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Abstract 
 
 
 

A median-based quantile estimator is less prone to the upward bias caused by 

unobserved renovations and missing “quality” variables when estimating appreciation 

rates using the repeat sales approach.  As expected, the quantile estimator indicates 

lower appreciation rates for a sample of repeat sales of single-family homes in 

Chicago for 1993-2002.  The quantile estimator is much less sensitive than the 

standard repeat sales estimator to the omission of observations for which building 

permits have been issued during this time.  Thus, the quantile approach appears to be 

less prone to sample selection and missing-variable bias than the standard estimator. 
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1. Introduction 

The purpose of a house price index is to track the rate of price appreciation 

over time for a standard or representative house.  Using sample averages to construct 

the index is inappropriate because a small number of sales of high-priced homes can 

significantly affect a mean-based house price index.  Non-academic estimates of price 

indexes, such as those reported by the National Association of Realtors or by local 

newspapers, frequently use the sample median as the basis for constructing an index.  

Although the median is an improvement over the mean, it does not control for house 

characteristics.  If large, new houses dominate sales during later periods, both the 

mean and the median may imply an artificially high rate of price appreciation. 

Academic researchers have most often used one of two mean-based methods 

for constructing quality-controlled price indexes.  The first method is a 

straightforward hedonic price function, in which the natural logarithm of sales price is 

regressed on a vector of house characteristics and variables indicating the time of sale.  

The estimated coefficients on the time-of-sale variables produce the house price 

index.  The other frequently used method is a repeat sales estimator.  A repeat sales 

price index is estimated by regressing the percentage change in the sales prices houses 

that sold have more than once on a vector of discrete variables representing the time 

of sale.  By focusing on price changes rather than levels, the repeat sales estimator 

avoids bias from missing house characteristics that remain unchanged over time.  

However, it may be subject to more severe sample selection bias than the hedonic 

approach because the relatively small sample of properties that sell at least twice may 

be even less representative of the overall population of houses.  And the repeat sales 

model remains prone to bias from missing information on various home 

improvements that take place between sales. 
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 As regression-based models, the hedonic and repeat sales approaches are 

mean-based procedures.  As such, they are sensitive to outliers.  Ironically, this 

sensitivity to outliers is precisely the reason that non-academic price indexes typically 

rely on medians rather than means to construct price indexes.  In addition, regression-

based procedures invoke the assumption that all estimated coefficients – including the 

critical time of sale variables – do not depend on whether a home sale is drawn from 

the tails or the middle of the house price error distribution.  However, the rate of 

appreciation may, in fact, depend on the home’s position in the error distribution.  For 

example, recently renovated homes may appreciate especially rapidly.  These 

observations may appear as outliers since they are likely to comprise a small portion 

of the overall sample.  Alternatively, appreciation rates may be especially high for 

unusually high-quality homes or those drawn from premium locations.  Variables 

representing renovation, high quality, and premium locations are likely to be 

unobserved, relegating their effects to the error term.  In situations such as these, a 

median-based estimator may generate lower rates of appreciation than a standard, 

mean-based regression procedure. 

In this paper, we propose the use of a quantile regression procedure to estimate 

repeat sales house price indexes.  A median-based quantile estimator is less prone to 

the upward bias caused by the unobserved renovations and missing “quality” variables 

that are endemic to existing data sets when estimating appreciation rates.  As 

expected, the quantile estimator indicates lower appreciation rates for a sample of 

repeat sales of single-family homes in Chicago for 1993-2002.  Unlike most previous 

research, our dataset includes a variable indicating whether a building permit was 

issued for the home during this time.  Omitting these observations leads to 

significantly lower appreciation rates.  The quantile estimator is much less sensitive 
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than the standard repeat sales estimator to the omission of the observations for which 

building permits have been issued.  Thus, the quantile approach appears to be less 

prone to sample selection and missing-variable bias than the standard estimator. 

 

2. The Repeat Sales Price Indexes 

The repeat sales price index can be derived from a standard hedonic price 

function.  The hedonic approach is typified by the following equation: 

ititTTitiit uDDxy ++++′+= ,,22 ... δδβα    (1) 

In equation (1), yit is the natural logarithm of the price of home i at time t, xi is a 

vector of housing characteristics such as square footage and the number of bedrooms, 

and uit is an error term.  Sales dates range from 1 to T.  The dummy variables D2,it … 

DT,it indicate that the home sold during the period represented by the first subscript.  

Examples of the hedonic price index approach include Kiel and Zabel (1997), Mark 

and Goldberg (1984), Palmquist (1980), and Thibodeau (1989). 

Missing variables are probably the most important source of bias in hedonic 

estimates.  The estimated price index will be biased if the missing variables are 

correlated with the time dummy variables.  For example, suppose that the missing 

variable is a measure of house quality.  If homes selling at later dates tend to be of 

higher quality than those from early sales, the δ’s from later periods will be biased 

upward and will overstate the rate of price appreciation of a standard house. 

The repeat sales approach was originally proposed by Bailey, Muth, and 

Nourse (1963).  Examples include Case and Quigley (1991), Case and Shiller (1987, 

1989), Follain and Calhoun (1997), and Kiel and Zabel (1997).  For the subset of 

homes in the sample that sold at least twice, we can calculate the difference in sales 
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prices between time s and t, where s < t.  The estimating equation for the standard 

repeat sales estimator is 

        ( ) ( ) isitisTitTTisitisit uuDDDDyy −+−++−=− ,,,2,22 δδ K   (2) 

The vector of housing characteristics, xi, does not appear in this equation because we 

have assumed that the characteristics and the coefficient vector β do not change over 

time.  If these assumptions are correct, the repeat sales estimator provides unbiased 

estimates of the price index without requiring data on all relevant housing 

characteristics.  Thus, a missing variable such as house quality will not bias the 

estimates unless it changes over time or its coefficient changes. 

 The following specification accounts for missing variables and time-varying 

coefficients by adding a new variable, z, with values that change over time:   

itititTTitiit uzDDxy +++++′+= ,,22 ... δδβα   (3) 

It is irrelevant whether the source of the variation in the new term is a time-varying 

coefficient or changes in the variable itself (as would be the case with remodeling and 

renovations): we can simply rewrite the model by writing zit as the product of the 

appropriate time dummy variable and a time-varying coefficient.  Equation (3) 

becomes: 

[ ]ititTiTitiiitTTitiit uDzDzzDDxy ++++++++′+= ,,22,,22 ... λλδδβα K  (4) 

and the repeat sales version of the equation is 
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( ) ( )+−++−=− isTiTTTisitisit DDDDyy ,,,2,22 δδ K  
(5) 

( ) ( )[ ]isitisTiTTiTisiti uuDDzDDz −+−++− ,,,2,22 λλ K  

The new variables measure changes in z between time t and the base period.  The 

bracketed terms in equations (4) and (5) are the error terms when z is unobserved.  

The missing variables are correlated with the time variables, which leads to biased 

estimates of the price index. 

 If the sample is dominated by homes that have not been renovated, the 

standard repeat sales approach may produce reasonably accurate estimates of the price 

index.  Estimated indexes will be more biased the larger the proportion of homes with 

characteristics that have changed over time.  This bias is typically referred to as a 

“sample selection” bias in the literature because the sub-sample of homes that have 

sold at least twice is generally expected to have a greater proportion of observations 

with changes in housing characteristics than the full sample.  A median-based 

estimator, which places less weight on outliers than mean-based approaches, will be 

particularly attractive for this sub-sample since changes in housing characteristics 

appear as large errors when they are not observed in the dataset. 
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3. Quantile Regression 

 Mean-based procedures such as ordinary least squares are more sensitive to 

outliers than median-based estimators.  Although outliers are occasionally simply 

miscoded data, at other times missing variables lead to extreme values for the error 

terms.  An obvious example in the case of house price models is remodeling and 

renovations, some of which are likely to produce extremely high values for the error 

terms when they are not observed in the data set.  The “quality” variable may also be 

the source of outliers:  given observed housing characteristics, unusually high-quality 

homes will tend to have high prices and large error terms. 

 Unlike ordinary least squares, the target for quantile regression estimates is a 

parameter that is specified before estimation.  Let q represent the target quantile.  

Also, let eit be the residual implied by the econometric model.  Quantile parameter 

estimates are the coefficients that minimize the following objective function: 

∑ ∑
> ≤

−+
0 0

)1(22
it ite e

itit eqeq     (6) 

At the median, q = 0.5, which implies that equal weight is given to positive and 

negative residuals.  At the 90th percentile, 2q = 1.8 and 2(1-q) = .2, which implies that 

more weight is given to positive residuals – observations with high values for the 

dependent variable, given the values of the explanatory variables.  Equation (6) will 

be minimized at a set of parameter values where 100q% of the residuals are positive.  

This result differs from ordinary least squares, in which the only constraint on the 

residuals is that their sum equals zero. 

 Koenker and Bassett (1978) originally proposed the quantile regression 

approach.  Examples of applications include Albrecht (2003); Bassett and Chen 

(2001); Buchinsky (1994, 1998a, 2001); Dimelis and Louri (2002); Garcia, 

Hernandez, and Lopez-Nicholas (2001); Hartog, Pereira, and Jose (2001); Levin 



 7

(2001); Martins and Pereira (2004); and Thorsen (1994).  Buchinsky (1998b) and 

Koenker and Hallock (2001) present useful surveys.  Each of these studies presents 

estimates from equations of the general form qiuixqiy +′= β . The form of this 

equation implies that the coefficients differ by quantile.  For example, Martins and 

Pereira (2004) find that returns to schooling are higher for more-skilled individuals.  

Their evidence for this conclusion comes from a regression of the natural logarithm of 

wages on a set of human capital characteristics, one of which is years of schooling.  

The coefficient for years of education is higher at higher quantiles. 

Quantile effects have a straightforward missing variables interpretation that 

follows directly from the hedonic and repeat sales price index estimators.  For 

example, the contribution of a sale at time t=2 to the price index can be found by 

taking the derivative of equation (4) or (5) with respect to D2,it.  The 

result, iz22
*
2 λδδ += , varies with the missing variable z.  If λ2 > 0, then higher values 

of z lead to higher values for *
2δ .  But z is part of the error term.  Thus, high values of 

the error term imply high values for *
2δ and low values imply low *

2δ , i.e., quantile 

effects. 

The intuition behind the quantile effect is the same as the motivation typically 

offered for selection bias in the repeat sales estimator – that the repeat sales sample is 

not representative of the rest of the housing market.  For instance, the repeat sales 

sample may draw more heavily from neighborhoods with amenities that attract 

wealthy, mobile homebuyers, and the prices of these homes may appreciate more 

rapidly than homes in other neighborhoods.  If the full set of neighborhood amenity 

variables were observed, there would be neither a quantile effect nor a sample 

selection issue.  Similarly, recently renovated homes can be represented by a missing 

variable that adds to the vector of housing characteristics beginning at the time the 
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renovation is completed.  The renovation variable produces a quantile effect because 

it is correlated with the time dummy variables. 

The case for the quantile effect is particularly strong for the renovation 

example because only a minority of homes are remodeled during a given time.  A 

renovated house shows up as an outlier in a standard regression model.  Such outliers 

are drawn from the upper tails of the error distribution.  The effects of this unobserved 

variable would not contaminate other points in the distribution.  A median-based 

estimate (q = .5) will be far less vulnerable than a mean-based estimate to the effects 

of omitted variables that affect only a portion of the sample. 

 

4. A Monte Carlo Analysis 

 In this section, we report the results of a set of Monte Carlo experiments that 

illustrate the benefits of the quantile approach to estimating house price indexes.  The 

basis for the experiments is a straightforward two-period version of equation (4): 

    iiiiii uDzDxy ++++= λ2.5    

 (7) 

The time subscript is suppressed from equation (7) because it unnecessarily 

complicates the notation of this simple hedonic model, which is sufficient for 

illustrating the benefits of the quantile approach.  We draw values of x from a unit 

normal distribution.  We generate the time variable D, by making draws from a U(0,1) 

distribution and setting D = 1 when the randomly drawn value is greater than 0.5.  The 

“missing” variable, z, is drawn from a U(-.5,.5) distribution.  Finally, we draw values 

for the error term, u, from a normal distribution with a mean of zero and a variance 

that assures that the R2 from a regression of y on x, D, and zD will be approximately 

0.9 on average.  We let the values of λ vary from 0 to 1 while maintaining each of the 
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other parameters at the values shown in equation (7).  Thus, observations with higher 

values of z have higher appreciation rates on average.  Each experiment has 1000 

observations. 

When a sale occurs during the base time period, D = 0.  The price of an 

identical home is 0.2+λz higher when the sale takes place during the second period.  If 

z represents quality, then the appreciation rate is higher for high-quality homes.  This 

variable would be missing in a typical house-price study.  If z is not observed, 

appreciation rates are higher for observations drawn from the upper tails of the error 

distribution.  Thus, the Monte Carlo setup generates quantile effects, in which the 

implied marginal effect of D, i.e., 0.2+λz, varies across the error distribution. 

Table 1 reports means and standard deviations for quantile regression 

estimates of 1000 replications of each experiment.  We estimate each regression at 

target quantiles of 0.25, 0.50, and 0.75.  The explanatory variables for the regressions 

are simply x and D; zD is not included.  The missing variable, zD, is not correlated 

with x but it is correlated with D.  Thus, omitting zD does not bias the estimated 

coefficient for x but does lead to biased estimates for the D coefficient.  The true 

coefficient for D rises with λ, and when λ>0 it is higher at higher quantiles.  

Therefore, the question in the Monte Carlo analysis is whether the quantile approach 

indicates higher appreciation rates – i.e., higher coefficients for D – at higher 

quantiles.  Given the structure of the Monte Carlo setup, the true coefficient is 1.0 for 

x at all values of λ.  The true intercept is lower at lower regression quantiles because 

errors are negative on average at q = 0.25 and positive at q = 0.75.  All calculations 

are performed using the QREG command in STATA.   

 The results are precisely as expected.  The average estimated coefficient for x 

is close to 1.0 across the three target quantiles and across the five alternative values of 
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λ.  Since the error term, u, and the omitted variable, λzD, both have means of zero, the 

estimated intercepts are approximately equal to their true value of 5.0 at the residual 

median (q = 0.5).  The average intercepts are lower than 5.0 at q = 0.25 and are higher 

than 5.0 at q = 0.75.  As expect, estimated appreciation rates – the coefficient for D – 

are approximately equal to the correct value of 0.20 when quantile effects are absent 

(λ = 0).  Importantly, estimated appreciation rates are lower than 0.20 when λ>0 and q 

= 0.25, and they are higher than 0.20 when λ>0 and q = 0.75.  The estimated 

appreciation rates average just under 0.20 at the median of the distribution of 

residuals. 

The last three rows of the table show the percentage of rejections for the null 

hypothesis of equal coefficients for the 25% and 75% quantiles.  The tests are based 

on 20 replications of a bootstrap algorithm.  As quantile effects are absent for x, we 

should expect the null hypothesis to be rejected no more than 5% of the time (the 

nominal size of the test) for this variable.  Rejection rates are somewhat lower than 

5% for this variable, and they do not vary systematically by λ.  Since quantile effects 

always exist for the intercept, the tests always reject the null hypothesis of equal 

intercepts at the 25% and 75% quantiles.  The most important finding is that the 

rejection rate for equal coefficients for D rises with λ.  This result means that, as 

expected, the statistical test is more likely to indicate quantile effects as the magnitude 

of the missing variable (λzD) increases. 

 To put these results in perspective, assume that z represents a trait such as 

renovation or simply the change in quality between the two periods.  Prices of homes 

with positive values for z increase relatively quickly over time, and prices rise more 

slowly (or even fall) when z is negative.  If z is unobserved, standard estimates will 

typically be biased.  The bias is upward if quality improved in most of the homes for 
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which quality changed over the time period.  The quantile estimator can detect 

differences in appreciation rates by allowing for differences in coefficients across 

target quantiles.  In a conventional case of remodeling, most values of z equal zero 

while a small percentage are positive.  Standard appreciation rate estimates will again 

be biased upward in this case.  In contrast, a median-based estimator will provide 

accurate estimates, and the estimates at high target quantiles will detect the higher 

rates of appreciation associated with remodels. 

 

5. Data and Model Specification 

 The dataset for the empirical application of the quantile regression estimator 

was drawn from sales data gathered by the Illinois Department of Revenue (IDOR).  

IDOR conducts reviews of assessment practices for all counties in Illinois, including 

Cook County.  Through a Freedom of Information Act request, IDOR provided data 

on all sales of single-family homes in the City of Chicago for 1993-2002.  The key 

variables are the sales price, date of sale, and the parcel identification number (or 

“PIN”).  The PIN allows us to identify repeat sales.  There were 89,806 sales during 

this period, of which 24,533 were sales of homes that sold more than once.   The sub-

sample of 24,533 sales is composed of 12,792 repeat sales pairs. 

Figure 1 shows the average and median sales prices for the full sample of 

sales.  Figure 2 shows the comparable data for the sample of homes that sold more 

than once.   For the full sample, average prices rose from $116,790 in 1993 to 

$224,488 in 2002, an increase of 92.2%, or 7.5% per year on average.  The average 

prices of repeat sales homes increased more rapidly – from $122,293 in 1993 to 

$254,869 in 2003, an increase of 108.4%, or 8.5% annually.  The distribution of sales 

prices is dominated by lower-priced homes.  In the full sample, the median sales price 
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was $106,888 in 1993 and $183,000 in 2002, an increase of 71.3% or 6.2% annually.  

For the repeat sales sample, the median sales price was $110,000 in 1993 and 

$206,000 in 2002, an increase of 87.3% or 8.2% annually. 

One reason for the large difference between the appreciation rates for the full 

sample and the sample of repeat sales may be a high probability that homes that sell 

more than once are remodeled or renovated between sales.  Building permit data 

allow us to identify many of the homes that have been altered significantly between 

sales.  Primary permit categories include additions, alterations, new construction, and 

repairs.  Building permits were issued between sales for 1,372 of the 12,792 repeat 

sales pairs in our sample (10.7%).  Average sales prices for the repeat sales for which 

building permits were issued rose from $126,410 in 1993 to $343,119 in 2002, an 

increase of 171.4% or 11.7% annually.  Median sales prices for these homes rose from 

$110,000 in 1993 to $249,000 in 2002, an increase of 126.4% or 9.5% annually.  

Thus, homes with building permits tend to have prices similar to other homes in 1993, 

but their appreciation rates are much higher on average.  The higher appreciation rate 

is at least in part due to the failure to hold quality constant: building permits lead to 

changes in housing characteristics that improve the quality of the home. 

Our data set includes sales from 10 years, or 40 quarters.  As shown in 

equation (8), the standard repeat sales estimator includes 39 explanatory variables 

once the variable representing the first quarter is omitted to impose that the intercept 

equals zero.  A positive value for the intercept would imply an increase in prices even 

within a single time period.  Although within-period price increases are possible, most 

authors impose that the price index equals zero during the base period.  (An exception 

is Goetzmann and Siegel (1995), who suggest including an intercept because 

properties are often upgraded around the time of a transaction.)  Imposing a zero 
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intercept is not as simple for the quantile estimator.  The quantile estimator conditions 

on points in the error distribution.  At the 90th percentile, for example, the intercept 

will clearly be positive because the errors are positive on average when the estimator 

focuses on the 90th percentile of the error distribution.  In our empirical application, 

we focus on the median, so the assumption of a zero intercept is reasonable. 

In a standard repeat sales model, we can impose that the intercept equals zero 

in two ways.  The obvious one – omitting the constant term from the regression – is 

not an option in quantile regression because intercepts cannot equal zero across all 

quantiles.  The second alternative is to estimate the regression with an intercept, and 

then solve for the restricted least squares estimates that are implied by a zero 

intercept.  Let X be the matrix of explanatory variables for the unrestricted regression, 

and let R be a vector with a one in the position corresponding to the intercept in X and 

zeros elsewhere.  The formula for the restricted coefficients 

is ( ) ( )[ ] βββ ˆˆˆ 111 RRXXRRXXr
−−− ′′′′+=  .  Let sij represent the entry in row i and column j 

of the estimated covariance matrix, and assume that a vector of one’s is the first 

column of X.  Then the formula for riβ̂  – the coefficient in row i of riβ̂  – 

is ( )1111 /ˆˆ ss ii ββ − .  Calculating the restricted price index by imposing a zero intercept 

is not equivalent to obtaining an unrestricted estimate with a non-zero value in the 

base period and subtracting the intercept from all dates – a parallel shift in the price 

index.  The formula for restricted coefficients rotates the price index so that the 

restricted intercept is zero.  This transformation also is a logical basis for the quantile 

repeat sales estimates when the target point is the median of the error distribution.  

This transformation allows us to directly compare the results to the standard repeat 

sales estimator. 
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6. Estimated Price Indexes  

 Figure 3 shows the estimated price indexes and Table 2 shows the value of the 

indexes for the fourth quarter of each year in the sample.  Using the full sample of 

sales, the standard repeat sales estimator indicates that prices rose by 77.8% from the 

beginning of 1993 to the fourth quarter of 2002.  In contrast, the median-based 

quantile estimator indicates that prices rose by only 68.9% over this time.  In light of 

the previous discussion, the difference in results can be explained in at least two, 

complementary ways.  First, there clearly are quality improvements in a significant 

portion of the sample since building permits were issued between sales for 10.7% of 

the observations.  Second, there may be missing variables that do not change over 

time and that are correlated with the appreciation rate.  For example, higher quality 

homes or homes in certain neighborhoods may appreciate faster than others.  If the 

effect of time-invariant missing variables is confined to a relatively small portion of 

the sample, then the median-based estimator will be less sensitive to these 

observations than the standard estimator. 

 Though we cannot account for the effects of unknown missing variables, the 

building permit data allow us to measure the effect of renovations on the estimated 

price indexes.  We re-estimate the models after omitting the 1,372 repeat sales pairs 

for which a building permit was issued between sales.  The results are again shown in 

Figure 3 and Table 2.  As expected, both the standard and the quantile repeat sales 

price indexes are lower after the observations with building permits have been 

omitted.  The standard repeat sales price index is 0.734 in the fourth quarter of 2002 

after the building permit observations are eliminated, compared with 0.778 when 

these observations are included.  Comparable figures for the quantile estimator are 

0.673 and 0.689.  Importantly, omitting the permit data has less of an effect on the 
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quantile estimates than on the standard repeat sales estimates.  The difference between 

the fourth-quarter values of the price indexes are 0.044 for the standard estimator 

compared with only 0.016 for the quantile estimator.  Even though the quantile 

estimator focuses on the median, the building permit observations have some effect on 

the estimates because all observations receive some weight in the estimation 

procedure.  However, the effects of the building permit observations are much less 

pronounced in the median based estimator. 

The term “sample selection” typically is used in the repeat sales literature to 

refer to the percentage of the sample that fails to meet the stringent assumptions of the 

estimator.  When the building permit data are included, we know that at least 10.7% 

of the observations fail to meet the condition that housing characteristics do not 

change over time.  Table 3 shows what happens when this percentage is increased to 

33.33%.  We keep the 1,372 repeat sales pairs for which building permits were issued 

between sales, and randomly draw 2,744 pairs from the remaining, non-permit 

observations.  The estimated rate of price appreciation increases for both the standard 

and the quantile repeat sales price estimator.  The fourth-quarter value of the price 

index is 0.843 for the standard estimator compared with 0.778 when all non-permit 

data are included, while comparable values for the quantile estimator are 0.689 and 

0.715.  These results imply that the quantile estimator is much less sensitive to the 

“bad” data than the standard estimator.   

 

7. Conclusion 

 The quantile approach has advantages over conventional mean-based 

approaches to estimating house price indexes.  Targeting quantiles from the middle of 

the error distribution reduces the effects of outliers.  The problem of outliers is 



 16

particularly important for the repeat sales estimator, which is vulnerable to an upward 

bias when the sample includes renovated houses and there is no way to identify which 

homes have been upgraded.  In this situation, a more realistic view of the housing 

market may be gained by constructing indexes using lower quantiles as the target 

point. 

 Data for Chicago from 1993-2002 illustrate this advantage of the quantile 

approach.  Our data set is unique in that we were able to merge building permit data 

with the sample of repeat sales in order to identify homes that were modified between 

sales. As expected when a substantial portion of the homes in the sample are being 

upgraded, the standard estimator appears to overstate the rate of appreciation in the 

full sample.  When the sample is restricted to repeat sales pairs without building 

permits, estimated appreciation rates fall for either estimator.  Importantly, the 

inclusion of building-permit data has much less of an effect on the quantile estimator; 

the quantile estimates will contain less upward bias in the common case in which 

renovations are unobserved. 

 The quantile approach is consistent with the standard non-academic practice of 

working with medians rather than averages in order to reduce the effect of outliers.  In 

the context of our dataset, one set of outliers includes homes for which building 

permits have been issued.  More generally, outliers include any omitted variable that 

has a significant effect on a subset of the observations.  By reducing the influence of 

outlier observations, the quantile approach reduces the sample selection problems that 

have plagued standard applications of the repeat sales estimator. 
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Table 1 
Monte Carlo Results 

 
Variable, Percentile λ = 0 λ = .25 λ = .50 λ = .75 λ = 1 

x, 25% 1.001 
(0.015)

1.003 
(0.015)

1.006 
(0.016)

1.009 
(0.015) 

1.011 
(0.016)

x, 50% 1.000 
(0.014)

1.003 
(0.014)

1.006 
(0.014)

1.009 
(0.014) 

1.012 
(0.015)

x, 75% 1.000 
(0.015)

1.003 
(0.014)

1.007 
(0.016)

1.010 
(0.016) 

1.013 
(0.017)

D, 25% 0.199 
(0.029)

0.194 
(0.030)

0.180 
(0.030)

0.153 
(0.030) 

0.119 
(0.031)

D, 50% 0.199 
(0.027)

0.199 
(0.026)

0.199 
(0.027)

0.198 
(0.028) 

0.198 
(0.030)

D, 75% 0.199 
(0.028)

0.204 
(0.028)

0.220 
(0.030)

0.244 
(0.030) 

0.278 
(0.032)

Intercept, 25% 4.772 
(0.020)

4.771 
(0.022)

4.770 
(0.021)

4.768 
(0.021) 

4.765 
(0.021)

Intercept, 50% 5.000 
(0.019)

5.000 
(0.019)

5.000 
(0.018)

5.001 
(0.019) 

5.001 
(0.020)

Intercept, 75% 5.228 
(0.020)

5.229 
(0.021)

5.231 
(0.021)

5.233 
(0.021) 

5.236 
(0.021)

Rejections of Equal Coefficients for x 
at 25% and 75% 

3.0% 2.3% 3.9% 2.7% 3.5% 

Rejections of Equal Coefficients for 
D at 25% and 75% 

3.1% 5.1% 19.4% 65.7% 96.3% 

Rejections of Equal Coefficients for 
Intercepts at 25% and 75% 

100% 100% 100% 100% 100% 

 
Note.  Means and standard deviations (in parentheses) are reported for 1000 
simulations.  The base model is y = 5 + x + .2D + λzD + u, where z ~ U(-.5,.5).   
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Table 2 
Estimated Fourth Quarter Price Indexes 

 
 

Year 
Standard, 
All Sales 

Standard, 
No Permits

Quantile,
All Sales

Quantile, 
No Permits 

1993 0.007 0.017 0.033 0.036 
1994 0.035 0.051 0.049 0.051 
1995 0.067 0.077 0.096 0.095 
1996 0.134 0.140 0.130 0.135 
1997 0.198 0.188 0.178 0.175 
1998 0.318 0.293 0.256 0.242 
1999 0.433 0.406 0.345 0.335 
2000 0.550 0.508 0.492 0.478 
2001 0.676 0.628 0.578 0.552 
2002 0.778 0.734 0.689 0.673 

 
Table 3 

Estimated Fourth Quarter Price Indexes:   
High Percentage of Permit Sales 

 

Year 
Standard, 
All Sales 

Standard, 
No Permits

Quantile,
All Sales

Quantile, 
No Permits 

1993 -0.069 -0.051 -0.003 0.025 
1994 -0.016 0.026 0.026 0.039 
1995 -0.002 0.021 0.038 0.053 
1996 0.109 0.143 0.105 0.127 
1997 0.217 0.201 0.155 0.157 
1998 0.364 0.297 0.254 0.236 
1999 0.448 0.361 0.360 0.320 
2000 0.600 0.481 0.523 0.480 
2001 0.760 0.641 0.619 0.543 
2002 0.843 0.723 0.715 0.658 
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Figure 1 
Sales Price Trends for the Full Sample of Sales 
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Figure 2 

Sales Price Trends for the Repeat Sales Sample 
 

Repeat Sales Sample

0

50000

100000

150000

200000

250000

300000

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Average Median
 

 



22 

Figure 3 
Estimated Price Indexes 
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