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It is shown that an electric field applied to p-doped graphane generates a dissipationless orbital momentum
Hall current. In the clean limit the corresponding Hall conductivity is independent of the concentration of
holes. The Hall effect is related to the 2�-Berry phase accumulated when heavy and light holes are transported
around the degeneracy point in the center of the Brillouin zone. This also leads to the orbital momentum edge
currents in the equilibrium state and to the accumulation of the orbital momentum at the edges when the system
is driven out of equilibrium.
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In the last few years a great deal of attention of the
condensed-matter community has been attracted by two ma-
jor developments: an experimental isolation of a high quality
single- and multilayer graphene,1–3 and the discovery of the
intrinsic spin Hall effect �SHE� in semiconductor systems
with spin-orbit interaction.4,5 Because of its unique electronic
properties6 graphene is considered as one of the most pro-
spective materials for future carbon-based electronics,7 a
possible successor of the standard silicon electronics. SHE
is currently regarded as an important part of emergent
spintronics.8,9

Recently an important step toward graphene electronics
has been made—an experimental synthesis of a fully hydro-
genated graphene, named graphane.10 Graphane is a wide
band-gap dielectric11,12 and therefore it may become an im-
portant part of nanoelectronic devices as it opens a way for a
controllable creation of a potential landscape with spatial
separation of conducting and insulating regions. However,
graphane is not only a promising material for passive parts of
graphene electronics but also has very interesting and excit-
ing properties by itself. Theoretical works triggered by the
first experiments predict localized spin states at hydrogen
vacancies,13 demonstrate the existence of unusual strongly
bound charge-transfer excitons,14 and indicate that doped
graphane is probably a high-Tc superconductor.15

In this work I show that p-doped graphane demonstrates a
dissipationless orbital momentum Hall effect �OHE�. In the
case of a weak disorder the corresponding Hall conductivity
has a value �OH�e /�� independently of the density of
holes. Similarly to the intrinsic SHE in systems with spin-
orbit interaction,4,5 the origin of OHE in graphane is a Berry
phase related to an effective k-space “magnetic monopole”
�Aharonov-Bohm flux line in this case� located at the band
degeneracy point. In the equilibrium state it generates dissi-
pationless orbital momentum edge currents while in the pres-
ence of a transport charge current it leads to the accumula-
tion of the orbital momentum at the edges of the sample.
These findings make a direct connection of graphane to the
field of spintronics. In fact, they suggest a potential applica-
tion of graphane as an active material for spintronics, or,
more precisely, orbitronics16 devices, which can be naturally
integrated within future graphene-based electronics chips.

Graphane in its most stable chair conformation11,12 is ob-
tained from the ideal graphene by depositing hydrogen on
both sides of the graphene plane and hydrogenating the A-
and B-sublattice carbons from the upper and the lower sides,
respectively. The A�B� carbons relax upward �downward�
and form � bonds with the corresponding H atoms, which
results in a diamondlike sp3 hybridization of carbon orbitals.
This has a dramatic effect on the electronic structure.
Graphane is a wide, direct band-gap insulator with the gap
minimum of 5.4 eV at the � point �center of the Brillouin
zone�.11,12

States at the top of the valence band, which are mainly
made of the carbon p orbitals, belong to a two-dimensional
�2D� representation Eg of the graphane point group D3d.14

Hence the corresponding k · p Hamiltonian should be a
2�2 matrix.17 In general the symmetry fixes the k · p matrix
up to a unitary transformation �choice of basis functions of
the representation�. In Ref. 14 an effective Hamiltonian for
holes in graphane has been derived using a set of �x2

−y2 ,2xy� as a basis of Eg representation. In the present con-
text a unitary equivalent form of the Hamiltonian, which
corresponds to the basis ��x+ iy�2 , �x− iy�2�, is more natural
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where p̂=−i�, p̂�= p̂x� ip̂y, I is the identity matrix, and
��=�x� i�y with � j being the Pauli matrices. The constants
�1��2 found in Ref. 14 determine the effective masses of
the isotropic light �L� and heavy �H� hole bands, mL= ��1
+�2�−1�0.22m0 and mH= ��1−�2�−1�0.64m0, where m0 is
the bare electronic mass.

It is instructive to verify explicitly that Ĥ of Eq. �1� is
indeed the proper invariant. Operations of the group D3d
�Ci�C3v are shown in Fig. 1. These are the inversion i,
in-plane rotations by 2� /3 about C3 axis, and reflections in
three vertical planes �v,1, �v,2, and �v,3. Acting by the group
operations on functions 	��x ,y�= �x� iy�2 one constructs a
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2�2 matrix representation of the group on this basis:18

D̂�i�= I

D̂�C3� = ei�2�/3��z, and D̂��v,1� = �x. �2�

Using Eq. �2� we immediately find that matrices �+ and �−
belong to the representation Eg and transform according to

the rules, ��→
C3

e�i4�/3�� and ��→
�v,1

�
, which are identical
to those for the operators p̂�

2 . Hence the term �+p̂+
2 +�−p̂−

2 in
Eq. �1� is the group invariant. Similarly the second invariant
entering Eq. �1� is a product of the identity matrix I and the
operator p̂2, which both belong to the one dimensional rep-
resentation A1g. The remaining linearly independent 2�2
matrix �z is rotationally and inversion invariant but antisym-
metric under reflections. Hence it can enter the Hamiltonian
only in the presence of a magnetic field B, in a form of �zBz.
It is worth noting that the Hamiltonian of Eq. �1� is time-

reversal invariant with the operator of time inversion �̂
=�xK, where K stands for the complex conjugation. Interest-
ingly, for �1=0 Eq. �1� coincides with the Hamiltonian of
bilayer graphene.2,19

Since matrix �z acts a generator of rotations �see Eq. �2��,
and couples to the magnetic field as �zBz, it is naturally
identified with the z component of the operator of a local-
orbital momentum, i. e., the angular momentum of orbital
currents inside the unit cell of graphane. This identification is
vital for all subsequent discussion.

Eigenstates of the Hamiltonian Eq. �1� correspond to two
parabolic bands with dispersions Ek

L,H=k2 /2mL,H and the
plane-wave spinor wave functions of the form �L,H
=k

L,Heikr, where

kx,ky

L =
1
�2
k̂+

k̂−

�, kx,ky

H =
1
�2
 k̂+

− k̂−

� �3�

and k̂�= �kx� iky� /k �here k= �k��. It is customary to describe
states of Eq. �3� as chiral2 because they are eigenfunctions
�with eigenvalues �1� of a “chirality” operator �nk, where

nk= �cos 2�k ,−sin 2�k�, and �k is a polar angle of the wave
vector k. To uncover the physical significance of the chirality
for graphane �as well as for bilayer graphene� we note that
the chirality operator can be represented as follows:

�nk = ei�k�z�xe
−i�k�z � D̂��v,k� , �4�

which is exactly the operator of reflection in a vertical plane
�v,k parallel to the wave vector. Hence the chirality of the L
and H holes is identical to a parity, positive, and negative,
respectively, under reflection in the “propagation plane.” We
will make use of this fact later on.

An important topological property of the L and H states,
Eq. �3�, is a nontrivial Berry connection

Ak = i�k
L��kk

H� =
k � ẑ

k2 , �5�

which is related to the band degeneracy at the point k=0. In
fact, the degeneracy point plays a role of an effective
Aharonov-Bohm magnetic line which carries a flux �Berry
phase� of 2�

� Akdlk = 2� . �6�

Now we are ready to discuss OHE in graphane. Since the

operator of the local-orbital momentum is identified as L̂loc
z

=�z we can define an operator of the orbital momentum cur-
rent as follows:

Ĵz =
1

2
��z,V̂� , �7�

where V̂=�kĤ is the velocity operator and �A ,B�=AB+BA.
The operator of Eq. �7� is odd under reflection in the k

plane. Since the states of Eq. �3� are the eigenfunctions of

this operation, all diagonal matrix elements of Ĵz are zero,
which implies a vanishing bulk orbital momentum current in
the equilibrium. However, a nontrivial Berry flux suggests
that a nonzero transverse current Jz can be generated by ap-
plying an external electric field Eei�t. Using the standard
linear-response theory we get

Ji
z = �ij

OH���Ej , �8�

�ij
OH��� =

2i

�
�
k

�
�,�=L,H

�fk
� − fk

��
���Ĵi

z������V̂j���
� − �Ek

� − Ek
��

, �9�

where fk
�= f�Ek

�� is the Fermi distribution function. After
straightforward algebra �the reflection symmetry ensures that
only off-diagonal matrix elements contribute� Eq. �9� simpli-
fies as follows, �ij

OH���=�ij��
OH, where

��
OH = �

k
�fk

H − fk
L�

�Ak � �k�Ek
L + Ek

H����k�
�2�k� − �2 �10�

and ��k�=Ek
L−Ek

H=k2 /2mL−k2 /2mH is the energy gap be-
tween L and H bands at a given k. Since for parabolic bands
Ek

L+Ek
H���k�, the last factor in Eq. �10� is proportional to

the cross product of the Berry connection and a total deriva-

3C 1,v�

2,v�

3,v�

i

FIG. 1. Schematic structure of graphane plane and the symmetry
elements of D3d point group: the center of inversion i and the third-
order axis C3 at the center of the hexagon, and three vertical reflec-
tion planes �v,1, �v,2, and �v,3.
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tive, Ak��k ln��2�k�−�2�. Thus at T→0 the right-hand
side of Eq. �10� reduces �by partial integration� to a Fermi
contour integral that yields, as expected, the Hall conductiv-
ity proportional to the Berry flux of Eq. �6�. The final result
takes the form

��
OH =

1

4�

mH + mL

mH − mL
ln	�2�kF

H� − �2

�2�kF
L� − �2
 , �11�

where kF
H=�2mH�F and kF

L=�2mL�F are the Fermi momenta
of the H and L holes, respectively. In the limit �→0 the
Fermi energy in Eq. �11� cancels out and we get the follow-
ing static Hall conductivity:

�0
OH =

1

2�

mH + mL

mH − mL
lnmH

mL
� �12�

independently of the concentration of holes.20 Using the ac-
tual masses and recovering physical units we obtain the
value �0

OH�e /��, which closely reminds the “universal”
intrinsic spin Hall conductivity predicted for the 2D electron
gas with spin-orbit interaction.5 The crucial difference is
that the result of Eq. �12� is insensitive to a weak disorder.
Indeed, vertex corrections to the conductivity vanish because
the Hamiltonian �1� is quadratic in the momentum.21 The
final static Hall conductivity in the presence of a �-correlated
disorder is obtained from Eq. �11� by replacing �→ i /�,
where � is the momentum relaxation time.

Recently a nonzero orbital momentum Hall conductivity
has been predicted for p-doped Si.16 It is instructive to com-
pare OHE in graphane and in Si with intrinsic SHE.4,5 While
OHE in graphane is an analog of the intrinsic SHE in the 2D
Rashba system,5 the OHE in Si is closely related to SHE of
holes in three-dimensional semiconductors.4 These similari-
ties are related to similar gauge structures underlying OHE
and SHE in the above systems.

A symmetry reason for the dissipationless static OHE is
that the external electric field breaks the reflection symmetry
in the plane perpendicular to the direction of E. This allows
for a nonzero orbital momentum current propagating along
that plane, i.e., OHE. Similarly one would expect that even
in the equilibrium any reflection symmetry-breaking defect,
e. g. the boundary, will generate orbital momentum currents
flowing along the defect’s potential isolines. Below I explic-
itly demonstrate the existence of such equilibrium edge cur-
rents for a plane boundary of graphane, modeled by an infi-
nite potential wall along the line y=0. In other words, we
consider the “edge defect” with the potential V�r�=0 at y
�0, and V�r�=� at y�0.

In the presence of an infinite, ideally reflecting potential
wall the orthonormal set of scattering states labeled by the
incident momentum k= �kx ,−ky�, ky �0 takes the form

�k
L�r� = �kx,−ky

L e−ikyy − Rk
Lkx,ky

L eikyy + Ck
Lkx,pH

H eipHy�eikxx,

�13�

�k
H�r� = �kx,−ky

H e−ikyy − Rk
Hkx,ky

H eikyy + Ck
Hkx,pL

L eipLy�eikxx,

�14�

where the spinors k,p
L and k,p

L are defined by Eq. �3�. The
kinematics of scattering corresponding to the solutions of
Eqs. �13� and �14� is illustrated in Fig. 2.

The states �k
L�r� and �k

H�r� originate from incident L and
H waves, the first terms in Eqs. �13� and �14�. The second
terms are the reflected L �H� waves with the reflection coef-
ficients Rk

L�H�. Importantly, the incident L �H� holes also pro-
duce reflected H �L� states, the third terms in Eqs. �13� and
�14� with amplitudes given by L→H �H→L� “conversion”
coefficients Ck

L�H�. The y component pH �pL� of the momen-
tum of the L→H �H→L� reflected waves are fixed by kine-
matic constraints of the conservation of energy and the x
component of momentum �see Fig. 2�

pH =�mH

mL
k2 − kx

2, pL =�mL

mH
k2 − kx

2.

Finally, the reflection and conversion coefficients are deter-
mined from the infinite wall boundary conditions, �k

L,H �y=0
=0 . For the incident H hole we find

Rk
H =

kx
2 − kypL

kx
2 + kypL

, Ck
H = i�mL

mH

2kxky

kx
2 + kypL

�15�

�the results for the incident L hole are obtained by inter-
changing L and H indexes in this equation�. Note that there is
a range of incidence angles for the H hole when the y com-
ponent pL of the momentum of the reflected L hole is purely
imaginary, i. e., the corresponding L state becomes an eva-
nescent wave localized near the boundary.

The L-H mixing in the scattering states Eqs. �13� and �14�
is related to the broken reflection symmetry. We can see from
Eq. �15� that the conversion coefficients vanish only for the
normal incidence, kx=0, as only in this case the hole states
are still the eigenfunctions of the reflection/chirality operator,
Eq. �4�.

The equilibrium orbital momentum current flowing along
the edge, i.e., its x component, is given by the expression

FIG. 2. �Color online� Geometry of scattering and mixing of the
L and H holes at the edge of graphane.
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Jx
z�y� = 2 �

�=L,H
�
k

�fk
���k

��r��†Ĵx
z�k

��r� , �16�

where the prime means that the summation is restricted to
ky �0. Explicitly Eq. �16� can be represented in the follow-
ing compact form:

Jx
z�y� =

2

mr
Im�

k
�fk

Hkx
2ky

k2 Rk
H�eikyy − eipLy�2, �17�

where mr is a reduced mass, mr
−1=mH

−1+mL
−1. From the struc-

ture of Eq. �17� it is clear that Jx
z�y� decays away from the

edge and experiences Friedel oscillations.
For the total equilibrium edge current at T��F we get the

following simple result:

J̄x
z = �

0

�

Jx
z�y�dy = �F

��mH − mL�2

8mHmL
. �18�

Hence the net edge current is proportional to the Fermi
energy—the result expected on dimensional grounds as �F is
the only available parameter of the proper dimension �� / t�.

Now I demonstrate that OHE leads to the orbital momen-
tum accumulation at the edges of a graphane sample. The
local-orbital momentum operator �z is antisymmetric under
the time reversal and the reflections. Therefore both symme-
tries must be broken to have a nonzero expectation value
��z�. Let us first analyze the bulk situation. Because of the
reflection symmetry the orbital momentum vanishes inde-
pendently for every plane-wave state of Eq. �3�, which, in
particular, implies ��z�=0 in the equilibrium. Breaking the
time-reversal symmetry and one of the reflections by apply-
ing an external electric field E and generating a transport
charge current j still does not produce a nonzero ��z�. The

reason is the remaining reflection symmetry in the vertical
plane parallel to j. The presence of the edge breaks that
symmetry and thus allows for a nonzero orbital momentum,
which should be localized at the edge as it must vanish in
the bulk of graphane. This symmetry argumentation can be
explicitly illustrated for the model boundary considered
above. Because of the broken reflection symmetry the orbital
momentum ��k

��r��†�z�k
��r� is nonzero for all scattering

states, except for the normal incidence. However, it is pro-
portional to kx �as dictated by the time-reversal symmetry�
and thus vanishes when integrated with any symmetric in kx
distribution function. In the transport situation the distribu-
tion function becomes asymmetric and the integration yields
a nonzero orbital momentum localized at the edge. On di-
mensional grounds we conclude that the line density of the
edge orbital momentum should be proportional to �2j /�F
�e�E, which is the momentum asymmetry responsible for
the transport current. This is similar to the spin accumulation
at the surface of semiconductors described by the Luttinger
Hamiltonian.22

In conclusion I predict OHE for p-doped graphane with
all standard features of the Hall effect present: a nonzero
dissipationless Hall conductivity, the equilibrium edge cur-
rents �which are reminiscent of the Landau diamagnetic cur-
rents�, and accumulation of the orbital momentum at the
edges. The later effect should be observable experimentally
via detecting the current-induced magnetization of the oppo-
site sign at the opposite edges of the graphane sample.
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