherits(inter_class([staff], [employee])),
invariants(job_code = ’SR’),
equivalences(commission_rate = commission)

).

inter_class
([staff], [salaried],

inherits(inter_class([staff], [employee])),
invariants(job_code = ’SS’),
equivalences(salary = salary)

).

inter_class
([staff], [waged],

inherits(inter_class([staff], [employee])),
invariants(job_code = ’WS’),
equivalences
(hourly_rate = rate,

hours_per_week = normal_hrs + timehalf_hrs + double_hrs
)

).

(c) VML mapping

Figure 7.1: Example of a VML mapping specification

181

• integrated, which applies when an integrated model (interchange format) is used.

Thus, in Figure 7.1(c), the model type for both schemas is read write, which effectively

means that the mapping is bidirectional.

The last item in an inter view definition is the map type, which specifies how com-

plete the movement of data needs to be between the two schemas. It may be either

complete, that is, all objects in one schema must be mapped to objects in another, or

partial, that is, only some of the objects need to be mapped.

The first two items of an inter class definition specify the objects (referred to by

Amor as ‘entities’) that are being mapped on both the left and right hand sides of the

mapping. Together, these items form the ‘header’ of the inter class definition. Thus, the

header of the first inter class definition in Figure 7.1(c) specifies a mapping between the

Staff ‘object’ in the SQL schema and the Employee object in the ODL schema. The rest

of the inter class definition comprises up to four parts: an optional inherits clause,

an optional list of invariants, an optional list of equivalences and an optional list of ini-

tialisers.

VML inter class definitions may import the definitions of other inter class defini-

tions using the optional inherits clause. This clause is similar to the #include

preprocessor directive in C or the import command in Java, in that it incorporates the

definition of the inherited rule into the current rule; it does not provide inheritance in

the object-oriented sense. It is typically used to share common specifications across

several inter class definitions.

Invariants specify constraints on a mapping, as described in Section 4.2 on page 68,

and may be applied in two ways:

1. When applied to the source schema, they specify the pre-conditions that must

be satisfied before a particular inter class definition may be applied to objects of

the source schema. For instance, the invariants of the [staff], [salesrep] inter class

definition in Figure 7.1(c) specify that Staff rows may only be mapped to Salesrep

instances when the value of Staff.job code is equal to ‘SR’.

2. When applied to the target schema, they specify post-conditions on the newly

mapped objects. Using the same example as above, it can be seen that when

mapping Salesrep instances to Staff rows, Staff.job code must be set to ‘SR’.

182

Initialisers specify initial values for attributes of new objects created in the target

schema by a mapping, including the definition of constructors for object-oriented mod-

els. A major use of initialisers is to specify defaults for information that does not exist

or is implicit in the source schema. These initial values may be altered later by equiva-

lences.

Equivalences specify the actual mappings between objects in two schemas. Most

of the equivalences in Figure 7.1(c) specify only simple equalities between object at-

tributes, but VML also allows for more complex specifications, including pointers,

function calls, list and array references, iteration over lists and arrays, procedures,

method invocation and temporary variables (Amor, 1997, Section 5.2.6). The [staff],

[waged] inter class definition in Figure 7.1(c) has an interesting equivalence that maps

the hours worked. In the Waged ODL class, the total hours worked is stored in three at-

tributes representing normal hours (normal hrs), time and a half hours (timehalf hrs),

and double time hours (double hrs), whereas in the Staff SQL table, the total hours

worked is stored in a single attribute (hours per week). The mapping of hours worked

from Waged to Staff is straightforward: simply sum normal hrs, timehalf hrs and dou-

ble hrs and store the result in hours per week. The reverse mapping is not so obvious,

however, as there is no indication as to how the value of the hours per week attribute

is actually calculated. A solution could be to add a constraint to the newly-created

Waged instance that restricts the sum of normal hrs, timehalf hrs and double hrs to

being equal to the value of hours per week.

VML has many other powerful features (Amor, 1997):

• VML allows the specification of arbitrary mappings. Most mappings may be

specified declaratively, but it is possible to call Prolog procedures for more com-

plex mappings.

• A graphical notation (VML-G) is defined to allow expression of mappings at a

high level of abstraction, although this notation can become difficult to read for

complex mappings, as noted in Section 4.4 on page 78.

• VML is a declarative language, so mappings may be applied in arbitrary order.

• Mappings may either create a new schema, or incrementally update an existing

schema.

183

• Conditional mappings that map part of a set of objects according to specified

criteria may be defined using bijections (see Section 7.3.1).

7.2.1 Using VML to specify translations between representations

VML was originally designed for specifying mappings between schemas, but as dis-

cussed in Section 4.4 on page 78, it is possible to apply VML to representation defini-

tions in order to specify translations between representations. An inter view definition

specifies a description translation between two representations. The model type entries

of the inter view specify the directions in which the translation may be applied, and the

map type entry specifies the completeness of the translation (partial or complete). An

inter class definition specifies an element translation between two representations. The

header of an inter class comprises two lists of constructs, one from each representation.

Invariants, initialisers and equivalences refer to the properties of constructs, but are

otherwise treated no differently than they would be in ‘normal’ VML usage.

7.3 Outstanding issues with VML

VML was successfully designed to specify the mapping of objects between schemas.

While the above discussion implies that it is relatively simple to use VML to specify

translations between representations, there are some issues with VML that interfere

with this, which will now be discussed. In particular, the following issues must be

addressed:

• the specification of unidirectional rules (Section 7.3.1);

• the handling of rule exclusion (Section 7.3.2);

• no algorithm for translating lists of elements (Section 7.3.3); and

• the inability to refer to the same construct more than once in an inter class header

(Section 7.3.4).

In this section, each of these issues will be discussed, and extensions to VML pro-

posed to solve them. This extended version of VML is known as VML-S, where the ‘S’

184

stands for ‘Swift’ (see Chapter 6). Most of the extensions involve adding new clauses

to VML’s inter class syntax; the modified syntax for the VML-S inter class definition is

shown in Backus-Naur form (BNF) in Figure 7.2. Complete syntax for the extensions is

given in the following sections. A full BNF syntax definition for VML-S may be found

in Appendix F.

〈inter class def〉 ::= inter_class(〈class list〉, 〈class list〉

[, 〈label〉] [, 〈inherits〉] [, 〈direction〉]

[, 〈excludes〉] [, 〈invariants def〉]

[, 〈equivalences def〉] [, 〈initialisers def〉]).

〈class list〉 ::= [[〈class list name〉 {, 〈class list name〉}]]

〈class list name〉 ::= group(〈class name〉)

| 〈class name〉

〈inherits〉 ::= inherits(〈inherit list〉)

〈invariants def〉 ::= invariants(〈invariant expr〉 {〈or op〉 〈invariant expr〉})

〈equivalences def〉 ::= equivalences(〈equivalent〉 {, 〈equivalent〉})

〈initialisers def〉 ::= initialisers(〈initialiser〉 {, 〈initialiser〉})

Figure 7.2: BNF syntax of the VML-S inter class definition

7.3.1 Unidirectional rules

Many translations are bidirectional in nature, that is, the ‘source’ and ‘target’ are inter-

changeable. If the specification language used only allows unidirectional translations,

then a bidirectional translation must be defined as two separate translations, one for

the ‘forward’ (left-to-right) direction and one for the ‘reverse’ (right-to-left). This could

potentially result in inconsistencies between the two translations (Amor, 1997, p. 72).

The ability to specify translations in a bidirectional manner is thus very important,

and was a strong argument in favour of using VML. A useful side effect of using a

bidirectional specification language is that the process of specifying a translation in,

for example, the forward direction results in much, if not all, of the reverse translation

being specified simultaneously.

Some translations, however, may only be appropriate in one direction. VML allows

the specification of unidirectional description translations by defining a representa-

tion as read only in the inter view definition. This means that information may only be

185

read from descriptions expressed using that representation, not written to them. VML

does not, however, support the specification of unidirectional element translations. It

is impossible to specify that a particular inter class or even that a particular equiva-

lence within an inter class is unidirectional. Indeed, an example given by Amor (1997,

Section E.3.1) suffers from the latter problem — equivalences in VML are always bidi-

rectional, but one of the equivalences in the example is noted in a comment as only

working in one direction.

An example of the first problem is shown in Figure 7.3(a), in which is shown part

of the inter class definition for the following heuristic from the Re(E -R,ERDMartin) �
Rr(Relational , SQL/92) translation:

Re [MARTINIDENTIFIER]←� Rr [SQL92UNIQUE] (H1)

Heuristics are always unidirectional, but this cannot be specified in VML.

An example of the second problem is shown in Figure 7.3(b), in which is shown part

of the inter class definition for the following rule from the Rf(FuncDep,FDDSmith) →

Re(E -R,ERDMartin)/Rf ↽ Re translation:

Rf [FDFUNCTIONALSOURCE, FDFUNCTIONAL,

FDFUNCTIONALTARGET]→ Re [ERENTITYTYPE]

Rf [FDFUNCTIONALSOURCE, FDFUNCTIONAL,

FDFUNCTIONALTARGET]↽ Re [ERENTITYTYPE]

(T1)

The equivalences of this rule include a call to the user-defined function get nonkey,

which extracts the non-key attributes from a MARTINREGULARENTITY element. This

function only makes sense in the reverse direction, as it only applies to constructs in

Re. The unidirectional nature of this equivalence cannot be specified in VML.

What is therefore needed is some way to specify the direction of both inter class def-

initions and individual equivalences within an inter class. The translation process will

use this information to apply only those rules and equivalences that are appropriate to

the direction of the translation being executed; rules and equivalences that are unidi-

rectional in the opposite direction are ignored. The direction of an element translation

is specified in VML-S using the new direction clause of the inter class definition, and

the directions of individual equivalences are specified using one of three new equiva-

lence operators.

186

inter_class
([martinidentifier], [sql92unique],
invariants
(martinidentifier.partial = false)
equivalences
(martinidentifier.name = sql92unique.name,

martinidentifier.attributes[] = sql92unique.columns[],
martinidentifier.identifiedItem = sql92unique.columns[]=>relation

)
).

(a) Unidirectional inter class definition

inter_class
([fdfunctionalsource, fdfunctional, fdfunctionaltarget], [erentitytype],

invariants
(fdfunctional.source = fdfunctionalsource,

fdfunctional.destination = fdfunctionaltarget,
...

),
equivalences
(fdfunctional.name = erentitytype.name,

...
get_nonkey(fdfunctionaltarget.attributes, erentitytype.attributes)

),
initialisers
(...)

).

(b) Unidirectional equivalence clause

Figure 7.3: Unidirectional translations that cannot be fully specified using VML

The direction clause

The optional direction clause allows the specification of the direction(s) in which a

rule may be applied. The allowable values are =>> (unidirectional forward), <<= (uni-

directional reverse) and <=> (bidirectional). If this clause is omitted, <=> is assumed.

The syntax and use of this clause is shown in Figure 7.4 on the next page.

Enhanced equivalence syntax

The direction clause addresses the need to specify the direction of an inter class

definition, but does not address the need to specify the direction of individual equiva-

lences. The following binary equivalence operators are therefore proposed:

a = b means that the mapping between a and b may be applied in the same direc-

tion(s) as specified by the direction clause of the inter class.

a <=> b means that the mapping between a and b may be applied in both forward

and reverse directions.

187

Syntax: 〈direction〉 ::= direction(〈dir map op〉)

〈dir map op〉 ::= =>> | <<= | <=>

Example: inter class
([martinidentifier], [sql92unique],
direction (<<=),
invariants
(martinidentifier.partial = false)
equivalences
(martinidentifier.name = sql92unique.name,

martinidentifier.attributes[] = sql92unique.columns[],
martinidentifier.identifiedItem = sql92unique.columns[]=>relation

)
).

Figure 7.4: The direction clause

a =>> b means that the mapping between a and b may only be applied in the for-

ward direction.

a <<= b means that the mapping between a and bmay only be applied in the reverse

direction.

These operators apply to equivalences that contain simple equations, but they do not

deal with equivalences that contain bijections, function calls (predicates) or procedural

mapping specifications (using the built-in map to from predicate).

In mathematical terms, a bijection is a mapping f : S → T in which a distinct el-

ement of S maps to a distinct element of T , and every element of T can be mapped

from at least one element of S (Clapham, 1990)1. VML bijections are derived from

this definition and are effectively bidirectional conditional mappings (Amor, 1997, Sec-

tion 5.2.6.10), so some way of specifying unidirectional bijections must be defined. (The

concept of a ‘unidirectional bijection’ may at first seem contradictory, but the ‘bi-’ in

‘bijection’ refers to the fact that a bijection is both an injection and a surjection, so the

usage ‘unidirectional bijection’, while somewhat counter-intuitive, is correct.)

The simplest way in which to specify unidirectional bijections is to allow the three

new equivalence operators (<=>, =>> and <<=) to be applied as unary prefix opera-

tors, for example, => bijection(. . . , . . .). This approach also has the advan-

tage that the same syntax may be used for unidirectional function calls, as shown in

Figure 7.5.
1Mappings that have only the former property are known as as one-to-one or injective, while mappings

that have only the latter are referred to as onto or surjective.

188

The map to from function for specifying procedural mappings does not need to

be altered as it is already possible to specify a unidirectional procedural mapping by

passing true as one of the arguments to map to from (Amor, 1997, p. 96).

Equivalences that contradict the direction of the containing inter class are ignored

rather than treated as errors, as it is sometimes possible for specialisations of a bidirec-

tional technique-level rule to be unidirectional (for example, rule S3 of the Re � Rd

translation). The syntax and use of the new equivalence operators is shown in Fig-

ure 7.5.

Syntax: 〈map op〉 ::= = | 〈dir map op〉

〈dir map op〉 ::= =>> | <<= | <=>

〈equivalences def〉 ::= equivalences(〈equivalent〉 {, 〈equivalent〉})

〈equivalent〉 ::= 〈expression〉 〈map op〉 〈expression〉

| map_to_from(〈predicate〉, 〈predicate〉)

| [〈dir map op〉] 〈bijection〉

| [〈dir map op〉] 〈predicate〉

〈bijection〉 ::= bijection(〈bijection expr〉, 〈bijection expr〉)

〈bijection expr〉 ::= 〈class name〉

| 〈attribute name〉

| 〈invariant simple expr〉

Example: inter class
([fdfunctionalsource[2], fdfunctional[2], fdfunctionaltarget[2]],

[errelationshiptype, erentitytype[2]],
invariants
(member(erentitytype[1], errelationshiptype.entities[]),

...
),
equivalences
(fdfunctional[1].name = erentitytype[1].name,

fdfunctional[2].name = erentitytype[2].name,
fdfunctionalsource[1] = erentitytype[1].identifier,
=>> get fd attr(fdfunctionalsource[1].attributes,

fdfunctionaltarget[1].attributes,
erentitytype[1].attributes),
...

),
initialisers
(<<= append(’target’, erentitytype[1].name, fdfunctionaltarget[1].name),

...
)

).

Figure 7.5: New directional equivalence operators

189

7.3.2 Rule exclusion

Earlier in Section 4.7.1 on page 98, the problem and importance of rule exclusion was

discussed. VML provides no mechanism for dealing with excluded rules. Consider the

two rules from the Re � Rr translation shown in Figure 7.7 (rule S2 has been made

bidirectional in this example for the purposes of illustration). Each rule subsumes the

other in the reverse direction, so there is potential for the rules to conflict. If both these

rules were applied in the reverse direction, the current VML translation process would

create an element that was either a regular entity or an associative entity, depending on

the order in which the rules were applied. There is no guarantee that the rules will be

applied in the same order every time, so this situation is undesirable. The first solution

suggested in Section 4.7.1 was to choose one rule to be bidirectional and make the

remaining rules unidirectional. This solution was adopted for the definition of rule S2

in Chapter 5, but it is, of course, impossible to specify this in VML as VML does not

allow the explicit specification of unidirectional rules.

Re [MARTINREGULARENTITY]� Rr [SQL92TABLE] (S1)

Re [MARTINASSOCIATIVEENTITY]� Rr [SQL92TABLE] (S2)

(a) Rules

Purchase

Purchase

Purchase create table purchase
(purchase id char(6),

purchase date date,
...,

primary key (purchase id),
...

);

?

?

Rule S1: regular

Rule S2: associative

(b) Result of applying both rules in reverse direction

Figure 7.7: An example of rule exclusion

The new direction clause introduced in VML-S could be used to specify rule S2

as unidirectional, but a more general solution suggested in Section 4.7.1 is to explicitly

specify the exclusions among rules, which is a feature that VML also does not support.

This second solution is preferable in general, as the first solution is not appropriate for

190

all excluded rules, and also tends to obscure the exclusions among rules. That is, rules

are made unidirectional for no other reason than that they are excluded by some other

rule.

The introduction of explicit exclusions among rules requires the ability to uniquely

identify a particular rule. In VML, an inter class definition is identified by its header,

which is the combination of the two construct lists. Several inter class definitions may

share the same header, so they are further distinguished by their invariants (Amor,

1997, Section 5.2.1). Rule headers may therefore not be unique, and including the in-

variants as part of the identification is obviously not practical, as the number of invari-

ants may vary considerably for each rule. Some other means of uniquely and concisely

identifying rules is required, which is provided in VML-S by the label clause of the

inter class definition. Rule exclusions are specified using the excludes clause of the

inter class definition.

The label clause

The optional label clause is similar in principle to the label statement in many pro-

gramming languages, and allows inter class definitions to be explicitly named. The

syntax and use of this clause is shown in Figure 7.8.

Syntax: 〈label〉 ::= label(〈inter class id〉)

〈inter class id〉 ::= 〈simple id〉

Example: inter class
([eridentifier], [rmalternatekey],

label (t6 id ak),
direction (<<=),

...
).

Figure 7.8: The label clause

Labels may be used anywhere that an inter class header is used to identify a rule;

at present, the only such places are in the inherits and excludes clauses. Label

names must be unique within an inter view definition.

191

The excludes clause

The optional excludes clause allows the explicit specification of rule exclusions for

each direction of a translation. It specifies a list of rules, identified by their labels, that

are excluded by the current rule in a particular direction. If the current rule is applied

in the specified direction, the excluded rules should not be applied. If a direction is

not specified for a rule, then the exclusion is assumed to apply in both directions. The

syntax and use of this clause is shown in Figure 7.9.

Syntax: 〈excludes〉 ::= excludes(〈inter class id〉 [〈dir map op〉]

{, 〈inter class id〉 [〈dir map op〉] })

Example: inter class
([martinrelationship, ertypeitem[2]],

[sql92foreignkey[2], sql92unique[2]],
label (s12 rel 0101),
inherits (relationship 11 base),
excludes (h1 id unique <<=, s10 rel 01xN <<=),
invariants

...
).

Figure 7.9: The excludes clause

The VML-S translation process will obviously need to be extended to take advan-

tage of this new rule exclusion information. Rules that exclude others should be con-

sidered before the rules that they exclude, that is, rule exclusions imply an ordering to

rule evaluation. Compare this with the VML translation process, where rules may (in

theory) be applied in arbitrary order. The subsumption/exclusion graph introduced

in Section 4.7.1 provides a means of describing this ordering information, and is incor-

porated into the extended translation algorithms in Section 7.5.

7.3.3 Translating construct lists

The header of an inter class definition comprises two lists of constructs, one for each

representation. Within these lists, constructs may be:

• individual, representing a single element (for example, [some construct]);

• grouped, representing an unordered set of elements of the same type (for exam-

ple, [group(some construct)]); or

192

• ‘listed’, representing an ordered list of elements of the same type (for example,

[some construct[]]).

The existing VML syntax allows the specification of all three, but Amor’s VML map-

ping system implementation handles only the first two cases, and no algorithms are

defined for dealing with the third case.

Grouped constructs cannot be used in place of lists, as a grouped construct is an

unordered set, whereas a list is ordered. A typical reason for using a list as opposed

to a grouped construct would be when a specific number of identifiable elements are

to be translated (for instance, two ERENTITYTYPE elements), where each has specific

properties depending on their position in the list. The VML-S mapping system al-

gorithms are therefore extended in Section 7.5.2 to handle ‘listed’ constructs in an in-

ter class header.

7.3.4 Using the same construct multiple times

While defining theRf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin) translation (see Ap-

pendix E), the author encountered one heuristic that could not be specified declara-

tively using VML. Heuristic H2 translates a collection of attributes tagged with the

same domain flag into an E-R type hierarchy, and is denoted by:

Rf [FDATTRIBUTESET1 , . . . , FDATTRIBUTESETn ,

SSDOMAINFLAG , SSSINGLEKEYBUBBLE, SSATTRIBUTEa ,

SSATTRIBUTE1 , . . . , SSATTRIBUTEn]→ Re [MARTINTYPEHIERARCHY]

(H2)

Ideally, it would be possible to define an inter class header with a single SSATTRI-

BUTE construct (representing SSATTRIBUTEa above) and a separate list of SSATTRI-

BUTE constructs (representing SSATTRIBUTE1 , . . . , SSATTRIBUTEn above), that is:

inter_class
([fdattributeset[], ssdomainflag, sssinglekeybubble, ssattribute, ssattribute[]],

[martintypehierarchy],
...

).

Unfortunately, VML allows each distinct construct to appear only once in the in-

ter class header, so ssattribute cannot be repeated. This is not an unreasonable re-

striction — the inter class definition above would be very confusing to work with, as it

193

would be difficult (if not impossible) to determine which ssattribute construct was

being referred to in the body of the inter class. Thus, in standard VML the definition

must be written as:

inter_class
([fdattributeset[], ssdomainflag, sssinglekeybubble, ssattribute[]],

[martintypehierarchy],
...

).

Here, construct SSATTRIBUTEa is included within the list of SSATTRIBUTE con-

structs, which can make access to SSATTRIBUTEa difficult. It could be assumed that

the first item of the list is SSATTRIBUTEa , while the remainder of the list contains the

remaining SSATTRIBUTE constructs. Unfortunately, the only list iteration mechanism

that VML provides is the declarative []-form that iterates over an entire list. That is,

there is no simple declarative mechanism in VML that would allow the first item of a

list to be treated separately from the rest.

This restriction is particularly relevant to the specification of this heuristic because

the SSATTRIBUTE constructs would only be referred to in the invariants. VML does

not allow procedures in the invariants section (Amor, 1997, p. 96), but user-defined

functions are allowed if they reference attributes from only one schema. Thus, it might

be possible to specify some of this heuristic procedurally using VML.

The solution adopted in VML-S is to allow the specification of aliases for construct

names in an inter class header, in much the same way as SQL allows the definition

of aliases for table names in a select statement (Groff and Weinberg, 1994, p. 153).

Constructs in a VML-S inter class header may have an alias name associated with them,

which allows the same construct to appear multiple times in a single header, but with

different names. The syntax and use of construct aliases is shown in Figure 7.10. Alias

names must be unique within an inter class.

7.4 Converting the abstract notation into VML-S

The abstract translation notation defined in Chapter 4 is convenient for expressing

translations at a high level, and also provides a useful template for building VML-S

translation specifications. A description translation corresponds directly to a VML-S

194

Syntax: 〈class list name〉 ::= group(〈class name〉) [〈alias name〉]

| 〈class name〉 [〈alias name〉]

〈alias id〉 ::= 〈simple id〉

〈alias name〉 ::= 〈alias id〉 [[[〈list id〉 {, 〈list id〉}]]]

Example: inter class
([fdattributeset[], ssdomainflag, sssinglekeybubble,

ssattribute parent, ssattribute[] children],
[martintypehierarchy],

...
member(children[], fdattributeset[].attributes),
member(parent, sssinglekeybubble.attributes),

...
).

Figure 7.10: Aliases for constructs in the inter class header

inter view definition, for example, the description translation expression:

Re(E -R,ERDMartin)⇀ Rd(DataFlow ,DFDG&S)

corresponds to the following inter view definition:

inter_view(er_martinerd, read_only, df_ganesarsondfd, read_write, partial).

All items of the inter view definition may be determined directly from the high-level

notation:

• the model id may be built from the names of the representation’s technique and

scheme;

• the direction of the translation determines the model type for both representations

— in a unidirectional translation the source representation is read only and the

target representation is read write, whereas in a bidirectional translation both

representations are read write; and

• the completeness of the translation determines the map type, either partial or

complete.

An element translation (rule or heuristic) corresponds directly to the header of a

VML-S inter class definition, for example, the rule:

Re [MARTINASSOCIATIVEENTITY]⇀ Rd [GNSDATASTORE]

195

corresponds to the header of the following inter class definition:

inter_class
([martinassociativeentity], [gnsdatastore],

label (some_label),
direction (=>>),
...

).

The direction of the inter class is determined from the direction of the translation oper-

ator in the notation, as shown above.

The way in which constructs are arranged in the inter class header is determined

from the high-level notation as follows:

• An individual construct in the notation corresponds to an individual construct in

the VML-S specification.

• A fixed-size collection of constructs of the same type in the notation corresponds

to a fixed-length list of that construct in VML-S.

• An arbitrarily-sized but ordered collection of constructs of the same type corre-

sponds to an unspecified-length list of that construct in VML-S.

• An arbitrarily-sized and unordered collection of constructs of the same type in

the notation corresponds to a group of that construct in VML-S.

Thus, the element translation expression2:

Re(E -R,ERDMartin)[MARTINREGULARENTITY ,MARTINIDENTIFIER ,

MARTINATTRIBUTEm, . . . ,MARTINATTRIBUTEn]→

Rf (FuncDep,FDDSmith)[FDATTRIBUTESET1, FDATTRIBUTESET2,

SSSINGLEVALUED]

corresponds to the following inter class definition (assuming that the MARTINATTRI-

BUTE constructs are not ordered):

inter_class
([martinregularentity, martinidentifier, group(martinattribute)],

[fdattributeset[2], sssinglevalued],
direction (=>>),
...

).

2This translation has been invented for the purposes of this example — it does not appear in the
Re → Rf description translation.

196

The invariants, and to some extent the initialisers, are used to specify the pre- and

post-conditions of a rule, while the equivalences specify the precise mappings between

constructs in terms of their properties (construct properties were discussed in Sec-

tion 3.2 on page 42). These parts of the inter class definition cannot be derived from

the high-level notation, which is to be expected — the abstract notation deliberately

does not describe any of this information for the reasons discussed in Section 4.4.2 on

page 80.

The VML-S implementation of a rule defined in the previous chapter will now be

examined in more detail.

7.4.1 Specification of Re � Rr rule S8

This rule, when applied in the forward direction (⇀), expands a many-to-many rela-

tionship between two E-R entities by introducing an intermediate table that links the

two corresponding SQL tables, as illustrated in Figure 7.11 on the next page. In the

reverse direction (↽), any such intermediate table that is found is translated into a

many-to-many relationship. The definition of this rule is:

Re[MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]⇀

Rr[SQL92TABLE, SQL92PRIMARYKEY,

SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2]

Re[MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]←

Rr[SQL92TABLE, SQL92PRIMARYKEY,

SQL92FOREIGNKEY1 , SQL92FOREIGNKEY2]

(S8)

Applying the correspondences identified above, this rule can be converted to the

following initial VML-S inter class definition:

inter_class
([martinrelationship, ertypeitem[2]],

[sql92table, sql92primarykey, sql92foreignkey[2]],
label (s8_rel_xMxN),

...
).

(Alternatively, construct aliases could be used instead of a list of ERTYPEITEM con-

structs, but this would not have any real effect on the resultant rule specification.)

197

Car

REGISTRATION,

MAKE, . . .

car
features

FEATURE CODE,

DESCRIPTION

Feature

(a) D1

Car

REGISTRATION,

MAKE, . . .

C
ar

fe
at

ur
e

REGISTRATION,

FEATURE CODE

FEATURE CODE,

DESCRIPTION

Feature

(b) ‘Intermediate state’

create table car
(registration char(6),

vin char(20) not null unique
make char(20),
...

primary key (registration)
...

);

create table car feature
(feature code char(6),

registration char(6),
primary key (registration,

feature code),
foreign key (feature code)
references feature,

foreign key (registration)
references car

);

create table feature
(feature code char(6),

description char(80),
primary key (feature code)

);

(c) D5

Figure 7.11: Translating many-to-many relationships usingRe�Rr rule S8 (used cars
viewpoint)

Examining Figure 7.11, it can be seen that the elements of D1 corresponding to the

constructs in the inter class header are:

• martinrelationship = relationship car features;

• ertypeitem[1] = Car and ertypeitem[2] = Feature (or vice versa);

• sql92table = table car feature;

• sql92primarykey = the primary key of table car feature;

• sql92foreignkey[1] = the foreign key from car feature to car (or vice

versa); and

• sql92foreignkey[2] = the foreign key from car feature to feature (or

vice versa).

The first step is to determine any invariants that apply to the mapping. First, the re-

lationship (car features) must be specified as a many-to-many relationship. Cardinality

198

and optionality are specified in the representation Re(E -R,ERDMartin) by the srcOpt,

srcCard, dstOpt and dstCard properties of the MARTINRELATIONSHIP construct. Since

the optionality of both ends of the relationship is lost in the forward direction, there

is no need to specify this (in the reverse direction, initialisers are used to set the op-

tionality of the relationship). The srcCard and dstCard properties should, however, be

greater than one, that is:

invariants
(martinrelationship.srcCard > 1,

martinrelationship.dstCard > 1,
...

Next, the entities must be correctly associated with the relationship using the source

and destination properties of MARTINRELATIONSHIP. In this example, it will be as-

sumed that Car is the ‘source’ entity of the relationship and Feature is the ‘target’ en-

tity. That is:

...
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
...

On the SQL side of the translation, the primary key element must be associated with

the newly generated table car feature. In addition, the columns of the primary key

and the columns of the table must be identical. Thus:

...
sql92table.primaryKey = sql92primarykey,
sql92table.attributes[] = sql92primarykey.attributes[],
...

Similarly, the foreign keys must be associated with the car feature table. In addi-

tion, the concatenation of the columns of both foreign keys should be the same as the

columns of the primary key. That is:

...
member(sql92foreignkey[], sql92table.foreignKeys),
sql92foreignkey[].relation = sql92table,
append(sql92foreignkey[2].columns, sql92foreignkey[1].columns,

sql92primarykey.attributes)
)

Now the equivalences between the various constructs and their properties must be

identified. First, the name of the relationship (car features) corresponds to the name of

the intermediate table (car feature). Similarly, the names for the foreign keys may

199

be built from the names of the entities (the representation definition includes names

for many constructs even though these are not displayed). For instance, a name for the

foreign key from car feature to car could be built by appending the string ‘ fk’ to

the name of the Car entity, giving ‘car fk’. Note, however, that this is only applicable

in the forward direction. In the reverse direction the names of the entities are not

derived from the names of the foreign keys; rather they are mapped from the names of

the tables by rule S1. Thus:
equivalences
(martinrelationship.name = sql92table.name,

=>> append(’_fk’, ertypeitem[1].name, sql92foreignkey[1].name),
=>> append(’_fk’, ertypeitem[2].name, sql92foreignkey[2].name),
...

Next, the columns of the car feature table are determined by concatenating the

attributes of the entity identifiers of Car and Feature. The entity identifier of Car com-

prises the single attribute registration and the entity identifier of Feature comprises

the attribute feature code, so the columns of car feature are registration and

feature code. As with the foreign key names, this mapping is only applicable in the

forward direction; in the reverse direction, the attributes of Car and Feature are again

determined by rule S1. This mapping cannot be dealt with by a simple equation, as

two lists of attributes must be concatenated then mapped. It may be possible to do this

using a temporary variable, but the approach taken here is to define the mapping as a

user-defined function combine attr, which takes as arguments the identifiers of the

two entities and produces an SQL table with appropriate columns.
...

=>> combine_attr(ertypeitem[1].identifier, ertypeitem[2].identifier, sql92table),
...

Next, the entities Car and Feature must be mapped to the tables car and feature.

Entities are already translated by other rules, so there is no particular need to duplicate

this here. Instead, all that is required is to specify that the Car entity maps to the table

referenced by the car fk foreign key, and Feature maps to the table referenced by the

feature fk foreign key. A similar situation applies with the identifiers of the two

entities, which map to the referenced primary keys of the foreign keys. That is:
...

ertypeitem[1] = sql92foreignkey[1].refTable,
ertypeitem[2] = sql92foreignkey[2].refTable,
ertypeitem[1].identifier = sql92foreignkey[1].refPK,
ertypeitem[2].identifier = sql92foreignkey[2].refPK,
...

200

The last equivalence that needs to be dealt with is to ensure that the attributes of

the Car identifier map to the columns of car fk, and similarly with Feature and fea-

ture fk:

...
ertypeitem[1].identifier=>attributes[] = sql92foreignkey[1].columns[],
ertypeitem[2].identifier=>attributes[] = sql92foreignkey[2].columns[]

),

Finally, information that is required by the target description but cannot be ex-

tracted from the source description is dealt with using initialisers. First, the optionality

of the relationship must be determined when translating in the reverse direction. Since

the required optionality information cannot be extracted from SQL, the only solution is

to choose some suitable default and apply that in an initialiser. A reasonable default for

optionality is to make it optional. The cardinality of the relationship is already known

to be many, but the invariants only specify it as being greater than one. Initialisers can

be used to set the cardinality to two. Thus:

initialisers
(martinrelationship.srcCard = 2,

martinrelationship.dstCard = 2,
martinrelationship.srcOpt = 0,
martinrelationship.dstOpt = 0

)

The complete rule definition is shown in Table 7.1 on the following page. Once

the other rules in the translation have been defined, it is possible to check for conflicts

among the rules and thus determine any exclusions among the rules. This particu-

lar rule conflicts with rules S1, S4 and S10 in the reverse direction. An appropriate

excludes clause has been added to the rule definition shown in Table 7.1.

7.5 Extensions to the translation process

In this section are presented the extensions to the translation process required to sup-

port the VML-S extensions described above. An overview of the original VML map-

ping process was presented in Section 4.7 on page 94. Amor (1997) implemented this

process in four passes, as shown in Figure 7.12 on page 203.

VML has incomplete support for unidirectional translations and no support for rule

exclusion. The addition of rule and equivalence directions and rule exclusion provides

201

Table 7.1: VML-S specification of Re� Rr rule S8

inter_class
([martinrelationship, ertypeitem[2]], [sql92table, sql92primarykey, sql92foreignkey[2]],

label (s8_rel_xMxN),
excludes (s1_regular_table <<=, s4_id_pk <<=, s10_rel_01xN <<=),
invariants
(martinrelationship.srcCard > 1,

martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
sql92table.primaryKey = sql92primarykey,
sql92table.attributes[] = sql92primarykey.attributes[],
member(sql92foreignkey[], sql92table.foreignKeys),
sql92foreignkey[].relation = sql92table,
append(sql92foreignkey[2].columns, sql92foreignkey[1].columns,

sql92primarykey.attributes)
),
equivalences
(martinrelationship.rolename = sql92table.name,

=>> append(’_fk’, ertypeitem[1].name, sql92foreignkey[1].name),
=>> append(’_fk’, ertypeitem[2].name, sql92foreignkey[2].name),
=>> combine_attr(ertypeitem[1].identifier, ertypeitem[2].identifier, sql92table),
ertypeitem[1] = sql92foreignkey[1].refTable,
ertypeitem[2] = sql92foreignkey[2].refTable,
ertypeitem[1].identifier = sql92foreignkey[1].refPK,
ertypeitem[2].identifier = sql92foreignkey[2].refPK,
ertypeitem[1].identifier=>attributes[] = sql92foreignkey[1].columns[],
ertypeitem[2].identifier=>attributes[] = sql92foreignkey[2].columns[]

),
initialisers
(martinrelationship.srcCard = 2,

martinrelationship.dstCard = 2,
martinrelationship.srcOpt = 0,
martinrelationship.dstOpt = 0,
<<= append(ertypeitem[2].name, ertypeitem[1].name, martinrelationship.name)

)
).

an extra method of filtering out rules and equivalences that cannot be applied to a

collection of source elements, and rule exclusion also implies an ordering to rule eval-

uation. The information required to perform this filtering and ordering is described

by the subsumption/exclusion graphs for the translation. Thus, before any transla-

tion can be performed, the subsumption/exclusion graphs for that translation must

be generated. Subsumption/exclusion graphs may be generated at any time before a

translation takes place, so this step is separate from the translation process. Graphs

may be saved for future re-use and will only need to be regenerated if the translation

is changed. Algorithms for constructing subsumption/exclusion graphs are presented

in Section 7.5.1.

The original VML translation algorithm (Amor, 1997, Table 10.3) has been extended

to make use of the information stored in the subsumption/exclusion graphs, pro-

202

Source
representation Translation

Target
representation

Source
description

Translation process

1 2 3 4

mapping algorithms

Target
description

elements elements

rules & heuristics

constructs

constructs

constructs

constructs

Pass Steps

One: determine all combinations to be mapped from the source description
create elements for first construct in inter class header specification
apply appropriate initialisers, equivalences and invariants

Two: attach or create elements for all other constructs in inter class header
apply appropriate initialisers, equivalences and invariants

Three: for each mapping combination apply all equivalences

Four: determine unsolved equivalences affected by pass three resolution
re-calculate determined equivalences

Figure 7.12: Amor’s (1997) four-pass translation process

ducing Algorithm 7.1 on the next page; the extensions to the original algorithm are

underlined. The main points to note in this algorithm are:

1. An ordering step has been added on lines 8–9 that uses the subsumption/ex-

clusion graph to determine in what order rules should be evaluated. The rules

are ordered such that non-subsumed, non-excluded rules are evaluated first, fol-

lowed by subsumed but non-excluded rules, followed by subsumed and ex-

cluded rules.

2. Exclusion handling has been added on lines 23–24 and 29–30, which removes

excluded rules from consideration when the rule that excludes them is applied.

3. Direction checking has been added in several places in order to remove inappro-

priate rules and equivalences from consideration (for example, lines 5–7).

4. The modified algorithm only details the process for create mappings, that is, map-

pings that create new descriptions/elements rather than modifying or deleting

203

existing ones. This is partly because the processes for delete and modify mappings

are similar to those for create mappings, and partly because the full implications

of delete and modify mappings have not been examined in this thesis.

Algorithm 7.1: Modified translation algorithm

PERFORMMAPPINGS(d)
Input: The direction of the translation d.
Output:
(1) foreach aggregated mapping to be mapped
(2) switch aggregated mapping
(3) case create:
(4) K ← newly created (key) element
(5) I ← find inter class definitions referencing construct of K

(6) (or one of its generalisations) and that appear in the
(7) subsumption/exclusion graph for d

(8) order I according to the information in the
(9) subsumption/exclusion graph for d

(10) foreach inter class r in I

(11) G← INITIALELEMENTGROUPS(K , r)
(12) C ← GENERATECOMBINATIONS(G, r)
(13) foreach combination in C

(14) if K is grouped in r’s header
(15) match with existing mappings of this type
(16) re-evaluate grouped elements
(17) re-evaluate invariants if K’s construct involved
(18) if invariants are violated
(19) dissolve existing mapping
(20) else
(21) re-calculate affected equivalences that have
(22) direction d or <=>
(23) if r excludes other inter classes
(24) remove excluded inter classes from I

(25) else
(26) create required elements in other data store
(27) apply initialisers that have direction d or <=>
(28) solve equivalences that have direction d or <=>
(29) if r excludes other inter classes
(30) remove excluded inter classes from I

(31) case modify:
(32) . . .

(33) case delete:
(34) . . .

The translation process must also be extended to handle ‘listed’ constructs in an

inter class header, as discussed in Section 7.3.3. Appropriately extended versions of

Amor’s (1997) algorithms are presented in Section 7.5.2.

204

In summary, the only major new step in performing a translation is the generation

of the subsumption/exclusion graphs, as shown in Figure 7.13. The four-pass trans-

lation process remains unchanged, but the algorithms within this process have been

modified to take advantage of the subsumption/exclusion graphs, and also to handle

‘listed’ constructs in inter class headers. A demonstration of these extended algorithms

may be found in Appendix F.

Source
representation Translation

S/E graphs

Target
representation

Source
description

Translation process

1 2 3 4
modified mapping algorithms

Target
description

elements elements

rules & heuristics

rules &heuristics

subsumptions

& exclu
sions

constructs

constructs

constructs

constructs

Figure 7.13: The modified translation process

7.5.1 Building subsumption/exclusion graphs

The addition of the excludes clause to the inter class definition makes it possible

to define the exclusions among rules, from which the subsumption/exclusion graphs

may be built using Algorithm 7.2 on the following page.

An important part of Algorithm 7.2 is detecting whether one rule subsumes an-

other. A rule ri subsumes another rule rj in a particular direction if the source con-

structs of rj are a subset (⊆) of the source constructs of ri, and the invariants of ri do

not contradict those of rj (see Section 4.7.1 on page 98). Algorithm 7.3 on the follow-

ing page specifies how to detect rule subsumption. Note that invariant checking is not

detailed in this algorithm, as this has already been dealt with by Amor (1997). This

algorithm also assumes that both rules may be applied in the same direction, so any

calling algorithm must ensure that this condition holds. This algorithm has been im-

plemented with simulated invariant checking to verify that it produces correct results.

205

Algorithm 7.2: Build a subsumption/exclusion graph for a translation

Input: A collection of VML-S rule definitions R = {r1, r2, . . . , rn}, and a direc-
tion d.
Output: A subsumption/exclusion graph Gd = (V, E) for R in direction d.
BUILDSEGRAPH(R, d)
V ← ∅
E ← ∅
foreach rule ri of R whose direction is d or <=>

create vertex vi in V
foreach rule ri of R whose direction is d or <=>

foreach rule rj of R whose direction is d or <=>, i �= j

if SUBSUMES(ri , rj)
if rj is in ri’s exclusion list

create edge eij : vi
ρ
→ vj in E

else
create edge eij : vi → vj in E

return (V, E)

Algorithm 7.3: Determine whether one rule subsumes another

Input: Two rules ri and rj , i �= j, and a direction d in which both rules may be
applied.
Output: True if ri subsumes rj in direction d, otherwise false.
SUBSUMES(ri , rj , d)

σi ← source constructs of ri with respect to d

σj ← source constructs of rj with respect to d

if number of constructs in σi ≥ number of constructs in σj

foreach item cj of σj

if σi does not contain cj

return false
foreach invariant pi of ri

foreach invariant pj of rj

if pi contradicts pj

return false
return true

return false

206

7.5.2 Modified algorithms for mapping list structures

Algorithm 7.1 on page 204 calls the algorithms INITIALELEMENTGROUPS and GENER-

ATECOMBINATIONS, which are modifications of two of Amor’s algorithms (1997, Ta-

bles 10.5 and 10.6). The first step of the translation algorithm is to determine all rules

that might affect the element currently under consideration, referred to by Amor as

the key element. For each matching rule, an initial collection of elements that may be

potentially affected is generated by the algorithm INITIALELEMENTGROUPS. All com-

binations of these elements that satisfy the rule’s invariants are then generated by the

algorithm GENERATECOMBINATIONS.

There are three cases to consider when determining the initial element groups for a

mapping:

1. individual constructs: inter class([construct1], . . .);

2. grouped constructs: inter class([construct1, group(construct2)],

. . .); and

3. ‘listed’ constructs: inter class([construct1, construct3[2]], . . .).

Amor’s original algorithms already handle the first two cases; the third case will now

be discussed.

The original VML syntax definition implies that the syntax some construct[n]

(where n is an integer) is legal in an inter class header, but this was apparently not

what was intended (Amor, 1998, personal communication). Instead, it was expected

that lists would be specified without an explicit length in the inter class header (that

is, some construct[]), and that the length would be specified by an invariant (that

is, count(some construct[]) = 2). This seems somewhat cumbersome however,

especially when a mechanism for specifying list lengths in the header is already al-

lowed by the syntax. Reducing the number of invariants will also reduce the amount

of time required to evaluate a translation. The VML-S syntax therefore explicitly allows

the specification of list lengths in inter class headers.

If the length l of the list is known, generating the initial element groups is simply

a matter of finding all n elements corresponding to that construct, and from these el-

ements generating all possible lists of length l. There are two possibilities to consider

207

here: either the listed construct is the same as the construct of the key element (or one

of its generalisations), or it is not. Consider the following inter class header:

inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey],

...

and suppose that the following elements exist in the source description: the regular

entities Student and Staff, the associative entity Assignment and a relationship marks

connecting Staff and Assignment. Now suppose that the key element is Staff. This is

instantiated from the construct MARTINREGULARENTITY, which is a specialisation of

ERTYPEITEM and is the same as the listed construct. Conversely, if the relationship

marks is the key element, this is different from the listed construct.

If the listed construct is the same as the construct of the key element, the key ele-

ment must occur at least once in every generated list, so the number of lists generated

is nl− (n−1)l. If the listed construct is not the same as the construct of the key element,

the key element does not occur in the generated lists, and the number of lists generated

is nl. Thus, if the number of elements found is six and the list length is two, the total

number of lists generated is eleven when the listed construct is the same as the key

construct, and thirty-six otherwise.

For example, given the three elements Staff, Student and Assignment (which can

all be generalised to the same construct ERTYPEITEM), the key element Student, and

a list length of two, the following five (32 − 22) lists would be generated: {Staff, Stu-

dent}, {Student, Staff}, {Student, Student}, {Student, Assignment}, {Assignment, Stu-

dent}. Conversely, if the key element were marks (drawn from the construct MAR-

TINRELATIONSHIP), the following nine (32) lists would be generated: {Staff, Staff},

{Staff, Student}, {Staff, Assignment}, {Student, Staff}, {Student, Student}, {Student,

Assignment}, {Assignment, Staff} , {Assignment, Student} , {Assignment, Assign-

ment}. A detailed example of this list generation process may be found in Section F.2

on page 427.

Sometimes the length of the list may not be specified. If so, the only option is to

generate all possible lists of lengths one to the number of elements found, which could

result in a very large number of lists. If the number of elements found is n, the total

number of lists generated will be
∑n

i=1 n
i − (n − 1)i when the listed construct is the

same as the key construct, and
∑n

i=1 n
i when it is not. Thus, if six elements are found,

208

the total number of lists generated is 36,456 when the listed construct is the same as

the key construct, and 55,986 otherwise. If the position of elements in the list is not

significant, a group should probably be used instead of an indeterminate-length list.

Algorithm 7.4 is a modified version of Amor’s (1997, Table 10.5) algorithm for de-

termining initial element groups. The additions are on lines 5–20. Algorithm 7.5 on the

next page is a slightly modified version of Amor’s (1997, Table 10.6) algorithm for gen-

erating possible element combinations. Amor originally used the term ‘cross-product’

to describe how the element set E and the result set R were combined. The operation

that is performed is not strictly a cross-product, although the result appears similar.

The actual operation carried out is shown in Algorithm 7.6 on the following page.

Algorithm 7.4: Determine initial element groups

INITIALELEMENTGROUPS(K , H)
Input: The key element K and an inter class header H .
Output: A list of initial element groups for H , based on K.
(1) foreach construct C in H (in reverse order)
(2) if C is grouped
(3) find all elements of C

(4) return list of elements in a list
(5) else if C is ‘listed’
(6) find all elements of C (n elements)
(7) if list length l is specified
(8) if C is construct of K

(9) generate all possible lists of length l in which K occurs
(10) at least once, using found elements
(11) else
(12) generate all possible lists of length l, using found elements
(13) else
(14) if C is construct of K

(15) generate all possible lists of lengths 1–n in which
(16) K occurs at least once, using found elements
(17) else
(18) generate all possible lists of lengths 1–n,
(19) using found elements
(20) return list of generated lists in a list
(21) else if C is construct of K

(22) return K in a list
(23) else
(24) find all elements of the named type
(25) return them in a list

The key change in Algorithm 7.5 is how the invariants are applied to elements.

When an individual element (that is, not grouped or ‘listed’) of a combination fails an

209

Algorithm 7.5: Generate element combinations for the inter class

GENERATECOMBINATIONS(G, H)
Input: A list of initial element groups G and an inter class header H .
Output: Those element groups that remain after filtering by invariants.
(1) current result set R← ∅
(2) foreach set of elements E in G relating to a construct C in H

(3) determine set of invariants IE relating purely to construct C

(4) apply the invariants IE to the set E

(5) COMBINE(E, R)
(6) determine the set of invariants IR applying to constructs
(7) incorporated in R

(8) apply the invariants IR to R

(9) return R

Algorithm 7.6: Combine two lists of elements

COMBINE(E, R)
Input: E is a list of elements or lists, and R is a list of lists.
Output: The combined list.
(1) result list L← ∅
(2) if R = ∅
(3) add E to L

(4) else
(5) foreach item e of E

(6) foreach list r of R

(7) add e to the front of list r

(8) add list r to L

(9) return L

invariant, the entire combination is removed from consideration (Amor, 1997, p. 177).

For grouped elements, the invariants are applied to each element in the group and are

used to reduce the number of elements in the group (Amor, 1997, p. 177). Similarly,

for listed elements the invariants are applied to each generated list of elements and are

used to reduce the number of lists. If the number of lists is reduced to zero, the entire

combination is removed from consideration.

7.6 Summary

At the end of the previous chapter, two issues requiring further exploration were iden-

tified. The first, extending VML, was discussed in this chapter. Several issues were

identified that complicate the specification of description and element translations in

210

VML. Some of these were a result of VML’s focus on specifying schema translations

rather than description translations, while others were the result of an incomplete im-

plementation of the original VML specification. An extended version of VML, known

as VML-S, was defined to address these issues. A correspondence between the ab-

stract notation defined in Chapter 4 and VML-S specifications was identified, and it

was demonstrated how a VML-S rule specification can be built.

Most of the VML-S extensions were to VML’s inter class syntax. The direction

clause was defined to address VML’s inability to specify unidirectional rules, and three

new directional equivalence operators were defined to allow the specification of uni-

directional equivalences. The label and excludes clauses were defined to allow the

explicit specification of rule exclusion. Construct aliases were introduced to allow the

same construct to appear multiple times in a rule header.

The translation process described in Chapter 4 was also extended and changes and

additions were made to some of Amor’s (1997) original translation algorithms to rectify

known problems and support the new VML-S syntax. An algorithm was also specified

for generating subsumption/exclusion graphs for a set of rules.

None of the VML-S extensions described in this chapter have been implemented,

with the exception of the algorithm for building subsumption/exclusion graphs. This

is primarily because other researchers are already working on reimplementing VML

in Java (Grundy, 1998, personal communication). Grundy has expressed an interest in

the extensions described here, so any implementation as part of this research would

be an unnecessary duplication of effort. Despite the lack of a VML-S implementation,

VML-S has been successfully used to define the rules of the translations discussed in

Chapter 5 and Appendix E — see Appendix F for details.

The second issue identified at the end of the previous chapter was measuring the

effect of heuristics on translation quality. In the next chapter, a method for measuring

translation quality will be defined in order to determine what impact heuristics may

have on translation quality.

211

Chapter 8

Measuring the quality of translations

8.1 Introduction

The previous chapters have outlined an approach to translating descriptions between

multiple representations. An important aspect of this approach is the use of heuristics

to improve translation quality. In order to determine whether the use of heuristics has

an impact on translation quality, a measure of translation quality must be developed.

The concepts of relative information capacity and schema intension graphs described in

this chapter can be used to determine the category of expressive overlap between two

representations, and to determine the relative quality of two or more translations.

Hull’s (1986) concept of relative information capacity, described in Section 8.2, pro-

vides a basis for comparing the information content of schemas in the context of schema

integration. Miller et al.’s (1994b) schema intension graphs are a tool that may be

used to determine the relationship between the relative information capacities of two

schemas, and are also described in Section 8.2. The representation definitions used in

this thesis are a form of schema, so relative information capacity may also be applied

to representations. In particular, the author has found that the expressive power of a

representation can be characterised by the information capacity of its definition (dis-

cussed in Section 8.3). Consequently, schema intension graphs may also be used to

determine the category of expressive overlap between two representations.

From this basis, the author has developed two methods for measuring the relative

quality of translations, which are defined in Section 8.4. These methods make use of

schema intension graphs and produce a collection of measurements for a translation

that may be compared with those of other translations. The first method was found

to produce results that did not match the experimental evidence gained from using

213

Swift, so the second method was developed as a refinement of the first to remedy this.

Using this refined method, it will be shown in Section 8.5 that the use of heuristics has

a positive impact on the quality of translations.

8.2 Relative information capacity (Hull, 1986)

A schema conveys information about the phenomenon that it models. Hull (1986)

defined the concept of relative information capacity to describe the information content of

different schemas. The relative information capacity of a schema determines the set of

all valid instances of that schema (Hull, 1986; Miller et al., 1993; Miller, 1994). Relative

information capacity, as the name implies, is not a quantitative measure; rather it is an

indicator of the relative information content of different schemas.

Relative information capacity can be used as a basis for identifying the differences

between schema instances, and can therefore be used as an aid to schema integration

and translation (Miller, 1994). Miller et al. (1993) defined relative information capacity

in terms of information capacity preserving mappings (or just information preserving

mappings) and equivalence preserving mappings. An information preserving mapping

from schema S1 to schema S2 maps every element of S1 to an element of S2, but only

some elements of S2 to elements of S1. S2 has an information capacity greater than S1,

and is said to dominate S1, denoted S1 � S2. An equivalence preserving mapping from

S1 to S3 maps every element of S1 to an element S3 and vice versa (that is, both the

mapping and its inverse are information preserving). The information capacities of S1

and S3 are identical, and the schemas are said to be equivalent, denoted S1 ≡ S3.

Since relative information capacity is a relative measure, it can only be effectively

used in a comparative manner. To this end, (Miller et al., 1994b) defined the schema

intension graph formalism to provide a tool for comparing the information capacity

of two schemas. A schema intension graph (SIG) describes the associations between

domains in a schema, and provides a way to “reason about constraints on collections

of entities in an instance of the entity set, rather than about the internal structure of a

single entity” (Miller et al., 1994b, p. 3). To determine the equivalence (or lack thereof)

of two schemas S1 and S2, schema intension graphs GS1 and GS2 are built for each

schema. One of these graphs (for example, GS1) is then manipulated by a series of

214

information and/or equivalence preserving transformations in an attempt to produce

a transformed graph (G′S1) that is isomorphic to GS2 . If an isomorphism cannot be

produced, there is no direct relationship between the relative information capacities

of S1 and S2. If an isomorphism can be produced, then depending on the series of

transformations used, S1 either dominates S2 (or vice versa), or the two schemas are

equivalent.

Note that Miller et al. (1994a) use stricter definitions of equivalence and dominance

than that used here; strictly speaking, the discussion of equivalence and dominance in

this section should properly refer to absolute dominance and equivalence, whereas the

following discussion on SIG transformations should properly refer to internal domi-

nance and equivalence (Miller et al., 1994a). The distinction, however, is not crucial to

the discussion in this chapter.

8.2.1 Building schema intension graphs (Miller et al., 1994b)

The relative information capacities of two schemas may be compared using schema

intension graphs (Miller et al., 1994b). Schema intension graphs provide an alternate

representation for describing schemas, and comprise:

• a collection of nodes representing typed domains (that is, sets of data values);

• a collection of labelled edges representing binary relations between domains; and

• annotations on the edges that represent simple constraints on the binary relations.

Nodes may be simple (atomic) or constructed (composite). Simple nodes are denoted by

the name of the domain that they represent. Constructed nodes represent a collection

of domains and are built using the × (cross product) and + (union) operators. Edges

are denoted by plain lines, and represent binary relations that may be composed to

form a path between two nodes (the notation e2 ◦ e1 means ‘edge e1 followed by edge

e2’). Some edges may be designated as selection edges, labelled σ, or projection edges,

labelled π. These two edge types are analogous to the relational operators of the same

name (Codd, 1972b).

In addition, edges may be annotated with up to four properties denoting simple

constraints on the binary relation represented by the edge. There are four properties

215

used to annotate edges: totality, surjectivity, functionality and injectivity. These prop-

erties are defined as follows (Miller et al., 1994b, p. 6):

Let SA and SB be two sets. A binary relation r : A − B is total (denoted

e : A B) if it is defined for all elements of SA; surjective (e : A B) if it

is defined for all elements of SB ; functional (e : A −→ B) if an element of

SA determines at most one element of SB ; and injective (e : A ←− B) if an

element of SB determines at most one element of SA.

Note that the correct usage of these terms is determined by the ‘direction’ in which the

binary relation is ‘read’. That is, the binary relation e : A −→ B is functional if read

from left to right, but injective if read from right to left. A bijection is defined as an edge

that is total, surjective, functional and injective (Miller et al., 1994b, p. 6).

In Figure 8.1 is shown an ERD description (D1) and corresponding schema inten-

sion graph (GD1) for the used cars viewpoint (described in Section C.1). The author has

developed the following process for deriving a SIG from an ERD:

• Each entity corresponds to a SIG node. This node represents the set of all in-

stances of the entity, and can thus be thought of as the ‘domain’ of that entity.

Thus, the Feature entity corresponds to the SIG node Feature.

• The Staff entity has three subtypes: Wage staff, Salesrep and Salary staff. The

constructed node Wage staff + Salesrep + Salary staff (referred to hereafter as

‘the union’) corresponds to the set of all instances of the three subtypes.

• Every instance of Staff must also be an instance of the union, and vice versa.

Thus, the binary relation Staff — Wage staff + Salesrep + Salary staff is one-

to-one (functional and injective) and defined for all elements in both directions

(total and surjective). The instances of the union also form a trivial selection of

the instances of Staff, so the edge is a selection edge.

• Every instance of the union is an instance of exactly one of Wage staff, Salesrep or

Salary staff. Conversely, every instance of Wage staff, Salesrep and Salary staff

is an instance of the union. The binary relation Wage staff + Salesrep + Salary

staff — Wage staff is therefore one-to-one (functional and injective), is defined

216

for all elements of Wage staff (surjective), but not defined for all elements of the

union (not total). The instances of Wage staff form a selection of the instances of

the union, so the edge is a selection edge. The edges between the union and the

other two subtypes are treated similarly.

• A relationship from entity E1 to entity E2 translates to a SIG edge as follows:

– If the E1 (respectively E2) end of the relationship has a cardinality of one,

the corresponding SIG edge is injective (respectively functional).

– If the E1 (respectively E2) end of the relationship is mandatory, the corre-

sponding SIG edge is total (respectively surjective).

Thus, the SIG edge corresponding to the relationship from Customer to Sale is

injective and surjective, while the SIG edge corresponding to the relationship

from Car to Purchase is a bijection.

Staff

Wage_staff Salary_staffSalesrep

Feature

CustomerPurchase Sale

Car

buys sells

sells buys

bought sold

car
features

(a) D1(Vcars ,E -R,ERDMartin)

Staff

Wage staff + Salesrep + Salary staff

Salesrep

Customer

Car

Feature

Purchase Sale

Salary staffWage staff

σa

σc
σdσb

(b) Corresponding SIG GD1

Figure 8.1: E-R description of the used cars viewpoint and corresponding schema in-
tension graph

217

8.2.2 Comparing schema intension graphs (Miller et al., 1994b)

It is possible to determine the relationship between the relative information capacities

of two schemas by comparing SIGs for the two schemas. Intuitively, if two SIGs are

isomorphic, then the corresponding schemas are equivalent (Miller et al., 1994b, p. 11).

An isomorphism occurs between two SIGs when the graphs match both structurally

and semantically. That is, two SIGs must be more than just structurally identical —

the semantics of the SIG nodes must also be compatible. For example, the semantics

of the construct Re(E -R,ERDMartin) [MARTINREGULARENTITY] are compatible with

the semantics of the constructRd(DataFlow ,DFDG&S) [GNSDATASTORE], so SIG nodes

corresponding to these constructs are isomorphic. Conversely, the semantics of the

construct Rd [GNSEXTERNALENTITY] are not compatible with those of the construct

Re [MARTINREGULARENTITY], so SIG nodes corresponding to these constructs are not

isomorphic.

Miller et al. (1994b, Section 5) identify three possible results from comparing two

SIGs:

1. The SIGs are isomorphic; or they are not immediately isomorphic, but one can

be manipulated by a series of equivalence preserving transformations (described

below) until it is isomorphic to the other. The two schemas are equivalent.

2. The SIGs are not immediately isomorphic, but one can be manipulated by a series

of information capacity augmenting transformations (described below) until it is

isomorphic to the other. The transformed schema is dominated by the other.

3. The SIGs are not isomorphic and cannot be transformed to be isomorphic. The

information capacities of the two schemas cannot be compared.

Batini et al. (1992, p. 145) follow a similar classification scheme with respect to schema

transformations: they refer to the first case as information-preserving transformations,

the second as augmenting transformations and the third as noncomparable transforma-

tions.

Miller et al. (1994a, Section 5) describe several equivalence preserving and informa-

tion capacity augmenting transformations on SIGs, which are summarised in Table 8.1.

If two SIGs are not immediately isomorphic, these transformations may be applied in

218

Table 8.1: Summary of SIG transformations

Effect on infor-
Transformation Type mation capacity

Delete annotation or π/σ constraint annotation augmented
Move/copy edge composition augmented
Create/delete duplicate node selection no change
Create bijective selection edge selection no change
Delete bijective selection edge selection augmented

an attempt to make one of the SIGs isomorphic to the other. Transforming the SIG

for a schema is effectively the same as transforming the schema itself, but SIGs pro-

vide a useful abstract formalism within which to perform these transformations. The

transformations that may be applied to SIGs are:

Annotation transformations allow the removal of annotations or projection and se-

lection constraints from edges. If schema S1 can be transformed into schema S2

by such a transformation, then the information capacity of S2 is greater than that

of S1 (that is, S1 � S2).

Composition transformations allow edges to be moved and copied around the graph.

Consider an edge e1 that connects nodes n1 and n2. If there is a functional edge

(or path of functional edges) from some other node n3 to n2, the edge e1 may be

moved across this edge/path so that it connects nodes n1 and n3 instead. A vari-

ation of this allows e1 to be duplicated across the functional path, giving a new

edge e′1 that connects nodes n1 and n3 while leaving the original edge intact. The

annotation of the resulting edge is determined by the composition of the edges in

the path across which it is moved or duplicated. If an edge with a particular an-

notation (such as surjectivity) is composed with an edge that does not have that

annotation, the resulting edge does not have the annotation. For example, the

composition of the edges −→ (functional) and (surjective) would be an edge

with no annotations. If schema S1 can be transformed into schema S2 by such a

transformation, then the information capacity of S2 is greater than that of S1 (that

is, S1 � S2).

219

Selection transformations allow the creation and deletion of new nodes and edges as

follows:

• New nodes are created by duplicating existing nodes. To enforce the restric-

tion that the new node is a duplicate of an existing node, a bijective selection

edge must connect the new node with the node it duplicates.

• Nodes may only be deleted if they are attached to exactly one other node by

a single bijective selection edge, that is, they are effectively a duplicate of the

other node.

• A bijective selection edge may be created that connects a node to itself.

• A bijective selection edge connecting two nodes may be deleted.

If schema S1 can be transformed into schema S2 by a node creation/deletion or

edge creation transformation, then the information capacities of S2 and S1 are

identical (that is, S2 ≡ S1). If S1 can be transformed into S2 by an edge deletion

transformation, then the information capacity of S2 is greater than that of S1 (that

is, S1 � S2). This result seems somewhat counter-intuitive, as noted by Qian

(1995), but is nonetheless correct (Miller et al., 1994a, p. 17). This is because a

bijective selection edge between two nodes denotes that the nodes correspond to

the same domain, so removing the edge also removes this constraint.

For example, consider the alternative description D2 of the used cars viewpoint

shown in Figure 8.2(a). Comparing this with the description in Figure 8.1(a) on page 217,

it can be seen that this description does not include subtypes for staff, and purchases

and sales are modelled as a single Transaction entity. The SIG corresponding to this

description (GD2) is shown in Figure 8.2(b). Intuitively, it could be guessed that the

information capacities of the two E-R descriptions might be equivalent, or perhaps

that the information capacity of the first description is greater than that of the second.

Since the SIG transformations described above never decrease information capacity, an

attempt will now be made to transform GD2 until it is isomorphic to GD1 .

The first step is to create new nodes in GD2 to correspond to the additional nodes

in GD1 . As shown in Figure 8.3(a) on page 222, the Transaction node is duplicated to

produce the new node Sale, connected by the bijective selection edge σ1. Similarly, the

220

Staff

Feature

CustomerTransaction

Car

sellsbuys

(a) D2(Vcars ,E -R,ERDMartin)

Staff

Customer

Car

Feature

Transaction

sellsbuys

(b) Corresponding SIG GD2

Figure 8.2: Alternate E-R description of the used cars viewpoint and corresponding
SIG

Staff node can be duplicated to produce the node Staff′ and the bijective selection edge

σ2. Staff′ is further duplicated to produce the nodes Wage staff, Salesrep and Salary

staff (with associated edges σ3, σ4 and σ5 respectively).

The next step is to move or copy edges inGD2 so that they correspond more closely

to edges inGD1 . For example, the sells edge inGD2 may be moved across selection edge

σ1 so that it connects nodes Sale and Car, as shown in Figure 8.3(b). The edge connect-

ing Staff and Transaction may be copied across selection edge σ1 to produce a similar

edge between Sale and Staff. The edge connecting Customer and Transaction may also

be copied in this manner, producing the transformed SIG shown in Figure 8.3(b).

The transformed SIG is now closer to GD1 , but there are still some obvious discrep-

ancies. For instance, the edges from the Transaction and Sale nodes to Staff should be

connected to Salesrep instead. This can be remedied by moving both edges across the

path σ4 ◦ σ2, producing the SIG shown in Figure 8.3(c).

Another discrepancy is the bijective selection edge (σ1) connecting nodes Trans-

action and Sale. An edge deletion transformation can remove this edge. The only

remaining discrepancies are the annotations on the edges σ3, σ4 and σ5. Three anno-

tation deletion transformations will remove the offending annotations, producing the

221

S
taff

C
ustom

er

C
ar

F
eature

T
ransaction

sells
buys

S
ale

σ
1

S
taff′

σ
2

W
ag

e staff

S
alary staff

S
alesrep

σ
3

σ
4

σ
5

create
new

 node

create
new

 nodes

(a)Step
1:create

nod
es

and
associated

ed
ges

S
taff

sells
buys

S
taff′

σ
2

W
age staff

S
alary staff

S
alesrep

σ
3

σ
4

σ
5

C
ustom

er

C
ar

F
eature

T
ransaction

S
ale

m
ove edge

copy edge

σ
1

copy edge

(b)Step
2:m

ove
and

d
uplicate

ed
ges

sells
buys

C
ustom

er

C
ar

F
eature

T
ransaction

S
ale

σ
1

S
taff

S
taff′

S
alesrep

S
alary staff

W
age staff

σ
2

σ
4

σ
5

σ
3

move edge

move edge

(c)Step
3:m

ove
m

ore
ed

ges

sells
buys

C
ustom

er

C
ar

F
eature

T
ransaction

S
ale

σ
1

S
taff

S
taff′

S
alesrep

S
alary staff

W
age staff

σ
2

σ
4

σ
5

σ
3

delete edge σ
1

delete
annotation

delete
annotation

(d
)Step

4:d
elete

σ
1

and
d

elete
annotations

Figu
re

8.3:Transform
ing

a
subgraph

ofa
SIG

222

SIG shown in Figure 8.3(d). This SIG is isomorphic to GD1 , because the structures of

the two SIGs are identical and the semantics of the nodes are compatible.

The first set of transformations described above produces no change in information

capacity, while the remaining transformations all result in an increase in information

capacity. The information capacity of D1 is therefore greater than that of D2, that is,

D2 � D1. Note that the order of transformations given above is not the only order in

which the transformations could be applied, although there are some restrictions on

the ordering. For example, the creation of the various Staff nodes could have been

delayed until step 3, and the moving and copying of edges could have been done in a

different order. Conversely, selection edge σ1 cannot be deleted before the transforma-

tions in step 2 are completed. The final result will be the same regardless.

8.3 Categorising expressive overlap using schema inten-

sion graphs

Relative information capacity was originally developed with application to instances

of schemas in mind, rather than descriptions. Representations are defined in this thesis

using an extended entity-relationship approach, as described in Section 3.4 on page 49,

so a representation definition is effectively a schema describing the constructs of the

representation. Relative information capacity can therefore also be applied to descrip-

tions.

The information capacity of a schema determines the set of all valid instances of that

schema within the context of the phenomenon that it models (Miller, 1994). A schema

defines a set of valid database structures for a given phenomenon. Combined with

the set of of all data relating to the phenomenon, the schema may be used to generate

all possible database states for the phenomenon. This is analogous to grammars for

languages: a grammar defines a set of valid sentence structures for a language, and

combined with the set of all possible words for the language, the grammar may be

used to generate all valid sentences for the language (Chomsky, 1978; Holtzman, 1994).

By extension, the information capacity of a representation definition determines

the set of all valid descriptions that may expressed using the representation. That is,

223

it determines the extent of what may be expressed using that representation. This

is effectively identical to the notion of expressive power introduced by the author in

Chapter 3. That is, the expressive power of a representation can be characterised by

the information capacity of the representation’s definition. This means that SIGs may

be used to determine any relationship between the expressive powers of two represen-

tations, and thus the nature of the expressive overlap between those representations.

Let Rp(T1, S1) and Rq(T2, S2) be two representations, and let D1 and D2 be descrip-

tions expressed using Rp and Rq respectively. The expressive overlap between Rp and

Rq will fall into one of the four categories identified in Section 3.5 on page 55: disjoint,

intersecting, inclusive or equivalent. Suppose that SIGs are built corresponding to the

definitions of both representations, and that one of the SIGs is then transformed as de-

scribed in the previous section in an attempt to create an isomorphism. If it is found

that the information capacities of both definitions are identical (result 1 in the previous

section), then the expressive powers ofRp andRq are equivalent. If it is found that the

information capacity of one definition (for example, that for Rp) is greater than that

of the other (result 2 in the previous section), then the expressive power of Rp is in-

clusive of Rq , or vice versa. If no comparison can be drawn between the information

capacities of the two definitions (result 3 in the previous section), then the expressive

overlap between Rp and Rq falls into either the disjoint or intersecting categories, but

it is otherwise impossible to distinguish between these two categories. An intersecting

expressive overlap is obviously of more interest than a disjoint expressive overlap, so

it would be useful to be able to detect this.

The author has identified the following solution to this inability to distinguish be-

tween intersecting and disjoint expressive overlap. An equivalent or inclusive expres-

sive overlap implies that the entirety of one representation definition is either identical

to or contained within the other representation definition. These two cases may be

detected using the SIG transformation method by transforming an entire SIG. An inter-

secting expressive overlap implies that some subset of one representation definition is

either identical to or contained within some subset of the other representation defini-

tion. In SIG terms, this equates to being able to transform one or more subgraphs of the

SIG until they are isomorphic to one or more subgraphs in the other SIG.

224

Three results of comparing two SIGs were described in the previous section. The

first two results are unchanged when using SIGs to determine the expressive overlap

of representations. The author has modified the third result as follows:

3. The two SIGs are not isomorphic and cannot be transformed to be isomorphic.

The expressive overlap of the two representations may be determined as follows:

(a) If one or more subgraph(s) of the SIGs are either isomorphic, or can be trans-

formed to be isomorphic, the two representations have an intersecting ex-

pressive overlap.

(b) If no subgraphs of the SIGs are isomorphic, and cannot be transformed to be

isomorphic, the two representations have a disjoint expressive overlap.

The expressive overlap between two representations determines the completeness

of translations between those representations, as discussed in Section 3.5 on page 55.

If Rp and Rq are equivalent, it is possible to translate completely in both directions,

that is, Rp ↔ Rq . If Rp is inclusive of Rq (respectively, Rq inclusive of Rp), then the

possible translations areRq → Rp andRp ⇀ Rq (respectively, Rp → Rq andRq ⇀ Rp).

If Rp intersects with Rq , then it is possible to translate partially in both directions, that

is Rp � Rq . Finally, if Rp and Rq are disjoint, it is typically impossible to translate a

description from Rp to Rq or vice versa.

Ideally, the process of detecting SIG isomorphism and performing SIG transforma-

tions would be automated. Miller et al. (1994a, Theorems 4.3 and 4.4) show that the

problem of testing for SIG equivalence is in general undecidable, and note that the

problem of detecting graph isomorphism may be NP-complete. This may not be a ma-

jor problem in practice, however; Miller et al. (1994a, p. 20) discuss how reasonably

efficient algorithms may be developed. Unfortunately, this is only worsened by the

introduction of subgraph isomorphism, which introduces the additional problem of

detecting potentially isomorphic subgraphs.

Use of SIG isomorphism to determine the expressive overlap of two representations

may not, however, be particularly amenable to automation in other ways, as it may

not always give a complete analysis of the expressive overlap. SIG isomorphism gives

good results when the two representations being compared have similar constructs

at a similar level of ‘granularity’. Consider the representations Re(E -R, ERDMartin)

225

and Re(DataFlow , DFDG&S). Both of these have constructs analogous to the concepts

of ‘entity’ (ERENTITYTYPE and DFDATASTORE respectively) and ‘attribute’ (ERAT-

TRIBUTE and DFFIELD respectively). Now consider Re and Rf(FuncDep,FDDSmith).

While both have constructs analogous to the concept of ‘attribute’ (ERATTRIBUTE and

FDATTRIBUTE), Rf does not have a single construct directly analogous to the concept

of ‘entity’. Nevertheless, it is possible to map ERENTITYTYPE constructs to and from

a collection of Rf constructs. In other words, a single construct of Re may map to a

collection of constructs of Rf and vice versa.

It may be possible to resolve this issue by taking advantage of the SIG concept of

constructed nodes. In the SIG for a representation definition, simple nodes represent

individual constructs, constructed nodes represent collections of constructs and edges

represent associations between constructs. In the SIGs in this chapter, constructed

nodes are only used to represent specialisation/generalisation associations between

constructs, but they could also be used to represent the ‘collective constructs’ described

above. It is unclear at present whether this constitutes a change to the representation

definition, or merely an ‘optimisation’ of the representation definition so that it may

more easily be compared with other representations, and has been left as an area for

further investigation (see Chapter 10).

Another issue that arises is that it may be possible to define a representation in more

than one way. A representation definition in this thesis is effectively a schema describ-

ing the constructs of the representation. The collection of constructs that comprise the

representation will always remain constant, as changing this collection will result in

the definition of a different representation. It may, however, be possible to define the

properties of these constructs in different ways. For example, in the representation def-

initions in this thesis, the associations between constructs are typically expressed using

properties on both sides of the association. Thus, in Rr(Relational , SQL/92), the RM-

RELATION construct has a foreignKeys property that comprises a list of associated RM-

FOREIGNKEY elements, while the RMFOREIGNKEY construct has a reciprocal relation

property that links to the associated RMRELATION element. An alternative definition

of Rr might omit the foreignKeys property while retaining the relation property.

Such variations may have a small effect on the expressive power of a representa-

tion, but will not affect the methods defined in this chapter, as these are defined in

226

terms of constructs rather than the properties of constructs. That is, the methods de-

fined here assume that a construct is atomic. Defining the properties of a representa-

tion in a different manner should therefore have no effect on the results produced by

these methods, although it will obviously have an effect on the VML-S specifications

of translation rules to or from the representation. If the definition of a representation

is changed in such a way as to produce a different collection of constructs, it is no

longer the same representation, so the results of applying the methods defined here

may differ. This is, however, to be expected.

8.3.1 Example of determining expressive overlap

Consider the representations Re(E -R,ERDMartin) and Rd(DataFlow ,DFDG&S). The

SIGs corresponding to the definitions of these representations are shown in Figure 8.4

on the following page. Intuitively, these two SIGs do not appear immediately iso-

morphic, and closer examination shows that indeed they are not. The next step is

to find any subgraphs that might potentially be isomorphic. The subgraph of the Re

SIG comprising nodes {ERAttributeItem, ERAttribute + ERAttributeGroup, ERAttribute,

MartinAttribute, ERAttributeGroup, MartinAttributeGroup} is directly isomorphic to the

subgraph of theRd SIG comprising nodes {DFFieldItem, DFField + DFFieldGroup, DF-

Field, GnSField, DFFieldGroup, GnSFieldGroup}. The structures of the two subgraphs

are identical, and the semantics of the nodes are compatible.

Examining the semantics of the remaining nodes in each SIG, the following addi-

tional node correspondences may be readily identified: MartinRegularEntity ⇔ GnS-

DataStore and EREntityType⇔ DFDataStore. Although at first glance it might appear

that ERTypeItem corresponds to DFItem, this is not so, because DFItem includes at-

tributes while ERTypeItem does not. That is, the semantics of the two nodes are differ-

ent. The rules for theRe � Rd translation (excluding heuristics) also reveal that theRe

nodes MartinWeakEntity and MartinAssociativeEntity both correspond to the Rd node

GnSDataStore. Heuristics are not included, as they do not form a part of the ‘natural’

expressive overlap.

These correspondences produce the two subgraphs of the Rd SIG shown in Fig-

ure 8.5(a) on page 229. The right-hand subgraph is already isomorphic to a subgraph

227

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(a)Re(E -R,ERDMartin)

DFItem

DFStaticItem + DFFlowItem + DFFieldItem

DFFlowItemDFStaticItem

DFDataFlow + GnSResourceFlow

DFDataFlow GnSResourceFlow

DFFieldItem

DFField + DFFieldGroup

DFField DFFieldGroup

DFDataStore + GnSResourceStore + DFDataFlow + GnSResourceFlow

DFSplitMerge

+
DFProcess

+
DFExternalEntity

+
GnSMultipleDataProcess

+
GnSResourceStore

+
DFDataStore

DFSplitMerge

DFProcess

DFExternalEntity

GnSMultipleDataProcess

GnSResourceStore

DFDataStore

GnSSplitMerge

GnSDataProcess

GnSExternalEntity

GnSDataStore

σ15

σ17

σ24

σ25 σ26

σ21σ20

σ18

σ16σ14

σ21 σ23
σ11

σ12

σ10

σ8

σ7

σ6

σ4

σ2

σ9

σ5

σ3

σ1

σ13
target

source

contains
1

GnSDataFlow

σ19

GnSField GnSFieldGroup

σ27 σ28

contains
2

(b)Rd(DataFlow ,DFDG&S)

Figure 8.4: SIGs for Re(E -R,ERDMartin) andRd(DataFlow ,DFDG&S)

228

D
F

F
ie

ld
Ite

m

D
F

F
ie

ld
 +

 D
F

F
ie

ld
G

ro
up

D
F

F
ie

ld
D

F
F

ie
ld

G
ro

up

D
F

D
at

aS
to

re
G

nS
D

at
aS

to
re

σ 2
4

σ 2
5

σ 2
6

σ 9

G
nS

F
ie

ld
G

nS
F

ie
ld

G
ro

up

σ 2
7

σ 2
8co
nt

ai
ns

2

(a
)O

ri
gi

na
lR
d

su
bg

ra
ph

s

D
F

F
ie

ld
Ite

m
D

F
F

ie
ld

+
D

F
F

ie
ld

G
ro

up

D
F

F
ie

ld

D
F

F
ie

ld
G

ro
up

G
nS

F
ie

ld

G
nS

F
ie

ld
G

ro
up

σ 2
8

σ 2
6

σ 2
5

σ 2
4

σ 2
7

co
nt

ai
ns

2

(r
ea

rr
an

ge
 s

ub
gr

ap
h)

D
F

D
at

aS
to

re

D
F

D
at

aS
to

re
′

G
nS

D
at

aS
to

re
W

ea
kD

at
aS

to
re

σ a

σ b

σ 9

G
n

S
A

ss
o

cS
to

re
σ c

cr
ea

te
 n

ew
 n

od
es

cr
ea

te
 n

ew
 n

od
es

G
n

S
W

ea
kS

to
re

σ d

(b
)S

te
p

1:
cr

ea
te

no
d

es

D
F

F
ie

ld
Ite

m
D

F
F

ie
ld

+
D

F
F

ie
ld

G
ro

up

D
F

F
ie

ld

D
F

F
ie

ld
G

ro
up

G
nS

F
ie

ld

G
nS

F
ie

ld
G

ro
up

σ 2
8

σ 2
6

σ 2
5

σ 2
4

σ 2
7

co
nt

ai
ns

2

D
F

D
at

aS
to

re

D
F

D
at

aS
to

re
′

G
nS

D
at

aS
to

re
W

ea
kD

at
aS

to
re

σ a

σ b
σ 9

G
nS

A
ss

oc
S

to
re

σ c

de
le

te
 e

dg
e

G
nS

W
ea

kS
to

re

σ d
σ e

move edge

co
py

 &

m
ov

e e
dg

e

(c
)S

te
p

2:
m

ov
e

an
d

co
py

σ
9,

d
el

et
e
σ

c

D
F

F
ie

ld
Ite

m
D

F
F

ie
ld

+
D

F
F

ie
ld

G
ro

up

D
F

F
ie

ld

D
F

F
ie

ld
G

ro
up

G
nS

F
ie

ld

G
nS

F
ie

ld
G

ro
up

σ 2
8

σ 2
6

σ 2
5

σ 2
4

σ 2
7

co
nt

ai
ns

2

D
F

D
at

aS
to

re

D
F

D
at

aS
to

re
′

G
nS

D
at

aS
to

re
W

ea
kD

at
aS

to
re

σ a

σ b
σ 9

de
le

te
 e

dg
e

G
nS

W
ea

kS
to

re

σ d
σ e

de
le

te
 a

nn
ot

at
io

n

G
nS

A
ss

oc
S

to
re

(d
)S

te
p

3:
d

el
et

e
σ

d
an

d
an

no
ta

ti
on

on
σ

b

Fi
gu

re
8.

5:
Tr

an
sf

or
m

in
g

su
bg

ra
ph

s
of

th
e
R

d
SI

G

229

of the Re SIG. The left-hand subgraph may be transformed until it is isomorphic to

two subgraphs of the Re SIG, by applying the series of transformations shown in Fig-

ure 8.5. First, as shown in Figure 8.5(b), a collection of new nodes are created. The

node DFDataStore′ is created to correspond to the Re node ERWeakEntityType + Mar-

tinRegularEntity. Similarly, WeakDataStore is created to correspond to ERWeakEnti-

tyType, GnSAssocStore is created to correspond to MartinAssociativeEntity and Gn-

SWeakStore is created to correspond to MartinWeakEntity.

Next, as shown in Figure 8.5(c), the selection edge σc is deleted to separate the

GnSAssocStore node from the GnSDataStore node. The selection edge σ9 is moved

across the selection edge σa, so that GnSDataStore is connected to DFDataStore′ in-

stead of DFDataStore. Edge σ9 is then copied and moved across the selection edges σd

and σb respectively, so that GnSWeakStore is attached to WeakDataStore.

Finally, as shown in Figure 8.5(d), the selection edge σd is deleted and the total-

ity annotation on selection edge σb is removed. This produces the subgraphs shown

in Figure 8.6(b), which are isomorphic to the subgraphs of the Re SIG shown in Fig-

ure 8.6(a). Since at least one isomorphic subgraph may be found in each SIG, but the

two SIGs are not totally isomorphic, Re and Rd have intersecting expressive powers1.

8.3.2 Analysis

The categorisation method described above was applied to the three pairs of rep-

resentations {Re(E -R,ERDMartin), Rr(Relational , SQL/92)}, {Rf(FuncDep,FDDSmith),

Re(E -R,ERDMartin)} and {Re(E -R,ERDMartin),Rr(DataFlow ,DFDG&S)}, which corre-

spond to the three translations discussed in Chapter 5. It was found that the expressive

overlap of each pair of representations falls into the intersecting category. This was ex-

pected for {Re, Rr} and {Re, Rr}, but was not expected for {Rf , Re}, because the

translation between these two representations is complete in the forward direction.

Rather, it was expected that the expressive power of Re would be inclusive of the ex-

pressive power of Rf .

The translation Rf → Re/Rf ↽ Re was identified in Chapter 5 as being complete

in the forward direction because all of its rules are complete in the forward direction.
1Strictly speaking, the expressive power of theRe subset is inclusive of that of theRd subset, but this

does not affect the result.

230

EREntitytype

ERWeakEntityType + MartinRegularEntity

MartinAssociativeEntity

MartinRegularEntityERWeakEntityType

MartinWeakEntity

ERAttributeItem
ERAttribute

+
ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ6 σ7

σ8

σ16

σ15

σ13

σ14

σ12

contains
2

(a) Corresponding subgraphs fromRe SIG

DFFieldItem
DFField

+
DFFieldGroup

DFField

DFFieldGroup

GnSField

GnSFieldGroup

σ28

σ26

σ25

σ24

σ27

contains
2

DFDataStore

DFDataStore′

GnSDataStoreWeakDataStore

σa

σb σ9

GnSWeakStore

σe GnSAssocStore

(b) Transformed subgraphs fromRd SIG

Figure 8.6: Isomorphism between SIG subgraphs

231

It may be that there are as yet undiscovered rules for this translation that are not com-

plete. That is, the forward translation may not be complete. Alternatively, this un-

expected result may be caused by the granularity issue identified earlier. This seems

more likely, given that it appears possible to translate functional dependency descrip-

tions completely to E-R descriptions, and many of the rules of this translation involve

‘collective constructs’. This is not a simple issue to resolve and has been left as an area

for future research (see Chapter 10).

A final possibility is that this method is sensitive to the way in which representa-

tions are defined. The Rf representation definition has many constructs (such as the

FDSOURCE construct) that exist only to provide convenient generalisations of other

constructs. None of these constructs are explicitly used in rules, so it could be argued

that they are not absolutely necessary. That is, the variant ofRf used here may be more

complex than necessary. Of course, removing constructs from the definition of Rf will

by definition produce a new representation R′f that has different associations among

its constructs.

8.4 Measuring the relative quality of translations

The process described above for categorising the expressive overlap of two representa-

tions also provides a possible method for measuring the relative quality of translations.

Consider the isomorphisms between Rd(DataFlow ,DFDG&S) and Re(E -R,ERDMartin)

identified in Figure 8.6 on the preceding page, and suppose that a description is to

be translated from Rd to Re, or vice versa. The untransformed subgraphs of the Rd

SIG shown in Figure 8.5(a) on page 229 and the corresponding subgraphs of the Re

SIG shown in Figure 8.6(a) are indicated by the blue shaded areas in Figure 8.7. These

shaded areas are derived from the isomorphism identified above, so they represent the

expressive overlap between the two representations. This expressive overlap may be

increased by the use of heuristics, which will be shown in Section 8.5.

Simple nodes of the SIG for a representation definition correspond to constructs of

that representation, constructed nodes correspond to collections of constructs and the

edges between nodes correspond to the associations between constructs. Counting the

total number of nodes within an isomorphic subgraph gives an indication of the de-

232

MartinRelationship

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(a)Re(E -R,ERDMartin)

DFItem

DFStaticItem + DFFlowItem + DFFieldItem

DFFlowItemDFStaticItem

DFDataFlow + GnSResourceFlow

DFDataFlow GnSResourceFlow

DFFieldItem

DFField + DFFieldGroup

DFField DFFieldGroup

DFDataStore + GnSResourceStore + DFDataFlow + GnSResourceFlow

DFSplitMerge

+
DFProcess

+
DFExternalEntity

+
GnSMultipleDataProcess

+
GnSResourceStore

+
DFDataStore

DFSplitMerge

DFProcess

DFExternalEntity

GnSMultipleDataProcess

GnSResourceStore

DFDataStore

GnSSplitMerge

GnSDataProcess

GnSExternalEntity

GnSDataStore

σ15

σ17

σ24

σ25 σ26

σ21σ20

σ18

σ16σ14

σ21 σ23
σ11

σ12

σ10

σ8

σ7

σ6

σ4

σ2

σ9

σ5

σ3

σ1

σ13
target

source

contains
1

GnSDataFlow

σ19

GnSField GnSFieldGroup

σ27 σ28

contains
2

(b)Rd(DataFlow ,DFDG&S)

Figure 8.7: Expressive overlap betweenRe andRd

233

gree of expressive overlap of the two representations, whereas counting the number of

simple nodes gives an indication of the proportion of individual constructs that may

potentially be mapped from one representation to the other. Similarly, counting the

number of edges gives an indication of the number of associations between constructs

that may potentially be mapped, while counting the number of non-selection (non-σ)

edges gives an indication of the number of ‘useful’ associations between constructs

that may potentially be mapped (selection edges are at present used here only to rep-

resent specialisation and generalisation of constructs). These numbers will then give

an indication of the quality of any translations between the two representations. This

is not an absolute measure of a translation’s quality because it is based on relative in-

formation capacity, which is a relative measure. It should therefore be considered as a

measure of the relative quality of a translation that is only meaningful when compared

with the relative qualities of other translations.

Thus, for theRe � Rd translation, a visual comparison of the two subgraphs shown

in Figure 8.7 gives the results shown in Table 8.2. The ‘#’ columns show the number of

nodes, constructs, edges and non-σ edges obtained by applying the process outlined

above. The ‘%’ columns show these numbers as a proportion of the total number of

nodes, constructs, edges and non-σ edges (which are shown at the head of the table).

These numbers indicate that a description translation from Re to Rd will in general be

of relatively higher quality than a description translation from Rd to Re.

Table 8.2: Relative quality measurements for the Re � Rd translation

SIG forRe(E -R,ERDMartin) has 21 nodes, 17 distinct constructs, 26 edges and 9 non-σ edges.
SIG forRd(DataFlow ,DFDG&S) has 26 nodes, 21 distinct constructs, 32 edges and 4 non-σ edges.

Nodes Constructs Edges Non-σ edges
Direction # % # % # % # %
Re ⇀ Rd 11 52.38 8 47.06 11 42.31 2 22.22
Rd ⇀ Re 11 42.31 8 38.10 11 34.38 1 25.00

8.4.1 Initial analysis

The relative quality measurement described above has been applied to the three trans-

lations discussed in Chapter 5. The analysis for Re � Rd was presented above, and

analyses for the remaining two translations may be found in Appendix E. The results

234

of these analyses are summarised in Figure 8.8, in which is shown the relative quality

for each translation in both the forward and reverse directions. The results in the graph

have been sorted in approximate descending order of relative quality. For each trans-

lation, the proportion of nodes, distinct constructs, edges and non-selection (non-σ)

edges that may be mapped from the source representation to the target representation

is shown.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Translation

P
ro

po
rt

io
n

m
ap

pe
d

Nodes
Constructs
Edges

Re ⇀ RdRe ⇀ Rr Re ⇀ RfRr ⇀ Re Rf → ReRd ⇀ Re

Non-σ edges

Figure 8.8: Summary of initial relative translation quality measurements (without
heuristics)

Based on an examination of the translation definitions and experimentation with

the Swift environment, the initial intuitive expectation was that the translations would

be ranked in terms of quality in approximately the following order: Re � Rr, Rf →

Re, Re ⇀ Rf and Re � Rd. As can be seen from Figure 8.8, however, this is not borne

out by the analysis. Instead, it can be seen that the Rf → Re translation has the worst

relative quality, which was unexpected, as experimentation with the prototype envi-

ronment suggested a much higher quality than that shown in Figure 8.8. Conversely,

the Re � Rr and Re � Rd translations are ranked in the expected order. It is also in-

teresting to observe the differences in relative quality between the forward and reverse

translations. For example, the relative quality of theRr ⇀ Re translation is lower than

that of the Re ⇀ Rr translation, which was expected because of the problems inherent

in reverse engineering SQL schemas.

The most likely reason for this discrepancy between expectations and results is the

235

granularity problem identified in Section 8.3. A considerable proportion of the rules

for theRf → Re/Re ⇀ Rf translation (see Appendix E) involve ‘collective constructs’

rather than individual constructs. If this is the problem, then these ‘collective con-

structs’ must be taken into account during the measurement.

8.4.2 Improving the relative quality measurement

Improving the relative quality measurement can be achieved by addressing the issue of

different levels of granularity across representations. The information for determining

the ‘collective constructs’ needed to resolve this issue already exists in the rules and

heuristics of the translation definitions in Chapter 5 and Appendix E, and may be used

without altering the SIGs for the representations. It is therefore possible to modify the

previously defined relative quality measurement to take into account the ‘collective

constructs’. SIGs for each representation definition are built as usual. The following

process is then applied for the forward and reverse directions of the translation:

1. In the source SIG, tag all construct nodes that correspond to source constructs of

a rule that can be applied in this direction.

2. In the target SIG, tag all construct nodes that correspond to target constructs of a

rule that can be applied in this direction.

3. For each non-σ edge in both SIGs:

(a) if both end nodes are tagged, also tag the edge; or

(b) if only one end node n1 is tagged but there is a path of selection edges from

the other end node n2 to a similarly-tagged node corresponding to a special-

isation of the construct represented by n2, also tag the edge (this means that

there is at least one tagged specialisation of the untagged construct); or

(c) if neither end node is tagged, but there are paths of selection edges from

both end nodes to similarly-tagged nodes corresponding to specialisations

of the constructs represented by the end nodes, also tag the edge.

This process is illustrated in Figure 8.9 for the translation Rf (FuncDep,FDDSmith) →

Re(E -R,ERDMartin); tagged nodes and edges are indicated by colouring them blue.

236

Note that this process only considers construct nodes and non-selection edges, which

is to be expected. Composite nodes and selection edges are at present only used in

the SIGs to represent generalisation/specialisation, which is taken into account by

steps 3(b) and 3(c) above. Heuristics are not included in Figure 8.9 and will be ex-

amined shortly.

FDElement

FDAttribute + FDAttributeSet

FDAttribute FDAttributeSet

SSAttribute

SSDomainFlag

FDDependency

FDFunctional + FDMultiValued

FDFunctional FDMultiValued

SSMultiValuedSSSingleValued

SSIsolatedBubble
+

FDSource
+

FDTarget

FDTarget

SSIsolatedBubble

FDSource

FDFunctionalTarget + FDMultiTarget

FDFunctionalSource + FDMultiSource

FDFunctionalTarget

SSTargetBubble SSEndKeyBubble

FDMultiTarget

FDFunctionalSource FDMultiSource

SSMultiKeyBubbleSSSingleKeyBubble

σ1

σ4

σ19

σ22 σ23

σ20 σ21

σ3σ2

σ6

σ5

σ7

σ8

σ9

σ14

σ13 σ12

σ10 σ11

σ15 σ16

σ18σ17

contains1

re
fe

re
nc

es source
1

so
ur

ce
2 target

co
nt

ai
ns

2

(a) Source: Rf (FuncDep,FDDSmith)

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(b) Target: Re(E -R,ERDMartin)

Figure 8.9: Applying the modified relative quality measurement (ignoring heuristics)

The final step is to count all tagged source nodes, source edges, target nodes and

target edges. The results of this process for the Rf → Re/Re ⇀ Rf translation are

237

shown in Table 8.3. The numbers in the ‘source’ columns show the proportion of source

constructs and associations between constructs that can be translated from the source

representation by the translation (the ‘#’ and ‘%’ columns show the actual number

of tagged constructs and edges and proportion of the total number of constructs and

edges respectively). The numbers in the ‘target’ columns show the proportion of target

constructs and associations that can be generated in the target representation by the

translation.

Table 8.3: Relative quality measurements for theRf → Re/Re ⇀ Rf translation using
the modified measurement method

SIG forRf (FuncDep,FDDSmith) has 21 construct nodes and 6 non-σ edges.
SIG for Re(E -R,ERDMartin) has 17 construct nodes and 9 non-σ edges.

Tagged Tagged Tagged Tagged
source constructs source edges target constructs target edges

Direction # % # % # % # %
Rf → Re 17 80.95 6 100.00 9 52.94 5 55.56
Re ⇀ Rf 12 70.59 5 55.56 15 71.43 4 66.67

Applying the modified relative quality measurement to the three translations gives

the results shown in Figure 8.10(a). Once again, the translations have been ranked

in approximate descending order of relative quality, and this time the order matches

the original expectations. Further refinement of the relative quality measurement is

discussed in Chapter 10, where the influence of the number of complete and partial

rules in a translation is discussed.

8.5 The effect of heuristics on translation quality

Heuristics may allow an expansion of the expressive overlap between two represen-

tations, as they can map additional constructs between the representations that oth-

erwise could not be mapped. That is, heuristics allow more information to mapped

from one representation to another, which should have a beneficial impact on the qual-

ity of translations between the representations. In theory, the introduction of heuris-

tics could potentially even convert a partial translation into a complete translation,

although this will depend on the nature of the translation and the heuristics involved.

238

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Translation

P
ro

p
o

rt
io

n
 o

f
co

n
st

ru
ct

s/
ed

g
es

 m
ap

p
ed

Src constructs
Src edges
Tgt constructs
Tgt edges

Re ⇀ RdRe ⇀ Rr Re ⇀ RfRr ⇀ Re Rf → Re Rd ⇀ Re

(a) Without heuristics

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Translation

P
ro

p
o

rt
io

n
 o

f
co

n
st

ru
ct

s/
ed

g
es

 m
ap

p
ed

Src constructs
Src edges
Tgt constructs
Tgt edges

Re ⇀ RdRe ⇀ Rr Re ⇀ RfRr ⇀ ReRf → Re Rd ⇀ Re

(b) With heuristics

Figure 8.10: Summary of modified relative translation quality measurements

239

In Figure 8.11 is shown the impact of heuristics on the relative quality of the transla-

tionRf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin). The new nodes and edges that are

translated by heuristics are coloured green. The results are summarised in Table 8.4.

FDElement

FDAttribute + FDAttributeSet

FDAttribute FDAttributeSet

SSAttribute

SSDomainFlag

FDDependency

FDFunctional + FDMultiValued

FDFunctional FDMultiValued

SSMultiValuedSSSingleValued

SSIsolatedBubble
+

FDSource
+

FDTarget

FDTarget

SSIsolatedBubble

FDSource

FDFunctionalTarget + FDMultiTarget

FDFunctionalSource + FDMultiSource

FDFunctionalTarget

SSTargetBubble SSEndKeyBubble

FDMultiTarget

FDFunctionalSource FDMultiSource

SSMultiKeyBubbleSSSingleKeyBubble

σ1

σ4

σ19

σ22 σ23

σ20 σ21

σ3σ2

σ6

σ5

σ7

σ8

σ9

σ14

σ13 σ12

σ10 σ11

σ15 σ16

σ18σ17

contains1

re
fe

re
nc

es source
1

so
ur

ce
2 target

co
nt

ai
ns

2

(a) Source: Rf (FuncDep,FDDSmith)

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(b) Target: Re(E -R,ERDMartin)

Figure 8.11: Applying the relative quality measurement (with heuristics)

Since heuristics are unidirectional, they can obviously only affect the relative qual-

ity of a translation when it is evaluated in the appropriate direction. The impact of

heuristics on the relative qualities of the three translations discussed above is shown

in Figure 8.10(b) on the preceding page, in approximate descending order of relative

240

Table 8.4: Relative quality measurements for the Rf → Re/Re ⇀ Rf translation (with
heuristics)

SIG forRf (FuncDep,FDDSmith) has 21 construct nodes and 6 non-σ edges.
SIG forRe(E -R,ERDMartin) has 17 construct nodes and 9 non-σ edges.

Tagged Tagged Tagged Tagged
source constructs source edges target constructs target edges

Direction # % # % # % # %
Rf → Re 17 80.95 6 100.00 11 64.71 7 77.78
Re ⇀ Rf 12 70.59 5 55.56 15 71.43 4 66.67

quality. The only change in the ordering is that the Rf → Re translation moves into

first position; the relative ordering of the remaining translations is unchanged. Despite

this, the impact of heuristics upon the relative quality of some translations is dramat-

ically evident. The effect of heuristics was also evident when applying translations in

the Swift prototype environment (see Section 6.7.1 on page 175).

The impact of heuristics on individual translation quality is shown more clearly

in Figure 8.12 on the following page, which breaks down the impact in terms of the

source constructs and edges mapped, shown in Figures 8.12(a) and 8.12(b), and the

target constructs and edges generated, shown in Figures 8.12(c) and 8.12(d). There is

no impact on the Rr ⇀ Re and Re ⇀ Rf translations when heuristics are included,

because there are no heuristics to be applied in those directions. The remaining trans-

lations are affected to varying degrees, depending on the number of heuristics and

whether these heuristics allow the mapping of any additional constructs. For instance,

the heuristics of theRe ⇀ Rd translation do not result in the mapping of any additional

source constructs or edges, but do result in additional information being generated in

the target.

The measurements undertaken above have shown that heuristics can result in more

constructs and edges being mapped from the source representation, and more con-

structs and edges being generated in the target representation. Translation quality is

defined in this thesis as how well a translation maps constructs from the source repre-

sentation to the target representation (see Section 2.4.1 on page 28). The above results

show that including heuristics in a translation increases the amount of information

translated, and thus improves the quality of the translation.

It should be remembered, however, that this definition of quality applies only to

241

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
ran

slatio
n

Proportion of source constructs mapped

N
o heuristics

H
euristics

R
e
⇀
R
d

R
e
⇀
R
r

R
e
⇀
R
f

R
r
⇀
R
e
R
f
→
R
e

R
d
⇀
R
e(a)Source

constructs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
ran

slatio
n

Proportion of source edges mapped

N
o heuristics

H
euristics

R
e
⇀
R
d

R
e
⇀
R
r

R
e
⇀
R
f

R
r
⇀
R
e
R
f
→
R
e

R
d
⇀
R
e

(b)Source
ed

ges

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
ran

slatio
n

Proportion of target constructs mapped

N
o heuristics

H
euristics

R
e
⇀
R
d

R
e
⇀
R
r

R
e
⇀
R
f

R
r
⇀
R
e
R
f
→
R
e

R
d
⇀
R
e(c)Targetconstructs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
ran

slatio
n

Proportion of target edges mapped

N
o heuristics

H
euristics

R
e
⇀
R
d

R
e
⇀
R
r

R
e
⇀
R
f

R
r
⇀
R
e
R
f
→
R
e

R
d
⇀
R
e

(d
)Targeted

ges

Figu
re

8.12:Im
pactofheuristics

on
relative

translation
quality

242

translations of descriptions, and does not take into consideration the effect that a heu-

ristic may have on the semantics of a viewpoint. By definition, a heuristic may not

always produce a semantically consistent result. Including heuristics in the enrich-

ment process reduces the likelihood of such inconsistent results being produced, but

it may still be possible for heuristics to be inappropriately applied, thus producing an

inconsistent viewpoint.

The SIG formalism does not capture the changes in viewpoint semantics caused

by heuristics. This is because SIGs only model representations, not viewpoints, and

it is the total content of a viewpoint that determines whether a semantic change is

consistent or not. This line of inquiry, while interesting, has been left as an area for

future research.

8.6 Summary

In this chapter, methods for categorising the expressive overlap of two representations

and measuring the relative quality of translations were defined and applied. These

methods are based on Hull’s (1986) concept of relative information capacity, which pro-

vides a means of describing the relative information content of different schemas, and

Miller et al.’s (1994b) notion of a schema intension graph, which provides a means of

measuring differences in relative information capacity.

It was shown that the expressive power of a representation may be characterised

by the information capacity of the representation’s definition, which means that the

methods developed for comparing relative information capacity of schemas are also

applicable to representations. In particular, it was shown in Section 8.3 that the cat-

egory of expressive overlap between two representations may be determined using

schema intension graphs. From this basis, the author defined a method using schema

intension graphs for measuring the relative quality of translations between represen-

tations. This measure was further refined and used to show that heuristics have a

positive impact on translation quality.

There are outstanding issues with both the method for categorising expressive over-

lap and the relative quality measure, which will be discussed further in Chapter 10. In

the next chapter, the approach taken in this thesis will be evaluated with respect to the

goals of the thesis.
243

Chapter 9

Evaluation of the proposed modelling

approach

9.1 Introduction

In the previous chapters has been outlined an approach to modelling a viewpoint

based on the use of multiple representations and translating descriptions between

these representations. A prototype implementation was described, and a method for

measuring the relative quality of translations was defined and applied. In this chapter,

this approach is evaluated against several goals of the thesis.

The goals of the thesis are:

1. Improve a viewpoint in terms of depth and detail by using multiple representa-

tions to describe the viewpoint.

2. Facilitate the use of multiple representations within a viewpoint by translating

descriptions between representations.

3. Develop a consistent and unified terminology for discussing representations and

translations between them. This has already been discussed in detail in Chap-

ters 3 and 4, and will not be discussed further here.

4. Develop effective ways of specifying translations. This has already been dis-

cussed in Chapters 4, 5 and 7.

5. Use translations to enable the highlighting of potential inconsistencies between

descriptions of a viewpoint.

245

6. Identify ways of improving translation quality. This was examined in detail in

the previous chapter.

7. Show that the approach presented here is novel and practicable.

The translation-based approach is evaluated against goals 1, 2 and 5 in Section 9.2,

in which is presented a complete case study of using Swift to build a new viewpoint.

This study will show examples of improving the depth and detail of a viewpoint, fa-

cilitating the use of multiple representations and highlighting potential inconsistencies

between descriptions.

The novelty of the approach (the first part of goal 7) is examined in Section 9.3.

A survey of five commercial CASE tools was undertaken to determine the extent to

which commercially available tools facilitate the use of multiple representations, and

the results are summarised here. This summary is followed by a more detailed exami-

nation of the three research-based approaches that were briefly discussed in Chapter 2:

MViews, MDM and ORECOM. The approach taken in this thesis is then compared

with the surveyed CASE tools and the three research-based approaches.

The practicability of the approach (the second part of goal 7) is discussed in Sec-

tion 9.4. A general discussion of the tractability of the translation-based approach is

presented, followed by a series of empirical experiments that test the time complexity

of translations within the Swift environment.

9.2 Case study

In this section, the translation-based approach to facilitating the use of multiple rep-

resentations is evaluated using a case study. The case study comprises the building

of a single viewpoint for a small conference centre that hosts conferences for other or-

ganisations. An analyst has been hired to design a conference management system

for the conference centre. The analyst interviews relevant stakeholders and collects a

large amount of information about user requirements. She then proceeds to build a

viewpoint Vconf describing these requirements.

The conference centre merely provides the facilities and organisational infrastruc-

ture for running a conference; they do not organise the conferences themselves. Clients

246

who wish to make use of the centre’s facilities are expected to submit details of the con-

ference, such as a proposed timetable of conference sessions, a list of speakers and the

number of attendees. The conference centre assigns conference sessions to appropriate

rooms and organises other aspects of the day-to-day running of the conference, such

as ensuring that appropriate equipment is installed in each room for each session.

The analyst starts with the process of assigning rooms for conference sessions, and

builds a data flow diagram (DFD) description D1(Vconf ,DataFlow ,DFDG&S) to repre-

sent this process; this DFD is shown in Figure 9.1. The analyst populates the data stores

with the attributes shown in Table 9.1.

Figure 9.1: DFD description D1(Vconf ,DataFlow ,DFDG&S) for the process of assigning
conference sessions to rooms

Table 9.1: Attributes for D1(Vconf ,DataFlow ,DFDG&S)

Conference
conference ID string
conference name string
number of attendees integer

Room
room number string
room name string
capacity integer

Speaker
speaker ID string
speaker name string

Session
session ID string
session date date
session time time

The analyst then sets out to identify any relationships between ‘objects’ in the

viewpoint. This information cannot be expressed by the representation Rd(DataFlow ,

247

DFDG&S) used for description D1, so the analyst translates the description D1 into an

entity-relationship diagram (ERD) description D2(Vconf ,E -R,ERDMartin).

The data stores of D1 are mapped to entities in D2 using rule S1, and in a typical

DFD to ERD translation this is all that would be mapped. Heuristics may be used,

however, to translate additional elements of the DFD. For example, the data flows from

the Conference data store to the Session data store via the Schedule session process

can be mapped by heuristic H2 to a relationship between the Conference and Session

entities. The same applies to the data flows from Room to Session, and from Speaker

to Session.

Each time a heuristic is applied, the proposed mapping is presented to the ana-

lyst, who must then decide whether this is a valid mapping or not. In this case, after

consulting her analysis notes, she decides that all three mappings identified in the pre-

vious paragraph are valid and accepts them. The ERD description D2 produced by the

translation is shown in Figure 9.2.

Figure 9.2: ERD description D2(Vconf ,E -R,ERDMartin) produced by translating de-
scription D1

Comparing description D2 against her notes, the analyst realises that the ERD does

not cater for conference attendees. She also notes that all speakers are attendees, but

not all attendees are speakers, and identifies three options for modelling this:

1. Make speakers and attendees separate subtypes of a Person entity;

2. Make speakers and attendees separate entities linked by a one-to-one relation-

ship; or

3. Combine speakers and attendees into a single entity, with a flag attribute to indi-

cate whether an attendee is a speaker.

248

After further discussion with the clients, she decides that there is insufficient difference

between the data requirements for speakers and attendees to justify either of the first

two options, and adopts the third option. The Speaker entity is therefore renamed

to Attendee and the attributes is speaker and registered are added to this entity. A

conference may have many attendees, so a one-to-many relationship is added from

Conference to Attendee. The modified ERD (D′

2) is shown in Figure 9.3.

Figure 9.3: ERD description D′

2 produced by modifying D2

The analyst now decides to evaluate the consistency of the viewpoint Vconf by

building a new functional dependency diagram (FDD) description D3(Vconf ,FuncDep,

FDDSmith), translatingD3 to produce a new ERD descriptionD4(Vconf ,E -R,ERDMartin),

and comparingD4 with with the existing ERD descriptionD′2. From her analysis notes,

she derives the following list of dependencies:

• attendee ID� session ID

• session ID� attendee ID

• session ID→ room number, date, time, conference ID

• conference ID→ conference name, number of attendees

• conference ID� attendee ID

• room number→ capacity

• attendee ID→ name, is speaker, registered

• equipment ID→ room number, description

249

The FDD description (D3) corresponding to these dependencies is shown in Fig-

ure 9.4. This FDD is then translated into the ERD description (D4) shown in Figure 9.5.

Note that only the Attendee-session associative entity is produced by the application

of a heuristic; the remainder of the ERD is produced by the application of ‘plain’ rules.

Figure 9.4: FDD description D3(Vconf ,FuncDep,FDDSmith)

Figure 9.5: ERD description D4(Vconf ,E -R,ERDMartin) produced by translating de-
scription D3

This new ERD (D4) is clearly different from D
′

2 shown in Figure 9.3. The analyst

uses her knowledge of the user requirements to determine whether these differences

are caused by inconsistencies between the two descriptions. The following potential

inconsistencies have been highlighted as a result of applying the translation:

1. The optionality of several of the relationships is different in both descriptions.

2. The Conference-attendee, Attendee-speaker and Equipment entities all appear

in D4 but not in D′

2.

250

The analyst decides that the differences in optionality are caused by limitations of

the translation rather than being actual inconsistencies. In addition, the relationships

attached to the Conference-attendee entity in D4 prove upon examination to be con-

sistent with the relationship between Conference and Attendee in D′

2. Further exami-

nation reveals that Conference-attendee does not add any new data requirements and

is therefore unnecessary.

The Attendee-session entity in D4 is more interesting as it corresponds to the re-

lationship between Session and Attendee in D′

2. Comparing the relationships in both

ERDs, the analyst realises that there is indeed an inconsistency. The relationship in

D
′

2 is a one-to-many, but the relationships attached to Attendee-session in D4 imply a

many-to-many relationship between Session and Attendee. Upon reflection, the ana-

lyst realises that there should indeed be a many-to-many relationship between Session

and Attendee, and amends D′

2 appropriately.

The Equipment entity inD4 is totally new; it does not correspond to anything inD′2.

The analyst returns her notes and discovers that she inadvertently omitted a require-

ment for rooms to have various pieces of equipment assigned to them. The Equipment

entity should therefore be added to D′2.

The amendments described above produce the description D′′

2 shown in Figure 9.6.

Figure 9.6: ERD description D′′

2 produced by correcting inconsistencies

9.2.1 Discussion

The example presented in this section, while relatively simple, has illustrated the fol-

lowing important points. First, using multiple representations to describe the view-

point Vconf has produced a viewpoint with greater detail than would otherwise be

possible using a single representation. For example, it would be impossible to describe

251

the data flow information embodied in the DFD description D1 if only an ERD repre-

sentation were used to describe the viewpoint. In addition, the use of heuristics has

allowed the extraction of information implicit in the source description that might not

otherwise have been translated, for example, the relationships produced when trans-

lating description D1 into the ERD description D2. That is, the depth and detail of the

viewpoint has been increased as a direct result of applying a translation.

Second, the use of translations has facilitated the use of multiple representations

by allowing the analyst to easily create new descriptions based on already existing

descriptions. Even in cases where the quality of the translation is not particularly good

(such as for the DFD to ERD translation), enough information is translated from the

source description to provide a useful template on which to build, as illustrated by the

translation from description D1 to D2 described above.

Third, the use of translations between representations has enabled the analyst to

more easily identify inconsistencies between descriptions within the viewpoint, as il-

lustrated by the comparison between the ERD descriptions D′2 andD4 above. It would

be more difficult to identify the inconsistencies between the ERD description D′2 and

the FDD description D3 if the translation were not available.

9.3 Novelty of the approach

The idea of performing translations between different modelling representations is not

new, and has been implemented in many tools. Indeed, many commercial CASE tools

include translations, but these are often only used as the final step of the database con-

struction process, for example, generation of SQL schemas from a database design. A

goal of this thesis was to use translations to facilitate the use of multiple representa-

tions, which is something that many CASE tool do not do. In Section 9.3.1, the results

of a survey of five ‘conventional’ CASE tools are presented (the detail of the survey

may be found in Appendix A).

Other researchers have also worked on the idea of performing translations between

representations. In Chapter 2 were briefly discussed three other approaches similar

to that presented here. These three approaches are examined in more detail in Sec-

tions 9.3.2, 9.3.3 and 9.3.4.

252

The approach taken in this thesis is then compared to the three research approaches

and conventional tools in Section 9.3.5.

9.3.1 Survey of ‘conventional’ CASE tools

In this section, the results of a survey of five ‘conventional’ CASE tools are presented

(full details of the survey may be found in Appendix A). The tools were surveyed to

determine the extent to which they facilitate the use of multiple representations and

their support for translations between representations. The tools surveyed were: Visi-

ble Systems’ EasyCASE, Visible Analyst and EasyER/EasyOBJECT; Sybase’s Deft; and

MetaCase’s MetaEdit. EasyCASE and Deft were chosen because full versions were

readily accessible; the remaining tools were chosen because comprehensive demon-

stration versions were available for download from the Internet.

Reiner (1992, p. 445) also surveyed a wide range of CASE tools (including Deft and

EasyCASE), and found that many “depend on a set of fairly independent diagrams,

without a coherent underlying methodology”, and that “there is little visualization

[sic] of progress through the design process, or system tracking of alternative designs”.

This implies a lack of support for facilitating the use of multiple representations.

The results of the CASE tool survey are summarised in Table 9.2 on the following

page. Three of the CASE tools surveyed partially facilitate the use of multiple represen-

tations through the use of a common data dictionary that allows sharing of information

between descriptions. All tools support multiple schemes for various techniques, and

both Deft and EasyCASE allow the user to perform trivial scheme translations.

Most of the tools surveyed do not support non-trivial scheme translations, such as

scheme translations between representations with different expressive powers. The

only exception is EasyER/EasyOBJECT, which supports non-trivial scheme transla-

tions, but the translations it does support are very simple, allowing only one-to-one

mappings between constructs. That is, it is not possible to map collections of source

constructs to a single target construct or vice versa, as occurs, for example, in the

Rf → Re/Rf ↽ Re translation. It is also only possible to modify existing descrip-

tions using these translations, not create new descriptions.

The only technique translations supported by most of the tools are from E-R repre-

253

Table 9.2: Summary of ‘conventional’ CASE tool features

Visible EasyER/
EasyCASE Analyst EasyOBJECT Deft MetaEdit

No. of representations
supported

23a 10a 13a 9a 15

Supports trivial scheme
translations

yes no yes yes no

Supports non-trivial
scheme translations

no no yes no no

Supports technique
translations

yesb yesb yesc yesd no

Facilitates use of multiple
representations

partiale,f partialf yesg partiale,f no

Notes on Table 9.2:
a Each of these tools supports a large number of dialects of SQL, which have been

treated as a single representation for the purposes of this summary. Although each
dialect is, strictly speaking, a different representation, the large number of SQL
dialects tends to skew the results in favour of tools that support many SQL di-
alects. For example, treating SQL dialects as separate representations would give
EasyER/EasyOBJECT a total of fifty-seven representations, forty-five of which are
very similar. Compare this with MetaEdit, which does not support SQL at all, but
nevertheless supports a wide variety of representations.

b E-R↔ relational only.
c Simple translations of corresponding constructs only.
d E-R→ relational only (the reverse is provided by an optional add-on product).
e Integrated data dictionary shares information across descriptions.
f Supports at least one technique translation.
g Simple one-to-one mappings only, and translations do not allow the generation of

new descriptions.

sentations to a database language (usually some dialect of SQL). Visible Analyst also

provides the generation of COBOL or C source code from a collection of descriptions,

and EasyER/EasyOBJECT provides very simple technique translations between E-R

and object representations. EasyCASE, Visible Analyst and EasyER/EasyOBJECT di-

rectly support bidirectional translations from E-R to SQL; Deft provides this feature in

an optional add-on module.

It could be argued that the data dictionary in many of these tools provides similar

functionality to the author’s proposed translation approach, in that the data dictionary

acts as a central repository for common information and ties together several differ-

ent descriptions. In a contemporary CASE tool it is quite possible to create a new

description that should share attributes with others, but does not. This can happen

254

when an unwary developer ‘recreates’ existing attributes with new names. The trans-

lation approach advocated here cannot prevent this, but it does provide a mechanism

for highlighting such inconsistencies, as noted in Section 4.5 on page 86. It can also

ameliorate the problem by allowing the developer to translate an existing description

into the desired target representation, resulting in a template for further development.

Such an activity is not supported by any of the CASE tools reviewed.

In addition, the data dictionaries of conventional tools provide a means of sharing

common elements across descriptions, but not of associating constructs across represen-

tations. In effect, the data dictionaries of conventional tools work at a lower level of

abstraction than the approach proposed in this thesis.

9.3.2 The MViews approach

The MViews framework (Grundy and Hosking, 1993b; Grundy and Hosking, 1993a;

Grundy and Hosking, 1997) is particularly relevant to the work in this thesis, for sev-

eral reasons:

• it is a recent and ongoing project;

• it supports multiple textual and graphical representations;

• multiple descriptions of a viewpoint may be constructed, and translations per-

formed between them via an automatic update propagation mechanism; and

• the update propagation mechanism helps maintain design integrity by ensuring

that multiple descriptions are kept as consistent as possible.

MViews appears to deal with many of the issues described in this thesis. The discus-

sion in this section therefore focuses on how MViews differs from the author’s work.

Many of the concepts in MViews are derived from earlier work on integrated soft-

ware development environments, such as PECAN (Reiss, 1985) and FIELD (Reiss,

1990b; Reiss, 1990a), and therefore the terms used in MViews are derived from soft-

ware engineering rather than viewpoint-oriented methods. There is however a corre-

spondence between the two terminologies, as noted in Table 3.4 on page 65. Current

work with MViews is focused in the areas of (Grundy et al., 1996; Grundy and Hosk-

ing, 1996; Grundy, 1998; Hosking and Grundy, 1995; Hosking et al., 1995):

255

• architectural support for multiple viewpoint representations (‘views’ in MViews

parlance);

• maintaining consistency between multiple graphical and textual representations;

• human interface issues such as how to present inconsistencies to users, how to

support their interaction with inconsistencies, and so on;

• collaborative multiple viewpoint system issues; and

• various applications — mostly software engineering, but also building/architec-

tural design, user interfaces and process modelling.

That is, the main focus is on the implementation issues that arise from facilitating the

use of multiple representations. Translating between representations is part of this, and

work in this area has concentrated on the issue of maintaining consistency across mul-

tiple descriptions (Grundy and Hosking, 1996). Related research has been undertaken

in the area of specifying translations, resulting in the mapping specification language

VML (Amor, 1997) that was used as the basis of the VML-S language defined in Chap-

ter 7. Other than this, there has been little exploration of the translation process itself.

Grundy (1998, personal communication) has stated that the translations already imple-

mented were considered to be “straightforward”, and for this reason the issues arising

from the translation process itself were not explored.

In contrast, a major focus of this research is on the process of translating descriptions

between representations within a single viewpoint, and how the use of translations

impacts upon the information system design and implementation process. Although

the Swift prototype environment was implemented as part of the experimental work,

it is not the main focus of the research and is intended merely as a vehicle for testing

assertions about the translation process. A major aspect of the translation process is

the quality of translations, which is something that the MViews researchers have not

explored in depth. If something cannot be translated automatically by an MViews-

based environment, the user is notified and must make appropriate changes manually.

One contribution of this thesis is the use of heuristics and enrichment to improve the

quality of translations (see Chapter 4).

256

MViews uses an integrated data model (IDM), which corresponds to the inter-

change format interfacing strategy described in Section 2.4.3 on page 30, although the

MViews IDM uses an interesting hierarchical approach to integrating different repre-

sentations (Grundy and Venable, 1995a, Figure 1). Each environment implemented

using MViews has its own integrated data model, which is defined using a variant E-R

representation named CoCoA (Venable, 1993; Venable and Grundy, 1995). Overlaps

between the representations to be integrated are identified and used to create several

partial integrated data models, which are themselves integrated to create the full IDM.

This hierarchical approach may alleviate some of the potential pitfalls of the inter-

change format interfacing strategy that were identified in Chapter 2, although adding

a new representation still requires changes to the IDM (Grundy, 1998, personal com-

munication). Conversely, an approach based on the individual interfacing strategy

allows a new representation to be added with no effect on existing representations or

the repository. It is also not clear how the integrated approach would scale to a large

number of widely dissimilar representations. The published work describes tools that

include only two or three fairly similar representations, although it is suggested that

it is possible to integrate dissimilar representations using this approach (Grundy and

Venable, 1995b).

MViews-based environments generally follow a synchronous approach to transla-

tions, although this is not required by the underlying consistency mechanism (Grundy

et al., 1996; Grundy and Hosking, 1997). Thus, as changes are made to descriptions,

these changes are automatically propagated to other affected descriptions in the view-

point. The potential pitfalls of this approach have already been discussed in Section 3.6

on page 58, and will not be discussed further here. Swift’s translations are asyn-

chronous, so it is possible for descriptions to become temporarily inconsistent with

each other. Translations are manually activated by the user at appropriate points, thus

allowing more flexibility in the use of translations.

Translations in MViews-based environments have in the past been defined in an

ad hoc fashion, but there is now a push to integrate VML support, which should re-

sult in more precisely specified translations. Grundy has already expressed interest

in incorporating some of the ideas developed in this thesis (Grundy, 1998, personal

communication).

257

Recent work with MViews has been directed toward implementing a Java com-

ponent-based environment for building multi-view editing systems (Grundy et al.,

1997b). This environment comprises three parts: a visual notation editor called Build-

ByWire, a ‘componentware’ toolkit called JViews, and a visual editor for building

JViews components called JComposer. JViews includes support for a repository based

on an object-oriented DBMS, although it is not stated which one (Grundy et al., 1997b).

MViews’ approach to repository implementation is similar to that for its integrated

data model: individual repositories are created for each representation, and these are

then integrated to form an integrated repository (Grundy and Venable, 1995a).

In summary, the approach taken in this thesis, while similar to that taken with the

MViews framework, has focused more on the issues arising from the translation pro-

cess and less on the implementation issues for dealing with multiple representations

and translating between them. MViews has a greater emphasis on maintaining con-

sistency among descriptions, and tools implemented using MViews generally follow a

synchronous approach to consistency maintenance. MViews is built around an inter-

change format interfacing strategy using an integrated data model that is built specif-

ically for each environment, whereas this research follows the individual interfacing

strategy that provides potentially higher quality translations. The individual interfac-

ing strategy can also provide more flexibility in the use of translations and makes it

easier to extend an environment with new representations.

9.3.3 The MDM approach

Atzeni and Torlone’s (1997) MDM environment facilitates the use of multiple rep-

resentations using a translation-based approach. Representations are defined using

a highly-abstract metamodel derived from Hull and King’s (1987) Generic Semantic

Model, which was in turn derived from the IFO model (Abiteboul and Hull, 1987).

This metamodel comprises at least the following four metaconstructs (Atzeni and Tor-

lone, 1993):

Lexical: allows the definition of constructs whose elements have printable values,

such the RMDOMAIN construct.

258

Abstract: allows the definition of constructs whose elements have non-printable val-

ues, such as the ERENTITYTYPE or DFEXTERNALENTITY constructs.

Aggregation: allows the definition of constructs whose elements comprise sets of tu-

ples of simpler elements. The components of an aggregation may comprise lexi-

cal, abstract or aggregation constructs. The RMRELATION construct is an exam-

ple of an aggregation.

Function: allows the definition of constructs whose elements are functions from one or

more elements to another element. The RMATTRIBUTE construct is an example

of a function that maps RMRELATION constructs to RMDOMAIN constructs.

Atzeni and Torlone (1996b) later added the grouping and hierarchy metaconstructs, but

no definition of these was provided. It is claimed that these six metaconstructs are ad-

equate to define most representations (Atzeni and Torlone, 1996b); if a representation

is discovered with constructs that do not fit into the existing metamodel, it must be ex-

tended with new metaconstructs. It is expected, however, that this would not happen

very often.

Atzeni and Torlone (1996b, p. 122) claim that constructs corresponding to the same

metaconstruct will have the same semantics. This seems reasonable when comparing,

for example, an ERENTITYTYPE construct with an object-oriented class — these both

correspond to the abstract metaconstruct, and have similar semantics. It is not so clear,

however, when comparing an ERENTITYTYPE construct with a DFEXTERNALENTITY

construct. While both of these would appear to correspond to the abstract metacon-

struct, the semantics of the two constructs are quite different. An external entity repre-

sents something that is by definition ‘outside’ the description, yet it may provide data

required by other elements in the description. Entities, by contrast, are ‘internal’ to a

description. In fact, it can be shown that the ERENTITYTYPE construct corresponds

more closely to the DFDATASTORE construct (see Appendix E).

The likely reason for this problem is that Atzeni & Torlone have focused purely

on ‘structural’ semantic data models, in particular the E-R approach, the relational

model and the functional model, and have ignored process-oriented models such as

data flow and state-transition modelling. The Generic Semantic Model, from which

Atzeni & Torlone’s metamodel is derived, was developed for use in a survey of se-

259

mantic data modelling approaches (Hull and King, 1987) and also does not consider

process-oriented models. One solution could be to define new metaconstructs corre-

sponding to various process-oriented constructs.

Every ‘instance’ of the MDM environment has a collection of representations (re-

ferred to as ‘models’) defined within it. These representations are combined to form a

‘supermodel’, which is then used to store descriptions within the environment. That is,

MDM follows the interchange format interfacing strategy. The number of translations

required by such a strategy is normally 2n, where n is the number of representations.

MDM only requires n translations, however, because the supermodel is built by taking

the union of all representations currently in the system. That is, the supermodel is in-

clusive of all the other representations: ∀i,Ri � Rsupermodel. Any description that is an

instance of representation Ri is also an instance of Rsupermodel, so the only translations

required are those from the supermodel to individual representations. A side-effect of

this arrangement is that the supermodel must be regenerated every time a new repre-

sentation is added.

Translations in MDM are automatically derived from a collection of elementary

translations that “implement the standard translations between simple combinations

of constructs” (Atzeni and Torlone, 1997, p. 528), although it is not clear what they

mean by ‘standard’. These elementary translations are assumed to be correct. Trans-

lations are defined as a collection of rules, specified using a graph-based formalism

that defines mappings between groups of constructs, known as patterns. The basic

translations are also highly abstract, in keeping with the abstract metamodel, for ex-

ample, replacing n-ary aggregations with binary aggregations and replacing complex

attributes with simple attributes.

The major feature of the approach taken with MDM is that translations are defined

in the context of a formal lattice framework (Atzeni and Torlone, 1995), which means

that it is possible to formally verify various properties of translations. A translation

is correct if it always produces a valid description in the target representation. The

lattice framework also provides a measure of the quality of translations, as the lattice

imposes a partial order on sets of patterns. Atzeni and Torlone define ‘quality’ as the

number of rules used to complete a translation; the smaller this number, the higher

the quality of the translation. A minimal translation is a correct translation that uses

260

the least possible number of rules. A minimal translation is also optimal if no other

minimal translations exist. Atzeni & Torlone do not appear to have explored the issue

of rule exclusion, although they do mention the concept of subsumption with respect

to patterns (Atzeni and Torlone, 1996a). It may be that the highly abstract nature of

their metamodel reduces the overlaps among rules and thus eliminates rule exclusion.

In summary, the approach taken with MDM has focused mainly on the formal

specification of representations and translations, and the derivation of various formal

properties of those translations. The approach is restricted to semantic data models

and does not consider other modelling approaches such as process-oriented models.

In contrast, the approach followed in this research has from the outset explicitly in-

cluded a variety of different modelling approaches. The abstract approach to defining

constructs in MDM allows representations and translations to be defined in a more

‘bottom-up’ fashion, as opposed to the ‘top-down’ approach followed in this thesis,

but the assumption that constructs drawn from the same metaconstruct have the same

semantics may not always hold.

9.3.4 The ORECOM approach

Su et al.’s (1992) ORECOM is an object-oriented model that has been used to build a

multiple-representation schema translation environment; the name stands for ‘Object-

oriented Rule-based Extensible COre Model’. The main goals in implementing this ap-

proach were to support the integration of multiple heterogeneous data sources and/or

schemas for use in heterogeneous database systems, and the exploration of schema and

data model translation, particularly between object-oriented and some of the richer se-

mantic data models. ORECOM supports at least the following representations: IDEF-

1X (National Institute of Standards and Technology, 1993), NIAM (Verheijen and van

Bekkum, 1982), EXPRESS (ISO-IEC, 1992b), SDM (Hammer and McLeod, 1981), OMT

(Rumbaugh et al., 1991) and OSAM* (Su et al., 1989). All of these are ‘structural’ repre-

sentations — there is no mention of process-oriented representations such as data flow

or state-event modelling.

ORECOM follows the interchange format interfacing strategy (Su et al., 1992, pp. 5–

8) — all descriptions are stored using the ORECOM model. The individual interfacing

strategy was not used for several reasons, two of which are particularly relevant here.

261

First, it is claimed that translations under the individual interfacing strategy are not

specified in a uniform manner, due to the translation algorithms being representation-

specific. This has been successfully addressed in this thesis by the use of VML-S as a

uniform translation specification language. Second, it is claimed that translation algo-

rithms cannot be shared across individual translations, for example, “two mappings

between E-R and the relational model . . . need two different algorithms; one for each

direction”. Again, this has been addressed in this thesis by the use of VML-S to specify

bidirectional translations, and also to some extent by the use of technique-level rules,

which allow some rules to be shared across several translations.

A representation is converted into ORECOM by decomposing its constructs and se-

mantic constraints into collections of primitive ORECOM constructs and constraints.

ORECOM has three primitive structural constructs: objects and classes, which are iden-

tical to the concepts of object and class in object-oriented programming; and associa-

tions, which are binary relationships between classes. A class is either a domain class,

which represents atomic data types like integers and characters, or an entity class,

which can represent complex data types such as ‘person’ or ‘address’. N-ary associa-

tions are represented in ORECOM by a collection of binary associations and an associ-

ated collection of ORECOM constraints to capture the additional semantic properties

of the n-ary association.

Semantic constraints of representations (such as cardinality and inheritance) are

expressed in ORECOM by a collection of primitive constraints known as micro-rules.

These are triggered by certain operations on a class, and capture those semantic con-

straints that are not captured by the structural constructs. Specification of a particular

representation’s semantic constraints can require a large number of these micro-rules,

however, making comparison of representations difficult (Su et al., 1992, p. 16). The

solution used in ORECOM is to group collections of micro-rules into higher-level se-

mantic constraints that occur across many different representations. These collections

are known as macros, and include the following (Su and Fang, 1993, Section 3.2): mem-

bership, participation, cardinality, inheritance, privacy1 and dependency. Macros can

effectively be thought of as representation-independent semantic constraints.

1This is the concept of visibility used in many object-oriented programming languages (for example,
public vs. private methods in C++), and is typically restricted to object-oriented representations.

262

ORECOM follows a similar approach to extensibility as that taken by Atzeni and

Torlone (1997) with MDM — when a new representation introduces constructs and

constraints that cannot be decomposed into ORECOM constructs and constraints, the

model may be extended by defining new primitive constructs and constraints. As with

MDM, it is expected that this would not happen very often.

An environment for performing schema translations has been built around ORE-

COM. Since all representations are defined using ORECOM primitives, the data model

translation system can readily compare the constructs and constraints of the source

and target representations. From this comparison is built an equivalence matrix that

identifies the closest matches between constructs in each representation. The schema

translation system then uses this table to translate schemas from one representation to

the other.

In summary, ORECOM follows an approach similar to that taken by Atzeni and

Torlone (1993) in that both use an abstract metamodel to define representations, and

translations between representations are automatically derived from representation

definitions. The major difference is that ORECOM is based on an object-oriented model

rather than a mathematical one. ORECOM’s micro-rules are, however, defined using

a first-order calculus, which provides scope for proving the correctness of translations.

The main focus of work with ORECOM has been on performing translations between

‘structural’ semantic data models and object-oriented models, especially in the context

of heterogeneous database systems. In particular, Su and Fang (1993) have identified

the following possible applications:

• schema sharing;

• schema translation in the context of a heterogeneous DBMS;

• schema integration;

• schema verification and optimisation;

• semantics modification and extension before conversion, that is, extending the

semantics of a description before translating it to another representation (analo-

gous to the concept of pre-enrichment discussed in Section 4.6 on page 91); and

263

• helping users to learn new modelling representations (all representations are de-

composed into a standard form, making it easier to compare representations).

9.3.5 Discussion

Of the five ‘conventional’ tools surveyed, only one (EasyER/EasyOBJECT) facilitates

the use of multiple representations to any useful extent, and even this support is lim-

ited, and possibly unintentional. The three research-based approaches discussed ad-

dress the use of multiple representations in varying ways. The MViews approach is fo-

cused on maintaining consistency among multiple descriptions. The MDM approach is

focused on the formal specification of representations and translations, and the deriva-

tion of formal properties of translations. The ORECOM approach is focused on the

translation of schemas between representations for the purpose of building heteroge-

neous database systems.

The individual interfacing strategy is used in this research as a basis for defining

translations. Those conventional tools that provide translations also follow this ap-

proach, although this is more likely a result of their limited translation support than

any conscious design decision2. The three research approaches all follow the inter-

change format interfacing strategy. The MDM and ORECOM approaches are particu-

larly interesting in this respect — their use of extremely abstract or primitive constructs

to define representations may ameliorate the problem of interchange format complex-

ity (Su et al., 1992, p. 7). This is because neither approach attempts to define the inter-

change format in terms of existing modelling constructs; rather, modelling constructs

are decomposed into primitive forms. All three approaches still suffer from the issue

of extending the interchange format to handle new representations, although Atzeni

and Torlone (1996a) partially address this by automating the process of generating the

new interchange format.

One goal of this research was to enable the highlighting of potential inconsisten-

cies within a viewpoint using translations. Translations may be used to highlight in-

consistencies among descriptions by translating descriptions expressed using different

representations into the same representation, then comparing them (see Section 4.5 on
2Many CASE tools are now embracing the Unified Modelling Language (Rational Software Corpo-

ration, 1997) as an interchange format for object-oriented design.

264

page 86). Of the approaches and tools surveyed, only MViews makes any mention

of design consistency, but this is oriented toward maintaining consistency among de-

scriptions as they evolve in parallel, rather than highlighting potential inconsistencies

among a collection of descriptions. The other approaches have not explored this issue.

Another goal of this research was to identify ways of improving translation qual-

ity. All three research-based approaches have some notion of translation quality. The

MDM approach in particular has an inherent notion of translation quality (Atzeni and

Torlone, 1996a), but this is defined in terms of the number of rules required to perform

a translation, rather than how well a translation maps constructs from one representa-

tion to another. Atzeni and Torlone (1996a) do define the notion of a preferable transla-

tion, but other than this, none of the three research approaches discuss methods of how

translation quality might be improved. The author introduced the concept of a heuri-

stic in Chapter 4 as one possible mechanism for improving the quality of translations,

which was shown to be effective in Chapter 8. None of the three research approaches

use heuristics, and it would probably be difficult to introduce heuristics into either the

MDM or ORECOM approaches, as both of these rely on translations being automati-

cally derived from representation definitions. Heuristics by their very nature cannot

be derived in this manner. MDM may be more amenable to the inclusion of heuristics,

as it builds translations from a collection of predefined ‘basic’ translation rules. Trans-

lation definition in MViews-based environments follows an approach similar to that

followed in this thesis, so incorporating heuristics into the MViews framework or its

derivatives should be possible.

The second approach to improving translation quality discussed in Chapter 4 is the

process of enrichment. None of the three research approaches make any explicit men-

tion of enrichment during a translation, which can result in a higher-quality translation

than would otherwise be possible. One of the proposed applications of ORECOM

was to support the pre-enrichment of schemas before translation (Su and Fang, 1993),

and it seems likely that pre-enrichment is supported by all three approaches. Post-

enrichment involves the manual modification of descriptions after they have been

translated, so all three approaches support it by definition. When information cannot

be directly translated, MViews environments can provide hints to aid post-enrichment

by generating a textual description of what changes are required.

265

Translation rules in this thesis are expressed at a high level using an abstract nota-

tion, while detailed specifications of rules are expressed using an extended variant of

Amor’s (1997) View Mapping Language (VML), known as VML-S. MViews does not

have a high-level abstract notation, and translation rules were originally specified in a

somewhat ad hoc manner. There has, however, been recent work on incorporating a

new version of VML into the MViews frameworks (Grundy, 1998, personal communi-

cation). Both MDM and ORECOM use an algebraic notation for expressing translation

rules. MDM’s algebraic notation may also be expressed in graphical form. All of these

notations are, however, low-level and very detailed. None of the three approaches

defines a high-level abstract notation like that described in this thesis.

Of the three research approaches, only MDM has a notion of rule subsumption,

which differs from that presented in Chapter 4. None of the three approaches identify

the issue of rule exclusion, which can have a significant impact on how rules are eval-

uated during a translation. Rule exclusion may not be an issue in either MDM or ORE-

COM, however, as translation rules are automatically generated in both approaches

rather than being defined in advance.

In summary, the approach followed in this thesis compares well with existing ap-

proaches, and introduces the following novel aspects:

• an abstract notation for expressing translation rules at a high level;

• the issue of rule exclusion and ways of dealing with it, including extensions to

VML;

• use of translations to highlight potential inconsistencies between descriptions

within a viewpoint; and

• use of heuristics and enrichment to improve the quality of translations.

Table 9.3 summarises the differences in approach between this research and MViews,

MDM and ORECOM.

266

Table 9.3: Comparison of research approaches

This research MDM MViews ORECOM

Interfacing
individual

interchange interchange interchange
strategya format format format

Underlying viewpoint graph theoretic
unknown

object-oriented
frameworkb framework framework framework

Translation abstract nota- abstract
ad hoc/VML n/ad

specificationc tion/VML-S notation

Consistency
asynchronous unknown synchronous asynchronous

mechanisme

Translation rules &
rulesd update equivalence

propagationf heuristics records matrix

Formal relative trans- correctness, complete-
n/ah correctness

propertiesg lation quality ness, ‘quality’

Notes on Table 9.3
a Discussed in Section 2.4.3 on page 30.
b Discussed in Section 2.3 on page 15 and Chapter 3 on page 39.
c Discussed in Section 4.4 on page 78 and Chapter 7.
d Translation rules are automatically derived.
e Discussed in Section 3.6 on page 58.
f Discussed in Section 4.2.
g Discussed in Section 8.4 on page 232.
h Work on MViews has focused on consistency maintenance methods rather than for-

mal proofs.

9.4 Practicability of the approach

One of the goals of this research is to show that the translation-based approach to

facilitating the use of multiple representations is practicable. A general discussion of

the tractability of the approach is presented in Section 9.4.1, with an emphasis on the

time complexity of translations with respect to the number of elements in the source

description. The factors affecting the time complexity of translations are identified, and

four predictions are made with respect to the time complexity of translations. These

predictions are then empirically tested by performing various timing tests with Swift;

the design, implementation and results of these tests are discussed in Section 9.4.2.

267

9.4.1 Tractability of translations

There are two major concerns with the tractability of the approach presented in this

thesis:

1. the O(n2) number of interfaces implied by the individual interfacing strategy;

and

2. how well translations scale to more complex source descriptions.

Much of this thesis has focused on the translation process and in particular the

quality of translations. The individual interfacing strategy was adopted by the author

because it allows for the best quality translations compared to other interfacing strate-

gies (Pascoe and Penny, 1990). The number of interfaces required by the interfacing

strategy was a secondary concern. Unfortunately, the individual interfacing strategy

requires n(n−1)/2 interfaces in order to provide a complete set of translations between

n representations, which can rapidly become problematic even for relatively small n.

For example, the four representations discussed in this thesis would require a total of

only six interfaces, but adding only five more representations would increase the num-

ber of interfaces required to thirty-six. Even if many of the interfaces were trivial (that

is, changing only the appearance of the notation), the number of interfaces required

could still rapidly become unwieldy.

One solution to this issue would be to accept a decrease in potential translation

quality and adopt the interchange format interfacing strategy, which would reduce

the total number of interfaces required to 2n. Alternatively, it may be possible to re-

place certain interfaces with composite translations without affecting overall transla-

tion quality; this has been left as an area for future research and is discussed further in

Section 10.8 on page 295.

Of more concern here is how well translations scale to more complex descriptions,

particularly with respect with the time t taken to perform translations. This time is

affected to varying degrees by the following factors:

1. the number of rules available for the translation;

2. the complexity of the translation itself, characterised by the internal complexity

of its rules and the amount of rule subsumption;

268

3. the number of elements in the source description; and

4. the complexity of the source description, characterised by the level of ‘intercon-

nectedness’ of its elements.

When performing a translation in a particular direction, some number of rules ra

will be available for use in that direction. Note that ra may be less than the total number

of rules r, as some rules may be unidirectional in the opposite direction and hence

inapplicable. The value of ra will typically not change very often, but the number of

rules actually used during a translation may be less than ra, as not all available rules

may be applicable to the elements of the source description. That is, the number of

rules actually used during a translation is highly variable and determined by the source

description, while the number of available rules is effectively constant. Consequently,

the size and complexity of the source description are likely to have a greater impact

than the number of rules in determining the translation time t.

The complexity of a translation is affected by the internal complexity of its rules

and the amount of rule subsumption. The internal complexity of an individual rule

is determined by the number of source and target constructs in the rule definition.

The simplest possible rule maps a single source construct to a single target construct;

adding more source and target constructs increases the internal complexity of the rule.

Rule subsumption (see Section 4.7.1 on page 98) also affects the complexity of a trans-

lation. If one rule subsumes another, then potentially both rules must be checked to

see if they are applicable, which will take more time.

The simplest possible translation therefore comprises rules that map only single

source constructs to single target constructs, and has no subsumed rules. Consider the

translation Re(E -R,ERDMartin) ⇀ Rd(DataFlow ,DFDG&S), which was summarised in

Table 5.5 on page 141: six out of seven available rules are as simple as possible, and

there are only two rule subsumptions. Contrast this with Rf (FuncDep,FDDSmith) →

Re(E -R,ERDMartin), which was summarised in Table 5.4 on page 136: three out of

fifteen available rules are as simple as possible, and there are twenty-two rule sub-

sumptions. The latter translation is more complex, and should therefore take longer

to perform than the former translation. The complexity of a translation is effectively

a multiplier on the number of rules ra and will typically not change very often, so the

269

complexity of a translation can be considered constant with respect to its effect on t.

The number of source elements n will vary widely for each source description.

Some descriptions may have only a few elements, while others may have hundreds

or thousands of elements. Not all of these elements may be translated, however, as

their associated constructs may have no analogue in the target representation. The

wide variability of n and its impact on the number of rules used suggests that n will

have a more significant impact on translation times than either the number of rules

used or the complexity of the translation.

The relationship between n and t is affected by the level of ‘interconnectedness’ of

elements in the source description. Elements become interconnected by being asso-

ciated with each other in a description (for example, an entity is associated with its

attributes, and vice versa). For identical values of n, a description that has a higher

level of element interconnectedness should take longer to translate than a description

with a lower level of element interconnectedness.

It is possible to represent the interconnectedness of elements in a description using

a non-directed graph I = (V, E)where V is a set of vertices representing the elements of

the description, and E is a set of edges representing the associations between elements.

An edge eij = (vi, vj) represents an association between the elements represented by vi

and vj. An example of such an ‘interconnectedness graph’ is shown in Figure 9.7 for

the subset of the used cars ERD description shown in Figure 9.8(a) on page 272.

The number of associations in which an element participates is represented in the

interconnectedness graph I by the degree of the vertex corresponding to the element.

By averaging the degrees of all vertices in I , it is possible to gain an indication of the

overall level of element interconnectedness i in a description. The value of i represents

the average number of times an individual element is associated with other elements

in the description. It could be argued that the median degree provides a more ‘stable’

indication of interconnectedness, as it is not skewed by a small number of highly-

interconnected elements (for example, thirty elements of degree one and one element

of degree thirty produces an average of 1.94 but a median of one). The median degree,

however, may not differentiate between descriptions with different levels of intercon-

nectedness. For example, the FDD shown in Figure 9.8(d) on page 272 must have a

higher level of interconnectedness than the FDD shown in Figure 9.8(c), because it

270

contains more nested elements. Despite this, both FDDs have a median degree of two,

whereas the average degrees are 2.17 and 1.8 respectively. In effect, the median degree

‘filters out’ highly-interconnected elements.

customer
record

customer
no

customer
PK

name

salesrep
entity

salesrep
record

comm.
rate

salesrep
PK

salesrep
id

buys

purchase
entity

sells

customer
entity

address
phone

purchase
record

purchase
FK2

purchase
FK1

purchase
FK3

purchase
id

purchase
PK

purchase
date

purchase
price

car
entity

bought

car
record

registration

car
PK

VIN make

model

year

colour

car
FK2

sale
id

odometer

miles
km

list
price

Figure 9.7: The interconnectedness of elements in a description

One particular manifestation of element interconnectedness is that it may be pos-

sible for elements to be associated in such a way that a single element is processed

by several rules, including multiple instances of the same rule. For example, the Ex-

periment entity in the unnormalised agricultural ERD (see Figure 9.8(b) on the next

page) participates in four many-to-many relationships with four different entities. If

this description were translated by Re(E -R,ERDMartin)⇀ Rr(Relational , SQL/92), the

Experiment entity would be processed four times by rule S8, each time in combination

with a different entity and relationship.

For the simplest possible translation, t should be proportional to the number of

source elements, that is, O(n). Re ⇀ Rd is an example of such a translation. More

complex translations raise the possibility of elements being processed several times in

271

Salesrep

CustomerPurchase

Car

buys

sells

bought

(a) ‘Used cars’ base ERD

Experiment

Sheep

Fertiliser

Grass

Paddock

applied

sown

used

tested

(b) ‘Agricultural’ base ERD

DOB GENDER

HEALTH

BREED_NAME

DETAILS +
FLOCK_SIZE

SHEEP_ID

(c) ‘Agricultural’ base FDD

CRITERION_NAME

MARK + COMMENTS

PARENT_ANSWER 2

ANSWER_ID MARK +
COMMENTS

ELEMENT_ID

2

NUMBER + MARKS +
GUIDELINES

PARENT_QUESTION 1

QUESTION_ID 1

(d) ‘Marks’ base FDD

…

SKA

TA

A1 A2 A3

A4
A97

A98 A99 A100

1 1 1 1

1

(e) ‘More interconnected’ FDD

SKA

TA
TA2

A1
A101

A2
A102

A3
A103

A4
A104

A97 A98 A99 A100

…

(f) ‘Less interconnected’ FDD

Figure 9.8: Descriptions used for translation time testing

272

different combinations with other elements. In the worst case, every element would be

combined with every other element, yielding a time complexity of O(n2). It is unlikely,

however, that every element will be combined with every other, so the translation time

t will typically be proportional to some fraction of n2. Rf → Re is an example of such

a translation. It is unclear at present at which point the complexity of a translation

would be sufficient to change its time complexity from O(n) to O(n2).

9.4.2 Complexity testing

Four predictions can be identified from the discussion in the previous section:

1. The translation Rf (FuncDep,FDDSmith) → Re(E -R,ERDMartin) is more complex

than Re(E -R,ERDMartin) ⇀ Rd(DataFlow ,DFDG&S), and should therefore take

longer to perform.

2. As the level of interconnectedness (i) of elements in the source description in-

creases, so too should the translation time t.

3. The time t taken to perform a simple translation such asRe ⇀ Rd should beO(n),

where n is the number of source elements.

4. The time t taken to perform a more complex translation such asRf → Re should

be O(n2).

To test these predictions, a series of experiments were carried out using Swift. Six

distinct viewpoints were defined, which are summarised in Table 9.4 on the following

page. The first four viewpoints were designed to test the effect of increasing n on the

translation time t, and were built by taking small subsets of the sample viewpoints

described in Appendix C. For each viewpoint, a base description was defined; these

descriptions are shown in Figures 9.8(a)–9.8(d). The elements of each base description

were then replicated to simulate progressively larger descriptions. This allowed n to

increase without affecting the level of interconnectedness i.

The two remaining viewpoints were designed to directly test the effect of element

interconnectedness on translation time, and were artificially generated. Both view-

points comprised a collection of functional dependency descriptions whose level of

273

Table 9.4: Summary of test viewpoints

Viewpoint Translation Range of n Interconnectedness (i)
‘Used cars’ ERDs Re ⇀ Rd 38–3040 2.53
‘Agricultural’ ERDs Re ⇀ Rd 47–3760 2.89a

‘Agricultural’ FDDs Rf → Re 20–1600 1.80
‘Marks’ FDDs Rf → Re 36–1440 2.17
More complex FDD Rf → Re 307–408 1.34–2.00
Less complex FDD Rf → Re 307–408 1.34–1.51

Notes on Table 9.4:
a Due to incomplete implementation of the Re ⇀ Rd translation, not all of this de-

scription is translated, resulting in an effective interconnectedness of 2.29. This is
discussed further on page 275.

interconnectedness i gradually increased, but at differing rates. Descriptions for the

fifth viewpoint were generated as follows:

1. Create a single-key bubble and a target bubble, each containing a single attribute

(SKA and TA respectively).

2. Create a functional dependency linking the single-key and target bubbles.

3. Create 100 isolated bubbles, each containing a single attribute (A1–A100).

4. Attach a domain flag to the single-key attribute SKA, and also to some number

of the isolated bubbles’ attributes.

Part of one of these descriptions is shown in Figure 9.8(e). The intent was to produce

a single highly-interconnected element (the domain flag). While n could not be kept

constant, the impact of n was reduced by minimising the number of elements added

to the description as i increased.

Descriptions for the sixth viewpoint were generated as follows:

1. Create a single-key bubble containing a single attribute (SKA), and a target bub-

ble containing two attributes (TA and TA2).

2. Create a functional dependency linking the single-key and target bubbles.

3. Create 100 isolated bubbles, each containing a single attribute (A1–A100).

4. Add a second attribute (Ar) to some number r of the isolated bubbles.

274

This had the effect of producing descriptions with the same numbers of elements as

those in the fifth viewpoint, but with smaller i for identical n. Part of one of these

descriptions is shown in Figure 9.8(f).

All tests were run under the default Java virtual machine settings, which provide

up to 16 megabytes of heap space. The Re(E -R,ERDMartin) descriptions were trans-

lated into Rd(DataFlow ,DFDG&S) and the Rf (FuncDep,FDDSmith) descriptions were

translated into Re. For each description, the translation was performed fifty times and

the execution times averaged. Using Microsoft Excel, these values were then plotted

against n, and Excel’s ‘trendline’ feature was used to fit a curve to the observed data.

The results of the tests are shown in Figure 9.9 on the next page.

It can be seen from Figures 9.9(a)–9.9(d) that the Rf → Re translation takes con-

siderably longer than the Re ⇀ Rd translation, which confirms prediction 1. Even for

small values of n, the time taken to performRf → Re is at least an order of magnitude

greater than that for Re ⇀ Rd.

Next, it can be seen from Figures 9.9(a) and 9.9(b) that the time taken to perform

the translation Re ⇀ Rd appears linear with respect to n, which is strong evidence

in favour of prediction 3. This could have been tested further using even larger de-

scriptions than those already used, but this proved impractical due to the very long

time required to load large descriptions into Swift (on the order of about 30 minutes

for the largest description tested). The loading delay appears to be caused by the Java-

Postgres95 interface, and could perhaps be improved by reimplementing the reposi-

tory using a pure object DBMS.

Unexpectedly, the translations for the used cars ERDs took longer than those for the

agricultural ERDs, despite the agricultural ERDs having higher i (2.89) than the used

cars ERDs (2.53). The agricultural ERDs have higher i because they are unnormalised,

whereas the used cars ERDs are normalised. In particular, the Experiment entity has

an unnormalised internal structure. On further investigation, the author discovered

that the Re ⇀ Rd translation had not been fully implemented and did not deal with

unnormalised structures. As far as the translation was concerned, the unnormalised

structures within the Experiment entity did not exist, producing an effective i of 2.29

instead of 2.89. This reduced value of i is less than that for the used cars ERDs, and

hence consistent with prediction 2.

275

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 50 100 150 200 250

Number of source elements

A
ve

ra
g

e
ti

m
e

 (
s)

 Agricultural
 Used cars

Re(E -R,ERDMartin)⇀ Rd(DataFlow,DFDG&S)

t

n

(a) n vs. t (ERD descriptions, n ≤ 5)

y = 6E-05x - 0.001
R2 = 0.9995

y = 4E-05x - 0.0016
R2 = 0.9989

0.00

0.05

0.10

0.15

0.20

0 500 1000 1500 2000 2500 3000 3500

Number of source elements

A
ve

ra
g

e
ti

m
e

 (
s)

 Agricultural
 Used cars

Re(E -R,ERDMartin)⇀ Rd(DataFlow ,DFDG&S)

t

n

(b) n vs. t (ERD descriptions)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

Number of source elements

A
ve

ra
g

e
ti

m
e

 (
s)

 Marks
 Agricultural

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin)

t

n

(c) n vs. t (FDD descriptions, n ≤ 5)

y = 6E-06x2 + 0.0015x - 0.0053
R2 = 0.9997

y = 1E-05x2 + 0.0006x + 0.0628
R2 = 1

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Number of source elements

A
ve

ra
g

e
ti

m
e

 (
s)

 Marks
 Agricultural
 (32 MB)

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin)

t

n

(d) n vs. t (FDD descriptions)

0

1

2

3

4

5

300 310 320 330 340 350 360 370 380 390 400 410

Number of source elements

A
ve

ra
g

e
ti

m
e

 (
s)

 ‘Less complex’
 ‘More complex’

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin)

t

n

(e) n vs. t (interconnectedness)

0

1

2

3

4

5

1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Level of interconnectedness

A
ve

ra
g

e
ti

m
e

 (
s)

 ‘Less complex’
 ‘More complex’

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin)

t

i

(f) i vs. t

Figure 9.9: Results of Swift translation time testing

276

The results for Rf ⇀ Re are shown in Figure 9.9(c) and 9.9(d), where the time

taken to perform the translations is clearly not linear in n. The best-fit curve for both

viewpoints is an order two polynomial, that is, the translation time is proportional to

n2, which supports prediction 4. It should be noted however, that the x2 coefficients of

the polynomials are both very small (on the order of 10−5 for the marks FDDs and 10−6

for the agricultural FDDs). That is, while t is proportional to n2, this does not begin to

have a significant effect until n is very large, on the order of about 1,000 elements (the

largest ‘normal’ description used in this thesis has 109 elements). The predicted time

for a Marks FDD containing 1,000 elements is approximately 11.7 seconds, which is

still reasonable for practical use. Performance could probably be further improved by

compiling the translations to native machine code rather than executing them through

the Java virtual machine.

There was a possibility that the n2 curve was caused by Java’s garbage collection

mechanism, although this seemed unlikely given the results of the ERD tests. To elimi-

nate garbage collection as a factor, the tests were re-run twice on the largest agricultural

FDD, first with thirty-two megabytes of memory allocated to Java, and then with 128

megabytes. Allocating thirty-two megabytes reduced the translation time by approxi-

mately one second (indicated by the hollow diamond in Figure 9.9(d)). Allocating 128

megabytes reduced the time by a further quarter of a second. Neither reduction was

sufficient to produce a linear relationship between n and t.

The curve for the marks FDDs is noticeably steeper than that for the agricultural

FDDs. As with the first pair of translations, this is because the marks FDDs have a

higher degree of interconnectedness (2.17) compared with the agricultural FDDs (1.8).

This is further evidence in support of prediction 2.

Prediction 2 is further borne out by the results shown in Figure 9.9(e), where the

more interconnected description takes longer to translate than the less interconnected

description for identical values of n. Interestingly, when the interconnectedness values

of these descriptions are plotted against t, as shown in Figure 9.9(f), the two curves

are not identical, as might be expected. Rather, the curve for the ‘less interconnected’

description is steeper. The author is at present unable to explain this phenomenon; it

may imply some additional factor that has not yet been identified. Further investiga-

tion and experimentation with a wider range of descriptions is therefore required.

277

9.5 Summary

In this chapter, the approach taken in this thesis was evaluated against the goals of

the thesis. In Section 9.2, a case study was presented of building a new viewpoint

using Swift, showing how the proposed approach achieves various thesis goals. In

Section 9.3, the approach taken here was compared with that taken by other tools and

environments to evaluate the novelty of the author’s approach, and several novel as-

pects of the author’s approach were identified. In Section 9.4 the tractability of the

translation-based approach to facilitating the use of multiple representations was dis-

cussed, and the time complexity of translations in Swift was examined.

The discussion and evaluation presented in this and earlier chapters will be used

to draw conclusions in Chapter 11. Before drawing conclusions, however, there are

many issues raised in this thesis which have been left as areas for further work. These

unresolved issues are discussed in the next chapter, and possible directions for future

research are identified.

278

Chapter 10

Further research

10.1 Introduction

In this thesis have been examined several major issues associated with using multiple

representations to describe a viewpoint, including the issues of improving translation

quality and of using translations as a means of highlighting potential design inconsis-

tencies. There remain, however, many issues that were either peripheral to the main

thrust of the research, or which have not be explored for other reasons such as time

constraints. These unresolved issues are outlined in this chapter, and possible direc-

tions for future research are identified.

The issues discussed in this chapter have been organised into several categories.

Representations are a key part of the framework underlying this research, and a delib-

erate effort has been made in this research to include a reasonably diverse collection

of representations. Despite this, the representations discussed in this thesis form but a

tiny fraction of the total number of representations in current use, so it would be use-

ful to extend the approach used here to include more representations, as discussed in

Section 10.2. The issue of how best to define representations is also discussed.

Improving the quality of translations is an important aspect of this research. The

relative quality measurement defined in Chapter 8 provides a useful means of compar-

ing the relative quality of translations, but it could be improved in several ways, which

are discussed in Section 10.3.

Swift, the prototype modelling environment developed as part of this research, was

developed as a means of testing various aspects of the translation-based approach.

Consequently, Swift is well-developed in some areas, but less well-developed in oth-

ers. In addition, some parts of Swift, such as the rule evaluation strategy and the

279

underlying repository can potentially be replaced with other approaches. Some alter-

natives are discussed in Section 10.4.

A typical function of CASE tools is to generate a database schema, and it is expected

that this will be no different for an environment that facilitates the use of multiple

representations. The major difference is that schema generation in current CASE tools

typically involves only a single source description, whereas in an environment that

facilitates the use of multiple representations, a schema could potentially be generated

from multiple source descriptions. This process is discussed in Section 10.5.

The synchronous and asynchronous approaches to maintaining consistency among

descriptions were identified in Chapter 3. This area has already been explored by

other researchers (Grundy and Hosking, 1994; Grundy et al., 1996; Grundy and Hosk-

ing, 1996; Hosking and Grundy, 1995), so it was not examined in any great depth here.

Nevertheless, there do remain some outstanding issues in this area, which are dis-

cussed in Section 10.6.

VML-S was introduced in Chapter 7 as an extension of Amor’s (1997) View Map-

ping Language to deal with specifying mappings between constructs of representa-

tions. The definition of VML-S in this thesis works well for this purpose, as demon-

strated in Chapter 7 and Appendix F, but it could be improved further, as discussed

in Section 10.7. In particular, the inheritance mechanism derived from VML could be

improved upon, but this could require a major redesign of the language.

Other miscellaneous issues are discussed in Section 10.8.

10.2 Representation issues

There are some issues with respect to representations that have not been fully ad-

dressed in this thesis. The most obvious issue is the number of representations used,

as only four representations have been detailed in this thesis: Re(E -R,ERDMartin),

Rf (FuncDep,FDDSmith), Rr(Relational , SQL/92) and Rd(DataFlow ,DFDG&S). An ob-

vious first step would be to expand the number of representations considered. This

would provide the opportunity to define a greater range of translations and further

test the efficacy of the relative quality measure developed in Chapter 8. Other pos-

sible representations include: more sophisticated E-R representations such as ERC+

280

(Spaccapietra and Parent, 1992); variations on the relational technique; other seman-

tic models such as SDM (Hammer and McLeod, 1981) and IFO (Abiteboul and Hull,

1987); functional data models (Shipman, 1981); state-event representations such as

state-transition diagrams; more sophisticated data flow representations such as SOFL

(Liu et al., 1998); and object-oriented representations such as the ODMG model (Cattell

et al., 1997) and the Unified Modelling Language (Rational Software Corporation, 1997;

Muller, 1997). It would also be useful to define a representation for schema intension

graphs.

All of the representations mentioned above are either formal or semi-formal (see

Section 2.3.2 on page 19). Informal representations were deliberately excluded from

consideration in this thesis because of their unstructured and often ill-defined nature,

which makes them inherently more difficult to translate in an automated manner than

the structured and well-defined formal and semi-formal representations. Darke and

Shanks (1997a; 1997b) have recently begun to explore the issues associated with using

informal representations in user viewpoints, and it would be interesting to apply their

results to the approach used in this thesis. At the opposite end of the spectrum, it

would also be useful to consider the addition of formal specification languages such

as Z (Brien and Nicholls, 1992). Grundy and Hosking (1995) have already explored the

issues associated with maintaining consistency between Object-Z specifications (Duke

et al., 1991) and Snart programs.

Representations are defined in this thesis using a variant of Martin’s (1990) ERD no-

tation as implemented by the EasyCASE tool (Evergreen Software Tools, 1995b). Ven-

able’s (1993) meta-modelling language CoCoA is a potentially more useful tool for this

purpose, as it was designed with this type of modelling in mind. CoCoA is a variant

form of E-R representation that introduces the concept of a complex covering aggrega-

tion, which allows designers to model the aggregation of entities into composite enti-

ties (Venable, 1993; Venable and Grundy, 1995). Unfortunately, CoCoA was discovered

too late to be of use in this research, but it will be examined as a potential replacement

for the approach currently used. In Figure 10.1 on the next page is shown how the

representation Rr(Relational , SQL/92) could be defined using CoCoA (attributes are

not included for clarity); compare this with the definition from this thesis shown in

Figure 10.2 on page 283.

281

RMKey RMAttributecontainer
(0,n)

contained
(1,n)

Contains4

SQL92-
Attribute

SQL92-
Domain

member
(0,n)

domain
(0,1)

Drawn from-s1

RMRelation

contained
(1,n)

container
(1,1)

Contains3

RMDomainmember
(0,n)

domain
(1,1)

Drawn from

constraint
(0,n)

target
(1,n)

Constrains
SQL92-

Constraint

SQL92-
NotNull

SQL92-
Predicate

SQL92-
Unique

RMFor-
eignKey

RMPri-
maryKey

referent
(1,1)

referrer
(0,n)

References

SQL92-
PrimaryKey

container
(0,n)

contained
(1,1)

Contains1

identifier
(1,1)

relation
(1,1)

Identifies

SQL92-
ForeignKey

SQL92-
Table

referrer
(0,n)

referent
(1,1)

References2

container
(0,1)

contained
(1,n)

Contains4-s1

Key:
Entity

role1

(min,max)
role2

(min,max)

Relationship

Non-exclusive generalisation/specialisation

Exclusive generalisation/specialisation

Complex covering aggregation

Rr(Relational ,SQL/92)

Figure 10.1: Rr(Relational , SQL/92) definition using CoCoA

Finally, a more coherent approach needs to be developed to naming techniques

and schemes for use in the abstract notation. The names of techniques and schemes

mentioned in this thesis were chosen in a somewhat arbitrary manner, with the only

requirement being that each technique and scheme have a unique name. A broader

survey of the techniques and schemes available should be undertaken to provide a

framework for this naming system. A similar approach should also be applied to the

names of constructs within representations.

10.3 Quality improvement

The method developed in Chapter 8 for measuring the relative quality of translations

provides a useful indication of the relative quality of two or more translations, but it

282

SQL92
Table

SQL92
Column

SQL92
Constraint

RM
Key

SQL92
Primary
Key

SQL92
Not
Null

SQL92
Predicate

SQL92
Unique

SQL92
Domain

RM
Alternate
Key

contains2

constrains

references

identifies

contains4

references

drawn from-s1

contains1

contains4-s1

drawn from

RM
Relation

RM
Primary
Key

RM
Attribute

RM
Domain

RM
Foreign
Key

SQL92
Foreign
Key

contains3

Figure 10.2: Rr(Relational , SQL/92) as defined in this thesis

does suffer from some problems. The original form of the measurement, based purely

on isomorphism of schema intension graphs (SIGs), was found to generate unexpected

results. The translation Rf (FuncDep,FDDSmith) → Re(E -R,ERDMartin)/Rf ↽ Re

was found to be of similar relative quality to the translation Re(E -R,ERDMartin) �
Rd(DataFlow ,DFDG&S), contradicting experimental evidence that implied the former

translation was of much higher quality.

The most likely reason for this is that the SIG isomorphism approach only measures

the explicit mappings between single constructs — often there may also be implicit map-

pings between groups of constructs (the ‘collective constructs’ referred to in Section 8.3

on page 223). This is particularly apparent in the Rf → Re/Rf ↽ Re translation, as

there are few direct mappings between individual constructs of either representation.

Indeed, the only obvious direct mapping is between the FDATTRIBUTE construct and

the ERATTRIBUTE construct. If constructs of Rf are grouped in various ways, how-

283

ever, it becomes possible to define quite a comprehensive translation between the two

representations (see Appendix E).

The solution followed in this thesis was to include the rules and heuristics in the

measurement process. The SIG isomorphism method can be used to determine the

category of expressive overlap between two representations, and also to determine the

direct mappings between individual constructs. Mappings between groups of con-

structs are then determined by tagging construct nodes in a SIG according to how they

are used in rules. An alternative approach might be to use the constructed node con-

cept of schema intension graphs to model collective constructs. The major issue with

doing this, however, is that modifying a SIG to include collective construct information

may invalidate any measurements based on analysing the SIG.

This issue arises because the collective constructs of a representationRp are defined

in terms of the other representation (Rq) that is being translated to or from. This means

that the collective constructs of Rp with respect to Rq will differ from those with re-

spect to some other representation Rs; indeed, there may be no collective constructs

with respect to Rs. It is therefore not be sensible to store collective construct informa-

tion with a representation definition, as it is only meaningful with respect to another

representation. Since this information cannot be stored in the representation defini-

tion, modifying the representation’s SIG to include collective construct information

may mean that the SIG no longer models the same representation.

One possible solution might be to define a kind of ‘multi-layer’ SIG, in which the

collective construct information is defined as a layer on top of the basic representation

SIG. The unfortunate side-effect of this, however, is that some representations will be

treated differently from others for measurement purposes, depending on whether or

not they include collective constructs.

One limitation of the relative quality measure defined here is that it does not con-

sider the completeness of the individual rules of a translation. Suppose that two trans-

lations are measured using the approach described in Chapter 8, and are found to have

identical relative qualities. Now suppose that one translation comprises only partial

rules, whereas the other comprises only complete rules. It seems obvious that the latter

translation should be of higher relative quality than the former, yet this is not reflected

by the relative quality measurement. This situation almost occurs with the Rf → Re

284

andRe ⇀ Rr translations: the relative quality of the former is slightly higher than that

of the latter, and the rules for the former are all complete, while some of the rules for

the latter are partial.

One approach to resolving this issue could be to define some sort of weighting

factor based on the proportions of complete and partial rules in a translation, which

could then be applied to the relative quality measurements. One very simple formula

for such a weighting factor might be:

complete rules
rules

+
partial rules
2× # rules

Unfortunately, taking the completeness of rules into account again raises the issue

of being able to define a representation in different ways. This is not an issue with the

existing measurement methods because they consider a construct to be ‘atomic’ (see

Section 8.3), and this issue arises only at the construct property level. The completeness

of a rule is partly determined by how well it maps the properties of the constructs in-

volved, so introducing rule completeness as a measurement criterion effectively means

that constructs are no longer considered ‘atomic’. Consequently, different definitions

for the same representation could give differing results.

Another issue with the relative quality measurement method is that although the

use of heuristics will improve the quality of translations, it may also degrade the in-

ternal consistency of the viewpoint, as heuristics can sometimes generate semantically

inconsistent results (although this can be ameliorated by including heuristics in the en-

richment process, as discussed in Section 4.6 on page 91). This potential degradation

falls outside the definition of translation quality (see Section 2.4.1 on page 28), so it

cannot be measured by the SIG method. In addition, the SIG method deals only with

the mappings between constructs of representations and is thus totally independent

of the source description. Conversely, the potential viewpoint consistency degrada-

tion caused by heuristics is dependent on context, and is thus highly dependent on the

source description. It therefore seems unlikely that the SIG method could be extended

to measure viewpoint consistency degradation.

A final issue is that the relative quality measurement cannot measure any transla-

tion quality improvements from by the enrichment process described in Section 4.6 on

page 91. This is because the effects of enrichment occur at the description level, not the

285

representation level. Given that the effects of enrichment will likely vary on a case-by-

case basis, it may be difficult to define a general measure to determine the impact of

enrichment on the quality of a translation. If such a measure were defined, it would

have to deal with translations where enrichment is required in order to successfully

complete the translation.

10.4 Implementation issues

The Swift prototype environment was intended mainly to demonstrate the utility of the

translation process adopted in this thesis and is therefore incomplete in many areas. It

is expected, however, that the Swift architecture will be used as the basis of a more

comprehensive tool. The first likely objective will be to reimplement Swift using the

JViews framework (Grundy et al., 1997b), which will provide a considerable amount of

functionality related to performing translations and maintaining consistency between

descriptions without having to write new code. Extensions and enhancements to the

Swift environment can then be built on this base.

Swift’s repository is currently stored in a PostgreSQL database, but several limita-

tions in the way PostgreSQL implements its object features has meant that the repos-

itory is not as effective as it could be. Swift has been totally abstracted from the un-

derlying repository database, which makes it possible to quickly port Swift to other

repository DBMSs. It is expected that a pure object DBMS will provide a more effec-

tive repository; this assertion will be tested using ObjectStore. Oracle 8, which provides

object-relational features, is also a possible alternative.

Storing the repository in a pure object DBMS may make it possible to use represen-

tation definitions to automatically extend the repository. If Swift were ported to a pure

object DBMS in its present form, appropriate construct classes would need to be man-

ually defined in the repository every time a new representation was added. Represen-

tations are defined using what is effectively a special form of description, so it should

in theory be possible to parse this description and automatically generate appropriate

repository classes for storing elements. This could even be achieved by a translation

from the representation used for defining other representations to the Object Definition

Language (ODL). It would be necessary, however, to extend representation definitions

286

with information on how constructs are drawn; such information is not included in

representation definitions at present.

Another important feature of Swift that was not implemented was the ability to

store in the repository the Java classes that implement the behaviour of representations,

constructs and translations. This could not be implemented in the Swift because full

support for PostgreSQL’s large object features was not available in the JavaPostgres95

JDBC driver. Once this support becomes available, however, it should just be a matter

of creating a subclass of java.lang.ClassLoader (Sun Microsystems, 1998a) to allow the

loading of Java classes directly from the repository. This will make Swift much easier

to extend with new representations and translations; simply storing the Java classes in

the repository will immediately make the new representation or translation available

to Swift without having make any modifications to the environment.

The rule selection and evaluation strategy followed in this thesis is a slightly mod-

ified form of that used by Amor’s (1997) VML mapping system. That is, for each ele-

ment in a description, all rules that may apply to that element are determined, then an

attempt is made to build element collections that match each of these rules. All rules

that cannot be matched are deleted, and the rest are applied to the element collections

built. An alternative approach identified in Section 4.7 on page 94 was to take each

rule, find all collections of elements that match the source constructs of the rule, then

apply the rule to each such collection. There may also be other rule selection and eval-

uation strategies not identified here. It would be interesting to test the different rule

selection and evaluation strategies in combination with both synchronous and asyn-

chronous consistency maintenance mechanisms. It may even be possible to combine

different strategies to provide a more flexible approach.

Subsumption/exclusion graphs form an important part of the rule selection and

evaluation process described in Section 4.7 on page 94. These graphs can indicate the

exclusions among rules and are used to determine the order in which rules should be

evaluated. The author’s experience has shown that it is sometimes possible to define

the rules of a translation in more than one way. Subsumption/exclusion graphs could

therefore provide a means of optimising rules by indicating to translation definers the

extent of interdependency among rules. Translations with less rule interdependency

should be more efficient.

287

It is interesting that there is no discernible pattern to the subsumption/exclusion

graphs for the translations defined in this thesis, and even the subsumption/exclu-

sion graphs for the two directions of a translation can be completely different (see

Chapter 5). Some translations have a large number of exclusions, while others have

none. It is as yet unknown whether there is some property of a translation that might

indicate whether it has a large number of exclusions, or whether this is just a side effect

of the rule definition approach used here.

VML-S was introduced in Chapter 7 to provide a way of defining the details of

translations, but this extended version of VML has not yet been implemented and is

thus not included in Swift. Translations in Swift are at present manually coded in Java

based on the original rules. It would obviously be desirable to incorporate VML-S

into Swift in order to remove this extra step. The main reason for the lack of a VML-

S implementation is that Grundy (1998, personal communication) has already stated

that he is working on porting the VML mapping system to Java, and has expressed an

interest in the extensions outlined here. Any implementation as part of this research

would therefore have been an unnecessary duplication of effort.

Finally, it would be useful to automate the SIG-based methods for categorising the

expressive overlap of representations and measuring the relative quality of transla-

tions. The refined relative quality measure described in Section 8.4.2 on page 236

should be amenable to automation, but it is likely that the process for categorising ex-

pressive overlap can be only partially automated. This is because the process depends

to a large extent on human intervention to determine likely candidate subgraphs to be

tested for isomorphism. Miller et al. (1994a, theorems 4.3 and 4.4) show that the prob-

lem of testing for SIG equivalence is in general undecidable, and note that the problem

of detecting graph isomorphism may be NP-complete. This is the worst case, however,

and (Miller et al., 1994a, p. 20) have discussed how reasonably efficient algorithms

could be developed. One step of the process that can be relatively easily automated is

that of generating the SIGs to be compared. The schema intension graph formalism is

effectively just another representation, and it was shown in Section 8.2.1 on page 215

that translating an ERD to a SIG is relatively simple. It should therefore not be difficult

to incorporate SIGs and the translations to generate them into Swift.

288

10.5 Schema generation from multiple descriptions

A typical function of a CASE tool is to take a description and generate a corresponding

database schema, typically an SQL schema of some sort. This process generally only

involves a single source description, although some information from other descrip-

tions may be included depending on the degree of integration of the data dictionary. A

key element of this research is the use of multiple representations to describe a view-

point, which leads to multiple descriptions of the viewpoint. The schema generation

process should ideally incorporate as much of the viewpoint as possible in order to

provide a richer schema, as shown in Figure 10.3, so some way of incorporating multi-

ple descriptions into the schema generation process must be identified.

Database

ERD

FDD

ERD

DFD

Schema
generation

Descriptions

Figure 10.3: Schema generation from multiple representations

Generating a schema effectively becomes a multi-step process, in which we must

determine how best to use the different descriptions that comprise the viewpoint. One

approach could be to refine the generated schema in a stepwise fashion according to

the information contained within each description, as illustrated in Figure 10.4. The re-

finement operator is denoted by the symbol �→ and the refinement of two descriptions

to form a third is denoted by:

D1(V, T1, S1)

D2(V, T2, S2)

∣∣∣∣∣∣�→ D3(V, T3, S3).

In the example shown in Figure 10.4 on the next page, the sources are the two

entity-relationship descriptions D1(V,E -R,ERDMartin) and D3(V,E -R,ERDChen), the

289

Schema generation

re
fin

e

Database

translate
D1

D2

D3

D4

D5a

D5b

D5c

D5d

D5e

Figure 10.4: Progressive refinement of a generated schema

functional dependency description D2(V,FuncDep,FDDSmith) and the data flow de-

scription D4(V,DataFlow , DFDG&S). The target representation for schema generation

is Rr(Relational , SQL/92). The first step could be to generate the SQL description

D5a(V,Relational , SQL/92) from the E-R description D1. The next step could then be

to normalise this description using the information contained within the FDDD2. This

refinement is expressed (in slightly abbreviated form) as:

D1(V,E -R,ERDMartin)→ D5a(V,Relational , SQL/92)

D2(V,FuncDep,FDDSmith)

∣∣∣∣∣∣�→ D5b(V,Relational , SQL/92).

The refinement process continues for each remaining description of the viewpoint

(D3 and D4 in Figure 10.4), at each step producing a further refined SQL description

(D5c, D5d, D5e). The final SQL description D5e is then used to generate the database.

Because of the extra information that multiple descriptions can provide, this process

could produce a ‘better’ schema than if it had been generated from just a single de-

scription, although it must be remembered that not all of this extra information may

be able to be expressed in the target representation.

There is no particular significance to the order of refinements used in the example

above; indeed, a different order might prove more appropriate or efficient. In addition,

there is no need for all the steps to generate a description using the ultimate target

representation. An alternative set of steps for the example in Figure 10.4 could be:

290

• translate D4 into D6(V,E -R,ERDMartin);

• refine D1, D3 and D6 to give D7(V,E -R,ERDMartin);

• translate D7 into D8a(V,Relational , SQL/92); and

• refine D8a using D2 to give D8b(V,Relational , SQL/92) as the final output.

This process would be expressed as follows:

D4(V,DataFlow ,DFDG&S)→ D6(V,E -R,ERDMartin)

D1(V,E -R,ERDMartin)

D3(V,E -R,ERDChen)

∣∣∣∣∣∣∣∣∣
�→ D7(V,E -R,ERDMartin),

D7(V,E -R,ERDMartin)→ D8a(V,Relational , SQL/92)

D2(V,FuncDep,FDDSmith)

∣∣∣∣∣∣�→ D8b(V,Relational , SQL/92).

Automatic optimisation of this process could be a particularly interesting area of

research. It is also possible that changing the refinement order may result in a different

final schema, but it seems likely that this would indicate a problem with the consis-

tency of the viewpoint.

10.6 Consistency maintenance

As noted in Chapter 3, there are two major approaches to maintaining consistency

among descriptions: either synchronously or asynchronously. It should be noted that

although the asynchronous and synchronous approaches have been discussed sepa-

rately in this thesis, they are not necessarily mutually exclusive; rather both are ap-

propriate in different circumstances. It may not always be appropriate to maintain

consistency between two descriptions; for example, suppose a developer translates an

ERD to an FDD in order to experiment with the FDD. In a synchronous environment,

this could lead to unwanted changes in the original ERD (see Figure 3.11 on page 62).

Developers may also wish to explore alternate design paths, in which case maintaining

consistency with other descriptions is probably not desired.

291

Rather than design an environment that exclusively follows one approach or the

other, it would seem sensible to allow users to determine the level of consistency re-

quired among descriptions. Managing this could become rather complex, although

many of the issues will be similar to those encountered in version management tools.

One issue peculiar to this area, however, is the sensitivity of descriptions to changes in

a synchronous environment (see Section 3.6 on page 58). Small, incremental changes

to the source description may, up to a certain critical point, result in small incremental

changes to the target description. Once this critical point is reached, however, a small

change in the source description can result in a major change in the target description

(see Figure 3.10 on page 61). What determines this critical point is an open question. It

may be dependent on the representations in question, or it may be more closely related

to the structure of the descriptions being manipulated. One possible solution could be

to introduce some form of transaction management to the design process, as suggested

in Section 3.6. The update record approach used in the MViews/JViews frameworks

(Grundy et al., 1996) may provide a useful solution.

Another issue that arises from an environment with ‘tunable’ consistency mainte-

nance is that it may be possible to optimise translations for one approach or the other.

That is, some translations may be better optimised for the asynchronous approach,

whereas others will be better optimised for the synchronous approach. An obvious so-

lution to this is to store translations as VML-S specifications only, and generate trans-

lations that are optimised for the current consistency maintenance regime as required.

The disadvantage of this is the overhead required to generate translations, although

some form of caching mechanism could be used, similar to the library of translations in

Atzeni and Torlone’s (1997) MDM environment. It is also unclear at present how much

optimisation would be required for each approach, which could render the question

moot.

The asynchronous approach can add an extra layer of complexity if new descrip-

tions are generated by translations rather than updating existing ones. Consider the

description translation D1(V,E -R,ERDMartin) → D2(V,FuncDep,FDDSmith). If D2 is

modified (giving D′

2), then this modified FDD could be used to either refine the ex-

isting D1 (giving D′

1), or to generate a new ERD description D3. In the former case,

the resulting descriptions D′1 and D′

2 are consistent with each other, as shown in Fig-

292

ure 10.5(a). In the latter case, however, D′

2 and D3 are consistent with each other, but

neither is consistent with D1, as shown in Figure 10.5(b). In some situations (such as

exploring alternate design paths) this may be desirable, but in general this would lead

to an inconsistent viewpoint. The latter case becomes even more complex if a fourth

E-R description D4 is generated from D2 before it is modified. IfD1, D3 andD4 should

be consistent with each other, how may this be achieved?

D1 D2

D
′

1 D
′

2

translate

m
odify

refine

be
co

m
es

consistent

(a)

D1 D2

D3 D
′

2

translate

m
odify

translate

consistent
in

co
ns

is
te

nt
(b)

Figure 10.5: Effects of asynchronous translations: (a) when translations refine existing
descriptions; (b) when translations create new descriptions

It was suggested in Section 4.6 on page 91 that the potential consistency degrada-

tion caused by heuristics could be ameliorated by bundling the application of heuris-

tics into the enrichment process, thus allowing user confirmation of all heuristics before

they are applied. It may still be possible, however, for the user to incorrectly allow the

application of a heuristic, thus producing an inconsistent viewpoint. The use of trans-

lations to highlight potential inconsistencies within a viewpoint will be of particular

use in this situation, and therefore requires further examination.

A final issue not resolved in this thesis is that some translations may change the

level of abstraction of a description. For example, if an ERD is translated to an FDD and

back to an ERD, the second ERD is effectively an implementation-level ERD, whereas

the first is a conceptual-level ERD (Tsichritzis and Klug, 1978). While both of these

ERDs will be consistent with respect to the information contained within them, they

will not be consistent with respect to the way that information is portrayed. This is an

issue that will need to be addressed in any future research.

293

10.7 Outstanding issues with VML-S

Although the syntax and behaviour of VML-S were defined in Chapter 7, the language

has not yet been implemented. This has resulted in several issues with VML-S not

being fully examined.

An issue that will need to be addressed at some point is the generation of possible

element groups for arbitrary-length lists of constructs (see Section 7.5.2 on page 207). If

the header of a VML-S inter class definition contains the entry construct[], then all

possible lists of elements of type construct must be generated. Since the maximum

length of the list is unknown, the number of possible lists to be generated can rapidly

grow extremely large (up to
∑n

i=1 n
i for n elements). This will need to be addressed

by any implementation of VML-S. It may be possible to replace such expressions with

groups instead.

The discussion above of optimising translations for either synchronous or asyn-

chronous use raises the interesting question of how this optimisation should be carried

out. The VML-S specification of a translation is independent of the consistency main-

tenance mechanism used, but the actual implementation cannot be. One approach

would be to extend the VML-S mapping system with some form of built-in optimi-

sation, but this would probably be rather slow. An alternative is to build an ‘opti-

mising compiler’ that converts the VML-S specifications either directly into machine-

executable code, or into some other language such as Java (it might even be possible to

compile directly from VML-S to Java byte-code).

A final issue with VML-S is that of rule specialisation. In this thesis, rule speciali-

sation has been defined in VML-S using the inherits clause of the inter class defini-

tion. As noted in Section 7.2 on page 180, this clause merely incorporates the definition

of the inherited rule into the current rule, rather than providing inheritance in the

object-oriented sense. Nevertheless, this clause does provide a workable mechanism

for defining specialised scheme-level rules, and was used in the definitions in Chap-

ter 5 and Appendix E. It may, however, be appropriate to extend the inherits clause

to provide a form of inheritance closer to that used in object-oriented programming

languages. This would provide a more natural and flexible way of defining specialised

rules than at present.

294

10.8 Other issues

The research described in this thesis has been deliberately limited to a single viewpoint.

An obvious extension is therefore to explore the use of multiple representations in the

context of multiple viewpoints. As the use of multiple representations provides a more

comprehensive description of a viewpoint, it is to be expected that this will provide

more information that will be beneficial to the viewpoint integration process.

Related to this is the issue of highlighting potential inconsistencies in a viewpoint,

discussed in Section 4.5 on page 86. Potential inconsistencies within a viewpoint may

be highlighted by translating descriptions into the same representation, and then deter-

mining whether the resulting descriptions are consistent. At present, this determina-

tion is carried out by the developer. Automatically determining the consistency of two

descriptions has been largely ignored in this thesis, although methods from schema

integration would probably prove useful here. Schema intension graphs could also

prove useful, as they were originally developed as a means of determining whether

two schemas have differing relative information capacities. SIGs may not be a com-

plete solution, however, as the descriptions to be tested may be consistent, but not

equivalent, as shown in Figure 10.6.

Client

Experiment

Contract

Staff

(a) ERD generated from a DFD

Client

Experiment

Contract

Staff

(b) ERD generated from an FDD

Figure 10.6: Two description fragments that are consistent but not equivalent

In Section 2.4.3 on page 30, it was noted that the major disadvantage of the individ-

ual interfacing strategy is the number of interfaces required to provide a complete set

of translations between all representations. A complete set of translations will by def-

inition provide the best quality, as each pair of representations will have a translation

295

tuned specifically to that pairing. It may, however, be possible to define a smaller set

of interfaces that does not affect the overall quality of translations, depending on the

expressive overlap between the representations involved. Consider the three represen-

tations Rm, Rn and Ro, where the expressive power of Rm is inclusive of Rn (that is,

Rn � Rm). Any translation from Rn to Rm will be complete, as noted in Section 3.5 on

page 55. If the expressive power of Rn is equivalent (or inclusive) to that of Ro, then

there is no need to define a direct translation from Ro to Rm, as the composite trans-

lation Ro → Rn → Rm will have the same effect. While this will in theory reduce the

total number of translations required, the extent of this reduction in practice remains

unclear.

It was suggested in Chapter 5 that translations can leverage the capabilities of other

translations. For example, normalisation was removed from theRe(E -R,ERDMartin)⇀

Rr(Relational , SQL/92) translation because the Rf (FuncDep, FDDSmith) → Re(E -R,

ERDMartin) translation already provided normalisation. Including normalisation in

both translations is an unnecessary duplication of effort, so it is sensible to remove nor-

malisation from the Re ⇀ Rr and instead leverage the normalisation in the Rf → Re

translation. This could be done in two ways:

1. by translating an ERD ‘through’ Rf in order to normalise it, and then generating

SQL from the normalised ERD, that is, Re ⇀ Rf →Re ⇀ Rr; or

2. by translating an ERD to an FDD, then translating that directly to SQL, that is,Re

⇀ Rf →Rr.

The second approach would obviously only be feasible if the Rf → Rr translation

existed.

Leveraging existing translations in this manner can reduce the complexity of trans-

lations by removing functionality that is not strictly necessary, and also removes un-

necessary duplication of effort. It may even be possible to take this a step further

and abstract common features (such as normalisation) out of translations completely,

and place them in a ‘library’ of shared translation operations that could then be called

upon by any other translation. This is similar in principle to the way in which the

rules of a translation are divided into scheme-level rules specific to that translation

296

and technique-level rules that are shared across related translations, but is probably

closer to the macro concept in ORECOM (Su and Fang, 1993).

10.9 Summary

In this chapter, several outstanding issues have been identified and possible directions

for future research identified. The current research has by necessity included only

a small number of representations, so this is an obvious area for improvement. The

CoCoA modelling representation was presented as a possible alternative for defining

the constructs of representations.

The relative quality measurement developed in Chapter 8 provides a useful indica-

tion of the relative quality of different translations, but does not consider all aspects of

a translation. It is expected that including properties such as the completeness of rules

into the measurement will result in a more accurate measure of relative quality.

Various outstanding issues with the Swift prototype were discussed, and possible

areas for extension identified. One such area was the integration of VML-S into Swift,

which has not been done because other researchers are already working in this area

(Grundy, 1998, personal communication). In addition, VML-S could potentially be

redesigned to allow better definition of technique- and scheme-level rules.

The issue of generating a useful schema from multiple source descriptions using

different representations was discussed, and the concept of refinement was introduced

as a possible mechanism for achieving this. Some outstanding issues with maintaining

consistency among multiple descriptions were also identified and discussed.

In the next chapter, the results of this research are summarised and conclusions are

drawn.

297

Chapter 11

Conclusion

The goals of this thesis were:

1. Improve a viewpoint in terms of depth and detail by using multiple representa-

tions to describe the viewpoint.

2. Facilitate the use of multiple representations within a viewpoint by translating

descriptions between representations.

3. Develop a consistent and unified terminology for discussing representations and

translations between them.

4. Develop effective ways of specifying translations.

5. Use translations to enable the highlighting of potential inconsistencies between

descriptions of a viewpoint.

6. Identify ways of improving translation quality.

7. Show that the approach presented here is novel and practicable.

Each of these goals will now be examined in turn.

11.1 Improving the depth and detail of a viewpoint

The first goal of this thesis was to improve a viewpoint in terms of depth and detail

by using multiple representations to describe the viewpoint. Use of multiple represen-

tations to describe a viewpoint was discussed in Chapters 2 and 3, and the effect of

using multiple representations to describe a viewpoint was explored in the case study

in Chapter 9.

299

It was shown in the case study that adding new descriptions expressed using differ-

ent representations to a viewpoint allows expression of more information than would

be possible if a single representation were used to describe the viewpoint. For exam-

ple, information on how data flow through a system cannot be expressed using purely

‘structural’ representations such as entity-relationship diagrams. Such information can

only be included in a viewpoint by using appropriate representations.

The author’s approach to using multiple representations is based on performing

translations between descriptions expressed in different representations. Heuristics

were introduced in Chapter 4 as a means of improving the quality of translations, and

have the beneficial side-effect of also improving the depth and detail of a viewpoint.

Heuristics can extract and make explicit information that is implicit in the source de-

scription, thus improving the depth and detail of the viewpoint. This was illustrated

in the case study in Chapter 9 by the translation of a data flow diagram (DFD) into an

entity-relationship diagram (ERD). The heuristics of this translation allowed the gen-

eration of relationships between derived entities that would otherwise not have been

generated. The heuristics have extracted information that is implicit in the source de-

scription, thus enhancing the depth and detail of the viewpoint.

In summary, the use of multiple representations to describe a viewpoint improves

the depth and detail of a viewpoint by allowing additional information to be expressed,

while use of heuristics in translations improves depth and detail by extracting implicit

information from source descriptions that might otherwise be missed.

11.2 Using translations to facilitate the use of multiple

representations

The second goal of the thesis was to facilitate the use of multiple representations within

a viewpoint by translating descriptions between representations. The translation pro-

cess and issues arising from it were discussed in Chapter 4.

It was shown in the case study in Chapter 9 that translations facilitate the use of

multiple representations by allowing an analyst to easily create new descriptions based

on already existing descriptions. That is, the translation produces a new description

300

that can be used as a template for further development by the analyst. For example, in

the case study a DFD description was translated into an ERD description, which was

then extended by adding new entities and relationships. Even when translations are

of relatively low quality, such as translating a DFD to an ERD, enough information is

translated from the source description to provide a useful basis on which to build.

11.3 Terminology framework

The third goal of the thesis was to develop a consistent and unified terminology for

discussing representations and translations between them. The area of facilitating the

use of multiple representations is a relatively new one, and the author is aware of

only three other groups who have worked on this problem (Atzeni and Torlone, 1993;

Grundy, 1993; Su et al., 1992). Interestingly, all three groups developed their work in-

dependently over the same approximate time period (1991–94). Atzeni and Torlone

(1995) commented at the time that there was “not much literature related to the prob-

lem”. This independent development and the variety of fields from which the projects

were initiated has resulted in very diverse terminologies. Different groups have used

the same term to mean different things, or have used several terms to denote the same

concept, as was shown in Table 3.4 on page 65.

A useful research contribution of this thesis has therefore been the definition of

a well-defined and integrated terminology for describing the use of multiple repre-

sentations, based upon a viewpoint framework (Finkelstein et al., 1989; Easterbrook,

1991a; Darke and Shanks, 1995b). The concepts of representation, technique, scheme had

previously been used in a somewhat imprecise fashion; formal definitions of these

were provided in Chapter 3. The concepts of description, construct and element were

also introduced in Chapter 3 to provide a complete terminology that has been used

throughout the thesis.

The concept of a viewpoint also provides a useful context within which to discuss

and perform description translations, and it is hoped that this thesis may act as a focus

point for bringing together the various projects that have been undertaken by other

researchers in this area.

301

11.4 Translation specification

The fourth goal of the thesis was to develop effective ways of specifying translations.

It can be useful to specify translations both at an abstract level and at a more detailed

‘implementation’ level. An abstract notation was defined in Chapters 3 and 4 to al-

low the specification of representations, descriptions and translations at a high level.

This notation provides a concise means of expressing representations, descriptions and

translations, and can also be used as a template for building more detailed low-level

specifications.

An extended version of Amor’s (1997) View Mapping Language (VML), known as

VML-S, was defined in Chapter 7 for the purpose of building detailed low-level speci-

fications of translations. VML was chosen because of its many useful features, such as

its declarative nature and the ability to define bidirectional translations with a single

specification. VML was originally designed for specifying translations of data values

between schemas, but a representation definition is effectively a schema describing

the constructs of a representation, so VML can also be used to specify translations of

descriptions between representations.

In its original form, VML did not adequately deal with important translation issues

such as rule exclusion. It was therefore necessary to define several extensions to both

the VML syntax and the algorithms used by the VML mapping system (see Chapter 7

and Appendix F). These extensions were not implemented by the author as it would

have duplicated the effort already underway by Grundy (1998) to incorporate VML

into the JViews framework. Despite the lack of an implementation, VML-S has been

successfully used to specify three translations (see Appendix F).

11.5 Highlighting potential inconsistencies within a view-

point

The fifth goal of the thesis was to use translations to enable the highlighting of po-

tential inconsistencies between descriptions of a viewpoint. The issue of maintaining

consistency between multiple descriptions of a phenomenon was discussed in Chap-

ter 3. This was expanded on in Chapter 4 to produce a process for using translations to

302

highlight potential inconsistencies between descriptions of a viewpoint. The efficacy

of this process was examined in Chapter 9.

In order to highlight potential inconsistencies between descriptions, they must first

be translated so that they are expressed using the same representation. The resultant

descriptions are then compared by the analyst for discrepancies, which may indicate

an inconsistency between the original descriptions. An example of this process was

presented in the case study in Chapter 9.

While it was shown in the case study that this process can be used to highlight po-

tential inconsistencies between descriptions of a viewpoint, the process cannot be used

to detect inconsistencies with any degree of certainty. This is because of the high de-

gree of semantic knowledge required to determine whether a particular discrepancy

actually represents an inconsistency. As a result, this process will be difficult to auto-

mate. In addition, the target representation for comparison should ideally have greater

expressive power than the representations of the source descriptions, so that no infor-

mation is ‘lost’ during the translations. This may not always be possible, however.

Nevertheless, the use of translations to highlight potential inconsistencies is still

useful and may even highlight possibilities that have not occurred to or have been

misinterpreted by the analyst. For example, in the case study the analyst realised after

applying the comparison process that there was an entity missing from the original

ERD description, and that a relationship in the ERD had been defined incorrectly. A

viewpoint must by definition be internally consistent, so being able to highlight poten-

tial inconsistencies between descriptions of a viewpoint is important.

11.6 Improving translation quality

The sixth goal of the thesis was to identify ways of improving translation quality, be-

cause the efficacy of the translation-based approach to facilitating the use of multiple

representations is highly dependent on the quality of translations. The quality of a

translation is defined as how completely it maps constructs of its source representa-

tions onto constructs of its target representation, and was introduced in Chapter 2.

Two novel mechanisms for improving translation quality, heuristics and enrichment

were introduced in Chapter 4. Heuristics are translation rules that usually produce a

303

semantically consistent result, but may sometimes produce a semantically inconsistent

result. Use of heuristics should therefore always be under the control of the analyst,

to ensure that heuristics are applied appropriately. This can be done by incorporating

application of heuristics into the enrichment process discussed below.

Heuristics allow a translation to translate more information than would normally

be possible. For example, when a domain flag in a functional dependency diagram

(FDD) is referenced more than twice, this can be mapped to a type hierarchy when

translating to an ERD. Without the heuristic, the same source structure would instead

be mapped to a collection of one-to-one relationships. Another example is generating

relationships when translating from a DFD to and ERD, as was illustrated in the case

study in Chapter 9. Without this heuristic, these relationships would not be produced.

In Chapter 8, a method for measuring the relative quality of translations was de-

veloped from Hull’s (1986) concept of relative information capacity. While this does

not provide an objective measure of the quality of an individual translation, it does

provide a way of comparing the quality of two or more translations relative to each

other. This measure was used in Chapter 8 to show that use of heuristics can improve

the quality of translations.

An alternate approach to improving the quality of translations is that of enrich-

ment. This method deals with the potential ‘gain’ of information that occurs when it is

required to generate constructs in the target representation that have no analogues in

the source representation. Enrichment can occur, before, during and after a translation,

and involves the provision of additional information that may used by the translation.

Existing approaches to translating between multiple representations have considered

both pre- and post-enrichment, but do not appear to have considered enrichment dur-

ing a translation.

Enrichment falls outside the scope of the relative translation quality measurement,

as it applies to specific descriptions rather than representations in general. Although

this means that the effect of enrichment on translation quality cannot be easily mea-

sured, enrichment should always have a positive effect on the quality of a translation,

as it provides information that the translation could otherwise never generate.

In summary, two novel mechanisms for improving translation quality, heuristics

and enrichment, have been introduced in this thesis. It has been shown that heuristics

304

improve the quality of translations, and it seems likely that enrichment will also im-

prove the quality of translations, although no measure has as yet been devised to show

this.

11.7 Novelty and practicability of the approach

The final goal of the thesis was to demonstrate the novelty and practicability of the

approach presented. In Chapter 9, the following novel aspects of the approach outlined

in this thesis were identified:

• An abstract notation for expressing representations, descriptions and translations

at a high level (Chapters 3 and 4), and extensions to Amor’s (1997) View Mapping

Language to support the detailed low-level specification of translations between

representations (Chapter 7).

• An analysis of the issues (such as rule exclusion) that arise when translating

descriptions from one representation to another, and possible ways of address-

ing these issues, such as subsumption/exclusion graphs and extensions to VML

(Chapter 4).

• The use of heuristics and enrichment during translations to improve the quality

of translations (Chapter 4).

• The basis of a method for using translations to detect inconsistencies within a

viewpoint (Chapter 4).

The following three novel contributions can also be identified:

• A novel method for measuring the relative quality of translations, derived from

Miller et al.’s (1994b) schema intension graphs was described in Chapter 8.

• A novel framework for discussing the use of multiple representations, based on

viewpoint concepts was described in Chapter 3.

• A diverse range of representations have been included in this research from the

outset.

305

This last point requires further explanation. Other researchers in this area have

focused on semantic data models such as the E-R approach and the relational model.

That is, they have focused mainly on modelling the structure of data but not other

aspects, such as how data flow through a system. Both Atzeni and Torlone (1993) and

Su et al. (1992) explicitly state that they only consider semantic data models, which

may limit the applicability of their environment to other modelling approaches such

as data flow modelling or state-transition modelling. Grundy and Venable (1995b) note

that their approach can support more diverse representations such as DFDs, but it is

not clear from their published work whether this has been implemented in practice.

This research has included a diverse range of representations from the outset. The

four representations used in this thesis are drawn from different modelling paradigms:

Re(DataFlow ,DFDG&S) is drawn from data flow modelling;Re(E -R,ERDMartin) is a se-

mantic data model; Rf (FuncDep,FDDSmith) provides a more functional style of mod-

elling; and Rr(Relational , SQL/92) is representative of an ‘implementation’-oriented

data model. This research therefore provides a good foundation for further work in

the use of diverse multiple representations.

11.7.1 Practicability

There were two major concerns with the practicability of the approach presented in

this thesis:

1. the O(n2) number of interfaces implied by the individual interfacing strategy;

and

2. how well translations scale to more complex source descriptions.

The first issue arose because of a deliberate choice on the author’s part to focus on

the quality of translations rather than the number of interfaces required. A significant

reduction in the number of interfaces required is probably only possible by using a

different interfacing strategy, which will result in lower-quality translations. This is a

definite shortcoming of the approach presented here, and will need to be addressed by

any future work.

The scalability of translations was demonstrated in Chapter 9 using the Swift pro-

totype. The time taken to complete simpler translations was shown to be O(n), while

306

the time taken to complete more complex translations was shown to be O(n2). Despite

this, experiments with the Swift prototype showed that this is not a critical issue in

practice, as translations of very large descriptions were still completed in a reasonable

timeframe.

11.8 Closing remarks

In closing, this thesis has produced the following research contributions:

• A well-defined and integrated terminology for discussing multiple representa-

tion issues, derived from viewpoint research.

• The use of multiple diverse representations to describe a viewpoint, including

process-oriented representations such as data flow diagrams, in addition to the

more typical semantic data models.

• An abstract notation for expressing representations, descriptions and translations

at a high level, and extensions to Amor’s (1997) View Mapping Language to sup-

port the detailed low-level specification of translations between representations.

• An analysis of the issues (such as rule exclusion) that arise when translating de-

scriptions from one representation to another, and possible solutions to these is-

sues.

• The novel use of heuristics and enrichment during translations to improve the

quality of translations, and a method for measuring the relative quality of trans-

lations.

• The basis of a method for using translations to highlight potential inconsistencies

between descriptions within a viewpoint.

As outlined above, the goals of the thesis have been achieved, although some issues

will require further investigation. A prototype environment has been implemented

that supports the use of multiple representations and allows translations to be per-

formed between these representations. Important issues surrounding the translation

process, such as rule exclusion, have been identified and possible solutions presented.

307

It has been demonstrated that the use of heuristics in translations results in an increase

in the quality of translations, that translations can facilitate the use of multiple repre-

sentations and that using multiple representations to describe a viewpoint can improve

the viewpoint in terms of depth and detail.

308

References

Note: URLs are correct as of the date of printing, but may change in future.

Abiteboul, S. and Hull, R. (1987). IFO: A formal semantic database model, ACM Trans-

actions on Database Systems 12(4): 525–565.

Altmann, R., Hawke, A. and Marlin, C. (1988). An integrated programming en-

vironment based on multiple concurrent views, Australian Journal of Computing

20(2): 65–72.

Amor, R. W. (1997). A Generalised Framework for the Design and Construction of Integrated

Design Systems, PhD thesis, Department of Computer Science, University of Auck-

land, Auckland, New Zealand.

URL: 〈ftp://helios.bre.co.uk/pub/ra phd/〉

Amor, R. W. (1998). Personal communication.

Amor, R. W., Augenbroe, G., Hosking, J., Rombouts, W. and Grundy, J. (1995). Direc-

tions in modelling environments, Automation in Construction 4: 173–187.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/a in c95.ps.gz〉

Armstrong, W. (1974). Dependency structures of data base relationships, in J. L. Rosen-

feld (ed.), IFIP Congress ’74 (Information Processing ’74), North-Holland, Stock-

holm, Sweden, pp. 580–583.

Atzeni, P. and Torlone, R. (1993). A metamodel approach for the management of mul-

tiple models and the translation of schemes, Information Systems 18(6): 349–362.

Atzeni, P. and Torlone, R. (1995). Schema translation between heterogeneous data mod-

els in a lattice framework, in R. Meersman and L. Mark (eds), Database Applications

Semantics, Sixth IFIP TC-2 Working Conference on Data Semantics (DS-6), IFIP, Chap-

man & Hall, London, Stone Mountain, Atlanta, Georgia, USA, pp. 345–361.

URL: 〈http://www.dia.uniroma3.it/∼atzeni/psfiles/ ifip.ps.gz〉

309

Atzeni, P. and Torlone, R. (1996a). Management of multiple models in an extensible

database design tool, in P. Apers, M. Bouzeghoub and G. Gardarin (eds), Fifth

International Conference on Extending Database Technology (EDBT’96), Vol. 1057 of

Lecture Notes in Computer Science, Springer-Verlag, Avignon, France, pp. 79–95.

URL: 〈http://www.dia.uniroma3.it/∼atzeni/psfiles/edbt96.ps.gz〉

Atzeni, P. and Torlone, R. (1996c). MDM: A multiple-data-model tool for the manage-

ment of heterogeneous database schemes, part I, Handout material for the TMR

Seminar on Metamodeling, Paris, France.

URL: 〈http://www.dia.uniroma3.it/∼atzeni/psfiles/parigi1.ps.gz〉

Atzeni, P. and Torlone, R. (1996b). MDM: A multiple-data-model tool for the manage-

ment of heterogeneous database schemes, part II, Handout material for the TMR

Seminar on Metamodeling, Paris, France.

URL: 〈http://www.dia.uniroma3.it/∼atzeni/psfiles/parigi2.ps.gz〉

Atzeni, P. and Torlone, R. (1997). MDM: A multiple-data-model tool for the manage-

ment of heterogeneous database schemes, in J. M. Peckman (ed.), SIGMOD 1997

International Conference on the Management of Data, ACM, ACM Press, Tucson, Ari-

zona, pp. 528–531.

URL: 〈http://www.dia.uniroma3.it/∼atzeni/psfiles/sigmodPreprint.ps.gz〉

Batini, C., Ceri, S. and Navathe, S. B. (1992). Conceptual Database Design: An Entity-

Relationship Approach, Benjamin/Cummings, Redwood City, California.

Batini, C., Furlani, L. and Nardelli, E. (1985). What is a good diagram? A prag-

matic approach, in P. P. Chen (ed.), Fourth International Conference on the Entity-

Relationship Approach, IEEE Computer Society Press/North Holland, Chicago, Illi-

nois, pp. 312–319.

Batini, C. and Lenzerini, M. (1984). A methodology for data schema integration in the

entity relationship model, IEEE Transactions on Software Engineering SE-10(6): 650–

663.

Batini, C., Lenzerini, M. and Navathe, S. (1986). A comparative analysis of methodolo-

gies for database schema integration, ACM Computing Surveys 18(4): 323–364.

310

Batra, D. and Antony, S. R. (1994). Effects of data model and task characteristics on de-

signer performance: A laboratory study, International Journal of Human-Computer

Studies 41: 481–508.

Batra, D. and Srinivasan, A. (1992). A review and analysis of the usability of data

management environments, International Journal of Man-Machine Studies 36: 395–

417.

Beeri, C., Fagin, R. and Howard, J. H. (1977). A complete axiomatization for functional

and multivalued dependencies in database relations, in D. C. Smith (ed.), 1977

ACM SIGMOD International Conference on Management of Data, ACM, New York,

Toronto, Canada, pp. 47–61.

Borowski, E. and Borwein, J. (1989). Dictionary of Mathematics, Collins, Glasgow.

Brien, S. M. and Nicholls, J. E. (1992). Z base standard, Technical Monograph PRG-107,

Oxford University Computing Laboratory, Oxford, UK.

URL: 〈ftp:// ftp.comlab.ox.ac.uk/pub/Zforum/zstandard1.0.ps.Z〉;

〈ftp:// ftp.comlab.ox.ac.uk/pub/Zforum/zstandard-annex1.0.ps.Z〉

Brooks, F. P. (1975). The Mythical Man-Month: Essays on Software Engineering, Addison-

Wesley, Reading, Massachusetts.

Brown, M. H. (1992). Zeus: A system for algorithm animation and multi-view editing,

Research Report 75, Digital Equipment Corporation, Systems Research Center, Palo

Alto, California.

URL: 〈ftp:// ftp.digital.com/pub/DEC/SRC/research-reports/SRC-075.pdf 〉

Campbell, D. (1992). Entity-relationship modeling: One style suits all?, DATABASE

23(3): 12–18.

Cattell, R. (1991). Object Data Management, Addison-Wesley, Reading, Massachusetts.

Cattell, R., Barry, D. K. and Bartels, D. (1997). The Object Database Standard: ODMG 2.0,

Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann, Los

Altos, California.

311

CDIF Technical Committee (1994a). CASE Data Interchange Format — Overview, EIA

Interim Standard EIA/IS-106, Electronic Industries Association, Arlington, Virginia.

CDIF Technical Committee (1994b). CDIF framework for modeling and extensibility,

EIA Interim Standard EIA/IS-107, Electronic Industries Association, Arlington, Vir-

ginia.

CDIF Technical Committee (1994c). CDIF integrated meta-model: Foundation subject

area, EIA Interim Standard EIA/IS-111, Electronic Industries Association, Arling-

ton, Virginia.

CDIF Technical Committee (1995a). CDIF integrated meta-model: Common subject

area, EIA Interim Standard EIA/IS-112, Electronic Industries Association, Arling-

ton, Virginia.

CDIF Technical Committee (1995b). CDIF integrated meta-model: Data flow model

subject area, EIA Interim Standard EIA/IS-115, Electronic Industries Association,

Arlington, Virginia.

CDIF Technical Committee (1996a). CDIF integrated meta-model: Data modeling sub-

ject area, EIA Interim Standard EIA/IS-114, Electronic Industries Association, Ar-

lington, Virginia.

CDIF Technical Committee (1996b). CDIF integrated meta-model: State/event model

subject area, CDIF Draft STEV-V8, Electronic Industries Association, Arlington,

Virginia.

Checkland, P. (1981). Systems Thinking, Systems Practice, John Wiley & Sons, Chichester,

England.

Chen, P. P.-S. (1976). The entity-relationship model — Toward a unified view of data,

ACM Transactions on Database Systems 1(1).

Chen, P. P.-S. (1977). The Entity-Relationship Approach to Logical Database Design, num-

ber 6 in The Q.E.D. Monograph Series, Q.E.D. Information Sciences, Inc., Wellesley,

Massachusetts.

Chomsky, N. (1978). Syntactic Structures, Peter Lang Publishing.

312

Cimikowski, R. and Shope, P. (1996). A neural-network algorithm for a graph layout

problem, IEEE Transactions on Neural Networks 7(2): 341–345.

Clapham, C. (1990). The Concise Oxford Dictionary of Mathematics, Oxford University

Press, Oxford, UK.

Clark, S. (1992). Transformr: A prototype STEP exchange file migration tool, National

PDES Testbed Report Series NISTIR 4944, U.S. Department of Commerce, National

Institute of Standards and Technology, Washington, D.C.

Codd, E. (1970). A relational model of data for large shared data banks, Communications

of the ACM 13(6).

Codd, E. (1972a). Further normalization of the data base relational model, in R. Rustin

(ed.), Data Base Systems, Courant Computer Science Symposia Series 6, Prentice-

Hall, Englewood Cliffs, New Jersey, pp. 33–64.

Codd, E. (1972b). Relational completeness of data base sublanguages, in R. Rustin

(ed.), Data Base Systems, Courant Computer Science Symposia Series 6, Prentice-

Hall, Englewood Cliffs, New Jersey, pp. 65–98.

Codd, E. (1979). Extending the database relational model to capture more meaning,

ACM Transactions on Database Systems 4(4).

Codd, E. (1988a). Fatal flaws in SQL, part one, Datamation (August 15): 45–48.

Codd, E. (1988b). Fatal flaws in SQL, part two, Datamation (September 1): 71–74.

Codd, E. (1990). The Relational Model for Database Management Version 2, Addison-

Wesley, Reading, Massachusetts.

Coleman, M. and Parker, D. (1996). Aesthetics-based graph layout for human con-

sumption, Software — Practice and Experience 26(12): 1415–1438.

Cooper, R. (1991). Configurable data modelling systems, in H. Kangassalo (ed.), Ninth

International Conference on the Entity-Relationship Approach, Elsevier Science Pub-

lishing Company, Lausanne, Switzerland, pp. 57–74.

313

Darke, P. and Shanks, G. (1994). Viewpoint developments for requirements definition:

An analysis of concepts, issues and approaches, Working Paper 21/94, Department

of Information Systems, Monash University, Melbourne, Australia.

Darke, P. and Shanks, G. (1995a). Understanding stakeholder viewpoints in require-

ments definition: A framework for viewpoint development, Working Paper 37/95,

Department of Information Systems, Monash University, Melbourne, Australia.

Darke, P. and Shanks, G. (1995b). Viewpoint development for requirements definition:

Towards a conceptual framework, Sixth Australasian Conference on Information Sys-

tems (ACIS’95), Perth, Australia, pp. 277–288.

Darke, P. and Shanks, G. (1996). Stakeholder viewpoints in requirements definition: A

framework for understanding viewpoint development approaches, Requirements

Engineering 1: 88–105.

Darke, P. and Shanks, G. (1997a). Managing user viewpoints in requirements defini-

tion, Eighth Australasian Conference on Information Systems (ACIS ’97), Adelaide,

Australia, pp. 495–508.

Darke, P. and Shanks, G. (1997b). User viewpoint modelling: Understanding and

representing user viewpoints during requirements definition, Information Systems

Journal 7: 213–239.

Date, C. (1990a). EXISTS is not “exists”! (some logical flaws in SQL), in C. Date (ed.),

Relational Database Writings, 1985–1989, Addison-Wesley, Reading, Massachusetts,

chapter 13, pp. 339–356.

Date, C. (1990b). What’s wrong with SQL?, in C. Date (ed.), Relational Database Writings,

1985–1989, Addison-Wesley, Reading, Massachusetts, chapter 12, pp. 325–337.

Date, C. (1995). An Introduction to Database Systems, sixth edn, Addison-Wesley, Read-

ing, Massachusetts.

Date, C. and Darwen, H. (1993). A Guide to the SQL Standard, third edn, Addison-

Wesley, Reading, Massachusetts.

314

DiBattista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E. and Vargiu, F. (1997).

An experimental comparison of four graph drawing algorithms, Computational

Geometry — Theory and Applications 7(5–6): 202–325.

Diestel, R. (1997). Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New

York.

Duke, R., King, P., Rose, G. and Smith, G. (1991). The Object-Z specification language

version 1, Technical report TR 91-1, Software Verification Research Centre, Univer-

sity of Queensland, Brisbane, Australia.

Easterbrook, S. M. (1991a). Elicitation of Requirements from Multiple Perspectives, PhD

thesis, Imperial College of Science Technology and Medicine, University of Lon-

don, London.

URL: 〈http://www.csee.wvu.edu/∼easterbr/papers/1991/thesis.pdf 〉

Easterbrook, S. M. (1991b). Handling conflict between domain descriptions with

computer supported negotiation, Knowledge Acquisition: An International Journal

3(4): 255–289.

URL: 〈ftp:// ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp202.ps.Z〉

Easterbrook, S. M., Finkelstein, A. C. W., Kramer, J. and Nuseibeh, B. A. (1994). Coor-

dinating distributed ViewPoints: The anatomy of a consistency check, Journal of

Concurrent Engineering: Research and Applications 2(3).

URL: 〈ftp:// ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp333.ps.Z〉;

〈ftp://dse.doc.ic.ac.uk/dse-papers/viewpoints/cera.ps.Z〉;

〈http://www.csee.wvu.edu/∼easterbr/papers/1994/csrp333.pdf 〉

Easterbrook, S. M. and Nuseibeh, B. A. (1995). Managing inconsistencies in an evolv-

ing specification, Second IEEE International Symposium on Requirements Engineering

(RE’95), York, UK, pp. 48–55.

URL: 〈ftp:// ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp358.ps.Z〉;

〈ftp://dse.doc.ic.ac.uk/dse-papers/viewpoints/re95.ps.Z〉;

〈http://www.csee.wvu.edu/∼easterbr/papers/1995/csrp358.pdf 〉

315

Easterbrook, S. M. and Nuseibeh, B. A. (1996). Using ViewPoints for inconsistency

management, Software Engineering Journal 11(1): 31–43.

URL: 〈http://www.csee.wvu.edu/∼easterbr/papers/1996/NASA-IVV-95-002.pdf 〉;

〈ftp://dse.doc.ic.ac.uk/dse-papers/viewpoints/sej95.ps.gz〉

Eastman, C., Jeng, T.-S., Assal, H., Cho, M. and Chase, S. (1995). EDM-2 Reference

Manual, Center for Design and Communication, UCLA, Los Angeles, USA.

Elmasri, R. and Navathe, S. B. (1994). Fundamentals of Database Systems, second edn,

Benjamin/Cummings, Redwood City, California.

Ernst, J. (1997). Introduction to CDIF, Technical report, Electronic Industries Association,

CDIF Technical Group.

URL: 〈http://www.eigroup.org/cdif/ intro.html〉

Evergreen Software Tools (1995a). EasyCASE R© Database EngineerTM User’s Guide, v4.2,

Evergreen Software Tools, Inc., Redmond, Washington.

Evergreen Software Tools (1995b). EasyCASE R©Methodology Guide, v4.2, Evergreen Soft-

ware Tools, Inc., Redmond, Washington.

Evergreen Software Tools (1995c). EasyCASE R© User’s Guide, v4.2, Evergreen Software

Tools, Inc., Redmond, Washington.

Finkelstein, A., Goedicke, M., Kramer, J. and Niskier, C. (1989). ViewPoint oriented

software development: Methods and viewpoints in requirements engineering, in

J. Bergstra and L. Feijs (eds), Second Meteor Workshop on Methods for Formal Speci-

fication, Vol. 490 of Lecture Notes in Computer Science, Springer-Verlag, Mierlo, The

Netherlands, pp. 29–54.

Finkelstein, A. and Sommerville, I. (1996). The viewpoints FAQ, Software Engineering

Journal 11(1): 2–4.

URL: 〈ftp://cs.ucl.ac.uk/acwf/papers/viewfaq.ps.gz〉

Flanagan, D. (1997). Java in a Nutshell, The Java Series, second edn, O’Reilly, Sebastopol,

California.

316

Fosnight, E. and van Roessel, J. (1985). Vector data interfacing at the EROS Data Cen-

ter; RIM to ARC/INFO and related interfaces, Technical report, EROS Data Center,

Sioux Falls, South Dakota.

Gallaire, H. and Minker, J. (1978). Logic and Data Bases, Plenum, New York.

Gane, C. and Sarson, T. (1979). Structured Systems Analysis: Tools and Techniques,

Prentice-Hall Software Series, Prentice-Hall, Englewood Cliffs, New Jersey.

Gawkowski, J. A. and Mamrak, S. (1992). Toward a universal framework for data

translation, Technical report OSU-CISRC-11/92-TR31, Computer and Information

Science Research Center, The Ohio State University, Columbus, Ohio.

URL: 〈ftp:// ftp.cis.ohio-state.edu/pub/tech-report/1992/TR31.ps.gz〉

Genesereth, M. and Fikes, R. (1992). Knowledge Interchange Format Version 3.0 Reference

Manual, Computer Science Department, Stanford University, Stanford, California.

Gosling, J. and McGilton, H. (1996). The Java language environment, White paper, Sun

Microsystems, Inc., Palo Alto, California.

URL: 〈ftp:// ftp.javasoft.com/docs/papers/ langenviron-pdf.zip〉

Greenspan, S., Mylopoulos, J. and Borgida, A. (1994). On formal requirements model-

ing languages: RML revisited, in B. Fadini (ed.), Sixteenth International Conference

on Software Engineering, IEEE Computer Society Press, Sorrento, Italy, pp. 135–148.

Groff, J. R. and Weinberg, P. N. (1994). LAN Times Guide to SQL, Osborne McGraw-Hill,

Berkeley, California.

Grundy, J. C. (1993). Multiple Textual and Graphical Views for Interactive Software Devel-

opment Environments, PhD thesis, Department of Computer Science, University of

Auckland, Auckland, New Zealand.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/MViews thesis.ps.gz〉

Grundy, J. C. (1998). Personal communication.

Grundy, J. C. and Hosking, J. G. (1993a). Constructing multi-view editing environ-

ments using MViews, 1993 IEEE Symposium on Visual Languages, IEEE CS Press,

317

Bergen, Norway, pp. 220–224.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/vl93.ps.gz〉

Grundy, J. C. and Hosking, J. G. (1993b). The MViews framework for constructing

multi-view editing environments, New Zealand Journal of Computing 4(2): 31–40.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/nzjc93.ps.gz〉

Grundy, J. C. and Hosking, J. G. (1994). Constructing integrated software development

environments with dependency graphs, Working Paper 94/4, Department of Com-

puter Science, University of Waikato, Hamilton, New Zealand.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/MViews.ps.gz〉

Grundy, J. C. and Hosking, J. G. (1995). Software environment support for integrated

formal program specification and development, 1995 Asia-Pacific Software Engi-

neering Conference (APSEC’95), IEEE CS Press, Brisbane, Australia, pp. 264–273.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/apsec95.ps.gz〉

Grundy, J. C. and Hosking, J. G. (1996). Keeping free-edited textual and graphical

views of information consistent, Working Paper 96/4, Department of Computer

Science, University of Waikato, Hamilton, New Zealand.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/ inconsistency.ps.gz〉

Grundy, J. C. and Hosking, J. G. (1997). Constructing integrated software develop-

ment environments with MViews, International Journal of Applied Software Technol-

ogy 2(3/4): 133–160.

Grundy, J. C., Hosking, J. G. and Mugridge, W. B. (1996). Supporting flexible consis-

tency management via discrete change description propagation, Software — Prac-

tice and Experience 26(9): 1053–1083.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/spe96.ps.gz〉

Grundy, J. C., Mugridge, W. B. and Hosking, J. G. (1997a). Utilising past event histories

in a process-centred software engineering environment, 1997 Australian Software

Engineering Conference, IEEE CS Press, Sydney, Australia, pp. 127–136.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/aswec97.ps.gz〉

318

Grundy, J. C., Mugridge, W. B. and Hosking, J. G. (1997b). A visual, Java-based compo-

nentware environment for constructing multi-view editing systems, Second Com-

ponent Users’ Conference (CUC’97), SIGS Books, Munich.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/cuc97.ps.gz〉

Grundy, J. C. and Venable, J. R. (1994). Providing integrated support for multiple de-

velopment notations, Working paper 94/17, Department of Computer Science, Uni-

versity of Waikato, Hamilton, New Zealand.

Grundy, J. C. and Venable, J. R. (1995a). Developing CASE tools which support inte-

grated development notations, Sixth Workshop on the Next Generation of CASE Tools

(NGCT’95), Finland.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/ngct95.ps.gz〉

Grundy, J. C. and Venable, J. R. (1995b). Providing integrated support for multiple

development notations, Seventh Conference on Advanced Information Systems Engi-

neering (CAiSE’95), Vol. 932 of Lecture Notes in Computer Science, Springer-Verlag,

Finland, pp. 255–268.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/caise95.ps.gz〉

Grundy, J. C. and Venable, J. R. (1996). Towards an integrated environment for method

engineering, Method Engineering ’96: IFIP WG 8.1/8.2 Working Conference on Princi-

ples of Method Construction and Tool Support, McGraw-Hill, Atlanta.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/me96.ps.gz〉

Hammer, M. and McLeod, D. (1981). Database description with SDM: A semantic

database model, ACM Transactions on Database Systems 6(3): 351–386.

Holtzman, S. R. (1994). Digital Mantras: The Languages of Abstract and Virtual Worlds,

MIT Press, Cambridge, Massachusetts.

Hosking, J. G. and Grundy, J. C. (1995). Using change descriptions to maintain consis-

tency across multiple representations, Technical Report 109, Department of Com-

puter Science, University of Auckland, Auckland, New Zealand.

URL: 〈http://www.cs.auckland.ac.nz/∼techrep/TR109/doc.ps〉

319

Hosking, J. G., Mugridge, W., Amor, R. and Grundy, J. (1995). Keeping things consis-

tent, New Zealand Journal of Computing 6(1): 353–362.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/nzcs95.ps.gz〉

Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. and Chen, C. (1994). Formal

approach to scenario analysis, IEEE Software 11(2): 33–41.

Hull, R. (1986). Relative information capacity of simple relational database schemata,

SIAM Journal on Computing 15(3): 856–886.

Hull, R. and King, R. (1987). Semantic database modeling: Survey, applications, and

research issues, ACM Computing Surveys 19(3): 201–260.

Informix Software (1996). Developing DataBlade R© modules for INFORMIX R©-

Universal Server, White paper, Informix Software Corp., Menlo Park, California.

URL: 〈http://www.informix.com/informix/whitepapers/databld/databld.htm〉

ISO-IEC (1987). Database Language SQL, International Standard ISO/IEC 9075:1987,

International Organisation for Standardisation (ISO), Geneva, Switzerland.

ISO-IEC (1989). Database Language SQL, International Standard ISO/IEC 9075:1989,

International Organisation for Standardisation (ISO), Geneva, Switzerland.

ISO-IEC (1992a). Database Language SQL, International Standard ISO/IEC 9075:1992,

International Organisation for Standardisation (ISO), Geneva, Switzerland.

ISO-IEC (1992b). Industrial automation systems and integration — Produce data rep-

resentation and exchange, part II: The EXPRESS language reference manual, Draft

International Standard ISO DIS 10313-11, International Organisation for Standard-

isation (ISO), Geneva, Switzerland.

Jacobs, D. and Marlin, C. (1995). Software process representation to support multiple

views, International Journal of Software Engineering and Knowledge Engineering 5(4).

Jacobson, I., Christerson, M., Jonsson, P. and Övergaard, G. (1992). Object-Oriented

Software Engineering: A Use Case Driven Approach, Addison-Wesley, Reading, Mas-

sachusetts.

320

Kahn, B. (1979). A Structured Logical Data Base Design Methodology, PhD thesis, Com-

puter Science Department, University of Michigan, Ann Arbor, Michigan.

Keeler, M. (1996). Database of all trades, Database Programming & Design 9(11): 34–42.

Klein, H. and Hirschheim, R. (1987). A comparative framework of data modelling

paradigms and approaches, The Computer Journal 30(1): 8–15.

Kotonya, G. and Sommerville, I. (1996). Requirements engineering with viewpoints,

Software Engineering Journal 11(1): 5–18.

Leite, J. and Freeman, P. A. (1991). Requirements validation through viewpoint resolu-

tion, IEEE Transactions on Software Engineering 17(12): 1253–1269.

Liu, S., Offutt, A. J., Ho-Stuart, C., Yong Sun and Ohba, M. (1998). SOFL: A formal en-

gineering methodology for industrial applications, IEEE Transactions on Software

Engineering 24(1): 24–45.

Lockhart, T. (1999). PostgreSQL Programmer’s Guide, Postgres Global Development

Group.

URL: 〈http://www.postgresql.org/docs/programmer/ index.html〉

Mamrak, S. A. and Barnes, J. (1994). Comparing tools and techniques for data trans-

lation, Technical report OSU-CISRC-2/94-TR8, Computer and Information Science

Research Center, The Ohio State University, Columbus, Ohio.

URL: 〈ftp:// ftp.cis.ohio-state.edu/pub/tech-report/1994/TR08-DIR/〉

Martin, J. (1990). Information Engineering, Book II: Planning and Analysis, revised edn,

Prentice-Hall, Englewood Cliffs, New Jersey.

McLean, B., Medeiros, J. and Mount, P. T. (1997). Javapostgres95.

URL: 〈http://www.retep.org.uk/postgres/JavaPostgres95-0.4.tar.gz〉

MetaCase Consulting (1993). MetaEdit 1.0 Manual, MetaCase Consulting Oy, Jyväskylä,

Finland.

Meyers, S. (1991). Difficulties in integrating multiview environments, IEEE Software

8(1): 49–57.

321

Miller, R. (1994). Managing Structural Heterogeneity, PhD thesis, Department of Com-

puter Sciences, University of Wisconsin-Madison, Madison, Wisconsin.

URL: 〈http://www.cs.toronto.edu/∼miller/papers/dissertation.ps〉

Miller, R., Ioannidis, Y. and Ramakrishnan, R. (1993). The use of information capacity

in schema integration and translation, Nineteenth International Conference on Very

Large Data Bases (VLDB), Dublin, Ireland, pp. 120–133.

URL: 〈http://www.cs.toronto.edu/∼miller/papers/MIR93b.ps〉

Miller, R., Ioannidis, Y. and Ramakrishnan, R. (1994a). Schema equivalence in hetero-

geneous systems: Bridging theory and practice, Information Systems 19(1): 3–31.

URL: 〈http://www.cs.toronto.edu/∼miller/papers/MIR94b.ps〉

Miller, R., Ioannidis, Y. and Ramakrishnan, R. (1994b). Schema intension graphs: A

formal model for the study of schema equivalence, Technical report CS-TR-94-1185,

Department of Computer Sciences, University of Wisconsin-Madison, Madison,

Wisconsin.

URL: 〈http://www.cs.toronto.edu/∼miller/papers/MIR93c.ps〉

Motro, A. (1987). Superviews: Virtual integration of multiple databases, IEEE Transac-

tions on Software Engineering SE-13(7): 785–798.

Muller, P.-A. (1997). Instant UML, Wrox Press, Birmingham.

Mullery, G. (1979). CORE — A method for controlled requirements specification,

Fourth International Conference on Software Engineering, IEEE Computer Society

Press, Munich, Germany, pp. 126–135.

National Institute of Standards and Technology (1993). Integration definition for in-

formation modeling (IDEF1X), Federal Information Processing Standards Publication

184, National Institute of Standards and Technology (NIST), Computer Systems

Laboratory.

URL: 〈http://www.sdct.itl.nist.gov/∼ftp/ idef/ idef1x.rtf 〉

Navathe, S. B. and Gadgil, S. G. (1982). A methodology for view integration in logical

data base design, Eighth International Conference on Very Large Data Bases, Morgan

Kaufmann, Los Altos, California, Mexico City, Mexico, pp. 142–164.

322

Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994). A framework for expressing the

relationships between multiple views in requirements specification, IEEE Transac-

tions on Software Engineering 20(10): 760–773.

URL: 〈ftp://cs.ucl.ac.uk/acwf/papers/tse94.icse.ps.gz〉;

〈ftp:/dse.doc.ic.ac.uk/ /dse-papers/viewpoints/tse94.icse.ps.Z〉

Object Design (1999). Welcome to ObjectStore, Web document, Object Design, Inc.

URL: 〈http://www.odi.com/objectstore/〉

O’Brien, D. (1992). Deft Editors and Utilities, v4.2, Sybase, Inc., Emeryville, California.

Ousterhout, J. K. (1998). Scripting: Higher level programming for the 21st century,

White paper, Scriptics Corporation, Palo Alto, California.

URL: 〈http://www.scriptics.com/people/ john.ousterhout/scripting.html〉

Pascoe, R. and Penny, J. (1990). Construction of interfaces for the exchange of geo-

graphic data, International Journal of Geographical Information Systems 4(2): 147–156.

Pascoe, R. T. and Penny, J. P. (1995). Constructing interfaces between (and within)

geographical information systems, International Journal of Geographical Information

Systems 9(3): 275–291.

Price, C. (1995). Guidelines for implementing VML (view mapping language) multi-

schema mapping specifications in C++, Internal report, Building Research Associ-

ation of New Zealand, Inc., Wellington, New Zealand.

Qian, X. (1995). Correct schema transformations, Technical report SRI-CSL-95-08, Com-

puter Science Laboratory, SRI International, Menlo Park, California.

URL: 〈http://www.csl.sri.com/reports/postscript/sri-csl-95-08.ps.gz〉

Rational Software Corporation (1997). UML Summary, version 1.1, Rational Software

Corp., Santa Clara, California.

Reiner, D. (1992). Database design tools, Benjamin/Cummings, Redwood City, Califor-

nia, chapter 15, pp. 411–454.

Reiss, S. P. (1985). PECAN: Program development systems that support multiple views,

IEEE Transactions on Software Engineering SE-11(3): 276–285.

323

Reiss, S. P. (1990a). Connecting tools using message passing in the Field environment,

IEEE Software 7(7): 57–66.

Reiss, S. P. (1990b). Interacting with the FIELD environment, Software — Practice and

Experience 20(S1): S1/89–S1/115.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. (1991). Object-

oriented Modeling and Design, Prentice-Hall.

Sallis, P., Tate, G. and MacDonell, S. (1995). Software Engineering: Practice, Management,

Improvement, Addison-Wesley, Reading, Massachusetts.

Serrano, J. A. (1994). User interfaces to data modelling systems, Internal report, Depart-

ment of Computer Science, University of Glasgow, Glasgow, Scotland.

URL: 〈http://www.dcs.gla.ac.uk/people/personal/serrano/ links/UIDMS.PS〉

Shipman, D. (1981). The functional data model and the data language DAPLEX, ACM

Transactions on Database Systems 6(1): 140–173.

Smith, H. C. (1985). Database design: Composing fully normalized tables from a rig-

orous dependency diagram, Communications of the ACM 28(8): 826–838.

Spaccapietra, S. and Parent, C. (1992). ERC+: An object based entity relationship ap-

proach, in P. Loucopoulos and R. Zicari (eds), Conceptual Modelling, Databases and

CASE: An Integrated View of Information Systems Development, John Wiley.

URL: 〈ftp:// lbdsun.epfl.ch/pub/dbcase92.ps.Z〉

Stanger, N. and Pascoe, R. (1997a). Environments for viewpoint representations, in

R. Galliers, S. Carlsson, C. Loebbecke, C. Murphy, H. Hansen and R. O’Callaghan

(eds), Fifth European Conference on Information Systems (ECIS’97), Vol. I, Cork Pub-

lishing, Cork, Ireland, pp. 367–382.

Stanger, N. and Pascoe, R. (1997b). Exploiting the advantages of object-oriented pro-

gramming in the implementation of a database design environment, Information

Science Discussion Paper 97/08, Department of Information Science, University of

Otago, Dunedin, New Zealand.

URL: 〈http://divcom.otago.ac.nz/ infosci/publctns/complete/papers/dp9708ns.zip〉

324

Stanger, N. and Pascoe, R. (1997c). Exploiting the advantages of object-oriented pro-

gramming in the implementation of a database design environment, Joint 1997

Asia Pacific Software Engineering Conference and International Computer Science Con-

ference (APSEC’97/ICSC’97), IEEE Press, Hong Kong.

URL: 〈http://divcom.otago.ac.nz/ infosci/darc/publications/APSEC97.pdf 〉

Su, S. and Fang, S. (1993). A neutral semantic representation for data model and

schema translation, Technical report TR-93-023, University of Florida, Gainesville,

Florida.

URL: 〈ftp:// ftp.cis.ufl.edu/cis/ tech-reports/tr93/tr93-023.ps.Z〉

Su, S., Fang, S. and Lam, H. (1992). An object-oriented rule-based approach to data

model and schema translation, Technical report TR-92-015, University of Florida,

Gainesville, Florida.

URL: 〈ftp:// ftp.cis.ufl.edu/cis/ tech-reports/tr92/tr92-015.ps.Z〉

Su, S., Krishnamurthy, V. and Lam, H. (1989). An object-oriented semantic association

model (OSAM*), in S. Kumara, A. Soyster and R. Kashyap (eds), Artificial Intelli-

gence: Manufacturing Theory and Practice, Industrial Engineering and Management

Press, Nocross, Georgia, pp. 463–493.

Sun Microsystems (1997). Java demonstration applets and applications, Web docu-

ment, Sun Microsystems, Inc.

URL: 〈http://www.javasoft.com/products/ jdk/1.1/docs/relnotes/demos.html〉

Sun Microsystems (1998a). JavaTM platform 1.1.x core API specification, Web docu-

ment, Sun Microsystems, Inc.

URL: 〈http://www.javasoft.com/products/ jdk/1.1/docs/api/packages.html〉

Sun Microsystems (1998b). The JDBCTM database access API, Web document, Sun Mi-

crosystems, Inc.

URL: 〈http:// java.sun.com/products/ jdbc/ index.html〉

Tamassia, R. (1985). New layout techniques for entity-relationship diagrams, in P. P.

Chen (ed.), Fourth International Conference on the Entity-Relationship Approach, IEEE

Computer Society Press/North Holland, Chicago, Illinois, pp. 304–311.

325

Tittel, E. (1998). What’s the point of XML?, SunWorld 12(2).

URL: 〈http://www.sun.com/sunworldonline/swol-02-1998/swol-02-xml.html〉

Tsichritzis, D. and Klug, A. (eds) (1978). The ANSI/SPARC/X3 DBMS framework, AFIPS

Press.

Tsichritzis, D. and Lochovsky, F. (1982). Data Models, Prentice-Hall.

Venable, J. R. (1993). CoCoA: A Conceptual Data Modelling Approach for Complex Prob-

lem Domains, PhD thesis, Thomas J. Watson School of Engineering and Applied

Science, State University of New York at Binghampton, Binghampton, New York.

Venable, J. R. and Grundy, J. C. (1995). Integrating and supporting entity relationship

and object role models, Fourteenth OO/ER Conference (OO-ER’95), Vol. 1021 of Lec-

ture Notes in Computer Science, Springer-Verlag, Brisbane, Australia, pp. 318–328.

URL: 〈http://www.cs.auckland.ac.nz/∼john-g/papers/ooer95.ps.gz〉

Verheijen, G. and van Bekkum, J. (1982). NIAM: An information analysis method, in

T. Olle, H. Sol and A. Verrijn-Stuart (eds), Information Systems Design Methodolo-

gies: A Comparative Review, North-Holland/IFIP, Amsterdam, The Netherlands,

pp. 537–590.

Visible Systems Corporation (1999). Database and application development — prod-

ucts, Web document, Visible Systems Corporation.

URL: 〈http://www.visible.com/dataapp/daprods.html〉

326

Glossary

CDIF CASE Data Interchange Format. An extensible interchange format for CASE

tools defined by the Electronic Industries Association (CDIF Technical Commit-

tee, 1994a). It allows the interchange of a wide variety of CASE data, including

entity-relationship models, data flow models, state-transition models and project

management models. See Sections 2.4.3 on page 30 and 3.4 on page 49.

CoCoA COmplex COvering Aggregation. A meta-modelling language defined by

Venable (1993) for the purpose of defining representations. See Section 10.2 on

page 280.

Completeness (translation) A property of translations that indicates whether a trans-

lation maps all constructs or properties of constructs from the source represen-

tation to the target representation, or only some of them. The completeness of

a translation may be specified as either complete or partial. See Section 4.3.2 on

page 75.

Composition (translation) A property of translations that indicates whether a transla-

tion may be decomposed into sub-translations of the same type. The composition

of a translation may be specified as either atomic or composite. See Section 4.3.3 on

page 76. (See also type.)

Consistency (viewpoint) The descriptions of a viewpoint must be consistent with each

other, that is, they must agree in terms of the structure and semantics of the infor-

mation that they describe. A viewpoint is internally consistent, so descriptions

may not include information that disagrees with other descriptions in the view-

point. Different viewpoints may however be inconsistent with each other.

Construct A component of a representation, such as an entity or a data flow. The na-

ture of a construct is defined by its properties. The constructs of a representation

327

may be divided into technique-level constructs and scheme-level constructs. See

Section 3.2.3 on page 46.

DBMS DataBase Management System.

Description An instantiation of a representation. Informally, a description can be

thought of as analogous to a schema. Examples of descriptions include entity-

relationship diagrams and data flow diagrams such as those found in Appendix C.

See Section 3.2.2 on page 44.

Description translation The translation of a description from one representation to

another. A description translation comprises a collection of rules that define the

mappings between constructs of the two representations. See Section 4.3.1 on

page 74.

DFD Data Flow Diagram.

Direction (translation) A property of a translation that specifies whether it may be

applied in only one direction (unidirectional), or in both directions (bidirectional).

See Section 4.3.4 on page 77.

Element An instantiation of a construct that forms a component of a description. For

example, a Staff entity or the attribute name. See Section 3.2.3 on page 46.

Element translation The translation of a collection of one or more elements from one

representation to another. Element translations are defined by rules that specify

the mappings between construct properties in the source and target representa-

tions. See Section 4.3.1 on page 74.

Enrichment The process of providing extra information to a translation in order to

improve its quality. Enrichment may occur before, during and after a translation.

See Section 4.6 on page 91.

ERD Entity-Relationship Diagram.

Exclusion (rule) If rule ri is applied to a collection of source elements, and as a conse-

quence rule rj cannot be applied to the same collection because it would produce

328

a conflicting result, then ri is said to exclude the use of rj . See Section 4.7.1 on

page 98.

Expressive overlap The overlap in expressive power of two representations. Expres-

sive overlap may fall into one of four categories: disjoint (no overlap), intersecting

(partial overlap), inclusive (one representation contained by the other) and equiv-

alent (the representations have identical expressive powers). See Section 3.5 on

page 55.

Expressive power The boundary of what may be expressed using the constructs of a

particular representation. In effect, it is the set of all possible descriptions that

may be expressed using the representation. See Section 3.5 on page 55. (See also

relative information capacity.)

FDD Functional Dependency Diagram.

Heuristic A form of rule that may sometimes produce a semantically inconsistent re-

sult. Informally, heuristics may be thought of as ‘rules of thumb’ that usually

produce the correct result, but may not always do so. Also known as a heuristic

rule; see Section 4.2 on page 68.

Information capacity (See relative information capacity.)

inter class A VML-S structure that is used to define element translations. See Sec-

tion 7.2 on page 180.

inter view A VML-S structure that is used to define description translations. See

Section 7.2 on page 180.

Interfacing strategy The strategy used to define translations between representations.

In the individual interfacing strategy, translations are defined between every pair

of representations (n(n − 1)/2 translations for n representations). In the inter-

change format interfacing strategy, translations are only defined between each

representation and a common interchange format (2n translations for n represen-

tations). See Section 2.4.3 on page 30.

329

Invariant A condition that must hold for the elements being processed by a rule. This

condition may be applied to either the source elements, where it acts as a filter;

or it may be applied to the target elements, where it acts as a constraint. See

Section 4.2 on page 68.

MDM Multiple-Data-Model. A multiple representation modelling environment built

by Atzeni and Torlone (1997). See Sections 2.2.2 on page 12 and 9.3.3 on page 258.

MViews A framework for building environments that support multiple textual and

graphical views of an underlying model, developed by Grundy (1993). It has re-

cently been reimplemented in Java (JViews). See Sections 2.2.1 on page 9 and 9.3.2

on page 255.

ORECOM Object-oriented Rule-based Extensible COre Model. An interchange for-

mat defined by Su and Fang (1993). See Sections 2.2.3 on page 13 and 9.3.4 on

page 261.

Performance (translation) The number of distinct translation steps required to trans-

late a description from one representation to another. The higher the number of

steps, the worse the performance. See Section 2.4.2 on page 29.

Perspective An internally-consistent description of a real-world phenomenon from

some particular point of view. Real-world phenomena may typically be viewed

from several different perspectives simultaneously. See Section 2.3 on page 15.

(See also viewpoint.)

Property (construct) Properties define the nature of constructs. For example, a con-

struct representing a relational attribute might have the properties name, domain

and relation, representing the name of the attribute, the domain it is drawn from

and the relation in which it participates, respectively. See Section 3.2.3 on page 46.

Quality (translation) How well a translation deals with loss of information. In effect,

how completely a translation maps the constructs of its source representation

onto the constructs of its target representation. See Section 2.4.1 on page 28 and

Chapter 8.

330

Refinement The process of combining several input descriptions to produce a single

output description. Typically used to produce an implementation schema from a

collection of source descriptions. See Section 10.5 on page 289.

Relative information capacity The relative information capacity of a schema deter-

mines the set of all possible instances of that schema. In effect, it is a measure

of the information content of a schema. It is not an absolute measure; rather it

provides a basis for comparing the information content of different schemas. See

Section 8.2 on page 214. (See also schema intension graph.)

Representation The combination of a particular modelling technique and scheme in

order to describe a viewpoint. In effect, it is a combination of constructs that may

be used to describe real-world phenomena. Representations may be divided into

informal, semi-formal and formal representations. Examples of representations

include the entity-relationship approach + Chen ERD notation (semi-formal) and

the relational model + SQL (formal). See Sections 2.3 on page 15 and 3.2.1 on

page 42.

Representation definition A description of the constructs of a representation and the

associations between them. See Section 3.4 on page 49.

Rule A mapping between a collection of source constructs/properties and a collection

of target constructs/properties. Rules may be divided into technique-level and

scheme-level rules. See Section 4.2 on page 68.

Schema intension graph A formal representation for describing schemas that may be

used to compare the relative information capacities of schemas. See Section 8.2.1

on page 215.

Scheme The ‘specialised’ part of a representation, which usually includes the visual

appearance of the abstract constructs of the representation. It can be thought of

as analogous to a modelling notation. Examples include Martin ERD notation

and relational calculus. See Section 3.2.1 on page 42.

SGML Standard Generalised Markup Language. A standard markup language for

describing the logical structure of documents.

331

SIG (See schema intension graph.)

Smith’s method A method defined by Smith (1985) for deriving a collection of fully

normalised relations from a functional dependency diagram. See Appendix B.

Source construct A construct of the source representation of a translation. See Sec-

tion 4.3.4 on page 77.

SQL Structured Query Language.

STD State/Transition Diagram.

Subsumption (rule) A rule ri is subsumed by another rule rs in a particular direction d

if the source constructs of ri are a subset (⊆) of the source constructs of rs, both

rules may be applied in the direction d, and the invariants for both rules are not

contradictory. See Section 4.7.1 on page 98.

Subsumption/exclusion graph A directed graph that describes the subsumptions and

exclusions in a collection of rules for a particular translation direction. It may be

used during the translation process to determine an appropriate order in which

to evaluate rules against elements. See Section 4.7.1 on page 98.

Swift A simple prototype multiple representation modelling environment implement-

ed in Java by the author. The name derives from two earlier CASE tools de-

veloped in-house at the Department of Information Science at the University of

Otago. The first of these, named Pronto, was developed under the Mac OS in

1991 and used as a teaching tool for several years. A Windows version of the

original tool, named Rapid, was implemented in 1994–95 and is still in use within

the department. Swift continues the naming tradition. See Chapter 6.

Target construct A construct of the target representation of a translation. See Sec-

tion 4.3.4 on page 77.

Technique The ‘generic’ part of a representation, which defines the basic constructs of

the representation. It can be thought of as analogous to a modelling approach.

Examples include the entity-relationship approach and dependency theory. See

Section 3.2.1 on page 42.

332

Trivial translation A scheme translation that changes only the visual appearance of

elements in a description, for example, changing bubbles in a Smith notation

FDD into boxes in a Date notation FDD. See Section 4.3.1 on page 74.

Type (translation) A property of translations. For description translations, either tech-

nique (changes both technique and scheme) or scheme (changes only the scheme).

For element translations, either rule or heuristic. See Section 4.3.1 on page 74.

Viewpoint A formalisation of a perspective. During requirements specification, sev-

eral overlapping and possibly conflicting viewpoints may be elicited. These must

be reconciled in some way in order to build a system. Viewpoints may be divided

into developer and user viewpoints. See Section 2.3 on page 15.

VML View Mapping Language. A declarative translation specification language de-

veloped by Amor (1997). See Section 7.2 on page 180.

VML-S View Mapping Language — Swift. An extended version of VML defined by

the author. See Chapter 7.

333

Appendix A

Notations and terminology

A.1 Introduction

In this appendix are summarised the major notations that are used in this thesis, ex-

cept for the modified Smith’s notation for functional dependency diagrams, which is

described in Appendix B. The original pre-VML notation for expressing translations is

summarised in Section A.4. The detail of the CASE tool survey discussed in Chapter 9

is presented in Section A.5.

A.2 Martin/EasyCASE ERD notation

Entity-relationship diagrams (ERDs) in this thesis are presented using a variant of Mar-

tin’s (1990) ERD notation implemented by the EasyCASE CASE tool (Evergreen Soft-

ware Tools, 1995b, Section 4.2.3). The notation is summarised in Tables A.1 and A.2 on

the next page.

A.3 Gane & Sarson/EasyCASE DFD notation

Data flow diagrams (DFDs) in this thesis are presented using a variant of Gane and Sar-

son’s (1979) DFD notation implemented by the EasyCASE CASE tool (Evergreen Soft-

ware Tools, 1995b, Section 3.4). The notation is summarised in Table A.3 on page 337.

A.4 Original translation notation

The translation operator is denoted by the symbol→. The same operator can be used

to denote both description translations, that is, translating a description from one repre-
335

Table A.1: Summary of the Martin/EasyCASE ERD notation

Graphic Name Description

Entity An entity represents an object or group of objects
about which information is to be stored.

Weak entity A weak entity represents an entity that can only exist
when connected to some other entity.

Associative entity An associative entity typically represents a correla-
tion table.

• Mutual exclusivity The mutual exclusivity symbol is used to represent a
relationship between one entity and many other enti-
ties that are mutually exclusive. It is typically used to
connect a supertype to its subtypes.

Supertype/subtype A supertype/subtype relationship links a single su-
pertype entity with one or more subtype entities.

Relationship A relationship represents an association between two
entities. The cardinality of the relationship is denoted
by various notations at each end of the relationship
line — see Table A.2.

Table A.2: Martin/EasyCASE notation for relationship cardinalities

Notation Cardinality
Unspecified
One (1:1)
None-or-one (0:1)
Many (M:N)
None-or-many (0:M)
One-or-many (1:M)

sentation to another, and construct translations, that is, translating a construct from one

representation to another.

A.4.1 Description translations

If both operands of a translation are descriptions, this indicates the translation of a

description from one representation to another. The translation of a description D1 in

representationRp(Ti, Sj) to a descriptionD2 in representationRq(Tk, Sl) is specified as:

D1(V, Ti, Sj)→ D2(V, Tk, Sl).

For example, translating a viewpoint description expressed using SQL into one us-

336

Table A.3: Summary of the Gane & Sarson/EasyCASE DFD notation

Graphic Name Description
a

External entity An external entity represents a physical device
or other system that is outside the scope of the
system being defined, but provides information
to and/or receives information from the sys-
tem.

a

Repeated external entity Represents an external entity that appears more
than once in a diagram.

Dn Data store A data store stores the data flow output by a
data process until it is required by some other
data process.

Dn Repeated data store Represents a data store that appears more than
once in a diagram.

Resource store A resource store stores the contents of a re-
source flow until needed.

Pn

Data process A data process transforms input data flows into
output data flows.

Pn

Multiple data process Denotes multiple instances of a process or con-
current processing.

Split/merge Splits a composite flow into its component
flows, merges component flows into composite
flows, or allows a single flow to be directed to
several targets.

Interface Links a flow to a different DFD.
Data flow A data flow represents the transfer of data be-

tween processes, data stores and external enti-
ties.

Resource flow A resource flow represents the flow of physical
resources such as goods, rather than data.

ing QUEL is denoted by:

D1(V,Relational , SQL)→ D2(V,Relational ,QUEL)

and translating a Chen-style ERD into a relational schema is denoted by:

D1(V,E -R,ERDChen)→ D2(V,Relational , SQL).

A.4.2 Constructs

A construct C (of type CTYPE) of representation R(Ti, Sj) is denoted by:

R(Ti, Sj) [C : CTYPE]

337

or, if R is clear, simply:

R [C : CTYPE] .

The type CTYPE is analogous to the concept of a relational domain in that it specifies

a pool of possible ‘instances’ from which C may be taken. The ‘:’ notation is used

with similar meaning in both domain calculus (Date, 1995, p. 204) and Z (Brien and

Nicholls, 1992, p. 6), that is, ‘C is an element of the set DOM’. The type of a construct

is specified according to the constructs defined in the representation definition (see

Appendix D).

Some examples of constructs are shown in Table A.4. Note that as shown in the last

example, C may in general specify a set of constructs.

Table A.4: Examples of constructs

Re(E -R,ERDMartin) [E : ENTITY] denotes an entity in a Martin notation
E-R diagram

Rf (FuncDep,FDDSmith) [s : SVD] denotes a single-valued dependency
in a Smith notation functional depen-
dency diagram

Rr(Relational ,SQL/92) [{a1, . . . , an} : COLUMN] denotes a collection of columns in an
SQL/92 schema

A.4.3 Construct translations

If both operands of a translation are constructs, this indicates the translation of a con-

struct from one representation to another via a rule. Let Rs(Ti, Sj) and Rt(Tk, Sl) be

two representations. The translation of construct C1 of Rs into construct C2 of Rt is

denoted by:

Rs [C1 : STYPE]→ Rt [C2 : TTYPE]

where STYPE and TTYPE are construct types of Rs and Rt respectively. For example:

Re(E -R,ERDMartin) [mk : ATTRIBUTE]→ Rf (FuncDep,FDDSmith) [sk : ATTRIBUTE]

denotes the translation of a Martin ERD attribute mk into a Smith FDD attribute sk.

338

Most construct translations are not this simple, however. In general, a construct

translation will have a set of preconditions that apply to the source construct(s), and a

set of postconditions that apply to the target construct(s). Some way is therefore required

of specifying a set of axioms that a construct must fulfill. Axioms for a construct are

denoted as follows:

R [C : TYPE | {axioms}]

A full construct translation with pre- and postconditions is thus denoted by:

Rs [Cs : STYPE | {preconditions}]→ Rt [Ct : TTYPE | {postconditions}]

For example, given Re(E -R,ERDMartin) and Rr(Relational , SQL/92), then:

Re [ak : ATTRIBUTE | {(∃Re [Ek : ENTITY])(Re [ak] ∈ Re [Ek])}]→

Rr [ck : COLUMN | {(∃Rr [Tk : TABLE])(Rr [ck] ∈ Rr [Tk])}]

denotes the translation of an attribute ak of Martin ERD entity Ek into a column ck of

SQL/92 table Tk.

A.4.4 Heuristic construct translations

In order to distinguish clearly between rule-based construct translations and heuristic-

based construct translations, the operator ��� will be used to denote a heuristic con-

struct translation. The remainder of the notation is unchanged.

A.4.5 Composite and atomic translations

All the examples of translations shown so far have been atomic, that is, they cannot

be decomposed into a set of smaller translations of the same type (description or con-

struct). If a translation can be decomposed into a collection of translations of the same

type, then it is known as a composite translation, and is denoted by placing a small

circle (◦, representing the mathematical composition operator) over the translation op-

erator, that is, ◦→ or
◦���. Technically, all description translations could be considered a

composite of several construct translations, but these were considered to be composite

339

translations, it would not then be possible to specify a series of description transla-

tions as a composite translation. That is, D1 → D2 → D3 could not be rewritten as

D1
◦
→ D3. Sub-translations are therefore limited to being of the same type as the super-

translation.

A.5 CASE tool survey

In this section, five ‘conventional’ CASE tools are surveyed to determine to the extent

to which they facilitate the use of multiple representations and their support for rep-

resentation translations. The tools surveyed were: Visible Systems’ EasyCASE, Visible

Analyst and EasyER/EasyOBJECT; Sybase’s Deft; and MetaCase’s MetaEdit. Easy-

CASE and Deft were chosen because full versions were readily accessible; the remain-

ing tools were chosen because comprehensive demonstration versions were available

for download from the Internet.

The survey takes the following form:

1. A brief description of the tool will be given;

2. A list of the representations supported by the tool will be presented;

3. Any ability to facilitate the use of multiple representations will be identified; and

4. Any ability to translate descriptions from one representation to another will be

identified.

A.5.1 Visible Systems EasyCASE

EasyCASE (Visible Systems Corporation, 1999) is a complete CASE environment orig-

inally developed by Evergreen Software Tools, who merged with Visible Systems Cor-

poration in 1997. EasyCASE is based around two main tools, which share a common

data dictionary. The EasyCASE application itself (Evergreen Software Tools, 1995c)

provides diagramming, high-level data dictionary access and reporting tools; while

the Database Engineer (Evergreen Software Tools, 1995a) provides detailed manipula-

tion of the data dictionary and control over the schema generation process.

340

EasyCASE supports a wide range of representations (Evergreen Software Tools,

1995b), as shown in Table A.5 on the next page. The common data dictionary allows

different descriptions (using different representations) to share information, so Easy-

CASE partially facilitates the use of multiple representations.

EasyCASE supports many translations between representations:

• any supported E-R↔ any supported relational (31 technique translations);

• any DFD↔ any DFD (12 scheme translations); and

• some E-R↔ some E-R (17 scheme translations).

As can be seen from the above, the only technique translations supported by EasyCASE

are those between E-R and SQL representations, and the differences between these

translations are small.

The scheme translations supported by EasyCASE are all trivial, as they can only be

applied when the two representations have equivalent expressive powers, and result

only in a change of notation. Scheme translations are effected by changing the nota-

tion type (scheme) of a description in the data dictionary. If the two representations

do not have equivalent expressive powers, this can result in an error upon returning

to the diagramming tool, but in some cases, source constructs that have no equivalent

in the target representation are retained, resulting in a syntactically invalid descrip-

tion. This is particularly apparent with the E-R representations, where only seventeen

translations out of a possible forty-two actually work. Some translations could be per-

formed in one direction but not the other, despite the fact that all of the ERD schemes

overlap sufficiently to perform translations in both directions. These are all significant

indications that no actual translation is taking place.

A.5.2 Visible Systems Visible Analyst

Visible Analyst (Visible Systems Corporation, 1999) is a CASE environment developed

by Visible Systems Corporation. It comprises a single application that provides sup-

port for several representations (see Table A.6 on page 343). Although it has a data

dictionary, it is not as integrated as the data dictionary in EasyCASE, as information

cannot be shared across descriptions that are expressed using different representations.

341

Table A.5: Representations supported by EasyCASE

Technique Scheme Notation

Entity-relationship Chen ERD R(E -R,ERDChen)
Martin ERD R(E -R,ERDMartin)
Bachman ERD R(E -R,ERDBachman)
Shlaer-Mellor ERD R(E -R,ERDShlaerMellor)
IDEF1X ERD R(E -R,ERDIDEF1X)
Merise ERD R(E -R,ERDMerise)
SSADM logical data structure diagram
(LDS)

R(E -R,LDSSSADM)

Metrica 2 ERD R(E -R,ERDMetrica2)

Functional dependencies Martin data model diagram (DMD) R(FuncDep,DMDMartin)
a

Bachman DMD R(FuncDep,DMDBachman)
a

Data flow modelling Yourdon/DeMarco DFD R(DataFlow ,DFDY /DM)
Gane & Sarson DFD R(DataFlow ,DFDG&S)
Metrica 2 DFD R(DataFlow ,DFDMetrica2)
SSADM DFD R(DataFlow ,DFDSSADM)
Yourdon/DeMarco transformation
graph (TRG)

R(DataFlow ,TRGMetrica2)

Gane & Sarson TRG R(DataFlow ,TRGG&S)

State-Event State transition diagram (STD) R(StateEvent ,STD)

Relational SQL (31 dialects)b R(Relational ,SQL)
Microsoft Accessc R(Relational ,MSAccess)

Data structure Data structure diagram (DSD) R(DataStruct,DSD)

Structured design Yourdon/Constantine structure chart
(STC)

R(Structured,STCY /C)

SSADM entity life history diagram
(ELH)

R(Structured,ELHSSADM)d

Notes on Table A.5:
a Data model diagrams are very similar to functional dependency diagrams (FDDs), although

functional dependencies are not explicitly mentioned.
b Strictly speaking, each dialect of SQL is a separate scheme, but they have been grouped here

because of the sheer number of dialects supported. EasyCASE supports the following SQL
dialects: ANSI SQL (probably SQL/89), ANSI SQL/2 (probably SQL/92), Microsoft Access
(via ODBC), DB2, dBASE III Plus, dBASE IV, dBASE V, FoxPro 2.x, Informix 5/6, Ingres,
InterBase 4, Netware SQL, Oracle 6/7, OS2 Extended Edition, Paradox 3/4.x/5, Progress
6/7, R:BASE SQL, Rdb/VMS, SQLBase 5.x/6, SQL Server, Sybase, Watcom SQL 3.2/4.0 and
XDB 3/4.0.

c Supports versions 1.1 and 2.0 via direct connection using the JET database engine.
d Entity life history diagrams also appear to be at least partially linked to state-event mod-

elling.

342

Table A.6: Representations supported by Visible Analyst

Technique Scheme Notation

Entity-relationship Unknowna R(E -R,ERDVAW)

Data flow modelling Gane & Sarson DFD R(DataFlow ,DFDG&S)
Yourdon/DeMarco DFD R(DataFlow ,DFDY /DM)

Relational SQL (18 dialects)b R(Relational ,SQL)

Object modelling Class diagrams (OCD) R(Object , OCD)

State-Event State transition diagram (STD) R(StateEvent ,STD)

Structured design Yourdon/Constantine structure
chart (STC)

R(Structured ,STCY /C)

Functional decomposition diagram R(Structured ,FuncDecomp)

HLLc code COBOL R(HLL,COBOL)
C R(HLL,C)

Notes on Table A.6:
a This ERD notation, while similar to other notations, appears to be peculiar to Visible

Analyst.
b The SQL dialects supported by Visible Analyst are: ANSI SQL/92, Microsoft Ac-

cess, Centura SQL Base 5.0, DB2 2.3, Datacom:DB SQL, Informix-SQL, Ingres/SQL,
Netware SQL 3.0, Oracle SQL 7.0, Rdb, SQL Server 4.X, SQL Server 6.X, SQL Server
System 10, Teradata SQL 4.1.3, Unify SQL, Watcom SQL, XDB, dBase IV SQL 1.1 and
a user-defined dialect.

c ‘HLL’ = high-level language, that is, typical programming languages such as C++ or
Pascal.

Visible Analyst only supports technique translations between E-R and relational

representations (all bidirectional). It also supports the generation of C or COBOL code

from a collection of source descriptions. No scheme translations are supported, which

is expected given the lack of integration across descriptions in the data dictionary.

A.5.3 Visible Systems EasyER/EasyOBJECT

EasyER/EasyOBJECT (Visible Systems Corporation, 1999) is a high-end CASE envi-

ronment produced by Visible Systems Corporation. It comprises a single tool with an

integrated data dictionary, and supports the set of representations shown in Table A.7

on the next page. The data dictionary works similarly to that in EasyCASE, so Ea-

343

Table A.7: Representations supported by EasyER/EasyOBJECT

Technique Scheme Notation

Entity-relationship Microsoft Access ‘ERD’ R(E -R,ERDAccess)
Martin ERD R(E -R,ERDMartin)
Bachman ERD R(E -R,ERDBachman)
Shlaer-Mellor ERD R(E -R,ERDShlaerMellor)
IDEF1X ERD R(E -R,ERDIDEF1X)
‘Referenced arrowhead’ ERD R(E -R,ERDRefdArrow)
‘Referencing arrowhead’ ERD R(E -R,ERDRefgArrow)

Relational SQL (45 dialects)a R(Relational ,SQL)

Microsoft Accessb R(Relational ,MSAccess)

Object Coad/Yourdon R(Object ,Coad/Yourdon)
Rumbaugh OMT R(Object ,Rumbaugh)
Unified Modelling Language
(UML)

R(Object ,UML)

Notes on Table A.7:
a The dialects include all those supported by EasyCASE, plus: DB2 v2.1, InterBase

4.1/4.2, Paradox 7, Progress 8, SQL Server 6.x, Sybase System 10/11, Visual dBASE
5.5 and Visual FoxPro 3.0/5.0.

b Supports versions 1.1, 2.0, 95 and 97 via direct connection using the JET database
engine.

syER/EasyOBJECT partially facilitates the use of multiple representations.

EasyER/EasyOBJECT supports bidirectional technique translations between E-R

and SQL representations and between object and SQL representations. It also appears

to support technique translations between E-R and object representations, and scheme

translations among the E-R representations and among the object representations. All

the translations in these latter two groups are true translations, as some of them result

in loss of information, but they are very simple translations in that they only involve di-

rect one-to-one mappings between constructs. Source constructs that are not supported

in the target representation are either ignored or changed into the nearest similar tar-

get construct, which may not always give the correct result. There is no capacity for

mapping a collection of source constructs to a single target construct, or vice versa. In

addition, these translations do not result in the generation of new descriptions; rather

the existing description is altered in place.

344

A.5.4 Sybase Deft

Deft (O’Brien, 1992) is a CASE environment produced by Sybase, Inc.1 Deft comprises

a collection of six tools that communicate via a common data dictionary, and supports

a relatively small collection of representations, shown in Table A.8. The common data

dictionary allows sharing of information across descriptions, so Deft partially facili-

tates the use of multiple representations in a manner similar to EasyCASE.

Table A.8: Representations supported by Deft

Technique Scheme Notation

Entity-relationship Chen/Bachman ERD R(E -R,ERDC/B)

Martin ERD R(E -R,ERDMartin)
IRM ERD R(E -R,ERDIRM)

Data flow modelling Gane & Sarson DFD R(DataFlow ,DFDG&S)
Yourdon DFD R(DataFlow ,DFDYourdon)
Process structure diagram (PSD) R(DataFlow ,PSD)

Relational SQL (11 dialects)a R(Relational ,SQL)

Ingres QUEL (2 dialects)b R(Relational ,QUELIngres)

Notes on Table A.8:
a The SQL dialects supported by Deft are: DB2, ‘Generic’ (probably SQL/89), In-

formix, Ingres 5/6, Oracle 5/6/7, Rdb/VMS and Sybase 3/4.
b The QUEL dialects supported by Deft are Ingres 5 and Ingres 6.

Deft supports bidirectional technique translations between E-R and SQL represen-

tations only. The scheme translations supported by Deft are all trivial, as there is no

difference in expressive power of the relevant representations. For example, the E-R

representations differ only in the notation used to express cardinality and optionality,

and may be ‘translated’ between merely by changing a display option in the prefer-

ences. A similar situation exists with the data flow modelling schemes.

MetaCase’s MetaEdit

MetaEdit (MetaCase Consulting, 1993) is a highly-customisable CASE tool developed

by MetaCase Consulting Oy of Finland. The demonstration version of MetaEdit sup-

ports only three representations, but the full version supports many more (MetaCase
1Deft was discontinued as a supported product at the end of 1996.

345

Consulting, 1993), which are shown in Table A.9. It is also possible for developers to

define additional representations within the tool. Descriptions in MetaEdit are com-

pletely separate from each other and there is no shared data dictionary. It is not possi-

ble to translate between any of the supported representations. That is, while MetaEdit

supports multiple representations, it does not facilitate their use.

Table A.9: Representations supported by MetaEdit

Technique Scheme Notation

Entity-relationship Chen ERD R(E -R,ERDChen)

Data flow modelling Gane & Sarson DFD R(DataFlow ,DFDG&S)
Booch OODA Process Diagram
(OPD)

R(DataFlow ,OPDBooch)

Rumbaugh OMT DFD (RDD) R(DataFlow ,DFDRumbaugh)
Yourdon SA/SD DFD (SAD) R(DataFlow ,DFDYourdon)

State event Booch OODA state transition
diagram (STD)

R(StateEvent ,STDBooch)

Coad/Yourdon OOAD object state
diagram (OSD)

R(StateEvent ,OSDC/Y)

Rumbaugh OMT state diagram
(SD)

R(StateEvent ,SDRumbaugh)

Ward/Mellor real-time structured
analysis (RTS)

R(StateEvent ,RTSW /M)

Object Booch OODA object diagram R(Object ,Booch)
Coad/Yourdon OO analysis and
design

R(Object ,Coad/Yourdon)

Rumbaugh OMT class diagram R(Object ,Rumbaugh)
Welke
Object-Property-Role-Relationship
(OPRR)

R(Object ,OPRR)

Structured design Yourdon structure chart (STC) R(Structured ,STCYourdon)
Booch OODA module diagram
(OMD)

R(Structured ,OMDBooch)

346

Appendix B

Modifications to Smith’s Method

B.1 Introduction

A functional dependency diagram (FDD) is a means of graphically modelling the de-

pendencies within a collection of attributes (Date, 1995). Smith’s method (Smith, 1985)

is a formal technique for deriving a set of normalised relations from an FDD. There

is, however, a notable deficiency in the method as originally presented: the derivation

of foreign keys. Smith’s method does include two rules for deriving foreign keys, but

there are two major problems with these rules:

1. They are incomplete. In all but the most trivial examples, there are usually several

foreign keys that cannot be derived using the existing rules.

2. One of the two rules produces incorrect results in certain situations. Specifically,

it can result in the derivation of a ‘foreign key’ that violates the relational defini-

tion of a foreign key.

In this appendix a new set of rules for deriving foreign keys from an FDD is described,

along with some modifications to Smith’s original FDD notation to assist in deriving

foreign keys.

In Section B.2 Smith’s original method is summarised. In Section B.3 the problems

with deriving foreign keys are described in more detail. In Section B.4, modifications

to Smith’s FDD notation and a new set of foreign key derivation rules are proposed to

solve these problems. In Section B.5 are presented examples of the new rules in use.

347

B.2 Smith’s Method — an overview

As previously stated, an FDD is a graphical representation of the functional dependen-

cies within a collection of attributes. Date (1995) uses a different notation from that of

Smith, but note that Date appears to use FDDs only to model the functional dependen-

cies within a single relation, whereas Smith uses them as a database modelling tool.

Smith derives his FDDs from a set of plain English dependency-list statements, such as

the one shown in Figure B.1.

Anticipated design engineering work is organized into JOB NO engineer-
ing job numbers. Each JOB NO has one TYPE JOB (i.e., ‘1’ = Basic Release,
‘2’ = Sustaining, . . .), one RESP ENGR responsible engineer (entered as an
employee number), and one DUE DATE planned due date.

Figure B.1: Example of a dependency-list statement (Smith, 1985)

B.2.1 The notation

The FDD notation used by Smith is as follows:

• Attributes (Smith refers to these as ‘fields’) are placed within bubbles. Multiple

attributes may be placed within the same bubble to simplify the diagram (see

Figure B.2).

• A single-valued dependence A→ B is represented by a single-headed arrow be-

tween the corresponding bubbles. The bubble at the start of the arrow is called a

prime-key bubble, as shown in Figure B.3(a). The bubble at the end of the arrow is

called a target bubble.

• A multivalued dependence C� D is represented by a double-headed arrow be-

tween the corresponding bubbles. If the bubble at the end of the arrow is a prime

key bubble, then the bubble at the start of the arrow is called an uplink-key bubble,

otherwise it is a prime-key bubble. If the bubble at the end of the arrow is not

a prime key or an uplink key, then it is known as an end-key bubble, as shown in

Figure B.3(b).

348

• Attributes may be placed within more than one bubble. ‘Multibubbles’ are gen-

erally used to show the linkage of a chain of uplink-key, prime-key and end-key

bubbles, as shown in Figure B.4(a) on the following page. Note that each bubble

is independent of the others.

• Domain flags are used to tag attributes which belong to the same domain. For ex-

ample, EMP NO and DEPT MGR both belong to the domain ‘employee number’,

as shown in Figure B.4(b).

NAME

(a)

NAME

ADDRESS

PHONE

(b)

NAME+ADDRESS+PHONE

(c)

Figure B.2: (a) A bubble that contains a single attribute; (b), (c) bubbles that contain
multiple attributes

CUST NO

prime key

NAME

target

(a)

CUST NO ORDER NO

CUST NO ORDER NO

prime key end key

uplink key prime key

(b)

Figure B.3: (a) Single- and (b) multivalued dependencies

B.2.2 Deriving a set of relations from an FDD

Single-valued dependencies composed into relations

All target bubbles of the prime-key bubble, plus all uplink-key bubbles (if they exist)

become the attributes of a single relation. The primary key of this table comprises the

concatenation of all attributes within the prime-key bubble plus all attributes within

uplink-key bubbles. See Figure B.5 on the next page for an example.

349

EMP NO

(a)

EMP NO DEPT NO DEPT NAME + DEPT MGR

11

1 Employee number

(b)

Figure B.4: (a) Multiple bubbles and (b) domain flags

A B C

D
E

F

G

H + I

J

K

L

M

single-valued

dependence

single-valued

dependence

uplink key

uplink key

prime key

target

target

3

TABLE T1

B D G H
:

I
: :

J
:

PK FK FK

Figure B.5: Deriving a relation from a single-valued dependency (Smith, 1985)

350

Attributes within a target bubble become foreign keys of the derived relation if they

also function as a key bubble of any sort (the target bubble rule), or are tagged with a

domain flag (the domain flag rule). These rules shall be revisited in Section B.3.

End-key dependencies composed into relations

All attributes of the end-key bubble, its prime-key bubble and any/all uplink-key bub-

bles become the primary key of a single relation. See Figure B.6 for an example.

A B C

D
E

F

G

H + I

J

K

L

M

end-key

dependence

uplink key

uplink key

end key

3

TABLE T4

B D F

PK

Figure B.6: Deriving a relation from an end-key dependency (Smith, 1985)

Isolated bubbles composed into relations

An isolated bubble is one that has no arrows pointing either to it or from it. All attributes

within an isolated bubble become the primary key of a single relation.

Practicable diagrams

Smith defines a practicable dependency diagram as one which does not result in relations

with a primary key consisting of three or more attributes. To correct an impractica-

ble FDD, the diagram is modified by adding surrogate keys (Date, 1995) to break the

offending relation(s) into two or more sub-relations (Figure B.7 on the following page).

351

M
N

O

P + Q

R
S

T10

M N O P Q R S

(a) Not practicable

M
N

O

S1
P + Q

R

S

T11

M N O
:::

S1

T12

S1 P Q R S

surrogate
key

(b) Practicable

Figure B.7: Correcting an impracticable FDD (Smith, 1985)

Other guidelines

Smith also states several other guidelines for designing FDDs which generally result in

a ‘better’ design. These guidelines do not have any impact on the foreign key problem,

so they are not described here.

B.3 The problem with deriving foreign keys

The rules presented in the original method for deriving foreign key links are incom-

plete. For example, examining Smith’s first example, shown in Figure B.8, it is obvious

that CLASS + SECTION in relation R222 is a foreign key to CLASS + SECTION in re-

lation R212. Using the existing foreign key derivation rules, however, there is no way

to derive this foreign key. Similarly, STUDENT in R11a is a foreign key to STUDENT

in R121, but cannot be derived from the diagram using the existing rules.

352

ROOM

DAY

MAJOR + YEAR

STUDENT

SUROG KEY

EXAM SCORE

RANK + SALARY

INSTRUCTOR

TEXT

CLASS

SECTION

R221

CLASS TEXT

R212

CLASS SECTION
::::::::

INSTRUCTOR

R211

INSTRUCTOR RANK SALARY

R11a

CLASS SECTION STUDENT
::::::::

SUROG KEY

R121

STUDENT MAJOR YEAR

R11b

SUROG KEY EXAM SCORE

R222

CLASS SECTION DAY ROOM

Figure B.8: Foreign keys that cannot be derived using the existing rules (Smith, 1985)

This is further exacerbated by the fact that target bubble rule can result in invalid

foreign keys. This rule states that attributes within a target bubble become foreign keys

of the resultant table if they also function as a key bubble. Applying this rule to Smith’s

second example results in several attributes being indicated as foreign keys when they

are not, such as those highlighted in Figure B.9 on the next page.

A foreign key is defined as an attribute (or set of attributes) whose value is iden-

tical to some candidate key in the database, or is null (Date, 1995; Elmasri and Na-

vathe, 1994). Usually the candidate key is the primary key of the table in question. In

Figure B.9, it can be seen that the so-called ‘foreign keys’ are not referencing candidate

keys, rather they are referencing only part of the primary key of the referenced relation.

In addition, the domain flag rule states that attributes within a target bubble become

foreign keys of that table if they are tagged with a domain flag. It is unclear from

this rule as to which of the tagged bubbles should be used as the actual foreign key,

and which should be used as the ‘target’ of the foreign key (that is, the attributes that

the foreign key should reference), although this can usually be determined from the

dependency-list statements.

353

PROJ

PROJ NO PROJ TITLE

BUDG

PROJ NO YEAR
::::

PI NO LABOR BUDG MATL BUDG OTHER BUDG

AI

PROJ NO YEAR AI NO

EMP

EMP NO EMP NAME
::::::

DEPT NO

2 DEPT

DEPT NO DEPT NAME COST HR

CONFG

PROJ NO AC CONFG CONFG DESC

FGEOM

PROJ NO AC CONFG FUS CONFG FCONF DESC FUS DIAM FUS LENGTH BOATAIL DIAM FUS WET FUS XSECT FUS UPSWP PLAN SIDE

1 FUS XTRAN FUS INTF FUS FORM
CASE

PROJ NO AC CONFG CASE NO
::::::

SUROG 1
:::::

LIFT ED
::::::

MACH ED DATE RUN
::::::

EXE EMP ALT RWING AREA RWING MAC

2

LIFT

LIFT ED LIFT COEF

MACHT

MACH ED MACH

FLOC

SUROG 1 FUS LOC
::::::::

FUS CONFG FLOC DESC

1
LIFMACH

LIFT COEF MACH
::::::

SUROG 2

FDRAG

SUROG 1 FUS CONFG SUROG 2 FORM FCTR BDREV DRAG BASE DRAG UPSWP DRAG MIN DRAG INTF DRAG CMPNT DRAG COMPR DRAG

Figure B.9: Derivation of invalid foreign keys (Smith, 1985)

B.4 The solution

The target bubble rule needs to be replaced. To facilitate this change, Smith’s original

terminology for bubble types must be altered. Smith uses the term prime key to denote

the start bubble of a single-valued dependence, and sometimes the start bubble of a

multivalued dependence. The term ‘prime’ really implies that the prime key attributes

are the sole determinants of the target attributes. Thus it seems rather counter-intuitive

that a prime-key bubble can be part of an uplink key chain, as it is no longer the sole

determinant.

The following bubble terminology is therefore proposed:

Single-key bubble: any bubble that has no arrows pointing to it, and is the start bub-

ble of a single-valued dependency.

Target bubble: the end bubble of a single-valued dependency.

Multi-key bubble: the start bubble of a multivalued dependency.

End-key bubble: any bubble that is not a multi-key bubble, and is the end bubble of a

multivalued dependency.

354

Isolated bubble: A bubble with no attached dependencies (identical to Smith’s defi-

nition).

Bubbles may only be of one type. Smith did not enforce this restriction, for example,

target bubbles could also be prime-key bubbles, although he did state that the multiple

bubbles could be used to clarify such situations. Since the new notation requires every

bubble to be of a single type, multiple bubbles become essential.

Having made these changes, it is now possible to replace the target bubble rule with

the following:

Key bubble rule: Let B be a bubble of any type, and RB be the derived relation to

which this bubble contributes. If the attributes of B form the entire contents of

a single-key bubble S (S �= B, contributing to a derived relation RS), then the

attributes contained by S become a foreign key of RB that refers to RS .

The domain flag rule could remain unchanged. As stated previously, any ambi-

guity as to where the foreign key should be placed can be resolved by examining the

relevant dependency-list statements, but this does not lend itself very well to automa-

tion because important information is hidden from the translation. When translating

a collection of domain flags into relational form, it is required to know which of the

tagged attributes is the ‘target’ attribute for the purposes of generating the correct for-

eign key references. Smith makes no reference as to how this should be done, yet in his

examples, the domain flags are somehow translated correctly. This is possibly because

Smith expected the process to be carried out manually and used the dependency-list

statements to resolve ambiguities, as suggested above. There is certainly no support

in Smith’s notation for identifying the ‘target’ attribute, which makes the automation

of this process somewhat difficult. In order to facilitate the automatic translation of

domain flags, the author has introduced the notation shown in Figure B.10 to indicate

that the tagged attribute is the ‘target’ attribute for that domain flag.

1 EMP NO

Figure B.10: ‘Target’ attribute domain flag notation

355

The domain flag rule can thus be redefined as:

New domain flag rule: Let B be a bubble of any type containing an attribute A that

is tagged with a domain flag, and let RB be the derived relation to which this

bubble contributes. The domain flag is ‘targeted’ on another attribute D that is

the sole attribute contained by a single-key bubble S (S �= B, derived relation

RS). Attribute A becomes a foreign key of RB that refers to attribute D of RS .

B.5 Example — university marks

It was originally planned to use Smith’s examples to illustrate the new rules in action.

However, upon closer examination, it was discovered that neither of the two examples

are particularly useful. The first example (that of a University database) is not really

complete enough illustrate the new rules. For example, a CLASS is defined as having

a set of TEXTs, but this is the only attribute in the example which is directly dependent

on CLASS. In reality, a CLASS would have several other dependent attributes, such

as department, coordinator and number of points/credits. Because of these missing

attributes, the example does not provide enough situations to show the new rules at

work.

The second example (a drag prediction database), by contrast, is far too complex. In

addition, it has so many complicated dependencies among attributes that it is arguable

as to whether a relational implementation is the best solution.

Instead, the university marks example from Appendix C will be used. Applying

Smith’s original foreign key rules to the FDD shown in Figure C.13, the following set

of relations can be derived:

1. Staff(staff id, name, password)

2. Student(student id, name, password)

3. Element(element id, name, total mark, percent, date due, late penalty)

4. Assignment(assign id, element id, student id, staff id, date submitted,

raw mark, comments)

element id is a foreign key to Element (target bubble rule)

356

student id is a foreign key to Student (target bubble rule)

staff id is a foreign key to Staff (target bubble rule)

5. Adjustment(assign id, adjustment no, reason, amount)

assign id should be a foreign key to Assignment, but this cannot be derived be-

cause none of the bubbles containing assign id are target bubbles.

6. Question(question id, number, marks, guidelines, parent question)

parent question is a foreign key to Question (domain flag rule)

7. Answer(answer id, question id, mark, comments, parent answer)

question id is a foreign key to Question (target bubble rule)

parent answer is a foreign key to Answer (domain flag rule)

8. Criterion(answer id, criterion name, mark, comments)

answer id should be a foreign key to Answer, but this cannot be derived because

none of the bubbles containing answer id are target bubbles.

9. Assign Answer(assign id, answer id)

assign id should be a foreign key to Assignment and answer id should be a for-

eign key to Answer, but these cannot be derived because neither of the bubbles

involved are target bubbles.

10. Element Question(element id, question id)

element id should be a foreign key to Element and question id should be a foreign

key to Question, but these cannot be derived because neither of the bubbles in-

volved are target bubbles.

Using the new rules defined in Section B.4, the following set of relations can be

derived:

1. Staff(staff id, name, password)

2. Student(student id, name, password)

3. Element(element id, name, total mark, percent, date due, late penalty)

357

4. Assignment(assign id, element id, student id, staff id, date submitted,

raw mark, comments)

element id is a foreign key to Element (key bubble rule)

student id is a foreign key to Student (key bubble rule)

staff id is a foreign key to Staff (key bubble rule)

5. Adjustment(assign id, adjustment no, reason, amount)

assign id is a foreign key to Assignment (key bubble rule)

6. Question(question id, number, marks, guidelines, parent question)

parent question is a foreign key to Question (domain flag rule)

7. Answer(answer id, question id, mark, comments, parent answer)

question id is a foreign key to Question (key bubble rule)

parent answer is a foreign key to Answer (domain flag rule)

8. Criterion(answer id, criterion name, mark, comments)

answer id is a foreign key to Answer (key bubble rule)

9. Assign Answer(assign id, answer id)

assign id is a foreign key to Assignment (key bubble rule)

answer id is a foreign key to Answer (key bubble rule)

10. Element Question(element id, question id)

element id is a foreign key to Element (key bubble rule)

question id is a foreign key to Question (key bubble rule)

358

Appendix C

Example viewpoints

C.1 Used cars viewpoint

This is a viewpoint of a small used cars dealership that purchases cars from and sells

cars to customers. Purchases and sales are always for a single car and are dealt with ex-

clusively by sales representatives. The business needs to know which sales representa-

tive was involved in a sale or purchase for commission purposes. Not all staff buy and

sell cars; there are also accountants, mechanics, clerical staff and odd job staff. Sales

representatives are paid on commission, while other staff are paid salary or wages. A

list of non-standard features is kept for each car, such as air conditioning, air bags and

alloy wheels. Some cars have several non-standard features and some none.

In Figure C.1 on the following page is shown one possible unnormalised E-R de-

scription of this business. The various types of staff (wage, salary and commission)

have been modelled as subtypes of a general Staff entity. A normalised version of this

ERD is shown in Figure C.2 on page 361.

In Figure C.3 on page 362 is shown a functional dependency diagram description

of this business, based on the following set of dependencies:

• ird number→ name, address, phone

• wage staff id (ird number)→ hourly rate, hours per week

• salary staff id (ird number)→ salary

• salesrep id (ird number)→ commission rate

• customer no→ name, address, phone

359

Staff

Wage_staff Salary_staffSalesrep

Feature

CustomerPurchase Sale

Car

buys sells

sells buys

bought sold

car
features

Figure C.1: E-R description of the used cars viewpoint (unnormalised)

360

Staff

Wage_staff Salary_staffSalesrep

Feature

CustomerPurchase

Car_Feature

Car

Sale

buys sells

sells buys

bought sold

has
features

on car

Figure C.2: E-R description of the used cars viewpoint (normalised)

361

• registration → vin, make, model, year, colour, odometer, miles km, list price, sale id,

purchase id

• registration� feature code

• vin→ registration

• feature code→ description

• feature code� registration

• purchase id→ purchase date, purchase price, customer no, salesrep id, registration

• sale id→ sale date, sale price, customer no, salesrep id, registration

MAKE + MODEL +
YEAR + COLOUR + ODOMETER +

MILES_KM + LIST_PRICE

SALE_ID

NAME + ADDRESS +
PHONE

CUSTOMER_NO

COMMISSION_RATE

REGISTRATION

NAME + ADDRESS +
PHONE

SALARY

HOURLY_RATE +
HOURS_PER_WEEK

WAGE_STAFF_ID1

SALARY_STAFF_ID1

1 Employee number

SALESREP_ID 1

IRD_NUMBER11

SALE_DATE

SALE_PRICE

PURCHASE_DATE

PURCHASE_PRICE

PURCHASE_ID

FEATURE_CODE

DESCRIPTION

VIN

Figure C.3: Functional dependency description of the used cars viewpoint

A complete SQL/92 description of this business is shown in Figure C.4, and a data

flow description that models the sale process is shown in Figure C.5 on page 364.

362

create table staff
(ird_number char(7),
name char(80),
address char(80),
phone char(12),

primary key (ird_number)
);

create table wage_staff
(wage_staff_id char(7),
hourly_rate smallint,
hours_per_week integer(2),

primary key (wage_staff_id),
foreign key (wage_staff_id)

references staff (ird_number)
);

create table salary_staff
(salary_staff_id char(7),
salary smallint,

primary key (salary_staff_id),
foreign key (salary_staff_id)

references staff (ird_number)
);

create table salesrep
(salesrep_id char(7),
commission_rate integer(2),

primary key (salesrep_id),
foreign key (salesrep_id)

references staff (ird_number)
);

create table customer
(customer_no char(6),
name char(80),
address char(80),
phone char(12),

primary key (customer_no)
);

create table car
(registration char(6),
vin char(20) not null unique,
make char(20),
model char(20),
year smallint,
colour char(20),
odometer integer,
miles_km char(1),
list_price integer,
purchase_id char(6) not null unique,
sale_id char(6) unique,

primary key (registration),
foreign key (purchase_id)

references purchase,
foreign key (sale_id)

references sale
);

create table feature
(feature_code char(6),

description char(80),

primary key (feature_code)
);

create table car_feature
(feature_code char(6),

registration char(6),

primary key (feature_code, registration),
foreign key (feature_code)
references feature,

foreign key (registration)
references car

);

create table purchase
(purchase_id char(6),

purchase_date date,
purchase_price integer,
customer_no char(6) not null,
salesrep_id char(7) not null,
registration char(6) not null unique,

primary key (purchase_id),
foreign key (customer_no)
references customer,

foreign key (salesrep_id)
references salesrep

foreign key (registration)
references car

);

create table sale
(sale_id char(6),

sale_date date,
sale_price integer,
customer_no char(6) not null,
salesrep_id char(7) not null,
registration char(6) not null unique,

primary key (sale_id),
foreign key (customer_no)
references customer,

foreign key (salesrep_id)
references salesrep

foreign key (registration)
references car

);

Figure C.4: SQL/92 description of the used cars viewpoint

363

a

Customer

P1

Enter
customer
details

D1 Customer

P2

Process
sale

D2 Car

D3 Sale

P3

Pay
salesrep

P4

Transfer
ownership

b

Salesrep

D4 Salesrep

customer
details

customer
details customer number

car details

sale details

ownership
details

payslip

sale price

commission
rate

ownership
papers

salesrep id

Figure C.5: Data flow description of the used cars viewpoint

C.2 Agricultural research institute viewpoint

This is a viewpoint of an agricultural research institute that carries out research under

contract to fee paying external clients and the government. The data to be recorded for

different contracts will vary depending on what the experimental parameters are, so a

custom model is designed and implemented for each contract. For the purposes of this

viewpoint, suppose there is a contract to evaluate the effect of a collection of fertilisers

on the growth rate of various breeds of sheep grazing on various grass types.

A series of experiments is to be carried out in which these parameters will be varied

and the results measured as a weight change in the sheep. For a given experiment, each

paddock is sown with a single grass type, a single fertiliser is applied and a flock of

sheep of one breed are placed in the paddock. Fertilisers and grasses may be used

in more than one paddock to test the effect of different pasture conditions, and some

paddocks have no fertiliser applied as a control. Each experiment is run by a single

scientist, and each contract is for a single client.

In Figure C.6 is shown one possible unnormalised E-R description of this view-

point. This is a particularly interesting description because of the large number of

many-to-many relationships associated with the Experiment entity. One possible nor-

364

Client

Experiment

Contract

Staff

Sheep

Fertiliser

Grass

Paddock

Breed

runs

signs

comprises

flock

applied

sown

used

tested

Figure C.6: E-R description of the agricultural research institute viewpoint (unnorma-
lised)

Client

Experiment

Contract

Staff

Sheep

Fertiliser

Grass

PaddockPaddock_detail

Sheep_detail

Breed

signs

runs

used

flock

comprises

paddocks

sheep

tested

applied

sown

Figure C.7: E-R description of the agricultural research institute viewpoint (norma-
lised)

365

malisation of Figure C.6 is shown in Figure C.7 on the preceding page, which assumes

that sheep details are dependent on paddock details. (A different structure emerges if

sheep details and paddock details are assumed to be independent.)

In Figure C.8 is shown a functional dependency description of the viewpoint, based

on the following set of dependencies:

• client id→ name, address, category

• staff id→ name, address, gender, dob, title, salary

• fertiliser id→ name, supplier

• grass id→ name

• paddock id→ address, area, moisture, sunshine

• breed name→ details, flock size

• sheep id→ dob, gender, health, breed name

• contract id→ details, sign date, finish date, fee, gst, client id

• experiment id→ start date, finish date, staff id, contract id

• experiment id, paddock id→ fertiliser id, grass id

• experiment id, paddock id, sheep id→ start weight, finish weight

The last two dependencies include the embedded multivalued dependencies (Date, 1995,

p. 341) experiment id� paddock id and experiment id, paddock id� sheep id respectively.

The relations corresponding to this set of dependencies are in at least fourth normal

form.

An SQL/92 description of the viewpoint is shown in Figure C.9 on page 368, and a

data flow description that models the experiment process is shown in Figure C.10 on

page 369.

366

FERTILISER_ID

NAME + SUPPLIER

GRASS_ID

NAME

DOB GENDER

HEALTH

BREED_NAME

DETAILS +
FLOCK_SIZE

PADDOCK_ID

EXPERIMENT_ID

ADDRESS + AREA +
MOISTURE + SUNSHINE

START_DATE

FINISH_DATE

NAME + ADDRESS +
CATEGORY

FEE

DETAILS

CLIENT_IDGST

FINISH_DATE

SIGN_DATE

CONTRACT_ID

SHEEP_ID

START_WEIGHT +
FINISH_WEIGHT

STAFF_ID

NAME + ADDRESS +
GENDER + DOB +
TITLE + SALARY

Figure C.8: Functional dependency description of the agricultural research institute
viewpoint

367

create table staff
(staff_id char(10),

name char(20),
address char(20),
gender char(1),
dob date,
title char(15),
salary decimal(6,2),

primary key (staff_id)
);

create table client
(client_id char(10),

name char(20),
address char(20),
category char(1),

primary key (client_id)
);

create table fertiliser
(fertiliser_id char(10),

name char(20),
supplier char(20),

primary key (fertiliser_id)
);

create table grass
(grass_id char(10),

name char(20),

primary key (grass_id)
);

create table paddock
(paddock_id char(10),

address char(20),
area smallint,
moisture smallint,
sunshine smallint,

primary key (paddock_id)
);

create table breed
(breed_name char(20),

details char(20),
flock_size smallint,

primary key (breed_name)
);

create table sheep
(sheep_id char(10),

breed_name char(20) not null,
dob date,
gender char(1),
health char(1),

primary key (sheep_id),
foreign key(breed_name)

references breed
);

create table contract
(contract_id char(10),

client_id char(10) not null,
details char(20),
fee decimal(8,2),
gst decimal(8,2),
sign_date date not null,
finish_date date,

primary key (contract_id),
foreign key (client_id)
references client

);

create table experiment
(experiment_id char(10),

contract_id char(10) not null,
staff_id char(10) not null,
finish_date date,
start_date date,

primary key (experiment_id),
foreign key (contract_id)
references contract,

foreign key(staff_id)
references staff

);

create table paddock_detail
(experiment_id char(10),

paddock_id char(10) not null,
fertiliser_id char(10),
grass_id char(10) not null,

primary key (experiment_id, paddock_id),
foreign key (experiment_id)
references experiment,

foreign key (paddock_id)
references paddock,

foreign key (fertiliser_id)
references fertiliser,

foreign key (grass_id)
references grass

);

create table sheep_detail
(experiment_id char(10),

paddock_id char(10),
sheep_id char(10),
finish_weight smallint,
start_weight smallint,

primary key (experiment_id, paddock_id,
sheep_id),

foreign key (experiment_id)
references experiment(experiment_id),
foreign key (sheep_id)
references sheep,

foreign key (experiment_id, paddock_id)
references paddock_detail

);

Figure C.9: SQL/92 description of the agricultural research institute viewpoint

368

a

Client

D1 Client

P2

Sign
contract

D2 Contract

P4

Perform
experiments

D4 Staff

D8 Sheep

D5 Paddock

D6 Grass

D7 Fertiliser

D3 Experiment

P1

Enter
client
details

P3

Devise
experiments

D3 Experiment

P5

Generate
report

client details

client details

client ID client ID
contract ID

contract ID

staff ID

experiment ID
paddock
details

grass
details

fertiliser
details

sheep
details

experiment
results

resultsresults

Figure C.10: Data flow description of the agricultural research institute viewpoint

C.3 Assessment marks viewpoint

This is a viewpoint of an assessment marks recording database for a course. The final

result for the course is determined by the results of a collection of assessment elements

(such as practical exercises and examinations), each of which comprises a collection

of questions. Each question may or may not comprise a collection of sub-questions.

Students individually complete several assessment elements during the course, sub-

mitting each as an assignment, which is marked by a single staff member. As with

assessment elements, an assignment comprises a collection of answers (corresponding

to questions), which in turn comprise a collection of sub-answers.

The total mark for an assignment is broken down into a collection of marks for

each individual answer. Each answer is marked according to a marking schedule that

specifies a set of marking criteria and the marks allocation for each criterion. Results

may be adjusted at a later date for reasons of illness or technical difficulties.

In Figure C.11 on the next page is shown one possible unnormalised E-R description

of this viewpoint, which is shown in normalised form in Figure C.12.

369

Student

Assignment Assessment
ElementStaff

marks

Figure C.11: E-R description of the assessment marks viewpoint (unnormalised)

Staff

Assignment

Student

Mark
Adjustment

Answer

Assessment
Element

Question

Marking
Schedule

comprises comprises

marks

marked using

comprises

comprises

Figure C.12: E-R description of the assessment marks viewpoint (normalised)

370

In Figure C.13 on the following page is shown a functional dependency description

of the viewpoint, based on the following set of dependencies:

• student id→ name, password

• staff id→ name, password

• element id→ name, total mark, percent, due date, late penalty

• element id� question id

• question id→ number, marks, guidelines, parent id (question id)

• assign id→ date submitted, date marked, raw mark, comments, student id, staff id, el-

ement id

• assign id� answer id

• answer id→ mark, comments, question id, parent id (answer id)

• assign id, adjustment no→ reason, amount

• answer id, criterion name→ mark, comments

The last two functional dependencies include the embedded multivalued dependen-

cies assign id� adjustment no and answer id� criterion name respectively. The relations

corresponding to this set of dependencies are in at least fourth normal form.

A data flow description that models the marking process is shown in Figure C.14

on the next page, and an SQL/92 description of the viewpoint is shown in Figure C.15.

Note that, as shown in Figure C.15 on page 373, the Question and Answer relations and

entities have a unique identifier rather than a partial key, in order to facilitate questions

having sub-questions and answers having sub-answers.

371

CRITERION_NAME

ADJUSTMENT_NO

ASSIGN_ID

DATE_SUBMITTED

DATE_MARKED
RAW_MARK

COMMENTS

MARK + COMMENTS

PARENT_ANSWER

REASON +
AMOUNT

2

ANSWER_ID
MARK +

COMMENTS

NAME +
TOTAL_MARK +

PERCENT + DUE_DATE +
LATE_PENALTY

ELEMENT_ID

2

NUMBER + MARKS +
GUIDELINES

PARENT_QUESTION 1

QUESTION_ID 1

STAFF_ID

STUDENT_ID

NAME +
PASSWORD

NAME +
PASSWORD

Figure C.13: Functional dependency description of the assessment marks viewpoint

a

Student

P1

Mark
assignment

D1 Staff

Received
assignments

P2

Return
results

D3 Element

D4 Assignment

D2 Student

assignment

staff IDstudent ID

marking details

results

resultsresults

Figure C.14: Data flow description of the assessment marks viewpoint

372

create table staff
(staff_id char(8),
name char(80),
password char(20),

primary key (staff_id)
);

create table student
(student_id char(7),
name char(80),
password char(20),

primary key (student_id)
);

create table element
(element_id integer,
name char(80),
total_mark smallint,
percent smallint,
due_date date,
late_penalty smallint,

primary key (element_id)
);

create table question
(question_id integer,
element_id integer not null,
number char(5),
marks smallint,
guidelines char(500),
parent_question integer,

primary key (question_id),
foreign key (element_id)

references element,
foreign key (parent_question)

references question
);

create table assignment
(assign_id integer,
element_id integer not null,
student_id char(7) not null,
staff_id char(8) not null,
date_submitted date,
date_marked date,
raw_mark smallint,
comments char(500),

primary key (assign_id),
foreign key (element_id)
references element,

foreign key (student_id)
references student,

foreign key (staff_id)
references staff

);

create table adjustment
(assign_id integer,

adjustment_no integer,
reason char(200),
amount smallint,

primary key (assign_id,
adjustment_no),

foreign key (assign_id)
references assignment

);

create table answer
(answer_id integer,

assign_id integer not null,
question_id integer not null,
mark smallint,
comments char(500),
parent_answer integer,

primary key (answer_id),
foreign key (assign_id)
references assignment,

foreign key (question_id)
references question,

foreign key (parent_answer)
references answer

);

create table marking_schedule
(answer_id integer,

criterion_name char(30),
mark smallint,
comments char(500),

primary key (answer_id,
criterion_name),

foreign key (answer_id)
references answer

);

Figure C.15: SQL/92 description of the assessment marks viewpoint

373

Appendix D

Technique and representation

definitions

D.1 Introduction

In this appendix are provided definitions of the techniques and representations used

in this thesis. The following conventions are used:

• All definitions are expressed using a variant of Martin E-R notation as defined by

the EasyCASE CASE tool (see also Appendix A Evergreen Software Tools, 1995b).

• Representations may specialise the constructs of a technique. New constructs

and relationships in a representation definition are highlighted in bold.

• Constructs and relationships of a technique that are not used in a representation

are drawn using dashed lines and/or italics.

• Sometimes a relationship may specialise another relationship in the definition.

These relationships have the same name as the relationship they specialise, with

the suffix ‘-sn’, where n is a monotonically increasing integer. Thus, the first spe-

cialisation of the relationship contains is named contains-s1.

• A black dot (•) indicates mutual exclusivity and is usually used for generalisation

hierarchies. It may also be used on relationships between entities (see the data

flow modelling technique in Section D.5.1) to indicate that one of several different

entities may participate in the relationship. The named section of the relationship

indicates the entity that always participates.

375

D.2 Entity-relationship technique

This technique is derived from Chen’s (1976; 1977) definition of the E-R approach. The

constructs of the approach outlined by Chen and shown in Figure D.1 are:

ERENTITYTYPE: An entity is a distinctly identifiable object. These entities may be

classified into different types. In this respect, an entity type is analogous to an

object class. An entity is an instance of a particular entity type. The term ‘entity

type’ has fallen out of use, however, and ‘entity’ is often used to refer to what are

strictly entity types.

ERRELATIONSHIPTYPE: A relationship is an association between a collection of en-

tities. In a similar way to entities, relationships may also be classified into dif-

ferent types. Once again, the term ‘relationship’ has often replaced ‘relationship

type’ in current usage.

ERATTRIBUTE: Entities and relationships may have various properties, which are

expressed in terms of attribute-value pairs, for example, (‘age’, 24). Attributes

may be single valued or multivalued (a ‘repeating group’).

ERVALUETYPE: Values of attributes may be classified into different types. This is

analogous to the concept of a domain of values.

ERIDENTIFIER: Both relationships and entities may be uniquely identified by rela-

tionship and entity identifiers respectively. An identifier comprises a collection

of attribute-value pairs that collectively can uniquely identify the entity or rela-

tionship. This is analogous to the relational concept of a primary key.

ERWEAKENTITYTYPE: A weak entity type is an entity type that has one or both of

the following two properties:

• its existence is dependent on another entity; and/or

• it cannot be uniquely identified by its own attributes and must be identified

by its relationships with other entities.

376

ER
Relationship
Type

ER
Entity
Type

ER
Identifier

ER
Attribute

ER
Value
Type

ER
Weak
Entity
Type

ER
Type
Item

ER
Attribute
Group

ER
Attribute
Item

associates

contains3

identifies

contains2

contains1

drawn from

contains1-s1

Figure D.1: Definition of the E-R technique

These base constructs have been augmented with the following (described further be-

low):

ERTYPEITEM: This is a generalisation of ERENTITYTYPE and ERRELATIONSHIP-

TYPE.

ERATTRIBUTEGROUP: This construct allows for composite attributes, and may con-

tain one or more attributes or attribute groups.

ERATTRIBUTEITEM: This is a generalisation of ERATTRIBUTE and ERATTRIBUTE-

GROUP.

The properties of all these constructs are shown in Table D.1 on the next page.

The ERENTITYTYPE and ERRELATIONSHIPTYPE constructs have similar proper-

ties, so the ERTYPEITEM construct has been introduced as a generalisation of these

two constructs in order to simplify the structure of the technique definition.

The E-R approach as defined by Chen does not assume any particular implemen-

tation model and can thus in theory be used to build conceptual models for relational,

network or object-oriented systems. In practice it is not expressive enough to deal with

377

Table D.1: Construct properties for the E-R technique

CONSTRUCT
Property ‘Data type’ Description

ERTYPEITEM
name string The name of the entity/relationship.
attributes list(ERATTRIBUTEITEM) A list of component attribute items.
identifier ERIDENTIFIER The identifier of the entity/relationship.

ERENTITYTYPE (specialises ERTYPEITEM)
relationships list(ERRELATIONSHIPTYPE) A (possible empty) list of relationships attached to the

entity.

ERWEAKENTITYTYPE (specialises ERENTITYTYPE)
dependentVia ERRELATIONSHIPTYPE The relationship that connects the weak entity to its ‘par-

ent’ entity.

ERRELATIONSHIPTYPE (specialises ERTYPEITEM)
entities list(ERENTITYTYPE) A list of entities that the relationship associates.
cardinalities list(integer) The cardinality of each entity in the above list.
existence dependent boolean Is this an existence-dependent relationship (Chen, 1977,

Section 3.3.1)?
id dependent boolean Is this an ID-dependent relationship (Chen, 1977, Sec-

tion 3.3.2)?

ERVALUETYPE
name string The name of the value type.
datatype enumerator The data type of the value type (it is expected that these

will be defined as an enumeration).
size integer The size of the values allowed in the value type, if appli-

cable (that is, number of characters or digits).
dp integer The number of decimal places, if applicable.
attributes list(ERATTRIBUTE) A (possibly empty) list of attributes that are drawn from

the value type.

ERATTRIBUTEITEM
name string The name of the attribute/attribute group.
containingItem ERTYPEITEM The entity/relationship that contains the element.
attributeGroups list(ERATTRIBUTEGROUP) A (possibly empty) list of attribute groups that the ele-

ment appears in.
repeating boolean Is this a repeating element?

ERATTRIBUTEGROUP (specialises ERATTRIBUTEITEM)
attributeItems list(ERATTRIBUTEITEM) A list of attributes/attribute groups that comprise the at-

tribute group.

ERATTRIBUTE (specialises ERATTRIBUTEITEM)
valueType ERVALUETYPE The value type from which the attribute’s values are

drawn.
identifier ERIDENTIFIER An optional entity identifier in which the attribute par-

ticipates.

ERIDENTIFIER
name string The name of the identifier.
identifiedItem ERTYPEITEM The entity or relationship that the identifier identifies.
partial boolean Is this a partial (non-unique) identifier?
attributes list(ERATTRIBUTE) A list of attributes that comprise the identifier.

378

the full gamut of object-oriented modelling. In particular, it does not provide any no-

tion of generalisation/specialisation, and no mention is made of composite attributes,

that is, attributes that are made up of other attributes or objects. Composite attributes

are not excluded by Chen’s definition, however, and have been catered for by the ad-

dition of the ERATTRIBUTEITEM and ERATTRIBUTEGROUP constructs. These allow

the definition of unnormalised entities. Note that this does not provide ‘object’ capa-

bilities, as an ERATTRIBUTEGROUP is not the same as an ERENTITYTYPE. It is up to

specific representations to define any object extensions to the basic technique.

D.2.1 Martin ERD definition

The representation Re(E -R,ERDMartin) corresponds to the E-R notation defined by

Martin (1990). It extends the E-R technique with the following constructs (shown in

Figure D.2):

MARTINREGULARENTITY: A specialisation of the ERENTITYTYPE construct.

MARTINWEAKENTITY: A specialisation of the ERWEAKENTITYTYPE construct.

ER
Identifier

ER
Attribute

ER
Value
Type

ER
Type
Item

Martin
Regular
Entity

Martin
Weak
Entity

ER
Attribute
Group

Martin
Associative
Entity

Martin
Relationship

Martin
Attribute

Martin
Attribute
Group

Martin
Identifier

associates

identifies

contains2

contains1

drawn from

contains3

supertype of

subtype of

contains1-s1

target
source

ER
Entity
Type

ER
Weak
Entity
Type

ER
Attribute
Item

ER
Relationship
Type

Martin
Type
Hierarchy

Figure D.2: Definition of the representation Re(E -R,ERDMartin)

379

MARTINTYPEHIERARCHY: This is a specialisation of the ERRELATIONSHIPTYPE

construct that allows the definition of an inheritance hierarchy. It is effectively

a generalisation association, which is why it is a specialisation of ERRELATION-

SHIPTYPE.

MARTINRELATIONSHIP: This is a specialisation of the ERRELATIONSHIPTYPE con-

struct that specifies a binary association between two entity and/or relationship

types that are not MARTINRELATIONSHIP elements. An ERRELATIONSHIPTYPE

may have degree greater than two. A MARTINRELATIONSHIP has no attributes.

MARTINASSOCIATIVEENTITY: A specialisation of the ERRELATIONSHIPTYPE con-

struct.

MARTINIDENTIFIER: A specialisation of the ERIDENTIFIER construct.

MARTINATTRIBUTE: A specialisation of the ERATTRIBUTE construct.

MARTINATTRIBUTEGROUP: This construct is a specialisation of the ERATTRIBUTE-

GROUP construct.

The properties of these constructs are shown in Table D.2. Note that this representation

does not support the ERVALUETYPE construct.

One particular extension to take note of here is that MARTINWEAKENTITY con-

structs may be ‘embedded’ within other entities. This allows the definition of un-

normalised entities that have relationships attached to groups of attributes within the

entity, rather than directly to the entity itself. An example of a situation where this

is useful is the Experiment entity in the agricultural research institute viewpoint de-

scribed in Appendix C. The disadvantage of this approach is that there are two sepa-

rate constructs for representing composite attributes: MARTINATTRIBUTEGROUP and

MARTINWEAKENTITY.

D.3 Functional dependency technique

This technique derives from relational dependency theory (Codd, 1972a; Armstrong,

1974; Beeri et al., 1977), and comprises the base constructs shown in Figure D.3.

380

Table D.2: Construct properties of Re(E -R,ERDMartin)

CONSTRUCT
Property ‘Data type’ Description

MARTINREGULARENTITY (specialises ERENTITYTYPE)
typeHierarchy MARTINTYPEHIERARCHY The type hierarchy in which the entity is the supertype,

if applicable.
embeddedEntities list(MARTINWEAKENTITY) A (possibly empty) list of embedded weak entities.

MARTINWEAKENTITY (specialises ERWEAKENTITYTYPE)
embedded boolean Is the weak entity embedded within another entity?
embeddedEntities list(MARTINWEAKENTITY) A (possibly empty) list of embedded weak entities.

MARTINASSOCIATIVEENTITY (specialises ERRELATIONSHIPTYPE)
embeddedEntities list(MARTINWEAKENTITY) A (possibly empty) list of embedded weak entities.

MARTINRELATIONSHIP (specialises ERRELATIONSHIPTYPE)
source ERTYPEITEM The ‘source’ entity of the relationship.
target ERTYPEITEM The ‘target’ entity of the relationship.
srcCard integer The cardinality of the source entity.
srcOpt integer The optionality of the source entity.
dstCard integer The cardinality of the target entity.
dstOpt integer The optionality of the target entity.

MARTINTYPEHIERARCHY (specialises ERRELATIONSHIPTYPE)
supertype MARTINREGULARENTITY The supertype regular entity.
subtypes list(MARTINREGULARENTITY) The subtype regular entity.
exclusive boolean Are the subtypes mutually exclusive?

MARTINATTRIBUTE (specialises ERATTRIBUTE)
MARTINATTRIBUTEGROUP (specialises ERATTRIBUTEGROUP)
MARTINIDENTIFIER (specialises ERIDENTIFIER)

FD
Attribute

FD
Dependency

FD
Attribute
Set

FD
Functional

FD
Multi-valued

FD
Element

FD
Source

FD
Destination

FD
Functional
Source

FD
Multi
Source

FD
Functional
Destination

FD
Multi
Destination

contains1-s1

contains1

source target

Figure D.3: Definition of the functional dependency technique

381

FDATTRIBUTE: An attribute of a relation (Date, 1995, p. 271).

FDATTRIBUTESET: A set of FDATTRIBUTE elements.

FDDEPENDENCY: A dependency of some sort between FDATTRIBUTE elements.

FDFUNCTIONAL: A functional dependency, that is A→ B.

FDMULTIVALUED: A multivalued dependency, that is C� D.

These base constructs are augmented with the following:

FDELEMENT: This is a generalisation of FDATTRIBUTE and FDATTRIBUTESET.

FDSOURCE: A collection of attributes on the left-hand side of a dependency.

FDTARGET: A collection of attributes on the right-hand side of a dependency.

FDFUNCTIONALSOURCE: A collection of attributes on the left-hand side of a func-

tional dependency.

FDFUNCTIONALTARGET: A collection of attributes on the right-hand side of a func-

tional dependency.

FDMULTISOURCE: A collection of attributes on the left-hand side of a multivalued

dependency.

FDMULTITARGET: A collection of attributes on the right-hand side of a multivalued

dependency.

The properties of all these constructs are shown in Table D.3.

An FDATTRIBUTESET may contain both FDATTRIBUTE elements and other FDAT-

TRIBUTESET elements, so the FDELEMENT construct has been defined as a generalisa-

tion of both the FDATTRIBUTESET and FDATTRIBUTE constructs in order to simplify

the definition.

The FDATTRIBUTESET construct has been specialised into attribute sets that ap-

pear on the left-hand side of a dependency (FDSOURCE) and attribute sets that appear

on the right-hand side of a dependency (FDTARGET). These have been further spe-

cialised into left- and right-hand sides of functional and multivalued dependencies

respectively (FDFUNCTIONALSOURCE, FDMULTISOURCE, FDFUNCTIONALTARGET,

and FDMULTITARGET).

382

Table D.3: Construct properties of the functional dependency technique

CONSTRUCT
Property ‘Data type’ Description

FDELEMENT
name string The name of the element.

FDATTRIBUTE (specialises FDELEMENT)
attributeSets list(FDATTRIBUTESET) A list of attribute sets in which the attribute participates.

FDATTRIBUTESET (specialises FDELEMENT)
dependency FDDEPENDENCY The dependency attached to the attribute set.
attributes list(FDATTRIBUTE) The attributes that comprise the attribute set.

FDDEPENDENCY
name string The name of the dependency.
source FDSOURCE The attribute set on the left-hand side of the dependency.
target FDTARGET The attribute set on the right-hand side of the depen-

dency.

FDSOURCE (specialises FDATTRIBUTESET)
FDFUNCTIONALSOURCE (specialises FDSOURCE)
FDMULTISOURCE (specialises FDSOURCE)
FDTARGET (specialises FDATTRIBUTESET)
FDFUNCTIONALTARGET (specialises FDTARGET)
FDMULTITARGET (specialises FDTARGET)
FDFUNCTIONAL (specialises FDDEPENDENCY)
FDMULTIVALUED (specialises FDDEPENDENCY)

D.3.1 Smith FDD definition

The representation Rf (FuncDep,FDDSmith) corresponds to the variant of Smith’s de-

pendency notation described in Appendix B. It extends the functional dependency

technique with the following constructs (shown in Figure D.4 on the following page):

SSSINGLEVALUED: A specialisation of the FDFUNCTIONAL construct.

SSMULTIVALUED: A specialisation of the FDMULTIVALUED construct.

SSSINGLEKEYBUBBLE: A specialisation of the FDFUNCTIONALSOURCE construct

that corresponds to the single-key bubble construct of the notation.

SSMULTIKEYBUBBLE: A specialisation of the FDMULTISOURCE construct that cor-

responds to the multi-key bubble construct of the notation.

SSTARGETBUBBLE: A specialisation of the FDFUNCTIONALTARGET construct that

corresponds to the target bubble construct of the notation.

SSENDKEYBUBBLE: A specialisation of the FDMULTITARGET construct that corre-

sponds to the end-key bubble construct of the notation.

383

SSISOLATEDBUBBLE: A specialisation of the FDATTRIBUTESET construct that cor-

responds to a set of attributes that participates in no dependencies.

SSATTRIBUTE: A specialisation of the FDATTRIBUTE construct.

SSDOMAINFLAG: This corresponds to the domain flag construct of the notation

and represents a domain from which several attributes may be drawn.

The properties of these constructs are shown in Table D.4.

FD
Dependency

FD
Attribute
Set

FD
Element

FD
Source

FD
Destination

SS
Domain
Flag

SS
Single-valued

SS
Multi-valued

SS
Single-key
Bubble

SS
Multi-key
bubble

SS
Target
Bubble

SS
End-key
Bubble

SS
Isolated
Bubble

contains1-s1

contains1

sourcereferences

source target

SS
Attribute

FD
Functional

FD
Multi-valued

FD
Functional
Source

FD
Multi
Source

FD
Functional
Destination

FD
Multi
Destination

FD
Attribute

Figure D.4: Definition of the representation Rf (FuncDep,FDDSmith)

D.4 Relational technique

The relational technique is derived from Codd’s (1970) original definition of the re-

lational model, now known as RM/V1, with a few enhancements from Date (1995).

384

Table D.4: Construct properties of Rf (FuncDep,FDDSmith)

CONSTRUCT
Property ‘Data type’ Description

SSATTRIBUTE (specialises FDATTRIBUTE)
domainFlag SSDOMAINFLAG The domain flag attached to the attribute, if applicable.

SSDOMAINFLAG
name string The name of the domain flag.
description string The description of the domain flag.
target SSATTRIBUTE The attribute that the domain flag references.
attributes list(SSATTRIBUTE) A list of the other attributes that associate with the do-

main flag.

SSSINGLEKEYBUBBLE (specialises FDFUNCTIONALSOURCE)
SSMULTIKEYBUBBLE (specialises FDMULTISOURCE)
SSENDKEYBUBBLE (specialises FDMULTITARGET)
SSTARGETBUBBLE (specialises FDFUNCTIONALTARGET)
SSISOLATEDBUBBLE (specialises FDATTRIBUTESET)
SSSINGLEVALUED (specialises FDFUNCTIONAL)
SSMULTIVALUED (specialises FDMULTIVALUED)

This technique does not cover the more recent RM/V2 (Codd, 1990), or other variants

of the relational model such as RM/T (Codd, 1979), as these have not been generally

adopted (Date, 1995). It is expected that additional techniques will be defined to cover

these variants of the relational model if required.

The relational technique comprises the following base constructs (Date, 1995), as

shown in Figure D.5 on the next page:

RMDOMAIN: A named set of scalar values, all of the same type.

RMRELATION: A collection of tuples corresponding to a collection of RMATTRI-

BUTE/RMDOMAIN pairs.

RMATTRIBUTE: A component of a relation that may hold data values. These values

are drawn from a particular RMDOMAIN.

RMPRIMARYKEY: The designated unique identifier for an RMRELATION, compris-

ing a collection of RMATTRIBUTE elements.

RMFOREIGNKEY: A set of RMATTRIBUTE elements that defines a link to the RM-

PRIMARYKEY of another (or the same) RMRELATION.

RMALTERNATEKEY: An alternative unique identifier for an RMRELATION that was

not chosen as the RMPRIMARYKEY.

385

RM
Relation

RM
Attribute

RM
Key

RM
Primary
Key

RM
Foreign
Key

RM
Alternate
Key

RM
Domain

primary

contains3

contains2

contains4

references

contains1

contains4-s1

drawn from

Figure D.5: Definition of the relational technique

These base constructs have been augmented with the RMKEY construct, which is a

generalisation of the three ‘key’ constructs listed above. The properties of all these

constructs are shown in Table D.5.

D.4.1 SQL/92 definition

The representation Rr(Relational , SQL/92) corresponds to the SQL language as de-

fined by the SQL/92 standard (ISO-IEC, 1992a; Date and Darwen, 1993). It extends the

relational technique with the following constructs (shown in Figure D.6 on page 388):

SQL92TABLE: A specialisation of RMRELATION.

SQL92COLUMN: A specialisation of RMATTRIBUTE.

SQL92DOMAIN: A specialisation of RMDOMAIN. Note that not all SQL92CO-

LUMN elements have a domain, as SQL/92 allows the direct specification of data

types for a column.

SQL92PRIMARYKEY: A specialisation of RMPRIMARYKEY.

SQL92FOREIGNKEY: A specialisation of RMFOREIGNKEY.

SQL92CONSTRAINT: A constraint that may be applied to an SQL92COLUMN.

386

Table D.5: Construct properties of the relational technique

CONSTRUCT
Property ‘Data type’ Description

RMDOMAIN
name string The name of the domain.
datatype enumerator The data type of the domain.
size integer The size of the values allowed in the domain, if applica-

ble (that is, number of characters or digits).
dp integer The number of decimal places, if applicable.
attributes list(RMATTRIBUTE) A (possibly empty) list of attributes that are drawn from

this domain.

RMATTRIBUTE
name string The name of the attribute.
domain RMDOMAIN The domain of the attribute.
relation RMRELATION The relation that the attribute participates in.
keys list(RMKEY) A (possibly empty) list of keys that the attribute partici-

pates in.

RMRELATION
name string The name of the relation.
primaryKey RMPRIMARYKEY The primary key of the relation.
attributes list(RMATTRIBUTE) A list of one or more attributes that comprise the relation.
alternateKeys list(RMALTERNATEKEY) A (possibly empty) list of alternate keys for the relation.
foreignKeys list(RMFOREIGNKEY) A (possibly empty) list of foreign keys for the relation.

RMKEY
name string The name of the key.
relation RMRELATION The relation in which the key participates.
attributes list(RMATTRIBUTE) A list of one or more attributes that comprise the key.

RMPRIMARYKEY (specialises RMKEY)
refFKs list(RMFOREIGNKEY) A (possibly empty) list of foreign keys that reference the

primary key.

RMFOREIGNKEY (specialises RMKEY)
refPK RMPRIMARYKEY The primary key that the foreign key references.

RMALTERNATEKEY (specialises RMKEY)

387

SQL92UNIQUE: A specialisation of SQL92CONSTRAINT, corresponding to an SQL

unique constraint.

SQL92NOTNULL: A specialisation of SQL92CONSTRAINT, corresponding to an

SQL not null constraint.

SQL92PREDICATE: A specialisation of SQL92CONSTRAINT that corresponds to a

general SQL constraint based on a predicate.

The properties of all these constructs are shown in Table D.6. Note that the RMALTER-

NATEKEY construct is not used in this representation.

SQL92
Table

SQL92
Column

SQL92
Constraint

RM
Key

SQL92
Primary
Key

SQL92
Not
Null

SQL92
Predicate

SQL92
Unique

SQL92
Domain

RM
Alternate
Key

contains2

constrains

references

identifies

contains4

references

drawn from-s1

contains1

contains4-s1

drawn from

RM
Relation

RM
Primary
Key

RM
Attribute

RM
Domain

RM
Foreign
Key

SQL92
Foreign
Key

contains3

Figure D.6: Definition of the representation Rr(Relational , SQL/92)

388

Table D.6: Construct properties of Rr(Relational , SQL/92)

CONSTRUCT
Property ‘Data type’ Description

SQL92COLUMN (specialises RMATTRIBUTE)
datatype enumerator The data type of the column.
size integer The size of the values allowed in the column, if applica-

ble (that is, number of characters or digits).
dp integer The number of decimal places, if applicable.
constraints list(SQL92CONSTRAINT) A (possibly empty) list of constraints in which the col-

umn appears.

SQL92CONSTRAINT
name string The name of the constraint.
columns list(SQL92COLUMN) A list of columns that appear in the constraint.

SQL92PREDICATE (specialises SQL92CONSTRAINT)
predicateString string The predicate for the constraint.

SQL92TABLE (specialises RMRELATION)
refFKs list(SQL92FOREIGNKEY) A (possibly empty) list of foreign keys that reference the

table.

SQL92FOREIGNKEY (specialises RMFOREIGNKEY)
refTable SQL92TABLE The table that the foreign key references.

SQL92DOMAIN (specialises RMDOMAIN)
SQL92NOTNULL (specialises SQL92CONSTRAINT)
SQL92UNIQUE (specialises SQL92CONSTRAINT)
SQL92PRIMARYKEY (specialises RMPRIMARYKEY)

D.5 Data flow modelling technique

The data flow modelling technique is derived from data flow analysis using data flow

diagrams (Gane and Sarson, 1979). It comprises the following base constructs (shown

in Figure D.7 on the next page):

DFFIELD: A data field, such as a name, age or price.

DFFIELDGROUP: A collection of data fields. DFFIELDGROUP elements may be

nested within each other to produce an unnormalised structure.

DFEXTERNALENTITY: An external entity represents an object that is external to the

viewpoint but acts as a source or target for data contained within the viewpoint.

DFDATAFLOW: The flow of data from a source to a destination.

DFDATASTORE: A place in which related data may be stored, such as a card file,

relation or indexed data file.

DFPROCESS: A procedure that manipulates data in some way.

389

DF
Data
Store

DF
External
Entity

DF
Process

DF
Data
Flow

DF
Field
Item

DF
Field

DF
Field
Group

DF
Static
Item

DF
Flow
Item

DF
Split/Merge

DF
Item

target

source

contains2

contains1

Figure D.7: Definition of the data flow modelling technique

DFSPLITMERGE: This allows a DFDATAFLOW element to be replicated into multi-

ple identical DFDATAFLOW elements, or vice versa.

These base constructs have been augmented with the following:

DFITEM: This construct is a generalisation of the DFSTATICITEM, DFFLOWITEM

and DFFIELDITEM constructs.

DFSTATICITEM: This is a generalisation of the DFDATASTORE, DFEXTERNALEN-

TITY, DFPROCESS and DFSPLITMERGE constructs.

DFFLOWITEM: This is a generalisation of the DFDATAFLOW construct.

DFFIELDITEM: This is a generalisation of DFFIELD and DFFIELDGROUP.

The properties of all these constructs are shown in Table D.7.

390

Table D.7: Construct properties of the data flow modelling technique

CONSTRUCT
Property ‘Data type’ Description

DFITEM
name string The name of the element.

DFFLOWITEM
source DFSTATICITEM The source element of the flow.
destination DFSTATICITEM The target element of the flow.

DFDATAFLOW (specialises DFFLOWITEM)
fieldItems list(DFFIELDITEM) The data that comprise the data flow.

DFSTATICITEM
label string The label of the element, for example, ‘P1’ for a process.
flows list(DFFLOWITEM) A list of one or more attached flows.

DFDATASTORE (specialises DFSTATICITEM)
fieldItems list(DFFIELDITEM) The data that comprise the data store.

DFFIELDITEM (specialises DFITEM)
containingItem DFITEM The element that contains the field or field group.
fieldGroups list(DFFIELDGROUP) A (possibly empty) list of field groups in which the ele-

ment participates.

DFFIELD (specialises DFFIELDITEM)
datatype enumerator The data type of the field.
size integer The size of the values allowed in the field, if applicable

(that is, number of characters or digits).
dp integer The number of decimal places, if applicable.

DFFIELDGROUP (specialises DFFIELDITEM)
fieldElements list(DFFIELDITEM) A list of one or more fields/field groups that comprise

the field group.

DFPROCESS (specialises DFSTATICITEM)
DFSPLITMERGE (specialises DFSTATICITEM)
DFEXTERNALENTITY (specialises DFSTATICITEM)

The DFFLOWITEM construct has been introduced as a generalisation of DFDATA-

FLOW because some data flow representations define additional types of flow. The

DFFIELDITEM construct generalises both DFFIELD and DFFIELDGROUP, to allow DF-

FIELDGROUP elements to contain both DFFIELD elements and other DFFIELDGROUP

elements. DFITEM is introduced as a generalisation of DFSTATICITEM, DFFLOWITEM

and DFFIELDITEM for convenience.

D.5.1 Gane & Sarson DFD definition

The representationRd(DataFlow ,DFDG&S) corresponds to the data flow diagramming

notation defined by Gane and Sarson (1979). It extends the data flow modelling tech-

nique with the following constructs (shown in Figure D.8 on the following page):

GNSDATASTORE: A specialisation of DFDATASTORE.

391

DF
Static
Item

DF
Flow
Item

DF
Item

G&S
Multiple
Data
Process

G&S
Resource
Store

G&S
Split/Merge

G&S
Data
Process

G&S
External
Entity

G&S
Data
Store

G&S
Resource
Flow

G&S
Data
Flow

G&S
Field

G&S
Field
Group

target

source

contains2

contains1-s1

DF
External
Entity

DF
Process

DF
Split/Merge

DF
Field

DF
Field
Group

DF
Field
Item

DF
Data
Flow

DF
Data
Store

Figure D.8: Definition of the representation Rd(DataFlow ,DFDG&S)

392

GNSDATAPROCESS: A specialisation of DFPROCESS.

GNSEXTERNALENTITY: A specialisation of DFEXTERNALENTITY.

GNSSPLITMERGE: A specialisation of DFSPLITMERGE.

GNSDATAFLOW: A specialisation of DFDATAFLOW.

GNSFIELD: A specialisation of DFFIELD.

GNSFIELDGROUP: A specialisation of DFFIELDGROUP.

GNSRESOURCESTORE: A place in which physical objects may be stored, as opposed

to data. A specialisation of DFSTATICITEM.

GNSMULTIPLEDATAPROCESS: A process that may be executed multiple times in

parallel. A specialisation of DFSTATICITEM.

GNSRESOURCEFLOW: A flow that indicates the movement of physical objects, as

opposed to data.

The properties of all these constructs are shown in Table D.8.

Table D.8: Construct properties of Rd(DataFlow ,DFDG&S)

CONSTRUCT
Property ‘Data type’ Description

GNSRESOURCEFLOW (specialises PMFLOWITEM
fieldItems list(DFFIELDITEM) A list of one or more field items that comprise the re-

source flow.

GNSRESOURCESTORE (specialises PMSTATICITEM
fieldItems list(DFFIELDITEM) A list of one or more field items that comprise the re-

source store.

GNSDATAFLOW (specialises PMDATAFLOW
GNSDATAPROCESS (specialises PMPROCESS
GNSSPLITMERGE (specialises PMSPLITMERGE
GNSDATASTORE (specialises PMDATASTORE
GNSEXTERNALENTITY (specialises PMEXTERNALENTITY
GNSFIELD (specialises PMFIELD
GNSFIELDGROUP (specialises PMFIELDGROUP
GNSMULTIPLEDATAPROCESS (specialises PMSTATICITEM

393

Appendix E

Additional translations

This appendix contains full definitions of the translations Rf (FuncDep,FDDSmith) →

Re(E -R,ERDMartin)/Rf ↽ Re and Re(E -R,ERDMartin) � Rd(DataFlow ,DFDG&S).

Discussion of the rules presented here may be found in Chapter 5. A full relative

quality analysis for each translation is also presented here.

E.1 Rf → Re/Rf ↽ Re

In this translation, descriptions are translated between functional dependencies ex-

pressed using a functional dependency diagram in Smith notation and the entity-

relationship approach expressed using Martin notation. This translation is complete

in the forward direction and partial in the reverse direction. That is:

Rf (FuncDep,FDDSmith)→ Re(E -R,ERDMartin) and

Rf (FuncDep,FDDSmith)↽ Re(E -R,ERDMartin).

Many of the rules of this translation are derived from a modified version of Smith’s

method for deriving a set of normalised relations from a functional dependency dia-

gram (Smith, 1985, see also Appendix B).

In the forward direction, the input to this translation is a Smith functional depen-

dency diagram with no dependency chains, that is, each bubble has only a single de-

pendency attached to it. The output of the translation is a normalised ERD in at least

fourth normal form. There are no restrictions in the reverse direction.

395

E.1.1 Technique-level rules

Rf [FDFUNCTIONALSOURCE, FDFUNCTIONAL,

FDFUNCTIONALTARGET]→ Re [ERENTITYTYPE]

Rf [FDFUNCTIONALSOURCE, FDFUNCTIONAL,

FDFUNCTIONALTARGET]↽ Re [ERENTITYTYPE]

(T1)

The functional dependency represented by the constructs on the left-hand side of the

rule translates completely to an entity type of some sort. Thus, the functional depen-

dency A → BC translates to an entity type with attributes {A, B, C}. In the reverse

direction, at least one of the entity type’s attributes must not participate in the entity

type’s identifier.

Rf [FDMULTISOURCE, FDMULTIVALUED , FDMULTITARGET]→

Re [ERENTITYTYPE, ERIDENTIFIER]

Rf [FDMULTISOURCE, FDMULTIVALUED , FDMULTITARGET]↽

Re [ERENTITYTYPE, ERIDENTIFIER]

(T2)

The multi-valued dependency represented by the constructs on the left-hand side of

the rule translates completely to an entity type of some sort. The identifier of this

entity type is determined by concatenating the attributes on both sides of the multival-

ued dependency (that is, the entity identifier comprises all the attributes of the entity

type). The reverse translation is partial, and only applies when there are at most two

attributes in the entity type, and there are no non-identifying attributes.

Rf [FDATTRIBUTE]→ Re [ERATTRIBUTE]

Rf [FDATTRIBUTE]↽ Re [ERATTRIBUTE]
(T3)

An FD attribute translates completely to an E-R attribute, but only partially in the

reverse direction.

396

Rf [FDFUNCTIONALSOURCE1 , FDFUNCTIONALSOURCE2 ,

FDFUNCTIONAL1 , FDFUNCTIONAL2 ,

FDFUNCTIONALTARGET1 , FDFUNCTIONALTARGET2]→

Re [ERRELATIONSHIPTYPE, ERENTITYTYPE1 , ERENTITYTYPE2]

Rf [FDFUNCTIONALSOURCE1 , FDFUNCTIONALSOURCE2 ,

FDFUNCTIONAL1 , FDFUNCTIONAL2 ,

FDFUNCTIONALTARGET1 , FDFUNCTIONALTARGET2]↽

Re [ERRELATIONSHIPTYPE, ERENTITYTYPE1 , ERENTITYTYPE2]

(T4)

The pair of dependencies A → BPQ (the FD constructs with subscript ‘1’ above) and

PQ→ RA (the FD constructs with subscript ‘2’ above) translate completely to a pair of

entity types that are connected by a relationship type with no attributes. In effect, PQ

and A act as links between the two entity types. The optionalities of the relationship

element are indeterminate in this rule — specialisations of this rule must define them

appropriately.

Rf [FDFUNCTIONALSOURCE1 , FDFUNCTIONALSOURCE2 , FDFUNCTIONAL1 ,

FDFUNCTIONAL2 , FDFUNCTIONALTARGET1 , FDFUNCTIONALTARGET2 ,

FDMULTISOURCE1 , FDMULTISOURCE2 , FDMULTIVALUED1 ,

FDMULTIVALUED2 , FDMULTITARGET1 , FDMULTITARGET2]↽

Re [ERRELATIONSHIPTYPE, ERENTITYTYPE1 , ERENTITYTYPE2]

(T5)

A many-to-many relationship type between two entity types translates partially to a

set of dependencies similar to the following:

A→ BC (from ERENTITYTYPE1)

PQ→ R (from ERENTITYTYPE2)

A� PQ
}

(from ERRELATIONSHIPTYPE)
PQ� A

397

Rf [FDFUNCTIONALSOURCE]→ Re [ERIDENTIFIER]

Rf [FDFUNCTIONALSOURCE]↽ Re [ERIDENTIFIER]
(T6)

The left-hand side of a functional dependency translates completely to a non-partial

entity identifier, but only partially in the reverse direction.

Rf [FDFUNCTIONALSOURCE, FDFUNCTIONAL , FDFUNCTIONALTARGET]↽

Re [ERWEAKENTITYTYPE, ERRELATIONSHIPTYPE, ERENTITYTYPE]
(T7)

A weak entity type that is dependent on another entity type via a relationship type

translates partially to a functional dependency. The exact nature of the dependency

depends on whether or not the identifier of the weak entity type is partial or not, and

also on how many relationships are attached to the weak entity type. These conditions

are specified by specialisations of this rule.

E.1.2 Scheme-level rules

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED,

SSTARGETBUBBLE]→ Re [MARTINREGULARENTITY]

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED,

SSTARGETBUBBLE]↽ Re [MARTINREGULARENTITY]

(S1)

This rule is a specialisation of technique-level rule T1, and translates a functional de-

pendency into a regular entity, as illustrated in Figure E.1.

STAFF ID NAME +
PASSWORD

Staff
STAFF ID,

NAME,
PASSWORD

Figure E.1: Translating a single-valued dependency to and from a Martin ERD (rule S1)

Rf [SSMULTIKEYBUBBLE , SSMULTIVALUED, SSENDKEYBUBBLE]→

Re [MARTINREGULARENTITY, MARTINIDENTIFIER]

Rf [SSMULTIKEYBUBBLE , SSMULTIVALUED, SSENDKEYBUBBLE]↽

Re [MARTINREGULARENTITY, MARTINIDENTIFIER]

(S2)

398

This rule is a specialisation of technique-level rule T2, and translates a multi-valued

dependency into a regular entity and an associated entity identifier, as illustrated in

Figure E.2. The entity must have no non-key attributes, so the attributes of the regular

entity must be the same as those of the identifier.

REGISTRATION FEATURE CODE

Car feature

REGISTRATION,

FEATURE CODE

Figure E.2: Translating a multivalued dependency to and from a Martin ERD (rule S2)

Rf [SSSINGLEKEYBUBBLE]→ Re [MARTINIDENTIFIER]

Rf [SSSINGLEKEYBUBBLE]↽ Re [MARTINIDENTIFIER]
(S3)

A single-key bubble translates completely to a non-partial entity identifier (STAFF ID

in Figure E.3), but only partially in the reverse direction. This rule is a specialisation of

technique-level rule T6.

STAFF ID NAME +
PASSWORD

Staff
STAFF ID,

NAME,
PASSWORD

identifier

Figure E.3: Translating a single-key bubble between an FDD and an ERD (rule S3)

Rf [SSISOLATEDBUBBLE]→ Re [MARTINREGULARENTITY, MARTINIDENTIFIER]

Rf [SSISOLATEDBUBBLE] ↽ Re [MARTINREGULARENTITY, MARTINIDENTIFIER]
(S4)

An isolated bubble translates completely to a regular entity (Order Ship in Figure E.4

— note that this example is not drawn from one of the example viewpoints). The entity

has no non-key attributes. The reverse translation is partial, and only applies when the

number of attributes in the entity is not two (see Section 5.4 on page 135).

Rf [SSATTRIBUTE]→ Re [MARTINATTRIBUTE]

Rf [SSATTRIBUTE]↽ Re [MARTINATTRIBUTE]
(S5)

This rule is a specialisation of technique-level rule T3, and is effectively identical to

that rule.

399

ORDER NO +
SHIPMENT NO

Order Ship
ORDER NO,

SHIPMENT NO

Figure E.4: Translating an isolated bubble to and from a Martin ERD (rule S4)

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED,

SSTARGETBUBBLE]↽ Re [MARTINASSOCIATIVEENTITY]
(S6)

An associative entity translates partially to a functional dependency (cf. rule S1).

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED, SSTARGETBUBBLE]↽

Re [MARTINWEAKENTITY, MARTINRELATIONSHIP, ERTYPEITEM]
(S7)

This rule is a specialisation of technique-level rule T1. The weak entity (Mark Adjust-

ment in Figure E.5) may be embedded or non-embedded, has no associated relation-

ships other than the dependent relationship to the ‘parent’ entity (Assignment), and

has an identifier (partial or unique). The weak entity translates to a single-valued de-

pendency as shown in Figure E.5. The attributes of the single-key bubble are generated

by concatenating the identifying attributes of both the weak entity and the parent en-

tity. The attributes of the target bubble correspond to the non-identifying attributes of

the weak entity.

ADJUSTMENT NO

ASSIGN ID

DATE SUBMITTED +
DATE MARKED +. . .

REASON +
AMOUNT

Assignment

ASSIGN ID,

DATE SUBMITTED,
DATE MARKED,

. . .

ADJUSTMENT NO,

REASON,
AMOUNT

Mark adjustment

Figure E.5: Translating a weak entity to an FDD (rule S7)

400

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED, SSTARGETBUBBLE]↽

Re [MARTINWEAKENTITY, MARTINRELATIONSHIP, ERTYPEITEM]
(S8)

This rule is identical to rule S7, except that the weak entity (Order Line in Figure E.6)

has one or more associated relationships. The identifying attributes of the attached

entities are included in the target bubble. The only restriction on the relationships

is that the end attached to the associated entity may not be ‘many’. (Note that the

example in Figure E.6 is not drawn from the example viewpoints in Appendix C.)

LINE NO

ORDER NO

ORDER DATE

QUANTITY + PRICE

PRODUCT NO

DESCRIPTION

Order Header
ORDER NO,

ORDER DATE

LINE NO,

QUANTITY,
PRICE

Order Line

PRODUCT NO,

DESCRIPTION

Product

Figure E.6: Translating a weak entity to an FDD (rule S8)

Rf [SSSINGLEKEYBUBBLE, SSSINGLEVALUED, SSTARGETBUBBLE]↽

Re [MARTINWEAKENTITY, MARTINRELATIONSHIP, ERTYPEITEM]
(S9)

This rule is identical to rule S8, except that the weak entity has no identifier. The

identifying attributes of the associated entities are included in the single-key bubble.

The use of this rule is illustrated in Figure E.7 on the following page (this example is a

modification of that shown in Figure E.6).

401

PRODUCT NO

ORDER NO

ORDER DATE QUANTITY + PRICE

DESCRIPTION

Order Header
ORDER NO,

ORDER DATE

QUANTITY,
PRICE

Order Line

PRODUCT NO,

DESCRIPTION

Product

Figure E.7: Translating a weak entity to an FDD (rule S9)

Rf [SSISOLATEDBUBBLE]↽ Re[MARTINWEAKENTITY ,

MARTINRELATIONSHIP , ERTYPEITEM]
(S10)

This rule is similar to rule S9, except that the weak entity contains no independent

attributes, that is, the only ‘attributes’ are those implied by the attached relationships.

This structure translates to an isolated bubble, as shown in Figure E.8. The identifying

attributes of the associated entities are included in the isolated bubble.

PADDOCK ID

EXPERIMENT ID

FERTILISER ID

GRASS ID

ADDRESS +
. . .

START DATE +
. . .

NAME +
SUPPLIER

NAME

Experiment
EXPERIMENT ID,

START DATE,
FINISH DATE

. . .

paddocks

Paddock detail

used PADDOCK ID,

ADDRESS,
AREA,
. . .

Paddock

appliedFERTILISER ID,

NAME
SUPPLIER

Fertiliser

sown

GRASS ID,
NAME

Grass

Figure E.8: Translating a weak entity to an FDD (rule S10)

402

Rf [SSSINGLEKEYBUBBLE1 , SSSINGLEKEYBUBBLE2 , FDSINGLEVALUED1 ,

FDSINGLEVALUED2 , SSTARGETBUBBLE1 , SSTARGETBUBBLE2]→

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]

Rf [SSSINGLEKEYBUBBLE1 , SSSINGLEKEYBUBBLE2 , FDSINGLEVALUED1 ,

FDSINGLEVALUED2 , SSTARGETBUBBLE1 , SSTARGETBUBBLE2]↽

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]

(S11)

This rule is a specialisation of technique-level rule T4. The structure shown in Fig-

ure E.9(a) translates completely to the structure shown in Figure E.9(e). In the reverse

direction, the four E-R structures shown in Figures E.9(b)–E.9(e) all map partially to

the FDD structure shown.

SALE ID

MAKE +
MODEL +

. . .

SALE DATE +
SALE PRICE +

. . .

REGISTRATION

(a) FDD structure

Sale
SALE ID,

SALE DATE,
SALE PRICE,

. . .

sold

REGISTRATION,

MAKE, MODEL,
. . .

Car

(b) 0:1–0:1

Sale
SALE ID,

SALE DATE,
SALE PRICE,

. . .

sold

REGISTRATION,

MAKE, MODEL,
. . .

Car

(c) 1:1–0:1

Sale
SALE ID,

SALE DATE,
SALE PRICE,

. . .

sold

REGISTRATION,

MAKE, MODEL,
. . .

Car

(d) 0:1–1:1

Sale
SALE ID,

SALE DATE,
SALE PRICE,

. . .

sold

REGISTRATION,

MAKE, MODEL,
. . .

Car

(e) 1:1–1:1

Figure E.9: Translating one-to-one relationships between an ERD and an FDD (rule
S11)

403

Rf [SSSINGLEKEYBUBBLE1 , SSSINGLEKEYBUBBLE2 , FDSINGLEVALUED1 ,

FDSINGLEVALUED2 , SSTARGETBUBBLE1 , SSTARGETBUBBLE2]→

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]

Rf [SSSINGLEKEYBUBBLE1 , SSSINGLEKEYBUBBLE2 , FDSINGLEVALUED1 ,

FDSINGLEVALUED2 , SSTARGETBUBBLE1 , SSTARGETBUBBLE2]↽

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]

(S12)

This rule is a specialisation of technique-level rule T4. The structure shown in Fig-

ure E.10(a) translates completely to the structure shown in Figure E.10(e). In the reverse

direction, the four E-R structures shown in Figures E.10(b)–E.10(e) all map partially to

the structure shown in Figure E.10(a).

SALE ID

COMMISSION RATE

SALE DATE +
SALE PRICE +

. . .

SALESREP ID

(a) FDD structure

Salesrep

SALESREP ID,

COMMISSION RATE

buys

SALE ID,

SALE DATE,
SALE PRICE,

. . .

Sale

(b) 0:1–0:N

Salesrep

SALESREP ID,

COMMISSION RATE

buys

SALE ID,

SALE DATE,
SALE PRICE,

. . .

Sale

(c) 1:1–0:N

Salesrep

SALESREP ID,

COMMISSION RATE

buys

SALE ID,

SALE DATE,
SALE PRICE,

. . .

Sale

(d) 0:1–1:N

Salesrep

SALESREP ID,

COMMISSION RATE

buys

SALE ID,

SALE DATE,
SALE PRICE,

. . .

Sale

(e) 1:1–1:N

Figure E.10: Translating one-to-many relationships between an ERD and an FDD (rule
S12)

404

Rf [SSSINGLEKEYBUBBLE1 , SSSINGLEKEYBUBBLE2 , FDSINGLEVALUED1 ,

FDSINGLEVALUED2 , SSTARGETBUBBLE1 , SSTARGETBUBBLE2 ,

SSMULTIKEYBUBBLE1 , SSMULTIKEYBUBBLE2 , FDMULTIVALUED1 ,

FDMULTIVALUED2 , SSENDKEYBUBBLE1SSENDKEYBUBBLE2]↽

Re [MARTINRELATIONSHIP, ERTYPEITEM1 , ERTYPEITEM2]

(S13)

This rule is a specialisation of technique-level rule T5, and is effectively identical to that

rule. The four many-to-many relationship structures shown in Figure E.11(b)–E.11(e)

all translate partially to the structure shown in Figure E.11(a).

REGISTRATION
MAKE +

MODEL +
. . .

FEATURE CODE DESCRIPTION

(a) FDD structure

Car

REGISTRATION,

MAKE, MODEL,
. . .

car
features

FEATURE CODE,

DESCRIPTION

Feature

(b) 0:M–0:N

Car

REGISTRATION,

MAKE, MODEL,
. . .

car
features

FEATURE CODE,

DESCRIPTION

Feature

(c) 1:M–0:N

Car

REGISTRATION,

MAKE, MODEL,
. . .

car
features

FEATURE CODE,

DESCRIPTION

Feature

(d) 0:M–1:N

Car

REGISTRATION,

MAKE, MODEL,
. . .

car
features

FEATURE CODE,

DESCRIPTION

Feature

(e) 1:M–1:N

Figure E.11: Translating many-to-many relationships from an ERD to an FDD (rule
S13)

405

Rf [FDATTRIBUTESET, SSDOMAINFLAG , SSSINGLEKEYBUBBLE,

SSATTRIBUTE1 , SSATTRIBUTE2]→ Re [MARTINRELATIONSHIP]
(S14)

Consider a non-isolated bubble containing an attribute (PARENT ID in Figure E.12)

that is tagged with a domain flag. This domain flag references some other attribute

(QUESTION ID in Figure E.12) in a single-key bubble. This configuration translates

completely to a 1:1–0:N relationship from the entity contributed to by the single-key

bubble (Question), to the entity contributed to by the non-isolated bubble (Question).

QUESTION ID1
NUMBER +

. . . +
PARENT ID 1

Question

QUESTION ID,
NUMBER,
. . .

Figure E.12: Translating a domain flag from an FDD to an ERD (rule S14)

Rf [SSISOLATEDBUBBLE, SSDOMAINFLAG, SSSINGLEKEYBUBBLE,

SSATTRIBUTE1 , SSATTRIBUTE2]→ Re [MARTINRELATIONSHIP]
(S15)

This rule is identical to rule S14, except that isolated bubbles are allowed, as shown in

Figure E.13.

PERSON ID
NAME +

ADDRESS +
. . .

STAFF ID + SKILL1

1

Person
PERSON ID,

NAME,
ADDRESS,
. . .

STAFF ID,

SKILL

Staff skill

Figure E.13: Translating a domain flag from an FDD to an ERD (rule S15)

406

Rf [SSSINGLEKEYBUBBLE, FDATTRIBUTESET]→

Re [ERTYPEITEM1 , ERTYPEITEM2 , MARTINRELATIONSHIP]
(S16)

Consider a single-key bubble whose attributes are contained by some other non-isola-

ted bubble, as illustrated by the BREED NAME single-key bubble in Figure E.14. This

can be translated to a 1:1–0:N relationship from the entity contributed to by the single-

key bubble (Breed), to the entity contributed to by the non-isolated bubble (Sheep).

BREED NAME

DOB + GENDER +

HEALTH

DETAILS + FLOCK SIZE

SHEEP ID

Breed
BREED NAME,

DETAILS,
FLOCK SIZE

SHEEP ID,

DOB,
. . .

Sheep

Figure E.14: Translating a contained single-key bubble from an FDD to an ERD (rule
S16)

Rf [SSISOLATEDBUBBLE, FDATTRIBUTESET]→

Re [ERTYPEITEM1 , ERTYPEITEM2 , MARTINRELATIONSHIP]
(S17)

This rule is identical to rule S16, except that the contained bubble (STAFF ID + SKILL

in Figure E.15 on the next page) is an isolated bubble.

Rf [SSSINGLEKEYBUBBLE, SSISOLATEDBUBBLE]→

Re [ERTYPEITEM1 , ERTYPEITEM2 , MARTINRELATIONSHIP]
(S18)

This rule is identical to rule S16, except that the containing bubble (STAFF ID + SKILL

in Figure E.16 on the following page) is an isolated bubble.

407

PERSON ID

NAME +
ADDRESS +

. . .

STAFF ID +
SKILL

Person
PERSON ID,

NAME,
ADDRESS,
. . .

STAFF ID,

SKILL

Staff skill

Figure E.15: Translating a contained isolated bubble from an FDD to an ERD (rule S17)

SKILL

STAFF ID
NAME +

ADDRESS +
. . .

Staff
STAFF ID,

NAME,
ADDRESS,
. . .

STAFF ID,

SKILL

Staff skill

Figure E.16: Translating a contained single-key bubble from an FDD to an ERD (rule
S18)

Rf [SSISOLATEDBUBBLE1 , SSISOLATEDBUBBLE2]→

Re [ERTYPEITEM1 , ERTYPEITEM2 , MARTINRELATIONSHIP]
(S19)

This rule is identical to rule S17, except that the containing bubble is also an isolated

bubble (see Figure E.17).

E.1.3 Heuristics

Rf [SSMULTIKEYBUBBLE1 , SSMULTIKEYBUBBLE2 , SSMULTIVALUED1 ,

SSMULTIVALUED2 , SSENDKEYBUBBLE1 , SSENDKEYBUBBLE1]→

Re [MARTINASSOCIATIVEENTITY, MARTINIDENTIFIER]

(H1)

The FDD structure shown in Figure E.18 can be translated completely to an associative

entity.

408

PADDOCK ID +
FERTILISER ID +

GRASS ID

SHEEP ID

Paddock detail
PADDOCK ID,

GRASS ID,

FERTILISER ID

PADDOCK ID,

GRASS ID,

FERTILISER ID,

SHEEP ID

Sheep detail

Figure E.17: Translating a contained isolated bubble from an FDD to an ERD (rule S19)

REGISTRATION

FEATURE CODE

REGISTRATION,

FEATURE CODE

Car feature

Figure E.18: Translating a circular multi-valued dependency from an FDD to an ERD
(heuristic H1)

Rf [FDATTRIBUTESET1 , . . . , FDATTRIBUTESETn ,

SSDOMAINFLAG, SSSINGLEKEYBUBBLE,

SSATTRIBUTEa , SSATTRIBUTE1 , . . . , SSATTRIBUTEn]→

Re [MARTINTYPEHIERARCHY]

(H2)

Consider a collection of non-multi-key bubbles (SALESREP ID, SALARY STAFF ID

and WAGE STAFF ID in Figure E.19 on the next page), that each contain an attribute

tagged with the same domain flag. This domain flag references another attribute

(IRD NUMBER) in another single-key bubble. If the number of referencing attributes

is greater than two, this can be translated completely to a type hierarchy between the

entity contributed to by the single-key bubble (Staff — the supertype) and the entities

contributed to by the non-multi-key bubbles (Wage staff, Salesrep and Salary staff —

the subtypes).

409

IRD NUMBER1 . . .

WAGE STAFF ID1 . . .

SALESREP ID1 . . .

SALARY STAFF ID1 . . .

Staff

Wage staff Salesrep Salary staff

Figure E.19: Deriving a type hierarchy from an FDD (heuristic H2)

E.1.4 Expressive overlap

In Figure E.20 are shown schema intension graphs for the representationsRf (FuncDep,

FDDSmith) andRe(E -R,ERDMartin). Applying the following set of SIG transformations

to the SIG for Rf produces the SIG subgraph shown in Figure E.21:

1. Create new node FDAttribute′ and associated bijective selection edge σ4
′.

2. Create new node FDAttribute′′ and associated bijective selection edge σ4
′′.

3. Move edge contains1 across selection edges σ4
′ and σ4

′′, and edges σ3 and σ1.

4. Remove the surjectivity annotation from selection edge σ4
′.

5. Move edge references across selection edge σ4.

This transformed subgraph is isomorphic to a subgraph of the SIG for Re, so the

two representations have intersecting expressive powers. The expressive overlap is

indicated by the blue shaded areas in Figure E.22 on page 412.

E.1.5 Relative quality

In Figure E.23 on page 413 are shown the tagged SIGs for both representations in both

directions of the translation. Blue indicates constructs and edges tagged as a result of

appearing in rules, and green indicates constructs and edges tagged as a result of ap-

pearing in heuristics. The results of the relative quality measurement are summarised

in Table E.1 on page 412.

410

FDElement

FDAttribute + FDAttributeSet

FDAttribute FDAttributeSet

SSAttribute

SSDomainFlag

FDDependency

FDFunctional + FDMultiValued

FDFunctional FDMultiValued

SSMultiValuedSSSingleValued

SSIsolatedBubble
+

FDSource
+

FDTarget

FDTarget

SSIsolatedBubble

FDSource

FDFunctionalTarget + FDMultiTarget

FDFunctionalSource + FDMultiSource

FDFunctionalTarget

SSTargetBubble SSEndKeyBubble

FDMultiTarget

FDFunctionalSource FDMultiSource

SSMultiKeyBubbleSSSingleKeyBubble

σ1

σ4

σ19

σ22 σ23

σ20 σ21

σ3σ2

σ6

σ5

σ7

σ8

σ9

σ14

σ13 σ12

σ10 σ11

σ15 σ16

σ18σ17

contains1

re
fe

re
nc

es source
1

so
ur

ce
2 target

co
nt

ai
ns

2

(a)Rf (FuncDep,FDDSmith)

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(b) representationRe(E -R,ERDMartin)

Figure E.20: SIGs for Rf (FuncDep,FDDSmith) andRe(E -R,ERDMartin)

FDElement

FDAttributeSet + FDAttribute

σ1

FDAttributeSet

SSIsolatedBubble + FDSource + FDTarget

SSIsolatedBubble

FDAttribute′′ FDAttribute′

FDAttribute

SSAttribute

σ5

σ3

σ6

σ4′

σ4′′

σ4contains
1 SSDomainFlag

references

Figure E.21: Transformed SIG for Rf (FuncDep,FDDSmith)

411

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(a)Re(E -R,ERDMartin)

FDElement

FDAttribute + FDAttributeSet

FDAttribute FDAttributeSet

SSAttribute

SSDomainFlag

FDDependency

FDFunctional + FDMultiValued

FDFunctional FDMultiValued

SSMultiValuedSSSingleValued

SSIsolatedBubble
+

FDSource
+

FDTarget

FDTarget

SSIsolatedBubble

FDSource

FDFunctionalTarget + FDMultiTarget

FDFunctionalSource + FDMultiSource

FDFunctionalTarget

SSTargetBubble SSEndKeyBubble

FDMultiTarget

FDFunctionalSource FDMultiSource

SSMultiKeyBubbleSSSingleKeyBubble

σ1

σ4

σ19

σ22 σ23

σ20 σ21

σ3σ2

σ6

σ5

σ7

σ8

σ9

σ14

σ13 σ12

σ10 σ11

σ15 σ16

σ18σ17

contains1

re
fe

re
nc

es source
1

so
ur

ce
2 target

co
nt

ai
ns

2

(b)Rf (FuncDep,FDDSmith)

Figure E.22: Expressive overlap for Re(E -R,ERDMartin) andRf (FuncDep,FDDSmith)

Table E.1: Relative quality measurements for the Rf → Re/Rf ↽ Re translation

SIG forRf (FuncDep,FDDSmith) has 21 construct nodes and 6 non-σ edges.
SIG for Re(E -R,ERDMartin) has 17 construct nodes and 9 non-σ edges.

Tagged Tagged Tagged Tagged
source constructs source edges target constructs target edges

Direction # % # % # % # %
Without Rf → Re 17 80.95 6 100.00 9 52.94 5 55.56
heuristics Re ⇀ Rf 12 70.59 5 55.56 15 71.43 4 66.67

With Rf → Re 17 80.95 6 100.00 11 64.71 7 77.78
heuristics Re ⇀ Rf 12 70.59 5 55.56 15 71.43 4 66.67

412

F
D

E
le

m
en

t

F
D

A
ttr

ib
ut

e
+

 F
D

A
ttr

ib
ut

eS
et

F
D

A
ttr

ib
ut

e
F

D
A

ttr
ib

ut
eS

et

S
S

A
ttr

ib
ut

e

S
S

D
om

ai
nF

la
g

F
D

D
ep

en
de

nc
y

F
D

F
un

ct
io

na
l +

 F
D

M
ul

tiV
al

ue
d

F
D

F
un

ct
io

na
l

F
D

M
ul

tiV
al

ue
d

S
S

M
ul

tiV
al

ue
d

S
S

S
in

gl
eV

al
ue

d

S
S

Is
ol

at
ed

B
ub

bl
e

+
F

D
S

ou
rc

e
+

F
D

T
ar

ge
t

F
D

T
ar

ge
t

S
S

Is
ol

at
ed

B
ub

bl
e

F
D

S
ou

rc
e

F
D

F
un

ct
io

na
lT

ar
ge

t +
 F

D
M

ul
tiT

ar
ge

tF
D

F
un

ct
io

na
lS

ou
rc

e
+

 F
D

M
ul

tiS
ou

rc
e

F
D

F
un

ct
io

na
lT

ar
ge

t

S
S

T
ar

ge
tB

ub
bl

e
S

S
E

nd
K

ey
B

ub
bl

e

F
D

M
ul

tiT
ar

ge
t

F
D

F
un

ct
io

na
lS

ou
rc

e
F

D
M

ul
tiS

ou
rc

e

S
S

M
ul

tiK
ey

B
ub

bl
e

S
S

S
in

gl
eK

ey
B

ub
bl

e

σ 1

σ 4

σ 1
9

σ 2
2

σ 2
3

σ 2
0

σ 2
1

σ 3
σ 2

σ 6

σ 5

σ 7 σ 8

σ 9

σ 1
4

σ 1
3

σ 1
2

σ 1
0

σ 1
1

σ 1
5

σ 1
6

σ 1
8

σ 1
7

co
nt

ai
ns

1

references

source1

source2

target

contains2

(a
)R

f
(F

u
n
cD

ep
,F

D
D
S
m
it
h
)

(→
)

E
R

T
yp

eI
te

m

E
R

E
nt

ity
T

yp
e

+
 E

R
R

el
at

io
ns

hi
pT

yp
e

σ 1

E
R

E
nt

ity
ty

pe
E

R
R

el
at

io
ns

hi
pT

yp
e

M
ar

tin
T

yp
eH

ie
ra

rc
hy

 +
 M

ar
tin

R
el

at
io

ns
hi

p
+

 M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

E
R

W
ea

kE
nt

ity
T

yp
e

+
 M

ar
tin

R
eg

ul
ar

E
nt

ity

M
ar

tin
R

el
at

io
ns

hi
p

M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

M
ar

tin
R

eg
ul

ar
E

nt
ity

M
ar

tin
T

yp
eh

ie
ra

rc
hy

E
R

W
ea

kE
nt

ity
T

yp
e

M
ar

tin
W

ea
kE

nt
ity

as
so

ci
at

es

su
pe

rt
yp

e

su
bt

yp
e

E
R

A
ttr

ib
ut

eI
te

m

E
R

Id
en

tif
ie

r

M
ar

tin
Id

en
tif

ie
r

E
R

A
ttr

ib
ut

e
+

E
R

A
ttr

ib
ut

eG
ro

up

E
R

A
ttr

ib
ut

e

E
R

A
ttr

ib
ut

eG
ro

up

M
ar

tin
A

ttr
ib

ut
e

M
ar

tin
A

ttr
ib

ut
eG

ro
up

σ 4

σ 2
σ 3

σ 5

σ 6
σ 7

σ 9
σ 1

0

σ 8

σ 1
6

σ 1
5

σ 1
3

σ 1
4

σ 1
2

σ 1
1

id
en

tif
ie

s

co
nt

ai
ns

2

co
nt

ai
ns

1

co
nt

ai
ns

3

E
R

V
al

ue
T

yp
e

dr
aw

n
fr

om

co
nt

ai
ns

1-
s 1

σ 1
7

(b
)R

e
(E

-R
,E

R
D
M
a
rt
in
)

(→
)

F
D

E
le

m
en

t

F
D

A
ttr

ib
ut

e
+

 F
D

A
ttr

ib
ut

eS
et

F
D

A
ttr

ib
ut

e
F

D
A

ttr
ib

ut
eS

et

S
S

A
ttr

ib
ut

e

S
S

D
om

ai
nF

la
g

F
D

D
ep

en
de

nc
y

F
D

F
un

ct
io

na
l +

 F
D

M
ul

tiV
al

ue
d

F
D

F
un

ct
io

na
l

F
D

M
ul

tiV
al

ue
d

S
S

M
ul

tiV
al

ue
d

S
S

S
in

gl
eV

al
ue

d

S
S

Is
ol

at
ed

B
ub

bl
e

+
F

D
S

ou
rc

e
+

F
D

T
ar

ge
t

F
D

T
ar

ge
t

S
S

Is
ol

at
ed

B
ub

bl
e

F
D

S
ou

rc
e

F
D

F
un

ct
io

na
lT

ar
ge

t +
 F

D
M

ul
tiT

ar
ge

tF
D

F
un

ct
io

na
lS

ou
rc

e
+

 F
D

M
ul

tiS
ou

rc
e

F
D

F
un

ct
io

na
lT

ar
ge

t

S
S

T
ar

ge
tB

ub
bl

e
S

S
E

nd
K

ey
B

ub
bl

e

F
D

M
ul

tiT
ar

ge
t

F
D

F
un

ct
io

na
lS

ou
rc

e
F

D
M

ul
tiS

ou
rc

e

S
S

M
ul

tiK
ey

B
ub

bl
e

S
S

S
in

gl
eK

ey
B

ub
bl

e

σ 1

σ 4

σ 1
9

σ 2
2

σ 2
3

σ 2
0

σ 2
1

σ 3
σ 2

σ 6

σ 5

σ 7 σ 8

σ 9

σ 1
4

σ 1
3

σ 1
2

σ 1
0

σ 1
1

σ 1
5

σ 1
6

σ 1
8

σ 1
7

co
nt

ai
ns

1

references

source1

source2

target

contains2

(c
)R

f
(F

u
n
cD

ep
,F

D
D
S
m
it
h
)

(↽
)

E
R

T
yp

eI
te

m

E
R

E
nt

ity
T

yp
e

+
 E

R
R

el
at

io
ns

hi
pT

yp
e

σ 1

E
R

E
nt

ity
ty

pe
E

R
R

el
at

io
ns

hi
pT

yp
e

M
ar

tin
T

yp
eH

ie
ra

rc
hy

 +
 M

ar
tin

R
el

at
io

ns
hi

p
+

 M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

E
R

W
ea

kE
nt

ity
T

yp
e

+
 M

ar
tin

R
eg

ul
ar

E
nt

ity

M
ar

tin
R

el
at

io
ns

hi
p

M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

M
ar

tin
R

eg
ul

ar
E

nt
ity

M
ar

tin
T

yp
eh

ie
ra

rc
hy

E
R

W
ea

kE
nt

ity
T

yp
e

M
ar

tin
W

ea
kE

nt
ity

as
so

ci
at

es

su
pe

rt
yp

e

su
bt

yp
e

E
R

A
ttr

ib
ut

eI
te

m

E
R

Id
en

tif
ie

r

M
ar

tin
Id

en
tif

ie
r

E
R

A
ttr

ib
ut

e
+

E
R

A
ttr

ib
ut

eG
ro

up

E
R

A
ttr

ib
ut

e

E
R

A
ttr

ib
ut

eG
ro

up

M
ar

tin
A

ttr
ib

ut
e

M
ar

tin
A

ttr
ib

ut
eG

ro
up

σ 4

σ 2
σ 3

σ 5

σ 6
σ 7

σ 9
σ 1

0

σ 8

σ 1
6

σ 1
5

σ 1
3

σ 1
4

σ 1
2

σ 1
1

id
en

tif
ie

s

co
nt

ai
ns

2

co
nt

ai
ns

1

co
nt

ai
ns

3

E
R

V
al

ue
T

yp
e

dr
aw

n
fr

om

co
nt

ai
ns

1-
s 1

σ 1
7

(d
)R

e
(E

-R
,E

R
D
M
a
rt
in
)

(↽
)

Fi
gu

re
E

.2
3:

R
el

at
iv

e
qu

al
it

y
an

al
ys

is
fo

r
R

e
→
R

f
/
R

e
↽
R

f

413

E.2 Re � Rd

In this translation, descriptions are translated between an entity-relationship descrip-

tion expressed in Martin notation and a data flow diagram expressed in Gane and

Sarson notation (Gane and Sarson, 1979), that is:

Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S).

There are no restrictions on this translation in either direction.

E.2.1 Technique-level rules

Re [ERENTITYTYPE]⇀ Rd [DFDATASTORE] (T1)

A entity of any sort translates partially to a data store.

Re [ERATTRIBUTEITEM]� Rd [DFFIELDITEM] (T2)

An attribute (attribute group) translates partially to a field (field group), and vice versa.

E.2.2 Scheme-level rules

Re [MARTINREGULARENTITY]� Rd [GNSDATASTORE] (S1)

This rule is a specialisation of technique-level rule T1 for regular entities, and is other-

wise identical to that rule.

Re [MARTINASSOCIATIVEENTITY]⇀ Rd [GNSDATASTORE] (S2)

An associative entity translates partially to a data store.

Re [MARTINWEAKENTITY]⇀ Rd [GNSDATASTORE] (S3)

This rule is a specialisation of technique-level rule T1 for non-embedded weak entities

and is identical to that rule except that it is unidirectional in the forward direction.

414

Re [MARTINATTRIBUTE]� Rr [GNSFIELD] (S4)

This is a specialisation of technique-level rule T2, and is otherwise identical to that rule.

Re [MARTINATTRIBUTEGROUP]� Rr [GNSFIELDGROUP] (S5)

This is a specialisation of technique-level rule T2 for attribute groups, and is effectively

identical to that rule.

Re [MARTINWEAKENTITY]⇀ Rd [GNSFIELDGROUP] (S6)

An embedded weak entity translates partially to a field group.

E.2.3 Heuristics

Re [MARTINASSOCIATIVEENTITY]⇀�

Rd [GNSDATAPROCESS, GNSDATASTORE, GNSDATAFLOW] (H1)

An associative entity (Sale in Figure E.24) can often represent some kind of activity,

such as a transaction or an experiment (Campbell, 1992). Such an activity can imply

a partial translation to a data process (Process sale in Figure E.24) and a data store

(Sale), linked by a data flow.

Sale

P1

Process
sale

D1 Sale

attributes

Figure E.24: Translating an associative entity that represents an activity into a data
process and data store (heuristic H1)

415

Re[MARTINRELATIONSHIP ,MARTINREGULARENTITY1 ,

MARTINREGULARENTITY2]↽�

Rd[GNSDATAPROCESS ,GNSDATASTORE1 ,GNSDATASTORE2 ,

GNSDATAFLOW1 ,GNSDATAFLOW2]

(H2)

Consider two data stores (Contract and Experiment in Figure E.25) and a data process

(Devise experiments), with data flows running from one data store to the process, and

from the process to the other data store. This can be translated to two regular entities

(Contract and Experiment in Figure E.25) connected by a 1:1–0:N relationship.

Contract
CONTRACT ID,
DETAILS, FEE,

. . .

EXPERIMENT ID,
START DATE,

. . .

Experiment

D2 Contract

P3

Devise
experiments

D3 Experiment

Figure E.25: Translating data flows into a relationship (heuristic H2)

E.2.4 Expressive overlap

See Section 8.3.1 on page 227.

E.2.5 Relative quality

In Figure E.26 are shown the tagged SIGs for both representations in both directions

of the translation. Blue indicates constructs and edges tagged as a result of appearing

in rules, and green indicates constructs and edges tagged as a result of appearing in

heuristics. The results of the relative quality measurement are summarised in Table E.2

on page 418.

416

E
R

T
yp

eI
te

m

E
R

E
nt

ity
T

yp
e

+
 E

R
R

el
at

io
ns

hi
pT

yp
e

σ 1

E
R

E
nt

ity
ty

pe
E

R
R

el
at

io
ns

hi
pT

yp
e

M
ar

tin
T

yp
eH

ie
ra

rc
hy

 +
 M

ar
tin

R
el

at
io

ns
hi

p
+

 M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

E
R

W
ea

kE
nt

ity
T

yp
e

+
 M

ar
tin

R
eg

ul
ar

E
nt

ity

M
ar

tin
R

el
at

io
ns

hi
p

M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

M
ar

tin
R

eg
ul

ar
E

nt
ity

M
ar

tin
T

yp
eh

ie
ra

rc
hy

E
R

W
ea

kE
nt

ity
T

yp
e

M
ar

tin
W

ea
kE

nt
ity

as
so

ci
at

es

su
pe

rt
yp

e

su
bt

yp
e

E
R

A
ttr

ib
ut

eI
te

m

E
R

Id
en

tif
ie

r

M
ar

tin
Id

en
tif

ie
r

E
R

A
ttr

ib
ut

e
+

E
R

A
ttr

ib
ut

eG
ro

up

E
R

A
ttr

ib
ut

e

E
R

A
ttr

ib
ut

eG
ro

up

M
ar

tin
A

ttr
ib

ut
e

M
ar

tin
A

ttr
ib

ut
eG

ro
up

σ 4

σ 2
σ 3

σ 5

σ 6
σ 7

σ 9
σ 1

0

σ 8

σ 1
6

σ 1
5

σ 1
3

σ 1
4

σ 1
2

σ 1
1

id
en

tif
ie

s

co
nt

ai
ns

2

co
nt

ai
ns

1

co
nt

ai
ns

3

E
R

V
al

ue
T

yp
e

dr
aw

n
fr

om

co
nt

ai
ns

1-
s 1

σ 1
7

(a
)R

e
(E

-R
,E

R
D
M
a
rt
in
)

(⇀
)

D
F

Ite
m

D
F

S
ta

tic
Ite

m
 +

 D
F

F
lo

w
Ite

m
 +

 D
F

F
ie

ld
Ite

m

D
F

F
lo

w
Ite

m
D

F
S

ta
tic

Ite
m

D
F

D
at

aF
lo

w
 +

 G
nS

R
es

ou
rc

eF
lo

w

D
F

D
at

aF
lo

w
G

nS
R

es
ou

rc
eF

lo
w

D
F

F
ie

ld
Ite

m

D
F

F
ie

ld
 +

 D
F

F
ie

ld
G

ro
up

D
F

F
ie

ld
D

F
F

ie
ld

G
ro

up

D
F

D
at

aS
to

re
 +

 G
nS

R
es

ou
rc

eS
to

re
 +

 D
F

D
at

aF
lo

w
 +

 G
nS

R
es

ou
rc

eF
lo

w

D
F

S
pl

itM
er

ge

+
D

F
P

ro
ce

ss

+
D

F
E

xt
er

na
lE

nt
ity

+
G

nS
M

ul
tip

le
D

at
aP

ro
ce

ss

+
G

nS
R

es
ou

rc
eS

to
re

+
D

F
D

at
aS

to
re

D
F

S
pl

itM
er

ge

D
F

P
ro

ce
ss

D
F

E
xt

er
na

lE
nt

ity

G
nS

M
ul

tip
le

D
at

aP
ro

ce
ss

G
nS

R
es

ou
rc

eS
to

re

D
F

D
at

aS
to

re

G
nS

S
pl

itM
er

ge

G
nS

D
at

aP
ro

ce
ss

G
nS

E
xt

er
na

lE
nt

ity

G
nS

D
at

aS
to

re

σ 1
5

σ 1
7

σ 2
4

σ 2
5

σ 2
6σ 2

1
σ 2

0

σ 1
8

σ 1
6

σ 1
4

σ 2
1

σ 2
3

σ 1
0

σ 8σ 7

σ 6σ 4σ 2

σ 9σ 5σ 3σ 1

σ 1
3

ta
rg

et

so
ur

ce

co
nt

ai
ns

1

G
nS

D
at

aF
lo

w

σ 1
9

G
nS

F
ie

ld
G

nS
F

ie
ld

G
ro

up

σ 2
7

σ 2
8co
nt

ai
ns

2

σ 1
1

σ 1
2

(b
)R

d
(D

a
ta
F
lo
w

,D
F
D
G
&
S
)

(⇀
)

E
R

T
yp

eI
te

m

E
R

E
nt

ity
T

yp
e

+
 E

R
R

el
at

io
ns

hi
pT

yp
e

σ 1

E
R

E
nt

ity
ty

pe
E

R
R

el
at

io
ns

hi
pT

yp
e

M
ar

tin
T

yp
eH

ie
ra

rc
hy

 +
 M

ar
tin

R
el

at
io

ns
hi

p
+

 M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

E
R

W
ea

kE
nt

ity
T

yp
e

+
 M

ar
tin

R
eg

ul
ar

E
nt

ity

M
ar

tin
R

el
at

io
ns

hi
p

M
ar

tin
A

ss
oc

ia
tiv

eE
nt

ity

M
ar

tin
R

eg
ul

ar
E

nt
ity

M
ar

tin
T

yp
eh

ie
ra

rc
hy

E
R

W
ea

kE
nt

ity
T

yp
e

M
ar

tin
W

ea
kE

nt
ity

as
so

ci
at

es

su
pe

rt
yp

e

su
bt

yp
e

E
R

A
ttr

ib
ut

eI
te

m

E
R

Id
en

tif
ie

r

M
ar

tin
Id

en
tif

ie
r

E
R

A
ttr

ib
ut

e
+

E
R

A
ttr

ib
ut

eG
ro

up

E
R

A
ttr

ib
ut

e

E
R

A
ttr

ib
ut

eG
ro

up

M
ar

tin
A

ttr
ib

ut
e

M
ar

tin
A

ttr
ib

ut
eG

ro
up

σ 4

σ 2
σ 3

σ 5

σ 6
σ 7

σ 9
σ 1

0

σ 8

σ 1
6

σ 1
5

σ 1
3

σ 1
4

σ 1
2

σ 1
1

id
en

tif
ie

s

co
nt

ai
ns

2

co
nt

ai
ns

1

co
nt

ai
ns

3

E
R

V
al

ue
T

yp
e

dr
aw

n
fr

om

co
nt

ai
ns

1-
s 1

σ 1
7

(c
)R

e
(E

-R
,E

R
D
M
a
rt
in
)

(↽
)

D
F

Ite
m

D
F

S
ta

tic
Ite

m
 +

 D
F

F
lo

w
Ite

m
 +

 D
F

F
ie

ld
Ite

m

D
F

F
lo

w
Ite

m
D

F
S

ta
tic

Ite
m

D
F

D
at

aF
lo

w
 +

 G
nS

R
es

ou
rc

eF
lo

w

D
F

D
at

aF
lo

w
G

nS
R

es
ou

rc
eF

lo
w

D
F

F
ie

ld
Ite

m

D
F

F
ie

ld
 +

 D
F

F
ie

ld
G

ro
up

D
F

F
ie

ld
D

F
F

ie
ld

G
ro

up

D
F

D
at

aS
to

re
 +

 G
nS

R
es

ou
rc

eS
to

re
 +

 D
F

D
at

aF
lo

w
 +

 G
nS

R
es

ou
rc

eF
lo

w

D
F

S
pl

itM
er

ge

+
D

F
P

ro
ce

ss

+
D

F
E

xt
er

na
lE

nt
ity

+
G

nS
M

ul
tip

le
D

at
aP

ro
ce

ss

+
G

nS
R

es
ou

rc
eS

to
re

+
D

F
D

at
aS

to
re

D
F

S
pl

itM
er

ge

D
F

P
ro

ce
ss

D
F

E
xt

er
na

lE
nt

ity

G
nS

M
ul

tip
le

D
at

aP
ro

ce
ss

G
nS

R
es

ou
rc

eS
to

re

D
F

D
at

aS
to

re

G
nS

S
pl

itM
er

ge

G
nS

D
at

aP
ro

ce
ss

G
nS

E
xt

er
na

lE
nt

ity

G
nS

D
at

aS
to

re

σ 1
5

σ 1
7

σ 2
4

σ 2
5

σ 2
6σ 2

1
σ 2

0

σ 1
8

σ 1
6

σ 1
4

σ 2
1

σ 2
3

σ 1
0

σ 8σ 7

σ 6σ 4σ 2

σ 9σ 5σ 3σ 1

σ 1
3

ta
rg

et

so
ur

ce

co
nt

ai
ns

1

G
nS

D
at

aF
lo

w

σ 1
9

G
nS

F
ie

ld
G

nS
F

ie
ld

G
ro

up

σ 2
7

σ 2
8co
nt

ai
ns

2

σ 1
1

σ 1
2

(d
)R

d
(D

a
ta
F
lo
w

,D
F
D
G
&
S
)

(↽
)

Fi
gu

re
E

.2
6:

R
el

at
iv

e
qu

al
it

y
an

al
ys

is
fo

r
R

e
�
R

d

417

Table E.2: Relative quality measurements for the Re � Rd translation

SIG for Re(E -R,ERDMartin) has 17 construct nodes and 9 non-σ edges.

SIG forRf (DataFlow ,DFDG&S) has 21 construct nodes and 4 non-σ edges.
Tagged Tagged Tagged Tagged

source constructs source edges target constructs target edges
Direction # % # % # % # %

Without Re ⇀ Rd 7 41.18 4 44.44 5 23.81 2 50.00
heuristics Rd ⇀ Re 5 23.81 2 50.00 5 29.41 3 33.33

With Re ⇀ Rd 7 41.18 4 44.44 7 33.33 4 100.00
heuristics Rd ⇀ Re 7 33.33 4 100.00 6 35.29 4 44.44

E.3 Re � Rr

E.3.1 Expressive overlap

In Figure E.27 are shown the schema intension graphs for the representations Re(E -R,

ERDMartin) andRr(Relational , SQL/92). Applying the following set of SIG transforma-

tions to the SIG for Rr results in the SIG shown in Figure E.28:

1. Remove the surjectivity annotation from edge contains1.

2. Create new node RMAttribute′ and associated bijective selection edge σ8
′.

3. Create new node RMAttribute′′ and associated bijective selection edge σ8
′′.

4. Move edge contains3 across selection edges σ8
′ and σ8

′′.

5. Remove the surjectivity annotation from selection edge σ8
′.

6. Create new node RMForeignKey′ and associated bijective selection edge σ2
′.

7. Move selection edge σ2 across selection edge σ2
′.

8. Create new node RMRelation′ and associated bijective selection edge σ7
′.

9. Create new node RMRelation′′ and associated bijective selection edge σ7
′′.

10. Create new node RMRelation′′′ and associated bijective selection edge σ7
′′′.

11. Move selection edge σ7 across selection edges σ7
′, σ7

′′ and σ7
′′′.

12. Move edge contains1 across selection edges σ7
′ and σ7

′′.

418

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(a)Re(E -R,ERDMartin)

SQL92PrimaryKey

RMPrimaryKey RMForeignKey

SQL92ForeignKey

RMPrimaryKey + RMForeignKey + RMAlternateKey

RMKey

RMRelationRMAlternateKey

SQL92Table

RMAttribute

SQL92ColumnSQL92Constraint

SQL92NotNull + SQL92Unique + SQL92Predicate

SQL92UniqueSQL92NotNull SQL92Predicate

σ1

σ4σ3 σ5

σ6

σ2 σ7

σ8

σ9

σ11σ10 σ12

identifies

references2

contains1

contains2references1

co
nt

ai
ns

3

contains4

constrains
SQL92Domain

drawn from-s1

contains4-s1

RMDomain
drawn from

σ13

(b)Rr(Relational ,SQL/92)

Figure E.27: SIGs for Re(E -R,ERDMartin) and Rr(Relational , SQL/92)

RMRelation

RMRelation′

σ7′

RMRelation′′

RMRelation′′′

SQL92Table

RMAttribute′′

RMPrimaryKey

SQL92PrimaryKey

RMAttribute′

RMAttribute

SQL92Column

σ7′′′

σ7′′

σ7

σ8′

σ8′′

σ8
σ1

identifies

contains
3

contains
4

RMForeignKey

SQL92ForeignKey

contains1

σ2

RMForeignKey′

σ2′

RMDomain
drawn from

Figure E.28: Transformed SIG for Rr(Relational , SQL/92)

419

13. Remove the totality annotation from selection edge σ7
′′.

14. Remove the functionality annotation from edge contains1.

This transformed SIG corresponds to the subgraphs enclosed by the blue shaded areas

in Figure E.29.

ERTypeItem

EREntityType + ERRelationshipType

σ1

EREntitytype ERRelationshipType

MartinTypeHierarchy + MartinRelationship + MartinAssociativeEntity

ERWeakEntityType + MartinRegularEntity

MartinRelationship MartinAssociativeEntity

MartinRegularEntity

MartinTypehierarchy

ERWeakEntityType

MartinWeakEntity

associates

supertype

subtype

ERAttributeItem

ERIdentifier

MartinIdentifier

ERAttribute
+

ERAttributeGroup

ERAttribute

ERAttributeGroup

MartinAttribute

MartinAttributeGroup

σ4

σ2 σ3

σ5

σ6 σ7

σ9 σ10

σ8

σ16

σ15

σ13

σ14

σ12
σ11

identifies

contains
2

contains
1

contains
3

ERValueType
drawn from

contains1-s1

σ17

(a)Re(E -R,ERDMartin)

SQL92PrimaryKey

RMPrimaryKey RMForeignKey

SQL92ForeignKey

RMPrimaryKey + RMForeignKey + RMAlternateKey

RMKey

RMRelationRMAlternateKey

SQL92Table

RMAttribute

SQL92ColumnSQL92Constraint

SQL92NotNull + SQL92Unique + SQL92Predicate

SQL92UniqueSQL92NotNull SQL92Predicate

σ1

σ4σ3 σ5

σ6

σ2 σ7

σ8

σ9

σ11σ10 σ12

identifies

references2

contains1

contains2references1

co
nt

ai
ns

3

contains4

constrains
SQL92Domain

drawn from-s1

contains4-s1

RMDomain
drawn from

σ13

(b)Rr(Relational ,SQL/92)

Figure E.29: Expressive overlap for Re(E -R,ERDMartin) andRr(Relational , SQL/92)

420

E.3.2 Relative quality

In Figure E.30 on the next page are shown the tagged SIGs for both representations

in both directions of the translation. Blue indicates constructs and edges tagged as

a result of appearing in rules, and green indicates constructs and edges tagged as a

result of appearing in heuristics. The results of the relative quality measurement are

summarised in Table E.3.

Table E.3: Relative quality measurements for the Re � Rr translation

SIG forRe(E -R,ERDMartin) has 17 construct nodes and 9 non-σ edges.

SIG for Rr(Relational ,SQL/92) has 16 construct nodes and 11 non-σ edges.
Tagged Tagged Tagged Tagged

source constructs source edges target constructs target edges
Direction # % # % # % # %

Without Re ⇀ Rr 14 82.35 8 88.89 10 62.50 9 81.82
heuristics Rr ⇀ Re 11 68.75 10 90.91 10 58.82 8 88.89

With Re ⇀ Rr 14 82.35 8 88.89 10 62.50 9 81.82
heuristics Rr ⇀ Re 11 68.75 10 90.91 10 58.82 8 88.89

421

E
R

T
ypeItem

E
R

E
ntityT

ype +
 E

R
R

elationshipT
ype

σ
1

E
R

E
ntitytype

E
R

R
elationshipT

ype

M
artinT

ypeH
ierarchy + M

artinR
elationship +

 M
artinA

ssociativeE
ntity

E
R

W
eakE

ntityT
ype +

 M
artinR

egularE
ntity

M
artinR

elationship
M

artinA
ssociativeE

ntity

M
artinR

egularE
ntity

M
artinT

ypehierarchy

E
R

W
eakE

ntityT
ype

M
artinW

eakE
ntity

associates

supertype

subtype

E
R

A
ttributeItem

E
R

Identifier

M
artinIdentifier

E
R

A
ttribute
+

E
R

A
ttributeG

roup

E
R

A
ttribute

E
R

A
ttributeG

roup

M
artinA

ttribute

M
artinA

ttributeG
roup

σ
4

σ
2

σ
3

σ
5

σ
6

σ
7

σ
9

σ
10

σ
8

σ
16

σ
15

σ
13

σ
14

σ
12

σ
11

identifies

contains2

contains1

contains3

E
R

V
alueT

ype
draw

n from

contains
1 -s

1

σ
17

(a)
R
e (E

-R
,E

R
D
M
a
rtin

)
(⇀

)

S
Q

L92P
rim

aryK
ey

R
M

P
rim

aryK
ey

R
M

F
oreignK

ey

S
Q

L92F
oreignK

ey

R
M

P
rim

aryK
ey +

 R
M

F
oreignK

ey +
 R

M
A

lternateK
ey

R
M

K
ey

R
M

R
elation

R
M

A
lternateK

ey

S
Q

L92T
able

R
M

A
ttribute

S
Q

L92C
olum

n
S

Q
L92C

onstraint

S
Q

L92N
otN

ull +
 S

Q
L92U

nique +
 S

Q
L92P

redicate

S
Q

L92U
nique

S
Q

L92N
otN

ull
S

Q
L92P

redicate

σ
1

σ
4

σ
3

σ
5

σ
6

σ
2

σ
7

σ
8

σ
9

σ
11

σ
10

σ
12

identifies

references
2

contains
1

contains
2

references
1

contains3

contains
4

constrains
S

Q
L92D

om
ain

draw
n from

-s
1

contains
4 -s

1

R
M

D
om

ain
draw

n from

σ
13

(b)
R
r (R

ela
tio

n
a
l,S

Q
L
/
9
2
)

(⇀
)

E
R

T
ypeItem

E
R

E
ntityT

ype +
 E

R
R

elationshipT
ype

σ
1

E
R

E
ntitytype

E
R

R
elationshipT

ype

M
artinT

ypeH
ierarchy + M

artinR
elationship +

 M
artinA

ssociativeE
ntity

E
R

W
eakE

ntityT
ype +

 M
artinR

egularE
ntity

M
artinR

elationship
M

artinA
ssociativeE

ntity

M
artinR

egularE
ntity

M
artinT

ypehierarchy

E
R

W
eakE

ntityT
ype

M
artinW

eakE
ntity

associates

supertype

subtype

E
R

A
ttributeItem

E
R

Identifier

M
artinIdentifier

E
R

A
ttribute
+

E
R

A
ttributeG

roup

E
R

A
ttribute

E
R

A
ttributeG

roup

M
artinA

ttribute

M
artinA

ttributeG
roup

σ
4

σ
2

σ
3

σ
5

σ
6

σ
7

σ
9

σ
10

σ
8

σ
16

σ
15

σ
13

σ
14

σ
12

σ
11

identifies

contains2

contains1

contains3

E
R

V
alueT

ype
draw

n from

contains
1 -s

1

σ
17

(c)
R
e (E

-R
,E

R
D
M
a
rtin

)
(↽

)

S
Q

L92P
rim

aryK
ey

R
M

P
rim

aryK
ey

R
M

F
oreignK

ey

S
Q

L92F
oreignK

ey

R
M

P
rim

aryK
ey +

 R
M

F
oreignK

ey +
 R

M
A

lternateK
ey

R
M

K
ey

R
M

R
elation

R
M

A
lternateK

ey

S
Q

L92T
able

R
M

A
ttribute

S
Q

L92C
olum

n
S

Q
L92C

onstraint

S
Q

L92N
otN

ull +
 S

Q
L92U

nique +
 S

Q
L92P

redicate

S
Q

L92U
nique

S
Q

L92N
otN

ull
S

Q
L92P

redicate

σ
1

σ
4

σ
3

σ
5

σ
6

σ
2

σ
7

σ
8

σ
9

σ
11

σ
10

σ
12

identifies

references
2

contains
1

contains
2

references
1

contains3

contains
4

constrains
S

Q
L92D

om
ain

draw
n from

-s
1

contains
4 -s

1

R
M

D
om

ain
draw

n from

σ
13

(d
)
R
r (D

a
ta
F
lo
w

,S
Q
L
/
9
2
)

(↽
)

Figu
re

E
.30:R

elative
quality

analysis
for
R

e �
R

r

422

Appendix F

VML-S syntax and specifications

F.1 VML-S BNF syntax definition

〈alias id〉 ::= 〈simple id〉

〈alias name〉 ::= 〈alias id〉 [[[〈list id〉 {, 〈list id〉}]]]

〈and op〉 ::= ,

〈attribute id〉 ::= 〈simple id〉

| 〈variable id〉

〈attribute name〉 ::= (〈class name〉 | 〈alias name〉) . (〈attribute ref〉 | SELF)

〈attribute ref〉 ::= 〈attribute spec〉 [〈attribute ref tail〉]

〈attribute ref tail〉 ::= =>(〈expression〉)

| => 〈attribute spec〉 [〈attribute ref tail〉]

〈attribute spec〉 ::= 〈attribute id〉 [[[〈list id〉 {, 〈list id〉}]]]

〈attribute value〉 ::= [[〈model id〉:] 〈class id〉.] 〈attribute ref〉

| 〈variable id〉

〈class id〉 ::= 〈simple id〉

〈class list〉 ::= [[〈class list name〉 {, 〈class list name〉}]]

〈class list name〉 ::= group(〈class name〉) [〈alias name〉]

| 〈class name〉 [〈alias name〉]

〈class name〉 ::= ([〈model id〉:] 〈class id〉 | 〈variable id〉)

[[[〈list id〉 {, 〈list id〉}]]]

〈constant values〉 ::= pi

| 〈atom literal〉

| 〈integer literal〉

| 〈real literal〉

| 〈string literal〉

| 〈boolean literal〉

〈direction〉 ::= direction(〈dir map op〉)

423

〈equivalences def〉 ::= equivalences(〈equivalent〉 {, 〈equivalent〉})

〈equivalent〉 ::= 〈expression〉 〈map op〉 〈expression〉

| map_to_from(〈predicate〉, 〈predicate〉)

| [〈dir map op〉] 〈bijection〉

| [〈dir map op〉] 〈predicate〉

〈excludes〉 ::= excludes(〈inter class id〉 [〈dir map op〉]

{, 〈inter class id〉 [〈dir map op〉] })

〈expression〉 ::= 〈term〉 {〈add like op〉 〈term〉}

〈factor〉 ::= 〈simple factor〉 {ˆ 〈simple factor〉}

〈function〉 ::= 〈function 1 arg〉

| 〈function 2 arg〉

〈function 1 arg〉 ::= 〈1 arg〉 〈predicate expr〉)

〈function 2 arg〉 ::= 〈2 arg〉 〈predicate expr〉, 〈predicate expr〉)

〈group expression〉 ::= (〈expression〉 {, 〈expression〉})

〈inherits〉 ::= inherits(〈inherit list〉)

〈inherit list〉 ::= 〈inherit map〉 {, 〈inherit map〉}

〈inherit map〉 ::= inter_class(〈class list〉, 〈class list〉)

::= | 〈inter class id〉

〈initialiser〉 ::= 〈expression〉= 〈expression〉

| 〈method〉

| 〈predicate〉

〈initialisers def〉 ::= initialisers(〈initialiser〉 {, 〈initialiser〉})

〈inter class def〉 ::= inter_class(〈class list〉, 〈class list〉

[, 〈label〉] [, 〈inherits〉] [, 〈direction〉]

[, 〈excludes〉] [, 〈invariants def〉]

[, 〈equivalences def〉] [, 〈initialisers def〉]).

〈inter class id〉 ::= 〈simple id〉

〈inter view def〉 ::= inter_view(〈model id〉, 〈model type〉,

〈model id〉, 〈model type〉, 〈map type〉).

〈invariants def〉 ::= invariants(〈invariant expr〉 {〈or op〉 〈invariant expr〉})

〈invariant expr〉 ::= 〈invariant simple expr〉 {〈and op〉 〈invariant simple expr〉}

〈invariant simple expr〉 ::= (〈invariant expr〉 {〈or op〉 〈invariant expr〉})

| 〈expression〉 〈rel op〉 〈expression〉

| 〈predicate〉

| 〈function〉

| 〈method〉

| group(〈attribute name〉 {, 〈attribute name〉})

〈bijection〉 ::= bijection(〈bijection expr〉, 〈bijection expr〉)

〈bijection expr〉 ::= 〈class name〉

| 〈attribute name〉

| 〈invariant simple expr〉

424

〈label〉 ::= label(〈inter class id〉)

〈list expression〉 ::= [〈expression〉 {, 〈expression〉}]

〈list id〉 ::= 〈integer literal〉

| 〈attribute value〉

〈mapping〉 ::= 〈inter view def〉 {〈inter class def〉}

〈map type〉 ::= complete

| partial

〈method〉 ::= 〈method head〉@ 〈method tail〉

〈method head〉 ::= [[〈model id〉:] 〈class id〉.] 〈method attribute ref〉

| [〈model id〉:] 〈class id〉

| ε

〈method tail〉 ::= 〈method id〉

| 〈predicate〉

〈method attribute ref〉 ::= 〈attribute spec〉 [〈method attribute ref tail〉]

〈method attribute ref tail〉 ::= => 〈attribute spec〉 [〈method attribute ref tail〉]

〈method id〉 ::= 〈simple id〉

〈model id〉 ::= 〈simple id〉 [{ 〈version〉}]

〈model type〉 ::= integrated

| read_only

| read_write

〈or op〉 ::= ;

〈predicate〉 ::= 〈predicate id〉(〈predicate expr〉 {, 〈predicate expr〉})

〈predicate expr〉 ::= [〈predicate expr〉 {, 〈predicate expr〉}]

| 〈expression〉

〈predicate id〉 ::= 〈simple id〉

〈simple factor〉 ::= 〈group expression〉

| 〈list expression〉

| 〈function〉

| 〈predicate〉

| 〈attribute name〉

| 〈method〉

| 〈constant values〉

〈term〉 ::= 〈factor〉 {〈multiplication like op〉 〈factor〉}

〈version〉 ::= 〈integer literal〉 〈real literal〉

| 〈atom literal〉

| 〈string literal〉

〈1 arg〉 ::= abs(| average(| cos(| cos_1(| count(

| deg_rad(| exp(| int(| ln(| maximum(

| minimum(| rad_deg(| sign(| sin(| sin_1(

| sqr(| sqrt(| sum(| tan(| tan_1(

〈2 arg〉 ::= pwr(| pwr_1(

425

〈add like op〉 ::= + | -

〈atom literal〉 ::= \q {〈atom literal char〉}\q

〈atom literal char〉 ::= 〈character〉 | | "

〈boolean literal〉 ::= false

| true

〈character〉 ::= 〈digit〉

| 〈letter〉

| 〈special〉

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈digits〉 ::= 〈digit〉 {〈digit〉}

〈dir map op〉 ::= =>> | <<= | <=>

〈embedded remark〉 ::= /* {〈embedded remark el〉}*/

〈embedded remark el〉 ::= 〈not lparen star〉

| 〈lparen not star〉

| 〈star not rparen〉

| 〈embedded remark〉

〈integer literal〉 ::= 〈digits〉

〈letter〉 ::= 〈lower case〉

| 〈upper case〉

〈logical literal〉 ::= false

| true

〈lower case〉 ::= a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z

〈lparen not star〉 ::= / 〈not star〉

〈map op〉 ::= = | 〈dir map op〉

〈multiplication like op〉 ::= * | // | / | mod

〈not lparen star〉 ::= 〈not paren star〉 |)

〈not paren star〉 ::= 〈letter〉

| 〈digit〉

| 〈not paren star special〉

〈not paren star special〉 ::= ! | @ | # | $ | % | ˆ | & | _ | (|)

| - | + | = | { | } | [|] | ˜ | : | ;

| ’ | < | > | , | . | | \t | \n | ? | /

| | | \

〈not rparen〉 ::= 〈not paren star〉 | *

〈not star〉 ::= 〈not paren star〉

〈real literal〉 ::= 〈digits〉. [〈digits〉] (e | E) [〈sign〉] 〈digits〉

〈rel op〉 ::= <= | >= | <> | < | > | = | =\= | =:=

〈remark〉 ::= 〈embedded remark〉

| 〈tail remark〉

426

〈sign〉 ::= + | -

〈simple id〉 ::= 〈lower case〉 {〈simple id char〉}

〈simple id char〉 ::= 〈letter〉 | 〈digit〉 | _

〈special〉 ::= 〈not paren star special〉 | * | /

〈star not rparen〉 ::= * 〈not rparen〉

〈string literal〉 ::= " {〈string literal char〉}"

〈string literal char〉 ::= 〈character〉 | | \q

〈tail remark〉 ::= % {〈tail remark char〉}\n

〈tail remark char〉 ::= 〈character〉 |

〈upper case〉 ::= A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z

〈variable id〉 ::= 〈upper case〉 {〈simple id char〉}

| _ (〈letter〉 | 〈digit〉) {〈simple id char〉}

〈whitespace〉 ::= {〈whitespace char〉}

〈whitespace char〉 ::= | \n | \t | 〈remark〉

F.2 Example of a complete VML-S translation

In this section, the translation Rf (FuncDep,FDDSmith) ↽ Re(E -R,ERDMartin) will be

demonstrated using the source descriptionD1(Vagri ,E -R,ERDMartin) of the agricultural

viewpoint (see Figure C.8 on page 367). This description comprises the following ele-

ments:

• MARTINREGULARENTITY elements Contract, Client, Staff, Experiment, Grass,

Fertiliser, Paddock, Sheep and Breed.

• One MARTINIDENTIFIER element for each of these regular entities (ContractID,

ClientID, . . . , BreedID).

• A large number of MARTINATTRIBUTE elements, including:

– client id, name, address and category in Client; and

– breed name, details and flock size in Sheep.

The remainder are not listed here for brevity.

• Two embedded MARTINWEAKENTITY elements, representing repeating groups:

427

– Paddock detail, embedded within Experiment, with no explicit attributes

and no identifier; and

– Sheep detail, embedded within Paddock detail, containing attributes fin-

ish weight and start weight, and with no identifier.

• The eight MARTINRELATIONSHIP elements from Figure C.8 on page 367 (compri-

ses, signs, . . . , flock), with the following modifications:

– the applied, sown and used relationships connect to the embedded weak

entity Paddock detail; and

– the tested relationship connects to the embedded weak entity Sheep detail.

The embedded weak entities mean that the Experiment entity has a complex in-

ternal structure, as shown in Figure F.1. The dashed relationship lines correspond to

the relationships as they would appear normally, that is, when the diagram is not ‘ex-

ploded’ (Figure C.8 on page 367). The thick gray relationship lines represent the im-

plicit dependent relationship between an embedded weak entity and the entity that

contains it. It is assumed here that these are automatically generated by the modelling

environment when an embedded weak entity is created. The attributes in italics are

implied by the attached relationships.

The translation process described in Chapters 4 and 7 takes the approach of iter-

ating through all elements of a description, and attempting to find rules which may

be applied to each element. This process, which was described in Algorithm 7.1 on

page 204, will now be demonstrated. Suppose the first element chosen for translation

is the regular entity Sheep. The rules for this translation (summarised in Table 5.4 on

page 136) are examined to find all rules that meet the following two conditions:

1. they include the MARTINREGULARENTITY construct or one of its generalisations

among their source constructs; and

2. they appear in the subsumption/exclusion graph for the reverse direction (see

Figure 5.20 on page 139).

Applying these two conditions gives the following list of potentially applicable rules:

{S1, S2, S4, S7, S8, S9, S10, S11, S12, S13}. The subsumption/exclusion graph is again

428

ClientContract

Experiment

Fertiliser

Grass

Paddock

Sheep Breed

Staff

PADDOCK_ID
FERTILISER_ID
GRASS_ID

SHEEP_ID
START_WEIGHT
FINISH_WEIGHT

EXPERIMENT_ID
…

runs

signs

sown

applied

used

flock

tested

dep1

comprises

dep2

Figure F.1: Complex internal structure of the Experiment entity

consulted to determine an appropriate order for evaluating these rules, which is: {S2,

S1, S4, S7, S8, S9, S10, S11, S12, S13}.

Next, the translation algorithm iterates through this list of rules, calling INITIALE-

LEMENTGROUPS (Algorithm 7.4 on page 209) for each rule in turn. The result of this al-

gorithm is an initial list of elements for the rule, using Sheep as the key element; these

lists are shown for each rule in Table F.1 on the next page. The lists are then passed to

GENERATECOMBINATIONS (Algorithm 7.5 on page 210), which tests the invariants of

the rule against the initial list of elements, producing the filtered element combinations

shown in Table F.2 on the next page. The complete combination generation process for

rule S12 is shown in Table F.3 on page 431. If the set of filtered element combinations

for a rule is non-empty, the rule is applied to each combination of elements in the set,

resulting in the generation of appropriate target elements. Thus, rule S1 is applied to

the Sheep element, and rule S12 is applied to the collection of elements {Sheep, Breed,

flock} to produce the target elements are shown on the next page in Figure F.2(b). The

key element (Sheep) is shown in bold in Figure F.2(a).

429

Table F.1: Initial element lists for the Sheep entity

Rule(s) Element lists
S2 {{Sheep}, {ContractID, ClientID, . . . , BreedID}}
S1 {{Sheep}}
S4 {{Sheep}}

S7–S10 {{Paddock detail, Sheep detail}, {signs, runs, . . . , flock}, {Sheep}}
S11–S13 {{signs, runs, . . . , flock}, {{{Sheep, Sheep}, {Sheep, Contract}, . . . ,

{Paddock, Sheep}, {Breed, Sheep}}}}

Table F.2: Filtered element combinations for the Sheep entity

Rule(s) Element combinations
S2 {}
S1 {{Sheep}}
S4 {}

S7–S10 {}
S11 {}
S12 {{flock, {{Breed, Sheep}}}}
S13 {}

Suppose the next element chosen for translation is the embedded weak entity Pad-

dock detail. Five rules may potentially be applied to this element: {S7, S8, S9, S10}. The

initial element lists for each of these rules are identical: {{Paddock detail}, {signs, runs,

comprises, applied, sown, used, tested, flock, dep1, dep2}, {Client, Contract, Staff,

Paddock, Grass, Fertiliser, Experiment, Sheep, Breed, Paddock detail, Sheep detail}}.

Passing these to GENERATECOMBINATIONS produces empty element combinations

for rules S7–S9, and the filtered element combination {{Paddock detail, dep1, Exper-

iment}} for rule S10. As a result, only rule S10 can be applied, producing the new

DOB + GENDER
+ HEALTH

SHEEP_ID

BREED_NAME

BREED_NAME,
DETAILS,

FLOCK_SIZE

SHEEP_ID,
DOB, HEALTH,

GENDER

Breed

Sheep

flock

DETAILS +
FLOCK_SIZE

(a) Source element
combinations

(b) Generated target elements

rule S1

rule S12

Figure F.2: Translating elements associated with the Sheep element

430

Table F.3: Generating element combinations for rule S12

Rule S12, key element Sheep.

Rule header:
[sssinglekeybubble[2], sssinglevalued[2], sstargetbubble[2]], [martinrelationship, erentitytype[2]]

Invariants (‘native’ and inherited):
martinrelationship.srcCard = 1
martinrelationship.dstCard > 1
martinrelationship.source = ertypeitem[1]
martinrelationship.target = ertypeitem[2]
\+ertypeitem[]@class(’martinweakentity’)
subset(sssinglekeybubble[2].attributes, sstargetbubble[1].attributes)
member(erentitytype[1], errelationshiptype.entities[])
member(erentitytype[2], errelationshiptype.entities[])
member(errelationshiptype, erentitytype[1].relationships)
member(errelationshiptype, erentitytype[2].relationships)
count(errelationshiptype.attributes[]) = 0
fdfunctionalsource[1].dependency = fdfunctional[1]
fdfunctionaltarget[1].dependency = fdfunctional[1]
fdfunctional[1].source = fdfunctionalsource[1]
fdfunctional[1].destination = fdfunctionaltarget[1]
fdfunctionalsource[2].dependency = fdfunctional[2]
fdfunctionaltarget[2].dependency = fdfunctional[2]
fdfunctional[2].source = fdfunctionalsource[2]
fdfunctional[2].destination = fdfunctionaltarget[2]

Initial element groups: {{{{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Sheep detail}, {Sheep detail, Sheep}, {Sheep, Pad-
dock detail}, {Paddock detail, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock,
Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client,
Sheep}}}, {signs, runs, comprises, applied, sown, used, tested, flock, dep1, dep2}}

R = {}
First element set: {{{Sheep, Sheep}, {Sheep, Breed}, . . . , {Sheep, Client}, {Client, Sheep}}}
Invariants relating purely to ERTYPEITEM elements or generalisations thereof:
\+ertypeitem[]@class(’martinweakentity’)

Applied to first element set: R = {{{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fertiliser},
{Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep}, {Sheep,
Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}

Invariants relating to all constructs in R:
\+ertypeitem[]@class(’martinweakentity’)

Applied to R results in no change to R.

Second element set: {signs, runs, comprises, applied, sown, used, tested, flock}
Invariants relating purely to MARTINRELATIONSHIP elements or generalisations thereof:
martinrelationship.srcCard = 1
martinrelationship.dstCard > 1
count(errelationshiptype.attributes[]) = 0

Applied to second element set results in no change to second set.
Combine second element set with R: R = {{signs, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep,
Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep},
{Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}, {runs, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep,
Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep},
{Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}, {comprises, {{Sheep, Sheep}, {Sheep,
Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep,
Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}},
{applied, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep,
Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep},
{Sheep, Client}, {Client, Sheep}}}, {sown, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fer-
tiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep},
{Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}, {used, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep,
Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep},
{Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}, {tested, {{Sheep, Sheep}, {Sheep,
Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep,
Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}},
{flock, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep,
Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep},
{Sheep, Client}, {Client, Sheep}}}, {dep1, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep, Grass}, {Grass, Sheep}, {Sheep, Fer-
tiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep}, {Sheep, Staff}, {Staff, Sheep},
{Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}, {dep2, {{Sheep, Sheep}, {Sheep, Breed}, {Breed, Sheep}, {Sheep,
Grass}, {Grass, Sheep}, {Sheep, Fertiliser}, {Fertiliser, Sheep}, {Sheep, Paddock}, {Paddock, Sheep}, {Sheep, Experiment}, {Experiment, Sheep},
{Sheep, Staff}, {Staff, Sheep}, {Sheep, Contract}, {Contract, Sheep}, {Sheep, Client}, {Client, Sheep}}}}

Invariants relating to all constructs in R:
martinrelationship.source = ertypeitem[1]
martinrelationship.target = ertypeitem[2]
member(erentitytype[1], errelationshiptype.entities[])
member(erentitytype[2], errelationshiptype.entities[])
member(errelationshiptype, erentitytype[1].relationships)
member(errelationshiptype, erentitytype[2].relationships)

Applied to R gives: R = {{flock, {{Breed, Sheep}}}}

431

target elements indicated in Figure F.3(b). The existing elements created by previous

mapping are drawn in gray, while the newly created elements are drawn in black. The

dashed elements in Figure F.3(a) provide important information to rule S10, but are not

explicitly mentioned in the rule header, and therefore do not form part of the source

element combination.

SHEEP_ID

BREED_NAME

EXPERIMENT_ID
FINISH_DATE,
START_DATE

Experiment

Paddock_detail

dep1

DETAILS +
FLOCK_SIZE

(a) Source element combinations

(b) Generated target elements

PADDOCK_ID,
ADDRESS,
AREA, …

FERTILISER_ID,
NAME,

SUPPLIER

GRASS_ID,
NAME

Paddock

Fertiliser

Grass

sown

applied

used

EXPERIMENT_ID +
PADDOCK_ID +

FERTILISER_ID +
GRASS_ID

DOB + GENDER
+ HEALTH

rule S10

Figure F.3: Translating elements associated with the Paddock detail element

From this point, the translation might proceed as follows:

1. The MARTINRELATIONSHIP element runs is chosen, to which the rules S7–S13

may potentially be applied. Further processing produces the filtered element

combination {{{Staff, Experiment}, runs}} for rule S12 and empty sets for all the

other rules. Rule S12 is applied as shown in Figure F.4.

2. The MARTINRELATIONSHIP element flock is chosen, which can be treated simi-

larly to the runs element above. When rule S12 is applied to the source element

combination {{{Breed, Sheep}, flock}}, it is found that the appropriate target

elements already exist, so these are re-used instead of generating new elements,

as shown in Figure F.4.

3. The MARTINIDENTIFIER element EXPERIMENT ID is mapped by rule S3 to a

SSSINGLEKEYBUBBLE element, as shown in Figure F.4.

432

DOB + GENDER
+ HEALTH

SHEEP_ID

BREED_NAME

Staff

Experiment PADDOCK_ID +
FERTILISER_ID +

GRASS_ID

runs

DETAILS +
FLOCK_SIZE

Breed

Sheep

flock

STAFF_ID,
NAME, DOB,
GENDER, …

EXPERIMENT_ID
FINISH_DATE,
START_DATE

BREED_NAME,
DETAILS,

FLOCK_SIZE

SHEEP_ID,
DOB, HEALTH,

GENDER
EXPERIMENT_ID

FINISH_DATE +
START_DATE

STAFF_ID

NAME + DOB +
GENDER + TITLE +

ADDRESS +
SALARY

rule S3

rule S12

rule S12

Figure F.4: Further mappings in the example translation: I

4. The MARTINREGULARENTITY element Contract can be mapped by rule S1, with

the element combination {{Contract}}, and by rule S12, with the element com-

binations {{Client, signs, Contract}, {Contract, comprises, Experiment}}. This is

shown in Figure F.5.

5. The MARTINATTRIBUTE element SUPPLIER is mapped by rule S5 to the SSAT-

TRIBUTE element SUPPLIER, as shown in Figure F.5.

6. The embedded weak entity Sheep detail is mapped by rule S8 to an appropriate

collection of target elements, as shown in Figure F.5.

DOB + GENDER
+ HEALTH

SHEEP_ID

BREED_NAME

Sheep

Sheep_detail PADDOCK_ID +
FERTILISER_ID +

GRASS_ID

runs DETAILS +
FLOCK_SIZE

Contract

Experiment

SHEEP_ID,
DOB, HEALTH,

GENDER

START_WEIGHT
FINISH_WEIGHT

CONTRACT_ID,
DETAILS, FEE,

GST, …

EXPERIMENT_ID
FINISH_DATE,
START_DATE

EXPERIMENT_ID

FINISH_DATE +
START_DATE

DETAILS + FEE +
GST + SIGN_DATE +

FINISH_DATE

CONTRACT_ID

Client
CONTRACT_ID,
DETAILS, FEE,

GST, …

signs

comprises

CLIENT_ID
NAME +

ADDRESS +
CATEGORY

START_WEIGHT +
FINISH_WEIGHT

NAME + DOB +
GENDER + TITLE +

ADDRESS +
SALARY

STAFF_ID

SUPPLIERSUPPLIER

rule S1

rule S5

rule S8

rule S12

rule S12

Figure F.5: Further mappings in the example translation: II

The remaining mappings are similar to those detailed above. All of the mappings in

this example are summarised in Table F.4 on the following page. The final description

produced by the translation is shown in Figure F.6 on the next page.

433

Table F.4: Summary of mappings in the example translation

CONSTRUCT Elements Rule(s) applied
MARTINATTRIBUTE staff id, name, address, . . . , start weight S5
MARTINRELATIONSHIP signs, comprises, runs, flock S12/S12a

dep1 (applied, sown, used)b S10
dep2 (tested)b S8

MARTINREGULARENTITY Client, Contract, Staff, Sheep, Breed S1, S12/S12a

Fertiliser, Grass, Paddock S1
Experiment S1, S10, S12/S12

MARTINWEAKENTITY Paddock detail S10, S8
Sheep detail S8

MARTINIDENTIFIER ClientID, StaffID, . . . , BreedID S3

Notes on Table F.4:
a Which rule is applied depends on the ‘orientation’ of the relationship.
b The relationships in parentheses implicitly take part in the rule, but are not explicitly

mentioned in the rule header.

FERTILISER_ID
NAME + SUPPLIER

GRASS_ID NAME

DOB +
GENDER +

HEALTH

BREED_NAME

DETAILS +
FLOCK_SIZE

PADDOCK_ID

EXPERIMENT_ID

ADDRESS + AREA +
MOISTURE + SUNSHINE

START_DATE

FINISH_DATE

NAME + ADDRESS +
CATEGORY

FEE

DETAILS

CLIENT_IDGST

FINISH_DATE

SIGN_DATE

CONTRACT_ID

SHEEP_ID

START_WEIGHT +
FINISH_WEIGHTSTAFF_ID

NAME + ADDRESS +
GENDER + DOB +
TITLE + SALARY

Figure F.6: Final FDD description produced by the example translation

It is interesting to compare the FDD in Figure F.6 with the manually-created FDD

shown in Figure C.8 on page 367. The main difference is in the structures that rep-

resent the repeating groups. In the ‘manual’ FDD, the attributes FERTILISER ID and

GRASS ID are in the target bubble of the single-key bubble containing PADDOCK ID

and EXPERIMENT ID, whereas in the generated FDD, all of these attributes are con-

tained within a single isolated bubble. This is probably because the translation does

not ‘know’ the exact semantics of the repeating groups. Such knowledge would be

difficult to encode within the translation because it would change for each case.

434

F.3 Full VML-S translation specifications

F.3.1 Re(E -R,ERDMartin)� Rr(Relational , SQL/92)
inter_view(er_martinerd, read_write, relational_sql92, read_write, partial).

/* Technique-level rules */
/* T1: EREntity <=> RMRelation */
inter_class
([erentitytype], [rmrelation],
label (t1_entity_relation),
invariants
(\+erentitytype.attributes[]@class(’erattributegroup’),

erentitytype.attributes[]=>repeating = false,
\+erentitytype@class(’erweakentitytype’)

),
equivalences
(erentitytype.name = rmrelation.name,

erentitytype.identifier = rmrelation.primaryKey,
erentitytype.attributes[] = rmrelation.attributes[]

)
).

/* T2: ERRelationshipType =>> RMRelation */
inter_class
([errelationshiptype], [rmrelation],
label (t2_relationship_relation),
direction (=>>),
invariants
(count(errelationshiptype.attributes[]) > 0,

errelationshiptype.attributes[]=>repeating = false,
\+errelationshiptype.attributes[]@class(’erattributegroup’)

),
equivalences
(errelationshiptype.name = rmrelation.name,

errelationshiptype.attributes[] = rmrelation.attributes[],
errelationshiptype.identifier = rmrelation.identifier

)
).

/* T3: ERAttribute <=> RMAttribute */
inter_class
([erattribute], [rmattribute],
label (t3_attribute_attribute),
invariants
(erattribute.repeating = false),
equivalences
(erattribute.name = rmattribute.name,

erattribute.valueType = rmattribute.domain,
erattribute.containingItem = rmattribute.relation,
bijection(erattribute.identifier, rmattribute.keys[]@class(’rmprimarykey’))

)
).

/* T4: ERIdentifier <=> RMPrimaryKey */
inter_class
inter_class
([eridentifier], [rmprimarykey],
label (t4_id_pk),
invariants
(eridentifier.partial = false),
equivalences
(eridentifier.name = rmprimarykey.name,

eridentifier.identifiedItem = rmprimarykey.relation,
eridentifier.attributes[] = rmprimarykey.attributes[]

)
).

/* T5: ERWeakEntityType + EREntityType + ERRelationshipType =>> RMRelation + RMPrimaryKey */
inter_class
([erweakentitytype, erentitytype, errelationshiptype], [rmrelation, rmprimarykey],
label (t5_weak_relation),
direction (=>>),
invariants
((errelationshiptype.id_dependent = true;

errelationshiptype.existence_dependent = true
),
\+erweakentitytype.attributes[]@class(’erattributegroup’),
erweakentitytype.attributes[]=>repeating = false
\+erentitytype.attributes[]@class(’erattributegroup’),
erentitytype.attributes[]=>repeating = false,
\+errelationshiptype.attributes[]@class(’erattributegroup’),
errelationshiptype.attributes[]=>repeating = false,
erweakentitytype.dependentVia = errelationshiptype,
member(errelationshiptype, erweakentitytype.relationships),
member(errelationshiptype, erentitytype.relationships),
member(erentitytype, errelationshiptype.entities),

435

member(erweakentitytype, errelationshiptype.entities),
rmrelation.primaryKey = rmprimarykey,
rmprimarykey.relation = rmrelation

),
equivalences
(erweakentitytype.name = rmrelation.name,

erweakentitytype.attributes[] = rmrelation.attributes[],
build_weak_pk(erentitytype, erweakentitytype, [], rmprimaryKey)

)
).

/* T6: ERIdentifier <<= RMAlternateKey */
inter_class
([eridentifier], [rmalternatekey],

label (t6_id_ak),
direction (<<=),
invariants
(eridentifier.partial = false),
equivalences
(eridentifier.name = rmalternatekey.name,

eridentifier.identifiedItem = rmalternatekey.relation,
eridentifier.attributes[] = rmalternatekey.attributes[]

)
).

/* T7: ERValueType <=> RMDomain */
inter_class
([ervaluetype], [rmdomain],

label (t7_valuetype_domain),
equivalences
(ervaluetype.name = rmdomain.name,

ervaluetype.datatype = rmdomain.datatype,
ervaluetype.size = rmdomain.size,
ervaluetype.dp = rmdomain.dp,
ervaluetype.attributes[] = rmdomain.attributes[]

)
).

/* Scheme-level rules */

/* S1: MartinRegularEntity <=> SQL92Table */
inter_class
([martinregularentity], [sql92table],

label (s1_regular_table),
inherits (t1_entity_relation),
invariants
(count(martinregularentity.embeddedEntities[]) = 0)

).

/* S2: MartinAssociativeEntity =>> SQL92Table */
inter_class
([martinassociativeentity], [sql92table],

label (s2_assoc_table),
inherits(t2_relationship_relation),
direction (=>>),
invariants
(count(martinassociativeentity.embeddedEntities[]) = 0)

).

/* S3: MartinAttribute <=> SQL92Column */
inter_class
([martinattribute], [sql92column],

label (s3_attr_column),
inherits (t3_attribute_attribute)

).

/* S4: MartinIdentifier <=> SQL92PrimaryKey */
inter_class
([martinidentifier], [sql92primarykey],

label (s4_id_pk),
inherits (t4_id_pk)

).

/* Common definitions for one-to-one relationship rules. */
inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey[2]],

label (relationship_11_base),
invariants
(martinrelationship.srcCard = 1,

martinrelationship.dstCard = 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
sql92foreignkey[1].refTable = sql92foreignkey[2].relation,
sql92foreignkey[2].refTable = sql92foreignkey[1].relation,
sql92foreignkey[1].refPK = sql92foreignkey[2].relation=>primaryKey,
sql92foreignkey[2].refPK = sql92foreignkey[1].relation=>primaryKey,
sql92foreignkey[1].columns[] = sql92foreignkey[2].relation=>primaryKey=>columns[],
sql92foreignkey[2].columns[] = sql92foreignkey[1].relation=>primaryKey=>columns[]

),

436

equivalences
(=>> append(’_fk’, ertypeitem[2].name, sql92foreignkey[1].name),

=>> append(’_fk’, ertypeitem[1].name, sql92foreignkey[2].name),
=>> combine_attr(ertypeitem[1], ertypeitem[2].identifier, sql92foreignkey[2].relation),
=>> combine_attr(ertypeitem[2], ertypeitem[1].identifier, sql92foreignkey[1].relation)

),
initialisers
(<<= append(ertypeitem[2].name, ertypeitem[1].name, martinrelationship.name))

).

/* Common definitions for one-to-many relationship rules. */
inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey],
label (relationship_1N_base),
invariants
(martinrelationship.source = ertypeitem[1],

martinrelationship.target = ertypeitem[2],
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1

),
equivalences
(martinrelationship.name = sql92foreignkey.name,

=>> combine_attr(ertypeitem[2], ertypeitem[1].identifier, sql92foreignkey.relation),
ertypeitem[1] = sql92foreignkey.refTable,
ertypeitem[1].identifier = sql92foreignkey.refPK,
ertypeitem[1].identifier=>attributes[] = sql92foreignkey.attributes[]

),
initialisers
(martinrelationship.dstOpt = 0,

martinrelationship.dstCard = 2
)

).

/* Common definitions for many-to-one relationship rules. */
inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey],
label (relationship_M1_base),
direction (=>>),
invariants
(martinrelationship.source = ertypeitem[1],

martinrelationship.target = ertypeitem[2],
martinrelationship.srcCard > 1,
martinrelationship.dstCard = 1

),
equivalences
(martinrelationship.name = sql92foreignkey.name,

=>> combine_attr(ertypeitem[1], ertypeitem[2].identifier, sql92foreignkey.relation),
ertypeitem[2] = sql92foreignkey.refTable,
ertypeitem[2].identifier = sql92foreignkey.refPK,
ertypeitem[2].identifier=>attributes[] = sql92foreignkey.attributes[]

),
initialisers
(martinrelationship.srcOpt = 0,

martinrelationship.srcCard = 2
)

).

/* S5: MartinRelationship + ERTypeItem (1:1) + ERTypeItem (*:N) <=>
* SQL92ForeignKey + SQL92NotNull
*/

inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey, sql92notnull],
label (s5_rel_11xN),
inherits (relationship_1N_base),
excludes (s10_rel_01xN <<=),
invariants
(martinrelationship.srcOpt = 1,

sql92foreignkey.columns[] = sql92notnull.columns[]
)

).

/* S6: MartinRelationship + ERTypeItem (1:1) + ERTypeItem (1:1) <=>
* 2 SQL92ForeignKey + 2 SQL92Unique + 2 SQL92NotNull
*/

inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey[2], sql92unique[2], sql92notnull[2]],
label (s6_rel_1111),
inherits (relationship_11_base),
excludes (h1_id_unique <<=, s5_rel_11xN <<=, s7_rel_0111 <<=,

s9_typehierarchy_fk <<=, s10_rel_01xN <<=, s12_rel_0101 <<=),
invariants
(martinrelationship.srcOpt = 1,

martinrelationship.dstOpt = 1,
sql92foreignkey[1].columns[] = sql92unique[1].columns[],
sql92foreignkey[2].columns[] = sql92unique[2].columns[],
sql92foreignkey[1].columns[] = sql92notnull[1].columns[],
sql92foreignkey[2].columns[] = sql92notnull[2].columns[]

)
).

437

/* S7: MartinRelationship + ERTypeItem(0:1) + ERTypeItem(1:1) <=>
* 2 SQL92ForeignKey + 2 SQL92Unique + SQL92NotNull
*/

inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey[2], sql92unique[2], sql92notnull],

label (s7_rel_0111),
inherits (relationship_11_base),
excludes (h1_id_unique <<=, s5_rel_11xN <<=, s9_typehierarchy_fk <<=,

s10_rel_01xN <<=, s12_rel_0101 <<=),
invariants
(martinrelationship.srcOpt = 0,

martinrelationship.dstOpt = 1,
sql92foreignkey[1].columns[] = sql92unique[1].columns[],
sql92foreignkey[2].columns[] = sql92unique[2].columns[],
sql92foreignkey[1].columns[] = sql92notnull.columns[]

)
).

/* S8: MartinRelationship + ERTypeItem (*:M) + ERTypeItem (*:N) <=>
* SQL92Table + SQL92PrimaryKey + 2 SQL92ForeignKey
*/

inter_class
([martinrelationship, ertypeitem[2]], [sql92table, sql92primarykey, sql92foreignkey[2]],

label (s8_rel_xMxN),
excludes (s1_regular_table <<=, s4_id_pk <<=, s10_rel_01xN <<=),
invariants
(martinrelationship.srcCard > 1,

martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
sql92table.primaryKey = sql92primarykey,
sql92table.attributes[] = sql92primarykey.attributes[],
member(sql92foreignkey[], sql92table.foreignKeys),
sql92foreignkey[].relation = sql92table,
append(sql92foreignkey[2].columns, sql92foreignkey[1].columns, sql92primarykey.attributes)

),
equivalences
(martinrelationship.name = sql92table.name,

=>> append(’_fk’, ertypeitem[1].name, sql92foreignkey[1].name),
=>> append(’_fk’, ertypeitem[2].name, sql92foreignkey[2].name),
=>> combine_attr(ertypeitem[1].identifier, ertypeitem[2].identifier, sql92table),
ertypeitem[1] = sql92foreignkey[1].refTable,
ertypeitem[2] = sql92foreignkey[2].refTable,
ertypeitem[1].identifier = sql92foreignkey[1].refPK,
ertypeitem[2].identifier = sql92foreignkey[2].refPK,
ertypeitem[1].identifier=>attributes[] = sql92foreignkey[1].columns[],
ertypeitem[2].identifier=>attributes[] = sql92foreignkey[2].columns[]

),
initialisers
(martinrelationship.srcCard = 2,

martinrelationship.dstCard = 2,
martinrelationship.srcOpt = 0,
martinrelationship.dstOpt = 0

)
).

/* S9: MartinTypeHierarchy + 2 MartinRegularEntity =>> SQL92ForeignKey + SQL92Unique + SQL92NotNull
*/

inter_class
([martintypehierarchy, martinidentifier, martinregularentity parent, martinregularentity child],

[sql92foreignkey, sql92unique, sql92notnull],
label (s9_typehierarchy_fk),
excludes (h1_id_unique <<=, s5_rel_11xN <<=, s10_rel_01xN <<=),
invariants
(parent.subtypes = martintypehierarchy,

martintypehierarchy.supertype = parent,
member(child, martintypehierarchy.subtypes),
child.supertype = martintypehierarchy,
parent.identifier = martinidentifier,
martinidentifier.entity = parent,
sql92foreignkey.attributes = sql92unique.columns,
sql92foreignkey.attributes = sql92notnull.columns

),
equivalences
(=>> append(’_fk’, child.name, sql92foreignkey.name),

=>> combine_attr(child, martinidentifier, sql92foreignkey.relation),
martintypehierarchy.supertype = sql92foreignkey.refTable,
martinidentifier = sql92foreignkey.refPK,
martinidentifier.attributes[] = sql92foreignkey.attributes[]

)
).

/* S10: MartinRelationship + ERTypeItem (0:1) + ERTypeItem (*:N) <=> SQL92ForeignKey */
inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey],

label (s10_rel_01xN),
inherits (relationship_1N_base),
invariants (martinrelationship.srcOpt = 0)

).

438

/* S11: MartinWeakEntity + EREntityType + MartinRelationship =>>
* SQL92Table + SQL92PrimaryKey
*/

inter_class
([martinweakentity, erentitytype, martinrelationship], [sql92table, sql92primarykey],
label (s11_weak_table),
inherits (t5_weak_relation),
direction (=>>),
invariants
(count(martinweakentity.embeddedEntities[]) = 0,

martinweakentity.embedded = false,
martinrelationship.source = erentitytype,
martinrelationship.target = martinweakentity,
martinrelationship.srcCard = 1,
martinrelationship.srcOpt = 1,
martinrelationship.dstCard > 1

)
).

/* S12: MartinRelationship + ERTypeItem (0:1) + ERTypeItem (0:1) <=>
* 2 SQL92ForeignKey + 2 SQL92Unique
*/

inter_class
([martinrelationship, ertypeitem[2]], [sql92foreignkey[2], sql92unique[2]],
label (s12_rel_0101),
inherits (relationship_11_base),
excludes (h1_id_unique <<=, s10_rel_01xN <<=),
invariants
(martinrelationship.srcOpt = 0,

martinrelationship.dstOpt = 0,
sql92foreignkey[1].columns[] = sql92unique[1].columns[],
sql92foreignkey[2].columns[] = sql92unique[2].columns[]

)
).

/* Heuristics */

/* H1: MartinIdentifier <<= SQL92Unique */
inter_class
([martinidentifier], [sql92unique],
label (h1_id_unique),
direction (<<=),
invariants
(martinidentifier.partial = false)
equivalences
(martinidentifier.name = sql92unique.name,

martinidentifier.attributes[] = sql92unique.columns[],
martinidentifier.identifiedItem = sql92unique.columns[]=>relation

)
).

/* Auxiliary functions -- not tested! */

/* Combine two list of ERAttributes to give a list of SQL92Columns for an SQL92Table */
combine_attr(Item1, Item2, Table) :-
Item1@attributes(A1),
Item2@attributes(A2),
append(A2, A1, Atemp),
map_attr(Atemp, TAttr),
Table@attributes := TAttr.

map_attr([], []).
map_attr([E|Er], [T|Tr]) :-
map_attr(Er, Tr),
E@name(Name),
E@datatype(Type),
E@size(Size),
E@dp(DP),
sql92column@create(T),
T@name := Name,
T@datatype := Type,
T@size := Size.

/* Take the primary key of an EREntityType and combine it with the key elements of a
* MartinWeakEntity, giving an SQL92PrimaryKey.
*/

build_weak_pk(Entity, Weak, CK) :-
Entity@primaryKey(PK),
Weak@primaryKey(WPK),
PK@attributes(PAttr),
WPK@attributes(WAttr),
append(WAttr, PAttr, Atemp),
map_attr(Atemp, CKAttr),
CK@attributes := CKAttr.

439

F.3.2 Rf(FuncDep,FDDSmith)→ Re(E -R,ERDMartin)/Rf ↽ Re

inter_view(funcdep_smithfdd, read_write, er_martinerd, read_write, partial).

/* Technique-level rules */

/* T1: FDFunctionalSource + FDFunctional + FDFunctionalTarget <=> EREntityType */
inter_class
([fdfunctionalsource, fdfunctional, fdfunctionaltarget], [erentitytype],

label (t1_fd_entity),
invariants
(fdfunctional.source = fdfunctionalsource,

fdfunctional.destination = fdfunctionaltarget,
fdfunctionalsource.dependency = fdfunctional,
fdfunctionaltarget.dependency = fdfunctional,
count(erentitytype.attributes[]) =\= count(erentitytype.identifier=>attributes[])

),
equivalences
(fdfunctional.name = erentitytype.name,

fdfunctionalsource = erentitytype.identifier,
=>> get_fd_attr(fdfunctionalsource.attributes, fdfunctionaltarget.attributes, erentitytype.attributes),
<<= get_nonkey(fdfunctionaltarget.attributes, erentitytype.attributes)

),
initialisers
(<<= append(’target’, erentitytype.name, fdfunctionaltarget.name),

<<= append(’source’, erentitytype.name, fdfunctionalsource.name)
)

).

/* T2: FDMultiSource + FDMultiValued + FDMultiTarget <=> EREntityType + ERIdentifier */
inter_class
([fdmultisource, fdmultivalued, fdmultitarget], [erentitytype, eridentifier],

label (t2_mvd_entity),
invariants
(fdmultivalued.source = fdmultisource,

fdmultivalued.destination = fdmultitarget,
fdmultisource.dependency = fdmultivalued,
fdmultitarget.dependency = fdmultivalued,
\+erentitytype@class(’erweakentitytype’),
count(erentitytype.attributes[]) = 2,
count(eridentifier.attributes[]) = 2, % no non-key attributes
eridentifier.partial = false,
eridentifier.entity = erentitytype,
erentitytype.identifier = eridentifier

),
equivalences
(fdmultivalued.name = erentitytype.name,

<<= fdmultisource.attributes[1] = erentitytype.attributes[1],
<<= fdmultitarget.attributes[2] = erentitytype.attributes[2]

),
initialisers
(<<= append(’target’, erentitytype.name, fdmultitarget.name),

<<= append(’source’, erentitytype.name, fdmultisource.name),
=>> append(fdmultitarget.attributes, fdmultisource.attributes, erentitytype.attributes)

)
).

/* T3: FDAttribute <=> ERAttribute */
inter_class
([fdattribute], [erattribute],

label (t3_attr_attr),
equivalences
(fdattribute.name = erattribute.name)

).

/* T4: 2 FDFunctionalSource + 2 FDSingleValued + 2 FDFunctionalTarget <=>
* ERRelationshipType + 2 EREntityType
*/

inter_class
([fdfunctionalsource[2], fdfunctional[2], fdfunctionaltarget[2]], [errelationshiptype, erentitytype[2]],

label (t4_relationship),
invariants
(member(erentitytype[1], errelationshiptype.entities[]),

member(erentitytype[2], errelationshiptype.entities[]),
member(errelationshiptype, erentitytype[1].relationships),
member(errelationshiptype, erentitytype[2].relationships),
count(errelationshiptype.attributes[]) = 0,
fdfunctionalsource[1].dependency = fdfunctional[1],
fdfunctionaltarget[1].dependency = fdfunctional[1],
fdfunctional[1].source = fdfunctionalsource[1],
fdfunctional[1].destination = fdfunctionaltarget[1],
fdfunctionalsource[2].dependency = fdfunctional[2],
fdfunctionaltarget[2].dependency = fdfunctional[2],
fdfunctional[2].source = fdfunctionalsource[2],
fdfunctional[2].destination = fdfunctionaltarget[2]

),
equivalences
(fdfunctional[1].name = erentitytype[1].name,

fdfunctional[2].name = erentitytype[2].name,

440

fdfunctionalsource[1] = erentitytype[1].identifier,
=>> get_fd_attr(fdfunctionalsource[1].attributes, fdfunctionaltarget[1].attributes, erentitytype[1].attributes),
<<= get_nonkey(fdfunctionaltarget[1].attributes, erentitytype[1].attributes),
fdfunctionalsource[2] = erentitytype[2].identifier,
=>> get_fd_attr(fdfunctionalsource[2].attributes, fdfunctionaltarget[2].attributes, erentitytype[2].attributes),
<<= get_nonkey(fdfunctionaltarget[2].attributes, erentitytype[2].attributes)

),
initialisers
(<<= append(’target’, erentitytype[1].name, fdfunctionaltarget[1].name),

<<= append(’source’, erentitytype[1].name, fdfunctionalsource[1].name),
<<= append(’target’, erentitytype[2].name, fdfunctionaltarget[2].name),
<<= append(’source’, erentitytype[2].name, fdfunctionalsource[2].name)

)
).

/* T5: 2 FDFunctionalSource + 2 FDFunctional + 2 FDFunctionalTarget +
* 2 FDMultiSource + 2 FDMultiValued + 2 FDMultiTarget <<=
* ERRelationshipType (*:M-*:N) + 2 EREntityType
*/

([fdfunctionalsource[2], fdfunctional[2], fdfunctionaltarget[2],
fdmultisource[2], fdmultivalued[2], fdmultitarget[2]],

[errelationshiptype, erentitytype[2]],
label (t5_many_to_many),
direction (<<=),
invariants
(errelationshiptype.source = erentitytype[1],

errelationshiptype.target = erentitytype[2],
fdfunctionalsource[1].dependency = fdfunctional[1],
fdfunctionaltarget[1].dependency = fdfunctional[1],
fdfunctional[1].source = fdfunctionalsource[1],
fdfunctional[1].target = fdfunctionaltarget[1],
fdfunctionalsource[2].dependency = fdfunctional[2],
fdfunctionaltarget[2].dependency = fdfunctional[2],
fdfunctional[2].source = fdfunctionalsource[2],
fdfunctional[2].target = fdfunctionaltarget[2],
fdmultisource[1].dependency = fdmultivalued[1],
fdmultitarget[1].dependency = fdmultivalued[1],
fdmultivalued[1].source = fdmultisource[1],
fdmultivalued[1].target = fdmultitarget[1],
fdmultisource[2].dependency = fdmultivalued[2],
fdmultitarget[2].dependency = fdmultivalued[2],
fdmultivalued[2].source = fdmultisource[2],
fdmultivalued[2].target = fdmultitarget[2],
fdfunctionalsource[1].attributes = fdmultisource[1].attributes,
fdmultisource[1].attributes = fdmultitarget[2].attributes,
fdfunctionalsource[2].attributes = fdmultisource[2].attributes,
fdmultisource[2].attributes = fdmultitarget[1].attributes

),
equivalences
(fdfunctional[1].name = erentitytype[1].name,

fdfunctional[2].name = erentitytype[2].name,
fdfunctionalsource[1] = erentitytype[1].identifier,
fdfunctionalsource[2] = erentitytype[2].identifier,
get_nonkey(fdfunctionaltarget[1].attributes, erentitytype[1].attributes),
get_nonkey(fdfunctionaltarget[2].attributes, erentitytype[2].attributes)

),
initialisers
(append(’target’, erentitytype[1].name, fdfunctionaltarget[1].name),

append(’source’, erentitytype[1].name, fdfunctionalsource[1].name),
append(’target’, erentitytype[2].name, fdfunctionaltarget[2].name),
append(’source’, erentitytype[2].name, fdfunctionalsource[2].name)

)
).

/* T6: FDFunctionalSource <=> ERIdentifier */
inter_class
([fdfunctionalsource], [eridentifier],
label (t6_lhs_id),
invariants
(eridentifier.partial = false),
equivalences
(fdfunctionalsource.name = eridentifier.name,

fdfunctionalsource.attributes[] = eridentifier.attributes[]
)

).

/* T7: FDFunctionalSource + FDFunctional + FDFunctionalTarget <<=
* ERWeakEntityType + ERRelationshipType + EREntityType
*/

inter_class
([fdfunctionalsource, fdfunctional, fdfunctionaltarget], [erweakentitytype, errelationshiptype, erentitytype],
label (t7_weak),
direction (<<=),
invariants
(fdfunctionalsource.dependency = fdfunctional,

fdfunctionaltarget.dependency = fdfunctional,
fdfunctional.source = fdfunctionalsource,
fdfunctional.target = fdfunctionaltarget,
member(erweakentitytype, errelationshiptype.entities),

441

member(erentitytype, errelationship.entities),
member(errelationshiptype, erweakentitytype.relationships),
member(errelationshiptype, erentitytype.relationships),
(errelationshiptype.id_dependent = true;

errelationshiptype.existence_dependent = true
),
erweakentitytype.dependentVia = errelationshiptype

)
).

/* Scheme-level rules */

/* S1: SSSingleKeyBubble + SSSingleValued + SSTargetBubble <=> MartinRegularEntity */
inter_class
([sssinglekeybubble, sssinglevalued, sstargetbubble], [martinregularentity],

label (s1_fd_regular),
inherits (t1_fd_entity)

).

/* S2: SSMultiKeyBubble + SSMultiValued + SSEndKeyBubble <=> MartinRegularEntity + MartinIdentifier */
inter_class
([ssmultikeybubble, ssmultivalued, ssendkeybubble], [martinregularentity, martinidentifier],

label (s2_mvd_regular),
inherits (t2_mvd_entity)

).

/* S3: SSSingleKeyBubble <=> MartinIdentifier */
inter_class
([sssinglekeybubble], [martinidentifier],

label (s3_sk_id),
inherits (t6_lhs_id)

).

/* S4: SSIsolatedBubble <=> MartinRegularEntity */
inter_class
([ssisolatedbubble], [martinregularentity, martinidentifier],

label (s4_isolated_regular),
invariants
(martinregularentity.identifier = martinidentifier,

martinidentifier.entity = martinregularentity,
count(martinregularentity.attributes[]) =\= 2,
martinregularentity.attributes[] = martinidentifier.attributes[]

),
equivalences
(ssisolatedbubble.name = martinregularentity.name,

ssisolatedbubble.attributes[] = martinregularentity.attributes[],
ssisolatedbubble.attributes[] = martinidentifier.attributes[]

)
).

/* S5: SSAttribute <=> MartinAttribute */
inter_class
([ssattribute], [martinattribute],

label (s5_attr_attr),
inherits (t3_attr_attr)

).

/* S6: SSSingleKeyBubble + SSSingleValued + SSTargetBubble <<= MartinAssociativeEntity
inter_class
([sssinglekeybubble, sssinglevalued, sstargetbubble], [martinassociativeentity],

label (s6_fd_assoc),
direction (<<=),
invariants
(sssinglevalued.source = sssinglekeybubble,

sssinglevalued.destination = sstargetbubble,
sssinglekeybubble.dependency = sssinglevalued,
sstargetbubble.dependency = sssinglevalued,
count(martinassociativeentity.attributes[]) =\= count(martinassociativeentity.identifier=>attributes[])

),
equivalences
(sssinglevalued.name = martinassociativeentity.name,

sssinglekeybubble= martinassociativeentity.identifier,
=>> get_fd_attr(sssinglekeybubble.attributes, sstargetbubble.attributes, erentitytype.attributes),
<<= get_nonkey(fdfunctionaltarget.attributes, martinassociativeentity.attributes)

),
initialisers
(<<= append(’target’, martinassociativeentity.name, sstargetbubble.name),

<<= append(’source’, martinassociativeentity.name, sssinglekeybubble.name)
)

).

/* S7: SSSingleKeyBubble + SSSingleValued + SSTargetBubble <<=
* MartinWeakEntity (key/no rel/attr) + dependent MartinRelationship + ERTypeItem
*/

inter_class
([sssinglekeybubble, sssinglevalued, sstargetbubble], [martinweakentity, martinrelationship, ertypeitem],

label (s7_weak_key_attr),
inherits (t7_weak),
direction (<<=),

442

invariants
(count(martinweakentity.identifier=>attributes[]) > 0,

count(martinweakentity.attributes[]) > 0,
count(martinweakentity.relationships[]) <= 1,
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem,
martinrelationship.target = erweakentitytype

),
equivalences
(build_weak_pk(ertypeitem, martinweakentity, [], sssinglekeybubble),

get_nonkey(sstargetbubble.attributes, martinweakentity.attributes)
),
initialisers
(martinrelationship.dstOpt = 0,

martinrelationship.dstCard = 2
)

).

/* S8: SSSingleKeyBubble + SSSingleValued + SSTargetBubble <<=
* MartinWeakEntity (key/rel/attr) + dependent MartinRelationship + ERTypeItem
*/

inter_class
([sssinglekeybubble, sssinglevalued, sstargetbubble], [martinweakentity, martinrelationship, ertypeitem],
label (s8_weak_key_attr_rel),
inherits (t7_weak),
direction (<<=),
invariants
(count(martinweakentity.identifier=>attributes[]) > 0,

count(martinweakentity.attributes[]) > 0,
count(martinweakentity.relationships[]) >= 1,
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem,
martinrelationship.target = erweakentitytype

),
equivalences
(build_weak_pk(ertypeitem, martinweakentity, [], sssinglekeybubble),

get_nonkey(sstargetbubble.attributes, martinweakentity.relationships, martinweakentity.attributes)
),
initialisers
(martinrelationship.dstOpt = 0,

martinrelationship.dstCard = 2
)

).

/* S9: SSSingleKeyBubble + SSSingleValued + SSTargetBubble <<=
* MartinWeakEntity (no key/rel/attr) + dependent MartinRelationship + ERTypeItem
*/

inter_class
([sssinglekeybubble, sssinglevalued, sstargetbubble], [martinweakentity, martinrelationship, ertypeitem],
label (s9_weak_rel_attr),
inherits (t7_weak),
direction (<<=),
invariants
(count(martinweakentity.identifier=>attributes[]) = 0,

count(martinweakentity.attributes[]) > 0,
count(martinweakentity.relationships[]) >= 1,
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem,
martinrelationship.target = erweakentitytype

),
equivalences
(build_weak_pk(ertypeitem, [], martinweakentity.relationships, sssinglekeybubble),

get_nonkey(sstargetbubble.attributes, martinweakentity.attributes)
),
initialisers
(martinrelationship.dstOpt = 0,

martinrelationship.dstCard = 2
)

).

/* S10: SSIsolatedBubble <<= MartinWeakEntity (no key/rel/no attr) + dependent MartinRelationship + ERTypeItem */
inter_class
([ssisolatedbubble], [martinweakentity, martinrelationship, ertypeitem],
label (s10_weak_rel),
direction (<<=),
invariants
(member(martinweakentity, martinrelationship.entities),

member(ertypeitem, martinrelationship.entities),
member(martinrelationship, martinweakentity.relationships),
member(martinrelationship, ertypeitem.relationships),
count(martinweakentity.relationships[]) >= 1

443

(martinrelationship.id_dependent = true;
martinrelationship.existence_dependent = true

),
martinweakentity.dependentVia = martinrelationship,
count(martinweakentity.identifier=>attributes[]) = 0,
count(martinweakentity.attributes[]) = 0,
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem,
martinrelationship.target = erweakentitytype

),
equivalences
(ssisolatedbubble.name = martinweakentity.name,

build_weak_pk(ertypeitem, [], martinweakentity.relationships, ssisolatedbubble)
),
initialisers
(martinrelationship.dstOpt = 0,

martinrelationship.dstCard = 2
)

).

/* S11: 2 SSSingleKeyBubble + 2 SSSingleValued + 2 SSTargetBubble <=> MartinRelationship (*:1-*:1) + 2 non-weak ERTypeItem
*/

inter_class
([sssinglekeybubble[2], sssinglevalued[2], sstargetbubble[2]],

[martinrelationship, ertypeitem[2]],
label (s11_rel_11),
inherits(t4_relationship),
invariants
(martinrelationship.srcCard = 1,

martinrelationship.dstCard = 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
\+ertypeitem[]@class(’martinweakentity’),
subset(sssinglekeybubble[1].attributes, sstargetbubble[2].attributes),
subset(sssinglekeybubble[2].attributes, sstargetbubble[1].attributes)

),
initialisers
(martinrelationship.srcOpt = 0,

martinrelationship.dstOpt = 0
)

).

/* S12: 2 SSSingleKeyBubble + 2 SSSingleValued + 2 SSTargetBubble <=> MartinRelationship (*:1-*:N) + 2 non-weak ERTypeItem
*/

inter_class
([sssinglekeybubble[2], sssinglevalued[2], sstargetbubble[2]], [martinrelationship, erentitytype[2]],

label (s12_rel_1N),
inherits (t4_relationship),
invariants
(martinrelationship.srcCard = 1,

martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
\+ertypeitem[]@class(’martinweakentity’),
subset(sssinglekeybubble[2].attributes, sstargetbubble[1].attributes)

),
initialisers
(martinrelationship.srcOpt = 0,

martinrelationship.dstOpt = 0,
martinrelationship.dstCard = 2

)
).

/* S13: 2 SSSingleKeyBubble + 2 SSSingleValued + 2 SSTargetBubble +
* 2 SSMultiKeyBubble + 2 SSMultiValued + 2 SSEndKeyBubble <<= MartinRelationship (*:M-*:N) + 2 non-weak ERTypeItem
*/

inter_class
([sssinglekeybubble[2], sssinglevalued[2], sstargetbubble[2],

ssmultikeybubble[2], ssmultivalued[2], ssendkeybubble[2]],
[martinrelationship, martinentity[]],
label (s13_rel_mn),
inherits (t5_many_to_many),
direction (<<=),
invariants
(errelationshiptype.srcCard > 1,

errelationshiptype.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2],
\+ertypeitem[]@class(’martinweakentity’)

),
initialisers
(martinrelationship.srcOpt = 0,

martinrelationship.dstOpt = 0,
martinrelationship.srcCard = 2,
martinrelationship.dstCard = 2

)
).

444

/* S14: FDAttributeSet + SSDomainFlag + SSSingleKeyBubble + 2 SSAttribute =>> MartinRelationship */
inter_class
([fdattributeset, ssdomainflag, sssinglekeybubble, ssattribute[2]], [martinrelationship],
label (s14_domain_flag), direction (=>>),
invariants
(\+(fdattributeset@class(’ssisolatedbubble’)),

member(ssattribute[1], fdattributeset.attributes),
member(ssattribute[2], sssinglekeybubble.attributes),
member(fdattributeset, ssattribute[1].attributeSets),
member(sssinglekeybubble, ssattribute[2].attributeSets),
ssdomainflag.source = ssattribute[2],
member(ssattribute[1], ssdomainflag.attributes),
ssattribute[1].dfSource = ssdomainflag,
ssattribute[2].dfReference = ssdomainflag,
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1

),
equivalences
(ssdomainflag.name = martinrelationship.name,

fdattributeset.dependency = martinrelationship.destination,
sssinglekeybubble.dependency = martinrelationship.source

),
initialisers
(martinrelationship.dstCard = 2,

martinrelationship.dstOpt = 0
)

).

/* S15: SSIsolatedBubble + SSDomainFlag + SSSingleKeyBubble + 2 SSAttribute =>> MartinRelationship */
inter_class
([ssisolatedbubble, ssdomainflag, sssinglekeybubble, ssattribute[2]], [martinrelationship],
label (s15_domain_flag_iso),
direction (=>>),
invariants
(member(ssattribute[1], ssisolatedbubble.attributes),

member(ssattribute[2], sssinglekeybubble.attributes),
member(ssisolatedbubble, ssattribute[1].attributeSets),
member(sssinglekeybubble, ssattribute[2].attributeSets),
ssdomainflag.source = ssattribute[2],
member(ssattribute[1], ssdomainflag.attributes),
ssattribute[1].dfSource = ssdomainflag,
ssattribute[2].dfReference = ssdomainflag,
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1

),
equivalences
(ssdomainflag.name = martinrelationship.name,

ssisolatedbubble = martinrelationship.destination,
sssinglekeybubble.dependency = martinrelationship.source

),
initialisers
(martinrelationship.dstCard = 2,

martinrelationship.dstOpt = 0
)

).

/* S16: SSSingleKeyBubble + non-isolated FDAttributeSet =>> 2 ERTypeItem + MartinRelationship (1:1-0:N) */
inter_class
([sssinglekeybubble, fdattributeset], [ertypeitem[2], martinrelationship],
label (s16_contained_sk),
direction (=>>),
invariants
(subset(sssinglekeybubble.attributes, fdattributeset.attributes),

\+(fdattributeset@class(’ssisolatedbubble’)),
martinrelationship.source = ertypeitem[1],
martinrelationship.destination = ertypeitem[2],
member(martinrelationship, ertypeitem[].relationships),
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2]

),
equivalences
(sssinglekeybubble.dependency = ertypeitem[1],

fdattributeset.dependency = ertypeitem[2]
),
initialisers
(martinrelationship.dstCard = 2,

martinrelationship.dstOpt = 0,
append(fdattributeset.dependency=>name, sssinglekeybubble.dependency=>name, martinrelationship.name)

)
).

445

/* S17: SSIsolatedBubble + non-isolated FDAttributeSet =>>
* 2 ERTypeItem + MartinRelationship (1:1-0:N)
*/

inter_class
([ssisolatedbubble, fdattributeset], [ertypeitem[2], martinrelationship],

label (s17_contained_iso),
direction (=>>),
invariants
(subset(ssisolatedbubble.attributes, fdattributeset.attributes),

\+(fdattributeset@class(’ssisolatedbubble’)),
martinrelationship.source = ertypeitem[1],
martinrelationship.destination = ertypeitem[2],
member(martinrelationship, ertypeitem[].relationships),
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2]

),
equivalences
(ssisolatedbubble = ertypeitem[1],

fdattributeset.dependency = ertypeitem[2],
),
initialisers
(martinrelationship.dstCard = 2,

martinrelationship.dstOpt = 0,
append(fdattributeset.dependency=>name, ssisolatedbubble.name, martinrelationship.name)

)
).

/* S18: SSSingleKeyBubble + SSIsolatedBubble =>> 2 ERTypeItem + MartinRelationship (1:1-0:N) */
inter_class
([sssinglekeybubble, ssisolatedbubble], [ertypeitem[2], martinrelationship],

label (s18_isolated_sk),
direction (=>>),
invariants
(subset(sssinglekeybubble.attributes, ssisolatedbubble.attributes),

martinrelationship.source = ertypeitem[1],
martinrelationship.destination = ertypeitem[2],
member(martinrelationship, ertypeitem[].relationships),
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2]

),
equivalences
(sssinglekeybubble.dependency = ertypeitem[1],

ssisolatedbubble = ertypeitem[2]
),
initialisers
(martinrelationship.dstCard = 2,

martinrelationship.dstOpt = 0,
append(ssisolatedbubble.name, sssinglekeybubble.dependency=>name, martinrelationship.name)

)
).

/* S19: 2 SSIsolatedBubble =>> 2 ERTypeItem + MartinRelationship (1:1-0:N) */
inter_class
([ssisolatedbubble[2]], [ertypeitem[2], martinrelationship],

label (s19_isolated_iso),
direction (=>>),
invariants
(subset(ssisolatedbubble[2].attributes, ssisolatedbubble[1].attributes),

martinrelationship.source = ertypeitem[1],
martinrelationship.destination = ertypeitem[2],
member(martinrelationship, ertypeitem[].relationships),
martinrelationship.srcOpt = 1,
martinrelationship.srcCard = 1,
martinrelationship.dstCard > 1,
martinrelationship.source = ertypeitem[1],
martinrelationship.target = ertypeitem[2]

),
equivalences
(ssisolatedbubble[2] = ertypeitem[1],

ssisolatedbubble[1] = ertypeitem[2]
),
initialisers
(martinrelationship.dstCard = 2,

martinrelationship.dstOpt = 0,
append(ssisolatedbubble[1].name, ssisolatedbubble[2].name, martinrelationship.name)

)
).

446

/* Heuristics */

/* H1: 2 x SSMultiKeyBubble + 2 x SSMultiValued + 2 x SSEndKeyBubble =>>
* MartinAssociativeEntity + MartinIdentifier
*/

inter_class
([ssmultikeybubble[2], ssmultivalued[2], ssendkeybubble[2]],
[martinassociativeentity, martinidentifier],
label (h1_2_multi),
direction (=>>),
invariants
(martinidentifier.entity = martinassociativeentity,

martinassociativeentity.identifier = martinidentifier,
martinidentifier.partial = false,
martinidentifier.attributes[] = martinassociativeentity.attributes[],
ssmultikeybubble[1].dependency = ssmultivalued[1],
ssendkeybubble[1].dependency = ssmultivalued[1],
ssmultivalued[1].source = ssmultikeybubble[1],
ssmultivalued[1].destination = ssendkeybubble[1],
ssmultikeybubble[2].dependency = ssmultivalued[2],
ssendkeybubble[2].dependency = ssmultivalued[2],
ssmultivalued[2].source = ssmultikeybubble[2],
ssmultivalued[2].destination = ssendkeybubble[2],
ssmultikeybubble[1].attributes = ssendkeybubble[2].attributes,
ssmultikeybubble[2].attributes = ssendkeybubble[1].attributes

),
equivalences
(get_fd_attr(ssmultikeybubble[1].attributes, ssmultikeybubble[2].attributes, martinassociativeentity.attributes)
),
initialisers
(append(ssmultivalued[2].name, ssmultivalued[1].name, martinassociativeentity.name))

).

/* H2: n FDAttributeSet + SSDomainFlag + SSSingleKeyBubble +
* "parent" SSAttribute + n "child" SSAttribute =>> MartinTypeHierarchy
*/

inter_class
([fdattributeset[], ssdomainflag, sssinglekeybubble, ssattribute parent, ssattribute[] children],
[martintypehierarchy],
label (h2_subtypes),
direction (=>>),
invariants
(count(children[]) > 2,

\+(fdattributeset[]@class(’ssmultikeybubble’)),
member(children[], fdattributeset[].attributes),
member(parent, sssinglekeybubble.attributes),
member(fdattributeset[], children[].attributeSets),
member(sssinglekeybubble, sssinglekeybubble.attributeSets),
ssdomainflag.target = parent,
member(children[], ssdomainflag.attributes),
parent.domainFlag = ssdomainflag,
children[].domainFlag = ssdomainflag

),
equivalences
(ssdomainflag.name = martintypehierarchy.name,

parent.dependency = martintypehierarchy.supertype,
children[].dependency = martintypehierarchy.subtypes[]

),
initialisers
(martintypehierarchy.exclusive = true)

).

/* Auxiliary functions -- not tested! */

/* Given an EREntity, determine whether there are any non-key ERAttributes. */
nonkey_exist(Entity) :-
Entity@primaryKey(PK),
Entity@attributes(Attr),
PK@attributes(PKAttr),
length(Attr) =\= length(PKAttr).

/* Combine the FDAttributes from two FDAttributeSets and put them into an EREntity. */
get_fd_attr([], _).
get_fd_attr([A|Ar], Entity) :-
get_fd_attr(Ar, Entity),
A@name(Name),
erattribute@create(Ea),
Ea@name := Name,
Entity@attributes(EAttr),
append([Ea], EAttr, NewEAttr),
Entity@attributes := NewEAttr.

get_fd_attr(A1, A2, Entity) :-
get_fd_attr(A1, Entity),
get_fd_attr(A2, Entity).

447

/* Given an EREntity, map its ERAttributes to an FDAttributeSet.
* OR: Given an EREntity + a group of ERRelationships, map the ERAttributes of
* the EREntity + the key ERAttributes of each of the EREntities attached to the
* ERRelationships.
* Note this is only really useful in the reverse direction (FDD <<= ERD).
*/

get_nonkey(_, []).
get_nonkey([Fa|FR], [Ea|Er]) :-

get_nonkey(Fr, Er),
A@name(Name),
erattribute@create(Ea),
Ea@name := Name,
Entity@attributes(EAttr),
append([Ea1], EAttr, NewEAttr),
Entity@attributes := NewEAttr.

F.3.3 Re(E -R,ERDMartin)� Rd(DataFlow ,DFDG&S)
inter_view(er_martinerd, read_write, process_gnsdfd, read_write, partial).

/* Technique-level rules */

/* T1: EREntityType <=> DFDataStore */
inter_class
([erentitytype], [dfdatastore],

label (t1_entity_datastore),
equivalences
(erentitytype.name = dfdatastore.name,

erentitytype.attributes[] = dfdatastore.fieldItems[]
)

).

/* T2: ERAttributeItem <=> DFFieldItem */
inter_class
([erattributeitem], [dffielditem],

label (t2_attr_field),
equivalences
(erattributeitem.name = dffielditem.name,

erattributeitem.containingItem = dffielditem.containingItem
)

).

/* Scheme-level rules */

/* S1: MartinRegularEntity <=> GnSDataStore */
inter_class
([martinregularentity], [gnsdatastore],

label (s1_regular_datastore),
inherits (t1_entity_datastore)

).

/* S2: MartinAssociativeEntity =>> GnSDataStore */
inter_class
([martinassociativeentity], [gnsdatastore],

label (s2_assoc_datastore),
direction (=>>),
equivalences
(martinassociativeentity.name = gnsdatastore.name,

martinassociativeentity.attributes[] = gnsdatastore.fieldItems[]
)

).

/* S3: non-embedded MartinWeakEntity =>> GnSDataStore */
inter_class
([martinweakentity], [gnsdatastore],

label (s3_weak_datastore),
inherits (t1_entity_datastore),
direction (=>>),
invariants
(embedded = false)

).

/* S4: MartinAttribute <=> GnSField */
inter_class
([martinattribute], [gnsfield],

label (s4_attr_field),
inherits (t2_attr_field)

).

/* S5: MartinAttributeGroup <=> GnSFieldGroup */
inter_class
([martinattributegroup], [gnsfieldgroup],

label (s5_attrgroup_fieldgroup),
inherits (t2_attr_field),
equivalences
(martinattributegroup.attributeItems[] = gnsfieldgroup.fieldItems[])

).

448

/* S6: embedded MartinWeakEntity <=> GnSFieldGroup */
inter_class
([martinweakentity], [gnsfieldgroup],
label (s6_weak_datastore),
direction (=>>),
invariants
(embedded = true),
equivalences
(martinweakentity.name = gnsfieldgroup.name,

martinweakentity.attributes[] = gnsfieldgroup.fieldItems[]
)

).

/* Heuristics */

/* H1: MartinAssociativeEntity =>> GnSDataProcess + GnSDataStore + GnSDataFlow */
inter_class
([martinassociativeentity], [gnsdataprocess, gnsdatastore, gnsdataflow]
label (h1_assoc_process),
direction (=>>),
equivalences
(martinassociativeentity = gnsdatastore),
initialisers
(gnsdataflow.source = gnsdatastore,

gnsdataflow.destination = gnsdataprocess
)

).

/* H2: MartinRelationship + 2 MartinRegularEntity <<= GnSDataProcess + 2 GnSDataStore + 2 GnSDataFlow */
inter_class
([martinrelationship, martinregularentity[2]], [gnsdataprocess, gnsdatastore[2], gnsdataflow[2]]
label (h2_rel_process),
direction (<<=),
invariants
(martinrelationship.source = martinregularentity[1],

martinrelationship.destination = martinregularentity[2],
member(martinrelationship, martinregularentity[1].relationships),
member(martinrelationship, martinregularentity[2].relationships),
martinregularentity.srcOpt = 1,
martinregularentity.srcCard = 1,
martinregularentity.dstOpt = 0,
martinregularentity.dstCard > 1,
gnsdataflow[1].source = gnsdatastore[1],
gnsdataflow[1].destination = gnsdataprocess,
gnsdataflow[2].source = gnsdataprocess,
gnsdataflow[2].destination = gnsdatastore[2],
member(gnsdataflow[1], gnsdatastore[1].flows),
member(gnsdataflow[1], gnsdataprocess),
member(gnsdataflow[2], gnsdatastore[2].flows),
member(gnsdataflow[2], gnsdataprocess)

),
equivalences
(martinregularentity[] = gnsdatastore[]),
initialisers
(martinregularentity.dstCard = 2)

).

449

Appendix G

The Swift repository

G.1 Glossary of representation tags

In this section are listed the identifying tags used by Swift’s description modelling unit

to distinguish different types of repository items (such as representations, constructs,

and so on). Tags have been included for all the representations used in the thesis.

G.1.1 Rf(FuncDep,FDDSmith)

This representation is implemented by classes in the package swift.repn.fdepsmit. The

core class is SmithFDD.

General

Item Description Tag

Technique functional dependencies ‘fdep’

Scheme Smith functional dependency diagram ‘smit’

Description type functional dependency diagram ‘fdd ’

Connectors

Construct Graphic Description Tag

SSSINGLEVALUED single valued dependency ‘svdp’

SSMULTIVALUED multi valued dependency ‘mvdp’

451

Symbols

Construct Graphic Swift class Tag

SSATTRIBUTE Attr Attribute ‘attr’

SSSINGLEKEYBUBBLE

Bubblea

‘bubl’

SSTARGETBUBBLE

SSMULTIKEYBUBBLE

SSENDKEYBUBBLE

SSISOLATEDBUBBLE

SSDOMAINFLAG

 n DomainFlagb ‘dflg’

n DomainFlagSourceb ‘dfsr’

n/a n desc DomainFlagDesc ‘dfds’

Notes:
a The different kinds of bubbles are distinguished by an internal variable of the

Bubble class called bubbleKind. This is set to one of the values ‘skey’ (single-

key), ‘mkey’ (multi-key), ‘targ’ (target), ‘ekey’ (end-key), ‘ckey’ (chain key

— used internally) or ‘isol’ (isolated).
b These will probably be combined at some stage.

G.1.2 Re(E -R,ERDMartin)

This representation is implemented by classes in the package swift.repn.erm mrtc. The

core class is MartinERDc.

General

Item Description Tag

Technique entity-relationship modelling ‘erm ’

Scheme Martin entity-relationship diagram (‘crow’s feet’) ‘mrtc’

Description type data flow diagram ‘erd ’

452

Connectors

Construct Graphic Swift class Tag

MARTINRELATIONSHIP a Relationship ‘rshp’

MARTINTYPEHIERARCHY

{
SubtypeParentb ‘stpp’

SubtypeChildb ‘stpc’

Notes:
a Appearance varies. Source and destination flags specify cardinality and op-

tionality as follows:

• flag[1]: true = many;

• flag[2]: true = optional;

• flag[3]: true = mandatory;

• flag[3]: true = one.

Flags may be used in combination where it makes sense. There are separate

flags for optional/mandatory and many/one to allow for relationships with

unknown optionality and cardinality.
b These will probably be combined at some stage.

Symbols

Construct Graphic Swift class Tag

MARTINREGULARENTITY RegularEntity ‘rent’

MARTINWEAKENTITY WeakEntity ‘went’

MARTINASSOCIATIVEENTITY AssociativeEntity ‘aent’

MARTINIDENTIFIER none n/aa n/a

MARTINATTRIBUTE none n/ab n/a

MARTINATTRIBUTEGROUP none n/ac n/a

Notes:
a This is effectively subsumed by the class swift.repn.Constraint.
b This is dealt with by the class swift.repn.Attribute.
c This is dealt with by the class swift.repn.Record.

453

G.1.3 Rd(DataFlow ,DFDG&S)

This representation is implemented by classes in the package swift.repn.procgnsn. The

core class is GaneSarsonDFD.

General

Item Description Tag

Technique data flow modelling ‘proc’

Scheme Gane & Sarson data flow diagram ‘gnsn’

Description type data flow diagram ‘dfd ’

Connectors

Construct Graphic Swift class Tag

GNSDATAFLOW a DataFlow ‘dflo’

GNSRESOURCEFLOW a ResourceFlow ‘rflo

Notes:
a Arrow points from source item to destination item.

Symbols

Construct Graphic Swift class Tag

GNSEXTERNALENTITY[]
a

ExternalEntity ‘eent’

GNSDATASTORE[] Dn DataStore ‘dstr’

GNSRESOURCESTORE ResourceStore ‘rstr’

GNSDATAPROCESS
Pn

DataProcess ‘proc’

GNSMULTIPLEDATAPROCESS
Pn

MultiDataProcess ‘mprc’

GNSSPLITMERGE SplitMerge ‘spmg’

GNSINTERFACEa Interface ‘intf’

Notes:
a Automatically generated if you start or terminate a data flow outside any

symbol.

454

G.1.4 Rr(Relational , SQL/92)

This representation is implemented by classes in the package swift.repn.relmsq92. The

core class is SQL92.

General

Item Description Tag

Technique relational model ‘relm’

Scheme ANSI/ISO SQL/92 ‘sq92’

Description type SQL schema ‘sqls’

Connectors

Construct Graphic Swift class Tag

SQL92FOREIGNKEY
foreign key (<columns>)
references <table> (<columns>)

n/a n/a

Symbols

Construct Graphic Swift class Tag

SQL92TABLE
create table <tablename>
(<column-defs>);

Table ‘tabl’

SQL92COLUMN
<colname> <datatype>

[<constraints>]
n/a n/a

SQL92DOMAIN
create domain <domainname>

<datatype> [<constraints>];
n/a n/a

SQL92PRIMARYKEY primary key (<columns>) n/a n/a

SQL92CONSTRAINT none n/a n/a

SQL92UNIQUE unique (<columns>) n/a n/a

SQL92NOTNULL not null n/a n/a

SQL92PREDICATE check (<predicate>) n/a n/a

455

G.2 Full repository schema

G.2.1 repository.sql
--
--
-- "Static" classes contain information that is always available and rarely
-- changes. "Non-static" classes contain information that varies on a regular
-- basis. "Abstract" never have data stored in them.
--
--

--
-- Class S_REPOSITORY_ITEM [abstract]
-- Generic "root class" for all "non-static" metadata-storing classes in the
-- repository.
--
-- deleted: whether or not this item has been marked for deletion
--
create table s_repository_item
(deleted bool
);

--
-- Class S_VIEWPOINT
-- Contains viewpoint information.
--
-- vname: name of viewpoint
-- creator: username of viewpoint creator
--
create table s_viewpoint
(vname text,

creator text
) inherits (s_repository_item);

--
-- Class S_REPRESENTATION [static]
-- Contains information about representations.
--
-- technique: representation technique, e.g., ’erm ’ for ER modelling
-- techname: technique name, e.g., ’Entity-relationship modelling’
-- scheme: representation scheme, e.g., ’mrtc’ for Martin
-- schemename: scheme name, e.g., ’Martin ERD with crows feet’
-- javaclass: oid of Java class file for the representation?
-- (currently name of Java class)
--
create table s_representation
(technique char4,

techname text,
scheme char4,
schemename text,
javaclass text

);

--
-- Class S_TRANSLATION [static]
-- Contains information about translations.
--
-- source: source representation OID
-- destination: destination representation OID
-- javaclass: oid of Java class file for the translation?
-- (currently name of Java class)
--
create table s_translation
(source oid,

destination oid,
javaclass text

);

--
-- Class S_CONSTRUCT_GLOSSARY [static]
-- Contains information about particular construct types.
--
-- representation: oid of appropriate representation
-- ctype: type of construct, e.g., ’rshp’ for relationship
-- fullname: full name of the construct type, e.g., ’E-R relationship’
--
create table s_construct_glossary
(representation oid,

ctype char4,
fullname text

);

456

--
-- Class S_DATATYPE [static]
-- Contains information about particular data types.
--
-- tcode: 4-character code identifying the data type
-- tname: name of the data type, e.g., ’fixed’
-- tdesc: description of the data type, e.g., ’fixed-point integer’
--
create table s_datatype
(tcode char4,
tname char(20),
tdesc text

);

--
-- Class S_DESCRIPTION
-- Contains description information.
--
-- dname: name of description
-- dtype: type of description, e.g., ’erd ’ for ERD
-- representation: oid of appropriate representation
-- parent_id: oid of the parent description, if applicable (null if none)
--
create table s_description
(dname text,
dtype char4,
representation oid,
parent_id oid,
viewpoint_id oid

) inherits (s_repository_item);

--
-- Class S_CONSTRUCT [abstract]
-- Generic construct information.
--
-- cname: name of construct
-- ctype: type of construct, e.g., ’enty’ for ERD entity (varies depending
-- on representation used -- subclasses implcitly specify the
-- ’generic type’ of the construct)
-- flags: miscellaneous construct features, where applicable (varies depending
-- on representation used)
--
create table s_construct
(cname text,
ctype char4,
flags int4

) inherits (s_repository_item);

--
-- Class S_GRAPHIC_CONSTRUCT [abstract]
-- Generic information specific to "graphic" constructs.
--
-- label: text label to be displayed (use cname if empty)
-- desc_id: oid of enclosing description (note graphic constructs only appear on a single
-- description at any given time)
--
create table s_graphic_construct
(label text,
desc_id oid

) inherits (s_construct);

--
-- Class S_CONNECTOR
-- Contains information about connectors (relationships, data flows, etc).
--
-- src_flags: misc flags for the source end of the connector (e.g., for an
-- ER relationship, this stores cardinality and optionality info)
-- dst_flags: misc flags for the destination end of the connector
-- src_port: "port" to connect to on the source symbol (1-16)
-- dst_port: "port" to connect to on the destination symbol (1-16)
-- cpath: list of points that form the connector’s path (unimplemented)
--
create table s_connector
(src_flags int4,
dst_flags int4,
src_port int2,
dst_port int2,
cpath point[]

) inherits (s_graphic_construct);

--
-- Class S_SYMBOL
-- Contains information about symbols (entities, data stores, processes, etc).
--
-- bounds: bounding rectangle
--
create table s_symbol
(bounds box
) inherits (s_graphic_construct);

457

--
-- Class S_TEXTBLOCK
-- Contains information about text blocks.
--
-- bounds: bounding rectangle
-- value: the actual text
--
create table s_textblock
(bounds box,

value text
) inherits (s_graphic_construct);

--
-- Class S_DICTIONARY_CONSTRUCT [abstract]
-- Generic information specific to "dictionary" constructs.
--
-- viewpoint_id: oid of enclosing viewpoint (i.e., dictionary constructs do not span
-- viewpoints)
--
create table s_dictionary_construct
(viewpoint_id oid
) inherits (s_construct);

--
-- Class S_RECORD
-- Contains information about records of attributes.
--
create table s_record
(
) inherits (s_dictionary_construct);

--
-- Class S_ATTRIBUTE
-- Contains information about attributes.
--
-- datatype: oid of the data type or domain of the attribute
-- size: size of the attribute, where applicable (null if not)
-- dp: number of decimal points, where applicable
--
create table s_attribute
(datatype oid,

size smallint,
dp smallint

) inherits (s_dictionary_construct);

--
-- Class S_DOMAIN
-- Contains information about domains.
--
-- datatype: oid of the data type of the domain
-- size: size of the domain, where applicable (null if not)
--
create table s_domain
(datatype oid,

size smallint,
dp smallint

) inherits (s_dictionary_construct);

--
-- Class S_CONSTRAINT
-- Contains information about generic constraints. Includes keys (primary, foreign
-- and alternate).
--
-- contype: the type of the constraint, e.g., ’uniq’ for unique
--
create table s_constraint
(contype char4
) inherits (s_dictionary_construct);

--
-- Class S_DEFINITION
-- Contains textual definitions of other dictionary constructs.
--
-- value: the text of the definition
create table s_definition
(value text
) inherits (s_dictionary_construct);

--
-- Class S_CONSTRUCT_LINK
-- Links any constructs with any other construct. Useful for implementing associations
-- between graphic constructs and dictionary constructs, attributes and keys, attributes
-- and record, etc, etc, etc.
--
-- Construct IDs are generally inserted such that parent is the "parent" construct.
-- Where there is no "parent", construct IDs may be inserted in arbitrary order.
-- Link types are as follows:
--

458

-- Type Description
-- graf graphic construct contains graphic construct
-- grdc graphic construct associated with dictionary construct
-- rcrd record contains record
-- ratr record contains attribute
-- atcn attribute has constraint
-- dmcn domain has constraint
-- defn dictionary construct has definition
-- pkey record has primary key
-- fkey record contains foreign key
-- refn foreign key references record
-- key_ key contains attribute
-- csrc connector source symbol
-- cdst connector destination symbol
--
-- parent: oid the first ("parent") construct
-- child: oid of second ("child") construct
-- description: oid of the description in which the constructs are linked
-- linktype: type of link, see above
-- flags: link-specific flags
--
create table s_construct_link
(parent oid,
child oid,
description oid,
linktype char4,
flags int4

) inherits (s_repository_item);

--
-- Class S_KEY_LINK
-- Links records, attributes and keys.
--
-- linkto: oid of the associated record
--
create table s_key_link
(linkto oid
) inherits (s_construct_link);

--
-- Class S_EVENT_LOG
-- Records operations on repository constructs.
--
-- when: timestamp of when the operation occured
-- what: what the operation was
-- affects: the oid of the object that is affected by the operation
-- event: the oid of the event that triggered this event (if applicable)
--
create table s_event_log
(when abstime,
what char4,
affects oid,
event oid

);

G.2.2 functions.sql
create function GET_VIEWPOINT (text) returns oid
as ’select oid from s_viewpoint where vname = $1’
language ’sql’;

create function GET_DESCRIPTION (text, oid) returns oid
as ’select oid from s_description where dname = $1 and viewpoint_id = $2’
language ’sql’;

create function GET_SYMBOL (text, oid) returns oid
as ’select oid from s_symbol where cname = $1 and desc_id = $2’
language ’sql’;

create function GET_CONNECTOR (text, oid) returns oid
as ’select oid from s_connector where cname = $1 and desc_id = $2’
language ’sql’;

create function GET_REPRESENTATION (char4, char4) returns oid
as ’select oid from s_representation where technique = $1 and scheme = $2’
language ’sql’;

create function GET_DATATYPE (char4) returns oid
as ’select oid from s_datatype where tcode = $1’
language ’sql’;

create function GET_DOMAIN (text, oid) returns oid
as ’select oid from s_domain where cname = $1 and viewpoint_id = $2’
language ’sql’;

459

create function GET_ATTRIBUTE (text, oid) returns oid
as ’select oid from s_attribute where cname = $1 and viewpoint_id = $2’
language ’sql’;

create function GET_CONSTRAINT (text, oid) returns oid
as ’select oid from s_constraint where cname = $1 and viewpoint_id = $2’
language ’sql’;

create function GET_DEFINITION (text, oid) returns oid
as ’select oid from s_definition where cname = $1 and viewpoint_id = $2’
language ’sql’;

create function GET_RECORD (text, oid) returns oid
as ’select oid from s_record where cname = $1 and viewpoint_id = $2’
language ’sql’;

G.2.3 staticdata.sql
--
-- REPRESENTATIONS
--
-- Smith FDD
insert into s_representation (technique, techname, scheme, schemename, javaclass)
values (’fdep’, ’Functional dependencies’, ’smit’,

’Smith functional dependency diagram’, ’SmithFDD’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’dflg’, ’domain flag’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’attr’, ’attribute’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’bubl’, ’bubble’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’dfds’, ’domain flag descriptor’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’dfsr’, ’domain flag source’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’svdp’, ’single-valued dependency’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’fdep’,’smit’), ’mvdp’, ’multi-valued dependency’);

-- Martin ERD (crow’s feet)
insert into s_representation (technique, techname, scheme, schemename, javaclass)
values (’erm_’, ’Entity-relationship approach’, ’mrtc’,

’Martin entity-relationship diagram (crow’’s feet)’, ’MartinERDc’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’rent’, ’regular entity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’aent’, ’associative entity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’went’, ’weak entity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’mexc’, ’mutual exclusivity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’!mxc’, ’non-mutual exclusivity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’rshp’, ’relationship’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’stpp’, ’subtype’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’erm_’,’mrtc’), ’stpc’, ’subtype’);

-- Gane & Sarson DFD
insert into s_representation (technique, techname, scheme, schemename, javaclass)
values (’proc’, ’Process modelling’, ’gnsn’, ’Gane & Sarson data flow diagram’, ’GaneSarsonDFD’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’eent’, ’external entity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’een2’, ’repeated external entity’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’proc’, ’data process’);

460

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’mprc’, ’multiple data process’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’dstr’, ’data store’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’dst2’, ’repeated data store’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’rstr’, ’resource store’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’spmg’, ’split/merge’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’intf’, ’interface’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’dflo’, ’data flow’);

insert into s_construct_glossary
values (GET_REPRESENTATION(’proc’,’gnsn’), ’rflo’, ’resource flow’);

-- ANSI SQL/92
insert into s_representation (technique, techname, scheme, schemename, javaclass)
values (’rela’, ’Relational model’, ’a/92’, ’ANSI SQL/92’, ’ANSISQL92’);

--
-- TRANSLATIONS
--
insert into s_translation values (GET_REPRESENTATION(’fdep’, ’smit’),

GET_REPRESENTATION(’erm_’, ’mrtc’), ’fdepsmit.erm_mrtc’);
insert into s_translation values (GET_REPRESENTATION(’fdep’, ’smit’),

GET_REPRESENTATION(’erm_’, ’mrta’), ’fdepsmit.erm_mrta’);

insert into s_translation values (GET_REPRESENTATION(’erm_’, ’mrtc’),
GET_REPRESENTATION(’proc’, ’gnsn’), ’erm_mrtc.procgnsn’);

insert into s_translation values (GET_REPRESENTATION(’erm_’, ’mrta’),
GET_REPRESENTATION(’proc’, ’gnsn’), ’erm_mrta.procgnsn’);

--
-- DATA TYPES
--
insert into s_datatype values (’int_’, ’integer’, ’integer’);

insert into s_datatype values (’fixd’, ’fixed’, ’fixed-point decimal number’);

insert into s_datatype values (’date’, ’date’, ’date’);

insert into s_datatype values (’bool’, ’boolean’, ’boolean’);

insert into s_datatype values (’char’, ’char’, ’fixed-length character string’);

insert into s_datatype values (’vchr’, ’varchar’, ’variable-length character string’);

insert into s_datatype values (’flot’, ’float’, ’single precision floating point number’);

insert into s_datatype values (’dbl_’, ’double’, ’double precision floating point number’);

461

Appendix H

Swift class hierarchy

In this appendix is presented the complete class hierarchy of Swift in graphical form.

The notation used is a slightly modified version of that used in Java in a Nutshell

(Flanagan, 1997, Chapter 17); a key to the notation may be found in Figure H.1 on

the next page.

The class hierarchy is presented package-by-package. The packages are presented

in the following order:

swift.dd: classes related to repository access — see Figure H.2 on the following page.

swift.event: classes related to event handling — see Figure H.3 on the next page.

swift.model: classes for manipulating viewpoints and descriptions — see Figure H.4

on the following page.

swift.repn: classes for manipulating representations — see Figure H.5 on page 465.

swift.repn.erm mrtc: classes that implementRe(E -R,ERDMartin)— see Figure H.6 on

page 465.

swift.repn.fdepsmit: classes that implementRf (FuncDep,FDDSmith)— see Figure H.7

on page 466.

swift.repn.procgnsn: classes that representation Rd(DataFlow ,DFDG&S) — see Fig-

ure H.8 on page 467.

swift.trans.*: classes that implement translations — see Figure H.9 on page 467.

swift.ui: classes that implement Swift’s user interface — see Figure H.10 on page 468.

swift.util: miscellaneous utility classes — see Figure H.11 on page 468.

463

Class

Abstract class

Interface

Class

Abstract class

Interface

extends

implements

Implemented
in Swift

Not implemented
in Swift

Figure H.1: Key for interpreting class diagrams

swift.dd

java.lang

Object

ConstructLink

Repository

IndexedRepository

SQLRepository

ObjectStore

Oracle_80

PostgreSQL_101

PostgreSQL_621
TextRepository

TranslationInfo

Figure H.2: Swift class hierarchy: swift.dd package

java.awt.eventswift.event

ActionConstants ItemListener

DescriptionMenuListener

Figure H.3: Swift class hierarchy: swift.event package

java.awt.event

swift.event

swift.ui

swift.model

Object

Description

Viewpoint ActionConstants

MouseListener

ActionListener

StatusBarControl

java.lang

Figure H.4: Swift class hierarchy: swift.model package

464

java.awt.event

java.lang

swift.repn

Object

Construct

DConstruct

Attribute

Constraint

Record

GConstruct
Connector

Symbol
Representation MouseListener

MouseMotionListener

DictionaryConstants

RepresentationAccess

Figure H.5: Swift class hierarchy: swift.repn package

swift.repn.erm_mrtc

java.util

java.lang

Connector

ListResourceBundle

Representation

SwiftTool

Symbol

MartinConstants

swift.ui

MartinToolResources

AssocTool

ExclusivityTool

RegularTool

RelationshipTool

SubtypeTool

WeakTool

AssociativeEntity

MutualExclusivity

NonMutualExclusivity

RegularEntity

WeakEntity

Relationship

SubtypeChild

SubtypeParent

MartinERDc

swift.repn

RepresentationAccess

Figure H.6: Swift class hierarchy: swift.repn.erm mrtc package

465

swift.ui

swift.repn.fdepsmit

java.util

java.lang

Connector

ListResourceBundle

Representation

SwiftTool

Symbol

SmithConstants

SmithToolResources

AttributeTool

BubbleTool

DomainFlagTool

DomainFlagDescTool

DomainFlagSourceTool

SingleTool

Attribute

Bubble

DomainFlag

DomainFlagDesc

DomainFlagSource

MultiValued

SingleValued

SmithFDD

swift.repn

RepresentationAccess

MultiTool

DomainFlag-
Constants

Figure H.7: Swift class hierarchy: swift.repn.fdepsmit package

466

swift.ui

swift.repn.procgnsn

java.util

java.lang

Connector

ListResourceBundle

Representation

SwiftTool

Symbol

GaneSarsonConstants

GaneSarsonToolResources

MultiProcessTool

ProcessTool

ExternalTool

DataFlowTool

DataStoreTool

RepDataStoreTool

DataProcess

DataStore

ExternalEntity

Interface

MultiDataProcess

DataFlow

ResourceFlow

GaneSarsonDFD

swift.repn

RepresentationAccess

RepExternalTool

RepDataStore

RepExternalEntity

ResourceStore

SplitMerge

ResourceFlowTool

ResourceStoreTool

SplitMergeTool

Figure H.8: Swift class hierarchy: swift.repn.procgnsn package

swift.trans.erm_mrtc

swift.repn.procgnsn

swift.repn.erm_mrtc

swift.repn.fdepsmit

swift.transjava.lang

Object Translation

swift.trans.fdepsmit

fdepsmit

procgnsn

erm_mrtc
MartinConstants

SmithConstants

GaneSarsonConstants

Figure H.9: Swift class hierarchy: swift.trans packages

467

swift.event

java.util

swift.ui java.awt.eventjava.awt

Canvas

ProgressBar

SwiftCanvas

SwiftTool
ArrowTool

TextTool

Frame

Label StatusMessage

ListResourceBundle SwiftMenuResources

SwiftToolResources

Panel
SwiftStatusBar

SwiftToolbar

ActionConstants

ActionListener

AdjustmentListener

ComponentListener

MouseListener

StatusBarControl

SwiftWindow

Figure H.10: Swift class hierarchy: swift.ui package

java.lang

java.awt swift.util

Dialog ChooseDialog

Object UserInput

Figure H.11: Swift class hierarchy: swift.util package

468

