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We introduce a general method to infer the directional information flow between populations
whose elements are described by n-dimensional vectors of symbolic attributes. The method is based
on the Jensen-Shannon divergence and on the Shannon entropy and has a wide range of application.
We show here the results of two applications: first extracting the network of genetic flow between
the meadows of the seagrass Poseidonia Oceanica, where the meadow elements are specified by sets
of microsatellite markers, then we extract the semantic flow network from a set of Wikipedia pages,
showing the semantic channels between different areas of knowledge.

PACS numbers: 02.50.-r,87.18.-h,89.75.Fb,89.65.-s,89.75.Hc,05.10.-a

I. INTRODUCTION

Since recent years [1, 2] network theory has become
a hot topic among scientists. Its applicability to many
fields of science made of network theory a primary tool
to understand a wide range of phenomena, both in pure
science and in policy management [3]. In particular net-
works can be used whenever we want to understand the
morphology and the topology of a complex system of in-
teracting elements. Such a topology can then be useful
to predict and to understand the complex behaviours of
those systems. This kind of analysis is particularly rele-
vant in the case of the study of infection spreading, both
in society and in the WWW [4], or for understanding the
formation and modification of urban conglomerates [5].

Most of the times the vertices of a network are single el-
ements, such as individuals in social networks, tokens in
linguistic networks, proteins in metabolic networks [6],
etc. Nevertheless we can consider networks where the
vertices are not single elements, but ensembles of ele-
ments, and the links are given by some relations between
those ensembles.

As an example we can imagine how geographical segre-
gation [7] acts in a large city with a large social or ethnic
diversity, such as New York, London, or Paris. In those
cities more or less closed communities based on social
or ethnic diversity form. Then we could be interested
on how those communities interact with each other and
which is the topology of interactions between them. To
understand those interactions we can consider some inter-
esting attributes that are proper of the elements of the
different communities and measure the spread of those
attributes between them, as wealth, habits, food con-
sumed, etc. In other words we can estimate the infor-
mation shared between the different communities of a
given sample and establish a link between two communi-
ties whenever we recognise an information flow between
them. Thus the network of those interactions can give
us precious information about the evolution of the mi-
crosystems defined by the different urban areas inside of
the city macrosystem.

In more general terms a single vertex can be repre-
sented by a probability distribution in a n-dimensional
attribute space and a link between two vertices can be
established whenever an information flow between two
density distributions is detected. Then the question is
how to correctly estimate the information flow between
two density distributions of symbolic ensembles.

In this paper we present a novel methodology based on
the Jensen-Shannon divergence [8] and the Shannon en-
tropy [9] to measure the directional information flow be-
tween two ensembles whose elements are specified by a n-
dimensional vector of symbolic attributes. This method-
ology has a wide range of applications from social physics,
to economy and biology. We show here an application
to genetics, where we measure the genetic flow between
meadows of Poseidonia Oceanica, a Mediterranean sea-
grass, and an application to semantics, where we measure
the semantic flow between different pages of the on-line
encyclopedia Wikipedia. In the first case we show that
the clusters of the resulting genetic network properly rep-
resent the different geographical locations of the mead-
ows, while in the latter case we show that different entries
correctly cluster in appropriate semantic categories giv-
ing hints to interesting semantic speculations.

II. INFORMATION FLOW BETWEEN
POPULATIONS DEFINED IN A SYMBOLIC

ATTRIBUTE SPACE

Suppose we have a set of N populations, where each
element of a population is described by a n-dimensional
vector of symbolic attributes. Those attributes can be
symbolic or numerical, such as a set of social or ethnical
indicators for people, a set of genetic markers for bio-
logical populations, etc. Suppose that a probability dis-
tribution in the n-dimensional attribute space has been
introduced, counting the probability that an element in
a population is characterised by a given vector in the at-
tribute space. Then we can consider the network where
each population is a vertex and two vertices are linked
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whenever an information flow between the two popula-
tions is detected.

We can say that there is an information flow between
two attribute distributions if the distributions are cor-
related and a direction for the informational interaction
can be detected. In literature there are different ways to
compare probability distributions [10], but to our knowl-
edge the only one that can suit our requirements is the
Jensen-Shannon divergence (JSD hereafter) as we explain
better below.

Given two probability distributions P = {p1, p2, ...}
and Q = {q1, q2, ...} of a discrete random variable, the
JSD between P and Q is defined as:

JSD(P‖Q) ≡ H(π1P + π2Q)− π1H(P )− π2H(Q) (1)

where πi are weights, that is π1 + π2 = 1 and H(P ) =
−∑

i pi ln pi is the Shannon entropy measured in nats [9].
JSD was introduced in [8] and its properties are well

reviewed in [11]. For our purposes the most important
thing about the JSD is that the two distributions we
want to compare have not to be absolutely continuous
in each other domini, as it happens for instance in the
case of the Kullback-Leibler divergence [8]. In fact we
want to compare distributions of attributes that are not
necessarily shared by all the populations of the system.
Moreover the JSD embeds a weighting system for the
different distributions and it was demonstrated in [11]
that the optimal choice for the weights is the statistical
weight of the samples. This feature is necessary in order
to compare populations that are different in size. Hence
if the number of the elements of the population defined
by the distribution P is n1 and the number of elements
of the population defined by the distribution Q is n2, we
define πi ≡ ni/(n1 + n2).

JSD is not a distance, but it defines a semi-metric
(the triangular inequality does not hold), hence it gives
birth to a topology. We have that 0 ≤ JSD(P‖Q) ≤
−π1 ln π1 − π2 ln π2 ≤ ln 2. JSD(P‖Q) = 0 ⇔ P = Q
and JSD(P‖Q) = −π1 ln π1 − π2 ln π2 if and only if P
and Q have disjoint domini.

JSD measures the information flow between two dis-
tributions in terms of their shared elements and non-
shared elements. To understand the meaning of the
JSD we can refer to the example of the two probabil-
ity distributions P and Q defined in a certain attribute
space showed in Fig.1. P is defined on an attribute do-
minium DP , while Q is defined on a certain attribute
dominium DQ. Let us call X = DP

⋃
DQ and sup-

pose that J = DP

⋂
DQ 6= ∅ is the joint attribute

dominium of the two distributions, while D = X − J
is the the disjoint attribute dominium of the distribu-
tions. Then Eq. (1) can be split in the two differ-
ent domini: JSD(P‖Q) = JSD(P‖Q)J + JSD(P‖Q)D,
where JSD(P‖Q)D = H(π1P + π2Q)D − π1H(P )D −
π2H(Q)D = −π1 ln π1

∑
D pi − π2 ln π2

∑
D qi. Then the

contribution given to the JSD by the disjoint domini is a
statistical measure quantifying the non shared attribute
distribution sizes.

For the part of the joint dominium we have that
JSD(P‖Q)J = −∑

J (π1pi + π2qi) ln(π1pi + π2qi) +
π1

∑
J pi ln pi + π2

∑
J qi ln qi. JSD(P‖Q)J is the en-

tropy of the weighted sum of the two distributions mi-
nus the weighted sum of the entropy of the distributions,
measured in the shared part of the attributes dominium.
From an informational point of view we can say that if
the sum of the distributions is broader than the single
distributions, this results in a large value of the diver-
gence. Otherwise if the weighted sum of the distribution
has a larger informative value, hence a smaller entropy
than the one we have from the single distributions, then
we obtain a small divergence from the shared part of the
attribute dominium.
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FIG. 1: An example of two probability distributions P (X)
and Q(X) defined in an attribute dominium X where a frac-
tion of the dominium is shared by the two distributions.

The only issue we get through applying the JSD to a
system composed by many populations is that its maxi-
mum value depends on the population size. That means
that we can find cases where the JSD of two uncorrelated
distributions is smaller then the one of two correlated
ones. To avoid this problem we introduce a new index D
defined as the JSD normalised to its maximum value:

D(P‖Q) ≡ JSD(P‖Q)
−π1 ln π1 − π2 ln π2

. (2)

D(P‖Q) has the same properties of JSD(P‖Q) with the
difference that 0 ≤ D(P‖Q) ≤ 1, where D(P‖Q) = 0 ⇔
P = Q and D(P‖Q) = 1 ⇔ J = ∅.

A. Directionality

D(P‖Q) as JSD(P‖Q) is a symmetric quantity in its
arguments, that is D(P‖Q) = D(Q‖P ). Hence it doesn’t
give information about the directionality of the interac-
tion. In order to infer a directionality for the informa-
tion flow between two symbolic distributions, consider
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two populations defined in a certain attribute space that
share some attributes. Then we can argue that there is
an information flow between the two populations, in the
sense explained above. Now suppose that in the first pop-
ulation those shared attributes have a well defined peaked
distribution, while in the second population those shared
attributes have a flat and sparse distribution. Then we
can argue that the origin of the information is in the first
set, where the shared elements distribution has a larger
informative value.

This rationale is borrowed from sociology, in particular
from the idea of geographical segregation. Geographical
segregation is a concept that is widely used in many areas
of science, such as sociology [7, 12], economy[13], geog-
raphy [14], physics, biology [15]. It refers to the inequal-
ity between population attribute distributions inside of a
system. Those attributes can be gender, race, age, pro-
fession, etc. in the case of humans, but they can also
be defined as abstract classes as we show in the appli-
cations below. There are many indexes in literature to
measure geographical segregation [16]. A popular one
is the Theil’s segregation index [17, 18] and is based on
information theory.

The Shannon entropy is a well defined measure to es-
timate the amount of inequalities represented by a prob-
ability distribution. It is large when the attribute fre-
quency distribution is uniform and it increases with pop-
ulation size. In our case a large entropy for an attribute
ensemble represents the fact that different attributes are
equally mixed and it is a hint of small segregation in the
attribute space. Otherwise a small value of Shannon en-
tropy is associated to a large inequality between attribute
frequencies and to a small number of different attributes
and it is an evidence of segregation for the population in
the attribute space, where exchanges with other popula-
tions are a few.

Hence given two distributions P and Q where an in-
formation flow is detected, to infer the directionality of
the flow between the two distribution we first consider
the inequality of the two distributions in the joint do-
minium. To do that we consider the distributions P J

and QJ , that are the distributions of the elements of P
and Q that belong to the joint dominium J , with their
frequencies renormalised to unity in J .

The number of attributes shared by two distributions
is the same for both the distributions, hence the entropy
H measured over the joint dominium J depends only
on the relative frequencies of the attributes. In particu-
lar more peaked distributions have smaller entropy than
broader distributions. Then we have to take in account
the fact that the population sizes are different. In partic-
ular it is important to understand which is the ratio of
the shared elements within the whole population. To do
that we define the index µP/Q ≡

∑
J pi/qi∑
X pi/qi

and we have
0 < µ ≤ 1. If for a certain distribution µ is close to one, it
means that the shared attributes are the dominant part
of that sample. Then an estimator for the information

flow directionality between P and Q can be defined as

I(P → Q) ≡ −sign
[
H(P J)

µP
− H(QJ)

µQ

]
. (3)

If I(P → Q) = +1 the information carried by the at-
tributes in the joint dominium of P is larger than the
information carried by the attributes in the joint do-
minium of Q. Then we can infer an information flow
from the attribute distribution P to Q. Otherwise, if
I(P → Q) = −1, we can infer an information flow from
the attribute distribution Q to P .

III. GENETIC FLOW BETWEEN SEAGRASS
MEADOWS

In this section we build the genetic flow network within
subpopulations of Posidonia Oceanica (PO hereafter).
PO is a seagrass that is endemic to the Mediterranean
Sea [19]. It can reproduce either sexually via floating
fruits, either asexually spreading stems, tough the lat-
ter way is the most common one. PO is a determinant
species for the Mediterranean ecosystem, since its large
colonies give shelter to many other species. Generating
a network of directed genetic flows between the meadows
helps to understand how this species grew and populated
the Mediterranean sea.

The dataset is composed by a set of N = 37 meadows
of PO, geographically distributed in N points of the Eu-
clidean space (xi, yi). For every meadow, or population,
a variable number M = 40 ± 5 of ramets, or individu-
als, were genotyped [19] in terms of n = 7 microsatellite
markers.

Microsatellite markers are tandem nucleotide repeats
that are present in the non-coding region of DNA [20].
Their function is not understood yet, but their regularity
make them optimal markers to identify individuals. In
fact it is via microsatellite markers that DNA is inves-
tigated in forensic trials. The same dataset was already
analysed in [21, 22] with different genetic distances. Since
each allele of a microsatellite marker is characterized by
the number of repetitions of a specific DNA motif occur-
ring at that microsatellite locus, each individual or ramet
belonging to a given population is characterized by a set
of n = 7 pairs of integer numbers.

An example of such a ramet is [(151, 161), (164, 164),
(210, 210), (234, 238), (159, 171), (178, 178), (178, 180)].
The allele number for each locus is expressed as a pair
because PO are diploid organisms, that is their DNA is
made of two complete sets of chromosomes, so that each
number belongs to a given chromosome. Nevertheless we
don’t know the exact order for the numbers of each pair,
that is we don’t know which are the numbers belonging
to a given chromosome and the numbers belonging to the
other one. For this reason the allele repetitions for each
locus are ordered by their size.

The classical way to treat this kind of data is to con-
sider the ensemble of alleles at each locus and then to
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average over the loci [23]. Nevertheless this approach
gets rid of the correlations between the alleles belonging
to different loci.

To avoid this problem we represent each ramet in a 7-
dimensional space, IN7, where each dimension is a specific
locus. Then for each ramet we consider all the possible
combinations of all the pairs of alleles in the 7 loci. In
this way we obtain for each ramet 27 = 128 points in
the loci space, each point representing an equiprobable
gamete representative of the ramet.

As an example if we have a ramet with two diploid
loci, (125,127) and (400,404), then we can represent that
ramet with 22 = 4 points in a 2-dim space: (125,400),
(125,404), (127,400), (127,404). In this way each popu-
lation is represented by a set of 5078± 597 points in IN7,
which is the statistical sample characterizing the proba-
bility distribution function in that space. Moreover every
homozygous locus gives birth to two equal points in IN7,
this feature giving statistical strength to homozygosity
in the resulting density distribution for the population.
Thus we obtain 187904 representative points for the 37
populations.

Each meadow is completely specified by its probability
distribution in the 7-dimensional loci space, each point of
the distribution giving us the probability that a certain
gamete is present in a given meadow and by its size. To
generate the network of genetic flow between the mead-
ows we apply Eq.2 and Eq.3 to the processed dataset.

The measurement of the directional genetic flow be-
tween meadows gives us a list of all the possible pairs
of meadows separated by a directional genetic distance.
Then we order the meadow pairs for increasing values of
their genetic distance, and we define a network of mead-
ows considering two meadows as linked when their ge-
netic distance is smaller than a given threshold.

When increasing the value of the threshold we obtain
a growing network where the first links to form are the
strongest in a genetic sense. We can analyse the net-
work at different threshold to see how the different clus-
ters form and merge. A significative threshold to analyse
the network is the percolation threshold (PT hereafter),
when the main clusters of the network connects [6, 24].

In Fig.2 we show the resulting network at its percola-
tion threshold. The network is displayed by a classical
algorithm of spring embedding [25] that shows the emerg-
ing clusters. No geographical data are considered to draw
the network and the geographical map in the background
is given to have an idea of the geographical spaces that
are involved. Different colors are given to meadows be-
longing to different geographical areas. As we can see
the algorithms presented in Sec.II efficiently split the ge-
ographical clusters of Spain, Sicily and Greece. In par-
ticular the genetic channel between East Mediterranean
and West Mediterranean Sea is well recognised with the
link between a Greek meadow and a Sicilian one. More-
over the detected direction of this latter genetic flow is
in agreement with evolutionary hypothesis for the spread
of PO in the Mediterranean Sea [21].

IV. SEMANTIC FLOW BETWEEN WIKIPEDIA
PAGES

In this section we show an application of the method
presented in Sec.II for the detection of semantic flows be-
tween different written texts. In what follows we measure
the semantic flow between a set of selected Wikipedia
pages. In this paper we are mostly interested to show the
reliability of the method, but its application to semantics
can lead to interesting research for automatic semantic
classification in digital media, or for human machine in-
terfaces [26].

We consider 78 entries of the Wikipedia, selected be-
tween 14 different categories and we calculate the direc-
tional semantic flows between each pair of pages. First of
all we process the text to get rid of all its structural to-
kens, as articles, punctuation, the most common adverbs
and adjectives. After that we lemmatise the text, that is
we reduce all the verbs to their infinitive forms and all
the plural words to singular.

Then we consider each page as a population where the
elements are the different processed words forming a 1-
dimensional attribute space. Hence each page is defined
by its content word distribution and its size.

As in Sec.III we apply Eq.2 and Eq.3 to our dataset,
thus obtaining a list of all the pages separated by a se-
mantic distance. We order the list for increasing values of
D so that we can analyse the network at different thresh-
olds. Again an interesting threshold is the percolation
threshold, since it shows the active semantic channels
between very different areas of knowledge.

The resulting network is displayed in Fig.3. Again the
introduced algorithm is able to split the pages belonging
to different categories in different clusters. Moreover we
can see how the semantic flows can delimit different areas
of knowledge.

Many semantic aspects emerge from this analysis. For
instance it is interesting to notice how the semantics used
to describe movie directors is interlaced with the one used
for literature writers. It is interesting to see how the se-
mantics describing Karl Marx forms a bridge between
the one used for philosophy and the one used for social-
ism. It is interesting to see how the economics semantics
is common to all the politics, while the financial one is
proper only of capitalism. It is interesting to see how the
different countries have a semantic description that lye
between the politics one and religions one and how phi-
losophy forms a semantic channel between politics and
science.

V. CONCLUSIONS

In this research we have introduced a method to mea-
sure directional information flow between different pop-
ulations belonging to a given system. The definition of
such a system is very general, so that the applicability
of the method is wide. In particular the elements of the
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FIG. 2: Directed genetic flow network of PO meadows in the Mediterranean Sea. The network is displayed via a classical
algorithm of spring embedding at its percolation threshold, without additional geographical information. Nevertheless the
genetic clusters efficiently reflect the geographic locations for the meadows and the directions of the genetic flows agree with
standard evolutionary theories for the PO.

system can be described by a multidimensional vector
of either numeric or symbolic attributes and the method
takes in account the different population sizes.

The improvement of this methodology over the classi-
cal ones used to compare probability distributions [8] is
that it applies to a many-populations system, giving the
chance to build a network of information flow. Moreover
the application of ideas coming out of geographical seg-
regation studies allows to address the question of direc-
tionality in the interaction, transforming the static idea
of correlations or divergence between probability distri-
butions, in a dynamical idea of information flows between
subsystems of a given macrosystem.

We showed two simple applications of the method to
different scientific fields as genetics and semantics. In
the first case we showed how the method can recognise
the geographical locations of seagrass meadows via mi-
crosatellite markers. In the latter case we showed how

the method can easily map a portion of the semantic
space via the analysis of word distribution in Wikipedia
entries.

The analysis of the whole semantic space as repre-
sented by the network of semantic flows between the en-
tries of the whole Wikipedia has non trivial properties
and is presented in [27].

We think that apart from the mentioned case studies
the presented methodology can have important applica-
tions in fields such as sociology, sociogeography and eco-
nomics.
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