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Learning Control for Batch Thermal

Sterilization of Canned Foods

Abstract

A control technique based on Reinforcement Learning is proposed for the thermal
sterilization of canned food. The proposed controller has the objective of ensuring a
given degree of sterilization during Heating (by providing a minimum temperature
inside the cans during a given time) and then a smooth Cooling, avoiding sudden
pressure variations. For this three automatic control valves are manipulated by
the controller: a valve that regulates the admission of steam during Heating, and
a valve that regulate the admission of air, together with a bleeder valve, during
Cooling. As dynamical models of this kind of processes are too complex and involve
many uncertainties, controllers based on learning are proposed. Thus based on the
control objectives and the constraints on input and output variables, the proposed
controllers learn the most adequate control actions by looking up a certain matrix
that contains the state-action mapping, starting from a preselected state-action
space. This state-action matrix is constantly updated based on the performance
obtained with the applied control actions. Experimental results at laboratory scale
show the advantages of the proposed technique for this kind of processes.

Key words:
Intelligent Process Control, Sterilization Process, Food Process, Batch Process,
Reinforcement Learning.

1 Introduction1

The food industries are nowadays facing critical changes in response to con-2

sumers, which, in addition to health and safety awareness, demand an ever3

larger diversity of food products with high quality standards. On the other4

hand, these industries are in a permanent quest for new markets and popula-5

tion sectors not accessible before, which immediately translates into the search6

for more efficient processes, in order to gain market share (Bruin and Jongen,7

2003).8

This paper concentrates on the design of controllers for a specific process in9

the food industries, namely the so-called thermal processes for sterilization of10

canned foods (Lewis, 2006; Ramaswamy and Singh, 1997). These processes are11
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very important for minimizing the activity of harmful microorganisms in food,12

thereby reducing health risks and increasing the durability of the products.13

For the problem at hand, the microorganism activities are reduced through14

thermal sterilization in pressurized retorts using steam. Unfortunately, thermal15

processing also produces the deterioration of the organoleptic properties of16

the food when conditions are not carefully controlled. For this reason, an17

appropriate control of the process is fundamental to guarantee the safety and18

quality of the products (Lewis, 2006; Ramaswamy and Singh, 1997).19

Thus, the central objective of controllers for the sterilization process is the in-20

activation of microorganisms present in the foodstuff, while preserving as much21

as possible product quality, avoiding very quick variations in temperature and22

pressure and minimizing the operation time. For this, the sterilization process23

can be divided in three stages that use different control strategies: Venting,24

Heating and Cooling. Venting in normally carried out manually, so the stages25

of the process relevant from the point of view of controller design are Heat-26

ing (where the main objective is to ensure a given degree of sterilization by27

ensuring a given temperature during a certain time by manipulating the en-28

trance of steam in the retort), and Cooling (where the temperature is carefully29

decreased by replacing the steam with air).30

The kinetics of thermal destruction of microorganisms or degradation of nu-31

trients are usually assumed to follow pseudo-first-order kinetics (e.g. the TDT32

model) with an exponential-type temperature dependence (Balsa-Canto et al.,33

2002a,b). Such kinetics constitutes the basis to quantify the degree of steril-34

ization, usually given in terms of lethality (in units of time), that defines the35

amount of time required to produce a certain decimal reduction. For details,36

the reader is referred to Ramaswamy and Singh (1997). Unfortunately, due37

to the complexity of the process, the variability of the products to be ster-38

ilized and the reduced number of sensors it is not feasible to derive models39

adequate for model-based controller design. To deal with this issue, this pa-40

per concentrates on the application of a control technique based on learning.41

More precisely, a Model-Free Learning Controller (MFLC) will be develop for42

this thermal sterilization processes. This MFLC is based on Reinforcement43

Learning, so it is an agent-based technique based on re-framing the problem44

of achieving process control objectives by learning through interaction with45

the process (see Figure 1), taking always into account the inherent constraints46

in input and output signals. The (agent) interacts with the rest of the process47

(also called environment in learning approaches): the agent selecting actions48

and the environment responding to those actions and presenting new situations49

to the agent. The environment also provides rewards, that are numerical values50

that the agent tries to maximize, as they give a measurement of performance51

(Sutton and Barto, 1998). More specifically, the agent and the environment52

interact at each of a sequence of discrete time step. At each time step, the53

agent receives some representation of the environment’s state, and on that54
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basis selects an action. The agent receives a numerical reward, and moves to55

a new state (Sutton and Barto, 1998). Thus, the reward function depends on56

the recent state, action and successor state: with time, the agent gathers more57

information and provides optimal actions for every visiting state.58

Although Reinforcement Learning ideas seem promising, they were not de-59

veloped for process control problems (Sutton and Barto, 1998; Bertsekas and60

Tsitsiklis, 1996), so in this paper the Model-Free Learning Control (MFLC)61

technique (Syafiie et al., 2007a; Syafiie et al., 2007b) is used to control the62

sterilization process. This MFLC is gives a feasible implementation of Rein-63

forcement Learning for process control problems, by providing a precise but64

simple definition of symbolic states and actions, based on control objectives65

and the constraints on input and output variables. This methodology is com-66

plementary to other intelligent control approaches (such as Fuzzy Logic or67

Neural Networks), in the sense that initial values for the parameters of the68

MFLC algorithm can be derived from previous controllers. Starting from these69

initial parameters, using learning MFLC provides a simple methodology to im-70

prove the controller by interaction with the plant.71

The rest of this article is structured as follows: First the background and scope72

are stated in Section 2. A short presentation of the thermal sterilization pro-73

cess is given in Section 3. The proposed technique to control the sterilization74

process by using Model-Free Learning Control (MFLC) is given in Section75

4. The MFLC application for controlling a sterilization process at laboratory76

scale is discussed in Section 5. Finally, some conclusions are given in Section77

6.78

2 Background and scope79

In industrial sterilization processes for canned food the most common con-80

trollers are still PID. For example in Mulvaney et al. (1990), a Proportional81

Integral (PI) controller was developed for this process. A study using a com-82

bination of the linearizing-transformation of differential geometry and the83

quality-control of Q-PID/Q-PI was presented by Alonso et al. (1993), whereas84

a PID-type controller with parameters selected using Internal Model Control85

(IMC) was reported by Alonso et al. (1997, 1998). It was found that PID86

controllers work well during Heating as long as the plant is operated in small87

neighborhoods of the constant-heating temperature around the tuning region;88

unfortunately, frequently the controllers have to be retuned to operate in other89

conditions (for example, when the type and amount of cans change) , which90

is cumbersome.91

Advanced control strategies have also been proposed for this process, such as92
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the online correction of the lethality value reported by Teixeira and Tucker93

(1997). In Kuma et al. (2001), an algorithm based on three control modes was94

presented, but no specific proposal was given on how to regulate the steam,95

water, drain, air and bleeder valves. An optimal control problem with state96

and control constraints governed by a nonlinear heat equation was proposed97

by Kleis and Sachs (1999). The discretized optimal control was expressed as98

a large-scale continuous optimization, which can be solved using sequential99

quadratic programming. However, the proposed algorithm was mathemati-100

cally complicated. A closed-loop optimal receding horizon controller (RHC)101

incorporating model uncertainty was designed and studied by Chalabi et al.102

(1999), where a non-gradient method was used to solve the corresponding non-103

linear optimization problem. Unfortunately, this kind of controllers requires104

that all the states of the system to be measurable, which is impractical. Since105

all these advanced controllers are difficult to design and need a precise mathe-106

matical model of the process, the most frequent control technique in industry107

is still, therefore, a manual supervision of PID controllers.108

To deal with problems of batch to batch variations and the complexity of109

the models for control, techniques based on learning would be adequate as110

they adapt to the specific situation at hand through the result of previous111

experiences. Techniques based on Reinforcement Learning have been selected,112

as they provide a rigorous methodology for learning without detailed mathe-113

matical models of the controlled plant, using a simple algorithm suitable for114

real-time implementation (Sutton and Barto, 1998).115

In particular the MFLC approach, previously proposed by some of the authors116

(Syafiie et al., 2007a; Syafiie et al., 2007b), will be used to control the thermal117

processing, as it corresponds to a feasible implementation of Reinforcement118

Learning algorithms (Sutton and Barto, 1998) for Process Control. This tech-119

nique is used because it is simple and does not need a precise a priori model of120

the process, but incorporates basic knowledge of the process behavior (infor-121

mation from output range, control limitations, loop interactions, etc). Thus,122

in MFLC controllers the control objective is expressed as the optimization of123

a desired performance index by learning to apply appropriate control actions124

through interaction with the plant. In particular, the MFLC approach pro-125

posed here is based on Q-learning (Sutton and Barto, 1998; Bertsekas and126

Tsitsiklis, 1996). However, the idea can be easily augmented to improve learn-127

ing speed by applying other methodologies in literature, such as lazy learning128

(Atkenson et al., 1997a,b), near optimal closed-loop control (Ernst, 2003) and129

q-iteration with CMACS (Timmer and Riedmiller, 2007).130

We must point out that, although for simplicity, and in order to represent131

industrial practice, the problem at hand is represented as a sequence of two132

dynamical systems (during Heating a single-input single-output system, and133

during Cooling a two-input single-output system), if needed the proposed ap-134
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proach can be extended to more complex multiple-input multiple-output sys-135

tems using the ideas of Riedmiller (1997).136

3 Batch Thermal Sterilization Process137

The thermal sterilization processes for prepackaged food can be carried out in138

continuous or batch units. This article concentrates on learning to control the139

thermal sterilization process in batch units, as it is the most frequent approach140

in the industry, and the one that can make better use of a learning approach.141

3.1 Process Description142

The sterilization process is assumed to be carried out in batch steam retorts as143

depicted in Figure 2. A typical operation cycle involves several stages, which144

in this paper are assumed to be the following:145

• Venting: In this initial stage, steam is introduced in the retort to eliminate146

the air, so heat transmission is more efficient during Heating. At this stage,147

bleeder and drain valves are open. When the pressure in the retort, Pr,148

matches that corresponding to saturated steam, Ps, at that temperature,149

there is only steam in the retort, so Heating can start.150

• Heating: The objective of this central stage is that the temperature inside151

the retort is at the level required, for enough time to reach the desired152

microbiological lethality. At time t the lethality F (t) is defined as follows:153

F (t) =

t∫

0

10
T (t)−Tref

zref dt (1)154

where zref and Tref are parameters that depend on the container and the155

product, which are obtained experimentally, and T (t) is the temperature at156

the critical point (the point inside the product with lowest temperature),157

(see Ramaswamy and Singh (1997); Alonso et al. (1997)). This lethality158

is affected by small variations in the temperature, so automatic control is159

required during this cycle.160

• Cooling: Once the Heating period concludes, the product is cooled with161

water down to room temperature. At the same time, air is injected into162

the retort to avoid sudden pressure drops that could result in the bursting163

of the product containers. Pressure control during this stage is especially164

important for glass containers or conduction heated-type products where the165

existence of sharp temperature gradients between the inside and the outside166

of the product induces high differential pressure (Alonso et al., 1997, 1998).167
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4 MFLC Technique168

The Model-Free Learning Control technique (MFLC) that is proposed here for169

batch sterilization processes is a control technique, based on Reinforcement170

Learning (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996), which gives171

a feasible implementation of automatic learning in process control problems,172

by providing a precise definition of symbolic states and actions, based on173

control objectives and the constraints on input and output variables. It has174

been presented in detail by the some of the authors in Syafiie et al. (2007a);175

Syafiie et al. (2007b), so only the main ideas are given here.176

4.1 MFLC Architecture177

The MFLC architecture is represented in Figure 3: as with most Reinforcement178

Learning algorithms, it is based on describing the system in terms of symbolic179

states, so the controller learns how good the application of a given action in180

a given state is, by applying the action to the system and then checking the181

quality of the response. The evaluation of the effect of each action is done182

by estimating the expected return mathematically, storing the values of this183

return (which measure the quality of the response) in the so-called Q-matrix184

(discussed in section 4.2).185

The MFLC is based on a precise selection of states, actions and control signals186

(discussed in sections 4.3 and 4.4), with the objective of representing typical187

problems in process control and being easily understood by the final user.188

The operation of the algorithm, represented in Figure 3 is based on, first, the189

selection of the agent of one action from those available in the current state,190

using the ”Policy”. Then, the action is converted to a control signal in the191

”Calculation U” block. Then, based on the measured output, the ”Situation”192

block estimates the next state and the corresponding reward. From this re-193

ward, the so-called Q-value is updated in the ”Critic” block, which reflects194

the adequacy of the action applied. As time goes by, actions are selected by195

the agent, and learning is carried out by checking the quality of the response:196

Actions that drive the system into the goal state are considered to be good,197

so its Q-value is increased. On the other hand, actions that do not drive the198

system into the goal state are punished.199

4.2 Q-matrix200

Mathematically, the objective in MFLC is to maximize the expected return201

(Sutton and Barto, 1998) taking into account the control and state constraints.202
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A central part of the learning algorithm is the estimation of this expected203

return. For this, the state-action value function, Q(s, a), is used, as it contains204

the expected return, when starting from the state s, the agent applies the205

action a, and thereafter follows the policy π:206

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s, at = a

}
. (2)207

This function is stored in a matrix Q(st, at), the Q-matrix. At each sampling208

time, these Q-values are calculated by taking into account the current and209

future benefits: when action at has been selected and applied to the plant, the210

system moves to a new state, st+1, and receives a reinforcement signal, rt+1211

(which evaluates the quality of the response), so the Q-matrix is updated as212

follows:213

Q(st, at) ← (1− α)Q(st, at) + α[rt+1 + γ max
b∈Ast+1

Q(st+1, b)] (3)214

where:215

- The learning rate, α ∈ (0, 1], is a tuning parameter that can be used to216

optimize the speed of learning (a large learning rate makes learning faster,217

but might induce oscillations). It is required for computation of expectation218

in the form of an iterative averaging.219

- The discount factor, γ ∈ (0, 1], is used as a factor to weight the effect more220

heavily in the near future: If γ is small, the agent learns to behave only for221

short-term reward; the closer γ is to 1 the greater the weight assigned to222

long-term reinforcements.223

- Ast+1 is the finite set of possible actions in the new state.224

4.3 State Representation225

A central issue in all Reinforcement Learning algorithms is the definition of the226

states, which are symbolic and represent the ”distance” to the goal. In MFLC,227

the states are defined based on the control objective and the constraints on the228

control signal and the states, as follows: the control objective is considered to229

be to maintain the desired output inside the band r−d and r+d, as shown in230

Figure 4. The width of this band is defined based on the tolerance of the system231

(which depends on measurement noise, disturbances and the specifications).232

This band is defined as the goal band, and corresponds to the goal state, where233

the agent should drive the system and ensures that it remains there (it is234

now assumed, without loss of generality, that is exactly in the middle of the235

working range). To describe the rest of the symbolic states, it is considered236
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that the agent has h states from the goal state to the maximum positive237

or minimum negative error of the system, f (Selecting h is a trade-off: this238

number must be large enough to describe all the different responses of the239

process, but small enough to reduce computational time and the size of the240

Q-matrix). The ”span” of each state can be calculated as follows:241

c =
f − d

h
. (4)242

Thus, the positive bound parameter can be presented as:243

ωi = d + (i− 1)c, i ∈ [1, ..., h] (5)244

(For negative errors, the bound parameter is trivial by changing signs). Thus,245

the vector of symbolic states can be presented as follows:246

gj =





e− ωj if e ≤ ωj;

ωj − e else,
j ∈ [1, ..., 2h + 1] (6)247

where e is the tracking error. The symbolic current state, st, is just:248

st = arg max
j

(gj). (7)249

4.4 Action Representation250

In the single-input single-output version of MFLC, the control signal ut ∈ R251

is calculated by varying the previous control signal in a magnitude calculated252

from the difference of the numerical values of the selected optimal action, at ∈253

N, with respect to the wait action, aw (action corresponding to maintaining254

the previous control signal). That is:255

ut = ut−1 + k(aw − at), (8)256

where k is the tuning parameter. This gives a PI-like structure, which simplifies257

initialization and tuning for the end user. At each state there is only a finite258

set of possible actions (see Figure 5). These actions are selected based on the259

systems description: in particular, from the limitations on the minimum and260

maximum variations of the control signal, as follows: Let the control variations261

be bounded as follows:262

∆u ≤ |∆u| ≤ ∆u, (9)263
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where ∆u and ∆u are known bounds. The number of total actions needed to264

satisfy the constraints can be calculated as follows:265

Na = 2h

(
round

(
∆u−∆u

kh

))
+ 1, (10)266

where the round-up function is used. From (8), (9) and (10), the value corre-267

sponding to the wait action aw, can be calculated as follows:268

aw =
Na + 1

2
. (11)269

If there is no overlapping, the number of actions in each state can be calculated270

being na = Na−1
2h

. However, to increase the number of available actions and271

represent nonlinear action-to-space relations (important in process control),272

a degree of overlapping must be included (see Figure 5). Of course, at each273

state, not all the actions are available: Each state has a subset of actions. For274

example, during Heating, if the tracking error for temperature is very small,275

the only actions available are those that increase to correct the temperature.276

Thus, the number of actions in each state is nβ
a = na(1 + β), where β is a277

parameter that gives the degree of overlapping with neighboring states (always278

selected such that nβ
a is integer). Then, the available actions for every state go279

from aj
p to aj

b (except in the goal state, where there is only the wait action).280

The idea is presented in Figure 5 and developed in Syafiie et al. (2008). Those281

available actions can be calculated as282

aj
p = aj−1

p + (j − 1)v,

aj
b = aj

p + nβ
a − 1,

(12)283

where v = β nβ
a

h
and aj−1

p is the first action in the state j calculated as284

aj−1
p =





1, if j = 1

2aw − aj−2
b , if j = h + 2

. (13)285

The strategy for selecting one action from those available ones is through286

exploration and exploitation policies. The agent explores those available actions287

to know the optimal value function by executing trial actions, following the288

ε-greedy policy (Sutton and Barto, 1998). This means that the action which289

has the maximum Q-value will be selected with 1− ε probability and the rest290

will explore trial actions selected from those available in the state.291
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5 Thermal Control of Prepackaged Food292

This section explains the application of MFLC ideas for batch thermal ster-293

ilization. The first part of this section discusses the control strategy, followed294

by a discussion on the selection of the parameters of the controllers for the295

Heating and Cooling stages of these sterilization processes.296

As discussed in Section 3, there are three crucial steps in controlling the ster-297

ilization process: Venting, Heating and Cooling.298

The proposed control strategy for these cycles is shown in Figure 6. As the299

venting stage can be controlled using a simple technique (keeping bleeder and300

drain valves fully open until the pressure inside the retort Pr reaches the301

steam pressure Ps), the control application therefore concentrates on Heating302

and Cooling. The use of MFLC for Heating and Cooling is now presented.303

5.1 Heating Control Strategy304

During Heating, the control objective is to maintain the temperature inside305

the goal band by manipulating the steam valve. To evacuate the condensed306

water from the retort, the drain valve is open. Also, the bleeder valve is slightly307

open.308

Mathematically, during Heating, the objective is to maintain the retort tem-309

perature within a tolerance of ±2.0oC with respect to the provided reference.310

Thus, the goal band is r − 2.0 to r + 2.0. The output range is considered311

to be ±4.0 oC with respect to the reference. Thus, from these numbers and312

following the ideas presented in Section 4, there are 21 symbolic states, where313

state #11 corresponds to the goal state. The actions are then defined based314

on the possible control variations: the signal must vary within the following315

bounds:316

0.0001 ≤ |∆u| ≤ 0.008. (14)317

Thus, the Q matrix size is 1601×21, where the wait action is action #801 (this318

matrix will be denoted QH). The tuning parameter is selected to be k = 10−5,319

based on the control constraints. To include some nonlinearity, a small overlap320

is considered, with the number of actions in every symbolic state to be 158.321

Therefore, in state #1 the actions are #1, · · · , #158, in state #2 the actions322

are #71, · · · , #228, and so on, following (12). The controller parameters are323

summarized in Table 1.324
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The objective of the control task is to maintain the process in the goal state,325

or return it to the goal state if there has been any disturbance or change of326

reference. To achieve this, maximum reward is introduced for actions causing327

the process error to be smaller than the previous one. Actions that move the328

system away from the goal band are punished. Therefore, the reward is given329

as:330

Rt =





1.0 if |et| ≤ |et−1|,
−1.0 otherwise.

(15)331

Of course, more complex reward functions could be selected, but this particular332

reward function has been selected following the ideas in Smart (2002), which333

recommends not indicating a detailed path for the agent to achieve the goal,334

but only the goal, as the path assumed to be the most adequate might not335

really be the best (learning takes care of finding the most adequate approach).336

Thus, this gives an approach parallel to the Mayer-type objective functions in337

Optimal Control (Stryk and Bulirsch (1992)), with the trajectory constrained338

by the limited number of actions available in each state.339

Heating finishes when the desired lethality time tl is reached (where tl is340

evaluated from (1). That is, denoting by tv the starting time of the Heating,341

the agent switches from Heating control to Cooling control when t >= tv + tl.342

5.2 Cooling Control Strategy343

The state-action space has been discussed in detail for the Heating stage in344

Section 5.1. In the Cooling stage, the objective of the controller design is345

to avoid sudden pressure drops by regulating air and bleeder valves. The air346

valve is used to increase or maintain pressure, while the bleeder valve is used to347

reduce the pressure inside the retort. Avoiding sudden pressure drops is aimed348

at avoiding food container bursts. On the other hand, the food containers are349

cooled down to room temperature. This is achieved by flowing water into350

the retort. In this stage, the water stream is set with a fixed stream. When351

the retort temperature is reached, the water flow is cut off. To avoid large352

disturbances at the beginning of the Cooling stage, the steam present in the353

retort is gradually eliminated. However, the drain valve is kept open.354

To select the structure of the Q-matrix for this stage, denoted now QC , a355

similar strategy as in Section 5.1 is used. Since there are two control signals356

(the Air and Bleeder valves), this QC-matrix is designed with three dimensions357

(one state for each combination of two actions): The matrix represents the358

space of error in the pressure to the air-valve-action and the bleeder-valve-359
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action.360

The control parameters for the Cooling state are shown in Table 2. Even361

though the same controller gain, k, is used in the design of the air and bleeder362

action spaces, the gain, can, however be tuned separately in implementation.363

6 Results and Discussion364

This section discusses the application of the proposed MFLC controller for365

controlling thermal canned food sterilization in a laboratory plant, placed at366

the Maritime Research Center, Vigo, Spain. The agent-based MFLC is initial-367

ized by training using a virtual plant (simulation). Then, online application is368

implemented at the laboratory-scale autoclave.369

6.1 Plant Description370

A schematic of the batch retort unit used for testing the algorithms developed371

in this paper is presented in Figure 2. The vessel, built in steel, has an approx-372

imate weight of 150 kg, and dimensions of approximately 1m of length and 60373

cm of diameter. To record the evolution of the relevant variables during pro-374

cessing, three PT100, eight thermocouples and a pressure sensor are located375

inside the vessel. A computer system is used to gather and analyse real time376

data. Process Control is carried out using Labview, with an external module377

WebDAQ that connects the PT100 and pressure sensors to the controller by378

means of an Ethernet port, and an ADAM that connect the thermocouples. A379

NiDAQ card is used to actuate the valves, that are Siemens PV90 (DN15)-flat380

seat, with nominal linear characteristics.381

6.2 Initial Training of the Agent382

The detailed model of the thermal canned-food process using a retort proposed383

in Alonso et al. (1997) was used to train the QH and QC matrices. The model,384

based on nonlinear dynamic equations, was numerically written and solved385

in Ecosimpro R© simulation language (Ecosimpro, 1999), with training done386

for various learning stages. The main reasons for using a virtual plant for387

initial training are the reduction of costs and the prevention of damage to388

the products during learning for extreme situations. If a simulation were not389

available, the QH and QC matrices can be initialized adapting values from390

similar processes or using values from previous controllers.391
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The temperature and pressure responses of the first training stage using the392

QH-matrix are shown in Figures 7 and 8. During Heating, the control objective393

is to maintain a given pre-selected time-temperature profile so as to ensure the394

appropriate lethality by manipulating the steam valve. Note that the pressure395

does not need to be controlled during this stage, since the steam is saturated396

and no air is present in the retort after venting.397

After the lethality time tl is satisfied, the system enters the Cooling stage.398

In this stage, the temperature is not controlled. In other words, there is no399

valve regulation rule for controlling the temperature. So that the canned food400

reaches a cool temperature (approximately ambient temperature), water is401

passed into the retort at a fixed rate. The water valve is then gradually opened402

up to 30%. The valve opening in this position is to avoid flooding inside the403

retort and to provide enough water for cooling. In this Cooling stage, the404

objective of the controller is switched to control the pressure (see Figure 7b).405

To avoid sudden pressure drops, the air valve is initially fully open. At the406

same time, the bleeder valve is totally closed, to avoid losing air inside the407

retort. Both air and bleeder valves are regulated according to the pressure408

measured inside the retort. The last pressure reading of the Heating stage is409

used as an initial pressure set point. From this initial reference, the pressure410

reference is gradually reduced by 500 Pa if the system is inside the goal state411

and/or above 105 Pa. This value can be changed according to the resistance412

of the container material. After some training stages, the QC-matrix is used413

in the online implementation.414

The agent is also trained for some environment changes, such as changes in415

the temperature of reference (Figure 9). The learning control is able to track416

the set point changes and correct the error. Finally, the responses are inside417

the desired region.418

6.3 Application on the laboratory process419

The online implementation of MFLC for controlling temperature and pressure420

of the canned food process is discussed in this section. As mentioned above,421

the feedback signals are the average temperature in the basket and the average422

pressure. Temperature responses during the Heating stage are shown in Figure423

10a, and the pressures inside the retort are plotted in Figure 10b. The control424

signal is depicted in Figure 11: only the steam valve position is plotted, as the425

other valves remain constant. It can be seen that the steam valve works within426

the range from 0 to 20% opening. Therefore, the control signal is bounded427

within the desired range. In this application, the steam flow is equipped with428

a relief valve to reduce the pressure. Hence, the maximum pressure of the429

steam entering the retort is always about 2 atm.430
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In summary, adequate temperature control for the Heating process was ob-431

tained in the laboratory plant. From the laboratory application, the proposed432

learning control is able to track the temperature and keep it inside the desired433

bound (Figure 10 a) during the Heating stage. Also, the controller is able434

to regulate the system for setpoint changes, while the temperature remains435

within the desired bounds. The controller output for the setpoint regulation is436

presented in Figure 11. The controller manipulates the steam valve smoothly,437

with a control signal suitable for the regulation of the motorized valves.438

After a relatively short time (approximately 7 minutes for settling time), the439

controller can bring the system to be and remain inside the desired bound,440

with only a small overshoot. The performances of the proposed controller are441

summarized in Table 3.442

7 Conclusions443

A procedure for automatic control of the sterilization process in canned food444

industry has been presented, based on the use of controllers based on learning.445

More precisely, a controller is proposed to manipulate the steam valve during446

Heating, using the Model-Free Learning Control (MFLC) strategy, followed by447

another MFLC controller to regulate the air and drain valves during Cooling.448

The results of the application of the methodology in a plant at laboratory449

scale show that the proposed controllers make it possible to maintain the450

temperature and pressure of the sterilization process within specifications,451

allowing the safe consumption of the food.452
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Fig. 1. Agent-environment interaction
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Fig. 2. Schematic of batch sterilization for controller design
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Fig. 3. MFLC architecture
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Fig. 4. Definition of the symbolic states in MFLC
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Fig. 5. State-Action space of Q-matrix
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1. Steam Valve (SV) is open (10%)

2. Air Valve (AV) is closed

3. Water Valve (WV) is closed

4. Bleeder Valve (BV) is open (100%)

5. Drain Valve (DV) is open (100%)
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2. AV is closed

3. WV is closed

4. BV is open (50%)

5. DV is open (75%)

Cooling stage
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2. AV is manipulated (initially 100%)
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Fig. 6. Control logic implementation: Pr, Ps and Patm are retort, steam and external
pressures, tv is the starting time of Heating, tl is lethality time, Tr and Text are retort
and ambient temperatures.
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Fig. 7. Evolution of temperature and pressure during learning on the virtual plant
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Fig. 8. Control signals during learning on the virtual plant (Heating from 200s to
1050s; Cooling from 1050s)
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Table 1
Heating Control Parameters

parameters value units

learning rate, α 0.1 -

forgetting factor, γ 0.98 -

number of states, 2h + 1 21 -

span of goal state, d 2 oC

limited error exploration, h 29 oC

overlapping degree, β 5 -

wait action, aw 801 -

controller gain, k 1× 10−5 -

upper limit, ∆u 0.008 kg/s

lower limit, ∆u 0.0001 kg/s

Table 2
Cooling Control Parameters

parameters value units

learning rate, α 0.1 -

forgetting factor, γ 0.98 -

number of state, 2h + 1 21 -

span of goal state, d 100 Pa

limited error exploration, h 1× 104 Pa

overlapping degree, β 10 -

wait action, aw 601 -

controller gain, k 1× 10−5 -

upper limit, ∆u 0.006 kg/s

lower limit, ∆u 0.0001 kg/s
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Fig. 9. Temperature responses under changes in the temperature setpoint during
Heating
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Fig. 10. Temperature and pressure measured in the laboratory plant during Heating,
using the proposed control strategy
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Fig. 11. Steam valve signal calculated by the controller for the experiment in Fig.
10

Table 3
Control Performances

index parameters

Time-to-target 2 minutes

Settling time 7 minutes

Maximum overshoot 3 oC
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