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Abstract

The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to
assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks
involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community
depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex
PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory
community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a
nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template.
Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large
number of sequences might need to be processed to detect some of the bacterial taxa within the ‘rare biosphere’. The
structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required
to decipher the complete extent of microbial diversity in nature.
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Introduction

Microorganisms play a major role in the functioning of

biochemical cycles of elements [1] involving a large variety of

microbial taxa. Although the use of culture-independent methods

has greatly enhanced our understanding of microbial diversity [2],

the microbial world remains largely unexplored [3,4]. The current

view of microbial diversity suggests that it is larger than previously

expected and too large to be experimentally approached [5,6].

Current estimates of microbial abundance and diversity in nature

suggest, for example, the existence of 104–106 different microor-

ganisms per gram of soil and a total number of around 1010

microbes g21 [5,7,8]. As well, a long list of novel microbial phyla

has been discovered in the last years [6,9], mainly as a result of

carrying out molecular surveys of microbial communities in a

variety of environments and habitats.

Current assessments of microbial communities are mainly based

upon the PCR amplification products of the small subunit rRNA

genes. From this information, microbial richness is generally

approached and the microbial components of the environmental

communities are detected [10,11,12]. However, biases to the

original community composition have been reported during

amplification by PCR which leads to deviations of product-to-

template ratios [10,13,14]. Deviations of the actual information on

microbial communities from PCR-based community assessments

affect equally to the analyses carried out by amplicon pyrose-

quencing [11,15,16] and other sequencing and screening proce-

dures involving PCR, such as cloning and Sanger sequencing [17],

denaturing gradient gel electrophoresis (PCR-DGGE) [18], and

terminal restriction fragment length polymorphisms [19], among

other methods. This is a point of major importance that needs to

be resolved to reach accurate estimates of microbial richness, i.e.,

alpha diversity, and an actual view of the structure of microbial

communities although it has been considered to be less of a

concern for beta diversity comparisons [5,11,12].

Several causes of bias during PCR amplification have been

cited. Among them, the universality of primers used in the

amplification reaction has been questioned [12] and primer

mismatch [14] has been considered a source of discrimination

during PCR amplification. The use of primers targeting different

16S rRNA gene zones has also lead to differential results

[12,20,21]. Different DNA polymerases can also discriminate the

amplification of specific templates through differential amplifica-

tion efficiencies and the use of optimized annealing temperatures

should also be considered [22,23,24]. Differences in template

sequences such as GC content can induce discrimination during

amplification [10,22]. Amplicon length has also been shown to

reduce diversity estimates at increasing lengths [11,12,25] since

longer targets are amplified with lower efficiencies [11,22]. The

dilution of the DNA template has also been reported as a factor

affecting negatively the detection of low abundant taxa [24,26].

The presence of high abundant taxa in low complexity

communities can also lead to inhibition due to the possibility of

template annealing during the late cycles of the PCR amplification

[27]. Cycle number has been reported to potentially induce

changes in the product-to-template ratios during the assessment of
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microbial communities although the major effect of a too elevated

cycle number has been reported to be an increase in the potential

for generating chimeras [28,29] which can result in overestimates

of the actual diversity in the studied communities. Genome size

and the number of copies of the 16S rRNA gene per genome of

the different microorganisms composing a community is also a

problem to quantify the species and abundance of microbes in the

environment [30]. Despite the identification of numerous potential

causes for biases during PCR amplifications, the mechanisms

affecting most of these biases are not well understood.

Present knowledge assumes that microbial communities are

composed by a relatively low number of high abundant microbial

taxa and a high number of poorly represented taxa. This last

fraction has been named the ‘rare biosphere’ [15,31,32]. This

portion of the community is greatly affected by biases and

discriminations during PCR-based microbial surveys. Abundant

taxa are easily identified through PCR but the detection of the rare

microorganisms is highly dependent on budget and sampling effort

which dictate current estimates of microbial richness and evenness.

Understanding how PCR amplifications affect the detection of

these low abundant taxa is important to estimate sampling or

sequencing efforts required to document on taxa represented by

relatively low fractions within microbial communities. Solving this

problem is essential to obtain an accurate view of the structure of

microbial communities and to warrant an adequate performance

of PCR-based microbial surveys and shotgun-based metagenomic

methods [4].

A successful PCR depends on the amplification efficiency which

dictates the final PCR product yield. A PCR proceeds according to

the following equation [33]:

N~No 1zEð Þn ð1Þ

where, N and No are the final and initial number of copies of the

amplified target sequence, respectively; E is the efficiency of

amplification ranging from 0 to 1; and n is the number of cycles of

the amplification reaction. Maintaining the number of PCR cycles

constant, the reaction depends on the amplification efficiency and

the copies of the target DNAs.

Amplification efficiency, or fold amplification per cycle, is

influenced by a number of factors including target sequence

length, sequence base composition, primer sequences and

specificity, buffer compositions, presence of PCR inhibitors in

the template DNA solution, cycling conditions, and thermostable

DNA polymerase. In order to determine the effect of specific

factors on the potential biases caused during a PCR amplification,

these variables must be reduced to simplify the problem to be

studied. For instance, different sets of primers and amplicon

lengths result in variations of the estimated microbial diversity

[11,12,21]. During PCR amplification, the presence of a mixture

of DNA sequences from the members of a community can result in

a differential amplification as a consequence of competition

between target sequences [34]. If a random amplification on every

sequence present in the DNA mixture occurs, no significant

differences in the product-to-template ratios should be observed.

However, if a drift from randomness happens, a discrimination of

some sequences could be expected. Understanding this phenom-

enon during the PCR might draw a direction for future

normalization of amplification data aiming to obtain a realistic

view of the structure of microbial communities.

The objective of this study is to determine whether the

proportion of target sequences within a community could affect

their detection through PCR-based methods from microbial

communities. The study aims to assess whether low abundance

taxa are being discriminated through PCR-based microbial

community surveys and to analyze the dependence between

amplification efficiency and the fraction that a specific sequence

represents in a community. A quantitative, real-time, multiplex

PCR amplification approach has been proposed to analyze the

effect of the proportion of specific sequences during amplification.

The potential influence of PCR amplification on the resulting view

of microbial communities is analyzed through artificial and

experimental communities.

Methods

Laboratory bacterial assemblages
Multispecies bacterial assemblages were prepared by combining

the appropriated quantities of DNA from four bacterial species:

Bacillus subtilis (strain 168), Deinococcus radiodurans (strain R1),

Escherichia coli (strain K12), and Pseudomonas aeruginosa (strain

PAO1). The bacterial genome size and the number of copies of

the 16S rRNA genes present in each of their genomes are known

(Table 1). The proportion of sequences in these DNA mixtures was

considered as number of copies of the 16S rRNA genes from each

bacterial species. Bacterial DNA was extracted using a conven-

tional protocol based on bacterial lysis by a treatment with

lysozyme followed by protease, phenol/chloroform extraction and

ethanol precipitation. DNA concentration was determined using a

nanodrop spectrophotometer (Nanodrop Technologies Inc.,

Wilmington, DE, USA) with triplicate measurements.

Experimental approach
The goal of these experiments was to assess the amplification

efficiency for distinct bacteria present at different proportions in

multispecies DNA templates. To determine the potential conse-

quences for the detection of taxa during PCR-based microbial

surveys, the designed experiments focused on reducing the number

of variables. To reduce the potential effect of amplicon size on

amplification, the same primer pair was used for the amplification

of the bacterial species. The amplification of these four bacterial

species was monitored simultaneously by quantitative, real-time

multiplex PCR using species-specific Taqman probes (Table 2) in

the same amplification tube. The total DNA, sum of the four

bacterial species was kept constant in all the reactions (100 ng

except if noticed otherwise). The amount of DNA from each

bacterial species varied to cover a wide range from 0.01% to 100%

of copies in the total DNA mixture.

Detection of bacterial species
Quantitative, real time, multiplex PCR amplification was

carried out with the QuantiTect Multiplex PCR kit (Qiagen

GmbH, Hilden, Germany) on an iCycler iQ Real-Time PCR

Detection System (Bio-Rad, Hercules, California). In order to

avoid the potential effect of using different primers for amplifica-

tions from distinct bacteria, the same primer pair was used for the

amplification of their 16S rRNA genes. The primers for the

amplification of the 16S rRNA gene fragments were 341F and

518R (Table 2). Each Taqman probe targeted the amplified region

of one of the bacterial species (Table 2). Each probe had a different

fluorescent dye and quencher to simultaneously detect the

amplification of the 16S rRNA gene fragments from each bacterial

species (Table 2). Thermal conditions followed the manufacturer

recommendations and consisted of a denaturation at 95uC for

15 min followed by 50 cycles with two temperature steps each:

denaturation at 94uC for 60 s, and a step at 60uC for an

annealing/extension period of 50 s plus an extension/data

collection step for 40 s at the same temperature. Triplicate
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reactions were processed. Controls with a single bacterial species

showed no cross detection in the different channels. Real-time

amplification data were background subtracted by the iCycler iQ

software. Quantification was performed following the sigmoidal

non-linear curve-fitting procedure described by Rutledge [35]

which allows the estimation of the amplification efficiency for each

reaction. Non-linear curve fitting was performed with Sigmaplot

8.02 (Systat Software, Inc., London, UK). The relative amplifica-

tion efficiency (Er) for each bacterial species and fraction of 16S

rRNA gene copies was estimated as the fraction of the maximum

amplification efficiency (ET) which was determined in reactions

with DNA from only that specific species. Relative amplification

efficiency values ranged between 0 and 1.

One-tailed F-test for differences between variances was used to

check if significant improvement of curve fitting existed between

two models as described by Gonzalez [36] and Sokal and Rohlf

[37]. Original communities and those resulting after computa-

tional amplification following the proposed model were compared

by the G-test of goodness-of-fit [37] to determine if significant

differences existed between these communities.

Analyses of artificial communities
Two examples of artificial communities were analyzed to

approach the effect of the proportion of bacterial taxa on their

detection through PCR-based surveys. The composition of these

communities is indicated in Table 3. The original frequency of the

OTUs (Operational Taxonomic Units) or taxa in these commu-

nities was compared to a final community obtained after

computation of the expected amplification. The PCR was

simulated assuming a random amplification according to equation

1, and following the model proposed in this study (see below)

which relates relative amplification efficiency to the composition of

the microbial community. A total of 20 cycles of amplification at

an ET of 0.9 were considered. Comparisons were presented as

product-to-template ratios estimated as the quotient of the

frequency of the detected OTUs in the final expected community

(after amplification) divided by the frequency of the corresponding

OTUs in the original community. Ratios below one indicate a

discrimination against those OTUs or taxa. Rarefaction curves

were constructed according to Hughes and Hellmann [38] for the

original community and the expected communities after amplifi-

cation. The Shannon-Weaver diversity index and evenness were

estimated according to Shannon and Weaver [39] and Sheldon

[40], respectively. The Simpson index was calculated as Simpson

[41]. The number of OTUs detected in these communities after

amplification was estimated by computing the process of 108

sequences from the total pool of amplified sequences. The OTUs

that were not detected after processing 108 sequences were

considered as taxa remaining undetected and consequently were

not included in the estimates of diversity indices. The sequencing

effort required to detect an OTU was approximated as the inverse

of the likelihood of detecting at least one sequence corresponding

to that OTU.

Analyses of experimental communities
Samples from the oral cavity of two different persons were

analyzed through a metagenomic study by direct pyrosequencing

(without PCR amplification) and by an amplicon bacterial survey

after PCR amplification. The 16S rRNA gene sequences obtained

from these two approaches were used for the comparison of the

experimental communities. The procedure followed for the

metagenomic analysis has been previously described in detail

[42]. The protocol for the bacterial survey based on 16S rRNA

gene amplicons included amplification with universal primers 27F

Table 1. Bacterial species used in this study including the number of 16S rRNA genes per genome and their genome length.

Bacterial species Strain 16S rRNA genes per genome Genome length (Mbp)

Bacillus subtilis 168 10 4.2

Deinococcus radiodurans R1 2 3.2

Escherichia coli K12 7 4.6

Pseudomonas aeruginosa PAO1 4 6.3

doi:10.1371/journal.pone.0029973.t001

Table 2. PCR primers and labeled probes utilized in the present study.

Primer/Probe No. bases Label1 Sequence (59-.39) Target Reference

341F 17 None CCT ACG GGA GGC AGC AG Bacteria Muyzer et al., 1993

518R 17 None ATT ACC GCG GCT GCT GG Bacteria Muyzer et al., 1993

Bs473p 21 39 BHQ1 GGT ACC GCC CTA TTC GAA CGG Bacillus subtilis This study

59 FAM

Dr461p 22 39 BHQ2 TCT GCC CTA AGG CTC TTT CGT C Deinococcus radiodurans This study

59 Cy5

Ec469p 25 39 BHQ1 TGA GCA AAG GTA TTA ACT TTA CTC C Escherichia coli This study

59 HEX

Ps470p 24 39 BHQ2 AAC AGC AAG GTA TTA ACT TAC TGC Pseudomonas aeruginosa This study

59 ROX

1BHQ, Blackhole Quencher.
doi:10.1371/journal.pone.0029973.t002
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and 533R at an annealing temperature of 52uC and after 20 cycles

of amplification, and subsequent pyrosequencing following

McKenna et al. [43]. The sequence between 27F and 533R

primers covered the hypervariable regions V1 and V2. Pyrose-

quencing for these two procedures was performed in a GS FLX

machine with titanium chemistry (Roche, Basel, Switzerland).

Taxonomic assignment at the genus level was performed against

the ribosomal Database Project using an 80% bootstrap cut-off

following Wang et al. [44]. Sequences shorter than 250 nucleotides

and those with average sequence quality values below 20 were

filtered out. It was observed that sequence quality diminished at

the end of long sequences, thus all reads were trimmed at 400 pb,

significantly increasing the average quality of the reads. Sequences

with differences in the primer region were excluded from the

analysis as well as sequences with more than 4 ambiguities in

homopolymeric regions. Sequences with unidentified barcodes

were removed from the analysis and barcodes differed in at least

two nucleotides in order to reduce the possibility of missassigment

[45]. Product-to-template ratios were estimated assuming meta-

genomic data were exempt from PCR biases and thus representing

the closest approximation to the actual template from the

microbial community. PCR amplicon sequencing data were

assumed to potentially suffer from PCR biases and represented

the estimate of diversity after PCR amplification. Rarefaction

curves and diversity indices were obtained as above.

Results

Amplification as a function of the proportion of the
sequence in a community

In order to detect individual bacterial species within multispe-

cies DNA mixtures, species-specific Taqman probes were

designed. Multiplex PCR amplifications were performed using

the same primer pair for all targeted species. Variations of the

proportion of the four species forming these DNA templates

resulted in a series of amplification results for each bacterial species

representing a wide range of fractions within the total template

DNA. The amplification of individual bacterial species varied as a

function of the fraction of the total copy number they represented

in the community (Figure 1). When a bacterial taxon represented

less than 1% of the target sequences, the amplification reaction

barely generated any products corresponding to that species.

Similar patterns are observed for each of the four species tested in

the experiments.

Due to the different amplification efficiency observed for the

distinct species, the results were normalized by calculating the

relative amplification efficiency (Er) for each species and fraction of

total multispecies DNA. Maximum amplification efficiencies (ET)

estimated for the DNA from B. subtilis, D. radiodurans, E. coli and P.

aeruginosa were 0.92, 0.40, 0.48 and 0.32, respectively. Analysis of

the 16S rRNA gene sequences from these four bacterial species

indicated that they perfectly matched the primer sequences and

the amplification resulted in PCR products of 195 base pairs

except for D. radiodurans that generated a 181 base pair product

(including primer sequences).

Relationship between relative amplification efficiency
and the proportion of a species in a community

The quantitative, real-time, PCR amplification curves allowed

estimates of the relative amplification efficiencies for each bacterial

species representing different fractions of the total DNA. The

estimated relative amplification efficiencies for each bacterial

species showed a dependence of the fraction they represented

within the multispecies DNA templates. Similar pattern was

observed for the bacterial species forming the DNA mixtures and

were analyzed globally. Figure 2 shows a total of 34 data points

and a plot of the sigmoidal relationship observed between Er

values and the fraction of total number of copies in the

multispecies DNA.

Table 3. Composition of artificial communities I and II and estimates of the sequencing effort expected to detect these taxa
through PCR-based surveys according to the proposed model.

Community I Community II

No. of Taxa Frequency Sequencing effort1 No. of Taxa Frequency Sequencing effort1

2 0.294 ,10 5 0.05 ,10

1 0.196 26104 5 0.04 26105

1 0.098 86105 5 0.03 46105

1 0.049 36106 7 0.02 16106

1 0.0196 16107 15 0.01 36106

5 0.0098 26107 12 0.005 16107

34 0.001 16108

24 0.0005 ND2

23 0.0001 ND2

25 0.00005 ND2

25 0.00001 ND2

33 0.000005 ND2

35 0.000001 ND2

Total No. of taxa = 11 Total No. of taxa = 248

Maximum sequencing effort considered was the processing of 108 sequences.
1Approximated sequencing effort required to detect an OTU present at the indicated frequency through PCR-based surveys.
2Taxa requiring a sequencing effort higher than 108 sequences were considered to remain undetected (ND).
doi:10.1371/journal.pone.0029973.t003
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The data points showed the best curve fitting to a Hill, three

parameters, equation model (Equation 2) [46] expressing relative

amplification efficiency (Er) as a function of the fraction represented

by the copies of the 16S rRNA gene in the experimental,

multispecies DNA mixtures. The equation model was:

Er~ Ermax:X
h

� �
= Km

hzXh
� �

ð2Þ

where, X is the fraction of 16S rRNA gene copies corresponding to

the studied species within a multispecies DNA template; Er max is the

maximum value that the relative amplification efficiency could

reach which should be 1; Km is the value of X corresponding to K

Er max; and h is a modifier exponent shaping the curve and indicates

the sharpness of the transition from the low to the high Er values.

At the lowest fraction tested in this study, below Er values of

0.109 (corresponding to a fraction of around 4.5% of total target

sequences), the curve (Figure 2B) showed a lower slope than

expected with the relationship observed for higher fraction values.

The experimental data for the lowest range of fractions were

approached by the equation:

Er~azb:Log10 Xð Þ ð3Þ

where, a and b are the coefficients of the equation.

The best fitting results were observed using a composition of two

expressions (equations 2 and 3), equation 2 for equal to and higher

than 4.5% fractions (Figure 2) and a semi-logarithmic relationship

for the lowest fractions (,4.5%; Figure 2B). These two equations

collaborated to obtain a significantly better fitting (P,0.001) to the

experimental results as tested by a one-tailed F-test [36,37]. The

estimated parameters (6 standard deviations) showing the best fit

to the data were as followed:

For Er§0:109,

Er max~1:043 +0:053ð Þ; Km~0:158 +0:014ð Þ; h~1:708 +0:235ð Þ

n~34; r2~0:964; Pv0:001
� �

,

For Erv0:109,

a~0:129 +0:022ð Þ; b~0:027 +0:007ð Þ n~10; r2~0:611; Pv0:05
� �

:

The bacteria representing fractions of the total DNA template
lower than Km were poorly amplified during PCR reactions.
Bacteria present in high proportions were easily detected
through PCR-based surveys because they were amplified with
high relative efficiencies. Bacteria representing fractions lower
than 1% of the total community experienced minimum
amplification during PCR.

Figure 1. Real-time PCR amplification of DNA for four bacterial species. The plots correspond to amplification from different multispecies
DNA mixtures representing different fraction of total DNA template, from 0.01% to 100%. The bacterial species are: Bacillus subtilis, Deinococcus
radiodurans, Escherichia coli, and Pseudomonas aeruginosa. The percentage of the examined bacterial species for each reaction set is indicated on the
right.
doi:10.1371/journal.pone.0029973.g001
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Comparisons of pre- and post-PCR using artificial
communities

The proportion represented by a microbial taxon is essential for

its detection during PCR-based surveys of microbial communities.

From the results above, a model was built to estimate potential

consequences of these results on the detection of microbial taxa

from artificial communities. Two different communities are

presented as examples (Table 3). Community I is formed by some

highly abundant taxa (up to 30% of the total community) and

relatively low diversity (a total of 11 taxa). Community II is a much

highly diverse example composed by 248 OTUs that were

distributed in frequencies from about 0.0001% to 5% of the total

community. These communities were analyzed by a random

amplification model and by the proposed model above (Figure 2).

The original and random model showed identical results to the

initial communities previous to amplification and there were no

differences between random model results and the initial

communities in the rarefaction curves, product-to-template ratio,

and sampling efforts.

The model proposed in this study resulted in clear differences

between the original and final community structure. Rarefaction

curves (Figure 3) for community I showed marked differences. The

rarefaction curve generated for the original community (and the

random amplified community) showed a much steeper slope than

the one obtained for the proposed model (Figure 3A) and only

when the sampling effort increases considerably (.105 processed

sequences) the low abundant OTUs (,10%) start to be detected.

With Community I, the product-to-template ratios decrease

sharply for OTUs other than the most abundant (Figure 4A). In

this case, the taxa represented at a fraction of #20% were clearly

discriminated during amplification by, at least, a factor of 104–105.

In this community where there are OTUs representing 30% of the

community, the processing of over 104 sequences is required to

detect OTUs represented by 10–20% of the total community and

increasing efforts are needed (over 107 sequences) to detect those

members accounting for 1–5% of the total community. Table 4

shows the estimates of various indices for the original Community

I and the detected community after amplification followed the

model proposed in Figure 2 and the randomly amplification

model. The proposed model (Figure 2) induces low diversity index

values as a result of the primary detection of the abundant taxa

and a negative discrimination against the low proportion ones.

Community II also showed obvious differences between the

rarefaction curves obtained for the original community (and the

randomly amplified model) and the model proposed in this study

(Figure 2). The process of over 105 sequences was required to

detect 10% of the community OTUs (Figure 3B). Even a

maximum sampling of 108 sequences was unable to detect all

the members of the community, and only 83 out of 248 OTUs

(33% of the community) were detected at this maximum sampling

size (Figure 3B). In Community II, the OTUs representing lower

fractions than 1% suffered a sharp discrimination as noticed by the

product-to-template ratios below 1024 for these taxa. The

processing of 108 sequences was only valid to detect a small

portion of the members constituting Community II indicating that

around 67% of the community would remain undetected after this

survey. OTUs present in the original community at percentages of

0.05% or less could not be detected even at the highest sampling

size (Table 3). The diversity indices estimated for the original

Community II (Table 4) and the taxa detected from this

community after amplification shows a reduction of the calculated

Figure 2. Relationship between the relative amplification efficiency of 16S rRNA genes from four bacterial species. Bacillus subtilis
(black squares), Deinococcus radiodurans (white triangles), Escherichia coli (white squares), and Pseudomonas aeruginosa (black triangles), at different
proportions within the community. Linear (A) and logarithmic (B) scales are shown to see the curve fitting for large and low initial proportions of the
target sequences within the community.
doi:10.1371/journal.pone.0029973.g002
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indices as well as the detection of only a small fraction of the taxa

constituting that community.

Interestingly, for both communities I and II, the rarefaction

curves at relatively low sampling sizes (Figure 3B and 3D) show a

false plateau at low sampling efforts. At increasing sampling sizes,

the number of detected OTUs continues to increase. This double

plateau could provide wrong impressions about the level of

representation in the studied community.

Comparison of experimental data from metagenome and
amplicon surveys

When comparing experimental communities, the total diversity,

or number of different OTUs, in the communities is unknown. A

comparison of the rarefaction curves obtained from the metagen-

ome data and from amplicon surveys resulted in differences in the

expected number of OTUs present in the community through

these two methodologies (Figure 5). Metagenome studies involved

no PCR amplification and were assumed to represent the closest

available data to the community of origin. The product (amplicon

survey data) to template (metagenome data) ratios (Figure 6)

showed the amplification of a limited number of relatively

abundant OTUs. As suggested from Figure 5, the expected

number of OTUs in the community was higher than that obtained

from amplicon surveys. Some of the lower abundance OTUs

remained undetected through PCR amplification analysis. Exper-

imental communities 1 and 2 analyzed through PCR amplification

resulted in a 39.3% (17 out of 28 OTUs) and 15.2% (28 out of 33

OTUs) of undetected taxa, respectively, with respect to metagen-

ome analyses (Table 4). Thus, a sharp decrease in the product-to-

template ratio represents a critical threshold for the detection of

taxa through PCR-based techniques and has been detected in

both artificial (Figure 4) and experimental (Figure 6) communities.

Experimental communities were sequenced obtaining a total of 33

OTUs and 28 OTUs from the metagenome (shotgun sequencing)

and 28 OTUs and 17 OTUs from 16S rRNA gene amplicons.

The OTUs from amplicons were obtained from a total number of

230 and 2056 sequences from experimental communities 1 and 2,

respectively. The total number of 16S rRNA gene fragments

extracted from shotgun sequencing data were 664 and 1302 reads

from experimental communities 1 and 2, respectively.

Figure 3. Rarefaction curves obtained for two different artificial communities. A, Community I with a total of 11 OTUs and C, Community II
with a total of 248 OTUs. The curves for the initial community (black dashed lines) and post-PCR communities (solid lines) according to the proposed
model (Figure 2) are shown. The portion of the curves included in the dotted squares are amplified on the right. B and D correspond to the lowest
sampling sizes for A and C, respectively.
doi:10.1371/journal.pone.0029973.g003
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The data from metagenome and amplicon analyses from these

communities can be accessed from MG-RAST (http://metage-

nomics.anl.gov/) under numbers 4447192.3 and 4474804.3,

respectively, for community 1 and 4450726.3 and 4474910.3,

respectively, for community 2.

Discussion

Current understanding of the structure of microbial communi-

ties depends on the accurate assessment of diversity and the

relative abundance of the components in the studied communities.

However, microbial diversity remains difficult to estimate as a

result of the large variety of different microorganisms present in

environmental samples. Progress in DNA sequencing technology

has permitted an increase in the scale of microbial community

surveys [15,16] although PCR amplification biases have been

reported to skew the results and to hinder the detection of

numerous microbial taxa [12,21].

Despite the numerous factors reported to potentially cause

amplification biases [11], PCR-based microbial surveys are the

common approach in diversity studies [16]. Herein, quantitative,

real-time, multiplex PCR using species-specific probes have been

used to monitor the amplification of species-specific sequences in

multispecies DNA mixtures. Our data show that the detection of

16S rRNA genes by PCR amplification depends on the proportion

at which specific taxon sequences were present in the total

multispecies DNA template. Moreover, a relationship could be

established between the fraction of sequences from a specific taxon

and its corresponding relative amplification efficiency. This

pattern is independent of the bacterial species. As a consequence,

sequences present at high abundance in a multispecies DNA

template mixture are amplified with high relative amplification

efficiencies. The low-frequency species show poor relative

amplification efficiencies resulting in important under-representa-

tion during PCR-based microbial community surveys. These

results explain a process of selection or discrimination of microbial

taxa during PCR-based microbial surveys as a function of the

representation of these taxa within the studied communities.

The use of combined procedures for DNA extraction has been

proposed as a mean to determine more realistic microbial diversity

estimates [21]. In our study, a standard DNA extraction procedure

was performed with no further purification steps mimicking DNA

extractions from environmental communities. Thus, the genomic

DNA from different bacterial species was extracted although

distinct quality DNA was obtained for each species. This

influences the amplification of these bacterial species 16S rRNA

genes as reflected by the differential amplification efficiency

observed for these species. The values of absolute amplification

efficiencies for the bacterial species DNA during this study are

representative of experimental conditions from environmental

samples. These values are in good agreement with the range

Figure 4. Product-to-template ratios versus OTU ranking for
two artificial communities. Two artificial communities (I and II) are
shown. They were estimated by following a random amplification (black
squares) and the proposed model (Figure 2) (white squares) of the
relative amplification efficiency as a function of the fraction that each
OTU represents within the total community. A, Community I; B,
Community II.
doi:10.1371/journal.pone.0029973.g004

Table 4. Comparison of diversity indices estimated from two
artificial and two experimental communities.

Shannon Evenness Simpson
No. of
taxa1

Artificial Community I

Original community 1.719 0.093 0.776 11

Random amplification 1.719 0.093 0.776 11

Proposed amplification model 0.694 0.038 0.500 11

Artificial Commmunity II

Original community 3.840 0.209 0.970 248

Random amplification 3.840 0.209 0.970 248

Proposed amplification model 1.075 0.058 0.609 83

Experimental Community 1

Metagenome analysis 2.598 0.377 0.883 28

Amplicon analysis 2.522 0.366 0.904 17

Experimental Community 2

Metagenome analysis 2.419 0.351 0.881 33

Amplicon analysis 2.466 0.358 0.876 28

For the artificial communities, the analysis includes the original communities,
and the communities obtained after a theoretically random amplification and
after simulating the proposed amplification model. For the experimental
communities, results of the 16S rRNA analysis from metagenome analysis
through direct sequencing (lacking amplification by PCR) and 16S rRNA
amplicon analysis after PCR amplification are presented.
1Number of taxa detected during the analyses. For the artificial communities
108 sequences were screened. For the experimental communities around 103

sequences were processed.
doi:10.1371/journal.pone.0029973.t004
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reported by Arezi et al. [22] for different samples and DNA

polymerases (from 36 to 88%). For instance, the frequent

coextraction of humic acids with DNA inhibits PCR amplifications

[47] causing a decrease of amplification efficiency [48]. Given that

the detection of microorganisms through PCR depends on the

amplification efficiency for the specific target sequences (according

to equation 1), those species whose DNA is efficiently amplified

will be easily detected and those amplified at low efficiencies will

have low chance to be retrieved. The bacterial species used during

this study showed perfect match to the sequences targeted by the

PCR primers so the potential bias induced by sequence

mismatches [12] was excluded in our case with laboratory

bacterial assemblages. The experiments performed with oral

bacterial communities strongly suggested that primer specificity

was not of importance. In silico analysis of the 16S rRNA gene

sequence fragments targeted by the primers used for amplification

confirmed that most of the bacteria remaining undetected

perfectly matched these primers. Only three of the genera

undetected through PCR could potentially show some mismatches

corresponding to under-represented species within these genera.

These three genera were Globicatella, Lonepinella and Phocoenobacter.

Different DNA extraction procedures could allow the lysis and

purification of genomic DNA at the highest quality from each

species. However, this is unfeasible for complex microbial

communities. Improving the quality of the extracted DNA for

those species presenting difficulty during the extraction (e.g., those

producing excessive exopolymeric substances) would be desirable.

The combination of different DNA extraction procedures is a

recommendable approach to achieve a more realistic view of the

microbial diversity (alpha diversity) in a specific environment.

Analysis performed with artificial communities showed that

PCR amplification of sequences in multispecies communities or

DNA templates favors the detection of the highly represented and

acts against the species present at low frequencies. These results

confirm significant skews in the detection of microbial taxa during

PCR-based community surveys. Consequently, the detection and

study of the microorganisms belonging to the ‘rare biosphere’

[15,31] is unfavoured by PCR-based methodologies and so our

Figure 5. Rarefaction curves at the genus level obtained for
two experimental microbial communities from the human oral
cavity. The curves shown correspond to the results of 16S rRNA gene
analyses from a metagenome study through direct sequencing (no PCR
amplification) (black dashed lines) and from a microbial survey based
on the 16S rRNA amplicon analysis after PCR amplification (solid lines).
A, Experimental community 1; B, Experimental community 2.
doi:10.1371/journal.pone.0029973.g005 Figure 6. Product-to-template ratios versus ranked genera for

two experimental communities. Two communities (1 and 2) from
the human oral cavity were analyzed. The product was represented by
the amplicon analysis data and the template was considered the results
obtained from a metagenome analysis lacking PCR amplification. A,
Experimental community 1; B, Experimental community 2.
doi:10.1371/journal.pone.0029973.g006
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current understanding of microbial diversity and the community

structure of environmental systems is uncertain and clearly biased.

To understand the structure of microbial communities there are

two major parameters that need to be determined: species richness

and the fraction of the total community represented by each taxa.

As suggested in previous studies [11,12,21] and confirmed in the

present work, PCR-based microbial surveys affect both aspects.

PCR-based community surveys can cause over 104-fold under-

representation of low abundant taxa as seen by a sharp reduction

of product-to-template ratios for sequences present at frequencies

of 1–5% and below depending on the composition of the microbial

communities. These observations also support those by Engel-

brektson et al. [12] indicating that rare populations were not

reproducibly sampled despite studying relative simple communi-

ties. These results are also confirmed with experimental microbial

communities showing that a number of taxa remained undetected

through a PCR approach. The frequency of these taxa in the

original microbial community is modified by the bias introduced

during PCR amplification which affects the proportion of different

microbial taxa and so, the obtained view of the studied community

is to be distorted. By applying different scales of sampling size

during sequence analysis our view of the potential level of diversity

can be different. Relatively modest sequencing scales can suggest

that a significant representation of the community has been

achieved. Much higher sequencing scales could suggest otherwise.

This artifact from PCR amplification during microbial community

surveys can also present a confusing view of community

composition and a wrong understanding of the ‘rare biosphere’.

A relatively complete set of microbial taxa within the ‘rare

biosphere’ can only be retrieved and detected by processing

extremely high number of sequences although using PCR-based

approaches an unrealistic view of the actual community will be

obtained.

At present, PCR-based microbial surveys are the common

procedure to investigate diversity and community structure of

microorganisms in the environment and human-associated niches.

The procedure involved in metagenomic approaches (i.e.,

shotgun-sequencing) does not require PCR amplification [16,49].

However, the scale of such studies currently does not allow a

complete detection of all taxa present in environmental samples.

Consequently, PCR amplification approaches, despite their biases,

are likely to remain in a foreseeable future as important tools to

recover and assess microbial communities in the environment [21]

and the scientific community must understand its limitations to

correctly interpret microbial structure and diversity.

The results from this study have important implications for

molecular studies of microbial communities. In agreement to

previous reports on different causes of biases resulting from PCR-

based microbial surveys [10–12,21,22,27,30], the present study

suggests an explanation for some of the skews generated during

PCR amplifications. These biases can be a result of the

relationship existing between the relative amplification efficiency

for specific sequences and the fraction of these sequences within

multispecies DNA assemblages or microbial communities.

The results obtained from this study can be applied to better

understand microbial community structure and the detection of

16S rRNA genes from environmental microbial communities and

from the human microbiome. Gene surveys targeting other genes,

besides the 16S rRNA gene, both of phylogenetic (e.g., gyrA, recA,

rpoA) and functional (e.g., amoA, dsvA, mcrA, nifH) interests will also

be affected by PCR biases. So, surveys of microbial communities

based on PCR amplifications of any gene or DNA fragments must

be interpreted with caution. In addition, this study can be applied

to the detection of rare transcripts during metatranscriptomic

studies or the evaluation of sampling efforts for metagenomics

(shotgun sequencing). Improvements in next-generation sequenc-

ing technologies together with adequate understanding of biases

introduced by the used methodology are the means to achieve

realistic estimates of microbial diversity and community structure

in environmental systems. Although our current understanding of

microbial communities has been greatly enhanced with the

introduction of next-generation sequencing technologies, the

detection of the complete diversity present in the environment

looks still restricted to future developments both on scaling up the

processing of higher number of sequences and the limitation of

potential biases from the actual community structure.
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