
ar
X

iv
:1

00
3.

16
94

v1
  [

nl
in

.P
S]

  8
 M

ar
 2

01
0

EPJ manuscript No.
(will be inserted by the editor)

Nonlocal feedback in nonlinear systems

R. Zambrini1 and F. Papoff2

1 IFISC (CSIC-UIB), Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain

2 SUPA,Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK

Received: date / Revised version: date

Abstract. A shifted or misaligned feedback loop gives rise to a two-point nonlocality that is the spatial

analog of a temporal delay. Important consequences of this nonlocal coupling have been found both in

diffusive and in diffractive systems, and include convective instabilities, independent tuning of phase and

group velocities, as well as amplification, chirping and even splitting of localized perturbations. Analytical

predictions about these nonlocal systems as well as their spatio-temporal dynamics are discussed in one

and two transverse dimensions and in presence of noise.

PACS. 42.65 Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,

and optical spatio-temporal dynamics – 89.75.Kd Patterns 42.55.-fLasers

1 Introduction

There is a considerable interest in dynamical regimes in

which small fluctuations and ”noise” are amplified. In a

large class of optical systems this behavior is caused by

convective instabilities [1,2]. A convective instability hap-

pens in presence of some source of drift when a state of a

nonlinear system becomes unstable and the group veloc-

ity of a localized perturbation is larger than the velocity

of propagation of the instability front. As a result, in the

laboratory frame the perturbation is amplified but moves

away and eventually decays at any point in a finite spatial

domain if it is not reflected at the boundary. The exis-

tence of these instabilities has been shown in systems in

which the propagation of disturbances is characterized by

drift or walk-off, modelled by a gradient term. For such

systems small regions of convective instabilities have been

predicted and observed in hydrodynamics [3], plasma [4]

physics, traffic flow [5] and optics [1,6,7].

It was recently shown that significantly larger windows

of convective instabilities are induced by nonlocal terms in

the governing equations [8]. In optics, these terms result

from the presence of an off-axis or shifted feedback loop
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Fig. 1. Schematic representation of a nonlinear device with

shifted feedback. The output beam is re-injected into the device

after a shift ∆x.

which is modeled by a two point nonlocality that is the

spatial analogous of a temporally delayed feedback. This

is a common experimental issue and has been subject of

both theoretical and experimental study in liquid crys-

tals light valves [9,10,11], Kerr-like media [12,6,13] and

generic nonlinear systems with diffusive [8] and diffractive

[14] coupling. We note that the importance of feedback

loops goes well beyond the realm of optics [15] and has

been long recognized in other fields of physics and also

in biology and engineering [16,17]. Usually feedback loops

are introduced to better control the system and to limit

the growth of noise, while in the papers quoted a nonlo-

cal feedback has been used mainly to study fundamental

properties of fluctuations in non linear systems when con-

vective instabilities are induced. In a recent experiment,

however, an off-axis feedback loop has been used very ef-

fectively to suppress noise-sustained structures caused by

an intrinsic drift term in a free electron laser [18], show-

ing that two-point nonlocality are not only fundamentally

interesting, but also extremely useful.

In this paper we review the effect of off-axis feedback

in a broad class of optical devices and explore the effect of

the two-point nonlocality in the case of two transverse di-

mensions. We consider passive as well as active nonlinear

media with fast decay of the polarization [19], including

media with negative refraction index [20,21] and devices

with soft apertures [22]. Within the media we consider

both diffusion and diffraction and show how an off-axis

feedback changes the nature of the first instability thresh-

old. As a consequence, there are large windows of control

parameters where small localized signals can be strongly

amplified while the background radiation in other region

of the system remains very low [14]. The amplification

does not need a continuous signal injection and takes place

even when the initial perturbation is switched off. Further-

more, in systems with diffraction and active media, the

signal moves across the cavity with transverse phase and

group velocities that are easily managed to have the same

or opposite signs [14]. In spite of the broken transverse re-

flection symmetry, localized perturbations can move both

towards or against the off-set direction and can even split

into two counter-propagating components, with the laser

operating as a signal splitter. Both noise sustained struc-

tures and signals control are shown by numerical simula-

tions of the full nonlinear model confirming our theoret-

ical analysis and a rich spatio-temporal dynamics. Previ-

ous analysis of Refs. [14,23] are extended considering two

transverse spatial dimensions.
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2 Equations

Off-axis feedback loops, in which the propagation of light

is guided, are used with nonlinear phase/amplitude mod-

ulators in which material evolves much more slowly than

the electric field and its polarization. First examples were

liquid crystal light valves with feedback signal propagat-

ing through fibers whose position was easily controlled

[9,10,11]. These devices -in presence of a shifted feedback-

are modelled by equations of the type [8,24]

∂tϕ = ∇2
⊥ϕ+ f1(ϕ;µ) + f2(ϕ∆x;µ). (1)

ϕ(x, y, t) is a real field that represents the state of the ma-

terial - for liquid crystal based devices it is related to the

alignment of the molecules - at a point (x, y) and time t,

while ϕ∆x is evaluated at point x + ∆x and time t, re-

spectively scaled with diffusion length and diffusion time.

The control parameter µ is independent on x for the sake

of simplicity. f1, f2 are real functions that can be derived

with respect to ϕ. In the limit of infinitely extended sys-

tems, the homogeneous states are solutions of f1 + f2 = 0

and their domains of existence depend upon µ but not

upon ∆x.

A similar feedback is used also with active materials

inside optical cavities. When the dynamics of the differ-

ence of the populations of the energy levels coupled to the

light and of the polarization of the materials is much faster

than the dynamics of the electric field, these systems are

described by a single equation of the type [14,23]

∂tE = f(|E|2;µ)E + deiδ∇2
⊥
E + reiφE∆x. (2)

Here E is the slowly-varying amplitude of the electric field

within a scalar description, d cos δ, d sin δ are the diffusion

and diffraction coefficients (d > 0)and µ is a control pa-

rameter. Devices where only the polarization evolves much

faster than the electric field are instead modelled by

∂tE = g1(|E|2, N ;µ)E + deiδ∇2
⊥
E + reiφE∆x, (3)

∂tN = g2(|E|2, N,∇2
⊥
N ;µ),

where N represent the internal dynamics of the material

coupled with light. We consider feedback loops in which

the time delay ∆t is very small compared to the time scale

of the slowly varying envelope of the field. The feedback

can then be characterized by an amplitude 0 < r < 1 and

a phase shift φ = ωL∆t, where ωL is the carrier frequency

and couples the field E in (x, y) with the field E∆x in a

shifted point. f , g1 and g2 are nonlinear complex functions

that can be derived with respect to E and N . The trivial

solutions of Eq. (2) and Eqs.(3) are E = 0, and E = 0,

N = N0, respectively. Interestingly, our analysis applies

also to equations with the more general feedback term

[f1(|E|2)E]∆x, with reiφ = f1(0).

We are interested in the dynamics of perturbations

δE ∼ exp (ωt+ ik · x) around the uniform states in the

linear regime. The dynamics of perturbations for Eq.(2)

and Eqs.(3) is contained in the dispersion relation

ω = β − eiδ(k2x + k2y) + rei(φ+kx∆x), (4)

where space is rescaled in units of
√
d. Here β = f(0) for

Eq.(2) and β = g1(0, N0) for Eqs.(3). For class B models,

perturbations δN are always damped and decoupled from

δE and can be ignored.
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We note that Eq.(4) with δ = 0, β = ∂ϕf1, r = |∂ϕf2|

and φ = 0 or π depending on the sign of |∂ϕf2|, is the dis-

persion relation for the perturbations of the uniform states

of Eq.(1). This shows that despite the different physical

meaning of the variables ϕ and E, as well as the signifi-

cant differences in the characteristic time scales and in the

light-matter coupling behind Eq.(1) and Eq.(2) or Eqs.(3),

the dynamics of the perturbations of Eq.(1) is a special

case of the dynamics of the perturbations of the other two

cases.

From Eq.(4) we find that there are unstable band of

k = (kx, ky) with the most unstable ones given by

∇kωR = −(2kx cos δ + r∆x sin (kx∆x+ φ), 2ky cos δ)

= (0, 0) (5)

∂2
k2
x

ωR = −(2 cos δ + r∆x2 cos (kx∆x+ φ)) < 0, (6)

∂2
k2
y

ωR = −2 cos δ < 0. (7)

The subscripts R and I refer to real and imaginary part,

respectively. The conditions (6-7) ensure that the solution

of Eq.(5) corresponds to the perturbation with the largest

amplification; note that Eq.(7) is the standard stability

condition for diffusive equations.

An important feature of the instability threshold is

that it is a function of four relevant parameters, namely

φ, δ, r∆x2, and βR∆x2, and is independent on βI ; there-

fore increasing the shift size∆x produces on the device the

same effect of larger gain βR and feedback r. A specific ef-

fect of the nonlocality is that the relative strength of diffu-

sion and diffraction, δ, also becomes an effective parameter

to control the threshold position. For active materials, the

Fig. 2. Instability threshold as a function of the shift. The con-

trol parameter µ = βR + 1 is represented for easy comparison

with results in the following section. The effect of the feedback

phase on the instability is shown: thresholds for φ = 0 (hor-

izontal dark line) and increasing values φ = π/4, π/2, 3π/4, π

(lighter colors), δ = 0.49π, r = 0.5. The dot corresponds to the

parameter choice in Fig. 5.

lowest gain and feedback thresholds are generally found in

the purely diffractive limit (δ ∼ π/2). The threshold value

for the scaled feedback strength r∆x2 is independent on

the sign of the refractive index (sign of δ) and increases

with diffusion. Both βR and r can be increased to cross

the laser threshold and –similarly to the case of perfect

alignment– if the feedback is out of phase then stronger

gain is required, as shown in Fig. 2. For vanishing shift

(∆x = 0) this phase acts as a detuning and increases

the threshold while for larger shift values the threshold

tends asymptotically to the value for in-phase feedback

(φ = 0). Quite surprisingly, a misalignment lowers the

threshold because the most unstable mode has kx,I 6= 0

and, in this case, the nonlocal coupling can reduce the

feedback dephasing. Consistently with this interpretation,

when the feedback perfectly in phase with the intracavity
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field (φ = 0) the most unstable mode is homogeneous with

kx,I = 0 and the threshold is independent on the lateral

shift ∆x.

The dispersion Eq. (4) has in general a not vanishing

imaginary part corresponding to a non null phase velocity

vp = −ωI(k)
k

|k|2 = (8)

− [βI − (k2x + k2y) sin δ + r sin (kx∆x+ φ)]
k

|k|2 ,

For the most unstable k, kc, the phase velocity is

vp(kc) = (kxc sin δ −
βI

kxc
+

2 cos δ

∆x
, 0), (9)

and group velocity is

vg(kc) = ∇kωI(kc) =

(2kxc sin δ − r∆x cos (kxc∆x+ φ), 0) =

(2kxc sin δ ∓

√

1− 4kx
2
c cos δ

2

r2∆x2
, 0). (10)

Note that both vp(kc) and vg(kc) are null in the direction

orthogonal of the shift and coincide with the one dimen-

sional values. In Eq. (10) the − sign solution always sat-

isfies Eq.(6) and therefore corresponds to a wave-packet

with frequency spectrum centered on a local maximum of

the amplification. On the contrary, the + sign may not

satisfy Eq.(6). We remind that Eqs.(9-10) with δ = 0,

φ = 0 or φ = π give the velocities for the diffusive systems

of Eq.(1). An example of the large variability of phase and

group velocities at the critical wave-number are shown in

Fig. 3.

The analysis above shows that the phase velocity at

kc and the group velocity are always parallel to the shift,

while their sign varies. There are manifolds in the control

Fig. 3. Variation of phase (upper plot) and group (lower plot)

velocies, vp,x(kc) and vg,x(kc) respectively, depending on δ and

r∆x2. Other parameters: β = 0.2− i0.02 and φ = π/4.

parameter space that separate regions in which the group

and the phase velocity of the most unstable perturbation

have the same sign from region in which these velocities

have opposite sign. Moreover, the real part of the disper-

sion relation may have more than one maximum, so that a

single perturbation may split into two wave-packets. The

independent tunability of phase and group velocity is a

specific feature of optical systems with two-point nonlocal-

ity: as a matter of fact, gradient terms fix both velocities

in the same direction of the drift, while two-point nonlo-

cality in diffusive systems gives always opposite velocities

at the critical wavenumber (vp(kc) = −vg(kc)).
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In the purely diffractive limit δ → π/2, both velocities

are actually odd functions of kc; this symmetry is reduced

by the effect of diffusion (|δ| < π/2). Therefore, even if

for φ = π both +kc and −kc are unstable, from the linear

analysis we do not expect intensity stripes above threshold

in such optical systems. As a matter of fact, the instability

of these two states (different traveling waves) is rather

peculiar and opens the possibility of bistability instead of

stripe pattern formation.

Note that the tunability of transverse phase and group

velocities is a general property that is valid also in the

case in which ∆t is of the order of the time scale of the

slowly varying amplitude [23]. This tunability is therefore

a rather robust and distinctive feature of two-point nonlo-

cality with respect to models where velocities are induced

by drift terms [24]. We remark that the parameters φ and

δ are essential for this tunability: for this reason in the dif-

fusive systems of Eq.(1) the tunability is absent and the

phase and group velocities have always opposite sign.

We now consider whether the perturbations with non

null group velocities grow fast enough to occupy the entire

system (absolute instability) or if their group velocity is

such that the perturbations, although growing, move away

(convective instability).

The analysis is performed in an infinite system eval-

uating the asymptotic behavior of perturbations both in

a traveling and in a fixed reference frame. Note that the

distinction between absolutely and convectively unstable

regimes is generally given in infinite system while the in-

clusion of boundary effect in finite systems can change, in

Fig. 4. Regimes in which the homogeneous solution is stable,

convectively unstable and absolutely unstable as a function of

the shift and for δ = 0.45π, r = 0.56, φ = 0.25π.

some case even drastically, the instability scenario. The

simpler example is the case of periodic boundary condi-

tions: in this case no convective instability does exist at

all. Another interesting related question for finite systems

is the phenomenon of transient growth of perturbations

observed in cases where the linear stability operator is

non normal, i.e. does not commute with its adjoint [25].

The connection between convective instability and tran-

sient growth of perturbations is still an open question [26].

What has been characterized is the macroscopic amplifi-

cation of quantum noise in optical systems in this regime

[27].

We determine absolute thresholds by evaluating asymp-

totically the Green function: we extend analytically the

dispersion relation to complex wavevectors k (for one trans-

verse dimension) and find the appropriate integration paths

in the plane k. A detailed analysis is given in [23], here

we remark only that the for the purely diffusive systems
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of Eq.(1) the asymptotic evaluation of the Green func-

tion is done by closing the integration contour using only

equiphase lines from saddle points. Furthermore, it turns

out that the absolute threshold is determined only by

the saddle closest to the imaginary axis. For Eq.(2) and

Eqs.(3) instead, we close with steepest descent paths a

finite segment [kIm, kIM ] of the imaginary axis contain-

ing all the kI with wR(0, kI) > 0 and with kIm, kIM ,

such that wR(0, kI) < 0 for kI ≤ kIm and kI ≥ kIM . For

these two cases, the correct determination of the absolute

thresholds requires to identify the integration paths and

to evaluate the contribution to the Green functions of the

saddle points that are part of it, excluding all the others.

Summarizing, our analysis allows to distinguish three

regimes both in diffusive [8] and laser [14] systems with

a two-point nonlocality, as shown in Fig. 4 for a partic-

ular parameters choice. The homogeneous (vanishing or

non-lasing) state becomes unstable above a first threshold

(convectively unstable regime) corresponding to positive

dispersion Eq.(4). The absolutely unstable regime is found

only after evaluation of the asymptotical growth of per-

turbations, involving an integral whose approximate value

is found with a non-trivial application of the saddle-point

technique. This calculation is fully described in [14] and

[23] and here we only stress that not monotonic threshold

dependence on the shift can be found (Fig. 4) and have

been also checked by numerical simulations of dynamical

equations.

3 Nonlinear and stochastic spatio-temporal

dynamics

The general analysis of the previous section encompasses

a broad class of non-diffractive as well as laser models.

Main features of the spatio-temporal dynamics of specific

systems can be anticipated from the linear stability anal-

ysis and we will see some examples in the case of a class

A [29] laser:

∂

∂t
E = −E(1 + iθ −N) + eiδ∇2

⊥
E + reiφE(x+∆x, y) +

ǫξ(x, y, t)

N =
µ

1 + |E|2 (11)

with ξ(x, y, t) complex Gaussian white noise. Numerical

simulations of this nonlinear model are performed with

a second-order in time Runge-Kutta method and using

the random number generator of Ref. [30]. The connec-

tion with the analysis of the previous section is given by

β = µ − 1 − iθ. Numerical simulations confirm the pre-

dicted instability diagram; the wavenumbers dynamically

selected and the velocities are well approximated by those

obtained from the analytical analysis of the linear disper-

sion.

3.1 Signal splitting and interactions

The regime of convective instability allows the amplifica-

tion of localized light signals below the lasing threshold.

The direction of propagation of these signals depends on

the group velocity Eq. (10) and steering can be obtained

also non-mechanically by varying the feedback loop phase,
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Fig. 5. Spatio-temporal intensity dynamics showing the inter-

action of signals in a 1D class A laser with parameters ∆x = 1,

µ = 1.3, θ = −1, δ = 0.49π, r = 0.5 , φ = π, ǫ = 0 (see Fig.

2). Evolution starting from two small Gaussian perturbations

as can be recognized in the picture at time t = 0.

as shown in Figs. 3 and 4 of Ref. [14]. Particularly in-

teresting is the case in which the feedback is negative,

φ = π, first discussed in Ref. [14]. The recovered symme-

try in the dispersion relations gives rise to instability of

both positive and negative wave-vectors and, as a pecu-

liar consequence of the two-point nonlocality, these waves

propagate in opposite directions. This allows the system

to operate as a signal splitter in which an initial pertur-

bation, such as a localized spot of light, is divided into

two counter-propagating copies. This phenomenon is ro-

bust also in presence of noise [23] and deviations from the

symmetry, i.e. differences between the left and the right

propagating signals, are due to nonlinear effects [27,28].

Once excited, these localized signals are amplified and

propagate in the system (even in opposite directions) with-

out giving rise to any intensity modulation, even if the field

is actually spatially oscillating. We will now focus on a dif-

ferent aspect of signal control, namely signal interaction

when they cross each-other. As localized perturbations are

split into counter-propagating ones it is actually possible

to have signals crossing during temporal evolution. This

case is represented in Fig. 5. In this example the system is

excited in two separated points at an initial time and the

dynamics is considered in the case of only one transverse

dimension. We see that two of the four generated signals

cross and locally interfere generating a transient intensity

stripe in the center of Fig. 5. Moreover, looking on the

left (right) side, we see that due to the different velocities

of perturbations fronts, the trailing edge of the left signal

is reached by the leading edge of the following signal and

this also generates intensity modulation by interference.

Finally, after a transient time (not shown in Fig. 5) and

as expected, due to the convective character of the insta-

bility, the system evolves locally back to the homogeneous

vanishing state.

3.2 Patterns in one and two dimensions

In previous works we described the spatio-temporal dy-

namics of class A lasers assuming a one dimensional trans-

verse geometry [14,23]. Good agreement with the theoret-

ical predictions (threshold position, pattern wave-length,

phase and group velocity) was found when considering

rather large systems where boundary conditions effects

are negligible. The importance of the boundaries is par-

ticularly evident in the convectively unstable regime. In

Fig. 6 we show the evolution of a noise sustained structure

for δ = 0.45π, r = 0.56, φ = 0.25π and super-Gaussian

pump with maximum value µ = 0.6 in the central re-
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Fig. 6. (a) Spatio-temporal evolution of the intensity field

for one transverse dimension and starting from a noisy initial

condition. (b) Intensity |E(x, t = 100)|2 (black line), real part

(green dotted line) of the field, and pump profile µ (orange

line). Parameters: ∆x = 2, θ = 0, δ = 0.45π, r = 0.56 ,

φ = π/4, ǫ = 10−3. Super-Gaussian profile of µ with maximum

value 0.6.

gion (see Fig. 6b). From Fig. 4 and remembering that

βR = µ− 1, we see that for these parameters the nonlas-

ing state is convectively unstable and the field in Fig. 6a)

has the typical incoherent profile discussed in [23]. Here

we show that a large system is needed in order to observe

noise sustained structures intensities in the system: the

intensity represented in Fig. 6b is significantly high only

in half of the system, far from the right edge of the pump

profile µ. In other words, the intensity growth –in this

case against the shift direction– is rather slow and large

systems are needed to observe an intense noise sustained

Fig. 7. Temporal evolution of the intensity (upper line) and

of the real part (lower line) of the field starting from a noisy

initial condition. Parameters: ∆x = 2, θ = 0, δ = 0.45π, r =

0.56 , φ = π/4, ǫ = 10−3. Super-Gaussian profile of µ with

maximum value 0.6 inside the circular area. For this value of

µ the vanishing state is convectively unstable.

pattern. Oscillations appear in the field profile (phase pat-

tern given by the green line in Fig. 6b).

In order to give a representation of the aspect of spa-

tial structures as they would appear in experiments with

broad area lasers, it is interesting to consider the evolution

of two-dimensional field E(x, y, t). In Fig 7 we represent

both fields profiles and intensities for the same parame-

ters as in Fig. 6, showing the aspect of a noise sustained

structure in the convective regime. Three snapshots give

an example of the dynamic character of this structure:

numerical simulations in presence of noise show an inco-

herent traveling structure whose aspect is continuously

changing. The importance of the boundary and system

size in this case is evident as it leads to a very low inten-

sity noise sustained structure. Due to the reduced size of

the pumped area with respect to previous 1D numerical
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Fig. 8. Section plot of the 2D intensity (black line) and real

part (green dotted line) of the field for t = 100. The corre-

sponding values are multiplied by a factor 10 to be compared

with the pump profile µ (orange line). Same parameters of Fig.

7.

simulations (compare µ super-Gaussians in Figs. 6 and

8) the intensity profile is dominated by a smooth front

emerging on the right side and remains very small.

When the pump is increased this front becomes steeper

and and a uniform intensity state occupies a broad part

of the system. Above the absolutely unstable threshold a

coherent phase pattern arises as shown in Fig. 9 and the

system is in the lasing state. Starting from a noisy ini-

tial condition, perturbations are washed away from the

system and the intensity profile becomes intense and uni-

form. Also the coherence of the underlying phase pattern

increases (in this case the pattern aspect ratio is very small

and only one oscillation is actually seen in Fig. 9). Note

also that the intensity profile is deformed and displaced

against the direction of the shift, i.e. it is not exactly cen-

tered in the pumped region (white circle in Fig. 9, panels

at t = 75).

Fig. 9. Temporal evolution of the intensity (upper line) and

of the real part (lower line) of the field for vanishing state

absolutely unstable. Parameters: ∆x = 2, θ = 0, δ = 0.45π,

r = 0.56 , φ = π/4, ǫ = 10−5. Super-Gaussian profile of µ with

maximum value 1.

The most peculiar patterns in lasers with nonlocal

feedback occur for φ = π, when the system operates as

a signal splitter. The change in the pattern aspect when

increasing the pump is shown in Fig. 10. In the convec-

tively unstable regime (two panels with µ = 1.4) there are

now two regions of larger intensity, as perturbations with

opposite wave-numbers travel apart, as expected. Intense

light spots correspond to a certain coherence in the under-

lying phase pattern, while the intensity drops down where

there are defects in the phase stripes. Intensity reaches

larger values on one side (here the left one, against the

positive shift direction, ∆x = 2) [14,23,28].

Noise sustained patterns for negative feedback are then

characterized by off-axis spots and have a vanishing inten-

sity in the central area, while crossing the absolute insta-

bility threshold an intense and uniform profile is reached

-after a transient- in the whole pumped region. Note that
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Fig. 10. Spatial distributions of the intensity (left panels)

and field real part (right panels) for numerical simulations

with super-Gaussian pump profiles with maximum intensity

µ = 0.7, 1.4, and 2.1 inside the circular panels. In the exter-

nal region the gain vanishes. Other parameters are ∆x = 1,

θ = 0.2, δ = 0.49π, r = 0.5 , φ = π, ǫ = 10−5. Simulations are

started from noise initial condition.

the phase pattern has larger wave-numbers in the noise

sustained structure. After a longer transient (not shown

in the picture) the stripe in the absolutely unstable regime

(Fig. 10 for µ = 2.1) becomes orthogonal to the shift di-

rection, as theoretically predicted.

3.3 Conclusions

Two-point nonlocality can be easily induced in optical de-

vices through a displaced feedback loop and leads to dis-

tinctive effects opening interesting possibilities in experi-

ments in extended devices. We have presented its analyti-

cal characterization through linear approximations, allow-

ing to predict instability convective and absolute thresh-

olds, unstable wave-numbers and velocity of drifting pack-

ets, in a broad class of two-dimensional nonlinear systems.

Many differences with respect to the most studied drift,

modelled by a gradient term, make this two-point nonlo-

cality an interesting and versatile tool in view of experi-

ments. In particular, such nonlocality opens significantly

larger windows of control parameters where the system

output state is sustained by the presence of noise instead

of the dynamics (convective regime). In such regime the

system can be locally excited generating a signal that is

amplified during propagation. Note that the amplification

here considered occurs once the (initial) local perturba-

tion is removed, at difference of laser amplification above

transparency, generally considered in presence of a contin-

uous signal injection.

Another distinctive feature of displaced feedback and

two-point nonlocality is the possibility to independently

tune phase and group velocity, while gradient terms fix

both velocities in the same direction of the drift. In optical

systems such velocities have been shown to be either par-

allel or opposite and can be tuned even non-mechanically

through the feedback phase φ (without touching the ex-

periment alignment). Such large tunability is a charac-
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teristic of optical systems, while two-point nonlocality in

diffusive systems gives always opposite velocities at the

critical wavenumber (vp(kc) = −vg(kc)). Another distinc-

tive feature of two-point nonlocality in optical systems is

the possibility to control the feedback phase to operate the

laser as a signal splitter (for φ = π). Then an initial per-

turbation is split in two copies amplifying (even when the

injection is removed) during their propagation in opposite

directions through the broad area device.

In general, no oscillations are observed in the inten-

sity profile and only phase patterns are present in lasers

here considered. The interaction of traveling signals, how-

ever, displays also intensity modulation in the interaction

region, as discussed in Sect. 3.1. Similarly, if instead of

initial localized perturbations the system is considered in

presence of noise, a central area of intensity stripes can

be observed in a laser as shown in Fig. 10 of Ref. [23].

Numerical simulations considering only one transverse di-

mension allow to easily visualize the spatio-temporal dy-

namics, as in the case of the signals interactions in Fig.

5, or to see the spatio-temporal coherence of noise sus-

tained structures, as in Fig. 6. On the other hand, sim-

ulations in two transverse dimensions here presented are

important in view of experimental realizations, showing

pattern features in the shift direction and in the orthogo-

nal one. Examples are the orientation of phase oscillations,

the elongated aspect of transients domains, as well as the

displacement of lasing state with respect to the pumped

region, as shown in Sect. 3.2. A last important aspect to be

considered in view of experiments is the system size: ana-

lytical predictions for infinite systems are in quantitative

agreement with simulations for relatively large systems,

while a finite system effects gives important deviations in

small systems not only when few oscillations of the phase

patterns are present but also in the cases in which smooth

fronts modulate the light intensity profile.
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