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ABSTRACT

The assessment of the performance of multi-resolution image fusion, or image sharpening meth-
ods, is difficult. In the context of binary classification of snow targets in mountainous terrain, fusion
methods were applied to help achieve more accurate mapping. To quantify objectively the gain of in-
formation that can be attributed to an increase in spatial resolution, we investigate the Mean Euclidean
Distance (MED) between the snowline obtained from the classification, and a reference snowline (or
a ground truth line), as a relevant indicator to measure both the discrepancy between datasets at differ-
ent spatial resolutions, and the accuracy of the mapping process. First, a theoretical approach based
on aggregating detailed reference images from the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER) showed that the MED has a linear relationship with the pixel size that
makes it suitable to assess images of different resolutions. Secondly, we tested the MED to snow
maps obtained ‘with’ or ‘without’ applying a fusion method to the MODerate Resolution Imaging
Spectroradiometer (MODIS). We demonstrated that the MED identified a significant value added, in
terms of mapping accuracy, which can be attributed to the fusion process. When the fusion method
was applied to four different images, the MED overall decreased by more than 30%. Finally, such a
‘feature based’ quality indicator can also be interpreted as a statistical assessment of the planimetric
accuracy of natural pattern outlines.

Keywords and phrases: Image fusion, Image sharpening, Metric, Snow, Snowline, Remote sensing, Euclidean
distance, MODIS

1 INTRODUCTION
In the context of remote sensing, image fusion consists of merging images from different sources, which hold

information of a different nature, to create a synthesized image that retains the most desirable characteristics of
each source (Pohl & Genderen 1998, Zhang 2004, Amolins, Zhang & Dare 2007). For instance, many optical
sensors (e.g. SPOT, IKONOS, QUICKBIRD) routinely acquire simultaneously one panchromatic image (PAN),
covering a wide part of the electromagnetic spectrum, and one multispectral image (MS), including several bands
at a coarser spatial resolution (i.e. pixel size). Other sensors, such as the MODerate Resolution Imaging Spectro-
radiometer (MODIS) or the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), do
not hold a PAN band, but numerous spectral bands with different spatial resolutions. In this context, multispectral
fusion methods usually aim to merge the rich spatial content of a high spatial resolution image (HR, e.g. PAN
band) with the rich spectral content of a low spatial resolution image (LR, e.g. MS bands) (Garguet-Duport, Girel,



Chassery & Pautou 1996, Ranchin, Aiazzi, Alparone, Baronti & Wald 2003, González-Audicana, Saleta, Catalán
& Garcı́a 2004, Tu, Huang, Hung & Chang 2004, Zhang & Kang 2006). Fusion is becoming popular in various
field due to its ability to improve the detection and extraction of ground targets (Nichol & Wong 2005, Lasaponara
& Masini 2005, Malpica 2007), or the spatial resolution of post-classified products (Pasqualini, Pergent-Martini,
Pergent, Agreil, Skoufas, Sourbes & Tsirika 2005, Jin & Davis 2005, Sirguey, Mathieu, Arnaud, Khan & Chanus-
sot 2008). In most cases the assessment of the quality of the fusion or the gain of information obtained through
the fusion remains challenging.

In order to improve the details of snow maps in mountainous terrain, Sirguey et al. (2008) proposed to fuse the
rich spatial content of the 250-m resolution MODIS HR bands into the 500-m resolution MODIS LR bands that
are spectrally required to map the snow. The method was validated by comparing MODIS-derived snow maps,
obtained ‘without’ or ‘with’ the fusion process, with reference maps obtained simultaneously from 15-m resolu-
tion ASTER imagery. A visual analysis eventually concluded an improvement in the ability to map snow with the
fused images. However, this subjective method does not provide a quantitative measure that would objectively
score the improvement. Therefore both integrated and pixel-based metrics were investigated. Nevertheless, com-
paring images of different resolution is difficult and raises the issue of multi-scale analysis (Woodcock & Strahler
1987, Lam & Quattrochi 1992). Not all metrics are adequate to assess the gain of information generated by an
increase of spatial resolution (Sirguey et al. 2008). Pixel-based metrics should be established with maps having
the same spatial resolution, in order to be comparable. Consequently, the 250-m resolution maps of subpixel
snow fraction were aggregated at 500 m prior to computing the pixel-based metrics. This approach demonstrated
that the fusion significantly add information, but it cannot truly account for the fact that the snow was mapped at
an improved resolution of 250-m pixel size. A metric capable of operating independently from the pixel size is
therefore desirable.

In this article, we propose to investigate the potential of the Mean Euclidean Distance (MED) between the
seasonal snowlines extracted from the MODIS-derived snow maps (either at 500-m or 250-m spatial resolution,
i.e. ‘without’ or ‘with’ fusion) and the reference ASTER snowline, as a relevant metric to assess the gain that the
fusion provides in terms of snow cover delineation capability. We based our reasoning on the fact that edges and
contours are essential in the understanding of natural scenes, and therefore the better the contours are depicted, the
higher the quality of the image (Zhai, Zhang, Yang & Xu 2005). In the first part of this article, we briefly review
the strategies and issues raised by the quality assessment of fused products. In the second part, we present the data
and the methodology implemented to assess the performance of the MED as a metric. Finally, we present and
discuss the sensitivity of this metric to various parameters, and its efficiency when applied to the MODIS-derived
snow maps obtained ‘without’ or ‘with’ implementing the fusion method.

2 BACKGROUND ON QUALITY ASSESSMENT OF MULTISPECTRAL FUSION
Image fusion algorithms often create radiometric distortions and/or artefacts (Wald, Ranchin & Mangolini

1997, Du, Vachon & van der Sanden 2003, Tu et al. 2004, González-Audicana, Otazu, Fors & Alvarez-Mozos
2006). Therefore, it is required to estimate the quality of the fusion process, in order to assess its performance
and robustness, as well as the usability of the fused product. The validation of image fusion is a difficult task,
which usually rely on the investigation of both subjective and objective methods (Aiazzi, Alparone, Argenti &
Baronti 1999, Gao, Wang & Li 2005, Shi, Zhu, Tian & Nichol 2005, Laporterie-Déjean, de Boissezon, Flouzat &
Lefèvre-Fonollosa 2005, Alparone, Wald, Chanussot, Thomas, Gamba & Bruce 2007, Petrovic 2007).

2.1 Qualitative analysis
Subjective methods are based on the visual analysis of the fused image. They aim to provide a judgment

(e.g. an opinion score) on the quality of the fused product according to a prior set of criteria, defined with
regard to the needs of the users (Petrovic 2007, Laporterie-Déjean et al. 2005). However, because it involves the
subjective human visual perception, such qualitative assessment is inevitably biased by the observer’s experiences
and appreciation (Toet & Franken 2003, Chen & Varshney 2007). Visual analysis is a powerful tool to assess
improvement, because of its ability to capture spatial details as the resolution of the image increases, but it fails
to account accurately for the preservation of the radiometry in the image. Therefore its consistency in terms of
scientific value with regard to the original data is questionable.

2.2 Quantitavive analysis
Numerous researches report on the design of metrics to assess objectively the quality of fused images (Wald

et al. 1997, Ranchin & Wald 2000, Wald 2000, Xydeas & Petrovic 2000, Wang & Bovik 2002, Alparone, Baronti,
Garzelli & Nencini 2004). The metrics are usually based on and/or derived from standard descriptive statistics



(e.g. bias or difference of means, Root Mean Square Error RMSE, coefficient of correlation CC, coefficient of
determination R2, standard deviation σ). They aim to quantify the discrepancy between the fused image and a
reference, to measure both the gain of information generated by an increase of spatial resolution, and its spectral
integrity with regard to the original spectral content. Since no reference image is obviously available at the finer
resolution (resolution of the fused image) a popular protocol consists in the assessment of the method at a coarser
resolution (Wald et al. 1997). HR and LR images are degraded relatively to their resolution so that the pixel size of
the degraded HR matches the original LR. The fusion process is computed with the degraded images. The original
LR can then be used as a genuine reference in the process of validation. In case of a successful assessment, the
method is assumed to perform similarly at the finer scale.

2.3 Assessment through the validation of end-products
The validation protocols described previously are limited to the investigation of the fused image itself. They

aim to score the quality of the image that is obtained with the fusion, with regard to the theoretical image that
would have been acquired if the sensor had the desired spatial resolution. Sometimes, however, the images
obtained from the fusion are to be post-processed (e.g. semantic classification of ground targets, or retrieval
of physical parameter), to create a specific end-product with an increased spatial resolution. In this case, the
relevancy and performance of the fusion can eventually be measured in terms of the quality of the post-processed
product, rather than the quality of the fused images only. Such validation strategy aims to prove that there is a
significant improvement in the end-product, if the fusion is processed prior to post-processing the image. It is this
strategy that we use in the present article. Indeed, we aim to estimate the accuracy, in terms of position, of the
seasonal snowline, which can be extracted from MODIS-derived snow maps obtained ‘with’ or ‘without’ using
the multispectral fusion.

3 DATA
Four pairs of simultaneous MODIS/ASTER acquisitions selected at different seasons and including various

conditions of snow cover were selected in the Aoraki/Mount Cook region, New Zealand (see dates in Tab. 1).

3.1 MODIS-derived subpixel snow fraction
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Figure 1: Example of subpixel snow map created from MODIS imagery (Mt Cook Area, South Island of New
Zealand, 31 December 2002 22:35 GMT) : (a) False colour RGB composite with MODIS bands 1, 2 (250 m) and
3 (fused to 250 m). (b) Subpixel snow fraction computed from MODIS bands at 500 m. (c) Subpixel snow fraction
computed from MODIS bands fused at 250 m.

The four MODIS images were processed according to the methods described in more details in Sirguey
et al. (2008). These include the following steps: georectification of MODIS-Terra L1B swath data products
(MOD02QKM, MOD02HKM, MOD021KM, MOD03), wavelet-based fusion between MODIS 250-m bands and



MODIS 500-m bands, and implementation of a topographic and atmospheric correction model as described by
Richter (1998). Finally, a constrained spectral unmixing technique was applied (Keshava 2003), either to the
seven original 500-m bands or the seven 250-m bands obtained ‘with’ the fusion, to produce maps of subpixel
snow fractions. Figure 1 shows an example of a MODIS-derived map of subpixel snow fraction. Figure 1(b) and
Figure 1(c) show the snow maps obtained ‘without’ and ‘with’ the fusion, at 500 m and 250 m, respectively. They
illustrate the improvement that can be achieved when implementing the fusion.

3.2 Reference snow cover from ASTER
The four corresponding ASTER images were orthorectified and matched to the MODIS images. An example

showing a simultaneous ASTER/MODIS pair is given in Figure 2(a). The spatial resolution of ASTER (15 m)
images compared to the 250 m and 500 m resolution of MODIS images provides a ratio of 277 and 1111 ASTER
pixels, respectively, for each MODIS pixel. We therefore hypothesized that a binary classification of snow from
ASTER would provide accurate ground truth of the snow cover distribution. The snow was binary classified using
the Normalized Difference Snow Index (NDSI) that takes advantage of the contrast between the high reflectance
of snow in the green part of the visible spectrum (ASTER Band 1 at 560 nm) and its low reflectance in the short
wave infrared (ASTER Band 4 at 1640 nm) (Equation 1) (Crane & Anderson 1984).

NDSI =
ρ∗560nm − ρ∗1640nm

ρ∗560nm + ρ∗1640nm

(1)

where ρ∗ is the apparent reflectance measured at the top of atmosphere by ASTER. A custom threshold of 0.7
was chosen to binary classified the snow according to the NDSI value, based on visual analysis of the image and
the investigation of the histogram of the NDSI image. Such a relatively high threshold insures that pixels are fully
covered with snow. From the binary classification, it is possible to extract the reference seasonal snowline, which
stands for the boundary between the group of pixels classified as ‘snow’ or ‘no snow’.
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Figure 2: Example of simultaneous ASTER and MODIS imagery (Mt Cook Area, South Island of New Zealand, 31
December 2002 22:35 GMT) : (a) False colour RGB composite from ASTER bands 2, 3, 1 (15 m) overlaid onto
a false colour RGB composite from MODIS bands 1, 2 (250 m) and 3 (fused to 250 m). The difference of spatial
resolution is clearly visible when zooming in the pdf version of this document. (b) Binary snow map from ASTER
used as reference and overlaid onto the MODIS RGB composite (pixels classified as snow are drawn in black;
pixels without snow are transparent).

4 METHODOLOGY
4.1 Object-based metrics

The quality assessment of classified end-products or maps is usually based on a ‘per-pixel’ approach. It refers
to the assessment of agreement and confusions that occur between the classified image and the ground or a more



detailed reference image. Recently, object-based indicators have also been developed to provide a more compre-
hensive assessment of the quality of geo-spatial objects (Zhan, Molenaar, Tempfli & Shi 2005). In an object-based
environment, Zhan et al. (2005) suggested that new measures accounting for the correct classification, size and
position of the objects, can be used along with ‘per-pixel’ measures to assess quality. Li, He, Bu, Wen, Chang,
Hu & Li (2005) also investigated the behaviour of numerous simple and sophisticated geo-spatial metrics to sev-
eral parameters, such as number of classes, map extent, resolution, class proportion and aggregation. Li et al.
(2005) concluded that metrics can be sensitive to pattern scenarios, and not all metrics are adequate to compare
landscape maps with different resolutions. From a quantitative point of view, sophisticated metrics based on
multi-scale analysis have been designed to assess the quality of contour and edges in the image (Zhai et al. 2005).
Because geometrical features are essential in the understanding of natural scenes, such investigation may be ap-
propriate to assess the added value of fusion to end-products. In the context of designing a metric d that would
score a set x according to a reference, it is desirable to state what is expected from the measure:

1. The metric should provide a positive score: d(x) ≥ 0.

2. If the set x matches the reference, then d(x) = 0 and reciprocally.

3. If the set x matches the reference better than the set y, then d(x) ≤ d(y) and reciprocally.

4. Metrics computed on images of different spatial resolution can be compared.

5. The magnitude of change of the metric must match the magnitude of change in spatial resolution.

Nevertheless, one must keep in mind that, in mapping sciences, the development of a metric to assess the
quality of geo-spatial objects can sometimes raise issues related to the fractal theory (Goodchild 1980, Lam &
Quattrochi 1992). For instance, due to the fractal nature of natural boundaries such as coastline, watershed or
landscape natural pattern (Goodchild & Mark 1987), a metric based on the perimeter of natural objects can appear
irrelevant, because it would depend on its measurement gauge (e.g. the spatial resolution in the context of remote
sensing). In other words, the perimeter of an object can have a non-finite or fractal dimension, that makes its use
inconsistent to the design of a metric (Bendjoudi 2002).

4.2 Calculation of Euclidean Distance
We based our approach on the seasonal snowline as representative object. It is assumed that mapping the snow

cover with a higher spatial resolution will provide a snowline that better depicts the reality. The Mean Euclidean
Distance (MED), calculated in a two-dimensional space, between the line extracted from the classifier or ‘test
line’, and the ‘reference snowline’ (extracted from 15-m ASTER imagery), can be seen as a quantitative indicator
of this match. For any given point P of the ‘test snowline’, its Euclidean distanceD(P ) to the ‘reference snowline’
S, as shown on Figure 3, can be formulated as the norm of the smallest vector that can be drawn between P and
S (Figure 3):

∀P ∈ I,D(P ) = min
Q∈S

∥∥∥−−→PQ∥∥∥ (2)

Figure 3: Minimum Euclidean distance D(P ) between
a point P on the ‘test snowline’ and the ‘reference
snowline’ S.

Figure 4: Example of Euclidean distance raster im-
age created at 12.5 m pixel size and computed from the
ASTER (15 m) reference snowline.



Although there is, of course, uncertainty in the measurement of Euclidean distance between any points of
a test snowline to the reference snowline, it is possible to determine lower and upper bounds at all resolutions
(i.e. the MED will always range between 0 and the maximum length of the image diagonal). The dimension
of such measure is therefore non-fractal. From the computational point of view, the Euclidean distance cannot
be easily computed for all points of a continuous line, but it can be estimated according to a set of samples. A
raster image which contains the measured distance from every cell to its closest point of the ‘reference snowline’
can be created. The pixel size of this ‘distance raster’ must be smaller or equal than the pixel size at which the
‘reference snowline’ was mapped. An example of ‘distance raster’ is shown in Figure 4. The cells of this raster,
that are intersected by the snowline to be tested, account for a representative distribution of Euclidean Distance,
from which standard descriptive statistics can be inferred (e.g. MED, standard deviation σ).

4.3 Investigation strategy
4.3.1 Theoretical behaviour of MED using ASTER reference data

To assess the relevancy of the MED as a metric capable of scoring binary classification independently of the
spatial resolution, we investigated its theoretical behaviour when used with reference material only, simulated for
various pixel size. From the original ASTER binary snow map, it is possible to derivate maps of subpixel snow
fraction that will be used as reference materials to investigate the sensitivity of the MED to pixel size. The four
original ASTER binary snow maps were first resampled at 12.5m, then aggregated to 50 m, 125 m, 250 m, 500 m
and 1000 m to create a reference dataset of multi-resolution maps, all originating from the same groundtruth.
Figure 5(a) and (b) shows an example of the 250-m and 500-m aggregations of Figure 2(b).
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Figure 5: Example of aggregation of the ASTER binary snow map at various spatial resolution (Mt Cook Area,
South Island of New Zealand, 31 December 2002 22:35 GMT): (a) Reference subpixel snow fraction map at
250 m resolution aggregated from the 15-m resolution binary classification (pixels without snow are transpar-
ent). (b) Reference subpixel snow fraction map at 500 m resolution aggregated from the 15-m resolution binary
classification (pixels without snow are transparent).

The computation of Euclidean distances requires binary classes (e.g. ‘snow’ or ‘no snow’). In our case, the
reference snow maps, aggregated from the original ASTER 15-m binary classification, provide subpixel snow
fraction for various pixel size. A threshold must be defined to achieve a crisp representation of this continuous
quantity, and thus indicate if the pixel should be accounted for ‘snow’ or ‘no snow’ at a given resolution. A
reasonable assumption could be to set a pixels as ‘snow’, if it is covered with more than 50% of snow. By using
this threshold, Figure 6 illustrates how the match between the snowlines extracted from various spatial resolutions
and the original 15-m ‘reference snowline’ degrades as the pixel size increases. Nevertheless, the sensitivity of the
MED to the threshold of snow cover must be investigated, in order to determine the most appropriate threshold
to depict accurately the snowline. For all dates, the 250-m resolution maps of subpixel snow fraction were binary
classified, with increasing thresholds of subpixel snow fraction, in order to assess this sensitivity.



Figure 6: Example of seasonal snowlines extracted from an ASTER image at different spatial resolution. (a) 15-m
resolution snowline used as reference extracted from the binary snow classification of the ASTER image (ground
truth); (b), (c), (d), (e) and (f) show the snowlines extracted after aggregation of the ASTER binary snow map at
50 m, 125 m, 250 m, 500 m and 1000 m spatial resolution, respectively.

By definition, aggregated maps of ASTER subpixel snow fraction integrate, in one pixel, all the information in
term of distribution that can be found in the original 15-m resolution binary map. This information accounts for
numerous small snow patches that can be found, usually, nearby the main snow-covered entity. Snow patches, that
are smaller than half the area of an aggregated pixel, either contribute positively to map the pixel as ‘snow’, or are
excluded from the aggregated map. In this case however, they are problematic, because they act as small ‘islands’
where the ‘distance raster’ has small values (Figure 4). These ‘islands’ of small distances can bias the estimation
of the snowline MED. Indeed, as the pixel size increases, the aggregated snow map tends to map bigger objects.
Keeping all small features therefore leads to an increasing probability of intercepting small distances. However,
a significant part of these small values artificially comes from patches that are not accounted in the main object.
Similar bias can occur for small ‘no snow’ patches, inside the snow cover, nearby the main snowline. Such
patches are illustrated in Figure 7. To address this issue, a ‘cleaning’ strategy was implemented, dependent on the
resolution for which the MED will be computed. For a given resolution, all patches smaller than half the area of
the pixel are removed prior to computing the ‘distance raster’. Later in the paper, ‘cleaning’ and ‘no cleaning’
refer to values of MED that are computed with and without implementing this strategy, respectively.

4.3.2 Application of MED to real fused and non fused MODIS snow maps

Once the theoretical behaviour of the MED was defined using ASTER derived reference material, the MED
metric was applied to the MODIS ‘real case’. The snowlines were extracted from both the 250-m and 500-m
resolution maps of subpixel snow fraction, obtained ‘with’ and ‘without’ the fusion method, respectively. The
MEDs to the ASTER 15-m reference snowline were computed to quantify the ability of the fusion to achieve a
better delineation of seasonal snowline with MODIS-derived snow maps.

In order to insure that the supposed additional information truly originates from the implementation of the
fusion method, we compared the previous results with the MEDs of snowlines that were extracted after the re-



Figure 7: Illustration of the influence of small patches on the determination of snowlines at various spatial resolu-
tions. (a) 15-m resolution snowline used as reference extracted from the binary snow classification of the ASTER
image (ground truth); (b), (c), (d), (e) and (f) show the snowlines extracted after aggregation of the ASTER binary
snow map at 50 m, 125 m, 250 m, 500 m and 1000 m spatial resolution, respectively. The ellipses shows snow
patches of different sizes, the circles shows “snow voids” within the main snow entity that can alter the value of
Euclidean distance.

sampling of the 500-m subpixel snow fraction at 250 m resolution using a simple bicubic interpolator.

5 RESULTS AND DISCUSSION
5.1 Metric behaviour

An investigation of the behaviour of the metric to different parameters is essential to confirm the relevancy of
this approach. Initially, we used only the set of reference snowlines extracted at 15 m from ASTER, along with
maps of subpixel snow fraction that were derived by aggregating the binary map at various pixel sizes.

Figure 8 shows the behaviour of the MED of the resulting snowline as a function of the threshold used to
segment the map of subpixel snow fraction. It clearly confirms that, as expected, the shortest average distance is
achieved for a snowline created from pixels having more than 50% snow cover. Based on this result, all MED will
be computed after classification of the subpixel snow fraction using the 50% threshold.

Because they are all derived from the same 15-m reference, the ASTER-derived maps of subpixel snow frac-
tion, successively aggregated at 50 m, 125 m, 250 m, 500 m and 1000 m, provide the reference dataset to estimate
the sensitivity of the MED to pixel size. Figure 9 shows that the MED significantly increases with the pixel
size, both when cleaning or keeping the smallest snow patches. It confirms our assumption that the snowline is
generally closer to the reference as the resolution increases, meaning a better match. When computing the MED
without the ‘cleaning’ strategy, it is interesting to note that the relationship between the MED and the pixel size
is not linear. In this case, the dispersion of the MED according to the different dates (see error bars on Figure 9),
is significant, suggesting that the metric may be sensitive to the area covered by snow, and eventually the number
of snow patches. However, when applying the ‘cleaning’ strategy, the MED becomes significantly correlated to



Figure 8: Sensitivity of the Mean Euclidean Dis-
tance (MED) to the subpixel snow fraction used to bi-
nary classifies the snow cover map. For all dates,
the ASTER-derived 250-m resolution maps of subpixel
snow fraction were binary classified, with increasing
thresholds of subpixel snow fraction. The error bars
indicate the standard deviation of the MED for to the
four images.

Figure 9: Sensitivity of the Mean Euclidean Distance
(MED) to the aggregation of the binary ASTER-derived
snow cover map. The error bars indicate the standard
deviation of the MED for to the four images.

the pixel size. The dispersion of the MED between the different dates is also greatly reduced. This confirms
the significant impact of the small patches in such a multi-scale analysis. Further, when applying the ‘cleaning’
strategy the MED consistently drops by 50% when pixel size is reduced by a factor of two. This matches the
magnitude of theoretical change that is desirable in the framework of designing an indicator that assesses the
quality of a feature as the resolution increases. This validation can be interpreted as a calibration of the metric. It
sets a milestone in terms of what can be expected as an improvement in a real case, for instance by fusing 250-m
MODIS bands with 500-m MODIS bands. Simultaneously, the distribution of Euclidean Distances for all samples
along the whole test snowline also provides a statistical estimation of ‘how far’ it lay from the reality. The mean
of the distribution, along with its standard deviation, provides a quantitative insight in terms of the planimetric
accuracy of the snowline position.

5.2 Application to MODIS-derived snow map

Table 1: Mean and standard deviation σ of the Euclidean Distance calculated between the snowline obtained from
MODIS-derived snow maps, and the reference snowline extracted from ASTER at 15 m. ‘Type’ ‘250 m’ refers
to the snowline extracted from the MODIS-derived snow map at 250 m resolution obtained with fusion. ‘Type’
‘500 m’ refers to the snowline extracted from the MODIS-derived snow map at 500 m resolution obtained without
fusion. ‘Type’ “interp. 250 m” refers to the snowline extracted after bicubic interpolation at 250 m of the 500-m
resolution MODIS-derived snow map.

Date Type Without cleaning With cleaning
MED (m) σ (m) MED (m) σ (m)

31/12/2002
250 m 31 36 56 58

interp. 250 m 38 43 71 69
500 m 44 52 90 87

29/01/2002
250 m 56 64 80 95

interp. 250 m 64 65 85 82
500 m 76 80 109 107

16/05/2006
250 m 80 123 110 155

interp. 250 m 113 146 182 245
500 m 102 124 187 241

11/09/2000
250 m 76 127 119 263

interp. 250 m 89 112 130 210
500 m 103 118 151 209

The results of applying this method to the MODIS dataset are shown in Table 1. For all dates, whether



applying the cleaning strategy or not, the MED values inferred from the 250-m resolution maps using the fusion,
are significantly smaller than those derived from the 500-m resolution map. The MED dropped about 26% on
average (min 22%, max 30%), when not cleaning the smallest snow patches, and about 32% on average (min
21%, max 41%) when using the cleaning strategy. This magnitude of improvement must be compared to the 50%
improvement that is expected in an ideal case when reducing the pixel size by a factor of two. It suggests that,
as expected, the fusion does not achieve what would be obtained if we had real 250-m MODIS-derived snow
map. Nevertheless, the planimetric accuracy of the snowline position has increased of 60% in comparison with
the ASTER reference snowline.

The MED of the snowline obtained from the interpolated map improved 8% and 15% without and with the
cleaning strategy, respectively. This improvement was expected since the interpolation process was likely to move
the snowline towards the reference due to the correlation of the subpixel snow fraction in space. Nevertheless, the
range of improvement is still half what was achieved with the fusion. This comparison suggests that the fusion
adds significantly more information, with regard to the accuracy of snow distribution, than a simple interpolation.

The MED is higher for the two winter images than the summer one, suggesting that the classification is more
accurate in summer. The presence of stronger shadow effects, along with a larger snow extent in winter images,
is expected to increase the noise in the process of retrieving the subpixel snow fraction. The lower quality for the
winter images is consistent with what was previously observed by Sirguey et al. (2008).

6 CONCLUSION
The Mean Euclidean Distance (MED) has been investigated as a relevant metric to objectively assess the

improvement of the snow mapping process, following an increase of the spatial resolution of MODIS bands using
image fusion. In this study, we assumed that in the case of a binary segmentation of the image, the quality of the
classification can be assessed by an estimation of how well the boundary between the two classes ‘snow’ and ‘no
snow’ matches the reality.

The sensitivity of the MED to the spatial resolution was investigated using reference images obtained from
ASTER and proved the MED to be suitable to objectively quantify such match or discrepancy. The metric also
revealed objectively that in the case of a continuous classification of subpixel snow fraction, the 50% snow covered
limit is the optimum threshold to depict the snowline. Our investigation of a real case involving fusion applied
to MODIS imagery, showed that: (1) The MED of the 250-m resolution snow map, obtained with the fusion,
was significantly lower than the MED of the 500-m snow map. The 32% decrease of the MED means the fusion
provided 64% of the accuracy improvement that could ideally be achieved, if we had real 250-m resolution bands;
and (2) although a significant improvement in terms of MED can be achieved by a simple interpolation of the
500-m resolution snow map to 250 m resolution, the interpolation clearly failed to depict as much information as
the fusion. We suggest that this metric can be useful to assess the performance of image fusion, along with other
protocols, such as visual interpretation and pixel-based image quality assessment, but with the advantage of being
comparable at all resolutions.

In addition, the investigation of the distribution of Euclidean Distance, between a class boundary and a cor-
responding reference, also provides a comprehensive and useful insight with regard to the planimetric accuracy
of class boundaries. Although, in this study, the MED indicator has been designed for binary classification of
snow, it can be suitable to assess the quality of various natural pattern outlines. In the case of more classes, the
use of this indicator in a more sophisticated strategy can be investigated, to both assess the position of boundaries
and the correct classification of the objects on each side of the boundary. However, it is obviously important to
address the issue raised by small patches that can bias the metric, and modify its linear behaviour according to the
resolution.
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Wald, L., Ranchin, T. & Mangolini, M. (1997). “Fusion of satellite images of different spatial resolution: assessing
the quality of resulting images” Photogrammetric Engineering and Remote Sensing. 63(6): 691–699.

Wang, Z. & Bovik, A. C. (2002). “A universal image quality index” IEEE Signal Processing Letters. 9(3): 81–84.

Woodcock, C. E. & Strahler, A. H. (1987). “The factor of scale in remote sensing” Remote Sensing of Environment.
21(3): 311–332.

Xydeas, C. S. & Petrovic, V. (2000). “Objective image fusion performance measure” Electronics Letters.
36(4): 308–309.

Zhai, G., Zhang, W., Yang, X. & Xu, Y. (2005). “Image quality assessment metrics based on multi-scale edge
presentation” Proceedings of the IEEE Workshop on Signal Processing Systems Design and Implementation.
IEEE IEEE. pp. 331–336.

Zhan, Q., Molenaar, M., Tempfli, K. & Shi, W. (2005). “Quality assessment for geo-spatial objects derived from
remotely sensed data” International Journal of Remote Sensing. 26(14): 2953–2974.

Zhang, W. J. & Kang, J. Y. (2006). “QuickBird panchromatic and multi-spectral image fusion using wavelet
packet transform” Intelligent Control and Automation. 344: 976–981.

Zhang, Y. (2004). “Understanding image fusion” Photogrammetric Engineering and Remote Sensing. 70(6): 657–
661.


	INTRODUCTION
	BACKGROUND ON QUALITY ASSESSMENT OF MULTISPECTRAL FUSION
	Qualitative analysis
	Quantitavive analysis
	Assessment through the validation of end-products

	DATA
	MODIS-derived subpixel snow fraction
	Reference snow cover from ASTER

	METHODOLOGY
	Object-based metrics
	Calculation of Euclidean Distance
	Investigation strategy
	Theoretical behaviour of MED using ASTER reference data
	Application of MED to real fused and non fused MODIS snow maps


	RESULTS AND DISCUSSION
	Metric behaviour
	Application to MODIS-derived snow map

	CONCLUSION

