
Modelling Workflow Using Web
Services

K. Porteou

A dissertation submitted for the partial fulfilment of the
requirements for the degree of Bachelor of Arts (Honours)

at the University of Otago, Dunedin, New Zealand

11 November 2005

AcAcknowledgements

I would like to thank Dr Stephen Cranefield and Professor Martin Purvis for all their
help and feedback throughout the year. Especially to Stephen Cranefield for helping
me figure out how to use the tools I needed for my research.
I would also like to thank both of you for taking the time to proof read the documents
I had to submit as part of INFO 480; in particular the dissertation and literature
review.

I would also like to thank the ChemSearch laboratory for answering all my questions
and providing me with the necessary information to model the workflow of your
laboratory. This workflow was needed to test my project.

PART A

RESEARCH REPORT

Using Web Service ec inology Jo Model the Business

Processes of a Chemical Analysis Laboratory

Student Name: Katrina Porteous

Supervisors: Dr Stephen Cranefield, Professor Martin Purvis

November 11, 2005

Abstract

The use of web services technology is becoming more widespread with many busi-

nesses wishing to provide services to their clients over the Internet. Although web

services technology is currently the best method for providing services remotely over

the Internet it does not provide any concept of state or any way to model workflow.

This has resulted in new specifications to deal with these issues, namely WSRF and

BPEL4WS.

In order to effectively model certain types of workflow, such as that of the Chem-

Search laboratory, there needs to be a method for integrating BPEL4WS and

WSRF, so that stateful workflow can be modelled.

This research proposed a method of integration using a proxy service to enable

BPEL4WS to support WSRF that was evaluated by modelling the workflow of the

laboratory.

The results showed that the method enabled BPEL4WS to work with WSRF and

provided a mechanism that ensured a client always had a valid endpoint reference

to the WSRF web service.

This research also raised some problems with the specifications and tools used to

implement this method that would need to be resolved to ensure the widespread

adoption and standardisation of these specifications.

Contents

1 Introduction	 1

2 Key Terms	 2

3 Review of the Related Literature 	 4

3.1 Introduction 	
	

4

3.2 Web Services 	
	

4

3.3 Grid Services 	
	

5

3.4	 Workflow	 •		 7

3.5 BPEL4WS 	 11

3.6 WSRF 	 13

3.7 BPEL4WS and WSRF 	 18

3.8 Conclusion 	
	

21

4 ChemSearch Laboratory

5 Research Problem

5.1	 Main Problem

5.2 Sub Problem 1 	

5.3	 Sub Problem 2	

23

23

....	 23

24

24

6 Scope	 24

7 Importance of the Research
	

25

8 Research Methods	 26

9 Methodology	 27

10 Tools	 28

11 The Method of Integration	 28

12 Development	 31

12.1 Client-Side Workflow	 34

12.2 Laboratory-side Workflow 	 	 38

13 Results 41

13.0.1	 Method of Integratio 42

13.1 Web Services Specifications	 43

13.1.1	 WSRF 	 44

13.1.2	 BPEL4WS	 •	 44

13.2	 Tools	 44

13.2.1	 Cape Clear Orchestration Studio	 44

13.2.2 WSRF Apache Project 	 45

14 Discussion

14.1	 Alternatives	 4455

14.2 Method of Integration	 	 48

14 .2.1	 Generalisation	 48

14.2.2	 Storing Endpoint References 	 48

14.2.3	 Retrieving Endpoint References 	 	 50

14.2.4	 Application to Other Tools 	 51

14.2.5	 Scalability	 	 51

14.2.6 Summary of the method	 	 52

14.3 Specifications	 	 54

14 .3.1	 BPEL4WS 54

14.3.2 WSRF 	 56

14.4 Tools 	 57

14.4.1	 Cape Clear Orchestration Studio 58

14.4.2 Apache WSRF project 	 61

15 Future Work 64

16 Conclusion 64

17 References 66

Appendices 72

A FactoryService WSDL 72

B ChemSearchService WSDL
	

74

C FactoryService Code	 94

D ChemSearchHome Code	 95

iii

List of Figures

Sequence diagram showing the interaction of the three web services and

theBPEL4WS process	 29

2	 Sequence diagram showing the interaction, creation and retrieval of a WS-

Resource 	 	 30

3	 A model of part of the client-side workflow 	 	 35

4	 A flowchart of the process of ordering tests	 36

5	 A flowchart of the process of retrieving results . . . 	 	 	 37

6	 A model of part of the laboratory-side workflow	 38

7	 A flowchart of the process of receiving new orders 	 	 39

8	 A flowchart of the process of producing the client's report 	 	 40

9	 An extract from the jndi-config.xrnl file for the WS-Resource service	 47

10 The WS-Resource Factory Pattern [Sotomayor, 2005] 	 	 49

11 The Scalability Problem 	 	 52

12 The structure of a message variable defined in BPEL4WS 	 	 56

13 The SOAP message sent from the WS-Addressing stubs 	 	 58

14 The SOAP message sent from the Cape Clear Server . 	 59

iv

List of Tables

1	 The evaluation of the method for combining WSRF with BPEL4WS . . 	 43

2	 Summary of the problems encountered during the integration of WSRF

and BPEL4WS 	 63

Introduction

There is a growing interest in the scientific community to be able to share resources, data

and research. This has introduced the concept of e-science 1 , which involves using grid

service technology [Hunter et al., 2004] to solve these issues. Grid services are based on

web services standards that have been extended for use in e-science applications. Grid

services provide middleware that handles security, the ability to locate arid invoke the

services made available, resource management, etc. Web services is a form of middleware

that provides a way of describing, finding and invoking services remotely over the Inter-

net using XML-based standards such as SOAP (Simple Object Access Protocol), WSDL

(Web Services Description Language) and UDDI (Universal Description, Discovery and

Integration) [Johnson, 2005]. There have been a number of ideas raised in the grid ser-

vices community that have been scaled-down to a number of specifications that have been

proposed as standards in web services.

This research focuses on using one of these standards, namely WSRF (WS-Resource

Framework) [Czajkowski et al., 2004], in conjunction with a business process modelling

language, such as BPEL4WS (Business Process Execution Language for Web Services)

[Andrews et al., 2003], to enable stateful workflow to be modelled. The integration of two

such specifications is needed to model certain types of workflow like that of the Chem-

Search laboratory, where their clients need to be able to see the status of their report

as different tests have been carried out on their samples. WSRF will be used to model

the state of the report, while BPEL4WS will enable the workflow of the laboratory to be

modelled.

The details of this research, the method of integration and subsequent evaluation

from modelling the workflow of the ChemSearch laboratory are discussed in subsequent

sections of this document.

1 E-Science - A term that applies to collaboration amongst scientists, where large amounts of data,

resources, etc. are shared through the use of Internet-based technologies [Hunter et al., 2004]

2 Key Terms

This section provides some key terms that are mentioned throughout this document.

A web service as defined by the W3C [W3C, 2004a] is "...a software system designed to

support interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems interact

with the Web service in a manner prescribed by its description using SOAP-messages,

typically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards".

SOAP (Simple Object Access Protocol) is a protocol for distributed environments that

uses XML technologies as the message format, for the information that is passed between

two nodes in the connection [W3C, 2003].

WSDL (Web Services Description Language) defines the interface of the web service and

the operations the service will provide.

State is basically data that is persistent and can be changed via interaction with web

services.

A stateful resource is a resource used by a web service that has associated state and is

implemented as an XML document. It allows a web service to perform operations on data

from a previous invocation of the web service. Examples of a stateful resource include a

row of data in a database or a single file in a file system [Foster et al., 2004].

A WS-Resource is the combination of a web service and a stateful resource.

An endpoint reference as defined by WS-Addressing [W3C, 2004b] uniquely identifies a

web service on the network. It specifies an address as a URI to the service and optional ref-

erence properties that are used by WSRF to uniquely identify a particular WS-Resource.

The singleton pattern describes in this context the creation of a WSRF web service when

2

there is only ever one instance of the web service created. This means the service does

not require a unique identifier as there is only ever one copy of tins web service in existence.

The factory pattern defines the mechanism by which new instances, which in this case are

WS-Resources, are created. This means all instances are created using the factory instead

of creating an instance by using the "new" keyword. By default the class constructor of

a resource is made private to force the creation of new instances to occur through the

factory. This provides explicit control over the creation of new instances.

A correlation set is a group properties that uniquely identify an instance of a BPEL4WS

workflow [Andrews et al., 2003].

3

3 Review of the Related Literature

This section provides a critical analysis of the current literature related to this topic. In

particular it relates the literature to the problem this research is hoping to solve.

3.1 Introduction

The introduction of the Internet and its subsequent growth has led to the development of

Internet-based solutions to the distributed computing problem. One such solution is web

services, which provides a means of describing, finding and invoking services remotely over

the Internet [Johnson, 2005]. However, web services technology is not suited for resource

sharing within collaborative environments because web services describes services that

are available and how they can be invoked. This has led to the introduction of grid

technology. The popularity and interoperability of web services technology has influenced

the uptake of web services technology for use in grid services. This is to capitalise on the

service-oriented architecture prevalent in web services. The requirement of workflow to

be modelled to fully support collaborative environments within the scientific community

has led to the uptake of BPEL4WS [Andrews et al., 2003]. Since my research focuses on

the use of WSRF and BPEL4WS to model stateful workflow, i.e. workflow that relies

on the preservation of data between invocations of services, this literature review will

firstly discuss BPEL4WS and WSRF and then focus on the use of BPEL4WS in a grid

environment combined with WSR,F, which allows for stateful resources, to enable stateful

workflow to be modelled.

3.2 Web Services

Web services represent a form of middleware that uses XML-based standards such as

SOAP [W3C, 2003], WSDL [W3C, 2001] (Web Services Description Language) and UDDI

[UDDI, 2004] (Universal Description, Discovery and Integration) to provide services re-

motely over the Internet [Johnson, 2005]. SOAP is a protocol for distributed environ-

ments that uses XML technologies as the message format for the information that is

passed between two nodes in the connection [W3C, 2003]. WSDL defines the services

that will be offered over the network. Within a WSDL document a number of messages

and operations can be defined. A message describes the data that will be transmitted

4

and an operation describes the messages that will be sent and received upon invocation

[W3C, 2001]. UDDI defines a structure that describes the services that are available,

who makes them available, and the interfaces that can be used to access the provided

services [UDDI, 2004]. These standards provide the basis for web services technology

that enables the construction of loosely-coupled distributed systems built on a service-

oriented architecture [Atkinson et al., 2005]. According to the W3C ([W3C, 2004a]) a

service-oriented architecture is "a set of components, which can be invoked, and whose

interface descriptions can be published and discovered". A service-oriented architecture

separates the interface definitions from their implementations, which means a service

only needs to know the definition of the interface not how it is implemented. The use of

a service-oriented architecture offers numerous benefits including well-defined interfaces

[Pasley, 2005], platform independence and hides service implementation details from the

developer [W3C, 2004c].

The adoption of web services technology is increasing, due in part to many businesses

wishing to provide services to their clients over the Internet. While web services is

suitable for these types of situations, it is not suitable for collaborative environments,

such as those in the scientific community. This is because web services describes services

that are available and how they can be invoked. They do not enable resource-sharing,

which is a vital component of a collaborative environment [Foster et al., 2001]. This has

led to the concept of grid computing.

3.3 Grid Services

Grid computing places emphasis on "large-scale resource sharing and innovative applica-

tions" while maintaining high performance [Foster et al., 2001, p. 1]. Grid computing

revolves around the concept of the grid, which is defined as "a collection of resources

owned by multiple organizations that is coordinated to allow them to solve a common

problem" [Gartner Group, cited by [Oracle, 2005], p. 3]. The key concept of a grid is to

allow collaboration of resources and typically involves large amounts of data.

This concept of a grid can be further broken down into three different types of grids

[Gartner Group, ibid. The first type is a computing grid, which obtains spare processing

cycles from different locations to execute large applications. The second is a data grid,

which uses resources obtained from different locations to store the data used by the grid,

distributed across the combined resources. The third and final type is a collaborative

grid, which "ties together multiple collaboration systems from several owners to allow

collaboration on a common issue" [Gartner Group, ibid, p. 3].

This growing interest within the scientific community in being able to share their

resources, data, etc. in a collaborative environment, a concept termed e-science [Hunter

et al., 2005], has led to the development of grid technology [Foster et al., 2002], which is

based around this idea of grid computing. E-science is defined as being "large scale science

that will increasingly be carried out through distributed global collaborations enabled by

the Internet" [Hunter et al., 2005, p. 2]. The problems with this kind of environment

are that it will involve large amounts of data, large numbers of computing resources and

high performance visualisation software to display the results in a meaningful way to the

user [Hunter et al., 2005].

Grid technologies attempt to solve this problem through "sharing and coordinated use

of diverse resources in dynamic virtual organisations" [Foster et al., 2002, p. 5]. A virtual

organisation refers to a group of people or organisations participating in a collaborative

environment, where it is clearly defined what is being shared, who is able to share it

and the conditions under which it is being shared [Foster et al., 2001]. The argument

for the use of grid technology is that it will lead to distributed systems that are more

reliable, scalable and secure [Foster et al., 2002]. Although grid technology addresses the

issues in e-science and may lead to better distributed systems, it has been suggested that

grid technology could be combined with web service technology to take advantage of the

benefits of web services. These include the use of WSDL for interface definitions that

are independent of the transport protocol and data format and the availability of tools

to transform the interface definitions into code [Foster et al., 2002]. This combination

of grid technology and web services is referred to as an Open Grid Services Architecture

(OGSA), which defines this combination as a grid service [Foster et al., 2002].

6

304 Workflow

Workflow is defined as "a set of rules that define the interactions between a set of services

in order to be composed into a meta-service" [Krishnan et al., 2005, p. 2]. The concept of

workflow is important [Yang et al., 2004] in the grid environment because scientists follow

a structured process when conducting their experiments and analysing their results. This

has led to a number of tools arid specifications being developed to model this idea of

workflow, including Triana [Triana, 2005] and GridAnt [GridAnt, 2005].

Triana is "a distributed problem-solving environment that makes use of the Grid to

enable a user to compose applications from a set of components" [Taylor et al., 2005,

p. 1]. Triana was proposed as a middleware-independent solution in response to the

numerous proposed standards offered by grid and web services. It hides the middleware

implementation details from the developer; so that the developer does not need to know

which middleware technology is being used. This is in contrast to GridAnt, which aims to

provide a tool that a scientist could use to model workflow [Amin et al., 2004]. GridAnt

provides "a simple, extensible, platform-independent, and client-controllable workflow

mechanism" [Amin et al., 2004, p. 2]. While Triana has a number of uses including

provision of a workflow engine for grid applications, managing the workflow between grid

components arid provides a graphical script editor that supports BPEL4WS (Business

Process Execution Language for Web Services) [Taylor et al., 2005], GridAnt makes use

of an open source tool from Apache [Apache, 2005] called Ant [Ant, 2005]. Ant is a

Java build tool that is based on Java classes. It defines tasks that group a collection of

commands together to be executed [Ant, 2005]. Additional workflow vocabulary is de-

fined on top of that provided by Ant in order for GridAnt to enable workflow composition.

Although GridAnt is primarily a command-line tool, it does provide a graphical visu-

alisation tool as well. Triana also provides a visualisation tool that is easy to use. This

is because it has a smaller subset of functionality than other workflow languages such

as BPEL4WS, which makes BPEL4WS more suitable for modelling complex workflow.

For example, Triana does not explicitly support control constructs; loops and branching

are handled by specific components instead. The argument is that this is simpler and

more flexible as it allows more control over the control constructs. However, it is also

7

rioted that explicit support of control constructs, such as while loops, is often required

by scientific processes, but inclusion of these constructs in the Triana workflow language

would detract from its ease of use [Churches et al., 2001].

Systems were constructed to test both tools [Amin et al., 2004], [Churches et al.,

2001]. Initially the Triana system underwent a simulation to determine whether Triana

was robust at discovering local and distributed services and whether it could be executed

on a variety of resources [Taylor et al., 2005]. At this stage no scientific performance

tests were clone since the focus of the paper is on the Triana system itself and not at this

stage for developing workflow. The simulation used four different computers with varying

specifications, operating systems and locations. Three of the computers were set up as

servers with one acting as both a client, to run the Triana user interface, and a server.

The data was distributed to the servers arid then sent back to the client and re-ordered.

The time was taken to determine how long it took for the data to get back to the client.

It is riot clear what analysis was done on the data, but presumably it would be some

sort of averaging. It would have been clearer if the results had been graphed or at least

presented in a table rather than just discussed in the text.

The results showed that local machines did more processing than remote ones, al-

though some data did get processed by remote machines. This fulfills the requirement of

Triana to be able to discover both local and remote services. In order to fully test the

robustness of the service discovery three services were hosted on a single server. This

returned the data in approximately the same time as hosting each service on a separate

server. This demonstrates that the service discovery is robust, firstly, because it was able

to locate the different resources even when they are hosted on the same machine and sec-

ondly, because it did not take a longer period of time to locate the services. The varying

nature of the servers indicates that Triana can be executed on a variety of resources.

Secondly, Triana was applied to the problem of an inspiral search. This involved a

discussion on how Triana could be applied to this problem and the steps necessary to

undertake the execution of the workflow. This discussion alone is not enough to prove the

8

conclusion that Triana is for the "scientist not interested in computer science implemen-

tations" [Churches et al., 2004, p. 9]. In order to prove this a number of scientists would

have had to use the system and evaluate it. If the results of such an evaluation showed

that scientists with no knowledge of workflow could use Triana then the conclusion that

Triana is easy to use would be valid.

In the case of GridAnt a typical scientific application was applied to the system

to determine if the system achieved its goals of being a "simple, extensible, platform-

independent and client-controllable workflow mechanism" [Amin et al., 2004, p. 2]. This

was achieved by identifying the key aspects of the application, what the issue was with

the aspect and then relating it to a particular part of the GridAnt functionality. For

example, one of the issues with the application was that running an experiment requires

extensive user interaction to deal with issues that may arise during the conducting of the

experiment. This means that a tool to monitor this kind of event must be flexible to

allow the experiment conditions to be modified while keeping this task simple. GridAnt

achieves this by enabling the reuse of graphical components. A discussion then ensued of

the issues raised from using the system with a real-world application.

It is unclear that the goal of GridAnt to be simple has been achieved. Although

inclusion of some screen shots of the workflow do seem to be fairly easy to follow; this is

not proof enough that a system is simple.

A key aspect of the simplicity of GridAnt is to enable a scientist to model the workflow

themselves. In practise this would mean a new workflow for every experiment or at least

adapting the existing workflow for each new experiment. A scientist might not want to

spend valuable time changing the workflow for each experiment that has to be done. As

workflow modelling can be a complicated task as all the variables have to be taken into

account when modelling, a scientist might prefer to run the experiment without the use

of workflow modelling.

One problem that was noted from conducting this experiment was that the client

would have to be connected to the GridAnt system until the completion of the workflow.

9

It was suggested that this problem could be solved by providing a proxy service that the

client could connect to instead. This involves modifying the GridAnt system to have a

service-oriented architecture, enabling the GridAnt system to act as the proxy service

[Amin et al., 2004].

This means that the client can start the workflow by using the services provided by

the proxy service, alleviating the need for the client to stay connected .to the system while

the workflow is completed. This seems like a solution similar to that provided by web

services workflow tools, where a message is sent to start the workflow and then the work-

flow sends a message back to the client when it is finished. This is a much better model

for running workflow-based systems especially if there is a lot of processing involved. A

large experiment could take days to process a large volume of data and it would be un-

acceptable for a client to stay connected to the workflow for that length of time.

It was interesting to note that the developers of the Triana system believed that Triana

could be used by scientists, but the developers of GridAnt thought that Triana provided

back-end functionality for workflow designed by experts and would be unsuitable for use

by scientists. In the end neither parties proved that their implementation was easy to

use or that it would be suitable for a scientist to use. Although, Triana did prove some

important goals of the system through initial testing.

While Triana shields the developer from having to know anything about the mid-

dleware technology used, it is primarily for grid-based applications. It seems that the

current research is leading towards the integration of web and grid services [Chao et al.,

2004], [Krishnan et al., 2005], [Hey et al., 2005].

Currently there is work being done on compiling specifications that will be appro-

priate for use in both web and grid services [Atkinson et al., 2005], [Hey et al., 2005].

The reasons for choosing a particular specification include whether it has been standard-

ised, its widespread use and adoption and the appropriateness of the specification for use

in both environments. These specifications, collectively called WS-I+, include WSDL,

SOAP, UDDI, WS-Addressing and BPEL4WS.

10

The advantage of integrating web and grid service technologies not only enables ex-

isting work to be merged, i.e. from the business and scientific aspects, but it incorporates

the advantages of both technologies. Triana and GridAnt would be inappropriate for use

in web services because they focus on solving a particular problem within grid services.

GridAnt would be inappropriate as a workflow tool since the workflow it produces is not

a web service, it would be difficult to use it with WSRF, which is a web service. Triana,

on the other hand, provides support for BPEL4WS, which is a web services specification

and the workflow it produces can act as a web service, so in this respect it could work

with WSRF. However, this tool is simplistic in nature, so would not be appropriate for

modelling complex workflow. Hence if a method could be found to enable it to work with

WSRF, it would not generalise for all types of workflow. Fortunately there are a number

of specifications and tools for modelling workflow in existence for use in web services that

enable complex workflow to be modelled.

One of these is BPEL4WS, which supports the service-oriented architecture lacking

in GridAnt [Amin et al., 2004]. BPEL4WS supports the modelling of complex business

processes and is the most widely supported workflow specification [Atkinson et al., 2005],

[Pasley, 2005], [Amin et al., 2004], [Yang et al., 2004]. As a result there are a number of

commercial tools available based on BPEL4WS, some of which could be appropriate for a

scientist to use and would support the requirement for ISO accreditation for a laboratory.

3.5 BPEL4WS

There have been a number of new specifications proposed in web services that describe

the composition and orchestration of web services. One of these specifications BPEL4WS

provides the means to model business processes and interactions [Andrews et al., 2003].

It allows workflows to be modelled that invoke web services, which are executed using

a workflow engine. It is based on a number of XML specifications, namely WSDL 1.1,

XML Schema 1.0, XPath 1.0 and WS-Addressing; the most important one being WSDL

1.1 [Andrews et al., 2003]. Since BPEL4WS is based on web services, a business process

can either use services defined in an existing WSDL document or create new services

11

as required. In addition a business process describes the behaviour of and the partners

involved in the business process. BPEL4WS refers to services using the port type defined

in the WSDL document rather than the actual service itself so that the business process

can be reused in "multiple deployments of compatible services" [Andrews et al., 2003, p.

15].

The idea of integrating web and grid services has led to the investigation of using

BPEL4WS in a grid services environment [Yang et al., 2004], [Chao et al., 2004]. This

offers the advantage of capitalising on the benefits of web services, such as its interoper-

ability and service-oriented architecture [Chao et al., 2004]. However, these benefits are

reduced when the specification is adapted to better fit the grid environment [Yang et al.,

2004].

In a grid services environment BPEL4WS is used to describe the workflow between

grid services. This is not a complete integration as there are a number of issues associated

with using BPEL4WS in a grid services environment [Yang et al., 2004], [Chao et al.,

2004]. These are that grid services defines the concepts of GSH (Grid Service Handles)

and GSR (Grid Service Reference) that basically allow a client to access a grid service,

and which are not supported by BPEL4WS. Also grid services makes use of concepts de-

fined in WSDL 1.2, which are also not supported by BPEL4WS as it is based on WSDL

1.1. To get around these problems, a wrapper is used to make a grid service client look

like a web service, which is referred to as a proxy web service [Chao et al., 2004]. To

execute the process, the client is invoked, which calls operations on the proxy web service,

according to the workflow defined by BPEL4WS and then the grid services are invoked

by the proxy web service. A similar solution was suggested in the GridAnt system [Amin

et al., 2004], where the GridAnt system itself could act as a proxy service for the client

to connect to.

The advantage of this architecture is the minimal impact on the workflow when the

service is deployed to a different location. In order to test this architecture, a system was

implemented based on the model-view-control pattern, which used three grid services, one

for each of the view, model and control. The partners in the process are implemented

12

as web services, one for each grid service. Although the paper states that experiments

were done on this implementation, no specific details are mentioned. Instead there is a

discussion of the issues raised from this implementation and the similarities and differ-

ences between BPEL4WS and grid services. This on its own is not enough to validate

the conclusion that the architecture enables grid services to use BPEL4WS. Since grid

services is based on WSDL 1.2 and BPEL4WS is based on WSDL 1.1, it seems that

using grid services in BPEL4WS will be limited to the common functionality provided

by WSDL 1.1 and 1.2, until such time as BPEL4WS supports WSDL 1.2. Therefore,

BPEL4WS may not be the best choice for a workflow language in grid services, as it may

seriously impede the functionality of the grid service used in the BPEL4WS process.

The key difference in the two approaches of using BPEL4WS in a grid services environ-

ment is modifying the specification [Yang et al., 2004] or modifying the implementation

[Chao et al., 2004]. The first approach reduces the benefits of web services and will mean

constant adaptation of the "new" specification to stay in-line with updated versions of

BPEL4WS. This is not an appropriate method for this research, as it will mean the solu-

tion could not be generalised, especially since BPEL4WS has yet to be standardised. In

general it is best to avoid methods that will involve altering the specification, rather it is

better to build on the specification making necessary adaptations at the level above the

specification. The other issue with adapting the specification is that it may make the solu-

tion incompatible with other specifications, reducing the value of your solution in general.

The use of BPEL4WS in a grid services environment has been extended to incorpo-

rate the use of WSRF [Slomiski, 2005], [Leymann, 2005]. WSRF [Czajkowski et al., 2004]

(WS-Resource Framework) is a specification derived from OGSI (Open Grid Services In-

frastructure) that has been re-engineered and returned to the web services development

community as a proposed standard.

3.6 WSRF

WSRF introduces the concept of a stateful resource, see section 2, that allows state to

be preserved between executions of a web service's operations.

13

The introduction of WSRF means that a web service can have state associated with

it. Up until now a web service had no notion of state, but it was implied through the

definitions of its interfaces [Foster et al., 2004]. This is because "WSDL is essentially

stateless because the language is unaware of states between operations" [Staab et al.,

2003, p. 74]. It is claimed that explicit definition of state leads to improved interop-

erability, simplification of service definitions and improved discovery, management and

development tools [Foster et al., 2004]. It also alleviates the developer from coming up

with their own implementation of state, which may be incompatible with other develop-

ers implementations. By standardising the way in which state is accessed it means web

services that use state can access it without having to know how it was implemented.

This is an important point especially to get two different specifications to work together.

Basically WSRF describes the association of a web service with a stateful resource,

which is called a WS-Resource. A web service can locate a stateful resource through

its unique identifier, which is encapsulated within an endpoint reference, defined as part

of the WS-Addressing [W3C, 2004b] specification. This endpoint reference contains the

address of the service, whose operations are to be invoked. If a stateful resource is in-

volved in the implementation of the service, the resource identifier is included within the

reference properties defined as part of the endpoint reference. This information is then

encoded as part of the SOAP header within the message request that is sent to the ser-

vice. The service can then extract this information to gain access to the required stateful

resource. This provides a more specific way of referencing a resource from the web ser-

vice, in a similar way to obtaining references to an object in object-oriented programming.

The use of WSRF in either grid or web services is not widespread [Wasson et al.,

2005]. There has been some work done on using WSRF with .NET web services [Wasson

et al., 2005], [Humphrey et al., 2004] in order to evaluate WSRF. This was done by imple-

menting a simple scenario that required the modelling of state, hence the use of WSRF.

This enabled WSRF to be evaluated by looking at the issues that were raised during the

implementation process. Any aspect of the implementation that raised questions about

WSRF was discussed, which showed some of the difficulties in using WSRF. In particular

woe

14

these were developing the client and server-side code [Humphrey et al., 2004]. The most

important step in developing a WSRF web service is determining what is to be modelled

as state. This is not something that a specification can easily specify as it is more of a

design decision, in that how the service is defined reflects what should be implemented

as state. Therefore, it does not seem relevant to include this as one of the issues of WSRF.

Some of the other issues that were raised included that the client and service are

more tightly-coupled than a standard client arid web service. This problem is because

the client has to keep track of endpoint references for the WSRF services it wants to

invoke and the loosely-coupled nature is one of the benefits of using web services. If there

was a standard mechanism to store and retrieve state, such as delegating it to another

web service, this would not be as much of a problem. This will be one key area to look

at when developing the method for combining WSRF and BPEL4WS.

Another key issue that was raised is the complexity of the server-side code. A port

type can be imported into a WSDL file that has associated state defined in the separate

WSDL file where the port type was defined. This means a port type can be imported

without knowing about any state associated with it. In particular this is the case when

a WSDL file is to declare a state variable as this involves using the get resource property

port type. Although this is a problem, it can be resolved by finding the pre-existing

WSDL files and finding out what state is associated with them. For example, when

declaring a web service to be a WSRF service, the get resource property port type has to

be used in the WSRF WSDL file. This requires importing the WSDL file, where the get

resource property port type is defined, in the WSRF WSDL file.

i.e. by placing the piece of code, below, in the WSRF WSDL file.

<wsdl:import

location="http://docs.oasis-open.org/wsrf/2004/06/

wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"

namespace="http://docs.oasis-open.org/wsrf/2004/06/

wsrf-WS-ResourceProperties-1.2-draft-01.wsd1"/>

The state defined in the imported WSDL file can be determined by locating the WSDL

for the service. From the example above, this would be done by using the URL of the

15

service as specified by the location.

Although it is important to understand exactly what operations the service will define,

this could be construed as wasting valuable development time. In saying that, it is not

good practice to include code, files or anything else into a system that is being developed,

which is not clearly understood.

The other issue associated with the complexity of the server-side code is the lack of

an intuitive interface. This occurs because WSRF does not include package names in the

operations that are referencing a stateful resource. This is because the package name is

part of the stateful resource and is located within the SOAP header using an endpoint

reference [Humphrey et al., 2004]. This issue is the same as the previous one in that

it can be resolved by completely understanding the WSDL file that defines the stateful

resources and operations for the service.

Overall, it would seem that most of these issues relate to your understanding of what

is to be modelled as state. These should not really be issues as you shouldn't have defined

operations or imported other operations into your WSDL without understanding exactly

what the functionality is that they provide. It would seem that the WSDL would not

be a well-defined web service if it is not clearly understood what services the operations

provide and it would be difficult to determine what state the web service would be using.

These issues occur at the design level and are similar to the issue of what to model as

state, something which the specification should not have to define.

The results indicated that improvement is needed to address the usability [Humphrey

et al., 2004] and tight coupling [Wasson et al., 2005], [Humphrey et al., 2004] problems

with WSRF. The usability problems with WSRF could be reduced by the developer

having a greater understanding of WSRF before choosing to use it to implement a web

service.

The tight coupling issue could be solved by providing a standard mechanism for storing

and retrieving endpoint references. This stems from the client needing a valid endpoint

reference to the resource. Specific issues that need to be addressed in regard to this are

how much state the client needs to keep track of, the life-time of client-side information

16

, il d gaining endpoint references to resources, should the existing ones be lost or become

invalid [Wasson et al., 2005[.

The key issue for my research will be gaining endpoint references to services, which I

will solve by using the solution outlined in the next paragraph. The other issue in regard

to the life-time of client-side information also seems irrelevant and does not seem to me

to be a relevant issue for WSRF. WSRF shouldn't need to care about the life-time of

client-side information, namely endpoint references, only that there should be a defined

mechanism to retrieve an existing endpoint reference to a WS-Resource should an exist-

ing one be lost or invalid.

This problem of gaining endpoint references to services can be achieved to some ex-

tent by using a factory pattern, which is responsible for the creation and destruction of

resources. By using a factory to create the WS-Resource the developer has more control

over the creation and destruction of resources and reduces the chances of the client ob-

taining an invalid reference to a resource.

The issue of maintaining valid endpoint references is a big problem, because if the

client goes down for any reason and loses the endpoint references, there is no way to get

them back. However, there is a specification that defines how to obtain a new endpoint

reference to the WS-Resource in the event that the existing one becomes invalid. This

specification called WS-RenewableReferences will go a long way to try and resolve some

of these issues [Czajkowski et al., 2004].

This will be an issue that the method for integrating WSRF and BPEL4WS will have to

try and resolve.

The second paper [Wasson et al., 2005] that implements a more complex system using

WSRF does not really contribute anything further to either resolving some of these issues

or providing any more detail on any of these issues. The conclusions that their tooling

and programming abstractions have made some of the concerns more manageable does

not seem to apply to WSRF but rather to their implementation in .NET.

17

The increased interest in adopting a language such as BPEL4WS and either adapting

it for use in grid service environments or adapting grid services to make use of BPEL4WS

is to take advantage of the concepts arising in both fields. The adoption of BPEL4WS

in grid services has its advantages, such as "it can easily arid seamlessly interact with

standard Web services (that may not be part of Grids) and grid services such as provided

by OGSI and WSRF" [Slomiski, 2005, p. 3].

BPEL4WS and WSRF

The reasons behind using BPEL4WS over other languages are that its workflow can act as

a web service, it can be composed of other web services and there is good tool support for

BPEL4WS. However, the key point is that BPEL4WS supports WS-Addressing endpoint

references, which is the same specification used by WSRF to locate its stateful resources

[Slomiski, 2005], [Leymann, 2005]. The other key point is the widespread adoption of

BPEL4WS over other languages [Yang et al., 2004], [Leymann, 2005].

There are two main options when integrating BPEL4WS and WSRF in a grid envi-

ronment: modelling a WSRF web service as a partner or modelling the workflow as a

WS-Resource.

The use of BPEL4WS did not involve adapting the language [Leymann, 2005], as it

was needed to be compatible with future releases of BPEL4WS, unlike other proposed

solutions [Yang et al., 2004]. This is important so the integration of the two specifications

does not need to be refactored to be compatible with updated versions of BPEL4WS; it

also preserves the benefits of a web services based specification. This will be the approach

taken in my research, as it is important for the generalisation and interoperability of the

method that it be compatible with future versions of BPEL4WS.

It is suggested that a web service that implements WSRF can be implemented as a

partner in BPEL4WS, as a partner is defined to be a service that receives or sends mes-

sages as defined in WSDL [Slomiski, 2005]. A WSRF web service can be implemented

as a partner because BPEL4WS does riot specify deployment information. WS-Resource

18

instances get created through a factory, which is basically any web service that can create

an instance of a WS-Resource. This factory then sends a message that contains a refer-

ence to the newly created WS-Resource. In BPEL4WS references are assigned to services,

so that these can be invoked when required. These references get assigned automatically

either when the service is invoked or when the process is executed by a workflow engine

[Slomiski, 2005]. This basically says that instances are created implicitly, whereas a WS-

Resource is created explicitly through the use of a factory [Leymann, 2005]. This means

if BPEL4WS creates a WS-Resource it will automatically assign it a reference as specified

by WS-Addressing. However, a BPEL4WS process would need to assign the reference

returned from the invocation to the factory service and add the reference properties to

the SOAP header for this to work properly. Since to BPEL4WS, any web service is a

partner and it doesn't specify deployment information, the process has no way of telling

if the partner it is communicating with is a standard web service or a WSRF web service.

Since standard web services do not require reference properties in the endpoint reference,

it seems unlikely that BPEL4WS would assign reference properties to the SOAP header.

This means that integrating BPEL4WS and WSRF will be more complicated than the

suggestions made here. Hence, merely assigning an endpoint reference returned from an

invocation to the factory service to the WS-Resource will not be a solution to my research

problem, see section 5.

Another approach [Leymann, 2005] suggests treating the workflow as a WS-Resource.

This means that when the first message is sent, the workflow engine must create an in-

stance of the workflow and return a response that contains the reference to the newly

created workflow. Using this model of integration, BPEL4WS will need to support state-

ful resources, since the workflow itself is now acting as a WS-Resource. This can be

supported by defining a variable that has the same type as the stateful resource. This

solution does not seem viable for integrating WSRF and BPEL4WS, since the workflow

itself invokes other web services. If the workflow was invoking WS-Resource services the

workflow would still have to assign the endpoint reference to the WS-Resource partner.

Therefore, this will riot be an approach that will be investigated as a possible solution to

the integration problern.

19

It is also suggested that correlation sets, see section 2, could be used to identify a

message sent to a particular process instance [Leymann, 2005]. However the author notes

that this would not work in practise because correlation sets are not always required by

the BPEL4WS process. In the case where there are no correlation sets, reference prop-

erties would have to be defined. The argument is that correlation sets could be used

instead of defining reference properties. The problem with this argument is that nowhere

in the specification does BPEL4WS specify where correlation set data gets passed in

the message, although it did seem to hint that it might appear within the body of the

message. Either way it cannot be guaranteed that this information will get added to the

SOAP header as required by a WS-Resource. The other problem with this argument is

that reference properties are not a required part of an endpoint reference so the entire

reason for correlation sets versus reference properties is invalid.

It is unclear at this stage if the process is supposed to be acting as a WS-Resource,

or whether this method would be used to identify a particular instance of a process and

hence a particular instance of a WS-Resource. Although, this argument is for the purpose

of illustrating that BPEL4WS process instances are created and accessed in a similar way

to a WS-Resource, there is still the fundamental problem of the process invoking WS-

Resource operations and assigning the reference properties to the message SOAP header.

This fundamental issue with WSRF is not mentioned at all arid since this issue is not men-

tioned it makes any subsequent argument for the integration of BPEL4WS and WSRF

rather weak.

The one problem arising from integrating WSRF and BPEL4WS is that a proxy ser-

vice will be required to add a SOAP header to any messages sent from a WSR,F web

service, as BPEL4WS does riot need to use WS-Addressing when interacting with the

workflow engine [Slorniski, 2005]. This would seem the most likely approach to solve the

integration problem. This was just an investigation looking at how and to what extent

BPEL4WS could work with WSRF. No specific implementation has been developed or

tested, so it can only be assumed based on the evidence provided that this solution would

work. However, from arguments already mentioned this would be the most likely solution.

20

The integration of a modified BPEL4WS specification [Yang et al., 2004] with OGSI

has the advantage of enabling workflow in a grid environment to be better modelled and

while it is based on an OGSI grid it could easily be modified to work with a WSRF grid.

However, this is not an appropriate approach for integration in a web services environment

as changing the underlying specification could remove compatibility with other standards.

Both approaches to integrating BPEL4WS with WSRF show that the specifications

overlap to some extent; however the key issue is the requirement of WSRF endpoint

references to contain the resource identifier, which is defined within the reference prop-

erties element of the endpoint reference. This is a problem because it is not required for

BPEL4WS to include reference properties as part of its endpoint references. It would

seem that the approach to model the workflow as a WS-resource [Leymann, 2005] is riot

really a viable option as it removes the purpose of using BPEL4WS to begin with.

3.8 Conclusion

The current research seems to be leading towards the integration of web and grid services

to receive the benefits of both technologies, in particular the service-oriented architec-

ture of web services which is thought to be an integral foundation of e-science [Foster

et al., 2002]. In order for grid services to provide a complete solution to the e-science

problem there needs to be a way to model workflow. Although there have been a number

of specifications and tools proposed in both web and grid services, it would seem that

BPEL4WS is the most promising candidate for modelling complex workflow. The use of

a web services specification that supports the service-oriented architecture will be benefi-

cial to grid services in the event of the integration of web and grid services. This has led

to numerous proposals suggesting enhancements to BPEL4WS for compatibility in the

grid environment. This integration idea has also led to the possibility of combining grid

services specifications, such as OGSI and WSRF, with web services specifications, such as

BPEL4WS for use in a grid environment. Although the integration is feasible, BPEL4WS

restricts some functionality of grid services, but making changes to the specification will

remove the advantages of using it in the first place.

21

Nearly all the papers looked at, suggested some form of intermediate mechanism for

BPEL4WS to communicate with WSRF. This seems to be necessitated by the require-

rnent that reference properties are added to the SOAP header of the message sent to

the WS-Resource. Therefore, the implementation of a proxy service that performs this

task will be the most likely candidate to integrate WSRF and BPEL4WS arid will be the

approach to solve the integration problem that is the basis of this research. The second

problem will be addressing how the client maintains endpoint references and how it can

get new endpoint references should the existing ones become lost or invalid. None of

the work mentioned seems to have any concrete ideas on how to address this problem,

although hopefully the future implementation of WS-RenewableReferences will achieve

this goal.

There does not seem to be any concrete criteria to evaluate an implementation. How-

ever, from looking at the issues raised from discussion of other tools/technologies, a

criteria can be derived from identifying key aspects of WSRF/BPEL4WS that have been

mentioned as needing improvement. Already a number of criteria can be identified such

as:

The method will need to assign reference properties to the SOAP header. Necessitated

by the lack of proof that BPEL4WS will perform this task.

The method will need to provide a means of storing and retrieving endpoint references.

The method will need to provide a method to enable retrievement of endpoint references

in the event one is lost or becomes invalid.

22

4 ChemSearch Laboratory

ChemSearch is a small analytical laboratory that analyses samples sent to them by their

clients. A client requests certain tests to be done on their samples by filling out an order

form that is sent to the laboratory along with the samples to be tested. On receiving

the order, the laboratory checks the order form against the samples received, to ensure

that the wrong order form has not been put in with the samples, and also checks over

the tests ordered. Frequently, clients request the same tests to be clone for their samples.

If there is a test requested that is not normally ordered, the laboratory will ring the

client to confirm the tests to be done. Once the tests have been approved, the laboratory

prioritises the tests based on the number of samples requiring the same test, the urgency

of the test or sample and the lifetime of the samples. When a test has been completed

the initial results are recorded, which can be used to determine the final result for a test.

On completion of all tests ordered by the client, a copy of the report detailing all the

results of the tests is sent to the client.

Typically, the process involves the client ringing or emailing to find out the results of

a particular test or the status of their report. Ideally, the client should be able to access

their results and the status of their reports without contacting the laboratory.

5 Research Problem

This section outlines the main problem this research plans to solve and additional sub-

problems.

5.1 Main Problem

The focus of this research was to find a method that would enable WSRF to be integrated

with BPEL4WS. This method would then be evaluated to determine whether the specifi-

cations as they stand can be integrated or whether further refinement of the specifications

may be needed to fully support this integration.

23

5.2 Sub Problem 1

The first sub problem is the modelling of the workflow of the ChemSearch laboratory

arid the development of an on-line system for their clients so that it is suitably validated

for its purpose as needed by the ISO accreditation of the laboratory. This will provide a

means to test and evaluate the proposed method of integration.

5.3 Sub Problem 2

The second sub problem is providing a mechanism for storing and retrieving endpoint

references that are required to locate a particular instance of a WS-Resource web service.

6 Scope

This research is only focused on finding one method of combining WSRF with BPEL4WS.

This method will then be evaluated by modelling the workflow of the ChemSearch labo-

ratory, which will enable any issues with the method to be brought to light. As a result,

BPEL4WS will only be used to model the processes of the ChemSearch laboratory that

involve the processing of samples and production of reports.

Since the focus of this research is on the method to integrate WS-Resource with

BPEL4WS, the prototype system will be focused on an implementation of this method.

As a result, only the business processes that can be implemented as web services or stateful

web services will be considered. This project will involve building a prototype system,

which will not necessarily be ready for production use in the ChemSearch laboratory. This

is because firstly, the system will use new technologies and tools that may not be ready

for use in a production environment. Secondly, since the focus is on the method used

and riot implementing the system, the system will not be thoroughly tested, arid thirdly

the system may not be considered as "suitably validated" as required by the standard

ISO/IEC 5.4.7.2 for the competence of testing and calibration laboratories.

24

7 Importance of the Research

The use of web services technology is increasing because web services is based on open

Internet-based standards, which provide interoperability, while not being limited to a

specific implementation. BPEL4WS provides a way to model workflow as a composition

of web services and as such gains the benefits associated with web services. However,

BPEL4WS does not provide any concept of state, i.e. a business process cannot be mod-

elled using some value from a previous invocation of the process. BPEL4WS does have

a number of advantages including being able to model the workflow using a graphical

notation, also a developer can focus on modelling the processes without worrying about

execution details as this is all done for you.

The introduction of WSRF means that a web service can have a stateful resource; this

provides a standard way to access and model state. This project will provide a method of

combining BPEL4WS with WSRF to enable processes that require state to be modelled.

As a result, this method will inherit the advantages offered by both web services and

BPEL4WS. The need to combine these two technologies is illustrated by the problem

that the processes of the ChemSearch laboratory cannot be adequately represented in

WSDL and although BPEL4WS allows business processes to be modelled, some of the

ChemSearch processes cannot be adequately modelled using this either. However, a com-

bination of the two technologies would allow for stateful processes to be modelled. As a

result, any stateful process could be modelled using this method. The outcome of this

project will be an evaluation of the method, winch will bring to light possible limitations

of the technologies or tools. Any limitation revealed about the tools or technologies used

will benefit the field by increasing the adoption of web services technology as the speci-

fications and standards it is built on will be of a higher quality.

On a more specific level this method will enable the workflow of the ChemSearch

laboratory to be modelled taking into account their ISO certification. As a result, a

prototype system will be implemented that will minimise the time ChemSearch has to

spend updating clients on the status of their reports, as their clients will be able to access

tins information directly themselves through the on-line system. It will also provide a

standards-based solution that will enable the laboratory to work in cooperation with

25

another laboratory if need be.

8 Research Methods

Firstly, sample data will be obtained from the ChemSearch laboratory to enable the busi-

ness processes of the laboratory to be modelled using UML (Unified Modelling Language).

This will involve setting up meetings with the laboratory, to make sure the processes are

being modelled correctly. Then a method will be used to integrate WS-Resource with

BPEL4WS in a web services environment, contrary to the current literature in this area

which seems to focus on the integration of the two specifications in a grid services environ-

ment. Since this project involves using recent specifications and technology, the method

used cannot be clearly defined. As a result it is not known how easy or difficult it is

going to be to model the requirements of the laboratory using these specifications. So

this project may involve looking at another method for integrating the two specifications,

based on how easy or difficult it is to implement the first method, perhaps using a tool

such as GridAnt [GridAnt, 2003j.

It will be necessary to explain the reasons for using a second method, especially if it is

because BPEL4WS could not be integrated with WSRF. The first method will probably

use a BPEL4WS engine to compile and run the BPEL4WS; however WSRF requires

the use of a tool, such as Apache WSRF to compile and deploy stateful resources. This

means it will probably be necessary to find a BPEL4WS engine that can either compile

and deploy the stateful resources itself or be used in conjunction with Apache WSRF.

Once a method has been found, the processes can be modelled using BPEL4WS, with

the stateful components modelled using WSRF. The web services can then be deployed

and a system can be implemented that uses these services to provide ChemSearch clients

access to their reports. This will involve an investigation into security issues so that

proper authorisation and authentication occurs. If time allows some aspects of security

could be implemented in the system. There is a specification that has been proposed to

address the security issues that exist in web services, called WS-Security. This could be

used to implement some security in the system.

26

This system will then be validated to check that it fulfils the needs of the laboratory

and then the method used to combine BPEL4WS and WS-Resource will be validated to

determine how good the solution is. This is because in theory this solution could be one

of an infinite number of solutions. This can then lead on to investigating the use of single-

sign on, if the ChemSearch laboratory wished (in the future) to share information with

another laboratory, then the clients of ChemSearch would not want to have to log into

two separate systems to gain access to their results. Single-sign on provides a solution to

this problem by allowing the user to sign in once for both systems.

9 Methodology

This project involves the development of a solution to allow the modelling of the workflow

of the ChemSearch laboratory, which includes stateful web services. This will take into

account the ISO certification of the laboratory. This solution will then be evaluated to

assess its advantages and disadvantages and its success in fulfilling the requirements of the

ChemSearch laboratory. This will also involve evaluating the technology and tools used

to implement this solution. This will not be hypothesis-driven research as this research

will involve analysis of the problem and the development of a solution arid then the

evaluation of that solution as to how well it solves the problem and whether it meets the

necessary requirements of that problem. Hypothesis-driven research involves proposing a

hypothesis, then conducting "research" to test the hypothesis to find out whether it was

valid or not. The point of this research is to find a method of integrating WS-Resource

with BPEL4WS, so in this case a hypothesis could be that a method can be found to

integrate WS-Resource with BPEL4WS. However, if it turned out that a method could

not be found, you could not say that the hypothesis was incorrect, because although

the methods you found did not provide a solution to the problem these only account for

a small subset of the possible solutions. Hence, a method of integrating WS-Resource

with BPEL4WS could exist and so you could never truly say whether the hypothesis was

correct or not. Therefore, it would be better not to use hypothesis-driven research in this

case.

27

10 Tools

The tools used to implement this method and the subsequent on-line system were Cape

Clear Orchestration Studio, [CapeClear, 2005], to model the BPEL4WS process and the

WSRF project from Apache, [Apache, 2005], using the Tomcat server, [Tomcat, 2005],

and Ant, [Ant, 2005], to compile and deploy the web services to Tomcat. The BPEL4WS

tool was a plug-in for the Eclipse Integrated Development Environment, [eclipse, 2005].

11 The Method of Integration

The key driving point behind the integration problem was that WSRF uses endpoint

references to uniquely identify a stateful resource. These endpoint references are defined

by the WS-Addressing [W3C, 2004b] specification that optionally defines reference prop-

erties for an endpoint reference. It is these reference properties that contain the unique

identifier to the newly created resource. In order for the server to locate the requested

resource, it needs to be able to access the unique identifier for the service. As a result

the reference properties are sent in the SOAP header of the message. Therefore, in or-

der for BPEL4WS and WSRF to work together, BPEL4WS needs to copy the reference

properties into the SOAP header of the message. It could not be determined from the

BPEL4WS specification whether BPEL4WS would copy the reference properties into

the SOAP header of the message. As a result, an intermediate mechanism is needed to

provide this service. This was verified by looking at related literature, see section 3 for

further details.

Even though the related literature specified the use of an intermediate mechanism,

there was no concrete evidence that BPEL4WS could not work directly with WSRF.

Hence it was determined first whether BPEL4WS could interact directly with WSRF,

details of this are given in section 14.1. It was determined that at this time BPEL4WS

cannot be combined directly with WSRF.

As a result the solution described here uses an intermediate WSRF web service to

copy the reference properties into the SOAP header of the message. This is similar to a

solution proposed in the literature [Slorniski, 2005], where it was suggested that a proxy

28

Nevoin

Company

web service could be used to copy the reference properties into the SOAP header. This

results in three web services. The first is a factory web service that creates the stateful

resource and returns the endpoint reference containing a unique identifier to the newly

created resource. This unique identifier is the value passed in the SOAP header of the

message request to the WS-Resource. The second is the proxy web service, which keeps

a reference to the endpoint reference returned by the factory service. This is then used

for all subsequent calls to the WS-Resource. The third web service is the WS-Resource,

which contains the stateful resources for the system.

Figure 1: Sequence diagram showing the interaction of the three web services and the

BPEL4WS process

A sequence diagram showing the interaction of these three web services with the pro-

cess and an external web application is shown in figure 1.

This method also needed to fulfill the requirement of storing and retrieving endpoint

references that could, if possible, provide a means for requiring an endpoint reference in

the event that the one currently held is lost or becomes invalid.

29

Due to the nature of the method, the proxy service will need to store and retrieve

the endpoint references as it is the only entity that directly interacts with the factory

service, which is shown in figure 1. This could be achieved by using a hash map to map

a unique identifier 2 , which in this case was the site, to the endpoint reference. However,

to provide a solution that fulfilled the optional requirement for obtaining lost or invalid

endpoint references, a different method was implemented. Instead of the proxy service

matching incoming requests with endpoint references, this was handled by the factory

service.

A sequence diagram depicting the interaction between the factory service and WS-

Resource is shown in figure 2.

BPEL Pross

oheckUser ohuc<User L createResource	 findResource re ate C h emS e arch R esource

resource	 J

getEpr
	 i (resource

== null)

endpoint reference endpoint reference_

checkUser	 checi4 er

company company	 comp{any

Figure 2: Sequence diagram showing the interaction, creation and retrieval of a WS-

Resource

2 This is a unique identifier to find a given endpoint reference. Not to be confused with the unique

identifier encapsulated within the endpoint reference that uniquely identifies the WS-Resource

30

Basically, a method called find resource was added to the WS-Resource home class, which

in this case was called ChemSearchHome, see appendix D. This method takes in the re-

source context, which enables the class to find a resource using the value of the reference

properties passed in the request message header, and a string. This string uniquely iden-

tifies an endpoint reference, since in the case of the laboratory a client can have many

reports, therefore there needs to be a unique identifier to distinguish between the different

reports the client might have. This method obtains a reference to the map maintained

by the cache that holds all the WS-Resource instances. Each resource class, in this case

it is ChemSearchResource, contains a reference to the endpoint reference for the resource

and to the site (the string). As a result the method can loop through the map comparing

the string parameter to the resource's site value. If it finds a resource in the map that

contains that site, it returns that resource. If not, a new resource exception is thrown

and subsequently caught by the same method. At this point it calls the createChem-

SearchResource, which also takes in as parameters the string and resource context. This

creates a new instance of the ChemSearchResource and an endpoint reference for that

resource. This newly created resource is then returned to the factory. The factory then

uses the resource to find the endpoint reference, see appendix C, which it returns to the

proxy service to store for subsequent calls to that resource.

This method of storing and retrieving endpoint references is discussed in sections

14.2.2 and 14.2.3 respectively.

12 Development

In order to test this method of integration, it was applied to modelling the workflow of

the ChemSearch laboratory, see section 4.

From communications with the laboratory it was determined that the main steps in the

workflow were:

• Get new orders

• Check orders

31

• Prioritise tests

• Perform tests

• Record the results

• Produce a report

• Send the report to the client

Currently the ChemSearch laboratory records all the data for their tests in spread-

sheets. While this may be an appropriate form for them, it was not appropriate for a web

service to access and update. Hence an alternative storage mechanism was needed. Due

to the ISO accreditation of the laboratory the alternative needed to be suitably validated

for its use, but the cost needed to be low in order for it to be a worthwhile option for

the laboratory to use. For these reasons the chosen database was MySQL [MySQL, 2005].

In order to model the workflow of the laboratory there needed to be a system to prop-

erly test this. Although the original proposal only covered building an on-line system for

the client, ChemSearch, this only modelled a small part of the workflow of the labora-

tory, which would have been very much one-sided. The client would be able to access

the state of their reports, but there would be no mechanism to update this state. This

required building a system to model the workflow of the laboratory. By using WSRF web

services to enable state to be modelled; this introduced a major issue in the design and

construction of the workflow. Ideally the on-line system would access the workflow of the

laboratory to gain access to their test results and reports. In practise this was not the

case. It became apparent that there would need to be two separate and distinct work-

flows, one for the laboratory and one for the client. The reason for this was the nature of

WSRF, which enables a factory service to only create one instance of a WS-Resource or

to create multiple instances of the WS-Resource. To secure the data for the laboratory's

clients it was necessary to have a new instance of the WS-Resource for each client, while

the laboratory would only require one instance of the WS-Resource as each staff member

needs to update the state of the same WS-Resource.

32

It became apparent when modelling the workflow of the laboratory that although it

appeared to be simple on the surface, this was not the case. In order to take advantage

of the usefulness of WSRF, it would be necessary to create a new WS-Resource for each

order placed by a client. In practise this is difficult to implement. The creation of a new

WS-Resource is relatively straight-forward, the workflow would call the create resource

method provided by the proxy web service each time a new order is placed. The difficult

part is determining the unique identifier to return when the client requests the state of

their report since a client can have multiple reports and hence multiple WS-Resources.

There is also the problem that because of the sensitive nature of the data, there should

be proper user authentication. As this is modelled as part of the workflow, the creation of

the WS-Resource needs to take place at this point, since all functionality is implemented

in the WS-Resource web service, see figure 1.

In order for the laboratory to update the state of the clients' reports, they both needed

to be part of the same WSRF web service. In order to fulfill this requirement, the labo-

ratory and the clients shared part of the same workflow. This means the laboratory can

use the site to find the endpoint reference for the client they wish to enter results for.

The heart of the problem was the amount of data obtained from one order. It was

apparent from order forms obtained from the ChemSearch laboratory that each client

could have multiple areas that each had multiple sites. A site could have multiple tests

carried out on the samples sent to the laboratory. This equates to a lot of data, which is

particularly difficult to model given that the system presented to the client to enter this

data was from an on-line system. In a particular case one area for a particular client had

18 sites, and according to the order form provided by the laboratory there were a total

of 31 possible tests that could be requested by the client. This equates to a lot of data

in the worst case scenario that all 18 sites request all 31 tests to be done. Hence some

simplification in this area was needed, since the number of sites could vary significantly

between clients. The design decision was to enable a client to choose an area first, which

would then open up a new form from which they could select a site and the subsequent

tests to be performed, rather than entering all the data for all tests at once.

33

This design had one major drawback. It meant that a new order was created for each

site rather than for each area. This was not due to WSRF, but rather that it would

be difficult to determine when one order began and the next ended, since you could riot

make the assumption that all sites could have tests ordered for them.

As a result, since a report is based on the combined orders for an area, the laboratory

could update the status for a particular site, which was stored in the database. When

the report status was requested the web service retrieved the status of all the sites and

worked out whether the report was ready and if not how many sites still had tests pend-

ing. This is not an ideal solution, but in order to model the workflow properly, there had

to be some simplification.

Even if the workflow had been modelled such that there was a new WS-Resource for

each order, there would still have been a need for persistent storage of the stateful re-

sources along with the unique identifiers of each resource, in the event of network failure

or failure of the server itself, as the state of each WS-Resource is only persistent for the

lifetime of the server.

The use of two workflows was also based on the differing stateful resources required

by the clients and the laboratory. While some of them overlapped, the inherent way in

which the workflow was implemented affected the stateful resources that were required.

However, since the focus is on testing the method and not the implementation of the

workflow, this is not such a big issue.

The subsequent sections will focus on discussion of the particular implementations of

the workflow for both the client and the laboratory.

1201 Client - Side Workflow

The client-side workflow is given below:

• Order Tests

• Get previous orders

34

uvn.gai-a,aaftesults
variable: GetToitePesultsInputMessage

• Confirm the order

• Get results

• Get report

A graphical version of the workflow is given in figure 3 as modelled using BPEL4WS.

Figure 3: A model of part of the client-side workflow

The client-side workflow consists of two separate parts: when a client places an order

with ChernSearch and when the client retrieves the results for their tests and the status

of their report. These are shown in the flowcharts below.

Figure 4 shows the process of ordering tests. The tests that are ordered are compared

against the last order placed by the client, for a particular area. This is because a client

usually orders tests for a specific area. If there are tests ordered by the client that were

not ordered in the previous order for that area, the client is asked to confirm the order.

Normally a client will order the same tests each time an order is placed for a particular

area. Any tests that are included that are not normally ordered could be because of

human error. As a result, ChemSearch always checks before committing to performing

these tests. Once the client has confirmed the order, the tests to be done are stored in

the database.

35

The workflow must keep track of the last order made by a client for a given area and

the tests just ordered. Therefore, the workflow will use a WSRF web service to perform

this task.

Place ordff

No
	 	

Previous
	 Store results in

order?
	

DB

[

Check new order
against previous
order

No
Store results in
DB

Conannordff of
different test:,

Store lestilt...;
DB

Figure 4: A flowchart of the process of ordering tests

Figure 5 shows the process of retrieving the results of the tests and the status of the

report. If tests have been completed the client can view the results, the current status

of their report arid the number of tests still to be completed. If the status of the report

is completed, i.e. all tests have been done for a particular area, the client can view their

report. The report shows all the tests that were ordered and their results.

36

The workflow must keep track of the results for the tests and the status of the client's

report.

Check results

w

„,.. .--...,
Its<77-Ff.] '--,,.. No Show repor

'--avail;le?-.....	 b .,,, Status as "Started”

e5

Show resifts

Report state;
Completed

Show repcat status and nuaber
of tests to be cartphted

Yes

Show completed
report

Figure 5: A flowchart of the process of retrieving results

One of the issues that arose from this implementation was how to determine which

report to return, since a client could potentially place many orders and hence have many

reports for the same area. There are a number of possible solutions to this problem the

first is to have the database purge old data from the database regularly, or have a variable

set when the client requests a new order for the same area. The issue with this is when

to purge the old data, since it is hard to determine when the client will no longer wish

to see an old report. Due to the time constraints of this project, these types of solutions

have been scoped out of the implementation.

Perhaps a possible future extension to this project would be to enable the workflow to

automate the sending of an email to the client containing a PDF version of their report.

Once this report has been sent the workflow could wait for a response from the client

as acknowledgment that they received the report. The workflow could then update the

37

not@pws :getVar(GetReportStaWs0u..

database rendering that order completed or purging the data out as required.

12.2 Laboratory-side Workflow

The laboratory-side workflow is given below:

• Get new orders

• Check the order against the samples received

• Prioritise the tests

• Perform the tests

• Record the results

• Produce the report

• Send the report to the client

A graphical version of the workflow is given in figure 6 as modelled using BPEL4WS.

ge
aeration: getOrderHead	 operation: prioritiseTests 	 operation: geneportStatus
enable; GetOrderHeadlnpuNessage 	 variable: PrioritiseTestsInputMessage	 variable: GetReportStatusInputMessage

Figure 6: A model of part of the laboratory-side workflow

The laboratory-side workflow consists of two separate parts: when a new order is

received by ChemSearch and when tests are completed for a client. These are shown in

38

the flowcharts below.

Figure 7 shows the process of receiving a new order from a client. On the order form

there is a box to enter the number of samples to be tested for a given site. This number

is then checked against the actual samples received from the client. If these are not the

same the client is notified, so that new samples can be sent. If they are the same, the

tests are prioritised based on a number of factors mentioned below, and stored in the

database for future reference.

As a result, the workflow must keep track of the tests that have been ordered.

Figure 7: A flowchart of the process of receiving new orders

Figure 8 shows the process of producing the client's report. Once a test has been

completed, the initial result is recorded. Often a test needs to be repeated, if this is the

case the test is done again and the final result is calculated and stored in the database.

If all the tests have been completed for the client, the report is produced containing the

results for all the requested tests. This is then sent to the client.

39

The workflow must keep track of which tests have been completed, their results arid

the current status of the client's report. The main purpose for this is so that the same

WSRF web service can be used by both the laboratory and their clients. In this way the

client can access their results and the status of their reports as the tests are completed

by the laboratory. This is because they are using the same WS-Resource, which keeps

track of the results and the status of the report.

Produce report	 Send report to clipatt

Figure 8: A flowchart of the process of producing the client's report

This side of the workflow was rather complicated, as the prioritisation of the tests

depended on a number of factors including the urgency, lifetime of the sample, length of

time to perform the test and the number of samples that needed the same test to be done.

The majority of the factors were sent to the client in the form of comments on the order

40

form. Retrieving this data would require a change to the order form so that a client could

select the tests that were urgent and give them a priority. Since there are 31 possible

tests this would make the order form rather cluttered and not very user-friendly. To this

end the comments box was kept and the comments were displayed with the prioritisation

of the tests. To keep things simple the workflow prioritised the tests based on the number

of samples for each test and returned this to the system along with the comments. At

the system end, the laboratory could make changes to the suggested prioritisation based

on the comments or other factors such as staff illness, which may affect the tests to be

done and cannot be monitored by the workflow.

Overall, there were too many factors that could not be modelled by the workflow.

These include checking incoming orders against the samples received, performing the

tests and analysing the results. Ideally the workflow should automate as many of these

factors as possible, so that the benefits from modelling workflow are maximised. A large

amount of human input impedes the effectiveness of the workflow and removes the mo-

tivation for using it. The reason for this is that sequential web service invocations, i.e.

invocations that need to send a response back to the client, end up being no different than

a standard class that invokes each service one after the other. Modelling the workflow

of the laboratory in this fashion would require complex programs that could monitor the

tests, incoming samples and analyse the results, such as current tools that have been

developed to model workflow [Amin et al., 2004], [Taylor et al., 2005]. Due to the time

constraints and focus of this research, automating the workflow in this manner is clearly

outside the scope of this research.

In any event the modelling of the workflow raised some serious issues with BPEL4WS in

particular, these are discussed in detail in section 14.3.1.

13 Results

This section outlines the results obtained from applying the method of integration, see

section 11, to model the workflow of the ChemSearch laboratory. As a result this method

can be evaluated by using a set of criteria defined in section 13.0.1. This evaluation raised

41

some key points about the web services specifications and the tools used. Therefore, a

list of these points will be given in subsequent sections, 13.1 and 13.2 with further details

described in section 14.

13.0.1 Method of Integration

Reviewing the related literature revealed that criteria were not applied to evaluating pro-

posed systems, tools or solutions. Rather it looked at problems that arose and discussed

how the solution achieved it and any issues that still remained. To this end the difficul-

ties with the web services specifications and tools will be listed here with discussion to

follow in section 14. In order to truly evaluate the method of integration criteria has been

established based on the major requirements that I have determined from reviewing the

related literature and WSRF specification. These are listed below.

• The method of integration enables BPEL4WS to be combined with WSRF - Y/N

• The method of integration can be generalised for use in any workflow that needs

WSRF - Y/N

• Does the method of integration provide a means of storing endpoint references -

Y/N

• Does the method of integration cater for easy retrieval of endpoint references - Y/N

• Can the method of integration be applied to other WSRF and BPEL4WS tools -

Y/N

• Does the method of integration scale well, if applied to large, complex workflows -

Y/N

(i.e. workflows that may contain a number of WS-Resources)

The results from the application of this criteria to the method of integration outlined

in section 11 are shown in table 1.

Note: Scalability refers to how much extra work is required to adapt the method of

integration to incorporate multiple WS-Resources. It does not pertain to the creation of

42

Criterion	 Result

The method enables BPEL4WS to be combined with WSRF

(See section 14.2 for further details)

The method can be generalised for use in any workflow that needs WSRF

(See section 14.2.1 for further details)

Does the method provide a means of storing endpoint references

(See section 14.2.2 for further details)

Does the method cater for easy retrieval of endpoint references

(See section 14.2.3 for further details)

Can the method be applied to other WSRF arid BPEL4WS tools

(See section 14.2.4 for further details)

Does the method scale well, if applied to large, complex workflows

(See section 14.2.5 for further details)

Table 1: The evaluation of the method for combining WSRF with BPEL4WS

WS-Resources or work that would normally need to be done in the process of creating the

workflow. It only refers to the work that has to be done over and above normal workflow

creation in order to implement the method of integration

Although no concrete data was obtained from modelling the workflow, there were a

number of issues raised that logically fall into the category of results. No actual discussion

of the findings will appear in this section, as this section is solely for the purpose of

outlining the issues with the method of integration and tools in general.

13.1 Web Services Specifications

This section outlines firstly the key points raised with the web services specifications,

namely WSRF, section 13.1.1, arid BPEL4WS 13.1.2 and then the key points with the

tools used, see section 10 for further details, firstly Cape Clear, section 13.2.1 and then

Apache WSRF section 14.4.2.

43

13.1.1 WSRF

This section lists the key points raised from using WSRF, see section 14.3.2 for more

details.

• The necessity of making the state persistent in an external data source questions

the need for WSRF.

• There is some difficulty in determining what needs to be a stateful resource and

how this should be managed.

• In particular there is no standard mechanism defined in the WSRF specification for

storing arid retrieving endpoint references.

13.1.2 BPEL4WS

This section lists the key points raised from using BPEL4WS, see section 14.3.1 for more

details.

• The general usability of BPEL4WS is a problem, in particular its flexibility and

usefulness in the modelling of this type of workflow.

• The un-testability of the workflow to try and find errors.

• Assignment of variables is inflexible.

13.2 Tools

The use of these particular tools, see section 10, impacted on the method implemented.

The key points from using these tools are listed below.

In general the lack of good documentation was a serious issue along with the severe

incompatibilities of the tools.

13.2.1 Cape Clear Orchestration Studio

The key points raised about this tool are given below, see section 14.4.1 for more details.

• The poor quality of the documentation.

44

• The SOAP messages were incompatible with the messages sent from the WSRF

client-side stubs.

• Cape Clear was unable to invoke a WSRF web service.

• The assign statement copied the message structure instead of the value and did not

allow for copying multiple, individual values.

• Modification to the WSDL meant re-engineering the entire workflow.

13.2.2 WSRF Apache Project

A list of the key points raised from the use of this tool are given below, see section 14.4.2

for more details.

• Lack of client-side stubs

• Forced to use WS-Addressing stubs which didn't add reference properties to the

SOAP header.

14 Discussion

In section 11, I outlined the method that was implemented to solve the integration prob-

lem. I will now outline firstly some other options I explored and why these were not

feasible in practise. I will then move on to discuss in detail the results I obtained about

this method of integration. In subsequent sections I will discuss the results obtained on

each of the specifications and tools in this order. I will conclude this section with a brief

summary of the results in general that will focus on improvements that I think will be

necessary for these two technologies to work together. Finally, I will end with a section

on the system that was implemented and the issues and future work that could be done.

14.1 Alternatives

The purpose of this section is to describe alternatives that were investigated to determine

if BPEL4WS would work directly with WSRF.

45

The BPEL4WS specification states that an endpoint reference as defined by WS-Addressing

[W3C, 2004b] can be assigned dynamically to a partner link, which in BPEL4WS terms

is basically a web service. While the current Cape Clear documentation stipulated the

support for assigning endpoint references this was not the case in practise. I discovered

that in fact the current version of Cape Clear Orchestration Studio did not support the

dynamic assignment of end point references. Neither the BPEL4WS specification nor

Cape Clear documentation specifically mentions whether reference properties included as

part of the endpoint reference would be added to the SOAP header of the message. The

specification only goes as far as acknowledging that data can be placed in the header or

in the body of a SOAP message. it does not precisely state the placement of reference

properties. Based on my experience with WS-Addressing stubs, it is very unlikely that

reference properties would be copied into the SOAP header, since they are an optional

part of an endpoint reference. This is backed up by research into this area, which also

suggested that it was unlikely to include reference properties in SOAP message headers

[Slomiski, 2005].

The WS-Addressing stubs were used to enable the system developed in Eclipse to send

and receive XML messages and did not by default add reference properties to the SOAP

header. It does extract the reference properties from the endpoint reference passed to it,

but these are never set when the call object is created, so never get added to the SOAP

header. Perhaps this is because no checking is done to make sure the reference properties

are riot null. I am not sure what effect it would have on the message if a null value was

added to the SOAP header, but I do know that having null values in the body of the

message causes a null pointer exception when the message is deserialised - the process of

extracting application data from the XML message.

Since WSRF only checks for the existence of reference properties when there is an

entry in the jndi-config.xml file for the service, see figure 9, then requiring a value to

exist in the SOAP header would not cause any problems if the value did not uniquely

identify a WS-Resource and the call was riot invoking a WS-Resource instance.

Therefore I think it would go a long way to aid the integration process if there were

some underlying code that checked for the existence of reference properties in the endpoint

46

<parameter>

<name>resourceKeyName</name>

<value>chemsearch/ChemSearchServiceResourceIdentifier</value>

</parameter>

Figure 9: An extract from the judi-config.xml file for the WS-Resource service

reference. If there is an entry for the reference properties then these should automatically

be added to the SOAP header. From my experience in trying to integrate WSRF and

BPEL4WS, the BPEL4WS process needs to do some form of checking for the existence

of reference properties for BPEL4WS to truly support WSRF web services. If by default

these reference properties were added to the SOAP header it would alleviate the need for

BPEL4WS to know when the web service it is accessing is a WSRF one or not (assuming

of course that BPEL4WS is communicating directly with the WS-Resource and not some

intermediary mechanism).

Even if the Cape Clear Orchestration Studio had supported the dynamic assignment

of endpoint references and these were included in the SOAP header by default, this so-

lution would not have worked. This is because the Cape Clear tool threw an exception

every time it tried to invoke a WS-Resource web service. After some investigation and

looking at the error messages produced by the tool, I discovered that it was the imported

WSDL definitions needed to declare the web service as being WSRF that were causing the

problem, see appendix B. Further investigation would be needed to determine whether

other BPEL4WS tools had the same problem, or whether this was just an issue with the

Cape Clear tool. Since a specification, in this case BPEL4WS, is usually just a blue print

for how workflow could be designed and implemented it seems unlikely that this is an

issue stemming from the specification itself. It seems more likely that it is the way in

which the Cape Clear tool validates the BPEL4WS workflow.

Therefore the only option that seemed to remain was the method outlined in section 11.

A discussion of this method is given in the following section.

47

14.2 Method of Integration

The method found to integrate BPEL4WS and WSRF was similar to solutions proposed

in the research [Slorniski, 20041, [Amin et al., 2004]. The solution proposed within this re-

port was outlined in section 11 and so a description of that method will riot reappear here.

The results shown in table 1 indicate that the method for combining WSRF and BPEL4WS

can be applicable to any workflow needing both BPEL4WS and WSRF. However, there

is some doubt as to its scalability. Each criterion in the table will be discussed further in

the appropriate sections below.

14.2.1 Generalisation

The solution to the integration problem uses a third WSRF web service, referred to as

the proxy service (see figure 1). The BPEL4WS workflow only interacts with this web

service and so does not need to know about the two web services common to WSRF, i.e.

the factory service and WS-Resource. Since the actual web service containing the WSRF

specific implementations is abstracted out of the workflow, this solution should generalise

to any implementation of a workflow containing WSRF and BPEL4WS. This is because

a WSRF web service that uses the singleton pattern, as defined in section 2, does not

require any of the implementations necessary to define a WSRF web service. This means

that as far as BPEL4WS is concerned the WSRF web service is like any other normal

web service and since a BPEL4WS workflow, according to the specification, is itself a

web service this method should work with any BPEL4WS workflow that adheres to the

basic principles of the BPEL4WS specification version 1.1.

14.2.2 Storing Endpoint References

In order for BPEL4WS to be combined with WSRF there needs to be a mechanism that

stores the endpoint references for any newly created WS-Resources. Figure 10 demon-

strates the need for storing endpoint references.

The WSRF specification does not currently provide a blueprint for how to implement

this solution; however a description of how this was implemented is given in section 11.

48

RESOURCES

Figure 10: The WS-Resource Factory Pattern [Sotomayor, 2005]

This method of storing endpoint references means the WS-Resource keeps a reference

to the endpoint reference as well as it being added to the underlying cache. This endpoint

reference is then returned to the proxy service, which maintains the reference until the

next time a web service is invoked. Currently this has to be done by making the endpoint

reference static, as a new call to a web service by default creates a new instance of the

service class.

The endpoint reference could be made persistent in the event of server failure by writ-

ing it to an external data source such as a file or database.

The need to make the endpoint reference static is the main disadvantage of this

method. By the definition of WSRF the endpoint reference should really be modelled as

state, since it needs to be maintained across multiple invocations of a service. In practise

it cannot be modelled this way, because it would end up in an infinite number of WSRF

services. As the main benefit of using the proxy service in the first instance is that it

49

does not require being a WSR,F service. By making it a WSRF service, it would be

incompatible with BPEL4WS and so a new service would be needed, which would need

endpoint references to call the proxy service and this would go on and on.

This is why it is important for there to be a standard way to store endpoint references

to avoid using implementations that are less than ideal.

For the purpose of enabling BPEL4WS to work with WSR,F this solution is acceptable.

14.2.3 Retrieving Endpoint References

This problem is closely related to the previous issue, but retrieving an endpoint reference

requires a unique identifier to match the WS-resource with the incoming call to the web

service.

This is implemented by using the factory service to check if a resource exists using

the site as a unique identifier for the resource, see section 11 and figure 2 for further details.

The advantage of this method is that it provides a solution to the lost or invalid end-

point reference problem, since the factory always returns a valid reference to the resource.

This method could be generalised to any implementation of WSRF by defining a pat-

tern of use. One such pattern could define a method that takes in a unique identifier

arid locates all the resources stored by the service. If a resource exists that matches the

unique identifier passed to this method, then a reference to this resource is returned.

Otherwise an exception is thrown that when caught invokes another method that creates

a new instance of the resource, passing into the constructor the unique identifier and a

new endpoint reference. This resource is then returned to the caller of the method.

By defining a pattern, retrieving valid endpoint references will always work regardless

of the WSRF implementation, so long as it adheres to the basic specification, or the

programming language used.

However, there is currently a specification called WS-RenewableReferences being de-

50

fined that will hopefully solve the problem of lost or invalid endpoint references. When

this becomes available it will alleviate the developer from dealing with this issue.

Until such time the implementation described within this document fulfills the purpose

of retrieving endpoint references.

14.2.4 Application to Other Tools

This method should be applicable to other tools for the same reasons as section 14.2.1.

Since the method removes the need for the BPEL4WS workflow to know anything about

WSRF this method should work with any BPEL4WS tool regardless of its support for

WSRF. In the event that a tool is used that enables the assignment of endpoint references

that copies the contents of the reference properties into the SOAP header, the proxy layer

can be removed so that the workflow works directly with the WSRF web service, without

the need for any additional implementation.

14.2.5 Scalability

One of the disadvantages of this method is that it doesn't scale well, see figure 11. This

is because there is now effectively two web services instead of one. In theory if another

WS-Resource was needed the operations defined in its WSDL file could be added to the

existing proxy service, instead of creating a new one thus limiting the scalability problem.

However, this would only be appropriate for very small web services as the proxy service

would soon become very large and unmanageable. Therefore, for large complex services

it would be better to define a separate proxy service for each WS-Resource needed. In

implementing it this way, it also alleviates the need for the proxy service to keep track of

two different sets of endpoint references 	 one for each defined WS-Resource.

The key issue with this method in terms of scalability is that two sets of WSDL need

to be updated instead of one. If a change is made in one file and riot the other, the

method signatures will be different. This means one method will not be able to call the

other.

However it does mean the API for the proxy service can be made simpler to deal

51

Proxy
ervic e

Proxy
Service

Cale WS -Res° ur c e

Two WS-Re s ourc e

Workflow

orldlo w

Proxy
S et-vice

F actoty
Service

Re
FJ-
 s ourc e

F actoty
Service

Resource

Factor,
S et-vic e

TA7s_
Resource

Figure 11: The Scalability Problem

with issues with tool incompatibilities or general limitations of the workflow. In my case

the incompatibilities, to be discussed in detail in later sections, did not affect the WS-

Resource WSDL as the proxy web service just implemented additional processing to deal

with the issues with the tools.

14.2.6 Summary of the method

Overall, the method successfully allows WSRF to be combined with BPEL4WS. The

key issue with this method is the scalability as for each WS-Resource web service that

is added there needs to be an accompanying proxy service. This also introduces issues

with duplication of data as the method signatures defined in both the proxy and WS-

Resource WSDL files have to be the same. The main advantage of this method is that

the BPEL4WS workflow can treat the proxy service as a normal web service as it does

not contain any of the signatures that define a WSRF web service. As WSRF usually has

52

two web services, a factory service that creates the WS-Resource and the WS-Resource

itself, the use of a proxy service alleviates the workflow from knowing about two web

services, instead it only has to interact with one.

In implementing it this way, the method of integration should work with any tool no

matter the level of support for WSRF and can easily be modified should a future version

of BPEL4WS fully support WSRF; just remove the proxy web service.

The other key advantage of this method is that it alleviates the need for the work-

flow to keep track of endpoint references; instead this is delegated to the proxy and

factory services. If the workflow had to keep track of endpoint references, the BPEL4WS

specification would have to provide support for matching incoming requests to the right

WS-Resource instance. Currently the BPEL4WS specification supports the use of cor-

relation sets, which enables incoming message signatures to be matched with existing

process instances. It is unclear from the specification if there is an option to create a

new process instance or use an existing one. In delegating this responsibility to a web

service, the implementation of that service can deal with how to achieve this. This pro-

vides greater flexibility as the web service will be implemented in a specific programming

language that will enable the developer to choose the most appropriate way to implement

this. However, there should really be a pattern defining an implementation. Currently

the WSRF specification does not provide support for this.

Perhaps this will be developed once the specification has been standardised and re-

ceived widespread support. It is common in these types of situations that a best practise

is developed saving developers from having to reinvent the wheel - finding a solution to

a common problem.

I will now discuss the specifications and the tools used to implement this method in

the context of modelling the workflow of the ChemSearch laboratory.

53

14.3 Specifications

The two main specifications used to model the workflow of the laboratory were BPEL4WS

[Andrews et al., 2003] and WSRF [Czajkowski et al., 2004].

In section 13 a list of key points raised from the implementation of the method will

now be discussed.

It should be noted that the main issue with these specifications is lack of standardis-

ation.

14.3.1 BPEL4WS

This section will discuss in detail the key points mentioned in section 13.1.2.

The first problem mentioned was the general usability of BPEL4WS.

The workflow of the ChemSearch laboratory dealt with large amounts of data and at

times was quite complicated. I found that BPEL4WS seemed to be unequipped firstly to

deal with the volume of data and secondly was rather inflexible, but that could have been

due to the fact that a BPEL4WS workflow is itself a web service. One of the problems

of modelling this type of workflow, where there requires a significant amount of human

input, is returning results. Dynamically changing the return type of a web service invoca-

tion would alleviate this problem, however this is not feasible in practise. In particular, it

is not a problem that could be solved by refining the BPEL4WS specification; it is more

of a problem with web services in general. This is because web services does not enable

dynamically modifying the WSDL file. The WSDL file would need to be changed to

enable the return type of a service to be changed. Since this process involves recompiling

the WSDL file and modifying the service implementation, this approach is not feasible in

practise. As a result this functionality is not provided by current web services technology.

Improving the BPEL4WS specification would not solve this problem because it is still

based on web services technology.

If a BPEL4WS process defines the workflow so that multiple web services are required

to return results, all these invocations must have the same return type. To illustrate this

point I will use an example from the workflow. Logically checking the status of the re-

54

port should involve returning the report if all the tests have been completed. In order to

achieve this, the workflow waits for a message requesting the report status, which returns

a string representing the status of the report. In order to return the report if all the tests

have been completed the report status must have the same return type as the report.

The report method returns an array of sites, tests and results, while the report status

returns a string. Hence for the process to return the report, the report status must return

a string plus an array of sites, tests and results.

The second mentioned problem was the untestability of the workflow.

Since a BPEL4WS process is based on WSDL files provided to it, it is more of a

modelling tool than a programming language such as Java. One of the benefits of using

a language such as Java is that you can print data out to the console to figure out the

source of a problem when something goes wrong. It would be beneficial if BPEL4WS had

some support for this. Currently it is a trial and error process to determine the source

of the problem. This is because the error message that is printed out to the console

does not specify the part of the process that caused the error. As a result the process is

modified and then re-compiled and deployed to determine if the change fixes the error in

the workflow. This can be a time-consuming process, especially if there are a number of

different errors in the workflow. Since fixing an error requires modifying the workflow,

re-compiling and deploying the workflow before it can be tested again to see if the change

fixes the error.

The final problem was assigning values to variables.

Currently the assignment of values to variables is rather inflexible. There would be

greater flexibility if the specification provided a means of assigning multiple values to the

same variable, when there are multiple values defined in the variable itself, as illustrated

in figure 12.

Currently BPEL4WS only allows the assignment from one variable to another. If

two variables do not have the same message structure assigning can make the variable

invalid and produces an error when the service is invoked. This is because the message

55

GetReportOutputflessage
-.response

ns :getRepornesponse
completed
stains
sites
tests

2 results

Figure 12: The structure of a message variable defined in BPEL4WS

sent does not match the one expected. For example, often it was the case that one in-

vocation of a service followed naturally from another. The issue is when both services

return different values. It would be easier on development if both values could be assigned

into a single variable that could be returned. Currently the only option is to have the

WSDL for both services return the exact same variable, which has a duplication issue

in that you have to update the WSDL in two separate places instead of one. Unfortu-

nately these types of problems can only be determined once you are ready to test the

workflow and at this stage any changes to the WSDL require re-engineering the workflow.

Overall, I think the specification needs some work. It seems to be better suited to

modelling workflow when there is little need for human input.

14.3.2 WSRF

This section will discuss the key points outlined in section 13.1.1.

The first problem raised the issue of whether WSRF was needed or not.

This issue arises because any web service can have state by making its data persis-

tent, for example, in a database. However, this does not provide a template for how to do

this, which is one of the benefits of WSRF. Therefore, there are significant advantages,

such as a defined pattern for implementing state, widespread support in the event of

standardisation and the availability of tools to support implementation, in providing a

specification that deals exclusively with the manipulation of state. One further argument

56

for a specification that deals with state is that it removes multiple, different, incompatible

implementations.

The second problem was determining what should be modelled as state.

This was raised as a potential problem [Humphrey et al., 2004], [Wasson et al., 2005]

but in my experience it really has nothing to do with the specification; it is more of a

design decision. Personally, I think using WSRF was very useful in helping model the

workflow of the laboratory. It provides a standard way to model and access state, al-

though it is only persistent for the lifetime of the server. This is where an external data

source can come in handy.

The third and final problem was that there is no standard mechanism to store and re-

trieve endpoint references.

This is a problem because every WSRF web service has to store and retrieve endpoint

references in order to invoke WS-Resources. If there is no standard mechanism to do this,

developers have to implement this themselves. This wastes valuable development time,

as in general a problem that exists for multiple people should have a pattern defined to

solve it, to stop the development of a solution that already exists. Therefore, it is in the

best interests of the WSRF specification to provide a pattern for how to implement this

problem. In doing so it will improve the chances of the specification being widely adopted

and will make it more robust.

14.4 Tools

Although there were a couple of issues that needed addressing at the specification level,

most of the issues encountered stemmed from the tools used. Therefore this section will

focus on possible improvements to the mentioned tools, in light of the implementation of

the method.

57

14.4.1 Cape Clear Orchestration Studio

The main problems with the Cape Clear tool were identified in section 13.2.1.

The first problem with Cape Clear was the quality of the documentation.

The documentation included with the Cape Clear tool was of poor quality. It men-

tioned specific details of how to implement, for example assignment of endpoint references

to partner links, which the current version of the Cape Clear tool did not support. This

is totally unacceptable for a commercially available product. One of the main reasons

for choosing this tool in the first place was that it would produce workflow that could be

suitably validated for its use. No matter how good the tool is, if it has poor documenta-

tion the overall quality of the product is reduced.

The obvious solution to this – don't include material in the documentation that is not

yet supported by the tool.

The second problem with Cape Clear was the SOAP messages.

There was a problem with the incompatibility of the SOAP messages sent from the

WS-Addressing stubs to the Cape Clear Server. From looking at the messages sent and

received, the WS-Addressing messages used the part name of the message from the WSDL

file to wrap the data in, whereas the Cape Clear Server used the actual schema name.

This is shown in figures 13 and 14, respectively.

<?xrd. version="1. 0" enco ding="utf -8" ?.>

<s, o ap env : Envelop e >mins soapenv="http Lis chemas.ndso ap or Vs° ap / envelop
<soap env: Body>

<createResourceRequest xmlns="chemsearch/ChemFactoryService"/>

</soapenv: Body>

isoapenv:Envelope>

Figure 13: The SOAP message sent from the WS-Addressing stubs

58

<17xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.orgisoap/enveloper xmlns

<env:Body>
<ns:createResourceRequest xmlns:ns="chemsearch/ChemProxVervice"/>

</env:Body>

</env:Envelope>

Figure 14: The SOAP message sent from the Cape Clear Server

This was rather inconvenient as you could only find this out when running the work-

flow from within Eclipse.

As a result the only messages that were acceptable to the Cape Clear server from the

client-side stubs were messages with no input parameters, as an assign could be done

server-side to format the messages into a form that was acceptable to the process. Al-

ternatively messages with simple types for parameters, such as strings and ints, were

acceptable. This meant that the laboratory had to use strings to send the data to the

web service in order for the messages to be acceptable to the process. This is where the

implemented solution has a key benefit. The proxy web service can extract the data out

from the string and pass it to the WS-Resource web service in a more appropriate format.

In the event that a BPEL4WS tool supports WSRF the WSDL for the WS-Resource will

not have to change and the system will only need minor changes to work. Compare this

to the changes that would have to be made to the WS-Resource WSDL if the process

interacted with it directly.

However, problems with the incompatibilities of the tools cannot be determined until

it comes time to test the workflow. Any changes that have to be made to the WSDL at

this point require the WSDL to be re-compiled and deployed and the workflow has to be

completely recreated from scratch.

A standard mechanism to define the way SOAP messages are created would alleviate

this problem

59

The second mentioned problem was the inability of Cape Clear to invoke a WSRF web

service.

This problem arose from the imported WSRF definitions that define a WSRF web

service. For some reason Cape Clear threw an exception when trying to invoke these

services. From the error message it seemed that Cape Clear did not support the way in

which the imported WSDL file was defined. Since both BPEL4WS and WSRF support

WSDL 1.1, this cannot be a specification problem rather it must be the way in which

Cape Clear validates the BPEL4WS process and since by default the BPEL4WS process

also imports whatever definitions are contained in the underlying WSDL files, these will

affect the validation of the process.

Whether this is a bug in the tool has yet to be determined. However, this problem needs

to be addressed in case it applies to more than just the WSRF definitions. There is no

point in defining workflow if it doesn't recognise imported WSDL definitions.

The final problem mentioned was modifying the WSDL involved recreating the workflow

from scratch.

If the underlying WSDL files change the workflow has to be completely re-engineered.

I suppose the argument for this is that the WSDL should be properly defined before the

workflow is developed. The problem with this argument is that some of these problems

that I have outlined do riot become apparent until you come to test the workflow. Per-

haps some of these problems will be resolved once BPEL4WS has been standardised and

more widely adopted.

Alternatively, defining a mechanism where the workflow could be refreshed so that any

changes made to the underlying WSDL would be reflected in the workflow automatically,

would avoid this problem.

60

14.4.2 Apache WSRF project

This section will discuss the key points raised from the use of this tool to implement and

test the method of integration.

A list of these points can be found in section 13.2.2.

The first problem was the lack of client-side stubs.

In order for elipse to invoke the BPEL4WS process deployed at the CapeClear server,

there needs to be client-side stubs. These stubs are responsible for creating the SOAP

message that contains the parameters for the service that is being invoked, and extracting

the response from the SOAP message that is returned by the CapeClear server.

These were not included in the Apache WSRF project.

The lack of provision of client-side stubs meant an alternative had to be found for

SOAP messages to be sent from within the Eclipse Integrated Environment. This was

needed in order to fully model the workflow, see section 12 for a detailed discussion of

this reason.

Fortunately the Apache project supplied WS-Addressing stubs that could be used

to generate the client-side code in Java necessary to send and receive SOAP messages.

However, although it allowed the SOAP messages to be sent and received, the stubs by

default did not add the reference properties found in a WS-Addressing endpoint reference

to the SOAP header.

This leads on to the final problem with Apache WSRF, namely that the WS-Addressing

stubs did not add reference properties to the SOAP header.

This meant the generated code had to be hacked to enable the reference properties

to be added to the SOAP header, while this wasn't a difficult task to do it meant that

every time a WSDL file was created this code had to be added to the stubs.

61

Given that endpoint references are part of the fundamental framework of WSRF it

would benefit WSRF if its implementations could provide a mechanism for automatically

adding reference properties to SOAP headers.

This would require checking if the reference properties were not null before adding

them in case sending null values in the header would cause problems. Since the stubs

from the Apache project automatically create all the code for you to create and send

messages, surely it wouldn't be too difficult to add another section of code to deal with

endpoint references.

Adding this kind of support would go a long way to increasing the adoption of WSRF

technologies, as it is quite off-putting to use a tool where you have to hack the generated

code, as there is an underlying assumption that if there is something wrong with your

project it is unlikely to be the generated code, especially if the project in question is not

in a beta release.

Since the Apache WSRF project has only just been released, maybe there will be

support for endpoint references in a future release once the majority of the bugs have

been removed.

Overall, the method of integration enabled WSRF and BPEL4WS to work together,

but it did raise the problems stated in table 2. Most of these problems could be resolved,

such as SOAP messages, adding reference properties to the message header, etc., by pro-

viding a pattern of use that defines a generic solution to these problems, rather than each

developer coming up with their own solution. This leads to re-inventing the wheel, which

is highly undesirable. Overall, any limitations with the WSRF tool could be due to the

fact that the version of the tool used in this research was only a beta release. Therefore,

the problems mentioned in table 2 could be resolved in a future release of the tool, once

most of the bugs have been removed from it.

The Cape Clear tool on the other hand was very inflexible, due to the nature of

BPEL4WS, and had problems with imported WSDL definitions. It would be interesting

62

Problem
	

Specification/Tool

Reference properties do not get copied

into the SOAP header of a message

Endpoint references cannot be dynamically assigned

to a web service

Lack of testability of the workflow

No client-side stubs

No standard mechanism for storing

and retrieving endpoint references

Usability of BPEL4WS

Lack of compatibility with WSRF

Assignment of variables

Problems with SOAP messages

Changes to WSDL require workflow to be recreated

Poor documentation

BPEL4WS specification, WSRF tool

Cape Clear tool

BPEL4WS specification

Apache WSRF tool

WSRF specification

BPEL4WS specification

BPEL4WS specification, Cape Clear tool

BPEL4WS specification

Cape Clear tool

Cape Clear tool

Cape Clear tool, WSRF tool

Table 2: Summary of the problems encountered during the integration of WSRF and

BPEL4WS

to know whether it is just WSRF imports that it could not resolve or whether the tool

cannot deal with imported WSDL definitions that it does not already support. Cape

Clear was able to resolve WS-Addressing imports defined in the factory service, but this

could be because Cape Clear supports WS-Addressing.

The poor quality of the documentation was unacceptable for a commercially available

tool and it would seem from this analysis that the Cape Clear tool needs a lot of work,

before it could be recommended as being suitable for modelling BPEL4WS workflow.

In terms of the specifications, WSRF seems a worthwhile contribution to the web

services community and provides a standard means of accessing and modelling state

that proved very useful in modelling the workflow of the ChemSearch laboratory. The

BPEL4WS specification on the other hand needs some work to make it more flexible and

user-friendly. A mechanism to test the workflow would be very useful for error detection.

63

On a more general note, web services technology has a lot to offer over other conven-

tional distributed technologies, such as CORBA (Common Object Request Broker Archi-

tecture), with their service-oriented architecture and interoperability. Unlike CORBA,

web services uses open Internet-based standards, which means web services can be de-

ployed on any platform. The service-oriented architecture prevalent in web services tech-

nology means systems using web services are loosely coupled, which promotes modularity.

The use of web services technology would greatly benefit the ChemSearch laboratory or

any laboratory for that matter due to the open-source, Internet-based standards. The

addition of workflow modelling specifications, such as BPEL4WS, mean the workflow

of the laboratory can also be modelled using web services technology. The number of

open-source tools available for developing web-services also makes building web services

a semi-trivial task and for laboratories, such as ChemSearch, there should be plenty of

tools available that could be "suitably validated" as required by the standard ISO/IEC

5.4.7.2 for the competence of testing and calibration laboratories.

15 Future Work

This section discusses future work that could be done.

It might be interesting in possible future work to look at the extension of BPEL4WS and

hence this method for use in a grid services environment.

16 Conclusion

In conclusion, this project highlighted some problems with the specifications that would

need to be resolved for their integration to be truly successful. The method used to

integrate BPEL4WS and WSRF fulfilled all the major requirements but would not scale

well. Although scalability is an issue it also meant that BPEL4WS didn't need to know

that it was interacting with a WSRF web service and meant that tool incompatibilities

could be handled in the middle layer rather than at the WS-Resource end. This means

that if a BPEL4WS tool was more compatible with WSRF, it would only require small

64

changes. However, it would be better for the BPEL4WS process to interact with WSRF

through the proxy service, rather than directly with WSRF. This prevents BPEL4WS

having to store and retrieve endpoint references and communicate with two web services,

i.e. the proxy and the factory. It would seem that the benefits of this method far out

weigh the cost of scalability.

Overall, the two major problems with these specifications is the lack of good documenta-

tion and standardisation. In particular the optionality of reference properties in endpoint

references is a problem that needs to be resolved. As long as it is optional for these to be

added to the SOAP header, there can be no elegant solution to the integration process.

As there needs to be some code at some point that determines whether a reference prop-

erty exists for a particular endpoint and if it does to copy it into the SOAP header. Since

the WS-Addressing client-side stubs used with WSRF did not perform this functionality

it is unlikely to expect BPEL4WS or any other web service technology to support this in

the near future.

65

17 References

[Amin et al., 2004]

[Andrews et al., 2003]

Amin K., von Laszewski G., Hategan M., Zaluzec N. J.,

Hampton S., Rossi A.,

GridAnt: A Client-Controllable Grid Workflow System,

Proceedings of the 37th Annual Hawaii International Conference

on System Sciences, Volume 07, Number 7, pp 70210c, 2004.

Andrews T., Curbera F., Dholakia H., Goland Y., Klein J.,

Leymann F., Liu K., Roller D., Smith D., Thatte S., Trickovic I.,

Weerawarana S.,

Business Process Execution Language for Web Services

Version 1.1, 2003.

Available at:

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

[Ant, 2005]	 Ant, http: //ant . apache . org/, accessed 11 July 2005.

[Apache, 2005]	 Apache, http : //www apache org/, accessed 11 July 2005.

[Atkinson et al., 2005]	 Atkinson M., DeRoure D., Dunlop A., Fox G., Henderson P., Hey T.,

Paton N., Newhouse S., Parastatidis S., Trefethen A., Watson P.,

Webber J.,

Web Services Grids: An Evolutionary Approach,

Concurrency and Computation: Practice and Experience,

Volume 17, pp 377-389, 2005.

[CapeClear, 2005]	 CapeClear, http : //www . capeclear . com/, accessed 4 October 2005.

[Chao et al., 2004]	 Chao K., Younas M., Griffiths N., Awan I., Anane R., Tsai C.,

Analysis of Grid Service Composition with BPEL4WS,

18th International Conference on Advanced Information Networking

and Applications, Volume 01, Number 1, pp 284, 2004.

66

[Churches et al., 2005] Churches D., Gombas G., Harrison A., Maassen J., Robinson C.,

Shields M., Taylor I., Wang I.,

Programming Scientific and Distributed Workflow with

Triana Services.

Available at:

http://www.extreme.incliana.edu/groc/ggf10-ww/prograrnming

scientific_ and_ distributed_ workflow with_ triana_ services/

TrianaWorkflow.pdf.

[Czajkowski et al., 2004]	 Czajkowski K., Ferguson D., Foster I., Frey J., Graham S.,

Sedukhin I., Snelling D., Tuecke S., Vambenepe W.,

The WS-Resource Framework, Version 1.0, 2004.

Available at:

http://www-128.ibm.comAleveloperworks/library/ws-resource/

ws-wsrf.pdf, accessed 11 July 2005.

[eclipse, 2005]	 eclipse, http : //www. eclipse . org/, accessed 4 October 2005.

[Foster et al., 2001]

[Foster et al., 2002]

Foster I., Kesselman C., Tuecke S.,

The Anatomy of the Grid: Enabling Scalable Virtual Organizations,

First International Symposium on Cluster Computing and the Grid,

Volume 00, pp 6, 2001.

Foster, I., Kesselman, C., Nick, J., Tuecke, S.,

The Physiology of the Grid: An Open Grid Services Architecture

for Distributed Systems Integration, Globus Project, 2002.

Available at: http : //www . globus org/research/papers/ogsa .pdf .

[Foster et al., 2004]
	

Foster I., Frey J., Graham S., Tuecke S., Czajkowski K., Ferguson D.,

Leymann F., Nally M., Sedukhin I., Snelling D., Storey T.,

Vambenepe W., Weerawarana S.,

67

Modelling Stateful Resources with Web Services, Version 1.1, 2004.

Available at:

http://www-128.ibm.com/developerworks/library/

ws-resource/ws-modelingresources.pdf, accessed 11 July 2005.

[GridAnt, 2005]	 GridAnt, http : //www-unix globus org/cog/proj ects/gridant/,

accessed 11 July 2005.

[Hey et al., 2005]	 Hey T., Fox, G.,

Special Issue: Grids and Web Services for e-Science,

Concurrency and Computation: Practice and Experience,

Volume 17, Number 2-4, 2005, pp 317-322.

[Humphrey et al., 2004] 	 Humphrey M., Wasson G., Morgan M., Beekwilder N.,

An Early Evaluation of WSRF and WS-Notification via WSRF.NET,

The Fifth IEEE/ACM International Workshop on Grid Computing,

Volume 00, pp 172-181, 2004.

[Hunter et al., 2005]	 Hunter J., Cook R., Pope S.,

E-Research Middleware: The Missing Link in Australia's

e-Research Agenda, 2004.

Available at:

http://www.dstc.edu.au/Publications/eReseachMiddleware.pdf,

accessed 18 July 2005.

[Johnson, 2005] Johnson B., Building a Web Service

The Beginning--What is a Web Service?,

http://www.developerfusion.com/show/3245/, accessed 11 July 2005.

[Krishnan et al., 2005] Krishnan S., Wagstrom P., von Laszewskil G.,

GSFL: A Workflow Framework for Grid Services.

Available at: http://www.cs.indiana.edu/ srikrish/

68

publications/gsfl.pdf, accessed 18 July 2005.

[Leymann, 2005]

[MySQL, 2005]

[Oracle, 2005]

[Pasley, 2005]

[Slomiski, 2005]

Leymann F.,

Choreography for the Grid: Towards Fitting BPEL to the

Resource Framework.

Available at: http://www.cc-pe.net/CCPEwebresource/

c8545to872workflow/c8541eymann/c854Leymann.pdf,

accessed 11 July 2005.

MySQL, http : //www. mysql . com/, accessed 4 October 2005.

Executive Briefing: Grid Computing.

Available at: http://regitworld.com/serylet/Frs.frs?Context-

LOGENTRY&Source=cwstrip&Source_BC=0

SzScript--/LP/10003705/reg.

Pasley J.,

How BPEL and SOA Are Changing Web Services Development,

IEEE Internet Computing, Volume 09, Number 3, pp 60-67, 2005.

Slomiski A.,

On Using BPEL Extensibility to Implement OGSI and WSRF

Grid Workflows, March 2005.

Available at:

http://www.extreme.indiana.edu/groc/ggf10-ww/on_using_bpel

extensibility_to_implements_ogsi_and_wsrf_grids/C871

GridWorkflow2004_Mar05_0n_Using_BPEL_extensibility

implements_OGSI_and_WSRF_Grids_5.doc.

[Sotomayor, 2005]
	

Sotomayor B.,

The Globus Toolkit 4 Programmer's Tutorial,

http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial_0.1.1.html,

69

accessed 4 October 2005.

[Staab et al., 2003]

[Taylor et al., 2005]

Staab S., van der Aalst W., Benjamins V. R., Sheth A.,

Miller J. A., Bussler C., Maedche A., Fensel D., Gannon D.,

Web Services: Been There, Done That?,

IEEE Intelligent Systems, Volume 18, Number 1, pp 72-85, 2003.

Taylor I., Wang I., Shields M., Majithia S.,

Distributed Computing with Triana on the Grid,

Concurrency and Computation: Practice and Experience,

Volume 17, 2005, pp 1-18.

[Tomcat, 2005]	 Apache Tomcat, http: //tomcat .apache. org/, accessed 4 October 2005.

[Triana, 2005]	 Triana, http://www.trianacode.org/, accessed 11 July 2005.

[Tuecke et al., 2003]	 Tuecke S., Czajkowski K., Foster I., Frey J., Graham S., Kesselman C.,

Maguire T., Sandholm T.,Snelling D., Vanderbilt P.,

Open Grid Services Infrastructure (OGSI), Version 1.0.

Available at: http://www-unix.globus.org/toolkit/

draft-ggf-ogsi-gridservice-33_2003-06-27.pdf, accessed 18 October 2005.

[UDDI, 2004]

[W3C, 2001]

[W3C, 2003]

[W3C, 2004a]

UDDI Spec Technical Committee, UDDI Version 3.0.2, 2004,

http://uddi.org/pubs/uddi_v3.htm, accessed 11 July 2005.

W3C, Web Services Description Language (WSDL) 1.1, 2001,

http://www.w3.org/TR/wsdl, accessed 11 July 2005.

W3C, SOAP Version 1.2 Part 1: Messaging Framework, 2003,

http://www,w3.org/TR/soap12-part1/, accessed 11 July 2005.

W3C, Web Services Glossary, 2004a,

70

http://www.w3.org/TR/ws-gloss/, accessed 18 July 2005.

[W3C, 2004b] W3C, Web Services Addressing (WS-Addressing), 2004b.

Available at:

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.

[W3C, 2004c]	 W3C, Web Services Architecture, 2004c,

http://www.w3.org/TR/ws-arch/, accessed 12 July 2005.

[Wasson et al., 2005] Wasson G., Humphrey M.,

Exploiting WSRF and WSRF.NET for Remote Job Execution

in Grid Environments,

Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium, Volume 01, Number 1, pp 12, 2005.

[Yang et al., 2004] Yang Y., Tang S., Zhang W., Fang L.,

A Workflow Language for Grid Services in OGSI-based Grids,

Lecture Notes in Computer Science, Volume 3251, pp 65-72, 2004.

71

Appendices

A FactoryService WSDL

The WSDL pertaining to the creation of client-side WS-Resources is given below.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

name="ChemSearchFactoryService"

targetNamespace="chemsearch/ChemSearchFactoryService"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="chemsearch/ChemSearchFactoryService"

xmlns:pink="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:wsdl="http://schemas.xmlsoap.org/wsd1/"

xmlns:xsd="http://www.w3.org/2001/XMLScheme>

<wsdl:types>

<xsd:schema

targetNamespace="chemsearch/ChemSearchFactoryService"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:tns="chemsearch/ChemSearchFactoryService"

xmlns:xsd="http://www.w3.org/2001/XMLScheme>

<xsd:import

namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"

schemaLocation="http://schemas.xmlsoap.org/ws/2003/03/addressing"/>

<xsd:element name="createResourceRequest" type="xsd:string"/>

<xsd:element name="createResourceResponse>

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="wsa:EndpointReference"/>

</xsd:sequence>

72

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

<wsdl:message name="CreateResourceRequest">

<wsdl:part name="request" element="tns:createResourceRequest"/>

</wsdl:message>

<wsdl:message name="CreateResourceResponse"›

<wsdl:part name="response" element="tns:createResourceResponse"/>

</wsdl:message>

<wsdl:portType name="ChemSearchFactoryServicePortType"›

<wsdl:operation name="createResource"›

<wsdl:input message="tns:CreateResourceRequest"/>

<wsdl:output message="tns:CreateResourceResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ChemSearchFactoryServiceBinding"

type="tns:ChemSearchFactoryServicePortTypen>

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="createResource">

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

73

<wsdl:service name="ChemSearchFactoryService"›

<wsdl:port binding="tns:ChemSearchFactoryServiceBinding"

name="ChemSearchFactory"›

<soap:address

location="http://localhost:8080/wsrf/services/ChemSearchFactory"/>

</wsdl:port>

</wsdl:service>

<pink:partnerLinkType name="ChemSearchFactoryService"›

<pink:role name="server"›

<pink:portType name="tns:ChemSearchFactoryServicePortType"/>

</pink:role>

</pink:partnerLinkType>

</wsdl:definitions>

B ChemSearchService WSDL

The WSDL pertaining to the modelling of client-side state is given below. since the proxy

service is almost identical to the WSDL for this service, it has been ommitted from the

appendix.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

name="ChemSearchService"

targetNamespace="chemsearch/ChemSearchService"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="chemsearch/ChemSearchService"

xmlns:wsdl="http://schemas.xmlsoap.org/wsd1/"

xmlns:wsrp = "http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-ResourceProperties-1.2-draft-01.xsd"

xmlns:wsrpw= "http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-ResourceProperties-1.2-draft-01.wsdl"

74

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import

location="http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-ResourceProperties-1.2-draft-01.wsdl"

namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-ResourceProperties-1.2-draft-01.wsd1"/>

<wsdl:types>

<xsd:schema

targetNamespace="chemsearch/ChemSearchService"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:tns="chemsearch/ChemSearchService"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="checkUserRequest"›

<xsd:complexType>

<xsd:sequence>

<xsd:element name="username" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

<xsd:element name="password" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="checkUserResponse" type="xsd:string"/>

<xsd:element name="getSitesRequest" type="xsd:string"/>

<xsd:element name="getSitesResponse"›

<xsd:complexType>

<xsd:sequence>

<xsd:element name="sites" minOccurs="1"

75

maxOccurs="unbounded" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="resultsSitesRequest">

<xsd:complexType/>

</xsd:element>

<xsd:element name="resultsSitesResponse>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="sites" minOccurs="1"

maxOccurs="unbounded" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getFinalResultRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="test" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

<xsd:element name="result" minOccurs="1"

maxOccurs="1" type="xsd:double"/>

<xsd:element name="site" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getFinalResultResponse"›

76

<xsd:complexType/>

</xsd:element>

<xsd:element name="resultsTestsRequestm>

<xsd:complexType/>

</xsd:element>

<xsd:element name="resultsTestsResponse"›

<xsd:complexType>

<xsd:sequence>

<xsd:element name="tests" minOccurs="1"

maxOccurs="unbounded" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getTestsRequest"›

<xsd:complexType/>

</xsd:element>

<xsd:element name="getTestsResponse>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="tests" minOccurs="1"

maxOccurs="unbounded" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getAreasRequest"›

<xsd:complexType/>

</xsd:element>

77

<xsd:element name="getAreasResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="areas" minOccurs="1"

maxOccurs="unbounded" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="resultsAreasRequest"›

<xsd:complexType/>

</xsd:element>

<xsd:element name="resultsAreasResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="areas" minOccurs="1"

maxOccurs="unbounded" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getSiteResultsRequest"›

<xsd:complexType>

<xsd:sequence>

<xsd:element name="site" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

78

<xsd:element name="getSiteResultsResponse"›

<xsd:complexType>

<xsd:sequence>

<xsd:element name="tests" minOccurs="0"

maxOccurs="unbounded" type="xsd:string"/>

<xsd:element name="results" minOccurs="0"

maxOccurs="unbounded" type="xsd:double"I>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getTestResultsRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="test" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getTestResultsResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="sites" minOccurs="0"

maxOccurs="unbounded" type="xsd:string"/>

<xsd:element name="results" minOccurs="0"

maxOccurs="unbounded" type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getReportStatusRequest" type="xsd:string"/>

79

<xsd:element name="getReportStatusResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="completed" minOccurs="1"

maxOccurs="1" type="xsd:boolean"/>

<xsd:element name="status" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

<xsd:element name="sites" minOccurs="0"

maxOccurs="unbounded" type="xsd:string"/>

<xsd:element name="tests" minOccurs="0"

maxOccurs="unbounded" type="xsd:string"/>

<xsd:element name="results" minOccurs="0"

maxOccurs="unbounded" type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="orderTestsRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="site" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

<xsd:element name="tests" minOccurs="1"

maxOccurs="31" type="xsd:string"/>

<xsd:element name="comments" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

<xsd:element name="samples" minOccurs="1"

maxOccurs="1" type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

80

<xsd:element name="orderTestsResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="oldTests" minOccurs="0"

maxOccurs="31" type="xsd:string"/>

<xsd:element name="newTests" minOccurs="0"

maxOccurs="31" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getReportRequest"›

<xsd:complexType/>

</xsd:element>

<xsd:element name="getReportResponse"›

<xsd:complexType>

<xsd:sequence>

<xsd:element name="completed" minOccurs="1"

maxOccurs="1" type="xsd:boolean"/>

<xsd:element name="status" minOccurs="1"

maxOccurs="1" type="xsd:string"/>

<xsd:element name="sites" minOccurs="0"

maxOccurs="unbounded" type="xsd:string"/>

<xsd:element name="tests" minOccurs="0"

maxOccurs="unbounded" type="xsd:string"/>

<xsd:element name="results" minOccurs="0"

maxOccurs="unbounded" type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

81

<xsd:element name="getPreviousRequest"›

<xsd:complexType/>

</xsd:element>

<xsd:element name="getPreviousResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="oldTests" minOccurs="0"

maxOccurs="31" type="xsd:string"/>

<xsd:element name="newTests" minOccurs="0"

maxOccurs="31" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="confirmTestsRequest" type="xsd:boolean"/>

<xsd:element name="confirmTestsResponse>

<xsd:complexType/>

</xsd:element>

<xsd:element name="Site" type="xsd:int"/>

<xsd:element name="Tests" type="xsd:int"/>

<xsd:element name="Client" type="xsd:int"/>

<xsd:element name="Area" type="xsd:int"/>

<xsd:element name="ReportStatus" type="xsd:string"/>

<xsd:element name="Comments" type="xsd:string"/>

<xsd:element name="Samples" type="xsd:int"/>

<xsd:element name="ChemSearchResourceProperties"›

<xsd:complexType>

<xsd:sequence>

82

<xsd:element minOccurs="1" maxOccurs="1" ref="tns:Client"/>

<xsd:element minOccurs="1" maxOccurs="1" ref="tns:Area"/>

<xsd:element minOccurs="1" maxOccurs="1" ref="tns:Site"/>

<xsd:element minOccurs="1" maxOccurs="31" ref="tns:Tests"/>

<xsd:element minOccurs="1" maxOccurs="1" ref="tns:ReportStatus"/>

<xsd:element minOccurs="1" maxOccurs="1" ref="tns:Comments"/>

<xsd:element minOccurs="1" maxOccurs="1" ref="tns:Samples"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

<wsdl:message name="CheckUserInputMessage"›

<wsdl:part element="tns:checkUserRequest"

name="checkUserRequest"/>

</wsdl:message>

<wsdl:message name="CheckUserOutputMessage"›

<wsdl:part element="tns:checkUserResponse"

name="checkUserResponse"/>

</wsdl:message>

<wsdl:message name="GetAreasInputMessage>

<wsdl:part element="tns:getAreasRequest"

name="getAreasRequest"/>

</wsdl:message>

<wsdl:message name="GetAreasOutputMessage">

<wsdl:part element="tns:getAreasResponse"

name="getAreasResponse"/>

</wsdl:message>

<wsdl:message name="GetSitesInputMessage"›

<wsdl:part element="tns:getSitesRequest"

name="getSitesRequest"/>

</wsdl:message>

83

<wsdl:message name="GetSitesOutputMessage>

<wsdl:part element="tns:getSitesResponse"

name="getSitesResponse"/>

</wsdl:message>

<wsdl:message name="GetTestsInputMessage"›

<wsdl:part element="tns:getTestsRequest"

name="getTestsRequest"I>

</wsdl:message>

<wsdl:message name="GetTestsOutputMessage">

<wsdl:part element="tns:getTestsResponse"

name="getTestsResponse"/>

</wsdl:message>

<wsdl:message name="ResultsTestsInputMessage>

<wsdl:part element="tns:resultsTestsRequest"

name="resultsTestsRequest"/>

</wsdl:message>

<wsdl:message name="ResultsTestsOutputMessage"›

<wsdl:part element="tns:resultsTestsResponse"

name="resultsTestsResponse"/>

</wsdl:message>

<wsdl:message name="ResultsSitesInputMessage"›

<wsdl:part element="tns:resultsSitesRequest"

name="resultsSitesRequest"/>

</wsdl:message>

<wsdl:message name="GetFinalResultInputMessage">

<wsdl:part element="tns:getFinalResultRequest"

name="getFinalResultRequest"/>

</wsdl:message>

<wsdl:message name="GetFinalResultOutputMessage">

<wsdl:part element="tns:getFinalResultResponse"

name="getFinalResultResponse"/>

</wsdl:message>

84

<wsdl:message name="ResultsSitesOutputMessage">

<wsdl:part element="tns:resultsSitesResponse"

name="resultsSitesResponse"/>

</wsdl:message>

<wsdl:message name="ResultsAreasInputMessage"›

<wsdl:part element="tns:resultsAreasRequest"

name="resultsAreasRequest"/>

</wsdl:message>

<wsdl:message name="ResultsAreasOutputMessage"›

<wsdl:part element="tns:resultsAreasResponse"

name="resultsAreasResponse"/>

</wsdl:message>

<wsdl:message name="GetSiteResultsInputMessage"›

<wsdl:part element="tns:getSiteResultsRequest"

name="getSiteResultsRequest"/>

</wsdi:message>

<wsdl:message name="GetSiteResultsOutputMessage"›

<wsdl:part element="tns:getSiteResultsResponse"

name="getSiteResultsResponse"/>

</wsdl:message>

<wsdl:message name="GetTestResultsInputMessage>

<wsdl:part element="tns:getTestResultsRequest"

name="getTestResultsRequest"/>

</wsdl:message>

<wsdl:message name="GetTestResultsOutputMessage"›

<wsdl:part element="tns:getTestResultsResponse"

name="getTestResultsResponse"/>

</wsdl:message>

<wsdl:message name="CetReportStatusInputMessage"›

<wsdl:part element="tns:getReportStatusRequest"

name="getReportStatusRequest"/>

</wsdl:message>

85

<wsdl:message name="GetReportStatusOutputMessage">

<wsdl:part element="tns:getReportStatusResponse"

name="getReportStatusResponse"/>

</wsdl:message>

<wsdl:message name="OrderTestsInputMessage>

<wsdl:part element="tns:orderTestsRequest"

name="orderTestsRequest"/>

</wsdl:message>

<wsdl:message name="OrderTestsOutputMessage>

<wsdl:part element="tns:orderTestsResponse"

name="response"/>

</wsdl:message>

<wsdl:message name="GetPreviousInputMessage>

<wsdl:part element="tns:getPreviousRequest"

name="getPreviousRequest"/>

</wsdl:message>

<wsdl:message name="GetPreviousOutputMessage"›

<wsdl:part element="tns:getPreviousResponse"

name="response"/>

</wsdl:message>

<wsdl:message name="ConfirmTestsInputMessage>

<wsdl:part element="tns:confirmTestsRequest"

name="confirmTestsRequest"/>

</wsdl:message>

<wsdl:message name="ConfirmTestsOutputMessage">

<wsdl:part element="tns:confirmTestsResponse"

name="response"/>

</wsdl:message>

<wsdl:message name="GetReportInputMessage>

<wsdl:part element="tns:getReportRequest"

name="getReportRequest"/>

</wsdl:message>

86

<wsdl:message name="GetReportOutputMessage"›

<wsdl:part element="tns:getReportResponse"

name="response"/>

</wsdl:message>

<wsdl:portType name="ChemSearchServicePortType"

wsrp:ResourceProperties="tns:ChemSearchResourceProperties"›

<wsdl:operation name="GetResourceProperty"›

<wsdl:input name="GetResourcePropertyRequest"

message="wsrpw:GetResourcePropertyRequest"/>

<wsdl:output name="GetResourcePropertyResponse"

message="wsrpw:GetResourcePropertyResponse"/>

<wsdl:fault name="ResourceUnknownFault"

message="wsrpw:ResourceUnknownFault"/>

<wsdl:fault name="InvalidResourcePropertyONameFault"

message="wsrpw: InvalidResourcePropertyQNameFault"/>

</wsdl:operation>

<wsdl:operation name="checkUsern>

<wsdl:input message="tns:CheckUserInputMessage"/>

<wsdl:output message="tns:CheckUserOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getAreas"›

<wsdl:input message="tns:GetAreasInputMessage"/>

<wsdl:output message="tns:GetAreasOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getSites"›

<wsdl:input message="tns:GetSitesInputMessage"/>

<wsdl:output message="tns:GetSitesOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getTests">

<wsdl:input message="tns:GetTestsInputMessage"/>

<wsdl:output message="tns:GetTestsOutputMessage"/>

</wsdl:operation>

87

<wsdl:operation name="getTestResults">

<wsdl:input message="tns:GetTestResultsInputMessage"/>

<wsdl:output message="tns:GetTestResultsOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getSiteResulte>

<wsdl:input message="tns:GetSiteResultsInputMessage"/>

<wsdl:output message="tns:GetSiteResultsOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getReportStatus"›

<wsdl:input message="tns:GetReportStatusInputMessage"/>

<wsdl:output message="tns:GetReportStatusOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="orderTests"›

<wsdl:input message="tns:OrderTestsInputMessage"/>

<wsdl:output message="tns:OrderTestsOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getPrevious">

<wsdl:input message="tns:GetPreviousInputMessage"/>

<wsdl:output message="tns:GetPreviousOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="confirmTests">

<wsdl:input message="tns:ConfirmTestsInputMessage"/>

<wsdl:output message="tns:ConfirmTestsOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getReport"›

<wsdl:input message="tns:GetReportInputMessage"/>

<wsdl:output message="tns:GetReportOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="resultsSites"›

<wsdl:input message="tns:ResultsSitesInputMessage"/>

<wsdl:output message="tns:ResultsSitesOutputMessage"/>

</wsdl:operation>

88

<wsdl:operation name="resultsTests"›

<wsdl:input message="tns:ResultsTestsInputMessage"/>

<wsdl:output message="tns:ResultsTestsOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="getFinalResult"›

<wsdl:input message="tns:GetFinalResultInputMessage"/>

<wsdl:output message="tns:GetFinalResultOutputMessage"/>

</wsdl:operation>

<wsdl:operation name="resultsAreas"›

<wsdl:input message="tns:ResultsAreasInputMessage"/>

<wsdl:output message="tns:ResultsAreasOutputMessage"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ChemSearchServiceBinding"

type="tns:ChemSearchServicePortType"›

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="GetResourceProperty"›

<wsdl:input name="GetResourcePropertyRequest"›

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="GetResourcePropertyResponse">

<soap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="InvalidResourcePropertyONameFault">

<soap:fault name=

"InvalidResourcePropertyQNameFault" use="literal"/>

</wsdl:fault>

<wsdl:fault name="ResourceUnknownFault"›

<soap:fault name="ResourceUnknownFault" use="literal"/>

</wsdl:fault>

</wsdl:operation>

89

<wsdl:operation name="checkUser"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getAreas"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getSites"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getTests"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

90

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getSiteResults"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getTestResults"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="orderTests"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getPrevious"›

91

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="confirmTests"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getReportStatus">

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getReport"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

92

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="resultsAreas"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="resultsSites"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="resultsTests"›

<soap:operation style="document"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getFinalResult"›

<soap:operation style="document"/>

93

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literalu/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ChemSearchService>

<wsdl:port binding="tns:ChemSearchServiceBinding" name="ChemSearch">

<soap:address location=

"http://localhost:8080/wsrf/services/ChemSearch"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

C FactoryService Code

The functionality added to the FactoryService class is shown below.

public class ChemSearchFactoryService

extends AbstractChemSearchFactoryService

implements ChemSearchFactoryCustomOperationsPortType {

public CreateResourceResponseDocument

CreateResource(CreateResourceRequestDocument requestDoc) {

CreateResourceResponseDocument responseDocument =

CreateResourceResponseDocument.Factory.newInstance();

CreateResourceResponseDocument.CreateResourceResponse response

responseDocument.addNewCreateResourceResponse();

try {

94

Context initialContext = new InitialContext();

ChemSearchHome home =

(ChemSearchHome)initialContext.lookup(ChemSearchHome.HOME_LOCATION);

ChemSearchResource resource =

(ChemSearchResource)home.findResource(getResourceContext(),

requestDoc.getCreateResourceRequest());

EndpointReferenceType endPointRefType = resource getEpr();

response.setEndpointReference(endPointRefType);

catch(Exception ex) {

ex.printStackTrace();

}

return responseDocument ;

}

D ChemSearchHome Code

The functionality added to the ChemSearchHome class is shown below.

public class ChemSearchHome

extends AbstractResourceHome

implements Serializable {

private int chemResourcelD	 0;

public static final QName SERVICE NAME = javax.xml.namespace.QName.value0f(

" {chernsearch/ChemSearchService} ChemSearch ");

public Resource findResource(ResourceContext resourceContext, String site }

throws ResourceExcept ion,

ResourceContextException,

ResourceUnknownException {

ResourceKey key = resourceContext.getResourceKey();

Resource resource = null;

try {

95

Map resources = super.m_resources;

for (int i = 0; i < resources.size(); i++) {

Iterator it = resources.values().iterator();

while (it.hasNextO) {

ChemSearchResource r = (ChemSearchResource)it.nextO;

if (r.getSite().equals(site)) {

resource — r;

}

}

}

if (resource == null) {

throw new ResourceException();

}

catch (ResourceException re) {

resource = createChemSearchResource(resourceContext, site);

}

return resource;

}

publicChemSearchResource

createChemSearchResource(ResourceContext resourceContext, String site) {

++chernResourcelD;

int chemlD = chemResourcelD;

SimpleTypeResourceKey key = createResourceKey(chemlD);

ChemSearchResource chemResource

new ChemSearchResource(site,

getEprForResource(key, resourceContext.getBaseURL()));

chernResource.init();

add(key, chemResource);

return chernResource;

}

publicEndpointReferenceType getEprForResource(ResourceKey key, String serviceUrl) {

96

EndpointReferenceDocument eprDoc

EndpointReferenceDocument.Factory.newInstance();

EndpointReferenceType epr = eprDoc.addNewEndpointReference();

AttributedURl address = epr.addNewAddress();

address.setStringValue(serviceUrl 	 "/"

SERVICE NAME.getLocalPart());

ReferencePropertiesType refProps

epr.addNewReferenceProperties();

XmlObject xmlObject

XmlBeanUtils.acIdChildElement(refProps, key.getNarne());

XmlBeanUtils.setValue(xmlObject,

key.getValue().toString());

return epr;

privateSimpleTypeResourceKey createResourceKey(int chemlD) {

SimpleTypeResourceKey key =-

new SimpleTypeResourceKey(QName.valueOf(

" {chemsearch/ChemSearchSeryice}ResourceIdentifier"),

"ChemSearch" + Integer.toString(chemID));

return key;

97

i\	 F3

RESEARC ARTICLE

Using Web Service Technology to Model the Business Processes of
a Chemical Analysis Laboratory

Katrina Porteous, Stephen Cranefield, Martin Purvis

Department of Information Science
University of Otago,

PO Box 56, Dunedin, New Zealand

Abstract

The use of web services technology is becoming more
widespread with many businesses wishing to provide
services to their clients over the Internet. Although
web services technology is currently the best method
for providing services remotely over the Internet it
does not provide any concept of state or any way to
model workflow. This has resulted in new specifi-
cations to deal with these issues, namely WSRF and
BPEL4WS. In order to effectively model certain types
of workflow, such as that of the ChemSearch labo-
ratory, there needs to be a method for integrating
BPEL4WS and WSRF, so that stateful workflow can
be modelled. This research proposed a method of in-
tegration using a proxy service to enable BPEL4WS
to support WSRF that was evaluated by modelling
the workflow of a chemical analysis laboratory. The
results showed that the method enabled BPEL4WS
to work with WSRF and provided a mechanism that
ensured a client always had a valid endpoint reference
to the WSRF web service. This research also raised
some problems with the specifications and tools used
to implement this method that would need to be re-
solved to ensure the widespread adoption and stan-
dardisation of these specifications.

Keywords: WSRF, BPEL4WS, workflow, state

1 Introduction

There is a growing interest in the scientific commu-
nity to be able to share resources, data and research.
This has introduced the concept of e-science 1 , which
involves using grid service technology, Hunter et
al. (2004), to solve these issues. Grid services are
based on web services standards that have been
extended for use in e-science applications. Grid
services provide middleware that handles security,
the ability to locate and invoke the services made
available, resource management, etc. Web services
are a form of middleware that provide a way of
describing, finding and invoking services remotely
over the Internet using XML-based standards such as
SOAP, WSDL (Web Services Description Language)
and UDDI (Universal Description, Discovery and
Integration), Johnson (2005).

Web services technology is not currently widely
adopted, due to the lack of standardisation and
deployed services available. Although, there are
a number of useful specifications that have been
proposed, they tend to be stand-alone and there is no
mechanism available for combining the specifications

1 E-Science - A term that applies to collaboration amongst sci-
entists, where large amounts of data, resources, etc. are shared
through the use of Internet-based technologies, Hunter et al.
(2004)

so that they can be used together. There seems to
be an underlying assumption that because they are
all based on web services technology they should
automatically be compatible.

Therefore, this research focuses on combining
two web services specifications to determine whether
or not they are compatible. Furthermore, the two
particular specifications chosen, namely WSRF
(WS-Resource Framework) and BPEL4WS (Business
Process Execution Language for Web Services), will
enable the modelling of stateful workflow such as
that required by analytical laboratories. In this
case the ChemSearch laboratory was chosen, so that
the method of integration could be tested by mod-
elling this laboratories workflow. In this particular
case, the modelling of state is needed to enable
the clients of the laboratory to obtain the results
for a particular test or the status of their report.
WSRF will be used to model the state of the report,
while BPEL4WS will enable the workflow of the
laboratory to be modelled. Although this particular
laboratory was chosen, this method of integrating
WSRF and BPEL4WS should generalise to any labo-
ratory that requires stateful workflow to be modelled.

The details of this research, the method of inte-
gration and subsequent evaluation from modelling the
workflow of the ChemSearch laboratory are discussed
in subsequent sections of this article.

2 Background

2.1 Web Services

Web services are a form of middleware that uses
XML-based standards such as SOAP, W3C (2003),
WSDL (Web Services Description Language), W3C
(2001), and UDDI (Universal Description, Discovery
and Integration), UDDI (2004), to provide services
remotely over the Internet, Johnson (2005). SOAP
is a protocol for distributed environments that
uses XML technologies as the message format for
the information that is passed between two nodes
in the connection W3C (2003). WSDL defines
the services that will be offered over the network.
Within a WSDL document a number of messages
and operations can be defined. A message de-
scribes the data that will be transmitted and an
operation describes the messages that will be sent
and received upon invocation W3C (2001). UDDI
defines a structure that describes the services that
are available, who makes them available and the
interfaces that can be used to access the provided
services UDDI (2004). These standards provide the
basis for web services technology that enables the
construction of loosely-coupled distributed systems
built on a service-oriented architecture Atkinson et

al. (2005). According to the W3C (W3C (2004a))
a service-oriented architecture is "a set of compo-
nents, which can be invoked, and whose interface
descriptions can be published and discovered". A
service-oriented architecture separates the interface
definitions from their implementations, which means
a service only needs to know the definition of the
interface not how it is implemented, The use of a
service-oriented architecture offers numerous benefits
including well-defined interfaces Pasley (2005), plat-
form independence and hides service implementation
details from the developer W3C (2004c).

2.2 WSRF

WSRF introduces the concept of a stateful resource,
which is a resource used by a web service that has
associated state and is implemented as an XML
document. It allows a web service to perform
operations on data from a previous invocation of the
web service. Examples of a stateful resource include
a row of data in a database or a single file in a file
system Foster et al. (2004), that allows state to
be preserved between executions of a web service's
operations.

The introduction of WSRF means that a web
service can have state associated with it. Up until
now a web service had no notion of state, but it
was implied through the definitions of its interfaces
Foster et al. (2004). This is because "WSDL is
essentially stateless because the language is unaware
of states between operations" Staab et al. (2003), p.
74. It is claimed that explicit definition of state leads
to improved interoperability, simplification of service
definitions and improved discovery, management
and development tools Foster et al. (2004). It
also alleviates the developer from coming up with
their own implementation of state, which may be
incompatible with other developers implementations.
By standardising the way in which state is accessed
it means web services that use state can access it
without having to know how it was implemented.
This is an important point especially to get two
different specifications to work together.

Basically WSRF describes the association of a
web service with a stateful resource, which is called
a WS-Resource. A web service can locate a stateful
resource through its unique identifier, which is encap-
sulated within an endpoint reference, defined as part
of the WS-Addressing W3C (2004b) specification.
This endpoint reference contains the address of the
service, whose operations are to be invoked. If a
stateful resource is involved in the implementation
of the service, the resource identifier is included
within the reference properties defined as part of the
endpoint reference. This information is then encoded
as part of the SOAP header within the message
request that is sent to the service. The service can
then extract this information to gain access to the
required stateful resource. This provides a more
specific way of referencing a resource from the web
service, in a similar way to obtaining references to
an object in object-oriented programming.

2.3 BPEL4WS

There have been a number of new specifications
proposed in web services that describe the com-
position and orchestration of web services. One of
these specifications BPEL4WS provides the means to
model business processes and interactions Andrews

et al. (2003). It allows workflows to be modelled
that invoke web services, which are executed using
a workflow engine. It is based on a number of XML
specifications, namely WSDL 1.1, XML Schema 1.0,
XPath 1.0 and WS-Addressing; the most important
one being WSDL 1.1 Andrews et al. (2003). Since
BPEL4WS is based on web services, a business
process can either use services defined in an existing
WSDL document or create new services as required.
In addition a business process describes the be-
haviour of and the partners involved in the business
process. BPEL4WS refers to services using the port
type defined in the WSDL document rather than the
actual service itself so that the business process can
be reused in "multiple deployments of compatible
services" Andrews et al. (2003), p. 15.

2.4 ChemSearch

ChemSearch is a small analytical laboratory that
analyses samples sent to them by their clients. A
client requests certain tests to be done on their
samples by filling out an order form that is sent to
the laboratory along with the samples to be tested.
On receiving the order, the laboratory checks the
order form against the samples received, to ensure
that the wrong order form has not been put in with
the samples, and also checks over the tests ordered.
Frequently, clients request the same tests to be done
for their samples. If there is a test requested that
is not normally ordered, the laboratory will ring the
client to confirm the tests to be done. Once the tests
have been approved, the laboratory prioritises the
tests based on the number of samples requiring the
same test, the urgency of the test or sample and
the lifetime of the samples. When a test has been
completed the initial results are recorded, which can
be used to determine the final result for a test. On
completion of all tests ordered by the client, a copy
of the report detailing all the results of the tests is
sent to the client.

Typically, the process involves the client ringing
or emailing to find out the results of a particular
test or the status of their report. Ideally, the client
should be able to access their results and the sta-
tus of their reports without contacting the laboratory.

2.5 Integrating WSRF and BPEL4WS

The current research seems to be leading towards
the integration of web and grid services to receive
the benefits of both technologies, in particular the
service-oriented architecture of web services which
is thought to be an integral foundation of e-science
Foster et al. (2002). In order for grid services to
provide a complete solution to the e-science problem
there needs to be a way to model workflow. Although
there have been a number of specifications and tools
proposed in both web and grid services, it would seem
that BPEL4WS is the most promising candidate for
modelling complex workflow. The use of a web ser-
vices specification that supports the service-oriented
architecture will be beneficial to grid services in the
event of the integration of web and grid services.
This has led to numerous proposals for suggesting
enhancements to BPEL4WS for compatibility in
the grid environment. This integration idea has
also led to the possibility of combining grid services
specifications, such as OGSI, Tuecke et al. (2003),
and WSRF, with web services specifications, such as
BPEL4WS for use in a grid environment. Although
the integration is feasible, BPEL4WS restricts some

functionality of grid services, but making changes to
the specification will remove the advantages of using
it in the first place.

The most common method for integrating WSRF
and BPEL4WS suggested some form of interme-
diate mechanism for BPEL4WS to communicate
with WSRF. This seems to be necessitated by the
requirement that reference properties are added
to the SOAP header of the message sent to the
WS-Resource. Therefore, the implementation of a
proxy service that performs this task will be the most
likely candidate to integrate WSRF and BPEL4WS.
The second problem will be addressing how the
client maintains endpoint references and how it can
get new endpoint references should the existing ones
become lost or invalid. Currently, there seem to be
no concrete ideas on how to address this problem,
although hopefully the future implementation of
WS-RenewableReferences will achieve this goal.

3 Tools

The tools used to implement this method and the sub-
sequent on-line system were Cape Clear Orchestration
Studio, CapeClear (2005), to model the BPEL4WS
process and the WSRF project from Apache, Apache
(2005), using the Tomcat server, Tomcat (2005), and
Ant, Ant (2005), to compile and deploy the web ser-
vices to Tomcat. The BPEL4WS tool was a plug-in
for the Eclipse Integrated Development Environment,
eclipse (2005).

4 Method

According to section 2 there is no proof that
WSRF and BPEL4WS cannot be integrated to-
gether. Therefore, it was firstly determined whether
BPEL4WS and WSRF could be combined together.
If this proved to be unsuccessful, an intermediary
mechanism would be used as suggested in section 2.

This method, see section 6.2, of integrating
WSRF and BPEL4WS was then tested by modelling
the workflow of the ChemSearch laboratory. The
laboratory needed to provide reports to their clients
listing the results for tests that had been requested
for their samples. Frequently, their clients would
either ring or email them asking the results for a
particular test or report. Ideally, the lab would
like to provide the results of the tests as they have
been completed and an update on the status of the
clients reports. In order to model this scenario, some
part of the workflow needs to remember what tests
have been completed arid what the results are for
those tests. This is where WSRF comes in, where it
provides a mechanism by which the tests and results
plus the status of the report can be modelled as state.

This brought to light a number of problems with
the specifications and tools used. These problems are
presented in section 5 and discussed in detail in sec-
tion 6.

5 Results

This section outlines the results of integrating WSRF
and BPEL4WS, for further details see section 6.

It was determined after some investigation, see sec-
tion 6.1, that an intermediary mechanism would be
needed for BPEL4WS to be combined with WSRF.

This meant that a third web service was needed to add
the reference properties to the header of the SOAP
message to enable the services provided by the WS-
Resource to be invoked. Due to the nature of WSRF,
there are normally two WSRF web services: a factory
service to create new instances of the WS-Resource
and the WS-Resource itself. This is shown in figure
1.
The method for integrating WSRF and BPEL4WS
was determined by the criteria given below.

• The method of integration enables BPEL4WS to
be combined with WSRF - Y/N

• The method of integration can be generalised for
use in any workflow that needs WSRF - Y/N

• Does the method of integration provide a means
of storing endpoint references - Y/N

• Does the method of integration cater for easy
retrieval of endpoint references - Y/N

• Can the method of integration be applied to
other WSRF and BPEL4WS tools - Y/N

• Does the method of integration scale well, if
applied to large, complex workflows - Y/N
(i.e. workflows that may contain a number of
WS-Resources)

A summary of the results obtained from this integra-
tion are shown in tables 1 and 2.

Note: Scalability refers to how much extra work is
required to adapt the method of integration to incor-
porate multiple WS-Resources. It does not pertain
to the creation of WS-Resources or work that would
normally need to be done in the process of creating
the workflow. It only refers to the work that has to
be done over and above normal workflow creation in
order to implement the method of integration.

6 Discussion

6.1 Alternatives

The BPEL4WS specification states that an endpoint
reference defined by WS-Addressing W3C (2004b)
can be assigned dynamically to a partner link, which
in BPEL4WS terms is basically a web service. While
the current Cape Clear documentation stipulated the
support for assigning endpoint references this was not
the case in practise. We discovered that in fact the
current version of Cape Clear Orchestration Studio
did not support the dynamic assignment of end point
references. Neither the BPEL4WS specification nor
Cape Clear documentation specifically mentions
whether reference properties included as part of the
endpoint reference would be added to the SOAP
header of the message. The specification only goes as
far as acknowledging that data can be placed in the
header or in the body of a SOAP message. it does not
precisely state the placement of reference properties.
Based on my experience with WS-Addressing stubs,
it is very unlikely that reference properties would
be copied into the SOAP header, since they are
an optional part of an endpoint reference. This is
backed up by research into this area, which also
suggested that it was unlikely to include reference
properties in SOAP message headers Slomiski (2005).

The WS-Addressing stubs were used to enable the
system developed in eclipse to send and receive XML

Facto -r Service

BPEL Proxy Service

Figure 1: The Interaction of the Workflow iwith the Three WSRF Web Services

Table 1: The evaluation of the method for combining WSRF with BPEL4WS
Criterion	 Result
The method enables BPEL4WS to be combined with WSRF' 	 Y
The method can be generalised for use in any workflow that needs WSRF Y
Does the method provide a means of storing endpoint references	 Y
Does the method cater for easy retrieval of endpoint references 	 Y
Can the method be applied to other WSRF and BPEL4WS tools 	 Y
Does the method scale well, if applied to large, complex workflows 	 N

messages and did not by default add reference prop-
erties to the SOAP header. It does extract the ref-
erence properties from the endpoint reference passed
to it, but these are never set when the call object
is created, so never get added to the SOAP header.
Perhaps this is because no checking is done to make
sure the reference properties are not null. I am not
sure what effect it would have on the message if a
null value was added to the SOAP header, but I do
know that having null values in the body of the mes-
sage causes a null pointer exception when the message
is deserialised - the process of extracting application
data from the XML message.

Since WSRF only checks for the existence of
reference properties when there is an entry in the
jndi-config.xml file for the service then requiring a
value to exist in the SOAP header would not cause
any problems if the value did not uniquely identify
a WS-Resource and the call was not invoking a
WS-Resource instance.

Therefore, it would go a long way to aid the
integration process if there were some underlying
code that checked for the existence of reference
properties in the endpoint reference. If there is an
entry for the reference properties then these should
automatically be added to the SOAP header. From
my experience in trying to integrate WSRF and
BPEL4WS, the BPEL4WS process needs to do
some form of checking for the existence of reference
properties for BPEL4WS to truly support WSRF
web services. If by default these reference properties
were added to the SOAP header it would alleviate the
need for BPEL4WS to know when the web service
it is accessing is a WSRF one or not (assuming of
course that BPEL4WS is communicating directly
with the WS-Resource and not some intermediary
mechanism).

Even if the Cape Clear Orchestration Studio had
supported the dynamic assignment of endpoint refer-
ences and these were included in the SOAP header by
default, this solution would not have worked. This is
because the Cape Clear tool threw an exception ev-
ery time it tried to invoke a WS-Resource web ser-

vice. After some investigation and looking at the
error messages produced by the tool, I discovered
that it was the imported WSDL definitions needed
to declare the web service as being WSRF that were
causing the problem. Further investigation would be
needed to determine whether other BPEL4WS tools
had the same problem, or whether this was just an
issue with the Cape Clear tool. Since a specification,
in this case BPEL4WS, is usually just a blue print for
how workflow could be designed and implemented, it
seems unlikely that this is an issue stemming from
the specification itself. It seems more likely that it is
the way in which the Cape Clear tool validates the
BPEL4WS workflow.

6.2 Method of Integration

The results given in table 1 show that the main
problem with this method is scalability. This is
because in order to model state there needs to be
three web services. Firstly, a factory service to
create a WSRF web service, a proxy web service that
adds the reference properties to the SOAP header of
the message and the WSRF web service that keeps
track of the state. Since WSDL files that define the
services provided by these web services are generally
rather large, reusing the proxy and factory services
to handle multiple stateful web services would be
difficult to manage and maintain. Therefore, the
only other option is to create a new factory and
proxy service for each stateful web service. This is
shown in figure 2. In the case of a large workflow
that would require a considerable amount of state to
be modelled, this method of integrating WSRF and
BPEL4WS would cause extra work to be done to
implement it since the proxy and WSRF WSDL files
have to define the same input and output parameters.

The main advantage of this method is that the
BPEL4WS workflow can treat the proxy service
like a normal web service, since it does not contain
any of the signatures that define a WSRF web
service. Since WSRF usually has two web services,
a factory service that creates the WS-Resource and
the WS-Resource itself, the use of a proxy service

Table 2: Summary of the problems encountered during the integration of WSRF and BPEL4WS
Problem	 Specification/Tool
Reference properties do not get copied
into the SOAP header of a message
Endpoint references cannot be dynamically assigned
to a web service
Lack of testability of the workflow
No client-side stubs
No standard mechanism for storing
and retrieving endpoint references
Usability of BPEL4WS
Lack of compatibility with WSRF
Assignment of variables
Problems with SOAP messages
Changes to WSDL require workflow to be recreated
Poor documentation

BPEL4WS specification, WSRF tool

Cape Clear tool
BPEL4WS specification
Apache WSRF tool

WSRF specification
BPEL4WS specification
BPEL4WS specification, Cape Clear tool
BPEL4WS specification
Cape Clear tool
Cape Clear tool
Cape Clear tool, WSRF tool

One WS-Resource Wor ow Proxy
Servic

Factory
Service

Resource

Factory
ServiceProxy

Service

Two WS-Resource 	 Worldlow
	 esource

Proxy
Service

Factory
Service

WS-
Resource

Figure 2: The Scalability Problem

alleviates the workflow from knowing about two web
services; instead it only has to interact with one

This method also provided a solution to the prob-
lem of retrieving lost or invalid endpoint references.
Basically, a method called find resource was added
to the WS-Resource home class, which in this case
was called ChernSearchHome. This method takes
in the resource context, which enables the class
to find a resource using the value of the reference
properties passed in the request message header, and
a string. This string uniquely identifies an endpoint
reference, since in the case of the laboratory a client
can have many reports, therefore there needs to be a
unique identifier to distinguish between the different
reports the client might have. This method obtains
a reference to the map maintained by the cache that
holds all the WS-Resource instances. Each resource
class, in this case it is ChemSearchResource, contains
a reference to the endpoint reference for the resource
and to the site (the string). The method can then
loop through the map comparing the string parame-
ter to the resource's site value. If it finds a resource
in the map that contains that site, it returns that
resource. If not, a new resource exception is thrown

and subsequently caught by the same method. At
this point it calls the createChemSearchResource,
which also takes in as parameters the string and
resource context. This creates a new instance of the
ChemSearchResource and an endpoint reference for
that resource. This newly created resource is then
returned to the factory. The factory then uses the
resource to find the endpoint reference, which it
returns to the proxy service to store for subsequent
calls to that resource.

Figure 3, shows in more general terms the in-
teraction of the client and the laboratory with the
workflow and web services used by the workflow.
The client and laboratory have separate workflows,
however when a client places an order the factory
service creates a new instance of the WS-Resource
for that order (as part of the client's workflow). This
means each order can be uniquely identified. When
the laboratory has done some of the tests for that
order, the laboratory accesses the client's workflow,
which invokes the factory service. This uses the
name of the client and the name of the site the test is
being performed on, to check if an endpoint reference
exists for that particular combination. If an endpoint

reference does exist the factory service returns the
endpoint reference to the proxy service, which stores
it for a subsequent call to the WS-Resource. If
not, the factory service creates a new WS-Resource
and returns this to the proxy service to store. At
this point the workflow invokes a method on the
WS-Resource to update the status of the client's
report and the tests that have been completed along
with the results. This means the next time the client
invokes the workflow to enquire about the status of
their report, the workflow invokes the factory service
to locate the endpoint reference for the client and
the site for which the tests were performed. This
endpoint reference is passed in the header of the
SOAP message to the WS-Resource, which can then
return the status of the report and the results for
any tests that have been done.

Other than the problem of scalability, the method
was successful in enabling the workflow of the
laboratory to be modelled, however it did raise some
problems with the specifications and tools used, to
be discussed in section 6.3.

6.3 Tools and Specifications

The Cape Clear tool was very inflexible, due to
the nature of BPEL4WS, and had problems with
imported WSDL definitions. It would be interesting
to know whether it is just WSRF imports that it
could not resolve or whether the tool cannot deal
with imported WSDL definitions that it does not
already support. Cape Clear was able to resolve
WS-Addressing imports defined in the factory ser-
vice, but this could be because Cape Clear supports
WS-Addressing. One of the other problems was that
if the underlying WSDL files change, the workflow
has to be completely re-engineered. An argument for
this is that the WSDL should be properly defined
before the workflow is developed. The problem with
this argument is that some of these problems, such
as the tool being unable to resolve the imported
WSDL definitions, do not become apparent until you
come to test the workflow. Perhaps some of these
problems will be resolved once BPEL4WS has been
standardised and more widely adopted.

Alternatively, defining a mechanism where the
workflow could be refreshed so that any changes
made to the underlying WSDL would be reflected
in the workflow automatically, would avoid this
problem.

The poor quality of the documentation was
unacceptable for a commercially available tool and
it would seem from this analysis that the Cape
Clear tool requires additional work to be done,
before it could be recommended as being suitable for
modelling BPEL4WS workflow.

The WSRF Apache project needs to provide
client-side stubs for WSRF and not just server-side
to support applications that need to invoke WSRF
web services via the workflow. This meant the
generated code had to be modified to enable the
reference properties to be added to the SOAP header,
while this wasn't a difficult task to do it meant that
every time a WSDL file was created, this code had
to be added to the stubs.

Given that endpoint references are part of the
fundamental framework of WSRF it would benefit
WSRF if its implementations could provide a mech-
anism for automatically adding reference properties

to SOAP headers.
This would require checking if the reference prop-
erties were not null before adding them in case
sending null values in the header would cause
problems. Since the stubs from the Apache project
automatically create all the code for you to create
and send messages, surely it wouldn't be too difficult
to add another section of code to deal with endpoint
references.
Adding this kind of support would go a long way to
increasing the adoption of WSRF technologies, since
it is quite off-putting to use a tool where you have
to hack the generated code (and there is usually an
underlying assumption that if there is something
wrong with your project it is unlikely to be the
generated code, especially if the project in question
is not in a beta release).

Since the Apache WSRF project has only just
been released, maybe there will be support for
endpoint references in a future release once the
majority of the bugs have been removed.

In terms of the specifications, WSRF seems a
worthwhile contribution to the web services commu-
nity and provides a standard means of accessing and
modelling state that proved very useful in modelling
the workflow of the ChemSearch laboratory. How-
ever, it does not provide as yet a standard mechanism
to handle lost or invalid endpoint references and
does not provide a standard mechanism by which
reference properties can be added to the SOAP
header for messages sent to WSRF web services.
Providing such a mechanism would greatly benefit
the uptake and use of WSRF.

The BPEL4WS specification on the other hand
needs some work to make it more flexible and
user-friendly. A mechanism to test the workflow
would be very useful for error detection.
Currently BPEL4WS only allows the assignment
from one variable to another. If two variables do not
have the same message structure assigning can make
the variable invalid and produces an error when the
service is invoked. This is because the message sent
does not match the one expected. For example,
often it was the case that one invocation of a service
followed naturally from another. The issue is when
both services return different values. It would
be easier on development if both values could be
assigned into a single variable that could be returned.
Currently the only option is to have the WSDL for
both services return the exact same variable, which
has a duplication issue in that you have to update
the WSDL in two separate places instead of one.
Unfortunately these types of problems can only be
determined once you are ready to test the workflow
and at this stage any changes to the WSDL require
re-engineering the workflow.

Overall, the specification needs some work. It seems
to be better suited to modelling workflow when there
is little need for human input.

7 Conclusion

In conclusion, this project highlighted some prob-
lems with the specifications that would need to be
resolved for their integration to be truly successful.
The method used to integrate BPEL4WS and WSRF
fulfilled all the major requirements but would not
scale well. Although scalability is an issue it also
meant that BPEL4WS didn't need to know that
it was interacting with a WSRF web service and

meant that tool incompatibilities could be handled
in the middle layer rather than at the WS-Resource
end. This means that if a BPEL4WS tool was
more compatible with WSRF, it would only require
small changes. However, it would be better for the
BPEL4WS process to interact with WSRF through
the proxy service, rather than directly with WSRF.
This prevents BPEL4WS having to store and retrieve
endpoint references and communicate with two web
services, i.e. the proxy and the factory. It would
seem that the benefits of this method far out weigh
the cost of scalability.

Overall, the two major problems with these specifi-
cations is the lack of good documentation and stan-
dardisation. In particular the optionality of reference
properties in endpoint references is a problem that
needs to be resolved. While it is optional for these to
be added to the SOAP header, there can be no ele-
gant solution to the integration process. There needs
to be code at some point that determines whether
a reference property exists for a particular endpoint
and if it does to copy it into the SOAP header. Since
the WS-Addressing client-side stubs used with WSRF
did not perform this functionality it is unlikely to ex-
pect BPEL4WS or any other web service technology
to support this in the near future.

8 References

References

Amin, K., von Laszewski, G., Hategan, M., Zaluzec,
N. J., Hampton, S. & Rossi, A. (2004), GridAnt:
A Client-Controllable Grid Workflow System, in
`Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences', Vol. 07,
Num. 7, IEEE, pp. 70210c.

Andrews, T., Curbera, F., Dholakia, H., Goland,
Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weer-
awarana, S. (2003), 'Business Process Execu-
tion Language for Web Services Version 1.1'.
Available at: f tp: //www6 . software. ibm. com/
sof. tware/developer/library/ws-bpel .pdf .

Ant (2005), http : //ant .apache.org/, accessed 11
July 2005.

Apache (2005), http://www.apache.org/, accessed
11 July 2005.

Apache Tomcat (2005), http : //tomcat .apache.
org/, accessed 4 October 2005.

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G.,
Henderson, P., Hey, T., Paton, N., Newhouse,
S., Parastatidis, S., Trefethen, A., Watson, P.,
Webber, J. (2005), 'Web Services Grids: An Evo-
lutionary Approach', Concurrency and Compu-
tation: Practice and Experience 17, 377-389.

CapeClear (2005), http: //www. capeclear com/, ac-
cessed 4 October 2005.

Chao, K., Younas, M., Griffiths, N., Awan, I., Anane,
R. & Tsai, C. (2004), Analysis of Grid Ser-
vice Composition with BPEL4WS, in '18th In-
ternational Conference on Advanced Information
Networking and Applications', Vol. 01, Num. 1,
pp. 284.

Churches, D., Gombas, G., Harrison, A., Maassen, J.,
Robinson, C., Shields, M., Taylor, I., Wang, I.
(2005), 'Programming Scientific and Distributed
Workflow with Triana Services'. Available
at:	 http://www. extreme.indiana.edu/
groc/ggf10-ww/programming_scientif ic_
and_distributed_workflow_with_triana_
services/TrianaWorkflow.pdf.

Czajkowski, K., Ferguson, D., Foster, I., Frey,
J., Graham, S., Sedukhin, L, Snelling, D.,
Tuecke, S., Vambenepe, W. (2004), 'The WS-
Resource Framework, Version 1.0'. Available at:
http : //www-128 . ibm com/developerworks/
library/ws-resource/ws-wsrf, .pdf , accessed
11 July 2005.

eclipse (2005), http : //www . eclipse . org/, accessed
4 October 2005.

Foster, I., Kesselman, C. & Tuecke, S. (2001), The
Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations, in 'First International Sym-
posium on Cluster Computing and the Grid',
Vol. 00, IEEE, pp. 6.

Foster, I., Kesselman, C., Nick, J., Tuecke, S. (2002),
`The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Inte-
gration', Globus Project. Available at: http : //
www .globus . org/research/papers/ogsa .pdf .

Foster, I., Frey, J., Graham, S., Tuecke, S., Cza-
jkowski, K., Ferguson, D., Leymann, F., Nally,
M., Sedukhin, I., Snelling, D., Storey, T., Vam-
benepe, W., Weerawarana, S. (2004), 'Modelling
Stateful Resources with Web Services, Version
1.1'. Available at: 	 http : //www-128 ibm
com/developerworks/library/ws-resource/
ws-modelingresources .pdf , accessed 11 July
2005.

GridAnt (2005), http: //www-unix . globus org/
cog/pro j ects/gridant/, accessed 11 July 2005.

Hey, T., Fox, G. (2005), 'Special Issue: Grids and
Web Services for e-Science', Concurrency and
Computation: Practice and Experience 17 (2-
4), 317-322.

Humphrey, M., Wasson, G., Morgan, M. & Beek-
wilder N., An Early Evaluation of WSRF and
WS-Notification via WSRF.NET, in 'The Fifth
IEEE/ACM International Workshop on Grid
Computing', Vol. 00, IEEE, pp. 172-181.

Hunter, J., Cook, R., Pope, S. (2004), 'E-
Research Middleware: The Missing Link
in Australia's e-Research Agenda'. Available
at: http : //www dstc edu au/Publications/
eReseachMiddleware .pdf , accessed 18 July
2005.

Johnson B. (2005), 'Building a Web Service-The
Beginning-What is a Web Service?', http :
//www developerfus ion . com/show/3245/, ac-
cessed 11 July 2005.

Krishnan, S., Wagstrom, P., von Laszewski,
G. (2005), `GSFL: A Workflow Frame-
work for Grid Services'. Available at:
http : //www. cs . indiana . edu/Thrikrish/
publi cat ions/gsf 1 .pdf , accessed 18 July
2005.

Leymann, F. (2005), 'Choreography for the Grid:
Towards Fitting BPEL to the Resource
Framework'. Available at: http://www.cc-
pe.net/CCPEwebresource/c8545to872workflow/
c8541eymann/c854Leymann.pdf, accessed 11
July 2005.

MySQL (2005), http : //www mysql com/, accessed 4
October 2005.

Oracle (2005), 'Executive Briefing: Grid Com-
puting'. Available at: http : //reg itworld.
com/servlet/Frs . frs?Context=LOGENTRY\
&Source=cwstrip \&Source_BC=0 \ &Script=
/LP/10003705/reg.

Pasley, J. (2005), 'How BPEL and SOA Are Chang-
ing Web Services Development', IEEE Internet
Computing 09 (3), 60-67.

Slomiski, A. (2005), 'On Using BPEL Ex-
tensibility to Implement OGSI and
WSRF Grid Workflows'. Available at:
http://www.extreme.indiana.edu/groc/ggf10-
ww/on_using_bpel_extensibility_to_implements
_ogsLand_wsrf_grids/C871_GridWorkflow2004
_Mar05_0n_Using_BPEL_extensibility_to
implements_OGSLand_WSRF_Grids_5.doc.

Sotomayor, B. (2005), 'The Globus Toolkit 4 Pro-
grammer's Tutorial', http : //gdp . globus . org/
gt4-tutorial/singlehtml/progtutorial_O .
1 . 1 . html, accessed 4 October 2005.

Staab, S., van der Aalst, W., Benjamins, V. R.,
Sheth, A., Miller, J. A., Bussler, C., Maedche,
A., Fensel, D., Gannon, D. (2003), 'Web Ser-
vices: Been There, Done That?', IEEE Intelli-
gent Systems 18 (1), 72-85.

Taylor, I., Wang, I., Shields, M., Majithia, S. (2005),
`Distributed Computing with Triana on the
Grid', Concurrency and Computation: Practice
and Experience 17, 1-18.

Triana (2005), http : //www.trianacode. org/, ac-
cessed 11 July 2005.

Tuecke, S., Czajkowski, K., Foster, I., Frey,
J., Graham, S., Kesselman, C., Maguire,
T., Sandholm, T.,Snelling, D., Vander-
bilt, P. (2003), 'Open Grid Services In-
frastructure (OGSI), Version 1.0'. Avail-
able at:	 http : //www-unix . globus . org/
toolkit/draf t-ggf -ogs i-gridservi ce-33_
2003-06-27 .pdf, accessed 18 October 2005.

UDDI Spec Technical Committee (2004), UDDI Ver-
sion 3.0.2, http : //uddi . org/pubs/uddi_v3
htm, accessed 11 July 2005.

W3C (2001), 'Web Services Description Language
(WSDL) 1.1', http : //www w3 org/TR/wsdl, ac-
cessed 11 July 2005.

W3C (2003), 'SOAP Version 1.2 Part 1: Mes-
saging Framework', http : //www w3 . org/TR/
soap12-part1/, accessed 11 July 2005.

W3C (2004a), Web Services Glossary, http : //www.
w3 . org/TR/ws-gloss/, accessed 18 July 2005.

W3C	 (2004b),	 Web	 Services	 Address-
ing	 (WS-Addressing).	 Available	 at:
http : //www.w3 . org/Submission/2004/
SUBM-ws-addressing-20040810/.

W3C (2004c), Web Services Architecture, http :
//www w3 . org/TR/ws-arch/, accessed 12 July
2005.

Wasson, G. & Humphrey M., Exploiting WSRF and
WSRF.NET for Remote Job Execution in Grid
Environments, in 'Proceedings of the 19th IEEE
International Parallel and Distributed Process-
ing Symposium', Vol. 01, Num. 1, IEEE, pp. 12.

Yang, Y., Tang, S., Zhang, W., Fang, L. (2004), 'A
Workflow Language for Grid Services in OGSI-
based Grids', Lecture Notes in Computer Science
3251, 65-72.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117

