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Abstract. - A biological competition model where the individuals of the same species perform
a two-dimensional Markovian continuous-time random walk and undergo reproduction and death
is studied. The competition is introduced through the assumption that the reproduction rate de-
pends on the crowding in the neighborhood. The spatial dynamics corresponds either to normal
diffusion characterized by Gaussian jumps or to superdiffusion characterized by Lévy flights. It
is observed that in both cases periodic patterns occur for appropriate parameters of the model,
indicating that the general macroscopic collective behavior of the system is more strongly influ-
enced by the competition for the resources than by the type of spatial dynamics. However, some
differences arise that are discussed.

Introduction. – Interacting particle systems help to
model and understand various problems in many diverse
fields. In biological contexts they are particularly impor-
tant to study aggregation phenomena of individuals. Fish
schools, insect swarms, bacterial patterns, bird flocks and
patchy plankton structures are just a few examples reveal-
ing the ubiquity and fundamental importance of organism
aggregates.

An attempt to address a simple mechanism giving rise
to the clustering of particles (with emphasis on plankton
patchiness) was made within a Brownian bug model [1]
(see also refs. [2, 3]). The model consists of an ensemble
of particles (bugs), each one dying or reproducing with
a given probability and undergoing Brownian motion. If
the diffusivity of the particles is low enough, macroscopic
spatial clustering occurs, since a newborn is located close
to the parent but particles can die anywhere. If diffusivity
is large, particles perform more extended walks and the
region that was left empty due to the death of a particle, is
occupied fast by some other particle. Similar results were
obtained in refs. [4–7] where lattice-models were studied.

The basic Brownian bug model lacks any interaction
between the particles. In a more realistic model (inter-
acting Brownian bug model) the inter-particle interaction
was taken into account assuming that the birth and death
of individuals depend on the number of other bugs in

the neighborhood [8–13]. For appropriate parameters, a
salient property of that model is the formation of spa-
tially periodic clustering of bugs [8]. For large diffusion
the clusters become blurred and the periodic pattern is
replaced by a more uniform distribution of bugs. Impor-
tantly, whereas the positive correlations leading to clus-
tering in the non-interacting bug case arise from the re-
productive correlations, i.e., from the fact that offspring
is born at the same location of parent [5, 6], the periodic
arrangement of clusters in the system of interacting bugs
is a consequence of the competitive interaction and has a
spatial scale determined by the interaction range R [8].

At the same time it has been observed that many liv-
ing organisms move consistently with Lévy flight behav-
ior [14–18]. In particular, the motion of some bacteria is
found to be described by Lévy statistics [19, 20], as well
as the movement of spider monkeys in search of food [21].
The Lévy type of motion has been shown to be advanta-
geous with respect to standard Brownian motion in some
searching strategies involving foraging [18], or in order to
enhance encounter rates at low densities [22]. The main
reason for this resides in the occurrence of occasional long
jumps.

However, the impact of Lévy-type diffusion on the prop-
erties of organism aggregates has not received much atten-
tion thus far. In the present paper we investigate in the
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context of a simple interacting bug model, continuous in
space, how the occurrence of long jumps in the motion
of the individuals influences the collective behavior (c.f.
ref. [23]). Similarities and differences between the inter-
acting Brownian and Lévy bug systems will be highlighted.

Model and numerical algorithm. – We consider a
system consisting initially of N0 pointlike particles, placed
randomly in a two-dimensional L×L square domain with
periodic boundary conditions. After the random time τ ,
a particle i, chosen randomly among all the N(t) bugs in
the system at the present time t, undergoes one of the two
events: it either reproduces or disappears. For the birth
and death rates of the i-th particle we assume [8],

rib = max
(

0, rb0 − αN i
R

)

, (1)

rid = max
(

0, rd0 + βN i
R

)

. (2)

Here N i
R is the number of particles which are at a distance

smaller than R from particle i, the parameters rb0 and rd0
are the zero-density birth and death rates, and the pa-
rameters α and β determine how rib and rid depend on the
neighborhood; the function max() enforces the positivity
of the rates. Such a choice for the reproduction and death
rates introduces an interaction between the bugs. For the
random times τ an exponential probability density with
the complementary cumulative distribution

p(τ) = exp(−τ/τ̃ ) (3)

and a characteristic time 〈τ〉 = τ̃ = R−1
tot is chosen; τ̃ is

the time-scale parameter and

Rtot =

N
∑

i=1

(rib + rid) (4)

is the total rate of all the N ≡ N(t) particles. In the
case of reproduction, the new bug is located at the same
position (xi, yi) as the parent particle i. After the de-
mographic event, i.e., after each random time τ , all the
particles perform a jump of random length ℓ in a random
direction characterized by an angle uniformly distributed
on (0, 2π) (ℓ and the direction of the jump are different
for each particle). The new present time is t+ τ and the
process is repeated again, until the final simulation time
is reached [13].
In order to simulate the system where the particles un-

dergo normal diffusion, a Gaussian jump-length probabil-
ity density function is used,

ϕ(ℓ) =
(

ℓ̃
√
2π

)

−1

exp
[

−ℓ2/(2ℓ̃2)
]

, (5)

with variance 〈ℓ2〉 = ℓ̃2; ℓ̃ is the space-scale parameter.
Since we draw the angle specifying the direction of the
jump from the interval (0, 2π), we can neglect the sign
of ℓ. Note that the random walk defined in this way is
not exactly the same as the one in which the walker per-
forms jumps extracted from a two-dimensional Gaussian

distribution, but it also leads to normal diffusion and al-
lows a more direct comparison with the Lévy case. The
corresponding diffusion coefficient is

κ = 〈ℓ2〉/(2〈τ〉) , (6)

which expressed through the space- and time-scale pa-
rameters reads, κ = ℓ̃2/(2τ̃). As we choose to fix the
value of κ, then the space-scale parameter is determined
by ℓ̃ =

√
2κτ̃ =

√

2κ/Rtot. Note that because the number
of particles is changing in time also the quantity Rtot is
changing in time. However, as in this paper we investigate
asymptotic statistically steady states, the number of par-
ticles weakly fluctuates around a well-defined mean value.
Thus, the space-scale parameter ℓ̃ is fluctuating in time,
but this time dependence is not affecting qualitatively the
dynamics of the system.
In order to simulate the system where the particles un-

dergo superdiffusion one can use a symmetric Lévy stable
probability density function for the jump size, which be-
haves asymptotically as [14, 17]

ϕµ(ℓ) ≈ ℓ̃µ|ℓ|−µ−1 , ℓ → ±∞ (|ℓ| ≫ ℓ̃) , (7)

with the Lévy index 0 < µ < 2. For all Lévy stable
probability density functions with µ < 2 the variance di-
verges, 〈ℓ2〉 = ∞, leading to the occurrence of extremely
long jumps, and typical trajectories are self-similar, on all
scales showing clusters of shorter jumps intersparsed by
long excursions. For 0 < a < µ < 2 fractional moments
converge, 〈|ℓ|a〉 < ∞. Therefore, for the Lévy index in
the range 1 < µ < 2 the value of 〈|ℓ|〉 is finite, whereas
for 0 < µ ≤ 1 it diverges. The complementary cumulative
distribution corresponding to (7) is

Pµ(ℓ) ≈ µ−1(|ℓ|/ℓ̃)−µ , ℓ → ±∞ . (8)

As a simple form of complementary cumulative distribu-
tion function, which is normalizable and behaves asymp-
totically as (8), we use

Pµ(ℓ) = (1 + b1/µ|ℓ|/ℓ̃)−µ , (9)

where b = [Γ(1 − µ/2)Γ(µ/2)]/Γ(µ). As before, we can
neglect the sign of ℓ since the direction of the jump is
assigned by drawing an angle on (0, 2π). Now the diffusion
coefficient (6) is infinite, but one can define a generalized
diffusion coefficient in terms of the scales ℓ̃ and τ̃ as [14,17]

κµ = ℓ̃µ/(2τ̃) . (10)

Therefore, in the case of the Lévy flights, when fixing the
value of κµ, the space-scale parameter is, ℓ̃ = (2κµτ̃ )

1/µ =
(2κµ/Rtot)

1/µ.
The model described can be interpreted in the follow-

ing way: during a time interval τ each individual moves
on average a distance ℓ in some direction but only one
of them reproduces or dies. For positive values of α and
β, the more neighbors a particle has within the radius
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Fig. 1: Interacting Brownian bugs (a) versus interacting Lévy
bugs (b): spatial configuration of particles in the statistically
steady state. The parameters are: rb0 = 1, rd0 = 0.1, α = 0.02,
β = 0, and R = 0.1 (see also text). In the case of Brownian
bugs the diffusion coefficient is κ = 10−5. In the case of Lévy
bugs the value of Lévy index is µ = 1 and the anomalous
diffusion coefficient is κµ = 56× 10−5. The average number of
particles in the two systems is approximately the same, 〈N〉 =
2555 and 〈N〉 = 2565, respectively.

R, the smaller is the probability of reproduction and the
larger is the probability that the bug does not survive,
e.g., due to competition for resources. The periodicity of
the simulation domain represents the fact that particles
can leave and enter the observation area. In the case of
long jumps it represents the situation where there is one
particle that leaves the domain and another one that ar-
rives from somewhere, perhaps from far away, and its po-
sition is basically random in the domain. In principle, one
could also simulate the system so that after the inter-event
time τ a randomly chosen particle undergoes one of the
three events: reproduction, death, or jump. However, the
results obtained are the same as following the procedure
described above; one would just have one more parameter,
the jump rate, and different numerical values for the other
parameters.

Results. – In the following we set β = 0 in eq. (2)
and α = 0.02 in eq. (1), i.e., the probability of death is
constant and the same for all the particles while the prob-
ability for the reproduction depends on how crowded the
environment is. Also, we use the values rb0 = 1, rd0 = 0.1,
L = 1, and R = 0.1 in all the figures presented in the
current paper. For β = 0 the critical number of neigh-
bors, N∗

R, for which death and reproduction are equally
probable for particle i, is determined by

N∗

R = ∆bd/α , (11)

where ∆bd = rb0 − rd0. If N i
R < N∗

R it is more probable
that particle i reproduces and if N i

R > N∗

R death is more
likely. In the following we fix the value of the Lévy index
to µ = 1. The detailed discussion of the influence of the
birth and death rates as well as the Lévy index on the
results is outside the scope of the current paper and will
be presented elsewhere.

In the case of interacting Brownian bugs, for small
enough κ and large enough ∆bd, the occurrence of pe-
riodic patterns has been observed previously [8, 10]. In
the statistically steady state clusters form and arrange
in a hexagonal lattice (see fig. 1-a). For large values of
the diffusion coefficient the periodic pattern is replaced
by an almost homogeneous distribution of particles (see
also fig. 3-a). In the case of Lévy flights, since the dif-
fusion coefficient (6) is infinite, one could expect that for
the interacting Lévy bugs the spatial distribution will not
reveal a periodic pattern. However, as can be seen from
fig. 1-b, this is not the case. The reason for the diver-
gence of the diffusion coefficient in the Lévy case is in the
statistical weight of the large jumps. These large jumps
have some influence in the characteristics of the patterns
formed, but the large-scale structure is ruled mainly by
the interactions between particles.
For the interacting bug system with Gaussian jumps and

moderate diffusion the appearance of periodic clustering
is well captured by combining the effects of diffusion and
interaction in a mean-field approach [8]. Following the
steps in ref. [8] one obtains the following equation as a
mean-field approximation to the dynamics of the density of
particles ρ(x, t) in the interacting Lévy bug model (β = 0):

∂ρ(x, t)

∂t
= ρ(x, t)

(

∆bd − α

∫

D

dyρ(y, t)

)

+κµ∇γρ(x, t) .

(12)
The integration domain D is the set of points within a dis-
tance smaller than R from x: |x − y| < R. The operator
∇γ , with γ = µ1, is the fractional diffusion operator asso-
ciated to the Lévy flights of exponent µ ∈ (0, 2) [14, 17].
It reduces to the standard diffusion operator for µ > 2. In
this mean-field description the first term accounts for the
net growth of the population, the second one takes into

1This expression was incorrect in the paper originally published
in EPL 92, 40011 (2010); it was corrected to the present form in the
Erratum in EPL 95, 69902 (2011).
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Fig. 2: Comparison of the radial distribution functions for
the systems with Gaussian jumps and with Lévy flights. The
parameters are as in fig. 1.

account the non-local contribution associated to the sat-
uration due to the interactions within a distance R, and
the third term describes the spatial diffusion of particles.
Equation (12) differs from the mean-field approximation
derived in ref. [8] only in the third term where the stan-
dard diffusion operator is replaced by the fractional diffu-
sion operator and the diffusion coefficient by the general-
ized diffusion coefficient. Similar descriptions of reaction-
diffusion systems with a fractional diffusion term can be
consulted, e.g., in refs. [14, 15, 24, 25].
Equation (12) has always the uniform solution

ρ(x, t) = ρ0 = ∆bd/(απR
2) , (13)

which turns out to become unstable for small κµ and/or
large ∆bd (what is small or large depends also on the value
of µ). This can be seen by introducing the ansatz ρ(x, t) =
ρ0 + δρ(x, t) in eq. (12) and linearizing in δρ(x, t). The
result is

δρ(x, t) ∼ exp(ik · x+ λ(k)t) , (14)

with

λ(|k|) = −κµ|k|γ − 2∆bdJ1(|k|R)/(|k|R) ; (15)

J1 is a Bessel function. An instability of the uniform solu-
tion will occur if the sign of λ(|k|) changes from negative
to positive at some value of |k|. This will occur first for
the critical wavenumber |kc| for which λ(|k|) is maximum.
The instability will develop in a periodic pattern which, at
least close enough to the instability, will have a periodic-
ity δ = 2π/|kc|. Introducing a dimensionless wavenumber
q ≡ |k|R and growth rate Λ = Rγλ/κµ, eq. (15) reads,

Λ(q) = −qγ − νJ1(q)/q . (16)

The latter equation shows that, within this mean-field de-
scription, the relevant parameters are γ (or µ) and the
dimensionless quantity ν ≡ 2Rγ∆ab/κµ. Imposing the
condition Λ(q) = 0, corresponding to the change of sign in

1
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r)
r
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Fig. 3: Radial distribution function for the system with (a)
Gaussian jumps and (b) Lévy jumps for several values of the
diffusion and generalized diffusion coefficient, respectively. The
other parameters are as in fig. 1 (see also text).

the growth rate, and Λ′(q) = 0, corresponding to the max-
imum of the growth rate, one can find the critical value
of ν, νc = −qγ+1

c /J1(qc), and the equation for the critical
wavenumber:

qcJ2(qc)/J1(qc) = −γ . (17)

Numerical solution of the latter equation provides qc, and
therefore δ, as a function of γ (or µ), and that δ is propor-
tional toR. In order to make a comparison with the results
from numerical simulations of the system, one should keep
in mind that the periodic boundary conditions will change
qc to the closest number of the form (2πR/L)

√
n2 +m2

with n and m integers. For µ = 1 the value of δ ob-
tained from the mean-field approximation is 0.128036 and
for µ = 2 (Gaussian case) it is 0.131306, i.e., the periodic-
ity of the pattern is in both cases of the order of R = 0.1.
To extract the periodicity of the pattern from the nu-

merical simulations of the system, it is useful to study
the radial distribution function g(r). It describes how
the density varies with the distance from a given parti-
cle respect to the one expected from a uniform distribu-
tion, giving thus additional information about the distri-
bution of bugs [26]. It is computed in the standard way,
i.e., by counting all particles, dn, at a distance between
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Fig. 4: The distribution of cluster sizes for the interacting
Brownian bug and Lévy bug models. All parameters have the
same values as in figs. 1 and 2.

r and r + dr from the target particle, using the formula
dn = (N/L2)g(r)2πrdr, and averaging over all particles
and different long times. In fig. 2 the comparison of the ra-
dial distribution functions for the Brownian and Lévy bugs
(for the same systems as in fig. 1) is depicted. Figure 3-a
shows the behavior of g(r) in the case of Brownian bugs
and in fig. 3-b in the case of Lévy bugs for various values
of diffusion coefficient and generalized diffusion coefficient,
respectively. The second maximum of g(r), indicating the
periodicity of the pattern, appears in fig. 3-a (in the sys-
tems of Brownian bugs), up to κ = 10−5, at 0.13125 and in
fig. 3-b (in the Lévy case), up to κµ = 10−3, at 0.12875, be-
ing in good agreement with the results obtained from the
mean-fieled approximation, and becoming slightly larger
only at larger values of κ and κµ. The anomalous expo-
nent µ has only a very light influence on the periodicity
of the pattern, which is of the order of R (see also fig. 2
where the slight shift can be can be noticed).

Figure 3 shows also that as κ or κµ increases, the first
peak of g(r) gets lower and wider: the total number of
particles in the system decreases and the clusters become
more spread. For large values of diffusivity (κ or κµ),
the oscillations of g(r) smooth out, indicating that the
periodic pattern becomes replaced by a more homogeneous
distribution of bugs.

As a difference compared to the case of interacting
Brownian bugs, we observe that now, even at small val-
ues of κµ, there are many solitary particles appearing for
short time periods in the space between the periodically
arranged clusters, due to the large jumps, c.f. figs. 1-a
and 1-b. This is even better illustrated by fig. 4 where
the probability distributions of the cluster sizes for the
systems with Gaussian and Lévy jumps are depicted (for
the same systems as in fig. 1, i.e., for the given param-
eters the values of κ and κµ have been chosen such that
the average number of the particles in the two systems is
approximately equal). The clusters are defined using the
nearest neighbor clustering method [27], with a threshold
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(b)
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Fig. 5: Cross-section of the two-dimensional particle density
of the average cluster in (a) linear and (b) semi-log scale. Com-
parison between the interacting Brownian and Lévy bug mod-
els. The values of the parameters are the same as in figs. 1,
2, and 4. The continuous lines correspond to the fitting with
Gaussian functions.

value 0.025 to define neighbors. As one can see, for the
system of interacting Brownian bugs the most probable
size of large clusters forming the periodic pattern is 41
particles whereas for interacting Lévy bugs it is 36 (the
critical number of neighbors is in both cases N∗

R = 45).
A noticeable difference occurs in the proportion of single-
particle clusters: the peak of the distribution at the value
characterizing isolated particles (Nc = 1) is much higher
in the Lévy flight case. Returning to fig. 2, which refers
to the same systems as in figs. 1 and 4, it is to be noticed
that the minimum between the first and the second peak is
much lower for the system of Brownian bugs. This result
is consistent with fig. 4: in the system with Lévy flights,
the occurrence of many single particles between the clus-
ters forming the periodic pattern produces a higher inter-
cluster density is observed.

Finally, in fig. 5 the cross-section of the two-dimensional
particle density of the average cluster is depicted for the in-
teracting Brownian and Lévy bug systems (same systems
as in fig. 1). The average cluster is obtained by setting
the origin at the center of mass of each cluster forming the
periodic pattern and averaging over all the clusters in the
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simulation area and over time. In the case of Brownian as
well as of Lévy bugs, the central part of the average clus-
ter, where most of the particles are concentrated, is well
fitted by a Gaussian function (continuous curve). How-
ever, fig. 5-b reveals the difference in the way the particle
density decreases in the two systems when moving away
from the center of mass of the cluster. Though even in
the case of the Brownian bugs the tail of the average clus-
ter is not really well described by a Gaussian function, a
Gaussian decay provides a good approximation. Instead,
in the case of the Lévy bugs the tail of the average clus-
ter decays slower. Since the average cluster is calculated
from individual clusters which are separated by a distance
of order R, one cannot properly estimate an asymptotic
decay, but the decay in the Lévy case seems close to ex-
ponential. In any case, it is distinctively faster than the
power-law behavior which would be exhibited by clusters
of non-interacting particles moving purely by Lévy flights.
The existence of the interaction range R introduces a cut-
off distance which makes the long-jumps characteristic of
Lévy flights not so relevant to determine the large-scale
properties of the spatial particle configurations.

Conclusion. – In the present paper we have studied
a simple birth-death model with competition among the
individuals of the same species. In particular, we have
investigated how the superdiffusive motion of the individ-
uals characterized by Lévy flights influences the collective
behavior. We have observed that the appearance of peri-
odic clustering known from previous studies of the inter-
acting Brownian bug model takes place also in the inter-
acting Lévy bug model for appropriate parameters. This
is against the expectation that particles performing Lévy
flights cannot give rise to space-periodic clustering since
their diffusion coefficient is infinite, for which the interact-
ing Brownian bug model is known to reveal no periodic
pattern. However, as a difference we have observed that,
in the interacting Lévy bug model, due to the long jumps,
there are many single particles between the clusters, lead-
ing also to the differences in the particle density profiles
of the average cluster or in the short-distance behavior of
the radial distribution function. From this one can con-
clude that the large-scale collective behavior of the system
is much more strongly influenced by the competitive in-
teraction than by the type of spatial motion performed by
the bugs. We have also verified that the mean-field ap-
proximation (12) is proper to describe the periodicity in
the interacting Lévy bug model.

As a final remark, let us mention that though the model
studied in the present article describes rather living organ-
isms, such as animals or bacteria, non-local interactions
and Lévy flights are important also in plant ecology for
the development of vegetation patterns [28], due to the
competition for the resources and because the seed dis-
persal is often described better by Lévy flights than by
Gaussian jumps [29].
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