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Decoherence due to contact with a hot environment typically restricts quantum phenomena to the low

temperature limit, kBT=@! � 1 (@! is the typical energy of the system). Here we report the existence of a

nonequilibrium state for two coupled, parametrically driven, dissipative harmonic oscillators which,

contrary to generalized intuition, has stationary entanglement at high temperatures. This clarifies the role

of temperature and could lighten the burden on quantum experiments requiring delicate precooling setups.
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Introduction.—The initial separation of microscopic
quantum objects and macroscopic measuring apparatuses
has been slowly demystified through careful scrutiny of
which quantity it is that should be micro- or macroscopic.
Neither size nor mass can be any more regarded as defining
macroscopicity. Not even the amount of degrees of free-
dom forming the object, since interference fringes of mas-
sive many-atoms molecules [1], coherent superposition in
Bose–Einstein condensates [2], and superconductivity have
been observed. The role of quantum coherence in biologi-
cal processes has been highlighted [3] for ambient tem-
peratures, and recently, a proposal to create superpositions
of dielectric bodies, such as viruses up to micron size,
inside a high finesse optical cavity has been given [4].
However, demonstration of entanglement at high tempera-
tures would be a much more extreme phenomenon.

It seems that the interaction with a hot environment, and
thus the decoherence and relaxation of any object to the
corresponding thermal state, is the only surviving classi-
cality criterion. Put simply, if an object is subjected to an
environment with a temperature exceeding the typical
energy splitting, that is,

kBT > Etyp:; (1)

we can be almost sure that it will quickly lose all its
quantum features: superpositions and entanglement. We
will show that, contrary to common intuition, this border
drastically changes for nonequilibrium situations, and that
indeed an entangled state between two interacting harmonic
oscillators can be reached at any temperature, provided they
can be driven according to the description given next.

We note that former proposals to entangle dissipative
mirrors [5], membranes [6], and light modes [7], through
driving, showed the feasibility of such schemes, but only
for low temperatures. Entangling nanoresonators through
parametric driven has also been proposed, though without
analysis of decoherence mechanisms [8,9]. We sketch here

a simple idea of how to produce an entangled nonequilib-
rium state at high temperatures. It may provide a huge leap
in experimental requirements, while in addition it defi-
nitely relativizes the role of temperature in the list of
possible criteria for classicality, the latter being an impor-
tant theoretical topic. Furthermore, it supports the idea that
we might expect entanglement in hot highly nonequilib-
rium situations, as pointed out [10] for biological systems.
The model and its solution.—In particular, we study the

entanglement between two interacting identical harmonic
oscillators. Though an idealization, it encompasses a rea-
sonable description of a wide variety of objects in nature, in
addition to artificial ones like nanomechanical oscillators
[11], optical [12] and microwave cavities [13], and movable
mirrors [14] to cite some, through which we expect to give a
character of universality to the concepts that we expose
here. The Hamiltonian of the system, H s reads

H s ¼
X2
�¼1

�
P2
�

2m
þ 1

2
m!2Q2

�

�
þ cðtÞQ1Q2; (2)

with m the mass of the oscillator, ! the frequency, and cðtÞ
the coupling coefficient. In what follows we assume

cðtÞ ¼ mc0 þmc1 cosð!dtÞ; (3)

that is, we consider a time-dependent interaction, which
plays a fundamental role in the creation and survival of
entanglement. We explain later that the same effect can be
obtained through modulation of the frequency, although a
suboptimal efficiency is achieved.
In any realistic scenario the system is not completely iso-

lated from the outside. The most rigorous way to include dis-
sipation is bymeans of the system-bathmodel [15].We couple
the oscillators to two independent baths [see Fig. 1(a)],
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where the baths are modeled by an infinite collection of har-
monic oscillators [16]. This situation leads to thermalization
and decoherence for all degrees of freedom [17], unlike the
common bath case [18]. Besides, we avoid extra correlations
between parties induced by the common bath [19].

The evolution for the density matrix of the two oscil-
lators, �s, can be cast as,

�sðXf; tÞ ¼
Z

d4XiJðXf; t;Xi; 0Þ�sðXi; 0Þ; (5)

with X ¼ fQ1;þ; Q1;�; Q2;þ; Q2;�g and JðXf; t;Xi; 0Þ being
the influence functional which is given in terms of a path
integral expression after tracing out the environmental
degrees of freedom [20].

Usually, the analytical evaluation of JðXf; t;Xi; 0Þ, even
for time-independent systems, is only possible in very few
cases [16,21]. Here, we have been able to derive an exact
analytic expression for JðXf; t;Xi; 0Þ [22]. We assumed

for simplicity an Ohmic spectral density Ið!Þ¼̂P
j c

2
j=

ð2mj!jÞ�ð!�!jÞ ¼ m�!, which produces white noise

in the classical limit [21]. Our exact result allows studying
any regime (low or high temperature, strong or weak
damping, etc.) without approximations, so any system

that can be considered as two harmonic oscillators with
linear coupling can be ascribed exactly to our description.
Linearity of the total Hamiltonian ensures that the state

is always Gaussian, and thus its entanglement properties
are fully characterized by the covariance matrix �i;j ¼
hRiRj þ RjRii=2� hRiihRji with R ¼ ðQ1; Q2; P1; P2Þ,
which can be calculated from the propagator JðXf; t;

Xi; 0Þ. A computable measure of entanglement is known
for Gaussian states, the logarithmic negativity EN [23].
Entanglement in the time-independent case.—In the ab-

sence of driving [c1 ¼ 0 in (3)], contact with an environ-
ment asymptotically forces each particle into a thermal
state with a temperature equal to that of the bath it is
connected to. This state is reached independently on the
initial condition of the oscillator and leads to the entangle-
ment characteristics shown in Fig. 1(b). That is, any state
will, after thermalization, fall into either the shaded (blue,
entangled) part or the white (separable) part, depending on
the ratio c0=!

2 and the bath’s temperature [17]. Notice that
at weak dissipation strength, the equilibrium phase dia-
gram is mostly independent on � [24]. Above the so-called
quantum limit kT < @! [25], as expected from intuition,
each oscillator has an independent description because the
quantum state is separable (we focus on entanglement
since it underlies the very heart of the quantum weirdness).
Entanglement creation by driving.—The normal mode

transformation for the oscillator Hamiltonian (2) reads
~H ¼ P

�¼�P2
�=2mþm!2�Q2

�=2 where Q� ¼ ðQ1�
Q2Þ=

ffiffiffi
2

p
[P� ¼ ðP1 � P2Þ=

ffiffiffi
2

p
] and !2� ¼ !� cðtÞ=m.

In the continuous variable setting, it is known that the
maximally entangled state is the Einstein-Podolsky-Rosen
wave function [26]. It is just the infinite squeezing limit of
the two-mode squeezed vacuum state, in which the inde-
terminacies of Qþ and P� are under the standard quantum
limit set by Heisenberg’s principle, while Q� and Pþ are
above it [such that �Q�=�P� ¼ expð�2rÞ=!2, with r the
so-called squeezing parameter]. The opposite situation is
also valid. Thus generation of entanglement can be pro-
vided by squeezing of the normal modes, which in turn can
be generated through parametric driving of their frequen-
cies [8,9]. Both a time dependence in ! or c will do; how-
ever, the latter is better because it naturally provides the
correct combination of squeezing between�modes [9]. At
the same time, the environment will try to destroy quantum
coherence through equilibration to the thermal state. The
balance between these two competing effects will deter-
mine whether the state has stationary entanglement or not.
In Fig. 1(c) we provide an example of normal mode squeez-
ing in the presence of the bath above the typical quantum
limit (1) kBT=@! ¼ 5> 1.
In Fig. 2 we summarize our results. Indeed, we find sets

of parameters where entanglement is present at tempera-
tures beyond the quantum limit; notice that in both figures
kBT > @!. Starting with a thermal state at the bath’s tem-
perature, the system reaches after a certain time a nonequi-
librium state with nonzero stationary entanglement. We

FIG. 1 (color online). (a) The system is formed by two linearly
coupled oscillators, initially thermalized due to each of them
being dissipatively coupled to an environment at temperature T.
Driving the coupling (or frequency) sinusoidally leads to the
production of entanglement even at very high temperatures.
(b) Entanglement phase diagram for the case without driving.
The state thermalizes to a state with no entanglement (white)
unless the temperature is below the quantum limit kBT < @!.
We used � ¼ 0:0005!. (c) Wigner phase space representation of
the normal modes. They are sufficiently squeezed along orthogo-
nal directions, so the oscillators are entangled (EN ’ 0:7). The
parameters are kBT=@! ¼ 5, � ¼ 0:005!, c1 ¼ 0:5m!2, while
the snapshot has been taken at time !t ¼ 12:5. The projections
have been drawn to guide the eye.
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have chosen rather conservative couplings to the baths, and
still very high temperatures, kBT � @!, can be reached.

The highly nonequilibrium state into which the system is
forced reaches the same amount of stationary entangle-
ment, independent on the initial state of the system. To
show this effect we plot in Fig. 3 (see inset) the time
evolution of entanglement when the system starts with a
two-mode squeezed state and squeezing parameters r ¼ 0,
0.5, and 1, and compare it to the case of an initial thermal
state with the same temperature as the bath.

New phase diagram for entanglement.—Parametric driv-
ing yields a new asymptotic behavior which defines a new
‘‘phase diagram,’’ now dependent on four parameters:
driving amplitude, frequency, temperature, and the cou-
pling to the bath. The driving frequency is overall chosen to
be !d ¼ 2� 0:998!, and we also set c0 ¼ 0. While the
optimal squeezing generation is obtained with a!d depen-
dent on! and c1, this value of!d seems to produce results
nearly as good for different parameters, so it will be used
unless otherwise stated. In Fig. 3 we see the points which
delimit the border between presence (left) or absence
(right) of entanglement, which is linear in temperature
and driving amplitude and, as expected, the more isolated
and driven the system is (low � and high c1), the higher the
temperature can be reached. In addition to the exact result,
we have plotted a simple estimation of the border which we
explain next.

The rate of squeezing (leading to entanglement) can be
obtained from the solutions to the nondissipative driven
problem, having the Mathieu form xðtÞ ¼ expði�MtÞ�ðtÞ,
where�ðtÞ is a periodic function. If the Mathieu character-
istic exponent �M is real, they are stable, otherwise they
are divergent which implies production of squeezing at a
rate jImð�MÞj (for every damped solution there is a diver-
gent one) [27]. The exponent jImð�MÞj equals c1=4!

2

when !d ’ 2! and c1=!
2 is small. The rate of decoher-

ence can be estimated from the diffusion coefficientDpp ’
m�kBT [28]. Thus by comparison of both rates we obtain
the new condition under which entanglement is present:

kBT

@!
� jImð�MÞj

�
; (6)

which is seen to be a rather impressive match to the exact
evolution (see Fig. 3). The condition above should be
compared with the standard condition (1). In a nutshell
the driving brings in a new quantum limit.
Some examples.—We give next some actual examples

of experiments which could profit from our strategy.
However, an additional comment is in order: the fact that
squeezing grows approximately as jImð�MÞjt also means
that the energy and delocalization in space are increasing
exponentially in time. Thus checking consistency with
experimental size and energy considerations is a must.
Take, for example, two calcium ions, each confined in its

own planar Penning traps [29]. A trap can be fabricated by

FIG. 2 (color online). Time evolution of entanglement towards
its stationary value at (a) different environmental temperatures
kBT=@! ¼ 250 [grey (red)], 300 [light grey (green)], and 350
[dark grey (blue)], with a damping of � ¼ 0:005!, driving
amplitude of c1 ¼ 0:5m!2, and driving frequency !d ¼ 2�
0:998!. The stationary regime is reached in a reasonable time
with a significative amount of entanglement. Notice that for an
oscillator with frequency! ¼ 21 GHz the values of temperature
are directly given in Kelvin, and this would imply observation of
entanglement at room temperature. (b) Now the temperature is
kept fix, kBT=@! ¼ 5, with the same parameters, while the
damping parameter is varied: � ¼ 0:005! [grey (red)], 0:01!
[light grey (green)], 0:02! [dark grey (blue)].

FIG. 3 (color online). Phase diagram of entanglement in the
presence of parametric driving. We compare the condition (6)
[lines] with the exact time evolution [dots] for different bath
couplings � ¼ 0:005! [dark grey (blue) triangles], 0:001!
[light grey (green) circles] and 0:0005! [grey (red) squares].
Inset: time evolution for different initial conditions, namely, a
two-mode squeezed vacuum state (dotted curves) with squeezing
parameter r ¼ 0 [grey (red)], 0.5 [dark grey (blue)], and 1 [light
grey (green)], as compared to that of an initial thermal state
(black). They all converge after some tens of periods. The
parameters here are � ¼ 0:001!, c1 ¼ 0:2!2, !d ¼ 2�
0:998!, and kBT=@! ¼ 10.
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nanolithography with a size of d� 0:12 �m. If a voltage
of V ¼ 10 V is applied, the motional frequency is ! ’
21 GHz and thus we can interpret Fig. 3 as the temperature
in Kelvin. A wire mediated capacitive coupling between
traps allows us to reduce the effective distance between
ions and makes the coupling increase up to a reasonable
level cðtÞ=m ¼ c0 ¼ 0:047!2

0. If the frequencies are

driven instead of the coupling [i.e., !ðtÞ ¼ !0þ
!1 sin!dt)], and assuming � ¼ 0:0005!, we still manage
to get entanglement up to �50 K, while the delocalization
of the oscillators is yet below the trap size, ensuring no
confinement leakage. To reach room temperature, a very
strong coupling would be required indeed, but our method
allows the experimentalist to avoid building a sub-4 K
(colder than liquid helium) setup. We believe this to be a
huge experimental step.

Another example is microwave superconducting cavities
[30]. Their coupling can be modulated by placing a super-
conducting qubit between them. The typical frequencies in
these resonators are in the GHz regime, operating usually
in the millidegrees Kelvin range. The decoherence in these
systems is � ffi 10�4!, or even less. However, the coupling
is weak, around 10 MHz. In this case, due to the weak
coupling, the parametric driving would enhance the
amount entanglement that could be measured by present-
day technology [31].

Current experiments with nanomechanical resonators
have these typical parameters:! ¼ 2�	 ¼ 2�� 15 MHz,
m ¼ 10�17 kg, c1 � 10�3!2, and a quality factor Q�
20 000, which yields a damping � ¼ 5� 10�5! [32].
Steady entanglement can be observed at tens of millidegrees
Kelvin. If the frequency of our coupling can be increased by
a factor 10, it might reach the entangled regime in the range
of Kelvin.

All these examples together with recent proposals and
experimental achievements, such as strong coupling [12]
and parametric driving of the coupling [8], make it feasible
that in the near future we might measure entanglement in
yet unsuspected temperature regimes, while eliminating
the need for complex and costly setups to cool objects to
the quantum regime.
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