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The observation of very large microwave-enhanced critical currents in superconductor–normal-metal–

superconductor (SNS) junctions at temperatures well below the critical temperature of the electrodes has

remained without a satisfactory theoretical explanation for more than three decades. Here we present a

theory of the supercurrent in diffusive SNS junctions under microwave irradiation based on the

quasiclassical Green’s function formalism. We show that the enhancement of the critical current is due

to the energy redistribution of the quasiparticles in the normal wire induced by the electromagnetic field.

The theory provides predictions across a wide range of temperatures, frequencies, and radiation powers,

both for the critical current and the current-phase relationship.
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It was predicted by Eliashberg already in 1970 [1] that
the condensation energy of a superconducting thin film can
be increased by irradiating the film with microwaves.
Within the framework of his theory, one can explain the
small microwave-induced increase of the critical current of
superconducting bridges for temperatures very close to the
critical temperature [2–4], which is known as the Dayem-
Wyatt effect. In the context of diffusive superconductor–-
normal-metal–superconductor (SNS) junctions, several ex-
periments have shown that upon irradiation the critical
current can be enhanced by up to several orders of magni-
tude [5,6]. This occurs even at temperatures well below the
critical temperature of the superconducting electrodes,
which cannot be understood in terms of stimulation of
superconductivity in the leads. Additionally, these experi-
ments show that the critical current is a nonlinear function
of the radiation power, which existing linear response
theories [7,8] cannot explain.

There is now renewed interest in this problem, triggered
by recent experiments. Fuechsle et al. [9] measured the
current-phase relationship under microwave irradiation,
and reported that the current is progressively suppressed
at phase differences close to � as the radiation amplitude
increases. Moreover, Chiodi et al. [10] observed that criti-
cal current is enhanced when the microwave frequency is
larger than the inverse diffusion time in the normal metal.
Besides, there are many recent device suggestions utilizing
SNS junctions in the presence of high-frequency fields,
such as those used in metrology [11] and in radiation
detection [12].

To understand the microwave-assisted supercurrent in
diffusive SNS junctions, we develop a microscopic theory
based on the quasiclassical Keldysh-Usadel approach,
which takes into account the nonlinear effects of the mi-
crowave irradiation. Our theory provides a quantitative

description for a wide range of values of the temperature,
microwave power, frequency, and the strength of inelastic
scattering. In particular, we show that the large enhance-
ment of the critical current originates from the presence of
a minigap, Eg, in the density of states of the normal wire.

This minigap blocks some of the transitions caused by the
microwave radiation, which results in a redistribution of
quasiparticles, enhancing the supercurrent when the tem-
perature T is comparable or larger than Eg=kB. We also

show that the nonequilibrium distribution in the normal
wire leads to a highly nonsinusoidal current-phase rela-
tionship, in good agreement with Ref. [9].
We consider a diffusive normal metal (N) of length L

connecting two bulk superconductors with energy gap �
[see inset of Fig. 1(b)]. In the absence of microwaves,
superconducting pair correlations leak into the normal
metal modifying its properties. For instance, the local
density of states (DOS) is modulated [13] and a super-
current can flow through the normal metal [14]. The DOS
exhibits a minigap Egð’Þ, see Fig. 1(a), which depends on

the superconducting phase difference ’ [15]. In this work
we focus on the long-junction limit, where the Thouless
energy ET ¼ @D=L2 (D is the diffusion constant) is much
smaller than �, as appropriate for the experiments
[5,6,9,10]. In this case and for ideal interfaces, which we
consider hereafter, Egð0Þ � 3:12ET , whereas Egð�Þ ¼ 0.

We model the microwave radiation by an oscillating

electric field, ~EðtÞ, described by a time-dependent vector

potential ~AðtÞ ¼ ~A0 cosð!0tÞ, where ~A0 points along the
axis of the junction. We neglect screening, and assume that
the field is position independent [16]. We also neglect the
effect of the radiation inside the superconductors, which is
justified for frequencies smaller than �=@ or when the
electrodes are thick compared to the size of the junction.
To evaluate the physical observables, we use the quasi-
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classical theory of superconductivity for diffusive systems
[18,19]. It is formulated in terms of momentum averaged

Green functions �Gð ~R; t; t0Þ which depend on position ~R and
two time arguments. These propagators are 4� 4 matrices
in Keldysh � Nambu space:

�G ¼ ĜR ĜK

0 ĜA

 !
; ĜR ¼ gR fR

~fR ~gR

� �
: (1)

Here, ĜR;A;K are the retarded, advanced and Keldysh com-
ponents, respectively. The Green functions acquire the

BCS value �G0ðt� t0;�’=2Þ inside the superconductors,
and in the normal metal fulfill the Usadel equation

@Dr̂ � ð �G � r̂ � �GÞ ¼ ½�i��̂3 þ i ��; �G�0; (2)

where � denotes the time convolution ðX�YÞðt;t0Þ¼R1
�1dt1Xðt;t1ÞYðt1; t0Þ, r̂ the gauge-invariant gradient

r̂ � X ¼ rX � i½e ~A�̂3=@; X�� which involves the vector

potential ~Aðt; t0Þ ¼ ~AðtÞ�ðt� t0Þ, and �ðt; t0Þ ¼ i@@t�ðt�
t0Þ. The self-energy �� describes inelastic interactions
in the wire, and the Green functions are normalized as

ð �G � �GÞðt; t0Þ ¼ �ðt� t0Þ.
Because Andreev reflection blocks subgap heat transport

out of the junction, inelastic interactions play an important
role in balancing the energy brought into the junction by
the microwaves. We describe these interactions, for ex-
ample due to phonons, within the relaxation time approxi-
mation, where the interaction strength is characterized by a

constant energy (scattering rate) � [17]. The microwave
coupling, in turn, introduces the energy scale EA ¼
e2DA2

0=@. One can show that the ratio s2 ¼ EA=ET deter-

mines the change in the spectral quantities due to the
microwaves, while the ratio � ¼ EA=� controls the corre-
sponding change in the electron distribution. We note that
s ¼ eV0=@!0, where V0 is the amplitude of the oscillating
voltage across the junction.
In order to solve Eq. (2), we follow Ref. [20] and Fourier

transform the Green functions to energy space. Because of
the time dependence of the vector potential, the Usadel
equation in energy space admits a solution of the type
�GðR; E; E0Þ ¼ P

m
�G0;mðR; EÞ�ðE� E0 þm@!0Þ. With

this ansatz the Usadel equation becomes a set of coupled
differential equations for the Fourier components
�Gn;mðEÞ ¼ GðEþ n@!0; Eþm@!0Þ. Below, we denote

the Fourier components of all variables with similar sub-
scripts. For arbitrary radiation power we solve these equa-

tions numerically [17]. From the solution of �G, we can
compute all physical observables.
We now analyze the linear response regime (s2, � � 1).

In this limit, we can derive the kinetic equation for the time
average of the distribution function, �f, by keeping terms up
to the second order in A0 in the Keldysh component of the
Usadel Eq. (1). Because of Andreev reflection, when re-
laxation processes are slower than the diffusion inside the
junction, �f is in our gauge constant throughout the normal
wire. Consequently, the kinetic equation reduces to an
equality of the electron-phonon and microwave collision
integrals, Ie-ph ¼ I�, averaged over the junction volume�.

The microwave collision integral resembles Joule heat-
ing and it is proportional to a time-averaged product

of electric field and current (at energy E), I� ¼
eD
8!0

~EðtÞ 	 Tr�̂3ĵKðEþ @!0=2; tÞ � ðE � E� @!0Þ, where
ĵK ¼ ĜR � r̂ � ĜK þ ĜK � r̂ � ĜA. Using this result
[17], the kinetic equation for the correction � �f ¼ �f� f0,
where f0 is the Fermi function, becomes

�h�i� �f¼	�ðEþ@!0Þfþð1�f0Þ�	þðEÞf0ð1�fþÞ
þ	þðE�@!0Þf�ð1�f0Þ�	�ðEÞf0ð1�f�Þ:

(3)

Here, h�i is the spatially averaged DOS inside the junc-
tion and f� ¼ f0ðE� @!0Þ. The emission (	�) and
absorption (	þ) rates are defined as 	þðEÞ ¼
	�ðEþ @!0Þ ¼ � eDA0

16 ImTr�̂3hĵK0;1ðEÞi=½f0ðEþ @!0Þ�
f0ðEÞ� .
For frequencies @!0 < 2Egð’Þ, one can neglect the ac

components of the retarded and advanced functions, so that

	þ � EA

4

�
�0�þ þ 1

4
RefðfR0 þ ~fR
0 Þð~fRþ þ fR
þ Þg

�
: (4)

This reduces to the original linear response result by
Eliashberg in the case of a bulk superconducting film [1].
One can now see that the minigap in � and fR blocks some

FIG. 1 (color online). (a) Local density of states (DOS) in the
middle of the normal wire for � ¼ 100ET and different values of
the phase difference ’=�, in the absence of microwaves.
(b) Absorption rate 	þ for a high frequency @!0=ET ¼ 8 and
’ ¼ �=2, s ¼ 0:125. Thin line shows the approximation from
Eq. (4). Inset: Schematic representation of the SNS junction.
(c) Correction � �f ¼ �f� f0 to the electron distribution function
vs energy at two different temperatures for ’ ¼ �=2, @!0=ET ¼
4, and s ¼ 0:125. Solid lines correspond to the exact numerical
results and the dashed lines to the approximation in Eq. (4). The
thin black line shows the spectral supercurrent jSðEÞ in the
absence of microwaves. (d) The same as in (c) for kBT=ET ¼
15 and ’ ¼ 0:8�.
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of the radiation-induced transitions [see Fig. 1(b)]. Thus, if
the temperature is sufficiently high [kBT * Egð’Þ], an

excess of quasiparticles accumulates below the minigap,
and their number is depleted above it. This cooling effect is
illustrated in Fig. 1(c), where the result of (4) is compared
to the exact numerical result. As one can see, Eq. (4)
reproduces the main features of the exact result well espe-
cially at kBT � Egð
Þ. Note that despite the cooling at

some energies, the Joule power absorbed in the junction,

P ¼ �F

R
dEE�hI�i ¼ IðtÞVðtÞ where �F is the normal-

state DOS, is positive.
However, Eq. (4) does not describe correctly the behav-

ior of the distribution function when @!0 > 2Egð’Þ, as
shown in Fig. 1(d). This means that Eq. (4) always fails
to describe the behavior close to ’ ¼ �. In this limit, the
radiation induces changes in the ac components of the
retarded and advanced quantities that couple to the time-
averaged distribution function, especially at energies close
to E ¼ �@!0=2. Since the behavior of these components
is determined by a complicated balance between diffusion
and ac excitation, an accurate description of 	� in general
requires a numerical calculation.

In the limit � � ET , the correction to the supercurrent
IS comes mainly from the change in the distribution func-
tion, and it can be written as

�IS � S�N

e

Z 1

�1
dEjSðEÞ� �fðEÞ; (5)

where S is the cross section, �N ¼ e2�FD the normal-state
conductivity of the wire and jSðEÞ the equilibrium spectral
supercurrent [21], which is plotted in Figs. 1(c) and 1(d)
together with � �f. Based on this, the cooling effect de-
scribed by Eq. (4) is expected to manifest as an enhance-
ment of the critical current for kBT * Egð0Þ. This is

confirmed by the exact numerical calculations obtained
in the low-amplitude regime, see Fig. 2. The effect in-
creases up to frequency @!0 � 2Egð0Þ, and at larger fre-

quencies becomes more varying, due to the complicated
energy dependence of jS and �f. On the other hand, as �
increases, the magnitude of � �f decreases, which together
with the suppression of the minigap and jS reduces the
current. The above is in qualitative agreement with existing
experiments [5,6], which concentrated on @!0=ET & 10.

For high power, the magnitude of the critical current
eventually decreases as can be seen in Fig. 3. This occurs as
large-amplitude oscillations of the phase average the den-
sity of states, which results in a suppression of the coher-
ence and in the subsequent closing of the minigap [see
Fig. 4(a)]. As a consequence, the cooling effect is sup-
pressed, and microwaves mainly heat the electrons in the
same way as in the normal state, which reduces the current.
In the relaxation time approximation the temperature is for

high field strength given by T
 � ½P=ð2�F�k2B�0Þ�1=5
(provided T & T
 � �=kB and assuming �ðTÞ ¼ 4�0T

3

[22]), where P ¼ �N�A2
0!

2
0=2 is the average Joule power

dissipated in the junction.

The critical current also exhibits oscillations when ra-
diation amplitude increases, see Fig. 3(a), similar to those
already seen in the early experiments [5,6]. For short
junctions (�< ET; not plotted), we find that these oscil-
lations match reasonably well with the usual Bessel oscil-
lations in Josephson tunnel junctions, i.e., I / J0ð2sÞ, but
in the long-junction limit the similarity is only qualitative.
Locations of the dips in the IcðsÞ relation are not strongly
dependent on the temperature, but depend on the radiation
frequency, as shown in Fig. 3(b).
The microwave irradiation alters the current-phase rela-

tionship, enhancing the current at ’ & �
2 and suppressing it

or even changing its sign at ’ * �
2 [see Fig. 4(b)]. The

behavior near ’ ¼ � comes from two sources: the cooling
disappears as the minigap closes, and the features peculiar

FIG. 2 (color). Correction to the critical current, normalized by
the critical current in the absence of the field, as a function of
temperature and inelastic rate for � ¼ 100ET and several fre-
quencies. The field strength is s ¼ 0:125 in all cases. The lines
separate the region of parameters for which the critical current is
enhanced from that in which it is reduced.

FIG. 3 (color online). Critical current (normalized by the cur-
rent without ac field at the corresponding temperature) versus
radiation amplitude s for a wire with �=ET ¼ 100. (a) For
different temperatures at @!0=ET ¼ 4 and �=ET ¼ 0:05.
(b) For different frequencies and kBT=ET ¼ 15.
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to the dissipative ac response of SNS junctions not con-
tained in Eq. (4) become increasingly important.

To compare with the results of Ref. [9], we compute the
current-phase relationship using the parameters (T, ET ,
!0) of the experiment. We have two free parameters:
�=ET , which we assume large enough to suppress the
enhancement of the critical current, and the amplitude of
the ac bias, which we fix by assuming that s ¼ 0:5 corre-
sponds to the externally applied power level 28 dBm at
@!0=ET ¼ 1:2. The power dependence, see Fig. 4(c), re-
produces the main experimental features: (i) with increas-
ing power the maximum supercurrent is reached at
’max <�=2, (ii) IS is strongly suppressed for phases close
to �, and (iii) for ’<’max, IS is slightly enhanced com-
pared to s ¼ 0. On the other hand, as shown in Fig. 4(d),
the deviation from the sinusoidal form becomes slightly
more pronounced as T increases, in qualitative agreement
with experiments. The difference to the experiment at high
power or low temperatures may be due to nonlinear radia-
tion coupling and the relaxation time approximation,
respectively.

In summary, we have presented a general theory for
describing the effects of radiation on the properties of

diffusive SNS junctions, which explains a wide range of
experimental observations. We have clarified the mecha-
nism of stimulated superconductivity, shown how the
supercurrent depends on the field strength nonmonotoni-
cally, and predicted the modification of the current-phase
relation. Moreover, our results pave the way for filling
some remaining gaps in the understanding of SNS junction
physics such as the finite-voltage Shapiro steps [14] or the
role of phase fluctuations providing the ‘‘intrinsic shunt-
ing’’ [11], as both phenomena require describing the junc-
tions in the presence of a finite-frequency driving.
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FIG. 4 (color). (a) Distribution function (solid black) and
density of states (green) for large amplitude s ¼ 2, and
@!0=ET ¼ 4, �=ET ¼ 100, kBT=ET ¼ 10, �=ET ¼ 0:05, and
’ ¼ �=2. Microwaves cause heating from kBT=ET ¼ 10 (dot-

ted) to kBT � @!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=4�

p
(blue). (b) Current-phase relation

normalized to equilibrium critical current at kBT=ET ¼ 15, 1
(top to bottom) and s ¼ 0:125 (solid) and 0.25 (dashed), for
@!0=ET ¼ 4, �=ET ¼ 100, �=ET ¼ 0:05. (c) Current-phase
relation for different amplitudes s ¼ 0, 0.2, 0.3, 0.5, 0.75 (solid,
top to bottom) at kBT=ET ¼ 10 and @!0=ET ¼ 1:2. Relaxation
rate is chosen as �=ET ¼ 0:2ðkBT=10ETÞ3, and �=ET ¼ 58.
Experimental data from Ref. [9] are shown as dots. (d) As in
(c), for s ¼ 0:3, @!0=ET ¼ 2, and temperatures kBT=ET ¼ 8,
9.5, 10, 11, 12.5 (top to bottom).
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