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It is argued that the recently observed Fermi liquids in strongly interacting ultracold Fermi gases
are adiabatically connected to a projected Fermi gas. This conclusion is reached by constructing a
set of Jastrow wavefunctions, following Tan’s observations on the structure of the physical Hilbert
space [Annals of Physics 323, 2952 (2008)]. The Jastrow projection merely implements the Bethe-
Peierls condition on the BCS and Fermi gas wavefunctions. This procedure provides a simple picture
of the emergence of Fermi polarons as composite fermions in the normal state of the highly polarized
gas. It is also shown that the projected BCS wavefunction can be written as a condensate of pairs
of composite fermions (or Fermi polarons). A Hamiltonian for the composite fermions is derived.
Within a mean-field theory, it is shown that the ground state and excitations of this Hamiltonian are
those of a non-interacting Fermi gas although they are described by Jastrow-Slater wavefunctions.

PACS numbers: 03.75.Ss,71.10.Ay,71.10.Pm

I. INTRODUCTION

Recently, several groups [1–3] have performed accu-
rate measurements of the thermodynamics in the uni-
tary regime of an ultracold dilute Fermi gas. The mea-
surements have been found consistent with Ho’s [4] uni-
versal thermodynamics hypothesis. However, the group
at ENS [2] also found that the equation of state of the
unpolarized unitary gas can be fitted using Fermi liquid
theory (FLT) in a temperature range from Tc/µ ≃ 0.32
to T/µ ≃ 0.8 (Tc being the transition temperature to the
superfluid state and µ the chemical potential). Based
on this analysis, the ENS group has claimed that the
normal state of the unitary Fermi gas is a weakly cor-
related Fermi liquid [2]. These results appear to be in
contradiction with the recent spectroscopic observations
of the JILA group [5]. The latter support the existence
of a pseudogap regime [7], in agreement with a number
of theoretical claims [7, 9] (but not others [10]). Besides
the unpolarized gas, Fermi liquid behavior has also been
predicted [11], and observed in a much less controversial
way [2, 12, 13], in the normal phase of the highly polar-
ized Fermi gas. In a large region of the phase diagram,
this polaron liquid also seems to behave as a weakly cor-
related Fermi liquid.

Theoretically, it is not clear at all how a weakly cor-
related Fermi liquid can emerge in the unitary limit
above the critical temperature. At least näıvely, this
Fermi liquid cannot be adiabatically connected to the
Hartree-Fock solution at weak coupling. The reason is
that the ground state and excitations of the latter are
Slater determinants. Such wavefunctions do not obey
the Bethe-Peierls condition, which, as emphasized re-
cently by Tan [22] (see also [26]), defines the physical

Hilbert space of the system. Whether this condition
can be fully implemented within diagrammatic pertur-
bation theory is also unclear, and may be one of the
reasons why some theories fail to reproduce the experi-

ments [2][45]. So far, several approaches have attempted
to provide a quantitative description of the normal phase
through sophisticated diagrammatic calculations (see e.g.
Refs. [7, 9, 10, 15–19] and references therein). Although
these analyses yield a wealth of quantitative predictions,
in the present author’s opinion, the picture provided by
them is usually not very transparent. On the other hand,
the picture in terms of wavefunctions provided by vari-
ational methods [29, 31, 32] as well as fixed-node diffu-
sion Monte Carlo [33, 39] is physically more transparent.
However, these methods mostly deal with the ground
state [46], and therefore a priori they cannot be applied
to understand the properties of the normal state at finite
temperature.

Thus, it would desirable to have clearer theoretical
picture of the emergence of Fermi liquid behavior, es-
pecially in the crossover region. Here it is argued that a
more transparent (although at this point less quantita-
tive) picture can be obtained by incorporating from the
scratch Tan’s observation [22] about the physical Hilbert
space of the system. The latter is defined as the set of
states obeying the Bethe-Peierls condition (see Eq. (4)
below). By projecting the BCS wavefunction onto this
space by means of a Jastrow factor, it is shown below that
it can be written as a condensate of pairs of composite
fermions. These composite fermions are related to the
Fermi polarons introduced by Lobo et al. [11] to describe
the normal state of the highly polarized gas. We show
that, in general, the composite fermions (or polarons)
are the elementary excitations of a projected Fermi gas.
They correspond to the original fermions dressed by a
density cloud of opposite-spin fermions. By deriving a
Hamiltonian that acts on unprojected states, it is shown
that the Jastrow-Slater wavefunctions are the eigenstates
of a mean-field approximation to such Hamiltonian. Fur-
thermore, it is found that, at the mean-field level, the po-
larons behave as non-interacting Fermi gas for all values
of the scattering length and spin polarization. The inter-
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actions between them are thus described by corrections
to the mean-field theory. Nevertheless, although it may
be coincidental, we argue that this mean-field theory may
provide a qualitative explanation for the emergence of a
weakly correlated Fermi liquid in the crossover regime.
Furthermore, these results also reveal interesting connec-
tions of this problem with the theory of the fractional
quantum Hall effect and the physics of the Gutzwiller
projection of Hubbard models [36, 37, 43].
The rest of the article is organized as follows: In the

next section, we briefly review the mounting experimen-
tal and theoretical evidence for Fermi liquid behavior in
strongly interacting dilute Fermi gases. The properties
of the superfluid grond state are discussed in Sect III
in terms of a projected BCS wavefunction. We use the
structure of this wavefunction to motivate the introduc-
tion of a set of composite Fermi fields, which as shown
in Sect. IV are related to the Fermi polarons. In the
same section, the normal state is considered and we ar-
gue that it has the form of a Jastrow-Slater determinant.
In Sect. V, this state is derived from a mean-field theory.
Finally, in section VI we discuss some possible extensions
to this work and provide our conclusions.

II. BRIEF REVIEW OF THE RELEVANT

EXPERIMENTS AND THEORY

The findings of the ENS group described in the
Introduction appear to be in contradiction with the
recent angle-resolved photoemission spectroscopy mea-
surements (ARPES) of JILA group [5]. Performing
ARPES [6] above Tc and near unitarity, this group ob-
served a prominent BCS-like feature in the spectral func-
tion, which shows a downturn consistent with a large gap
in the single-particle excitation spectrum, for k ≃ kF (kF
is the Fermi wavenumber). This was observed at tem-
peratures where essentially no condensed pairs pairs were
found using a different technique. These experimental re-
sults, together with some numerical evidence [14], come
in support of the theories [7, 9] claiming that the system
enters a pseudogap regime above Tc. According to these
theories, such a regime is characterized by the existence
of preformed Cooper pairs, which have not yet under-
gone Bose-Einstein condensation. Because the electrons
remain paired even above Tc, the density of states at the
Fermi surface should be strongly suppressed. Therefore,
it is at least näıvely expected that the existence of the
preformed pairs should be also reflected in the thermo-
dynamics as deviations from FLT [21], as observed in the
hole-doped cuprate materials [20], which also exhibit a
mysterious pseudogap phase [8].
On the other hand, if the normal phase of the un-

polarized gas is a standard Fermi liquid, the spectro-
scopic properties near the Fermi surface must be ac-
counted for by the Landau quasi-particle (LQP) picture.
In the framework of FLT, the existence of LQPs is related
to the existence of a set of (approximate) eigenstates,

|qp(N + 1,k, σ)〉, with total particle number N + 1 and
carrying momentum h̄k and spin projection σ, such that:

lim
|k|→kF

|〈Ψ0(N)|ψσ(k)|qp(N + 1,k, σ)〉|
2
= Z (1)

where |Ψ0(N)〉 is the ground state of the system contain-
ing N particles, ψ†

σ(k) is the Fermi operator that creates
an atom carrying momentum h̄k and spin σ, and the
real number Z (0 < Z ≤ 1) is the quasi-particle weight.
Slightly away from the Fermi surface, the LQPs acquire
a finite lifetime, which grows with the minimun of T−2 or
(ε−µ)−2, where ε is the quasi-particle excitation energy.
The ENS group found the effective mass of the quasi-

particles (m∗) in the upolarized gas to be close to the
bare atomic mass (m), m∗ ≃ 1.13m. Assuming that we
are dealing with LQPs and taking into account that the
quasi-particle weight Z ∼ m/m∗, it follows that Z ∼ 1.
Thus, the density of states at the Fermi energy, which is
proportional to Z, should be rather close to that of the
non-interaccting gas in spite of the strong interactions
characteristic of the unitary regime. In the case of 3He,
which is not a dilute system but where the atoms also
interact via a short range potential, the LQP effective
mass is such that 2.9 ≤ m∗/m < 5.7, depending on the
pressure. Therefore, when compared to 3He, the unpo-
larized gas at unitarity appears to be a weakly correlated
Fermi liquid. On the other hand, the downturn observed
by the JILA group would be consistent with a strong re-
duction of the density of states near the Fermi surface or
pseudogap, which seems hard to fit into the picture put
forward by the ENS group.
Some clues to better understand the puzzling experi-

mental situation described above may come from recent
lattice Monte Carlo calculations [21]. This method (un-
like diffusion Monte Carlo) can access finite tempera-
tures, although calculations become more cumbersome
as T = 0 is approached. Overcoming these difficulties,
Bulgac and coworkers [21] computed the thermodynamic
properties of the gas as a function of the temperature in
the crossover regime (for −2 < kF as < 0.5, as being the
s-wave scattering length) down to T ≃ 0.1TF (where TF
is the Fermi temperature of a non-interacting gas of the
same density). At unitarity, it was found that the unpo-
larized unitary gas exhibits free Fermi gas-like behavior
for T >

∼ 0.23TF . Moreover, in a narrow range, between
Tc <∼ T <

∼ 0.23TF (Tc ≃ 0.15TF ), the system behaves nei-
ther as a Fermi liquid nor as a superfluid. Below Tc, the
energy behaves as that of a superfluid, which is accounted
for by the joint contributions of the Anderson-Bogoliubov
mode and the Bogoliubov quasi-particles. These numeri-
cal results are in good agreement with the data obtained
by the ENS group for T/µ >∼ 0.4 [2], which are also the
most accurately fitted by FLT. Therefore, the results are
also consistent with the scenario (in qualitative agree-
ment with some diagrammatic approaches [9, 10]) where
the pseudogap regime exists (if at all) only in a tempera-
ture window that is rather narrow even at unitarity (but
may become broader on the BEC side of the crossover).
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Above the upper limit of this window, the system would
exhibit FLT-like thermodynamics.
In the case of a strongly polarized Fermi gas at unitar-

ity, the Fermi liquid state can be understood as a liquid
of Fermi ‘polarons’. The latter are the result of dress-
ing the fermions of the minority (say, ↑) spin component
with a cloud of fermions in the majority spin (↓) compo-
nent. At unitarity, it is found [11, 29–31] that the Fermi

polaron has the following dispersion ǫp↑(k) = Eb +
h̄2k2

2m∗ ,

where m∗ ≃ 1.17m and Eb/EF↓ ≃ −0.64, where EF↓ is
the Fermi energy of the majority component, as deter-
mined experimentally in Ref. [12] (m∗ ≃ 1.20m accord-
ing to [2]). In this case again, the effective mass of the
polaron seems to be rather close to the free atom mass,
in spite of the strong attractive interactions at unitar-
ity. Further calculations using a T-matrix approximation
also found small deviations ( ∼ 50% at most) from the
bare mass for −1 < (kFas)

−1 <
∼ 0.5 [32]. Moreover, ex-

perimentally the ENS group found that the interactions
between the polarons in the polarized gas appear to be
negligible at unitarity [2].

III. THE SUPERFLUID STATE

In the theory of the BCS-BEC crossover, it is believed
that the major features of the ground state are captured
by the BCS wavefunction [24–26]:

|ΦBCS〉 =

[

∑

k

ϕ(k)ψ†
↑(k)ψ

†
↓(−k)

]N/2

(2)

=

[
∫

dxdy ϕ(x− y)ψ†
↑(x)ψ

†
↓(y)

]N/2

|0〉. (3)

According to this theory, on the BCS side of the crossover
(where the scattering length as < 0), atoms form
Cooper pairs described by the pair wavefunction ϕ(r) =
1
Ω

∑

k ϕ(k)e
ik·r (here Ω is the volume of the system). The

pairs form a Bose-Einstein condensate in which the cen-
ter of mass state at k = 0 is macroscopically ocupied [47].
As the scattering length as is tuned by means of a Fesh-
bach resonance towards unitarity (where kFas → −∞),
the size of the pairs shrinks until a two-body bound state
(a molecular dimer) forms. Further on, as as continues
to grow positive, the dimers become more tightly bound
on the BEC side of the crossover.
In an important development in the theory of the BCS-

BEC crossover, Tan [22] has recently emphasized (see
also [26]) the importance of the Bethe-Peierls condition
(BPC) in defining the physical Hilbert space of a di-

lute ultracold Fermi gas. This condition states that the
s-wave interactions, which are also described in terms
of the Lee-Huang-Yang pseudo-potential [27] Vint(r) =
4πh̄2as

m δ(r)∂r (r·), can be replaced by a boundary condi-
tion in the limit where the range of the potential goes
to zero (i.e. r0 → 0). For the many-particle states, this
means that, provided three and higher-body interactions

can be neglected (that is, the gas is dilute and Efimov
bound states are not present), any physical state of the
system containingN↑ spin-up fermions andN↓ spin-down
fermions exhibits the following behavior:

lim
|xi−yj |→0

Ψphys({xk}
N↑

k=1 ; {yl}
N↓

l=1) =

(

1

|xi − yj |
−

1

a

)

×Ψ̃(
xi + yj

2
, {xk}k 6=i , {yl}l 6=j), (4)

for any pair of opposite spin particles (i = 1, . . . , N↑ and
j = 1, . . . , N↓). As Tan discovered, the BPC has im-
portant consequences for the short-distance correlation
functions and the total energy of the states. In particular,
he predicted [22] that the momentum distribution of any
physical state Ψ behaves as CΨk

−4 at large wavenumber,
k, where Tan’s contact CΨ = 〈Ψ|ρ↑(r)ρ↓(r)|Ψ〉. This pre-
diction has been recently verified by the JILA group [23].
Tan also pointed out [22] that the BCS wavefunction,

Eqs. (2,3), does not satisfy the BPC and therefore it is
not in the physical space. This is so even if the behavior
of the pair wavefunction, ϕ(r), matches the solution of
the two-body problem as |r| → 0. Indeed, by using the
determinantal representation of the BCS wavefunction
(cf. Eq. 8), it can be shown that the many-body wave-
function constructed from such a ϕ(r) cannot be written

as in Eq. (4), where Ψ̃ depends only on (xi + yj)/2 and
the coordinates of the other particles but not on xi −yj .
The BPC is also often imposed on the anomalous corre-
lator [25], by requiring that

〈ψ↑(k)ψ↓(−k)〉 ∼
4π

k2
, (5)

for k ≫ kF (4πk2 is the Fourier transform of the term 1
r in

the BPC). This is akin to imposing the condition on an
expectation value, which is a necessary but not sufficient
requirement for Eq. (4) to hold. In fact, when the expec-
tation value is taken over the BCS state, this is equivalent
to imposing the condition on the pair wavefunction ϕ(k)
because 〈ψ↑(k)ψ↓(−k)〉 = ϕ(k)/(1 + |ϕ(k)|2).
In spite of the shortcoming pointed by Tan, the BCS

wavefunction still captures the long-distance correlations
of particles in the ground state, as discussed above. In a
sense, it is the simplest ansatz that describes a conden-
sate of fermion pairs that turn into molecular dimers as
the interaction is tuned across the Feshbach resonance.
Therefore, we shall adopt the simple-minded approach
that the shortcoming of BCS wavefunction can be fixed
by projecting it onto the physical Hilbert space. Indeed,
it has been recently shown [28] that, in the quantum
Monte Carlo method, a good measure of the quality of
a trial wavefunction is its overlap with the ground state.
Since the latter is certainly in the physical Hilbert space,
projection simply gets rid of the undesired components
of the trial wavefunction that decrease the overlap and
increase the variational energy. Thus, on a formal level,
we can define a projector, JBPC(as), onto the space of
states obeying Eq. (4) for a given value of the scattering
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length, as, so that, a variational sense, we choose to work
with:

|ΨBCS〉 = JBPC(as)|ΦBCS〉. (6)

Practically, the projection can be implemented in various
ways, and the result should be independent of the details
provided it is optimal in a variational sense. One method
that is particularly popular in fixed-node Monte Carlo
calculations is a Jastrow factor [33, 39]. Following those
approaches, we write the wavefunction as (in what follows
we collectively denote byX = {xk} the coordinates of the
spin-up fermions and byY = {yl} those of the spin-down
fermions):

ΨBCS(X,Y) =

N/2
∏

i,j=1

χJ(xi − yj) ΦBCS(X,Y), (7)

ΦBCS(X,Y) = det [ϕ(xi − yj)] , (8)

where we have written the unprojected BCS function,
ΦBCS as a determinant [34] (for N↑ = N↓ = N/2).
The above wavefunction should not be regarded as opti-
mal as far as the calculation of the ground state energy
is concerned, in so much as ΦBCS is also not the best
(unprojected) variational state and many improvements
are possible, such additional Jastrow factors, Feynman
backflow, etc [33]. However, this wavefunction is suffi-
ciently simple for the purpose of discussing the change
of picture brought about by the projection. In order to
fullfil (4) we demand that χJ(r) ∼

(

1
r − 1

a +O(r)
)

and

ϕ(r) = const.+ O(r2) for r0 ≪ r ≪ min
{

as, k
−1
F

}

. The
Jastrow is only required to correct the short-distance be-
havior of the wavefunction, and therefore χJ (r) → 1 for
r ≫ k−1

F . The detailed behavior of χJ(r) between these
two asymptotic limits must be determined variationally
and it depends on the gas parameter kF as and the spin
polarization. Moreover, since χJ(r) is a zero-energy so-
lution of the two-body problem for r0 → 0 (see next
section), we expect that, deep into the BCS and BEC
regime where |kFas| <∼ 1, it strongly deviates from unity
only in rather small region, r <∼ |as|.
Next we note that, by introducing Ji(xi;X) =

∏N/2
j=1 χJ(xi − yj) and Jj(Y;yj) =

∏N/2
i=1 χJ(xi − yj),

it is possible to write the projected BCS state (7) as a
determinant:

ΨBCS(X,Y) = det [ϕ(xi − yj)Ji(xi;Y)] (9)

= det [ϕ(xi − yj)Jj(X;yj)] (10)

= det
[

ϕ(xi − yj)J
1/2
i (xi;Y)J

1/2
j (X;yj)

]

(11)

Therefore, we can regard the above wavefunction again
as a BCS state, not of the original fermions, but of a sys-
tem of ‘composite fermions’ instead, which are defined
by attaching to each fermion a Jastrow factor. This can
be seen more clearly by working in second quantization.
By analogy to the theory of composite particles in the
fractional quantum Hall effect [37, 38], we introduce two

(hermitian) operators Uσ(r) (σ =↑, ↓) having the fol-

lowing property Uσ(r)ψ
†
−σ(s) = χJ (r − s)ψ†

−σ(s)Uσ(r),
but otherwise commuting. Indeed, provided that χJ(r)
is a positive function, an explicit construction of these
operators is Uσ(r) = exp

[∫

dr′ lnχJ (r− r′) ρ−σ(r
′)
]

.
Thus, if we define the following quasi-particle operator
π†
σ(r) = ψ†

σ(r)Uσ(r), the above state can be written as a
condensate of pairs of these quasi-particles:

|ΨBCS〉 =

[
∫

dxdyϕ(x− y)π†
↑(x)π

†
↓(y)

]N/2

|0〉, (12)

=

[

∑

k

ϕ(k)π†
↑(k)π

†
↓(−k)

]N/2

|0〉. (13)

It is also possible to define a quasi-hole operator ησ(r) =

U−1
σ (r)ψσ(r). It can be shown that

{

π†
σ(r), π

†
σ′ (r′)

}

=

{ησ(r), ησ′ (r′)} = 0 and
{

ησ(r), π
†
σ′ (r′)

}

= δσ,σ′δ(r−r′).

However, note that π†
σ(r) 6= [ησ(r)]

†. Therefore, these
operators should be handled with care as they result from
a non-unitary transformation and the states created by
them may turn out to be non-orthogonal (see Sect. IV
for further discussion).
The wavefunction in (7) can be regarded as a simple

model for the ground state of the superfluid state. The
Jastrow factor introduces attractive correlations between
fermions in different pairs because, at short distances,
χJ(r) matches the solution of the two-body problem
which describes two-particle attraction for as < 0 and
a shallow bound state for as > 0. These correlations can
be regarded as a ‘pairing frustration’ mechanism. The
mechanism is less effective deep into the BCS and BEC
regimes, where χJ(r) is short-ranged in the sense that it
strongly deviates from unity only for r <∼ |as|. Therefore,
the projected wave function will have a large overlap (at
finite N) with the unprojected BCS wavefunction. Nev-
ertheless, in the deep BEC regime, the short range Jas-
trow correlations describe the interactions between the
molecular dimers. On the other hand, in the crossover
regime where |kFas| ≫ 1, the size of the pairs and the
range of the Jastrow are both comparable to k−1

F , the
mean inter-particle distance. Therefore, pairing will be
strongly frustrated, which will lead to a reduction of the
superfluid density from the unprojected BCS state. As
to the fermionic excitations (Bogoliubov particles), they
can be obtained by projecting the Bogoliubov excitations
of the unprojected state |ΦBCS〉. However, since we are
interested in the normal state, we shall not pursue this
analysis here.

IV. THE NORMAL STATE

When obtained by variationally minimizing the en-
ergy of |ΨBCS〉 = JBPC(as)|ΦBPC〉, the gap ∆ that
parametrizes the unprojected BCS state, |ΦBCS〉, is a
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function of as, the mean density, and the spin polariza-
tion measured by e.g. P = |N↑ −N↓|. Nevertheless, let
us for a while consider ∆ as independent of as and imag-
ine that the gap collapses (i.e. ∆ → 0) while keeping
as constant. Physically, the collapse can be caused ei-
ther by thermal fluctuations or by making P sufficiently
large [48]. Näıvely, the state that results from such a

limit would be |ΦFS〉 =
∏

|k|<kF↑
ψ†
k↑

∏

|k|<kF↓
ψ†
k↓|0〉.

However, this state is unphysical because it does not sat-
isfy the BPC, Eq. (4), for the given value of as. The
correct state is |ΨN〉 = JBPC(as)|ΦFS〉. In terms of
the quasi-particle operators, π†

σ(k), the projected normal
state reads:

|ΨN〉 =
∏

|k|<kF↑

π†
↑(k)

∏

|k|<kF↓

π†
↓(k)|0〉. (14)

In coordinate representation this state is the following
Jastrow-Slater wavefunction (|kα| < kF↑, |kβ | < kF↓):

ΨN =
∏

i,j

χJ(xi − yj) det [φkα
(xi)] det

[

φkβ
(yj)

]

. (15)

From this form, it can be shown that π†
σ(k)|ΨN〉 = 0 if

|k| < kFσ and ησ(k)|ΨN〉 = 0 if |k| > kFσ. In words, the
state has a well defined Fermi surface.
In order to obtain a better insight into the excitations

created by the quasi-particle operator πσ(k), let us focus
on a state describing one spin-up fermion ’impurity’ in a
Fermi sea of N↓ fermions [49]:

〈x,Y|π†
↑(x)

∏

|kα|<kF↓

π†
↓(kα)|0〉 = 〈x,Y|ψ†

↑(x)U↑(x)

×
∏

|kα|<kF↓

ψ†
↓(kα)|0〉 =

N↓
∏

j=1

χJ (x− yi)det [φkα
(yj)] , (16)

where φk(r) = Ω−1/2eik·r and 〈x,Y| =
〈0|ψ↑(x)ψ↓(y1) · · ·ψ↓(yM ). The above state describes
a ‘Fermi polaron’ and it was first introduced in the
analysis of the normal state of the highly spin-polarized
Fermi gas at unitarity [11]. Indeed, by expanding the
exponent of U↑(x) = exp

[∫

dz lnχJ (x− z)ρ↓(z)
]

to lowest order, the following state is obtained

(|Φ↓
FS〉 =

∏

|kα|<kF↓
ψ†
↓(kα)|0〉, |k(↑)〉 = ψ†

↑(k)|0〉,

fJ(q) =
∫

ds lnχJ(s) e
−iq·r):

|π(k, ↑)〉 ≃ |k(↑)〉|Φ↓
FS〉+

1

Ω

∑

pq

fJ(q) |k− q(↑)〉

×ψ†
↓(p+ q)ψ↓(p)|Φ

↓
FS〉, (17)

which has been employed in simple variational ap-
proaches to the problem [29–31]. The above equations
show that the composite fermionic excitations described
by πσ(k) correspond to the original fermions dressed by
a cloud of opposite spin fermions.

In general, for arbitrary numbers N↑ and N↓, the ac-
tual energy of |ΨN 〉 must be obtained by variationally
optimizing the Jastrow projector so that

EN
0 =

〈ΨN |H |ΨN〉

〈ΨN |ΨN 〉
(18)

=
〈ΦFS|JBPC(as)HJBPC(as)|ΦFS〉

〈ΦFS|J 2
BPC(as)|ΦFS〉

(19)

is minimum. ForN↑ = N↓, using the Jastrow-Slater state
ΨN as the trial wavefunction of a fixed-node diffusion
Monte Carlo calculation, it was found in Ref. [11] that the
energy per particle is about 30% higher than the energy
of the superfluid state. This shows that the normal state
has a superfluid instability. The latter can be described
as condensation of pairs of composite fermions, according
to the discussion in Sect. III.
The excitation energy of a quasi-particle state is ob-

tained by evaluating:

ǫpσ(k) + EN
0 =

〈ΨN |πσ(k)Hπ
†
σ(k)|ΨN 〉

〈ΨN |πσ(k)π
†
σ(k)|ΨN 〉

=
〈ΦFS|ψσ(k)JBPC(as)HJBPC(as)ψ

†
σ(k)|ΦFS〉

〈ΦFS|ψσ(k)J 2
BPC(as)ψ

†
σ(k)|ΦFS〉

, (20)

(for quasi-hole states, π†
σ(k) should be replaced by

ησ(k)). Note that the Jastrow factor in this calculation
should be built from the same χJ (r) function as for the
ground state. The logic behind such an approximation is
that the ground state correlations are not strongly mod-
ified by the creation of a few low-energy excitations.

V. MEAN FIELD THEORY APPROACH

Although it is possible to deal with the compos-
ite fermions (CFs) numerically using the Jastrow-Slater
wavefunctions introduced above, it can be also useful to
derive an effective Hamiltonian that describes them. In-
deed, we show in the following that the normal state |ΨN〉
is the ground state of a certain mean-field (MF) Hamil-
tonian. Let us first derive the Hamiltonian for the unpro-
jected states by considering the many-body Schrödinger
equation for the physical states:

ih̄∂tΨphys(X,Y, t) = HΨphys(X,Y, t) (21)

where we make no particular assumption about the form
of Ψphys(X,Y, t). The Hamiltonian,

H =

N↑
∑

i=1

p2
i↑

2m
+

N↓
∑

j=1

p2
j↓

2m
+
∑

i,j

V (xi − yi). (22)

In the above expression pi↑ (pj↓) is the momentum op-
erator of the i-th (j-th) spin-up (spin-down) particle,
xi (yj) its position operator, and V (x − y) is a short-
range two-body potential, which in the limit r0 → 0
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can be replaced by the BPC, Eq. (4). Upon introducing
Ψphys(X,Y, t) = JBPC(as)ΦCF(X,Y, t) =

∏

i,j χJ(x −

yj)ΦCF(X,Y, t) into (21), we arrive at:

ih̄JBPC(as)∂tΦCF = JBPC(as)HCFΦCF, (23)

where

HCF =

N↑
∑

i=1

(pi↑ + v↑(xi))
2

2m
+

M↓
∑

j=1

(pj↓ + v↓(yj))
2

2m

+
∑

i,j

V (xi − yj), (24)

the vectors vσ(r) = −isσ h̄
∫

ds ∇rχJ (r−s)
χJ (r−s) ρ−σ(s), where

ρσ(r) =
∑

k δ(r − rk) is the density operator of the CFs
carrying spin σ and s↑ = −s↓ = +1. In retrospect, it
may seem that we have gained very little by the previous
transformation. The CF Hamiltonian, Eq. (24), looks
even more complicated that the original one, Eq. (22).
However, it can be shown that the presence of the inter-
action potential in (24) is somewhat redundant: Upon
expanding the kinetic energy term operator, the follow-
ing term appears:

∑

i,j

1

χJ (xi − yj)

[

−
h̄2

2m

(

∇2
xi

+∇2
yj

)

+V (xi − yj)

]

χJ(xi − yj), (25)

which vanishes because χJ(r) obeys:

[

−
h̄2

m
∇2

r + V (r)

]

χJ (r) = 0. (26)

Hence,

HCF =

N↑
∑

i=1

[

p2
i↑

2m
+

1

m
v↑(xi) · pi↑

]

+

N↓
∑

j=1

[

p2
j↓

2m
+

1

m
v↓(yj) · pj↓

]

+
1

2m

N↑
∑

i=1

[

v2
↑(xi) + ξ↑(xi)

]

+
1

2m

N↓
∑

j=1

[

v2
↓(yj) + ξ↓(yj)

]

, (27)

where the scalar potential ξσ(r) =

h̄2
∫

ds
[

∇rχJ (r−s)
χJ (r−s)

]2

ρ−σ(s). This Hamiltonian de-

scribe a system of CF interacting via short-range vector
vσ(r) and scalar ξσ(r) potentials. The potentials depend
on the density distribution of the opposite spin species.
The CF Hamiltonian still looks quite complicated, but
it is well defined in the unitary limit where |as| → ∞.

The above Hamiltonian, HCF, greatly simplifies upon
performing a mean-field approximation. The approxima-
tion is similar in spirit to the mean-field theories of com-
posite particles in the fractional quantum Hall effect [36–
38]. Let us replace the density operator ρ−σ(s) of the CFs
by its expectation value in the expressions for vσ(r) and
ξσ(r). Thus, vσ(r) = −ih̄sσ

∫

ds lnχJ(r− s)∇sρ−σ(s) =
0 and ξσ(r) = const. Dropping the constant term, the
mean-field Hamiltonian reads:

HMF
CF =

N↑
∑

i=1

p2
i↑

2m
+

N↓
∑

j=1

p2
j↓

2m
. (28)

In other words, the CFs become non-interacting and
their ground state wavefunction is the Slater determinant
ΦFS(X,Y), that is, the CF ‘Fermi sea’. The ground state
for the actual fermions is |ΨN 〉 = JBPC(as)|ΦFS〉, which
was introduced in Sect. IV rather heuristically. Fur-
thermore, the excitations of this state are obtained from
projecting the excitations of non-interacting CF states,
which are also Slater determinants. In second quantiza-
tion, these excitations correspond to the quasi-particles
(created by π†

σ(k) with |k| > kFσ, cf. Eq. 29) and the
quasi-holes (created by ησ(k) with |k| < kFσ, cf. Eq. 30)
introduced in Sect. III, and which were related to the
Fermi polarons in Sect. IV.
Nevertheless, it must be noted that the quasi-

particle and quasi-hole states resulting from the projec-
tion are not necessarily orthogonal. For single quasi-
particle/quasi-hole states, spin and momentum conser-

vation require that 〈ΨN |πσ(k)π
†
σ′ (p)|ΨN 〉 = 0 only if

k 6= p and/or σ 6= σ′. However, states containing dif-
ferent number of excitations but carrying the same total
momentum and spin are not orthogonal. The non orthog-
onality stems from the non-unitary transformation in-
volving the operators Uσ(r) introduced in Sect. III, which
is needed to carry out the projection. In spite of their
lack of orthogonality, the quasi-particle and quasi-hole
states are left eigenstates of JBPC(as)H

MF
CF and therefore

are stationary states at the mean-field level. However,
because of projection and the mean-field approximation,
JBPC(as)H

MF
CF is not a hermitian operator. This feature

makes it difficult to set up a perturbative approach to
analyze the effect of corrections to the mean-field theory.
Similar difficulties have been found in the approach to
the fractional Hall effect described in [38]. In standard
Landau FLT, the quasi-particles are not eigenstates of
the system but narrow superpositions of the latter. This
leads to similar difficulties when defining quasi-particle
operators in the standard theory of Fermi liquids [35].
In the present mean-field theory, the matrix elements
for quasi-particle decay vanish and therefore the quasi-
particle and quasi-holes become stationary states. The
non-orthogonality, however, can regarded as a remnant of
the fact that they are not true eigenstates of the system.
Although it may be coincidental as it results from a

rather uncontrolled approximation, the lack of renor-
malization of the quasi-particle mass is in qualitative
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agreement with the experimental evidence around uni-
tary. In this regard, the ENS group found that [2]
m∗ ≃ 1.13m. The lattice Monte Carlo calculations of [21]
are also in agreement with an internal energy that, up
to an overall shift, is the same as for a non-interacting
Fermi gas. If we rely on perturbation theory at weak
coupling (|kFas| ≪ 1), for N↑ = N↓, it is found that
m∗/m = 1 + 8

15π2 (7 ln 2− 1) (kF as)
2 + O

(

(kFas)
2
)

≃

1+ 0.208 (kF as)
2 (see e.g. Ref. [41], pag. 148). This for-

mula yields about a 20% correction for kFas = −1, out-
side its validity range, and which would be about 10%
higher than the value of the effective mass determined
by the ENS group at unitarity. In the highly polarized
gas at unitarity m∗ ≃ 1.17m [2, 12] and m∗ ≃ 1.20m
from the thermodynamic measuremnts of Ref. [2]. Fur-
thermore, theoretical calculations of the Fermi polaron
effective mass [11, 19, 30, 32] also found thatm∗ does not
strongly renormalize from the bare atom mass in a large
region of the crossover regime where the normal phase
is found to be stable. Thus, phenomenologically, these
small deviations from the bare mass can be thus regarded
as measure of the strength of the fluctuations beyond
the mean-field approximation. The potential fluctuations
can be related to those of the operator ∇ρσ(r) within the
range of the Jastrow factor ∼ min{|as|, k

−1
F }. In particu-

lar, when a molecular bound state forms, the mean-field
theory will break down. This is because it assumes that
the density around a given CF is constant and its fluc-
tuations are negligible. But this is no longer true when
the bound state forms. In other words, such a bound
state cannot be described by a projecting a Slater deter-
minant of CFs. Thus, ultimately, the justification for the
mean-field approximation is directly related to the accu-
racy of the description of the normal state by the Jastrow
Slater wavefunctions. The latter have been shown to be
good trial wavefunctions for the importance sampling in
fixed-node diffusion Monte Carlo calculations [33, 39, 40],
which means that they are able to capture the nodal sur-
face of the normal state.
The thermodynamics of the normal state at the mean-

field level is the same as for the non-interacting Fermi gas
because thermodynamic functions only depend on the
spectrum and their degeneracies and not on the wave-
functions. Thus, Fermi liquid theory trivially applies to
this system. To see this, we first recall that the ground
state |ΨN 〉 has a well defined Fermi surface. Further-
more, the quasi-particle and quasi-hole excitations are
fermions that carry the same quantum numbers as the
original fermions. This is because they result from pro-
jecting non-interacting Fermi gas states:

π†
σ(k)|ΨN 〉 = JBPC(as)ψ

†
σ(k)|ΦFS〉, (29)

ησ(k)|ΨN 〉 = JBPC(as)ψσ(k)|ΦFS〉. (30)

In general, projection can be used as a formal device to
establish a one to one correspondence between the states
of the non-interacting gas of CFs and the excitations of
the real system. Just as in standard Landau FLT, this
allows to introduce the distribution function of quasi-

particles (or quasi-holes) nσ(k). The Landau free energy
functional within the mean-field approximation reads:

FMF = F0 +
∑

k,σ

[ǫσ(k)− µσ] δnσ(k) (31)

where δnσ(k) = nσ(k)− n0
σ(k), and n

0
σ(k) = θ(kFσ − k)

and F0 is the ground state free energy. The Landau pa-
rameters vanish at the mean-field level. Experimentally,
however, it is found that F s

1 6= 0 (F s
1 = 0.39 for the uni-

tary unpolarized gas [2]), which by virtue of Galilean in-
variance, accounts for the deviations of the effective mass
from the bare mass. Furthermore, F s

0 = −0.42 was deter-
mined by the ENS group [2] by fitting the FLT equation
of state of the unpolarized gas at unitarity. Thus, inter-
actions between the composite Fermions which are de-
scribed by the corrections to the mean-field theory should
account for the Landau parameters.
On the other hand, although the projection procedure

allows us to establish a one to one correspondence with
the non-interacting Fermi gas states, it does not quite
correspond to the process of adiabatic continuity envis-
aged by Landau (see e.g. Ref. [35], pag. 2 and following).
In the case of 3He, the Jastrow Slater wavefunctions de-
scribe a standard Fermi liquid. However, in this case, un-
like the case of 3He where the Jastrow factor is introduced
to obtain a better variational description of the ground
state, the Jastrow factor introduced above simply imple-
ments the BPC, that is, the projection onto the physi-
cal Hilbert space. It is therefore not just a convenience,
but a physical need. Thus, when dealing with the quasi-
particle and quasi-hole excitations, we are effectively pro-
jecting non-interacting states [42] (cf. Eqs. 29,30 ). It can
be argued that, by using the device of varying the scat-
tering length so that as → 0, the correspondence with
the particle and hole states of the non-interacting Fermi
gas becomes more apparent. Such a procedure does not
warranty that the overlaps:

Zqp = lim
k→k+

F

〈ΨN|ψσ(k)π
†
σ(k)|ΨN〉, (32)

Zqh = lim
k→k−

F

〈ΨN|ψ
†
σ(k)ησ(k)|ΨN〉 (33)

are in general equal, as required by standard FLT the-
ory, or even remain finite for all values of as in the ther-
modynamic limit. If they vanished, the quasi-particles
and quasi-holes, which are the true elementary excita-
tions of the system, will not behave as Landau quasi-
particles [42, 43]. The deep reason why Zqp and Zqh

may turn out to be different or even vanish is the fol-
lowing: When adding one fermion to the ground state
|ΨN〉 (or in general to any physical state), the resulting
state is not in the physical Hilbert space. This is be-
cause the other particles cannot immediately adapt to
the newcomer. However, this conclusion does not apply
to the state that results from removing one fermion. Such
a state belongs the physical space but also contains the
’correlation hole’ left by the removed particle. The latter
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situation is relevant to spectroscopic measurements, such
as those carried out by the JILA group [5]. Therefore,
there is a clear asymmetry between the states with one
particle more and one particle less. Investigating these
issues is beyond the scope of the present work and will
be done elsewhere [44].

VI. CONCLUSSIONS

In previous sections, we have described a wavefunction-
based approach to study the properties of the ultracold
dilute Fermi gas. The basic idea is that projection onto
the physical Hilbert space of wave functions obeying the
Bethe-Peierls condition must be implemented from the
scratch. The need for projection stems from the short
range of the interaction and diluteness of the gas. This
implies that two-body encounters are described by the
two-body wavefunction, which is assumed to reach its
asymptotic value before other collisions can take place.
This physics is encapsulated in the Bethe-Peiers condi-
tion, which in this work has been implemented by means
of a Jastrow factor. It is interesting to note that the sit-
uation is reminiscent of the composite Fermion approach
of the fractional quantum Hall effect [36–38]. It is also re-
lated to Anderson’s ‘hidden Fermi liquid theory’ [36, 42]
of the Gutzwiller projected Hubbard model. The com-
mon thread between these ideas is that appropriate pro-
jection of a Fermi gas defined in an unphysical Hilbert
space can account for Fermi-liquid like behavior in sys-
tems with no obvious small parameter for a perturbative
analysis to be carried out. This is the case of the ultra-
cold dilute Fermi gas in the crossover regime.
Furthermore, as far as the superfluid state is con-

cerned, in Sect. III we have argued that projection au-
tomatically fixes an important shortcoming of the BCS
wavefunction pointed by Tan [22]. By considering that
the gap of the (unprojected) BCS state collapses, the
same principle leads to a projected Fermi gas, which is
postulated as the most natural candidate for the nor-
mal state of the system, even in the strongly interacting
limit. This state is described by Jastrow-Slater wave-
function, which is also shown to be the ground state of
a mean-field theory. The mean field theory also exhibits
non-interacting quasi-particle and quasi-hole excitations,
which at low temperatures yield Fermi liquid thermo-
dynamics. The quasi-particles are related to the Fermi
polarons, which have been found to describe the normal
state of a highly polarized Fermi gas at unitarity [11, 12].

We have also shown that the superfluid ground state
can be understood as a condensate of pairs of composite
Fermions or Fermi polarons.

A rather direct way of approaching the composite
fermion theory is to investigate numericaly the proper-
ties low-lying excited states of the normal and superfluid
state state. This has been done already to a large extent
for ground state properties using the fixed-node diffusion
Monte Carlo method [33, 39, 40]. However, it is also pos-
sible to employ the same Jastrow projector to analyze
excitations of the system as in Jain’s approach to the
theory of composite fermions of the fractional quantum
Hall effect [36]. For example, a better understanding of
the quasi-particle interactions can be obtained through
a Monte Carlo calculation of the energies of two quasi-
particle (two quasi-hole, o quasi-particle and quasi-hole)
excitations, which will allow to estimate the Landau pa-
rameters. Furthermore, analytical progress may be also
possible by studying corrections to the mean-field ap-
proach discussed above. However, it may be necessary to
find more convenient ways of implementing the projec-
tion, e.g. by defining a constrained functional integral.
This would make it possible to develop a field theoretical
approach to deal with the composite fermion or Fermi
polaron liquids, and systematically study corrections to
the mean-field theory. As argued in previous sections,
we expect the composite fermions to be much weakly in-
teracting than the original fermionic atoms, as part of
the interactions have been transfered to the Jastrow fac-
tor. If successful, such efforts will take the theory from
the present qualitative level to one where quantitative
predictions can be made and compared directly with the
experiments. Hopefully, progress on this problem will be
reported elsewhere [44].
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