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We consider a system of globally coupled active rotators near the excitable regime. The system displays

a transition to a state of collective firing induced by disorder. We show that this transition is found

generically for any diversity distribution with well-defined moments. Singularly, for the Lorentzian

distribution (widely used in Kuramoto-like systems) the transition is not present. This warns about the use

of Lorentzian distributions to understand the generic properties of coupled oscillators.
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Synchronization phenomena play a prominent role in
many branches of science [1]. They have been analyzed in
terms of phase models which successfully describe sys-
tems of weakly coupled limit cycle oscillators. In particu-
lar, the Kuramoto model [2] has become a paradigm for the
study of synchronization (for reviews, see [1,3,4]). It shows
how synchronized behavior can appear when the competi-
tive effects of coupling and diversity among the individual
units are present.

Among other possible sources, diversity in the oscilla-
tors is usually introduced by taking their natural frequen-
cies from a probability distribution. Although, on general
grounds (central limit theorem), this distribution should be
well approximated by a Gaussian form, theoretical studies
usually consider a Lorentzian form since it allows for an
easier analytical treatment. It is generally believed that the
main results concerning the global synchronization prop-
erties are qualitatively independent of the precise form of
the distribution as long as it is symmetric and unimodal. In
this Letter, however, we show that a variant of the
Kuramoto model displays or not a reentrant diversity-
induced transition into a state of collective firing, depend-
ing on the type of distribution used. This transition is
present in all the (symmetric and unimodal) distributions
studied, but not in the case of the Lorentzian. The nonge-
neric behavior of the system with a Lorentzian distribution
of natural frequencies warns about the indiscriminate use
of some recently proposed methods [5] in order to under-
stand generic properties of coupled oscillators.

We consider the following variant of the Kuramoto
model which describes the dynamics of an ensemble of
globally coupled active rotators �jðtÞ, j ¼ 1; . . . ; N [6]:

_� j ¼ !j � sin�j þ K

N

XN
l¼1

sinð�l ��jÞ: (1)

A natural frequency !j < 1 (respectively, !j > 1) corre-

sponds to an excitable (respectively, oscillatory) behavior
of the rotator j when it is uncoupled. K is the coupling
intensity. Diversity is introduced by considering that the
!j’s are distributed according to a probability density

function gð!Þ, with mean value �! and variance �2. The
model is equivalent to the Kuramoto model with zero
average frequency and an external periodic driving of
frequency � �!, as it can be easily seen with the change
of variables �j ! �j � �!t. Throughout the Letter, be-

sides the well-known Gaussian and uniform distributions,
we will be considering a general family of distributions
Lm
n ð!Þ, for n > 0, mn> 1, defined as

Lm
n ð!Þ ¼ n�ðmÞ

2�ðm� 1=nÞ�ð1=nÞ
�nm�1

ðj!� �!jn þ �nÞm : (2)

The variance is finite only for mn> 3 and it is given by

�2 ¼ �2 �ðm�3=nÞ�ð3=nÞ
�ðm�1=nÞ�ð1=nÞ . The Lorentzian distribution corre-

sponds to L1
2ð!Þ and has, hence, an infinite variance,

although we still will use � as a measure of diversity.
To characterize the collective behavior we use the time-

dependent complex variable rðtÞ [2,6]:

rðtÞ ¼ 1

N

XN
j¼1

ei�jðtÞ: (3)

The Kuramoto order parameter � � hjrðtÞji, where h� � �i
denotes time average, is known to be a good measure of
collective synchronization in coupled oscillators systems,
i.e., � ’ 1 when the oscillators synchronize (�j ’ �l, 8j,

l), and � ’ 0 for desynchronized behavior.
For �! & 1 the system displays three different regimes:

(i) for small diversity, almost all units are at rest at similar
fixed points [rðtÞ does not depend on time and � � 1];
(ii) increasing diversity one enters a dynamical state in
which a macroscopic fraction of units fire at (roughly) the
same time [rðtÞ is time dependent while � is still close to
1]; (iii) for even larger diversity, the system reenters a
desynchronized state [� small and rðtÞ time independent].
To discriminate between static entrainment and collective
firing, regimes (i) and (ii), we use the order parameter
introduced by Shinomoto and Kuramoto [7]:

� ¼ hjrðtÞ � hrðtÞiji; (4)

which differs from zero only for collective firing.
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An approximate theory to describe these three regimes
was developed in [8]. The theory was independent of the
form of the natural frequencies distribution and was also
applicable to identical units subject to noise. A recent
method developed by Ott and Antonsen [5,9] allows us
to solve this model exactly (and a large family of related
ones) in the infinite number of oscillators limit and in a
number of cases that include the Lorentzian gð!Þ. Childs
and Strogatz [10] used this method to obtain the full
bifurcation diagram of the complex variable rðtÞ for the
Lorentzian distribution. Contrarily to the results of [8],
their exact solution implies that there is no transition to
collective firing increasing the diversity for �!< 1. The
nonexistence of the transition can be derived from the
bifurcation diagram in the �!�� space obtained using
the ideas of [10], see Fig. 1. Regime (ii) takes place for the
parameter region located to the right of the SNIC (saddle
node on the invariant circle) bifurcation line and below the
Hopf line. For �!< 1 increasing � one never enters in this
region, so there is no diversity-induced transition to col-
lective firing. This situation is generic for all values of K,
since it can be shown that the SNIC bifurcation always
starts at �! ¼ 1, � ¼ 0 with positive slope. The model was
also studied for the Lorentzian case with a different ap-
proach in [11] and the same results were found.

We will give now the main sketches of the Ott-Antonsen
method. Quite generally, we will show that, in fact, the
method can be successfully applied to any nonsingular
distribution gð!Þ. Let fð!;�; tÞ be the density of oscilla-
tors with frequency ! and phase � at time t. This function
obeys the continuity equation (conservation of the number
of oscillators):

@fð!;�; tÞ
@t

þ @

@�
½ _�ð!;�; rÞf� ¼ 0; (5)

with _�ð!;�; rÞ ¼ !� sin�þ<ðre�i�Þ. If the coeffi-
cients of the Fourier expansion

fð!;�; tÞ ¼ gð!Þ
2�

�
1þ X1

m¼1

½fmð!; tÞeim� þ c:c:�
�

(6)

(c:c: denotes complex conjugate), satisfy the ansatz

fnð!; tÞ ¼ �ð!; tÞn; (7)

then �ð!; tÞ and rðtÞ ¼ R
d!

R
d�ei�fð!;�; tÞ obey the

integrodifferential equations

@�

@t
þ i!�þ 1

2
f½Krþ 1��2 � Kr� � 1g ¼ 0; (8)

rðtÞ ¼
Z

d!�ð!; tÞ�gð!Þ: (9)

The manifold defined by (7) is invariant under the system
evolution, so if that condition is fulfilled by the initial
condition, it is fulfilled afterwards. Moreover, in [9] it is
shown that for a Lorentzian gð!Þ the long time evolution of
rðtÞ is always described by this reduced manifold.
If gð!Þ has a finite set of poles !̂1, !̂2; . . . outside the

real axis [as is the case for Lm
n ð!Þ for even n and integerm,

including the Lorentzian L1
2ð!Þ] and �ð!; tÞ satisfies cer-

tain analyticity conditions, one can obtain (9) by contour
integration. Then rðtÞ can be written is terms of �kðtÞ �
�ð!̂k; tÞ and one can obtain a closed set of ordinary dif-
ferential equations for �kðtÞ. In the case of poles with
multiplicity larger than 1, rðtÞ depends also on the partial

derivatives with respect to !, �s
kðtÞ � �ðsÞð!̂k; tÞ.

Equations for these new functions �s
kðtÞ can be obtained

by differentiating Eq. (8) with respect to!. For an arbitrary
distribution gð!Þ, we can obtain an approximate evolution
of the system by evaluating integral (9) using a finite,
though large, set of values of ! and integrating numeri-
cally (8) for each one of these frequencies.
In Figs. 2 and 3 we show the order parameters as a

function of the diversity for several frequency distribu-
tions, obtained by direct simulation of Eqs. (1) and by
applying the Ott-Antonsen method as described above.
For the Gaussian and uniform distributions, but not for
the Lorentzian, the regimen of collective firing (signaled
by a nonzero value of the parameter �) is present for
intermediate values of the diversity. Beyond the cases
shown in the figures, the transition is also present for other

symmetric distributions such as the exponential gð!Þ ¼
1

�
ffiffi
2

p e�ð ffiffi
2

p
=�Þj!� �!j, or the family Lm

n ð!Þ for mn � 3. Even

L1
3ð!Þ which has infinite variance (but well-defined first

moment) presents the reentrant diversity-induced transi-
tion (for values of �! close enough to one). Also, if we
truncate the Lorentzian distribution at some finite value of
!, i.e., set gð!Þ ¼ 0, if j!� �!j>C, the system shows
this reentrant transition (we checked for C ¼ 50�).
Furthermore, Fig. 3 shows that for finite-size systems
with a Lorentzian distribution a maximum in � is indeed
present, being quite visible up to a few thousand of units. In
fact, Lorentzian distributions in systems with a finite num-
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FIG. 1 (color online). Bifurcation diagram of the model de-
fined by Eqs. (1) for a Lorentzian distribution of frequencies and
K ¼ 5. There is also a saddle-loop bifurcation line, not shown,
that goes from the Takens-Bogdanov point (circle) to the saddle-
node separatrix loop point (square) where SNIC line starts [10].
Collective firing takes place in the region below the Hopf and
right of the SNIC.
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ber of units are effectively truncated, truncation that dis-
appears in the limit N ! 1. We conclude that the exis-
tence of the transition to common firing is a truly generic
phenomenon and the results obtained using a Lorentzian
distribution in the infinite system size limit are rather
pathological and misleading.

We introduce now an alternative approach to determine
the parameters for which the system shows collective fir-
ing. Notice that rðtÞ is time independent in regimes
(i) (units at rest) and (iii) (desynchronized state) but not
in (ii). Following previous analysis in the limit of infinite
units [12], we write rðtÞ ¼ �ei� and, assuming that rðtÞ is
time independent, derive the following equations for the
global amplitude � and phase �:

� sin� ¼ �!�
Z
j!j>b

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

!2

s
gð!Þd! � f1ðbÞ; (10)

K�2 þ � cos� ¼
Z b

�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �!2

p
gð!Þd! � f2ðbÞ; (11)

with b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2�2 þ 2K� cos�

p
. It is possible to obtain

a closed self-consistent relation for b:

b ¼ Kðf21 þ f22Þ
bf2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f22 þ ð1� b2Þf21

q � h�ðbÞ: (12)

For parameters corresponding to regime (ii) Eq. (12) has
only one solution corresponding to an unstable fix point.

When the branches hþðbÞ and h�ðbÞ meet two new solu-
tions arise. This signals a SNIC bifurcation where a stable
fix point and a saddle are created. Imposing h�ðbÞ ¼
hþðbÞ ¼ b, one can determine the line �ð �!Þ at which the
transition takes place. Noticeably, on the SNIC one obtains
� ¼ �=2 independent of the form of the distribution gð!Þ
or the values of the parameters. As shown in Fig. 4 the
results of this approach coincide with those of the Ott-
Antonsen method.
For the Gaussian distribution, the SNIC line that limits

the collective firing regime starts at �! ¼ 1, � ¼ 0, with a
negative slope. Therefore for �!< 1, as � increases one
finds first a stable steady state for r [regime (i)], then
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FIG. 3 (color online). Same as Fig. 2 for Lorentzian L1
2ð!Þ

(upper and middle panels) and L1
4ð!Þ (upper and lower ones)

distributions. Note that for the Lorentzian distribution L1
2ð!Þ the

Ott-Antonsen method predicts that � is zero for all values of the
diversity � while the numerical simulations for finite system size
N show a rounded-off transition.
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FIG. 2 (color online). Order parameters � and � as a function
of the diversity � coming from numerical simulations of the full
system of Eqs. (1) for N ¼ 104 units in the cases of a Gaussian
(dots) and uniform (crosses) distribution of frequencies. In each
case, the solid lines are the result of the application of the Ott-
Antonsen method using 104 values of ! for the numerical
integration of Eq. (9). K ¼ 5 and �! ¼ 0:97.
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FIG. 4 (color online). (Partial) Bifurcation diagram for
Gaussian (left) and Lorentzian (right) distributions. For the
Gaussian, circles correspond to the Ott-Antonsen method solved
numerically as in Fig. (2), solid lines to the numerical solution of
Eqs. (10)–(12) and dashed lines to Eq. (14). For the Lorentzian
distribution the lines correspond to the Ott-Antonsen method.
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crosses the SNIC lower boundary entering in regime (ii)
and finally crosses the reentrant upper boundary entering in
regime (iii) where a stable steady state is present again.
Region (ii) moves upwards and broadens increasing the
coupling K. The overall phase diagram still has a Takens-
Bogdanov point as in Fig. 1. DecreasingK this point moves
down and to the left. For low values ofK, for exampleK ¼
1, the upper boundary of the collective firing region is
limited by the Hopf rather than by the reentrant SNIC,
nevertheless the diversity-induced transition is still present.
This reentrance behavior is generic for all distributions
with well-defined moments.

The Lorentzian distribution behaves differently. The
SNIC starts at �! ¼ 1, � ¼ 0 with positive slope.
Although apparently this is a small quantitative difference
and the phase diagrams may be topologically equivalent,
there are important qualitative consequences and, in par-
ticular, no diversity-induced transition to collective firing
exists [13].

For distributions which decay fast enough we can obtain
an analytical approximation for the line �ð �!Þ at which the
transition to collective firing appears. We assume that
gð!Þ ’ 0 for j!j> b. As b � jK�� 1j, this approxima-
tion turns out to be appropriate for large values ofK. Using
� ¼ �=2 one gets � ¼ �! from Eq. (10). Inserting this in
(11) and expanding the integrand to second order in !=b
we obtain

�ð �!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2ð2K2 � 2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2 �!2

p
� 1Þ þ 2

q
: (13)

From Eq. (13) one can obtain d�=d �!. At the origin of the
SNIC line ( �! ¼ 1), the derivative takes a negative value
for anyK > 0 and tends to�1 as�K3 forK ! 1. Notice
that this is independent of the form of gð!Þ provided the
tails decay fast enough. Higher order corrections do de-
pend on the specific form gð!Þ. For the Gaussian the next
order gives

�ð �!Þ2¼� �!2ð3þ2K2Þ�2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2½6 �!2�24Kð1þK2 �!2Þ3=2�þ28ð1þK2 �!2Þ2

q
3

: (14)

This approximation, plotted as dashed lines in Fig. 4, de-
scribes well the location of the transition to firing between
regimes (i) and (ii) for the case of a Gaussian distribution.

In summary, globally coupled active rotators dis-
play a diversity-induced transition to a state of collective
firing. We have shown that this is a genuine transition
that is found for any disorder distribution with well-
defined moments. Curiously enough, the transition is
not present for a Lorentzian distribution, for which the
first moment integral is only defined as a principal value.
We have also found that these nongeneric results given by
the Lorentzian distribution also occur in another well-
known excitable system, an ensemble of coupled
FitzHugh-Nagumo [14] units, for which the reentrant
diversity-induced transition is present as well for distribu-
tions such as Gaussian or uniform, but not for the
Lorentzian one.

While the Lorentzian distribution seems to be suitable to
study generic properties of the original Kuramoto model, it
is not appropriate for excitable systems and beyond those
may not be adequate for other systems. This is a clear
warning about its use in analytical approximations in-
tended to draw conclusions on the generic properties of
coupled oscillators.
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