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We study spin dynamics in a two-dimensional electron gas with a pure gauge non-Abelian spin-orbit field,
for which systems with balanced Rashba and Dresselhaus spin-orbit couplings, and the �110�-axis grown GaAs
quantum wells are typical examples. We demonstrate the duality of the spin evolution and the electron-density
dynamics in a system without spin-orbit coupling, which considerably simplifies and deepens the analysis of
spin-dependent processes. This duality opens a venue for the understanding of this class of systems, highly
interesting for their applications in spintronics, through known properties of the systems without spin-orbit
coupling.
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The understanding of spin dynamics in a two-dimensional
�2D� electron gas with spin-orbit �SO� interaction is highly
important both for theoretical and applied spintronics,1–4 in-
cluding the design of devices with controlled spin transport.
In many physically interesting situations the SO coupling
can be elegantly described as an effective non-Abelian vector
potential.5–17 There exists a class of systems, where the SO
coupling corresponds to a pure gauge non-Abelian field.
Therefore it can be gauged away and the behavior of a physi-
cal system should map to that of a system without SO cou-
pling.

The coupled spin-charge dynamics is commonly de-
scribed using the diffusion approximation, where the rate of
the spin precession is much less than the momentum scatter-
ing rate.18,19 Currently, high-mobility 2D structures, where
the time scale of momentum relaxation is longer than the
spin rotation time,20,21 became available. Since here spins
can make several turns between collisions with impurities,
the conventional Dyakonov-Perel mechanism18 is not
applicable,22 and another type of analysis is required. In the
present Rapid Communication, we solve this problem for
systems with a pure gauge SO coupling, including quantum
effects due to the weak localization. We show for this general
class of systems the existence of a duality of observables
allowing the spin dynamics to be fully mapped to the density
dynamics in a system without SO coupling. As a result, sev-
eral regimes, including magnetic field dependence of the spin
dynamics, can easily be explored using a single formula.

We represent the Hamiltonian of a 2D electron gas with
SO coupling as follows16,17 �we use units with �=1 �:

H =
1

2m
� d2��+�i�i + Ai�2� + W��+,�� , �1�

where ���� is a spinor field operator, and the functional
W��+ ,�� contains all spin-independent contributions, in-
cluding the external potential, electron-electron interactions,
and, possibly, the electron-phonon coupling. Here m is the
electron effective mass and Ai are 2�2 matrix-valued com-
ponents of a non-Abelian SU�2� gauge field describing the

SO coupling. A pure gauge Ai can be removed by a local
SU�2� transformation. The general form of a pure gauge vec-
tor potential, Ai=m�i�h ·��, corresponds to the following
SO Hamiltonian:

Hso = ��h · ���k · �� , �2�

where � is a vector of Pauli matrices, � is the SO coupling
constant, h is a three-component unit vector for the SO field
direction, � is a 2D unit vector in the �x ,y� plane, and �i
=��i. The two practically important systems described by
the Hamiltonian of Eq. �2� are: �i� the balanced Rashba-
Dresselhaus system23,24 with h= ��1, �1,0� /�2 and �
= ��1, �1� /�2, and �ii� the �110�-axis grown GaAs quantum
well,25–28 where h= �0,0 ,1�, �= �1,0� with the well axes

chosen with respect to the crystal axes as x � �11̄0�, y � �001�,
and z � �110�. Both systems are expected to demonstrate
highly anisotropic spin-relaxation times with the spin com-
ponent along the h axis having a very low relaxation rate,
arising only due to a spin-dependent disorder.29 Spin currents
in the thermodynamical equilibrium state,30 being common
for 2D electron systems with SO coupling, are absent16 in the
structures described by the Hamiltonian in Eq. �2�.

A local SU�2� transformation, which gauges away the

above type of SO coupling is �̃���=UA����, where

UA = exp�im��h · ���� · ��� . �3�

The transformation, Eq. �3�, renders invariant all spin-
independent quantities, such as the charge and current den-
sities while the spin-density transforms covariantly,

S̃ =
1

2
tr��UA

−1�S · ��UA	 . �4�

When the SO coupling is gauged away the dynamics of the

transformed spin density S̃�� , t� reduces to the spin dynamics
in the electron gas without SO interaction. Then, the physical
spin density S�� , t� is restored by
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S =
1

2
tr��UA�S̃ · ��UA

−1	 , �5�

to obtain measurable results. Here we follow this guideline
and show that this approach allows to describe all regimes of
spin dynamics on the same footing.

We consider a 2D electron gas with the Hamiltonian of
Eq. �1� and, initially, a uniform spin density S produced, for
example, by a static magnetic field B. At t=0 the magnetic
field is released and the spin relaxes due to a disorder poten-
tial and other interactions. To describe this process we first
eliminate the SO by the gauge transformation of Eq. �3�.
Using Eq. �4� we find that the initial uniform physical spin

density is mapped to the spin texture S̃�� ,0�= S̃��� ,0�
+ S̃��� ,0�, where the term

S̃���,0� = h�S · h� , �6�

being parallel to h, is untouched by the transformation and
remains uniform, while the orthogonal to h part transforms
into the helix structure31,32

S̃���,0� = �S − h�S · h��cos�Qhx · �� − �Sh�sin�Qhx · �� , �7�

where Qhx=2m�� is the helix wave vector.
Since in the transformed system there is no SO coupling,

the uniform part of the initial spin distribution, Eq. �6�, is
constant in time. A nontrivial dynamics occurs in the or-
thogonal channel due to a diffusional decay of the initial
helix spin texture described by Eq. �7�,

S̃�
	1��,t� =� D	1	2�� − ��,t�S̃�

	2���,0�d2��, �8�

where D	1	2��−�� , t� is the exact spin-diffusion Green’s
function of a 2D electron gas, which takes into account the
disorder, electron-electron and electron-phonon interactions.
To proceed further we note that in a nonmagnetic system
without SO coupling the spin-diffusion Green’s function is
diagonal in the spin subspace D	1	2�� , t�=
	1	2

D�� , t�.
Hence Eq. �8� simplifies as

S̃���,t� = S̃���,0�D�Qhx,t� , �9�

where D�q , t� is a Fourier component of the spin-diffusion
Green’s function

D�q,t� =� d2�e−i�q·��D��,t� �10�

and we have taken into account that only the Fourier com-
ponents of D�� , t� with the modulus of the wave vector q
=Qhx contribute to the dynamics of the helix in Eq. �7�. Since
the time-dependent factor in Eq. �9� is scalar, the transforma-
tion back to the physical spin, Eq. �5�, simply reduces to
removing tildas and the coordinate dependence in Eq. �9�.
Thus, we get the following exact result for the observable
spin evolution:

S��t� = S��0�� d�

2�
D�Qhx,��e−i�t. �11�

In Eq. �11� we represented D�q , t� via the Fourier integral
because in the � domain there is a simple expression of the
spin-diffusion Green’s function D�q ,�� in terms of the spin-
spin correlator �the spin response function� 
		

�S��q ,��, where
	= �x ,y ,z� corresponds to the spin component

D�Qhx,�� =
1

i�


		

�S��Qhx,��

		

�S��Qhx,0�
− 1� . �12�

This equation can be derived by considering a linear re-
sponse on a time-dependent magnetic field that is adiabati-
cally switched on at t=−� and then suddenly switched off at
t=0, i.e., B�t�=e
t��−t�B with 
→0 �see, e.g., Ref. 33 for
similar calculations�. Usually the SO coupling is weak on the
Fermi energy scale, which implies Qhx�kF, where kF is the
Fermi momentum. Therefore in most situations one can
safely replace the static �=0 response function in Eq. �12�
by the macroscopic Pauli spin susceptibility, 
P.

Equations �11� and �12� are the result of the spin-density
dynamics duality and give the exact evolution of the uniform
spin density. The problem is solved by mapping the spin
relaxation in the physical system to the “washing out” an
inhomogeneous spin texture in a dual system without SO
coupling. The real spin relaxes because of SO-induced pre-
cession and randomness introduced by disorder, phonons,
and interelectron interactions.34 For the transformed spin, it
is the evolution of the spatially nonuniform spin-density dis-
tributions. An exact feature of the dynamics is that the vector
S��t� always stays collinear to its initial direction. In the
transformed picture �i.e., in the dual system� this is related to
the diagonal structure of the spin response in a nonmagnetic
electron gas. For the real system this translates to the fact
that spins of electrons with opposite momenta process
around the h axis in the opposite directions with the same
rate.

At the level of the random-phase approximation the spin
response function 
		

�S��q ,�� is equal to the density response
function 
�q ,�� of a noninteracting, but possibly disordered
and/or coupled to phonons electron gas, while the Pauli sus-
ceptibility 
P is proportional to the compressibility �n /��,
with n and � being the electron concentration and chemical
potential, respectively. Hence the spin-diffusion Green’s
function entering Eq. �11� reduces to

D�Qhx,�� =
1

i�


�Qhx,��

�n/��
− 1� , �13�

which is exactly the density diffusion Green’s function.
Therefore in this physically important case the spin relax-
ation is mapped to the ordinary density diffusion.

Now we apply Eqs. �11� and �13� to a noninteracting dis-
ordered 2D electron gas with a momentum relaxation time �
and study possible regimes of spin dynamics. The density-
density correlator 
�Qhx,�� can be obtained either diagram-
matically or by solving the kinetic equation. In the semiclas-
sical regime, corresponding to the summation of ladder
diagrams, one obtains
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D�Qhx,�� =
K�Qhx,��

1 − K�Qhx,��
, �14�

K�Qhx,�� =
1

2�
� d�

1 − i�� + i�so� cos �
, �15�

where the only SO-dependent parameter in the problem
�so�QhxvF �vF is the Fermi velocity� is the maximum spin
precession rate and �so�=�Qhx �electron mean free path �
=vF�� characterizes the relaxation regime.

We begin with the pure diffusion �so��1 regime, , stud-
ied in the coordinate representation in Ref. 17. Here the
Green’s function, Eq. �14�, reduces to

D�Qhx,�� =
1

DQhx
2 − i�

, �16�

where D=vF
2� /2 is the diffusion coefficient. Inserting

D�Qhx,�� of Eq. �16� into Eq. �11� we obtain

S��t� = S��0�exp�− DQhx
2 t� , �17�

which exactly corresponds to the Dyakonov-Perel’ mecha-
nism with the spin-relaxation rate �s=DQhx

2 . Moreover, the
factor 1/2 in the definition of D acquires an interesting physi-
cal meaning in terms of the spin precession: it corresponds to
the angular averaging of the precession rate 
�so

2 �k��
=�so

2 /2.
The opposite, clean limit �so��1, in terms of the dual

�transformed� system corresponds to a reversible, purely bal-
listic washing out the helix texture. In this regime
D�Qhx,���K�Qhx,�� �see Ref. 35� and the integration in
Eqs. �11� and �15� yields

S��t� = S��0�J0��sot� = S��0�J0�QhxvFt� , �18�

where J0��sot� is the Bessel function. The same result can be
derived directly from the microscopic spin precession about
the h axes with a k-dependent rate �so�k�=�so cos �, where
� is the angle between k and �. Indeed, the net result of the
inhomogeneous precession reproduces Eq. �18�,

S��t� = S��0�� cos��sot cos ��
d�

2�
= S��0�J0��sot� . �19�

Note that the oscillations of the total spin generally occur in
systems with SO coupling in the ballistic regime. However
the decay of the amplitude of oscillations �Bessel function in
Eq. �19�� is a feature of the pure gauge SO interaction. In the
case of only Rashba or only Dresselhause coupling, the spins
of all electrons at the Fermi contour rotate at the same rate.
As a result the total spin demonstrates a purely oscillatory
behavior with a constant amplitude. If both Rashba and
Dresselhaus terms with unbalances strengths are present, the
total spin oscillates with a decreasing but nonvanishing am-
plitude. Importantly, even weak disorder destroys the above
qualitative difference, leading to a decay of oscillations for
any SO coupling.

An intermediate regime of �so��1, can be investigated
numerically. The results are presented in Fig. 1. One can
clearly see a crossover from the oscillating Bessel function
like behavior to the exponential Dyakonov-Perel’ decay. At

short times, the behavior of spin is universal: S��t�
=S��0��1−�so

2 t2 /2� due to the unperturbed precession of the
spins. For the density dynamics the universal short-time be-
havior is a direct consequence of the f-sum rule,36 as can be
seen by expanding Eq. �11� at t→0.

Analysis of Eqs. �11�, �14�, and �15� shows that �so�=1 is
a critical point. With the decrease in �so� in the range
�so��1, the first zero of S��t� rapidly shifts to larger times,
with negative value regions becoming very shallow. At
�so��1 zeroes of S��t� disappear and the dynamics is a
pure decay.

The gauge transformation approach allows to analyze sys-
tems, where a direct treatment of the SO coupling would
cause difficulties. The first effect we consider is the influence
of the orbital motion in a nonquantizing magnetic field B
along the z axis on the spin dynamics. We assume that due to
a small g factor of electron, the Zeeman coupling to the
magnetic field does not cause a relevant spin precession. If
�so��1, the density evolution at B=0 is diffusive and the
electron mobility decreases with B due to the Lorentz force
as �1+�c

2�2�−1, where �c= �e�B /mc is the cyclotron fre-
quency. By the Einstein relation, the diffusion coefficient is
renormalized by the same factor D�B�=D�0� / �1+�c

2�2�.
Hence the spin-relaxation rate in Eq. �17� decreases as
�s�B�=�s�0� / �1+�c

2�2�, which reproduces the results of the
direct kinetic theory.37 For illustration, we consider the limit
�c��1 at short times t�� in a more detail. Here the trajec-
tories of electrons are nearly circles and the spin-independent
kernel in Eq. �8� can be represented as �cf. Ref. 35�

D��� − �,t� =
1

2�d�t�

���� − �� − d�t�� �20�

with the displacement d�t�=2Rc�sin��ct /2��, where Rc
=vF /�c is the cyclotron radius and RcQhx=�so /�c. Straight-
forward integration in Eq. �8� yields �cf. Eq. �18��

S��t� = S��0�J0�Qhxd�t�� , �21�

where Qhxd�t�=2�so�sin��ct /2�� /�c. For a very weak field
�in a very clean system� �c��so, the result reproduces Eq.
�18�, as expected. In the opposite limit �c��so, no relax-
ation occurs. In terms of spin precession this can be
understood22,38,39 as very fast changes at the frequency �c in
the direction of the SO field, keeping the total spin out of
relaxation. In terms of the density dynamics, the electrons ,
forced to circulate around small radius cyclotron orbits, can-
not spread out to destroy large scale �1 /Qhx�Rc density
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FIG. 1. �Color online� Time dependence of the spin for different
parameters of SO coupling, shown near the plots, with s�t� defined
as S��t��s�t�S��0� /S��0�.
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variations. At long times, the diffusion behavior takes over
and the relaxation becomes exponential.

As a second example we briefly discuss the effect of weak
localization on the spin relaxation40,41 by considering
�-dependent renormalization of the momentum relaxation
rate with the correction42–44


�wl
−1��� =

2

�

1

�n/��
� d2q

�2��2

1

Dq2 − i�
. �22�

This correction arises due to the enhanced return probability,
which slows down of the density dynamics and, when trans-
lated back to the physical system, eventually leads to the
algebraic tail in spin relaxation at long time as S��t��1 / t.41

In terms of spin precession, the enhanced backscattering
slows down the spin relaxation because upon the return to
the initial point the electron spin direction remains the same.

To conclude, we have shown that in a wide class of sys-
tems the non-Abelian gauge field description of SO coupling

reveals the duality of experimental observables and ensures
the exact mapping of the spin dynamics to the density evo-
lution. The evolution is described in terms of the response to
an external perturbation with the wave vector equal to the
spin helix wave vector Qhx. We presented explicit results for
a weak SO coupling with Qhx�kF valid for all systems of
interest �this restriction is not required in general�. This exact
mapping opens a venue for understanding the whole class of
practically important systems through better studied and
more simple properties of the systems without SO coupling.
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