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Abstract. We have developed a multi-orbital approach to compute the electronic

structure of a quantum impurity using the non-crossing approximation. The

calculation starts with a mean-field evaluation of the system’s electronic structure using

a standard quantum chemistry code. Here we use density functional theory (DFT).

We transformed the one-electron structure into an impurity Hamiltonian by using

maximally localized Wannier functions (MLWF). Hence, we have developed a method

to study the Kondo effect in systems based on an initial one-electron calculation. We

have applied our methodology to a copper phthalocyanine molecule chemisorbed on

Ag (100), and we have described its spectral function for three different cases where

the molecule presents a single spin or two spins with ferro- and anti-ferromagnetic

exchange couplings. We find that the use of broken-symmetry mean-field theories such

as Kohn-Sham DFT cannot deal with the complexity of the spin of open-shell molecules

on metal surfaces and extra modeling is needed.

PACS numbers: 72.15.Qm, 72.10.Fk, 73.20.Hb, 75.20.Hr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36054537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1102.1667v2


The Kondo signature of CuPc on Ag(100) 2

1. Introduction

Since the study of the Kondo features of Ce ad-atoms on Ag (111)[1] and Co ad-atoms

on Au (111) [2], the scanning tunnelling microscope (STM) has become a privileged

tool in the study of surface Kondo physics. The STM is a non-intrusive probe that

can address adsorbed objects at very low bias with very small currents. Hence, the

STM basically explores the equilibrium properties of the adsorbed systems. Besides ad-

atoms, Kondo physics has been revealed in objects of increasing complexity, from single

adsorbates [1, 2, 3] to large organic molecules [4, 5, 6, 7, 8], ordered nanostructures [9]

and ad-atom-ligand structures [10, 11].

Several recent reports show that organic molecules display a Kondo state due to

a spin in their extended π-orbitals even when they are adsorbed on a metal surface

[7, 8, 12, 13]. This is somewhat of a surprise for two reasons: (i) some of these molecules

are magnetic in the gas phase because they have a magnetic atom, (ii) an extended π-

orbital is expected to have a large overlap with the metal surface likely driving the

π-system into a mixed valence regime instead of a Kondo one. Hence, the appearance

of Kondo physics in these systems depends on a series of parameters where common

wisdom is likely to fail. It is then of great interest to perform calculations to rationalize

the particular features of adsorbed large molecules that depend as little as possible on

adjustable parameters.

We have implemented an impurity solver for the Anderson Hamiltonian [14] that

reads the one-electron structure from a density functional theory (DFT) calculation

for a given spin configuration of the impurity (in the present case the molecular

orbitals involved in the spin configuration), uses the DFT hybridization to compute

the dynamical electron exchange with the substrate, and assumes a single electron

fluctuation which corresponds to the U → ∞ limit of the Anderson Hamiltonian. The

impurity solver uses the non-crossing approximation NCA [15, 16, 17, 18] in the multi-

orbital formalism by Kuramoto [16]. The multi-orbital aspects of the Kondo problem

must be correctly taken into account in realistic accounts of the Kondo problem as

shown by Kroha and collaborators [19, 20].

The NCA is a reliable approximation [21] away from very low temperatures where

it fails to reproduce the Fermi-liquid behavior in fully screened Kondo systems [22]

and where spurious spectral feature appears at the Fermi energy [22, 23]. At typical

experimental temperatures NCA is a good choice for this type of calculation because

it retains all the electronic structure of the one-electron part of the Hamiltonian while

keeping a correct description of the main Kondo features. In fact, the main limitation of

our theory rather comes from the use of the customary local or semi-local approximations

to DFT. Indeed, DFT calculations on electronic gaps lead to discrepancies of a factor 2

off the experimental gap [24]. This is definitely a big drawback when evaluating Kondo

temperatures (TK) because they depend exponentially on the molecular level value. The

Kondo temperature depends on the ratio of the molecular eigenvalue to its broadening,

due to the molecular hybridization with the metal substrate. We will use this ratio as
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a parameter. Yet, our procedure retains the symmetry and the relative strengths of the

one-electron Hamiltonian as given by DFT. A second important approximation of our

work is that of the infinite intramolecular Coulomb energy, U → ∞. Extensions of NCA

to treat finite U [25, 26, 27] lead to considerable improvement of the TK . However, since

the LDA based electronic structure impedes the calculation of the TK , the infinite U

approximation largely suffices for our purposes.

In NCA, The Kondo physics is modeled by virtual fluctuations of the impurity

occupancy. These fluctuations are made possible by coupling the Kondo impurity

to the substrate. In principle, NCA can treat all possible configurations. The

U → ∞ approximation is admissible, provided that the self-energy contribution due to

configurations with two electrons or more is negligible. One can generalize this idea and

indeed consider two sets of configurations which differ by the addition of one electron,

energetically separated from other configurations by some large value “U” [16]. Hence,

with NCA we can treat impurities of increasing complexity, where the physics involved

will correspond to virtual fluctuations among configurations differing in electron number

by one.

In this way, Roura Bas and Aligia have treated the singlet-triplet quantum

transition of an Anderson impurity within NCA [28, 29]. We use a similar approach to

describe the configurations of a copper phthalocyanine (CuPc) on Ag (100). On this

surface, CuPc captures one electron from the substrate [30] while maintaining a very

localized spin on the copper atom at the center of the molecule. Hence, this system is

properly characterized by a Hamiltonian describing singlet-triplet transitions. In order

to perform our multi-orbital NCA calculations, we first simulate CuPc/Ag(100) with

DFT, we transform to a maximally-localized Wannier function (MLWF) basis set [31],

and solve the DFT Hamiltonian expressed in this basis set with our multi-orbital NCA

code, selecting molecular orbitals that take part in the Kondo physics.

The use of MLWF is mandatory to be able to unambiguously transform the DFT

Hamiltonian into an Anderson-like one as we have shown in [31]. This is perhaps the

biggest difference with other works using impurity solvers based on DFT calculations

[32, 33, 34]. Our approach is thus algorithmic, except for the tuning of the molecular-

orbital levels with respect to their hybridization with the substrate since these are

quantities where current DFT approaches fail.

In the following section we give more details regarding the implementation and

execution of the calculations on CuPc/Ag(100). In section 3, we first show the DFT

results and their conversion to the MLWF basis set. The MLWF results permit us to

explore the electronic structure that is involved in Kondo physics. We also evaluate the

spectral functions for the lowest unoccupied molecular orbital (LUMO) that is actively

involved in the generation of Kondo spectral features. Finally, we analyze our results

and conclude this work.
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2. Method

The NCA is particularly adequate for describing the electronic structure at different

energy scales. Our multi-orbital implementation [16] uses the mean-field results of a

local density approximation (LDA) calculation, transforms the LDA Hamiltonian into

a MLWF basis which permits us to write an Anderson Hamiltonian, U → ∞, while

keeping the full multi-configurational aspects of the problem [31]. The NCA is applied

on the obtained Anderson Hamiltonian. In this way, the calculated electronic structure

contains all molecular+substrate information in the presence of Kondo physics. In this

section, we give details on how this is achieved, with special care in the choice of the

configurations that will determine the Kondo physics of CuPc on Ag (100).

2.1. Density functional calculations

Density functional calculations of gas phase copper phthalocyanine (CuPc) capture the

relevant electronic and geometric properties of the molecule [35]. Briefly, CuPc is a

D4h molecule, figure 1, where the d electrons of the central copper atom are split by

the ligand field of the surrounding atoms. The ligands capture ∼ 2 electrons of the Cu

atom rendering the molecule in a magnetic d9 configuration [35]. The d manifold is split

such that the dx2−y2 orbital is singly occupied (SOMO, the singly occupied molecular

orbital). The following empty orbital (LUMO, lowest unoccupied molecular orbital) has

π character and double degeneracy, because it constitutes the eg representation [35] of

the point group.

Previous studies using LDA of CuPc on Ag (100) show that the main electronic

properties of the adsorbed molecule are retained in the calculation [30]. Here, we take

on that work and extract the relevant one-electron physics important for determining

the Kondo state.

We have used the Siesta code [36], relaxed the molecule and first two surface layers

to forces below 0.04 eV/Å using the geometry of the reference [30]. The calculations are

periodic, using a super-cell containing five layers of 7×7 Ag atoms. This unit cell size is

converged for computing electronic structure features of the adsorbed CuPc on Ag(100)

[30]. The electronic structure calculations have been done with norm-conserving pseudo-

potentials [37] and strictly localized, DZP numerical atom-centered basis set, optimized

for this system [30]. The basis sets are build using the method by Anglada et al. [38],

and we have used the improved noble metal surface description using the basis sets of the

reference [39]. The confinement radii (all in Bohr) of s-type first-ζ basis functions were

6.06 for hydrogen, 5.20 (C), 5.64 (N), 5.77 (Cu) and 5.55 (Ag). The confinement radius

of the first-ζ extended diffuse orbitals was 7.75. Good agreement with our previous work

[30] is thus attained.

The Kohn-Sham Bloch functions were calculated on a Monkhorst-Pack grid 2×2×1

and transformed to the basis of maximally localized Wannier functions [40, 41, 42]

(MLWF). Our method for obtaining MLWF from Siesta is described in [31].
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2.2. Maximally-localized Wannier functions

The main reasons for working with a MLWF basis set are: (i) the reduction of the

computational problem by projecting the M-dimensional Hilbert space of Kohn-Sham

states, where M is the full dimension of the CuPc plus Ag (100) electronic problem,

onto a smaller N -dimensional space which faithfully represents [41] the energy bands

around the Fermi level taking part in the Kondo effect; (ii) the orthogonality of the

MLWF basis set that permits us to use standard multi-orbital NCA [16, 22], and (iii)

the extreme localization of MLWF plus their orthogonality gives us a natural way to

partition the problem into impurity and substrate subspaces [31].

Maximally localized Wannier functions have been used in the study of strongly

correlated matter (for instance see [43, 44, 45, 46]). In some cases, the spread

minimization is skipped and the Kohn-Sham electronic structure is projected directly

onto trial orbitals. This strategy has been used in the study of transition metal

oxides [47]. In our system, we found that the projection onto trial orbitals gives

unreliable results. The disentanglement method [41] can be contrasted with direct

selection of certain bands of interest. This is often done in the study of transition metal

oxides where bands bear strong orbital character [47, 48]. In the adsorbate problem, the

band structure is far more complex, which impedes direct band selection. We conclude

that the MLWF are an optimal choice for the problem of a large molecule on a metallic

substrate.

For the substrate’s MLWF, we choose to describe the s− p bands only. In order to

achieve this, the s− p bands of the slab are generated by interstitial Wannier functions,

in the same way as the surface state of Cu(111) was achieved in [31]. This is a reasonable

selection, as long as Kondo physics is considered, because the d bands start at ∼ -3 eV

below the Fermi energy. This is away from the relevant region in energy with an energy

scale several orders of magnitude larger than the typical Kondo scale. Additionally,

d-states are rather localized, presenting small coupling with molecular states. For these

two reasons d states can be safely omitted in the description of the substrate electronic

structure taking place in the Kondo effect. The choice of the interstitial centers for the

MLWF is delicate because CuPc on Ag (100) displays a C4 symmetry [30] and it is crucial

to ensure that MLWF do not reduce the symmetry of the problem. An unexpected

problem of the obtention of MLWF for an extended surface is that convergence to

MLWF is more difficult as the lateral dimensions of the super-cell are increased. The

surface had to be repeatedly tested to achieve a good description of its electronic bands

within 2 eV of the Fermi energy.

The molecule’s MLWF are obtained jointly with the substrate ones by using the

disentanglement method [41]. In order to achieve the clear partitioning between molecule

and substrate, the initial set of trial functions consists of 5 d orbitals of the central copper

atom (see figure 1), 16 s states for C-H bonds, 32 pz orbitals for every carbon atom, 24

orbitals for the nitrogen atoms and 40 s orbitals for C-C and C-N bonds. This Wannier

function description was tested in the two separate systems: the clean Ag (100) surface
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Figure 1. Ball-and-stick scheme of a copper phthalocyanine molecule. The central

atom is the copper one, and the rest of atoms are nitrogen, carbon and hydrogen in

increasing distance from the central one. The free molecule has a D4h symmetry which

is reduced to C4 upon adsorption on Ag (100) [30].

and the gas phase copper phthalocyanine molecule.

2.2.1. One-particle Hamiltonian In the reference [31], we showed how to obtain an

Anderson-like Hamiltonian from a Kohn-Sham Hamiltonian in a MLWF basis set.

There, the evaluation of the main quantities of an atomic magnetic impurity in a non-

magnetic host was described. Especial emphasis was put on obtaining the intra-atomic

Coulomb energy. In the present section, we extend that study to the case of molecules.

The Hamiltonian terms have to be expressed in a suitable way to be able to apply the

NCA scheme to account for Kondo physics on molecular orbitals.

Thanks to the localization and orthogonality of the MLWF basis, the Wannier-

projected Kohn-Sham Hamiltonian can be organized into four blocks
(

Hmol V ′

V ′† Hslab

)

, (1)

where Hmol contains matrix elements between molecular Wannier functions, the second

block following the diagonal, Hslab, refers to Wannier functions of the silver slab, while

the off-diagonal blocks, V ′, involve couplings between molecule and slab.

The eigenstates of Hmol are the molecular orbitals now obtained for the MLWF

transformed Hamiltonian. As we shall see below, CuPc is a magnetic molecule because

one electron is kept in copper’s dx2−y2 orbital. Furthermore, upon adsorption CuPc

captures one more electron in the first π-orbital, the doubly degenerated LUMO. Hence,

this open-shell structure, when hybridized with the substrate, gives rise to the electron

fluctuations of the Kondo effect. These states are singled out of the problem and we

define a special subspace for them, Himp, the “impurity” subspace. The rest of states

is lumped together into the substrate’s subspace, Hsubs.

Hence, we first apply to (1) a unitary transformation that diagonalizes Hmol and

leaves Hslab untouched. In this way, we obtain the molecular orbitals of the molecular
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part of the Hamiltonian, so that the first block of (1) becomes diagonal. Explicitly,
(

THmolT
† TV ′

(TV ′)† Hslab

)

. (2)

The unitary matrix T defines the transformation from MLWF of the molecule to

molecular orbitals. The second step is to choose the molecular orbitals that play a

role in the Kondo effect. These orbitals are placed in the first rows and columns of (2)

and define the subspace Himp.

After this rearrangement, the matrix of the Wannier-projected Kohn-Sham

Hamiltonian reads










Himp V

V † Hsubs











(3)

where the first block is diagonal and contains selected eigenenergies of Hmol, the block

Hsubs contains Hamiltonian matrix elements in Hsubs and the block V contains couplings

between states in Himp and Hsubs. The molecular orbitals that do not directly intervene

in the Kondo effect are included in the substrate. Hence, the full mean-field structure of

the DFT calculation is preserved within the inner window of the MLWF transformation

which is 2 eV around the Fermi energy in the present calculation.

In the present case, the obtention of an Anderson-like Hamiltonian is facilitated by

the small values of the intrinsic U term in LDA. As shown in [31], one can extract the

intrinsic U term when writing the full Kohn-Sham Hamiltonian in a Wannier-basis set.

In that reference, the Co-atom impurity had values of U around 1 eV. For the present

method to work, one should subtract the intrinsic U term such as is done in the LDA+U

method [49, 50] or in recent parameterizations of model Hamiltonians [51]. Anisimov

and coworkers show that this intrinsic U term is related to the Hund’s rule exchange and,

thus, is much smaller than the actual Coulomb U values. This is particularly true in

the case of molecules. In the case of CuPc, we have evaluated the intrinsic U -term to be

∼ 30 meV, and hence negligible in front of the molecular level values and hybridization

function.

2.2.2. Ab-initio calculation of a hybridization function The hybridization function

has a fundamental role in the impurity physics [52]. It is of uttermost importance to

do accurate evaluations of this function for numerical applications. In order to achieve

this, we diagonalize Hsubs, (3), obtaining Bloch states |kn〉 and Bloch energies ǫkn, n is

the band index and k is from the discretized Brillouin zone with 50 × 50 × 1 k-points.

Convergency on k-points was checked by a four-fold increase of the k-point sampling.

The couplings V of (3) are transformed to the |kn〉 basis accordingly; we label them

V
kn,m, where m indexes states in Himp. After these manipulations, we can calculate

Γmm′(ω) =
∑

kn

V ∗
kn,mVkn,m′δ(ω − ǫkn) (4)
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from the one-particle Hamiltonian (3). It is a matrix in Himp.

We emphasize that the Hamiltonian (3) is obtained by projecting the Kohn-Sham

electronic structure onto a set of N MLWF. The smaller N -dimensional subspace

spanned by MLWF is designed in order to represent the selected energy bands around the

Fermi level, with the same level of accuracy as the original bands of the M-dimensional

space of Kohn-Sham states. The total number of Wannier functions N is the sum of the

MLWF of the molecule and of the substrate. The Wannier description has been tested

in separate CuPc and Ag(100) systems. M usually means the highest band output from

the ab-initio calculation. Interestingly, we found that it is very important to verify the

convergence in M . Inclusion of bands with energy of even tens of eV above the Fermi

level is vital and preconditions the correct projection onto the Wannier space. As a

consequence, the important value of Γmm(ω) at the Fermi level turns incorrect if M is

too small. In the present case, convergence was attained for N = 705 and M = 3000.

Formally, (3) becomes the one-particle part of the Anderson Hamiltonian on

bringing Hsubs to a diagonal form. Although the procedure we have just introduced

is straightforward and essentially algorithmic, it is not correct in principle, because the

on-site energies of molecular orbitals in Himp contain certain part of the Coulomb energy

that is included in the mean-field-like LDA framework. Furthermore, the inadequacy

of Kohn-Sham energies of orbitals lying close to the Fermi level is well known. In our

approach, Himp is replaced by a parameterized model Hamiltonian with many-body

interactions. This is a natural step, in view of the fact that we would not have to deal

with Hamiltonian partitions like in (3) if standard ab-initio calculations included the

relevant many-body interactions correctly.

2.3. Impurity electronic configurations

In this work, the one-particle Hamiltonian Himp is replaced by a Hamiltonian ĥ with

many-body interactions. This subsection discusses the physical grounds on which ĥ is

designed.

The experimental analysis on the Kondo features in CuPc/Ag(100) [13] indicates

that the two-fold degenerate eg LUMO has the main role in Kondo fluctuations.

However, DFT calculations[30] show that the spin in the SOMO orbital is not quenched

by charge transfer from the molecule. Hence, the observed Kondo resonance is

interpreted [13] as due to a spin S = 1 of the molecule, formed by an electron in

LUMO and one electron in SOMO. The LUMO electron is captured from the substrate

upon adsorption.

We adopt this interpretation and model the molecule as an impurity with a two-

electron S = 1 ground state. Furthermore, the lifetime of the SOMO will be assumed an

order of magnitude longer than the LUMO’s, as will be confirmed by ab-initio calculation

in section 3.1.2.

The electron in the SOMO will be represented by a local magnetic moment which

interacts via exchange with the hybridized LUMO. The multi-orbital structure of the
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Figure 2. Considered electronic configurations for the two-fold LUMO (eg): (a) The

empty orbital (denoted by e0g), (b) singly occupied orbital e1g, (c) doubly occupied

configuration e2g, (d) doubly occupied configuration e11g .

problem appears in the twofold degeneracy of the LUMO. The configurations that we

will study are then the ones coming from the filling of the LUMO, figure 2.

We choose the relevant configurations by estimating their energetic accessibility in

the charge fluctuation process. Then, the relevant parameters determining the electronic

configuration are: the LUMO on-site energy ǫL and the charging energy U . The lowest-

energy molecular configuration for the adsorbed molecule is singly occupied, as suggested

by DFT calculations [30]. We can estimate the free-molecule U by evaluating the

energies of the neutral (E0), singly (EI) and doubly (EII) negatively charged molecule.

Assuming a simple impurity Hamiltonian, then the affinity is given by

EI − E0 = ǫL (5)

and the second affinity by

EII − EI = 2ǫL + U (6)

from these equations and the total energy calculations for the free molecular species we

obtain that U = 2.08 eV. However, U is substantially screened on the metallic surface.

A constrained DFT calculation for π-systems on silver surfaces leads to a reduction of

U to values between 0.5 and 1.0 eV [53]. In the present case we take ǫL = −0.35 eV

(see section 3.2), which leads to |ǫL| < U and the doubly occupied configurations e2g,

e11g , figure 2 (c,d), are higher in energy than the neutral one, figure 2 (a). Hence, we

will consider e1g − e0g fluctuations.

Hence, the impurity Hamiltonian contains the eigenvalues of the two LUMO

as given by the diagonalization of the MLWF Hamiltonian (2), plus the exchange

interaction I with the spin of the SOMO:

ĥ = ǫL
∑

a=1,2

∑

σ

|aσ〉〈aσ| − IS1 · S2. (7)

We introduce Hubbard operators which automatically restrict the LUMO occupancy to

zero or one. The sums are over spin and orbital degrees of freedom, the latter indexed

by a. The second term in the Hamiltonian is the direct exchange interaction involving

the spin S2 of the SOMO and the spin operator of the LUMO expressed through Pauli
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matrices τ as

S1 =
∑

σσ′

(

τσ′σ

2

)

∑

a=1,2

|aσ′〉〈aσ| .

If I = 0 the Schrieffer-Wolff projection of the model onto the e1g manifold leads to

a SU(4) Coqblin-Schrieffer model [54]. The evolution of spectral features with I leads

to a quantum phase transition of the singlet-triplet impurity problem, that has recently

received much attention experimentally [55] and theoretically [28, 29]. Here, we will

study three cases: I < 0, I = 0 and I > 0.

2.4. Multi-orbital non-crossing approximation

The above impurity Hamiltonian (7) commutes both with the LUMO occupancy

operator, na =
∑

σ |aσ〉〈aσ|, and the total spin operator S = S1 + S2 showing that it

properly describes the molecular properties. Due to the hybridization with the substrate,

the molecule will exchange electrons. Here, we assume just fluctuations between the two

above configurations, figure 2 (a) and (b) plus the fluctuations of the SOMO spin, as

included in the definition of ĥ.

The full Anderson-like Hamiltonian reads

Ĥ = ĥ +
∑

kσ

ǫ
kσc

†
kσckσ + V̂ (8a)

V̂ =
∑

kσ

∑

a

(

V
kσ,ac

†
kσ |0〉〈aσ|+ V ∗

kσ,a |aσ〉〈0| ckσ

)

. (8b)

The hybridization part V̂ and the impurity Hamiltonian ĥ are written with Hubbard

operators which change the state of LUMO from empty to occupied or vice versa.

Substrate electrons are described by fermionic operators c
kσ and energies ǫ

kσ. For the

sake of brevity, all substrate-electronic degrees of freedom are encapsulated in the k

symbol. The band index will be introduced when necessary.

Let Ĥ0 = Ĥ − V̂ . Following Bickers [18], we write down a resolvent operator of the

impurity

R̂(z) =
1

Zsubs

∑

Ω

e−βEΩ 〈Ω|
1

z − (Ĥ0 −EΩ)− V̂
|Ω〉

as a result of averaging over eigenstates |Ω〉 of the non-interacting substrate with energies

EΩ. The substrate partition function is denoted by Zsubs. Since R̂(z) does not mix

different occupancies, it can be written as a block matrix

R̂(z) =

(

R̂1(z) 0

0 R̂2(z)

)

,

where R̂1(z) refers to one-electron occupancy (ie LUMO empty) and R̂2(z) acts on two

electron occupancies of the impurity.
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These quantities are calculated via self-energies defined by

R̂1(z) =
1

z − ĥ|N=1 − Σ̂1(z)

R̂2(z) =
1

z − ĥ|N=2 − Σ̂2(z)
.

Following Kuramoto [16], we introduce basis states labeled by α for the configurations

with one electron and β for the two-electron configurations. In the Non-Crossing

Approximation the self-energies for the fixed occupations are given by all diagrams

without crossings of substrate electron lines,

Σ1α′α(ω) =
∑

ββ′

∑

kσ

f(ǫ
kσ)Vkσ(α

′|β ′)

×R2β′β(ω + ǫ
kσ)Vkσ(β|α)

Σ2β′β(ω) =
∑

α′α

∑

kσ

f(−ǫ
kσ)Vkσ(β

′|α′)

×R1α′α(ω − ǫ
kσ)Vkσ(α|β).

The hybridization vertex Vkσ(α|β) comes when emitting an electron from LUMO to the

band state kσ which is accompanied by impurity transition from β to the state with

label α. Similarly, Vkσ(β|α) is brought about when annihilating a one-electron state

α of the impurity and creating a two electron state by absorbing a substrate electron.

Explicitly,

Vkσ(α|β) = 〈α| ckσV̂ |β〉 (9a)

Vkσ(β|α) = 〈β| V̂ c†
kσ |α〉 . (9b)

It is convenient to re-express the fixed-occupation self-energies (also called bosonic and

fermionic self-energies in slave-boson approaches [17, 22, 29]) in terms of a hybridization

function that is directly related to the level broadening of the impurity configurations

Γ(α′β|β ′α; ω) =
∑

kσ

Vkσ(α
′|β ′)Vkσ(β|α)δ(ω − ǫ

kσ). (10)

Please, notice that we have not included π or 2π factors as sometimes is done in the

literature. In order to evaluate lifetimes a factor 2π will be added to the diagonal terms

of the hybridization function (10).

We can now represent the fixed-occupation self-energies in the form

Σ1α′α(ω) =
∑

ββ′

∫

f(ω′)Γ(α′β|β ′α;ω′)R2β′β(ω + ω′)dω′ (11a)

Σ2ββ′(ω) =
∑

α′α

∫

f(−ω′)Γ(α′β|β ′α;ω′)R1αα′(ω − ω′)dω′. (11b)

This permits us to efficiently perform all computations using fast Fourier transforms.
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Let us write β = (a, S, Sz), where a = 1, 2 indexes the two orbitals of LUMO, S

the total spin and Sz one of its components. Similarly, α will denote the projection

of the spin of SOMO on the z-axis, the only degree of freedom of the one-electron

configurations.

In the present case, the substrate is non-magnetic, ǫ
kσ and Vkσ,a do not depend

on the electron spin, σ, and the expression for the hybridization factorizes into spin

and orbital parts (see Appendix). This considerably simplifies the equations (11).

Introducing

R1(ω) = [ω − Σ1(ω)]
−1 (12a)

[

RS=0

2
(ω)
]−1

aa′
= (ω − ǫa +

3

4
I)δaa′ − Σ2,aa′(ω) (12b)

[

RS=1

2
(ω)
]−1

aa′
= (ω − ǫa −

1

4
I)δaa′ − Σ2,aa′(ω) (12c)

and defining the orbital part of the hybridization function by (see (A.1))

Γaa′(ω) =
∑

k

V ∗
ka′Vkaδ(ω − ǫk), (13)

we can write

Σ1(ω) =
∑

aa′

∫

f(ω′)Γaa′(ω
′)×

[

3

2
RS=1

2,a′a(ω + ω′) +
1

2
RS=0

2,a′a(ω + ω′)

]

dω′ (14a)

Σ2,aa′(ω) =

∫

f(−ω′)Γaa′(ω
′)R1(ω − ω′)dω′. (14b)

The resolvent for the two-electron configurations RS
2,aa′ now depends on the total spin

and is a matrix in the orbital space. The equations (12,14) constitute a self-consistent

system.

The main quantity of interest, the Green’s function of LUMO, will be calculated

from the general time-ordered correlation function of Hubbard operators, defined

through the thermal average

G(α′β ′, τ |βα, 0) = −Tτ

〈

eτH |α′〉〈β ′| e−τH |β〉〈α|

〉

. (15)

Starting from the latter expression, we average over the singly-occupied configurations

αα′ and take the Fourier transform [16] to obtain the Green’s function of LUMO for the

given spin multiplet

GS
aa′(ω) =

1

Zi

∫

[

RS
2,aa′(ω + ǫ)A1(ǫ)− (16)

−AS
2,aa′(ǫ)R1(ǫ− ω)

]

e−βǫdǫ. (17)
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The quantities A2,aa′ and A1 are the spectral functions of the resolvents and Zi is the

impurity partition function. We follow Kuramoto [16] and use defect propagators in the

numerical implementation of (17), see Appendix.

The spectral function of LUMO is calculated by tracing over orbital and spin degrees

of freedom,

A(ω) = −
1

π
ℑm

∑

a

[

GS=0

aa (ω) + 3 GS=1

aa (ω)
]

. (18)

We see that the general Green’s function (15) factorizes into channels of the total

spin of an incoming electron (hole) and the molecule (17). This fact has been used to

model magnetic inelastic effects induced by the STM [56, 57, 58].

3. Results: Kondo Physics of CuPc on Ag (100)

Full detail on the adsorption of CuPc on Ag (100) is given in other publications [30, 59].

Here, we build on those results and apply our methodology to obtain the electronic

structure in presence of the Kondo effect. First, we build the Anderson-like Hamiltonian

following the recipes of section 2.2.1 and next, we solve the multi-orbital NCA equations,

section 2.4, presenting the spectral function or PDOS onto CuPc doubly degenerated

LUMO. Special care is given to the evaluation and presentation of the hybridization

function, Γmm′(ω), of section 2.2.2 because most of the relevant Kondo physics is

associated with the symmetry and values of this function.

3.1. Hamiltonian for CuPc on Ag (100)

3.1.1. Molecular orbitals Thanks to the partitioning made possible by the MLWF

basis, we can extract the molecular Hamiltonian Hmol (1) computed from the LDA

calculation of CuPc on Ag (100) [30, 59]. Table 1 presents eigenenergies of Hmol the

molecular orbitals close to the substrate’s Fermi level. The orbitals are then closely

related to the gas-phase CuPc ones and hence, we denote them by SOMO, LUMO and

highest occupied molecular orbital (HOMO) labels. For comparison, the results for

the LDA Siesta calculation of the gas-phase molecule of the same molecular geometry

are also given. The MLWF qualitatively reproduce the gas phase molecular levels.

We emphasize that the ǫ (MLWF) refer to molecular orbitals screened by the metal

but without direct hybridization and the ǫ (Siesta) are for a true gas-phase molecule

without any screening or coupling with an external metal.

Figure 3 shows the PDOS onto these four molecular orbitals. The calculation is

performed for the LDA k-point grid (2×2×1) which is clearly insufficient to account for

the continuum character of the substrate electronic states. Hence, the peaks have been

slightly broadened using a Gaussian broadening of 50 meV. Despite the qualitative

character of this figure, much information can be gleaned from it. The difference in

widths between SOMO on one hand and LUMO and HOMO on the other hand is

substantial. The SOMO peak basically presents the numerical width, and is a featureless
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Figure 3. Density of states projected onto molecular orbitals (PDOS). The projection

onto the SOMO is given by bold lines, onto the HOMO by dashed lines and onto the

LUMO by dash-dotted lines. Energies are with respect to the Fermi energy. Majority

spin is shown in the upper panel and minority in the lower one. The PDOS are

convoluted with a 50-meV Gaussian.

peak, while the LUMO shows oscillations and spreads over several hundreds of meV.

Then, the latter orbitals hybridize more strongly with the substrate. From this figure

we can conclude that while the LUMO width is in the range of a few hundreds of meV,

the SOMO is significantly less. This is in agreement with the move involved calculations

of the hybridization function that we present in the next section.

The PDOS are in excellent agreement with the PDOS on molecular orbitals from

DFT results [59]. Both the eigen-energies and the PDOS give support to our method of

transforming the DFT Hamiltonian to a MLWF and selecting the impurity Hamiltonian

using (3).

Table 1. Eigenenergies of the molecular orbitals for the impurity Hamiltonian

evaluated with MLWF using (2), compared with the gas phase LDA calculation using

Siesta, for the same geometry of the CuPc molecule. All energies in the third column

were shifted, so that the energies of SOMO (↓) coincide. Energies of the second

LUMO state are in parenthesis. The comparison is only indicative that the MLWF

capture the molecular properties since the two calculations are performed for different

systems: the MLWF refers to molecular orbitals screened by the metal but without

direct hybridization and the Siesta column is for a true gas-phase molecule without

any screening or coupling with an external metal.

ǫ (MLWF) [eV] ǫ (Siesta) [eV]

HOMO (↑) -1.110 -0.888

HOMO (↓) -1.112 -0.890

SOMO (↑) -0.549 -0.714

SOMO (↓) 0.040 0.040

LUMO (↑) 0.185 (0.190) 0.496 (0.498)

LUMO (↓) 0.211 (0.216) 0.520 (0.522)

It is difficult to conclude on the actual occupancies from the PDOS. Indeed, the
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PDOS numerical broadening thwarts any precise calculation of orbital occupancies, and

the definition itself of occupancy of a molecular orbital in a chemisorbed system is

somewhat arbitrary. As we show in the next section, the actual peak width of SOMO

is negligible; the SOMO then remains singly occupied as in the gas phase. The LUMO

peaks in figure 3 cross the Fermi level, hence these orbitals capture charge from the

substrate. The LUMO are then the only orbitals that participate in charge transfer

from the surface.

3.1.2. Hybridization function The lack of continuum in the PDOS calculation is cured

in the calculation of the hybridization function (4). Thanks to the smaller size of the

MLWF Hamiltonian (3), we can now find the Bloch functions for a very dense k-point

grid.

The off-diagonal parts of Γmm′(ω) are very small (< 1 meV). This is a very strong

result that shows that the substrate does not mix the different molecular orbitals among

themselves. Hence, every molecular orbital defines an electronic channel of the system.

The diagonal elements for SOMO and LUMO orbitals are presented in figure 4,

along with the density of states of the substrate. The three curves are very similar in

shape. By comparing the hybridization functions with the substrate DOS, we notice

that the hybridization function grows more slowly than the DOS as the electron energy

increases. This is an effect due to the couplings, V , between the molecular orbitals and

the substrate electronic structure. However, at higher energy, it is the DOS that controls

the behavior of the hybridization function with energy. Figure 4 shows that the SOMO

width has to be multiplied by 20 to be comparable to the LUMO one. The SOMO

orbital has then a very small mixing with the substrate as compared to the LUMO.

Finally, in the U = 0 picture, the FWHM for the LUMO is 2πΓaa(ω = ǫL) = 440

meV and is comparable to the FWHM of the PDOS peak, figure 3, obtained with an

insufficient k-point sampling.

We have also evaluated the hybridization function of the LUMO with d orbitals

by preparing a Wannier basis-set with d orbitals. In the region of interest here (some

2 eV about the Fermi energy), this hybridization is strictly zero due to the lack of d

states at these energies. However, when resonant with Ag d-band (3 eV below the Fermi

energy), the hybridization function becomes larger than the corresponding values for the

sp Wannier functions. At 4 eV below the Fermi energy, the d-electron hybridization has

maximum of 0.032 eV, while the sp one is 0.035 eV. The consequence of this is that

the spectral function at -4 eV will not be just a simple Lorentzian tail. However, the

LUMO orbital is some hundreds of meV away from the Fermi energy, and the effect of

the d-band contribution to the overall shape of the LUMO spectral function is negligible

both for Kondo physics and for the one-electron spectral shape.

Finally, we comment on the problem of broken spin symmetry in DFT. Spin-

polarized LDA implies two subsystems: minority and majority spin. This in turn

says that we have two sets of Wannier functions, two distinct substrates, hybridization

functions, etc. The main effect of breaking the spin invariance in our DFT calculation
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Figure 4. Diagonal elements of the hybridization function matrix (in eV) as a function

of the electron energy, ω, with respect to the Fermi level. Only the LUMO and the

SOMO (note the factor 20) are considered. For comparison, the substrate-projected

density of states is given in arbitrary units. The delta function of (4) has been replaced

by a 5-meV wide Gaussian; the k-point sampling is 50× 50× 1.

is that the SOMO occupancy is nSOMO ≈ 1. As a secondary effect, the substrate and

molecule become slightly spin-polarized as well. However, this effect is perturbational

[14] and is not an intrinsic property of the bare substrate and impurity of the Anderson

model. In what follows we drop the minority spin data of the hybridization function

and restore the spin symmetry.

3.2. Multi-orbital NCA results

Our LDA calculations yield a hybridization function for the SOMO, ΓS, ten times smaller

than the one for the LUMO levels. From these values we obtain ΓS ≈ 4.5 meV. We use

the standard expression for the Kondo temperature [60]

TK,S = D exp

(

−
|ǫS|

2ΓS

)

(19)

and take the ab-initio value for the on-site energy from the table 1. The bandwidth is 2D,

where a rectangular DOS is typically assumed. Here we have taken D as 10 eV because

the DOS of Fig. 3 integrates to 703 states, while the calculated DOS at the Fermi energy

is 32.28 eV−1. Hence 2D=703/32.28=21.8 eV, and D turns out roughly 10 eV. We get

TK,S of the range 10−26 eV. Thus, the energy scale that would correspond to a Kondo

effect on the SOMO orbital (without exchange coupling to LUMO) is unobservable.

These arguments show that the Kondo coupling in this system is indeed given by

virtual charge fluctuations of the two-fold degenerate LUMO. Hence, we are dealing with

the impurity problem described in section 2.3, for which we can calculate the spectral

function according to the section 2.4.

However, the on-site energies of LUMO in (7) as given by their LDA values in the

table 1 lie very close to the Fermi level, which would correspond to a fluctuating valence
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Figure 5. LUMO spectral function for the I = 0 case. The wide peak corresponds to

a charge excitation and the narrow peak is the Kondo peak (shown also in the inset).

regime. That has not been observed in the experiment [13]. This is related to the fact

that the LDA energies of LUMO do not reflect the considerable Coulomb repulsion in

their spin splitting. We fix these deficiencies by rescaling the ǫL/Γaa(ω) ratio in order to

achieve a SU(4) Kondo temperature, TK,L = D exp (−|ǫL|/4Γaa), of ∼20 K as observed

in the measurements [13]. The results presented in this section are calculated with

ǫL = −0.35 eV and Γaa(ǫL) rescaled to 0.01 eV.

Below TK,L, the model exhibits a rich variety of physics as the value of I changes.

For I ≥ 0 but smaller than the Kondo temperature TK,L, the SOMO is effectively

decoupled from the LUMO and we recover the case of two degenerated LUMO on the

same footing as the electron spin: we have an SU(4) system as described above. For

negative I, |I| . TK,L, the SOMO becomes screened by a two-stage Kondo effect at

very low temperatures. For positive and large I ≫ Γaa, TK,L, the Kondo physics is

that of the under-screened Kondo effect, because of the S = 1 molecular ground state.

Hence, the model will show singular Fermi liquid characteristics [61, 62, 63] in the low-

energy domain. Finally, in the limit I → −∞, we obtain a spin zero molecule with

orbital pseudo-spin, which is over-screened by two substrate channels. The cross-over

temperature is, however, exponentially smaller than TK,L, due to the reduced degeneracy.

Here we present NCA spectral functions in the I = 0 case and in the intermediate

regimes Γaa > |I| > TK,L which are dominated by inelastic spin transitions.

Figure 5 shows the spectral function of LUMO at T = 7K when the exchange

interaction between SOMO and LUMO is turned off, I = 0. The ground state of ĥ

is fourfold degenerate in this case. Since each of the two orbitals of LUMO defines an

independent scattering channel in the substrate (ie Γaa′(ω) is diagonal), the LUMO is

subject to a SU(4) Kondo effect. The spectral function shows a broad charge-excitation

peak of the FWHM given by 4 · 2πΓLL(ǫL) and a narrow Kondo peak.

When the SOMO and LUMO spins are subject to a ferromagnetic interaction

(I > 0) the ground state of the molecule without couplings to the substrate is an

orbitally degenerate S = 1. The excited state is a S = 0 orbital doublet. Now, two
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Figure 6. LUMO spectral function for I = 25 meV (bold line). The spin zero and

spin one channel contributions are presented. The positive-energy satellite corresponds

to injection of one electron in the excited electronic structure of the system: the spin

zero channel. The negative-energy peak corresponds to removing one electron from

the molecular ground state in the S = 1 channel.

satellites develop at ±I from the Kondo peak, figure 6. These satellites are inelastic

replicas of the Kondo peak since the spin excitation energy is exactly I. Decomposition

into spin channels yields that the Stokes (+I) satellite is in the S = 0 channel, while the

anti-Stokes peak as well as the Kondo peak are in the S = 1 channel. This result can

be understood by recalling the meaning of the spectral function. The spectral function

at T = 0 yields the probability density to inject one electron in the system when ω > 0

or to inject a hole when ω < 0. Hence, the positive energy satellite corresponds to an

excited Kondo effect triggered by the injection of an electron to the S = 0 state, which is

an excited state of ĥ. Similar results have been found by Roura Bas and Aligia [28, 29].

When the interaction is anti-ferromagnetic (I < 0), the ground state of ĥ is an

orbital doublet and is followed by six excited states of spin one. A noteworthy feature

of the spectral function are the steps typical for an inelastic spin-flip transition (see for

example [56, 57] and references therein). The inelastic steps enhanced by Kondo effect

have already been explored in the case of singlet-triplet transitions in nanotubes [64].

The spin channel analysis yields that the Stokes peak is now S = 1 which again can be

rationalized by noticing that it corresponds to injecting an electron in an excited S = 1

state and the transition is enhanced by an excited Kondo effect. By the same token,

the anti-Stokes peak is S = 0 since a hole is created in this channel.

The spectral function, figure 7, shows a small peak on the Fermi level. This peak

cannot correspond to a spin-flip Kondo effect. The orbital Kondo resonance is ruled

out by its exponentially suppressed energy scale ∝ exp (−|ǫL|/2Γaa) as compared to

TK,L. NCA is known to produce spurious peaks at the Fermi level [15, 23, 18]. The

temperature scale at which they appear is given by [60] TS = TK,L/5[TK,L/Γaa]
5/3 = 0.18

K (strictly valid for I = 0 only). All calculations shown here are performed at 7 K, well

above the pathology temperature TS. We conjecture that the zero energy structure is
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Figure 7. LUMO spectral function for I = −25 meV. The spin zero and spin one

components are presented. The two excitation steps correspond to inelastic transitions

enhanced by the Kondo effect. As in the S = 1 case, I = 25 meV, the steps belong to

a channel with well defined spin. The positive-energy step is given by the spin triplet

(S = 1) channel and the low energy peak is due to the S = 0 channel.

related to the problems of NCA to reproduce spin-split Kondo peaks, as detailed in [22],

p. 25.

A common feature of both I > 0 and I < 0 spectral functions (figures 6,7) is a

certain asymmetry of the Stokes and anti-Stokes peaks. This is caused by asymmetry

of the hybridization function with respect to the Fermi energy, or by the U = ∞

approximation. We have explicitly verified that the hybridization function has very

little effect on the respective heights of both satellites. Indeed, the asymmetry comes

from the fact that system is out of the particle-hole symmetry. Then we assign the

asymmetry of the satellites to the infinite Coulomb repulsion.

4. Discussion

The evaluated LDA spectral function, figure 3, seems to suggest a fluctuating valence

state while a Kondo peak have been experimentally found [13]. Moreover, if we added

a strong Coulomb term to the LUMO, the corresponding Anderson Hamiltonian would

correspond to an empty-impurity regime according to the scaling theory [65]. For these

reasons, we had to rescale the Kondo temperature in our model by shifting the LUMO

level and changing the hybridization strength as we showed in the previous section.

These results show that LDA is unreliable to furnish quantitative data. Any ab-

initio method is bound to failure when trying to estimate the Kondo temperature given

the exponential dependence on the main ab-initio ingredients: the level position and

hybridization. Nevertheless, ab-initio calculations can give valuable qualitative input

since the correct electronic symmetry addressing both the spin and orbital channels can

be directly obtained from DFT. Our analysis of the hybridization function has yielded

important information: (i) the existence of two well-defined orbital channels originating

in the hybridization of the two LUMO with the substrate has been proved because
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non-diagonal terms of Γaa′(ω) are vanishingly small, (ii) both LUMO and SOMO are

partially charged in the adsorbed system, the LUMO due the sizeable values of Γaa that

leads to charge transfer from the substrate, and the SOMO for the vanishing value of

ΓS that leaves its spin unperturbed. Hence, LDA reveals the orbital SU(2) symmetry

associated with LUMO electron and its substrate channels.

The failure of the present LDA calculations to yield a realistic ǫL/Γaa ratio can

be traced back to the complete failure in giving the qualitative Kondo physics of the

CuPc/Ag(100) system. As we just saw, the PDOS onto Kohn-Sham states predicts

the system to be in a mixed-valence regime while the experimental data show it is a

Kondo system. This points out at the present failures, namely, the LUMO occupation

is poorly accounted for in LDA. Previous works have claimed that LDA is not capable

to yield correct hybridization functions, because of the lack of charge discontinuity

in the exchange-and-correlation functional [66]. While this is clearly the case in

transport calculations, the present hybridization function describes a static situation,

where the strength of the coupling to the substrate is evaluated. Furthermore, the

hybridization function evaluates the transparency of the barrier between the molecule

and the substrate [67]. Hence, we do not think that the hybridization function is affected

by the charge discontinuity problem. We think it is rather the electronic configuration

that is affected by the charge discontinuity problem yielding wrong occupancies, the

alignment of the molecular levels and finally the wrong qualitative picture.

Finally, the cure has already been advanced in the literature by using LDA+U

methods [68]. As in the reference [68], U has to be computed for the LUMO orbitals as

has been recently realized by an increasing number of groups [53, 68].

It is for these failures of the LDA calculations that the ǫL/Γaa had to be adapted in

order to obtain reasonable spectral functions in the section 3.2. In the physically relevant

case of the positive SOMO-LUMO exchange coupling of I = 25 meV we obtained the

experimentally observed three-peak structure in the vicinity of the Fermi level [13].

In spite of the shortcomings stemming from LDA’s description of the LUMO shown

in this work, we emphasize that the Wannier-based approach is not restricted to the

use of LDA functional and can be interfaced to an arbitrary ab-initio method which

provides a one-particle structure as for example the promising GW+MLWF method [69].

Moreover, Wannier functions allow to take a step beyond the super-cell approach and

simulate a true impurity problem (ie a single molecule on a surface) by reconstructing

a semi-infinite substrate out of the tight-binding Hamiltonian elements obtained in a

super-cell.

5. Conclusion

We have implemented a multi-orbital non-crossing approximation approach based on a

standard one-electron ab-initio electronic structure. The Kohn-Sham orbitals of a DFT

calculation are transformed to a maximally localized Wannier function (MLWF) basis

set such that a tight-binding like Hamiltonian is obtained, in view of the locality and
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orthogonality of MLWF. This procedure is in principle algorithmic and permits us to

have a quantum impurity model from a DFT calculation.

We have applied this methodology to the case of a copper phthalocyanine (CuPc)

molecule adsorbed on Ag(100) following existing experimental work [30, 13]. From our

DFT calculations we conclude that the two-fold degenerate LUMO captures charge and

this can give rise to the Kondo effect. The spin of the SOMO is a spectator because its

Kondo energy scale is many orders of magnitude smaller than the one of the LUMO.

However, intramolecular exchange interaction between the SOMO and LUMO spin gives

rise to a rich singlet-triplet phenomenology that our numerical procedure captures. Our

calculations show that two well defined orbital channels emerge in the substrate as

dictated by the C4 point group symmetry. We have further investigated the impurity

spectral function in terms of spin channels and we have rationalized the inelastic features

of the spectral function for both (spin) singlet and triplet ground states.

This physics has been obtained by rescaling the computed Kondo temperature to

fit the experimental one. Indeed, our LDA-based calculation fails to yield a Kondo

ground state and rather predicts a fluctuating-valence system. We attribute this error

to the lack of charge discontinuity in the LDA exchange-and-correlation functional and

suggest that alternative LDA+U methods for the one-electron calculation will improve

the agreement with the experimental electronic structure of CuPc on Ag(100).

Appendix A. Non-crossing approximation

Appendix A.1. Spin coefficients for a singlet-triplet impurity

The couplings between α and β (see (9)) are given by the expression

Vkσ(α
′|β) = Vkσ,a 〈σα|SS

z〉

with Vkσ,a from the Hamiltonian (8) and the braket is a Clebsch-Gordan coefficient.

When the substrate is non-magnetic, ǫ
kσ and Vkσ,a do not depend on σ and the expression

for hybridization intensity (10) factorizes

Γ(α′a′S ′Sz ′|aSSzα; ω) = Γaa′(ω)γα′α(S
′Sz ′|SSz)

into orbital

Γaa′(ω) =
∑

k

V ∗
ka′Vkaδ(ω − ǫk) (A.1)

and spin parts

γαα′(S ′Sz ′|SSz) =
∑

σ

〈

S ′Sz ′|σα′
〉

〈σα|SSz〉 . (A.2)
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The subsequent identities have proven significant
∑

α

γαα(S
′Sz ′|SSz) = δSS′δSzSz′ (A.3)

∑

Sz

γαα′(1Sz|1Sz) =
3

2
δαα′ (A.4)

γαα′(00|00) =
1

2
δαα′ . (A.5)

The first one is due to completeness (A.2), the second and third can be proven using

Wigner 3jm symbols [70].

With these identities it is easy to show that the following property holds: Let

R̂test
1 (ω) and R̂test

2 (ω) be some functions diagonal in the total spin representation, so will

the self-energies calculated from NCA (11a), (11b),

Σtest
1α′α(ω) =

∑

ββ′

∫

f(ω′)Γ(α′β|β ′α;ω′)

×Rtest
2β′β(ω + ω′)dω′

Σtest
2ββ′(ω) =

∑

α′α

∫

f(−ω′)Γ(α′β|β ′α;ω′)

×Rtest
1αα′(ω − ω′)dω′.

Since we solve the equations of NCA iteratively, starting with resolvents having zero

self-energies, we conclude that spin off-diagonal terms of R̂1,2 vanish.

Appendix A.2. Evaluation of the physical Green’s function using defect propagators

Equation (17) has to be expressed in terms of defect propagators. For convenience we

introduce boldface notation for matrices in the orbital space of LUMO, ie RS
2
,AS

2
,Γ,GS

for the resolvent of the two-electron configuration, its spectral density, hybridization

function (A.1) and the Green’s function of LUMO. The starting expression (17) reads

GS(ω) =
1

Zi

∫

[

RS
2 (ω + ǫ)A1(ǫ)− (A.6)

−AS
2
(ǫ)R1(ǫ− ω)

]

e−βǫdǫ. (A.7)

We introduce the operator P, whose effect on an arbitrary matrix function X(ω) is

given by

PX(ω) =
i

2πZi

e−βω
[

X(ω)−X†(ω)
]

.

By applying P on both sides of NCA equations (14) yields a self-consistent system

aS
2
(ω) = RS

2
(ω)

∫

f(ω′)Γ(ω′)a1(ω − ω′)dω′RS†
2
(ω)

a1(ω) = |A1(ω)|
2
1

2

∑

S=0,1

(2S + 1)

×

∫

f(−ω′)Tr
{

Γ(ω′)aS
2
(ω + ω′)

}

dω′
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for the defect propagators [23], defined by

a1(ω) = PA1(ω) and a2(ω) = PA2(ω).

When these equations are solved, the Green’s function (A.6) can be expressed as

GS(ω) =

∫

[

RS
2
(ω + ǫ)a1(ǫ)− (A.8)

−aS
2 (ǫ)R1(ǫ− ω)

]

dǫ. (A.9)
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