
Temporal Griffiths Phases

Federico Vazquez,1 Juan A. Bonachela,2 Cristóbal López,3 and Miguel A. Muñoz4
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Disorder is an unavoidable ingredient of real systems. Spatial disorder generates Griffiths phases (GPs)

which, in analogy to critical points, are characterized by a slow relaxation of the order parameter and

divergences of quantities such as the susceptibility. However, these singularities appear in an extended

region of the parameter space and not just at a (critical) point, i.e., there is generic scale invariance. Here,

we study the effects of temporal disorder, focusing on systems with absorbing states. We show that for

dimensions d � 2 there are Temporal Griffiths phases (TGPs) characterized by generic power-law scaling

of some magnitudes and generic divergences of the susceptibility. TGPs turn out to be a counterpart of

GPs, but with space and time playing reversed roles. TGPs constitute a unifying concept, shedding light on

the nontrivial effects of temporal disorder.
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Quenched disorder affects the behavior of particle sys-
tems, altering critical properties and introducing new uni-
versality classes. Nonmagnetic impurities in magnetic
systems or defects in type-I superconductors are typical
examples of this [1]. Moreover, novel phases, with phe-
nomenology unheard-of in pure systems, can be induced by
spatial disorder. This is the case of Griffiths phases (GPs)
appearing in classical, quantum, and nonequilibrium disor-
dered systems [2–4]. GPs, which are of relevance in con-
densed matter physics as well as in other contexts [4,5], are
regions of the phase space—actually a subregion of the
disordered phase—characterized by extended singularities
of the thermodynamic potentials and, as a consequence,
generic divergences of magnitudes such as the susceptibil-
ity [2]. Furthermore, GPs are characterized by an anoma-
lously slow (power-law or stretched exponential) relaxation
to zero of the order parameter (and of other time-dependent
quantities) which contrasts with the fast (exponential) de-
cay typical of pure systems. Such an anomalous relaxation
in the disordered phase occurs owing to the presence of rare
regions where the disorder is such that the system is locally
in its ordered phase and, hence, a potential barrier has to be
overcome for it to relax. The convolution of different,
exponentially rare, sizes with exponentially large decaying
times gives rise to an overall slowing down of the system’s
dynamics, which typically becomes algebraic in time—
with continuously varying exponents—and logarithmic at
the critical point (see below for more details) [3,4].
Divergences in the potentials together with slow relaxation
are two features strongly reminiscent of criticality and its
concomitant scale invariance. However, in GPs these traits
appear not just at a critical point but in a broad extended
region, providing a robust mechanism to justify some cases
of scale invariance in nature [6].

The modeling of some problems in physics, chemistry,
or ecology requires parameters to be disordered in time
rather than in space [7]. This is the case of magnetic
systems under a fluctuating external field [1], or of
ecological populations under changing environmental con-
ditions [8]. In general, temporal fluctuations in the parame-
ters can shift critical points [9] and affect universal features
both in equilibrium [10] and nonequilibrium systems [11].
In a pioneering work, Leigh showed that, in one-variable
(mean-field) models of stochastic populations, environ-
mental noise changes the system mean lifetime (time to
reach the absorbing state) from exponential to a power-law
in system size [8,12]. This result inspired us to systemati-
cally explore the role of temporal disorder in spatially
extended systems (beyond mean-field) and to study if
rare temporal regions induce new phases analogous to
spatial-disorder induced GPs. Do temporal Griffiths phases
exist? If so, which properties do they have? Do they exhibit
any type of generic scale invariance?
To tackle these questions, we start by analyzing a spe-

cific model with absorbing states: the contact process (CP)
[13], in the presence of temporal disorder. In the CP, each
site of a d-dimensional lattice can be either occupied
zðxÞ ¼ 1 (active) or vacant zðxÞ ¼ 0. At each time step,
an active site is randomly chosen and, with probability b, it
converts into active a nearest neighboring site (provided it
was empty), while with probability 1-b it is declared
empty. Time, t, is then increased by 1=NðtÞ, where NðtÞ
is the total number of active sites. The ‘‘pure’’ CP is critical
only at some dimension-dependent value bc;pureðdÞ sepa-
rating an active from an absorbing phase (see [13] and the
schematic diagram in Fig. 1). This phase transition, occur-
ring at bc;pure � 0:767, 0.622, and 0.5 for d ¼ 1, d ¼ 2

and d ¼ 1, respectively, lies in the very robust directed
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percolation universality class [13]. For the
spatially disordered case, b is replaced by bðxÞ; in this
case, a GP emerges between bc;pure and the critical point of

this quenched version, bq;c > bc;pure (see Fig. 1).

Temporal disorder is implemented by allowing b to be a
time-dependent random variable, b ! bðtÞ, for all x. In the
simplest (uncorrelated) case, b takes a random value ex-
tracted at each Monte Carlo step (i.e., whenever the integer
value of t increases) from some distribution of mean b0
and width �. Correlated fluctuations can also be imple-
mented, by allowing b to obey an Ornstein-Uhlenbeck
dynamics [12,14]. This temporally disordered contact pro-
cess (TDCP) is similar to the Jensen’s model in [11].
Following the instantaneous value of b, the system shifts
between the tendencies to be active [bðtÞ> bc;pure] or

absorbing [bðtÞ< bc;pure], provided that the disorder distri-

bution is broad enough (see Fig. 1 for a schematic dia-
gram). Owing to fluctuations, any finite system is, however,
condemned to end up in the absorbing state, either for fixed
and changing b [14]. However, the mean lifetime �ðNÞ
grows exponentially with system size N (Arrhenius law
[14]) in the pure system case, making it stable in the
thermodynamic limit. Instead, in the TDCP, as bðtÞ can
be adverse [bðtÞ< bc;pure] for arbitrarily long time-

intervals, �ðNÞ is expected to be significantly reduced.
But, does �ðNÞ still diverge for N ! 1?, i.e., does a truly
stable active phase exist?

Let us first report on numerical simulations of the TDCP
performed in dimensions d ¼ 1, d ¼ 2, and d ! 1 (for
which we consider a fully connected network (FCN)). bðtÞ
is independently extracted at each Monte Carlo step from a
homogeneous distribution b 2 ½b0 � �; b0 þ ��. We per-
formed both, homogeneous initial density experiments
(with all sites initially active) and spreading ones (starting
from a single active seed) [13]. In the first set of experi-
ments we measured the average value, over many realiza-
tions, of the density of activity �ðtÞ as a function of time
and the mean lifetime �ðNÞ vs system size N. In the second

set, we measured standard quantities such as the survival
probability as a function of time, PsðtÞ [13]. Searching for
power-laws of the form �ðtÞ � t�� and PsðtÞ � t��, we
determined the critical point location b0;c ¼ 0:907ð2Þ,
0.656(1), and 0.500(1), and the exponent � � 0:10ð5Þ,
0.126(2), and 0.5, for dimensions d ¼ 1, d ¼ 2, and the
FCN, respectively, (in all cases � � �;� ¼ 0:55 for d ¼ 1
and � ¼ 0:4 otherwise). For a fixed value of �, the shift
b0;c � bc;pure is larger in d ¼ 1 than in d ¼ 2, and vanishes

in d ¼ 1. Except for the mean-field value, and in agree-
ment with previous findings [11], these critical exponents
are non universal, as they decrease upon increasing the
noise amplitude�. Remarkably, in d ¼ 2 and d ¼ 1, �ðNÞ
scales at criticality as �� ðlnNÞz0 with z0ðd ¼ 2Þ ¼ 5:18ð5Þ
(inset of Fig. 2) and z0ðd ¼ 1Þ ¼ 2:66ð5Þ for � ¼ 0:4. The
values of z0ðdÞ do not seem universal either, as they de-
crease with increasing �. Instead, in d ¼ 1 we observe

standard power-law scaling �� N1:55ð1Þ. Furthermore, in
d ¼ 2 and d ¼ 1 (but, again, not in d ¼ 1), we find a
whole region within the active phase (b > b0;c) in which

�ðNÞ grows generically as a power-law with continuously
varying exponent � , �ðNÞ � N� , with � ! 0 as b0 ! bþ0;c
(observe, in Fig. 2, the slight downward curvature in the
log�� logN curves at criticality, reflecting the asymptotic
logarithmic behavior). Let us remark that obtaining data
for larger sizes and deeper into the active phase, where the
surviving times are huge, becomes excessively expensive.
Hence, estimating with accuracy the upper limit of the
algebraic scaling region is prohibitive. We have also mea-
sured �ðNÞ in the absorbing state; as in the pure model
case, it scales as �ðNÞ � lnðNÞ in all dimensions. In sum-
mary, while the behavior of �ðNÞ in d ¼ 1 is similar to that
of pure systems, in d ¼ 2 and d ! 1, we found
(i) logarithmic scaling at criticality and (ii) an extended
region with algebraic scaling.
Let us now present analytical calculations for the high-

dimensional limit (FCN). Given that, at every single step,
the change on the global density � is �1=N, one can map
its dynamics into a random walk in the interval ½0; 1�, with
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FIG. 2 (color online). Main: Log-log plot of the lifetime � as a
function of system size N for the TDCP in d ¼ 2 for various b0
and � ¼ 0:4. There is a finite region, b0 2 ½0:656; 0:675� with
generic algebraic scaling of �ðNÞ and continuously varying
exponents. Inset: log-log plot of �ðNÞ vs lnðNÞ; from the fit at
criticality (dashed line) we estimate �� ðlnNÞ5:18ð5Þ.

FIG. 1 (color online). Schematic phase diagram for the pure
contact process (CP) (solid line) the CP with quenched disorder
(dashed line), and the CP with temporal disorder (dot-dashed
line). For the second, a Griffiths phase appears within the
absorbing region, while for the third a temporal Griffiths phase
appears (for d > 1) within the active region. The actual locations
of the critical points may depend on noise intensity and dimen-
sion.
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jumps �1=N occurring with probabilities bðtÞ�ð1� �Þ
and ½1� bðtÞ�� respectively. The Master Equation for
this process is easily written [14], and by performing a
1=N expansion one readily obtains a Fokker-Planck equa-
tion whose (Ito) Langevin equivalent is (up to leading
order),

_�ðtÞ ¼ a�� b�2 þ �
ffiffiffiffi

�
p

�ðtÞ þ ��	ðtÞ; (1)

with a ¼ 2b0 � 1þ �2=2, b ¼ b0, � ¼ 1=
ffiffiffiffi

N
p

, and the
noise 	ðtÞ ¼ 2½bðtÞ � b0�=�. Observe the presence of
both, a demographic noise, proportional to

ffiffiffiffi

�
p

which

vanishes in the N ! 1 limit and an external or environ-
mental noise, linear in � [9,15]. Generalizing to any spatial
dimension one can show that the corresponding Langevin
equation is just that of the directed percolation universality
class [13] with a fluctuating linear-term parameter:

_� ¼ ðaþ �	ðtÞÞ�� b�2 þr2�ðx; tÞ þ 

ffiffiffiffi

�
p

�ðx; tÞ;
(2)

where 
 is a constant. For the sake of generality, we have
numerically integrated Eq. (2) in d ¼ 1, d ¼ 2 and in a
FCN, by using the scheme in [16]. We reproduced all the
findings above proving that our conclusions are robust, and
apply to anymodel in the directed percolation class not just
the TDCP.

In the case of uncorrelated white noise (as used in the
numerics above) the quasistationary solution of Eq. (1) is

Pð�Þ � ��1ð1þ �2�=�2Þ2ðb�2þa�2=�4Þ�1 expð�2b�=�2Þ
which in the large N limit can be approximated by Pð�Þ �
�2ða=�2�1Þe�2b�=�2

, exhibiting an a=�2-dependent singu-
larity at � ¼ 0. In this limit, the singularity is not inte-
grable for a < ac ¼ �2=2 (b < b0;cðFCNÞ ¼ 0:5 for all

�), and the only solution is a delta distribution at � ¼ 0,
i.e., the system is absorbing. Instead, for finite N, there is a
1=� singularity for any value of a and the only possible
steady state is the absorbing one (as occurs for any finite
system with demographic noise [13]). Defining z ¼ ln�,
Eq. (1) becomes _z ¼ ~a� b expðzÞ þ �	ðtÞ, with ~a ¼
a� �2=2, which describes a random walker trapped in a
potential VðzÞ ¼ �~azþ b expðzÞ. It exhibits the three
following regimes: (i) Active phase (~a > 0): the time re-
quired for the active state to fluctuate and reach the vicinity
of the absorbing state (which is approximately � ¼ 1=N,
i.e., z ¼ � lnðNÞ) and, eventually, die, is exponential

in the height of the potential [14], �ðNÞ �
exp½Vð� lnNÞ=ð�2=2Þ� � expð2~a lnN=�2Þ � N2~a=�2

. This
is, �ðNÞ exhibits generic algebraic scaling with continu-
ously varying exponents [8]. Hence, the active phase is
truly stable when N ! 1. (ii) Critical point (~a ¼ 0): For
sufficiently small values of z we have a free random walk
(no potential barrier to be overcome) which covers a
typical distance

ffiffiffi

�
p

in time �; equating this distance to z ¼
lnN, the time to die scales logarithmically, �� ½lnðNÞ�2.
(iii) Absorbing phase (~a < 0): z decays linearly in time
and, hence, the time needed to reach z ¼ � lnN scales as

�� lnN. These predictions are in excellent agreement with
the corresponding numerical results for the FCN.
Result (i) can be recovered by using the path-integral

representation of Eq. (1) [13]. The most probable path to
the absorbing state can be easily calculated in semiclassical
approximation. � is simply the inverse of the probability
weight associated with such a path. By using this formal-
ism, Kamenev et al. [12] have recently investigated in an
interesting work the effect of correlated temporal disorder
on a one-variable birth-death process. They conclude that,
in the case of interest here (short-time correlated noise),
�ðNÞ grows exponentially with N for weak noise ampli-
tudes and algebraically in the strong external-noise limit.
Our result differs slightly from this: given that the demo-
graphic noise amplitude in Eq. (1) vanishes in the large
N limit, the strong-noise limit does not need to be invoked
to obtain algebraic scaling.
In order to extend our conclusions to finite dimensions

and to make a parallelism between the reported broad
regions of generic algebraic scaling—that we call temporal
Griffiths phases (TGPs)—and standard GPs, let us sketch
the main properties of GPs for the contact process
equipped with quenched disorder, i.e. b ! bðxÞ [17]. In
the quenched CP, rare regions with bðxÞ> bc;pure and

arbitrary size s appear with probability expð��sÞ, where
� is a disorder-dependent constant. Such regions are lo-
cally active and, hence, activity survives on them until a
coherent fluctuation kills it. This occurs at a characteristic
time tcðsÞ � expð�sÞwhere � is a constant, as given by the
Arrhenius law [14]. Hence, the time-decay of the survival
probability of a homogeneous initial condition is given by
the convolution PsðtÞ /

R

ds expð��sÞ exp½�t=tcðsÞ�, and
the leading contribution in saddle point approximation

comes from size s�ðtÞ ¼ ð1=�Þ lnð�t=�Þ, implying PsðtÞ /
t��=� (right at the critical point, the exponent vanishes, and
there is ‘‘activated scaling’’, characterized by a logarithmic

decay PsðtÞ � ðlntÞ��0 [4]). Similar expressions apply to
the time decay of other quantities such as the activity
density, as well as to many different systems with
quenched disorder [4].
Thus, some analogies between GPs and TGPs are: (i) In

GPs disorder is ‘‘quenched in space’’; in TGPs it is
‘‘quenched in time.’’ (ii) In GPs rare (locally active) re-
gions exist even if the overall state is absorbing; in TGPs
rare (temporarily absorbing) time intervals exist even if the
overall state is active: i.e., the roles of active and absorbing
phases are exchanged. (iii) In GPs the probability for a
(rare) active region of size s to occur is expð��sÞ; in TGPs
(rare) time intervals of length T are absorbing with proba-
bility expð��TÞ; hence, the typical time to observe them is
�� expð�TÞ. (iv) In GPs, as we just argued, the leading
contribution of the decay at time t comes from a rare region
of size s� � lnðt�=�Þ=�; this combined with (iii) leads to a

generic power-law decay in time, t��=�. In TGPs, the time
required to reach the absorbing state in an absorbing time
interval, is given by expð��t�Þ � 1=N, or t� � lnðNÞ=�.
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Equating t� with T in (iii), one obtains a generic algebraic

decay in system size; �ðNÞ � N�=�. In conclusion, TGPs
are analogous to GPs by exchanging the roles of space and
time. These heuristic arguments seem to be valid even for
finite dimensional systems (down to d ¼ 2). The reason
why a TGP phase is not observed in d ¼ 1 is not com-
pletely clear to us. Presently we are developing a semiclas-
sical approximation, analogous to that in [12], but for the
spatially explicit Eq. (2) (see [18]), in order to have a more
precise understanding of low-dimensional cases.

To further delve into the GP-TGP analogy, and given
that GPs exhibit generic divergences of the susceptibility
[2,3], we have measured numerically the susceptibility,
defined as � ¼ @�stðhÞ=@hjh!0 where �st is the average
value of the activity in the steady state after introducing an
external field h coupled to the system’s dynamics, for
Eq. (1) and for Eq. (2) in d ¼ 2. Figure 3 shows that �
measured from Eq. (1) (which perfectly agrees with that in
Monte Carlo simulations of the TDCP on FCN) diverges
all along the TGP. Figure 3-inset shows generic divergen-
ces also for d ¼ 2; however, given that very small values of
h cannot be reached in this case, it is difficult to elucidate
numerically whether such a divergence is for real in the
h ! 0 limit or it just a transient effect.

To analytically understand these findings, we take
Eq. (1) in the N ! 1 limit and include an external field
h. A new term exp½�2h=ð��2Þ�, exhibiting an essential
singularity at � ¼ 0, appears in the stationary solution (see
above). It is a matter of algebra to verify analytically that

@�stðhÞ=@h diverges algebraically as h�1þ2ja�acj=�2
, in an

extended interval a 2 ½0; �2� around the critical point
[15]. If, in this calculation, we replace � by 
 which
does not vanish when N ! 1 and mimics what happens
in finite dimensions [see Eq. (2)], the parameter-dependent
singularities are replaced by the usual ��1 absorbing state
singularity. This suggests that the generic divergence of the
susceptibility is a transient effect in the presence of non-
vanishing demographic noise. In that case, the strong
external-noise limit needs to be taken for the generic
divergence to survive. Going beyond mean field, it can

be proved by using simple field-theoretical arguments
(similarly to [15]) that Eq. (2) with � ¼ 0 exhibits generic
divergences of the susceptibility in a broad interval even in
finite spatial dimensions.
In summary, systems with absorbing states and fluctuat-

ing external conditions exhibit a region in the active phase
—the ‘‘temporal Griffiths phase’’—such that the mean
lifetime scales generically as a power law (with continu-
ously varying exponents) of system size and logarithmi-
cally at criticality. This occurs not only in mean field [8,12]
but also in extended systems as long as d � 2. TGPs have
deep analogies with standard GPs, but the roles of space
and time are reversed: in GPs (TGPs) spatial (temporal)
disorder leads to generic algebraic scaling as a function
of time (size). Moreover, as GPs, TGPs exhibit (at least in
the strong-noise limit) generic divergences of magnitudes
such as the susceptibility and of stationary distribution
functions.
TGPs could be measured in the experimental realiza-

tions of the directed percolation class with liquid-crystals
[19] by introducing externally changing fields, and could
appear in many other systems such as in bistable Ising-like
models with randomly changing conditions. We hope this
work will stimulate new research along these lines.
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FIG. 3 (color online). Log-log plot of the susceptibility,�, as a
function of the field h, obtained by integrating Eq. (1) (main
plot) and Eq. (2) for d ¼ 2 (inset), for different values of a.
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