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Abstract 

River basin restoration and management is crucial for assuring the continued delivery of 

ecosystem services and for limiting potential hazards. Human activity, whether directly or 

indirectly, can induce erosion processes and drastically change the landscape and alter vital 

ecological functions. Mapping erosion risk before future restoration-management projects will 

help to reveal the priority areas and develop a hierarchy ordered according to need. For this 

purpose, we used the Revised Universal Soil Loss Equation (RUSLE) erosion model. We also 

applied a novel technique called GPVI (Genetic Programming Vegetation Index) in the Martín 

River basin in NE Spain (2112 Km2), which has a large coalfield located in the southern part of 

the basin. Approximately two-thirds (69%) of the area of the Martín basin presents low and 

medium soil loss rates, and one-third (31%) of the area presents high (18%), very high (10%) 

and irreversible (3%) erosion rates. The southern part of the basin is the most degraded and is 

strongly influenced by the topography. This work allows us to locate areas prone to erosional 

degradation processes to help create a buffer around the river and locate “spots” in need of 

restoration. We also checked the error estimation of the methodology because our soil maps do 

not include rock and bare rock areas. The usefulness of applying RUSLE for predicting 

degraded areas and the consequent directing of soil conservation-restoration actions at the basin 

scale is demonstrated. We highly recommend a field survey of the selected areas to prove the 

goodness of the model estimations. 

 

Keywords: Water erosion; Rehabilitation, Semi-arid, Revised Universal Soil Loss Equation 

(RUSLE), GIS, Spain 

 

1. Introduction 

Restoring eroded lands is a major objective to give back value to large parts of the world where 

erosion is a major environmental problem (Pimentel et al. 1995). 
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However, defining areas for restoration in a vast territory requires establishing the magnitude of 

the problem and the benefits of the solutions at an adequate spatial scale (Boardman 2006).   

Soil is often lost through erosion, a natural process that can be fostered by inappropriate land 

use and intense precipitation, among other factors (Garcia-Ruiz 2010). The European Union 

considers soil to be a nonrenewable resource, and soil degradation has strong impacts on soil 

and water resources (Montanarella 2000). The loss of topsoil and changes in its properties will 

cause the decline of the ecological processes that rely on it. Soil erosion increases the impact on 

streams through high sediment delivery, which has been identified as a leading cause of river 

degradation (USEPA 2000). Consequently, soil erosion causes the loss of the services provided 

by ecosystems (Van Wilgen et al. 1996) and knowing the spatial distribution of erosion rates is 

a primary step for planning restoration at the watershed scale. 

In Mediterranean areas, developing efficient tools for decision making regarding land use 

management is a major objective (Simoncini 2009) because of the multiple environmental 

problems arising from the intensive use of the land since long ago (Tabara and Ihlan 2008), 

particularly problems related to erosion (Boardman et al. 2003, Bazzoffi 2009). Opencast 

mining is one such activity, which contributes mostly to erosion (Wu and Wang 2007).  

Opencast mines are sources of high sediment yield to rivers if restoration is not properly carried 

out (Balamurugan 1991; Taylor and Owens 2009). Subsequently, human intervention in failed 

reclamation areas, especially opencast mines with highly eroded slopes connected with the river 

network, is necessary to prevent water pollution and to slow irreversible erosion (Pimentel et al. 

1995; Palmer et al. 2010). 

Mapping ecological processes and restoring areas with high sediment delivery would help avoid 

irreversible degradation that removes nutrients and reduces fertility (DeFries and Eshleman 

2004), thus limiting the sedimentation and eutrophication of nearby rivers, which would 

represent a potential hazard for the long-term sustainability of agriculture and ecosystem 

services at the basin scale (Krauze and Wagner 2007). For this reason, the number of projects on 

sediment-related river restoration at the River basin scale is increasing (Kondolf 1998; Ward 

and Fockner 2001; Pizzuto 2002; Pennisi 2004). Successful restoration projects on river basins 
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require an understanding of sediment transport processes. This understanding is achieved by 

identifying the suspended sediment sources on the basis of sediment monitoring and modeling 

(Gao 2008). 

Environmental planning faces uncertainty when decisions on resource allocation must be made, 

especially on large-scale projects. The aims of this study are to identify erosion prone areas at 

the basin scale and to produce a map with a hierarchy of zones degraded by erosion to be 

useful to prioritize the spatial distribution of restoration actions. The results of this application 

to the opencast coal mining practices in the basin are shown here as a qualitative planning and 

demonstration tool for soil protection. The application of our methodology is discussed as a 

resource for managers to identify critical soil source areas and the distribution of restoration 

actions at the basin scale. This should be also a relevant tool for planning land use management 

by individual land owners and extractive companies. 

2. Study area 

The Martín River basin is a 2112 km2 basin located in the south-central part of the Ebro River 

basin (NE Spain) (Fig. 1). The elevation ranges between 143 and 1620 m a.s.l. The basin shows 

two major “regions”: the highlands in the south (mean elevation 1100 m, 765 km2) and the 

lowlands in the north (mean elevation 750 m, 1347 km2), where most agricultural lands are 

established. The differences between these two zones are also marked by the presence of two 

dams, Escuriza and Cueva Foradada (maximum water storage capacities 6 and 22 Hm3, 

respectively), which intercept sediments from the entire upstream area and disturb the natural 

river flow regime, creating a completely human-activity altered environment downstream. The 

climate is Mediterranean, with continental influence. The summers and winters are usually dry, 

and the annual average precipitation of 360 mm is heterogeneously distributed both in space and 

time. The water deficit ranges between 530 mm and 758 mm, extending the dry period from 

May until October. The mean annual temperature range is 13-16 ºC, with minimum and 

maximum average temperatures of 5 and 25 ºC, respectively. Dryness, which has increased in 
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recent years (Moreno-de las Heras et al. 2009), is the main limitation for natural plant 

development in the region and for the development of agriculture, which is the major 

socioeconomic activity in the lowland part of the basin, covering 53% of this  part of the basin. 

This land is mostly used for dry cereal farming, except in the narrow belts along the river’s 

sides near the villages, where an old canal network is still in use to irrigate vegetable and fruit 

tree fields (Fig. 2). The meso-Mediterranean garrigue (Quercus ilex), accompanied by sabine 

(Juniperus sabina) in a few zones in the southern sector, is replaced northward by Kermes oak 

(Quercus coccifera), rosemary (Rosmarinus officinalis) formations, and steppe with small 

species (Macrochloa tenacissima, Stipa tenacissima, Ligeum spartum, Tamarix africana, 

Juniperus phoenicea). The only significant forests are located in the central part of the basin, 

and they consist mainly of Aleppo pine (Pinus halepensis). Riparian vegetation is extremely 

degraded because of the extensive cover of agricultural practices and regulated river flows.  

Regosol is the most widespread soil type in the Martín River basin, covering 41% of the total 

area. This soil is composed of medium and fine-textured materials derived from a wide range of 

rocks, which are normally extensive in eroding lands (FAO-UNESCO, 1988), particularly in 

arid and semi-arid areas and in mountain regions (Sánchez-Andrés et al. 2010). Rendsina-

lithosol and cambisol, which are shallow soils with medium and fine-textured materials, cover 

11.7% and 12.6% of the Martín basin, respectively. Calcic yermosol, defined as a surface 

horizon that usually consists of surface accumulations of rock fragments ("desert pavement") 

embedded in a loamy vesicular crust and covered by a thin aeolian sand or loess layer, extends 

over 8% of the study area. These qualities make these soils prone to erosion if combined with 

land cover-management misuse and steep slopes.  

A large coalfield is located in the southern part of the basin (Fig. 1). Mining was the main 

socioeconomic activity for people living in this region from 1960 to 1990. After a period of 

great prosperity of opencast mining during the 1980s with 17 active opencast mines (27 Km2), 

the activity has strongly declined and only three mines are currently operating (Comín et al. 

2009). The mining zones (Fig. 3) contribute to the emission of sediment according to their 
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restoration status. These mining zones are classified as first generation, second generation, and 

third generation. The first generation mines were restored by depositing materials following the 

platform-slope-ditch model during the 1980s. These mines have large areas of steep slopes 

(>22º), with ditches formed from rill erosion connected to the river network and an absence of 

pits. The second generation group of mines was restored with the same model but with slopes of 

15º and deep pit zones that accumulate runoff discharges. Moreover, these mines have received 

extensive application of soil and plant material to restore the plant community. The third 

generation mines were subject to a topographic restoration model that tries to simulate natural 

landforms not connected with the natural drainage. In addition to the three groups described 

above, a few mines abandoned after exploitation remain as non-restored mine zones in the 

region. 

3. Materials and methods 

Erosion rates have been estimated at the regional scale using the RUSLE model (Fu et al. 

2005, Onori et al. 2006; Pizzuto 2002; Pennisi 2004). European environmental researchers 

(Panagos et al. 2011) have recently mapped a soil erodibility dataset at the European scale. 

The objective was to overcome problems of limited data availability for the application of the 

USLE (Universal Soil Loss Equation) model and to present a high quality resource for 

modelers who aim to estimate soil erosion at the local/regional, national or European scale. 

Following this direction, the location of eroded areas and the estimation of the average annual 

soil loss from rill and sheet erosion in the Martín basin (Ebro basin, Northeast Spain) were 

determined by using the RUSLE (Renard et al. 1997) and an updated version of USLE 

(Wischmeier and Smith 1978), coupled with GIS (Geographic Information System).  

Many authors have used GIS/RUSLE models to estimate sheet wash erosion and non-point 

source material discharges in watersheds (Fu et al. 2005; Lim et al. 2005; Smith et al. 2007) 

and for environmental assessment (Boellstorff and Benito, 2005; Erdogan et al. 2007; Ozcan 

et al. 2008). An increasing number of studies on restoration ecology are using this model to 

identify potential restoration areas (Güneralp et al. 2003; Vellidis et al. 2003) and to design 
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reclamation plans for degraded areas such as opencast mines (Toy et al. 1999; Martín-Moreno 

et al. 2008; Moreno-de las Heras et al. 2009). 

Despite some uncertainties regarding RUSLE, such as the overestimation of soil loss on 

plots with low erosion rates and the underestimation of soil loss on plots with high erosion 

rates (Nearing 1998; Risse et al. 1993), we decided to use this model because it requires data 

that are relatively common and inexpensive to be processed with GIS. One of the highlights is 

the formulation of results that can be used for comparative or complementary future studies 

(Millward and Mersey 1999; Wang et al. 2003; Beguería 2006). 

3.1. The RUSLE model 

We used GIS commercial software (using a spatial analysis tool) to examine spatial variations 

in erosion using elevation data at a 20-m grid scale within the study area. Digital land cover data 

are available as shape files at the Aragon Territorial Information Centre (ATIC 2006). The 

Universal Soil Loss Equation (USLE) was used for this study because it is the most used 

empirical model that assesses long-term averages of sheet and rill erosion. This model is based 

on plot data collected in the USA (Wischmeier and Smith 1978). The USLE and its adapted 

version RUSLE (Renard et al. 1997) have been applied to various spatial scales and region sizes 

in different environments worldwide (Vrieling 2008).  

The USLE and RUSLE are statistically based water erosion models related to six erosion factors 

(for a detailed description of the factors and data collection methods, see the appendix at points 

1 and 2, respectively): 

A = R * K * L * S * C * P 

Where:  

A is the average soil loss from sheet and rill erosion, reported here in tons per hectare per year (t 

ha−1 yr−1).  
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R is the rainfall-runoff factor and represents the erosion energy in MJ mm ha−1 h−1 yr−1 based on 

the methodology of Renard et al. (1997), and it represents the average annual summation (EI) 

values in a normal year's rainfall.  

K is the soil erodibility factor, which represents both the susceptibility of soil to erosion and the 

rate of runoff, as measured under the standard unit plot condition expressed in (t h MJ−1 mm−1) 

(Renard et al. 1991).  

Only R and K have units; those units, multiplied together, give erosion in units of mass per area 

and time. Each of the other terms scales the erosion relative to specified experimental conditions 

(>1 is faster than erosion under those experimental conditions, and <1 is slower). The remaining 

factors are non-dimensional scaling factors. 

LS is the topographic factor describing the combined effect of slope length and steepness and is 

calculated with the approach of Moore and Wilson (1992),  

From the standpoint of soil conservation planning, the C factor is the most essential factor 

because land use changes that characterize, reduce or increase soil erosion are represented by 

this factor (Khana et al., 2007); however, the C factor is also the most costly (in time, at least) to 

estimate locally and then to extrapolate from the local measurements to the entire system of 

interest. Vegetation cover acts as a buffer layer between the atmospheric elements and the soil, 

absorbing most of the energy of raindrops and surface water to decrease the volume of rain 

reaching the soil surface (Khanna et al., 2007). Soil constantly tilled or disturbed has a 

maximum potential for erosion (C=1). Soil not recently disturbed has a nominal value of 0.45. 

Live or dead vegetation and rocks reduce C, reaching a maximum of 1.0 in constantly tilled soil. 

In places where total ground cover by live or dead material remains, C is taken as 0. In this 

study, several field samples were collected to determine the C factor following the approach of 

González Miguel A. and Bullock S.H. (unpublished). The next step was to extrapolate the 

punctual C factor values to the entire study area using the Genetic Programming methodology 

described by Puente et al. (2011) to obtain Vegetation Indices (VI's) designed exclusively for 
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our area. For a detailed description of the methodology used to calculate the C factor, see the 

appendix. 

3.2. Connectivity 

Connectivity means the physical linkage of sediment through the channel system, which is the 

transfer of sediment from one zone or location to another and the potential for a specific 

particle to move through the channel system (Hooke 

2003). In an attempt to evaluate the sediment connectivity in the Martín River basin, we 

created a buffer of 500 m at the sides of the main channel and its effluents. The area directly 

connected to the conveyor belt varies over different timeframes or under various flow 

conditions. We used this buffer size because it reflects a situation of moderate magnitude 

(Fryirs et al. 2007) over which sediments can readily reach the water without being 

intercepted by depositional areas. Then, we visually identified (color graduation) the higher 

eroded areas included in the buffer and marked them. In an effort to locate the areas and test 

the prediction of the model, we conducted a field and photographic survey in the degraded 

areas included within the buffer described by the model. 

3.3. Statistical analysis methodology 

To assess the relationship between erosion and the available covariates, a Generalized Linear 

Model (GLM, McCullagh and Nelder 1997) with a Gaussian response was selected. Among the 

various relevant factors that normally influence erosion, we chose cover, slope (LS), and rain 

(R) because they result in the best fit with erosion values. The response (erosion) and one of the 

covariates (LS) were log-transformed to reach normality. The regression models were fitted with 

the open-source R software (R Development Core Team 2010). For model selection an all-

subset regression with K-fold cross-validation was performed (Miller 2002), with Bayesian 

Information Criterion (BIC) as selection criteria. The one-standard-deviation rule was applied 

for making the model selection more stable and for selecting the most parsimonious and 

adequate model (Hastie et al. 2009). 
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4. Results 

4.1. Erosion at the basin scale 

Based on the pixel resolution of the RUSLE model used, the mean erosion value for the Martín 

River basin was 13.8 t ha-1yr-1, which is just over the maximum tolerable soil erosion that can 

occur and still permit crop productivity to be sustained economically (2.2 to 11.2 t ha−1 yr−1) 

according to the RUSLE model of soils in the United States.  

The spatial distribution of potential soil loss rates predicted by RUSLE and the watershed area 

related erosion rates are shown in Figures 5 and 6, respectively. Two-thirds (69%) of the area of 

the Martín basin have low and medium soil loss rates (less than 20 t ha-1 yr-1), and one-third 

(31%) of the area, mostly located in the central and southern parts of the basin, has high (18% 

of the watershed area with 20-40 t ha-1 yr-1) and very high (over 40 t ha-1 yr-1 in 13% of the area) 

erosion rates. A detailed description of the data estimated for each factor in the RUSLE equation 

is given in the appendix. 

The soil loss is at a maximum in rendzina-lithosol, with and area-weighted average (w.a.) of 

23.3 t ha-1 yr-1, and in regosol, with a loss of 15 t ha-1 yr-1 (w.a). This soil distribution covers the 

greatest part of the steep slope areas in the Martín basin (0≤LS≥49, Appendix). 

Annual soil losses corresponding to the different land covers are shown in Table 3. Dry farming, 

which occupies 38.6% of the basin area, has a moderate value of potential soil loss of 10.1 t ha-1 

yr-1. Grassland-“shrubland” formations occupy 24.9% of the basin area, with a mean soil loss of 

20.2 t ha-1 yr-1. The mean estimates for conifers (12% of the basin) and the formations of conifer 

and hardwood (8%) are 12 t ha-1 yr-1 and 12.2 t ha-1 yr-1, respectively. Scrub, irrigated 

agricultural, and unproductive land (mines, quarries, urban) cover 9.9%, 2.8%, and 1.5% of the 

basin area, respectively. Other cover (grassland, olive grove and vineyard, other hardwoods, 

poplar and aspen, vineyards, fruit trees) occupies 4.6% of the basin area. 

The final model selected, according to percentage of explained deviation and Akaike (1974) 

Information Criteria (AIC) (Konishi and Kitagawa 2008), with values of 92% and 473.8, 
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respectively, was log (Erosion) = log (LS) + R factor + Cover (Table 2). The log (LS) 

topographic factor explained 78% of the total explained deviance (Fig. 4), and contributed most 

of the variability of the values of predicted soil erosion. The percentages of plant cover 

explained only 21%.  

For modelling purposes, the variable C factor was deleted because it was highly correlated with 

some covariates and its inclusion would cause co-linearity.  In the full model, all possible two-

term interactions were added. 

Results obtained from all-subset regression with K = 10, (Fig. 7) shown as best models:   

 Model 1:  log (Erosion) ~ log (LS) + Cover + Rain + Cover:log(LS) 

 Model 2: log (Erosion) ~ log (LS) + Cover + Rain  

According with the one-standard-deviation rule Model 2 was the  most parsimonious (Fig. 8), 

with best Cross-validation score inside the interval CV ± s/ √ K , being s the standard deviation 

of CV and K the validation samples (CV = 0.04,  sd = 0.014, K = 10).  

4.2. Erosion in the coal mines        

In the Martín basin, 8 mines are in good ecological status, as they are restored and preserved, 

and 9 are in bad ecological status, as they are either non-restored (3) or restored and degraded 

(6) (Comín et al. 2009). Five mines are closed basins; they have a surface design simulating 

natural geomorphology. The RUSLE estimates of soil loss in the mines ranged between 1.4 and 

328 t ha-1 yr-1. The lowest rates correspond with flat areas created for restoration that are used 

for dry farming purposes and with wetland areas created in the old exploitation pit, which 

receive all the drainage of the surrounding areas. Maximum values were registered in very steep 

ditches, on hill slopes and, overall, in abandoned, non-restored or deficiently restored mines, 

where it was not possible for plants to colonize because of steep zones and the use of 

overburden top soil material (Fig. 6). These areas are directly exposed to the eroding power of 

rainfall, generating high runoff.   
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Old, first generation mine restorations following sequences of platform-bank with a slope angle 

of 22º have a range of 177-328 t ha-1 yr-1 for maximum values and mean values ranging between 

17 and 54 t ha-1yr-1. Abandoned mines have a range of 116-320 t ha-1 yr-1 as maximum values 

and 17-44 t ha-1 yr-1 as mean values (Fig. 3).  The second generation corresponds to mines 

where restoration was performed following the same practices as in the first generation with 

lowered bank slopes (15º). Intermediate erosion rates were estimated in these mine zones that 

still in exploitation-restoring process (17-25 t ha-1 yr-1) recording maximum soil loss of 184 t ha-

1yr-1 with medium value of 174 t ha-1 yr-1. Micro-watersheds with gentle slopes and a drainage 

network were created for the mines restored under third generation concepts. In these areas, 

maximum soil loss estimates range between 106 and 98 t ha-1 yr-1, while the mean values range 

from 16 to 23 t ha-1 yr-1. It is clear that applying improved restoration techniques reduces soil 

loss in mine zones and that non-restored and deficiently restored mines are sites contributing the 

highest soil loss.  

5. Discussion 

This study demonstrates that the RUSLE model used with appropriate values for each factor is a 

powerful tool. Using the GP (Genetic Programming) methodology proposed by Puente et al. 

(2011) was proven as a reliable approach to generating specifically designed indices to estimate 

the C factor in contrast with traditional indices, such as those of the NDVI and SAVI family 

(Puente et al. 2011). We identified high-risk areas where soil conservation-restoration practices 

are needed. In the Martín River basin, major efforts should be dedicated to retaining soil in its 

southern high relief part and, especially, in the no restored mines to prevent the irreversible 

degradation of these zones. For this purpose, the results of this study are useful for identifying 

different zones of erosion risk at the watershed scale and at lower scales (e.g., subwatershed). 

The identification of high erosion risk areas is crucial for soil conservation and restoration 

planning to reduce or avoid irreversible degradation.  
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The average annual soil loss rate estimated using RUSLE and GIS for the Martín River basin 

was 13.8 t ha-1yr-1. This estimation exceeds the estimated tolerable limits for soil formation of 

between 2 and 12 t ha-1 yr-1 in Mediterranean environments (Rojo 1990). These results compare 

well with other studies in similar areas (Renschler et al. 1999; Van Rompaey et al. 2003; 

Capolongo et al. 2008), confirming that the RUSLE-generated estimates of soil loss in this 

study appear to be reasonable.  

The spatial variation of erosion in the Martín basin appears to be dominated by slope. The 

higher mean values of potential erosion were associated with zones located in the highlands 

with steep areas, including opencast coal mines that had the highest erosion rates even though 

large areas of many coal mine zones have been submitted to a restoration process. Although 

erosion varies greatly depending on the type of mine restoration, the steepest zones in the 

opencast mines match the highest erosion rates in the Martín River basin because of the creation 

of large (sometimes 1 or more km2) hillslope areas inside and surrounding the mines by means 

of excavation. The scale of the mined areas (0.14 – 7.2 km2) in comparison with the pixel size 

of the DEM (400 m2) supports our assumption. Rill and gully networks in these reclaimed 

systems can markedly limit water availability and modify the spatial distribution of soil 

moisture at the slope scale by reducing the opportunities for down-slope runoff re-infiltration 

and by concentrating the water flow along the channeling network (Biemelt et al. 2005; 

Moreno-de las Heras et al. 2010).   

During the photographic field survey to evaluate the connectivity and eroded area prediction 

along the created buffer, we observed that some of the areas, appearing in the model analysis as 

high erosion areas, corresponded to bare rock and rock landslide phenomena; however, in the 

monitored areas, the model generally recognizes riverside degraded areas, as shown in Figure 9. 

We also identified some mining areas that were degraded in the year of the creation of the DEM 

used here and that are now restored, because of the dynamics of the extractive areas.  

Road embankments have not been considered with a special focus in this paper, but during the 

photographic survey, we realized the magnitude of their impact on the river system. These 
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slopes are often directly connected by channels to the river network without having any way to 

intercept the sediment through depositional areas. Bochet et al. (2009) argued that the 

stabilization of road slopes is doomed to failure if the ecological knowledge of the topographic 

thresholds that limit vegetation establishment is not taken into account at the time of road 

building. This argument is supported by the existence of road cuts with a slope gradient 

exceeding 45°, where intense erosion occurs, generating very high soil loss and impacts that 

other studies have already highlighted in Mediterranean sites near the study area (Bochet and 

García-Fayos 2004). We also highlight that some areas are highly degraded but are disconnected 

from the fluvial channel or are intercepted by depositional areas. These areas are not a direct 

threat to water bodies because they are not significant contributing areas. Management plans for 

a watershed should take into account the need to evaluate the importance of these areas with 

respect to different uses and the potential benefits of restoring these areas, assessing the 

effective value for the production of ecosystem services and the mechanical and monetary 

possibility of action (usually steep slopes) to restore it. 

5.1. Plant colonization and reclaimed slopes 

Moreno-de las Heras et al. (2011) suggest that natural plant colonization in Mediterranean-

continental reclaimed environments requires vegetation cover of at least 30% and rill erosion 

rates below 17 t ha−1 yr−1. In our case, 59% of the river basin has less than 30% plant cover, and 

41% of the basin area has a vegetation cover over 30%; this result is due to the very slow rate of 

plant recolonization and forest expansion, which occupies approximately 21% of the 

mountainous southern part of the basin.  

Fifty-six percent of the mine areas are included in the acceptable soil loss range for plant 

colonization, but the rate is higher than 17 t ha−1 yr−1 in 44% of the mine zones in the Martin 

basin. In these latter zones, plant colonization is difficult, enabling the formation of rill 

networks depending on the degree of disturbance, slope length and available water, among other 

factors (Moreno de las Heras et al. 2010). The consequence is a high erosion rate that endangers 

the life span of these newly created habitats and the wetlands created in the pit of the restored 
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mines, which were established by being filled with high loads of mined materials but are filled 

with eroded sediments. This siltation process also reduces other key ecological processes (e.g., 

sediment-water column exchanges, organic matter enrichment) and the biological structure of 

this type of ecosystem (Mitsch and Gosselink 2007; Gell et al. 2009).  

In most of the (north) lowland and relatively flat part of the basin, which is dominated by 

agriculture, the estimated erosion rates are much lower (in general, <10 t ha-1 yr-1). The high 

rates in this part of the basin are associated with river dynamics (bank erosion) and land use 

(Fig. 2), prevalent cereal crops and scrublands. In the southern and central zones of the basin, 

which are covered by conifers and hardwoods, the estimated values of the C factor (the 

vegetation-related variable in the RUSLE equation; see part 2 of the appendix) were, as 

expected, low because of the relatively high cover density. The C factor for vineyards and olive 

trees had typical intermediate values because of the vegetation-free zones between the rows of 

plants, which are common in this type of land use. However, for scrubland, the C values 

obtained reflect the low vegetation density of this land cover. Grassland was expected to show 

lower values than those obtained, but these values, again, depend on vegetation density, which 

is widely spaced. In any case, grasslands occupy only 0.5% of the whole area of Martín basin. 

Grassland-shrubland was found to be more susceptible to soil losses by water erosion than 

cropland, forests and plantations. A high erosion rate seems unlikely to occur in conifer 

plantations, but the relatively high rate observed in this land cover in Martin basin is probably 

due to these artificial plantations being established with the highly regular spatial distribution of 

the trees in hillslope areas. These results are similar to those observed in other semi-arid areas 

labeled as poor soil environments with past human overexploitation (Erdogan et al. 2007). 

These results are also partially a consequence of the anthropogenic displacement of shrubs and 

forest from low slopes (Smith et al. 2007). Past agricultural practices in these zones have 

eliminated natural vegetation from the steep zones, leaving a difficult terrain for agriculture 

(García-Ruiz 2011). Other studies in Spain showed that reforestation followed by insufficient 
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forest management may negatively affect both soil properties and the ecosystem’s response to 

the erosive action of rainfall (Pardini et al. 2003). 

Restoration planning to counteract erosion was approached with general reforestation actions 

extensively applied to large areas for most of the second half of the twentieth century. Now, 

more specific and autochthonous species are used for plant reforestation in Mediterranean areas 

(Pausas et al. 2004). Because slope plays a key role in erosion in the Martín basin, restoration 

actions must focus on the mitigation of slope-based erosion impacts, which requires a more 

comprehensive restoration planning than just revegetating by planting trees.  

The most efficient place from which to remove pollutants and nutrients from watershed 

discharges is the riparian zone (Welsch and Management 1991), before the water flows enter a 

stream channel. As most steep zones are located in the upper parts of the basin, the most 

important locations for protecting and restoring riparian buffers are along these headwater 

streams. Buffers disrupt lateral linkages within catchments, and they may include alluvial 

pockets of floodplains, fans or piedmont zones that occur at breaks in slopes along valley 

margins, disconnecting lateral connectivity in catchments (Fryirs et al. 2007). Solutions include 

low-cost erosion control techniques such as contour hedgerows across the slope in cropped 

fields or regenerated on the base of steeper inaccessible areas, where restoration actions are 

impossible or too expensive, to reduce runoff velocity and prevent pollution of the river 

network. 

Lasanta et al. (2001) and other studies showed that in Spain, the main process following the 

abandonment of hillslope cropping is the collapse of the terrace walls by landslides. Many areas 

identified in the highlands are affected by this problem. Where possible, the recovery of 

decaying cropping terraces in the steep slopes will be a good soil conservation practice (Dunjó 

et al. 2003). Other techniques are stone terracing, where a stone embankment (Marienfeld, 

1994) around a hillside intercepts overland flow, enhances infiltration, and safely guides runoff 

off field. These are some of the major recommended engineering structures for controlling soil 

erosion.  
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Stimulating extensive livestock forage in depleted soil using leguminous forage crops 

(Medicago sativa L.) would improve the soil conditions in the valley floors (Prosperi et al. 

2006). Because the shortage of nutrients in the Aragon region is the first limiting factor for plant 

colonization (Ries et al. 2000; Lasanta 2000), an enormous step forward will be the creation of a 

management plan for the use of organic waste as compost. This action would improve soil 

structure with organic matter and nutrients, taking advantage of this precious resource that is 

currently lost in landfills. This action will help plant colonization and consequently soil cover, 

which, when exceeding 60%, can significantly reduce soil erosion in semi-arid environments 

(Sauer and Ries, 2008). These combined benefits will result in increased and sustained crop 

yields as well as enhancements to multiple ecosystem services. 

6. Conclusion 

In this paper, we show a detailed mapping of soil erosion rates in the Martin basin. On the basis 

of this mapping, we are able to locate erosion-prone areas, where the concentrated water flow 

creates irreversible soil losses, by applying novel methodologies for collecting representative 

data for the RUSLE-GIS model.  In particular, we demonstrate that the data sampling 

methodology and the GP-based methodology designed by González and Bullock (unpublished) 

and Puente et al. (2011), respectively, are useful techniques for estimating the RUSLE C factor. 

On the basis of our experimental results, we believe that these two techniques applied together 

could improve the prediction of soil erosion rates and soil conservation restoration planning at 

the basin scale.  

Detailed site-specific restoration actions should be planned at the watershed scale, focusing on 

implementing buffer strip zones in the steep zones of the watersheds and in the river shores to 

decrease soil loss from the upper valleys to the rivers.  

Future studies on mine areas will require the latest available information to avoid erroneous 

estimation and, consequently, erroneous future restoration plans.  We strongly recommend that, 



18 
 

after the application of the model, a field survey be conducted to verify the predicted degraded 

areas that can be masked by bare rock and rock accumulation, among others.  
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Figure caption: 

 

Fig. 1 Maps of the Martín River basin showing its hydrological network, and the upper (South) 

part and the lower (North) part of the basin 

 

Fig. 2 Map of the Martín River basin showing the different land cover units 
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Fig. 3 Erosion rates by mine restoration status, the lower values correspond with the third 

generation restoration status 

 

Fig. 4 Estimated effects of the covariates, with standard errors (SE). 95% confidence R factor is 

interval Cover %, LS factor is used R factor  

 

Fig. 5 Map of predicted soil erosion with the RUSLE model in the Martín River basin  
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Fig. 6 Histogram of predicted soil erosion with the RUSLE model in the Martín 

River basin 

 

Fig. 7 BIC of the different models obtained by all-subset regression (“:” indicating interaction 

between the covariates) 
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Fig. 8 Model selection with the one-standard deviation rule. (CV = cross-validation) 

 

Fig. 9 Example of highly degraded riversides, founded using RUSLE-buffer map. In evidence 

on the bottom left (a), concrete ditch discharging straight in the river 
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Fig. 1A General flowchart of the methodology to estimate C from vegetation indices 

synthesized by GP. The figure also shows the syntax tree representation for one of the indices 
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