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1. Introduction

Decapod crustaceans are speciose and abundant, with more
than 500 recognized species in the NE Atlantic and Mediterranean
Sea (d’Udekem d’Acoz, 1999). They play an important role in most
marine ecosystems, occupying a variety of trophic niches (Cartes
et al., 2010). Many decapod species are of high commercial value
and studies on their population biology and ecology have increased
during the last decades (e.g. Company et al., 2008; Guijarro et al.,
2009). Despite growing interest in this group, genetic structure,
variability, and phylogeography of decapod species remain still
poorly known (Palero et al., 2008; Sotelo et al., 2009; Kelly and
Palumbi, 2010). Defining the genetic diversity and population
structure of these species is necessary to better understand the
influence of past and present climatic and oceanographic processes
on the structure of their populations.
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studies allow contrasting the effect of past and present oceanographic pro
patterns. In the present study, a fragment of the COI gene was analyzed i
pecies from five families and with different bathymetric distributions. A tot
mpled along the Atlantic–Mediterranean transition area in order to test th
riers to gene flow: Strait of Gibraltar, Almeria–Oran Front and Ibiza Channe
rait of Gibraltar was found in the crabs Liocarcinus depurator and Macropipu
nel had a significant effect for L. depurator. However, the Almeria–Oran fron

nificant effect on any of the studied species. Higher levels of population stru
-water species, although the number of species sampled should be increase
rn. The haplotypes within the different species coalesced at times that coul
ic events occurring before, during and after the last glacial maximum. Give
geographic patterns obtained within decapods, it is concluded that both hi
rocesses (marine current patterns, bathymetry and life-history traits) shap
ns of these crustaceans.

� 2011 Elsevier Inc. All rights reserve

The use of molecular tools to study marine species has show
that both genetic variability and population structure are shape
by processes occurring at different time scales (Palumbi, 2004
Contemporary processes, such as permanent or semi-permanen
oceanographic discontinuities, are among the main factors definin
the population genetic structure of marine organisms (Ayre et a
2009; Galarza et al., 2009a). Likewise, the distribution of genet
diversity levels has also been related to past events shaping th
evolution and present distribution of species (e.g. Pleistocene gla
ciations: Hewitt, 2000; Maggs et al., 2008). In this context, mtDN
genes have been the main markers of choice, given that they pro
vide information about past events while providing an overall pic
ture of gene flow among populations (Avise, 2000; Reece et a
2010) although nuclear markers have also proved to be powerfu
indicators of past and present events (Kenchington et al., 2009).

The Mediterranean Sea is a semi-enclosed marine basin sur
rounded by large continental masses and connected with th
Atlantic Ocean through the Strait of Gibraltar. The patterns o
water circulation in the Western Mediterranean, characterized b
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81 the inflow of surface Atlantic water and outflow of deeper Mediter-
82 ranean water (Millot, 2005), were already established during the
83 Pleistocene (Cacho et al., 1999). The circulation pattern and topog-
84 raphy along the southern and eastern coasts of the Iberian Penin-
85 sula originate three main oceanographic discontinuities (Fig. 1):
86 (1) around the Strait of Gibraltar, (2) the Almeria–Oran Front,
87 and (3) the Ibiza Channel. The discontinuity around the Strait of
88 Gibraltar is caused by Atlantic water fluxing into the Mediterra-
89 nean through epipelagic layers (maximum depth around 100 m)
90 and Mediterranean water exiting the basin through deep water
91 layers (Gómez et al., 2000). Before the entry of the Atlantic waters
92 throughout the Gibraltar Strait a branch of these waters recircu-
93 lates near the Strait, in front of Cape Trafalgar, towards the north-
94 west along the coast of Cadiz. This area is also influenced by the
95 intense tidal-current regime of the Strait of Gibraltar and the
96 strong topographic interaction between the swift along-shore tidal
97 flow and a submerged ridge running perpendicular to the shoreline
98 (García-Lafuente and Ruiz, 2007). These processes originate persis-
99 tently a patch of cold water that can also affect the connectivity

100 between populations at both sides of the Gibraltar Strait (Galarza
101 et al., 2009b). The Almeria–Oran Front (AOF) is a semi-permanent
102 dynamic oceanographic front connecting the main jet of incoming
103 Atlantic water and the Mediterranean Sea (Tintoré et al., 1988).
104 Depending on winter conditions, the AOF may decrease its strength
105 or even disappear (Tintoré et al., 1988). Finally, the current flowing
106 southwest along the continental slope of the northeastern Iberian
107 Pe
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110 ite
111
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113 lar
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115 str
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117 no
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122et al., 2011). The IC has also shown a restrictive effect in the com-
123ber fish (Schunter et al., 2011) and in the red gorgonian (Mokhtar-
124Jamaï et al., 2011). Furthermore, most oceanographic processes are
125seasonal (Salat, 1996) and could affect gene flow between popula-
126tions differentially, depending on the reproductive season of the
127species or the dispersal capacity of the larvae. Species having a long
128larval phase are generally more panmictic than those with short
129planktonic life (Planes and Fauvelot, 2002; Selkoe and Toonen,
1302011), although some studies have questioned this relationship
131(e.g. Galarza et al., 2009a). Therefore, a comparative study using
132multiple species with different dispersal capabilities, bathymetric
133distributions and reproducing at different seasons is needed in
134order to define the relevance of these oceanographic discontinu-
135ities in shaping the genetic structure.
136The present study aims at investigating the potential effect of
137oceanographic discontinuities in the genetic structure of seven
138decapod crustacean species. A partial region of the cytochrome oxi-
139dase subunit I (COI) was analyzed in samples collected at both
140sides of every oceanographic barrier along the south-eastern Ibe-
141rian Peninsula. The seven species, characteristic of muddy bottoms
142of the continental shelf and slope, have been selected according to
143their bathymetric distribution to evaluate whether the effect of
144oceanographic barriers varies with depth. We also analyzed
145whether the population structure is influenced by species life-
146history traits putatively involved in population connectivity (e.g.
147number of larval stages, main reproductive period). Finally, the
148an
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ninsula often turns around the Ibiza Channel (IC) towards the
learic Islands (García-Lafuente et al., 1995; Salat, 1996) generat-
g a disruptive effect on the circulation and the enclosing of Med-
rranean water in the northwestern basin (Pinot et al., 2002).
Most population genetic studies in this area have focused on

astal or shallow water species, which generally have epipelagic
vae that can be strongly influenced by surface oceanographic
nts and eddies. In fact, the AOF is known to affect the population
ucture of some species with an Atlantic–Mediterranean distri-
tion (Patarnello et al., 2007; Galarza et al., 2009a). However,
t so much is known about the effect of GS or IC, given that very

studies have considered the possible effect of each front inde-
ndently. A restrictive effect of the GS has been described in a few
hes (Galarza et al., 2009b; Sala-Bozano et al., 2009; Fruciano
al., 2011) and crustaceans (Papetti et al., 2005; Fernández

. 1. Map showing the sampling localities and major oceanographic discontinu-
s found in the Western Mediterranean Sea and Gulf of Cadiz. Sampling localities
indicated by colored circles. The thick gray lines with arrows indicate the main

ection of marine currents, and the thin lines correspond to 200 m isobaths.
tted lines: oceanographic fronts (GS: Gibraltar Strait, AOF: Almeria–Oran Front,
Ibiza Channel). Solid gray lines: permanent currents. Dashed gray lines: semi-
manent gyres and currents.
ease cite this article in press as: García-Merchán, V.H., et al. Phylogeographic pa
ol. Phylogenet. Evol. (2011), doi:10.1016/j.ympev.2011.11.009
alysis of the genetic variability in each species was used to trace
storical processes in the Mediterranean Sea influencing the spe-
s phylogeography.

Materials and methods

. Study area and sample collection

The study area encompassed the continental shelf and slope
ng the southern and eastern Iberian Peninsula (Fig. 1). Samples
re obtained from the MEDITS_ES (Bertrand et al., 2002) and
SA (López de la Rosa, 1997; Silva et al., 2011) fishery research
rveys. The MEDITS survey, which targets the main demersal fish-
ies around the European Union and adjacent Mediterranean
untries, is based on a common sampling protocol (Bertrand
al., 2002). The Spanish surveys were performed on board R/V
rnide de Saavedra’. Samples were based on a sample design ran-
50 m, 50–100, 100–200, 200–500 and 500–800 m). Each haul
s performed along a fixed isobath during day-time hours. The
ttom trawl gear used had a codend stretched mesh size of
mm which allows the capture of epibenthic and benthopelagic

h and crustaceans.
The sampling design allowed delimitation, for the present
dy, of several sub-areas, according to their geographic location
relation with putative oceanographic structures which might

fluence species connectivity: (1) Cadiz, located west of the Strait
Gibraltar, in Atlantic waters; (2) Malaga, between the Strait of

braltar and the Almeria–Oran Front; (3) Alicante, between the
meria–Oran Front and the Ibiza Channel; (4) Valencia, and (5)
rragona both located north of the Ibiza Channel. Each sampling
b-area encompassed several hauls taken within a ca. 50 km
astal sector. This sampling scheme, with areas evenly spaced,
compassing a broad geographic zone and with samples located
either sides of putative barriers to genetic dispersal, has been
own to be adequate in recent genetic studies carried out in the
ea (e.g. Calderón et al., 2008; Galarza et al., 2009a,b; Reuschel
al., 2010; Mokhtar-Jamaï et al., 2011; Schunter et al., 2011).
In order to analyze the effect of these oceanographic disconti-
ities on genetic population differentiation, the species were
tterns of decapod crustaceans at the Atlantic–Mediterranean transition.
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Table 1
Sampling locations, number of individuals sampled and diversity indices for the se

Pagurus
excavatus

Liocarcinus
depurator

Plesionika
heterocarpus

(bp) 540 573 548
Accession
#

JN564868-
JN564873

JN564801-
JN564829

JN564874-
JN564895

Cadiz N (H) 21 (3) 22 (10) 26 (9)
h 0.185 ± 0.150 0.710 ± 0.106 0.622 ± 0.107
p 0.0004 ± 0.0003 0.0029 ± 0.0008 0.0015 ± 0.000

Malaga N (H) 23 (3) 24 (9) 19 (6)
h 0.245 ± 0.120 0.746 ± 0.046 0.596 ± 0.122
p 0.0006 ± 0.0004 0.0040 ± 0.0004 0.0012 ± 0.000

Alicante N (H) 24 (2) 20 (6) 25 (7)
h 0.083 ± 0.070 0.789 ± 0.057 0.537 ± 0.115
p 0.0002 ± 0.0001 0.0038 ± 0.0003 0.0011 ± 0.000

Valencia N (H) 23 (4) 22 (6) 23 (5)
h 0.249 ± 0.102 0.411 ± 0.131 0.391 ± 0.125
p 0.0006 ± 0.0003 0.0021 ± 0.0007 0.0007 ± 0.000

Tarragona N (H) 23 (1) 27 (9) 25 (7) 0.590 ±
h 0 0.604 ± 0.108 0.112
p 0 0.0029 ± 0.0006 0.0014 ± 0.000

Total N (H) 114 (6) 115 (29) 118 (22)
h 0.152 ± 0.048 0.752 ± 0.027 0.542 ± 0.055
p 0.0004 ± 0.0001 0.0039 ± 0.0001 0.0012 ± 0.000

bp: sequence length in base pairs, N: Number of samples, H: number of haplotype
bootstrap replicates.
o
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232g
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234h
235)
236f
237

238

239h
240e
241h
242-
243n
244n
245s
246

247e
248s
249
chosen by being present throughout the study area, belonging t
different zoological groups within the Decapoda and encompassin
different bathymetric distributions. The seven species are repre
sentative components of the soft bottom communities of the Wes
tern Mediterranean (Abelló et al., 1988, 2002). Two species occu
on the continental shelf (<200 m): the swimming crab Liocarcinu
depurator (Portunidae) and the hermit crab Pagurus excavatu
(Paguridae), four species on the upper slope (200–500 m): th
squat lobster Munida intermedia (Munididae), the crab Macropipu
tuberculatus (Portunidae), the peneid shrimp Parapenaeus longiros
tris (Penaeidae), and the caridean shrimp Plesionika heterocarpu
(Pandalidae), and one in the lower slope (>500 m): the hermit cra
Pagurus alatus (Paguridae). Sample sizes per location and specie
are given in Table 1. The mean number of sampled individua
per population was 23 ± 1, with the exception of P. alatus, whic
could only be sampled in a lower number (19 ± 9) due to its ver
low frequency of occurrence and density in the Valencia secto
(Abelló et al., 2002). The mean depth of occurrence, northernmos
latitude, number of larval stages and main reproductive period o
each species were the main life-history traits considered in th
present study (summarised in Table 2). Given that there are n
direct estimates for potential larval dispersal capabilities of th
studied species, the number of larval stages has been used as
proxy (González-Gordillo et al., 2001). Whenever the number o
larval stages was unknown for a given species we used as a prox
the value from other species of the same genus or family, since th
is a rather conservative character in phylogenetically close specie
(Anger, 2001). The latitudinal range was used to define species a
being tropical (species reproducing in summer and distribute
principally between 23�S and 23�N) or mostly temperate (repro
ducing in winter and outside that range).
-
x
I)
d
h

250s
251s
252d
253g
254n
255-
256h
257
2.2. DNA extraction, amplification and sequencing

Muscle tissue from each individual was preserved in 100% eth
anol and total genomic DNA extraction was performed with Chele
10% following Estoup et al. (1996). The cytochrome oxidase I (CO
gene was amplified using the universal primers LCO1490 an
HCO2198 (Folmer et al., 1994). The sequence lengths (bp) for eac
Please cite this article in press as: García-Merchán, V.H., et al. Phylogeograp
Mol. Phylogenet. Evol. (2011), doi:10.1016/j.ympev.2011.11.009
species are given in Table 1. PCR reactions were carried out in
13 ll volume reaction with approximately 40 ng of genomic DN
containing 1 U of Taq polymerase (Amersham), 1� buffer (Amer
sham), 0.2 lM of each primer and 0.12 mM of dNTPs. The reactio
profile was 94 �C for 4 min for initial denaturation, followed by 3
cycles at 94 �C for 1 min, 54 �C for 1 min, 72 �C for 1 min and a fina
extension at 72 �C for 7 min. A small volume (2 ll) from each PC
product was purified using the Exo-SAP method with 0.34 ll o
exonuclease I (ThermoScientific) and 0.66 ll of shrimp alkalin
phosphatase (Promega), incubated at 37 �C for 15 min and a
80 �C for 15 min. Cycle-sequencing was carried out using the Bi
Dye terminator sequencing kit v3.1 (Applied Biosystems) followin
the manufacturer’s instructions. The sequences were obtained wit
an ABI PRISM�3770 automated sequencer (Applied Biosystems
from the Scientific and Technical Services of the University o
Barcelona.

2.3. Diversity estimates and genetic differentiation

Sequences were visually inspected, aligned and trimmed wit
BioEdit v7.0.1 (Hall, 1999). Nucleotide diversity (p), haplotyp
diversity (h) and their standard deviations were calculated for eac
area and species using DnaSP v5 (Librado and Rozas, 2009). Haplo
type networks were constructed for each species using the Media
Joining network algorithm (Bandelt et al., 1999) as implemented i
Network v4.5.1.6 (Fluxus Technology). The resulting network
illustrate the relationship among haplotype sequences and allow
examining the geographic partitioning of the data. Haplotyp
sequences were deposited in GenBank under accession number
(JN564801-JN564906) (Table 1).

Pairwise genetic differentiation among sampling sites wa
estimated measuring GammaST values and its significance wa
obtained using the Snn statistic (Hudson, 2000) as implemente
in DnaSP. Pairwise GammaST values were standardized by dividin
each pairwise value by its corresponding geographic distance. I
this way, a genetic distance per km of geographic distance was ob
tained and used to evaluate the relative effect of each front on eac
species.

decapod species analyzed.

Parapenaeus
longirostris

Macropipus
tuberculatus

Munida
intermedia

Pagurus
alatus

561 571 566 512
JN564896-
JN564906

JN564854-
JN564863

JN564830-
JN564853

JN564864-
JN564867

22 (5) 25 (5) 22 (8) 28 (2)
0.338 ± 0.128 0.653 ± 0.088 0.775 ± 0.068 0.071 ± 0.084
0.0007 ± 0.0002 0.0016 ± 0.0003 0.0033 ± 0.0005 0.0001 ± 0.0001

21 (2) 22 (4) 25 (9) 24 (2)
0.095 ± 0.084 0.333 ± 0.124 0.817 ± 0.055 0.083 ± 0.078
0.0002 ± 0.0001 0.0006 ± 0.0002 0.0031 ± 0.0005 0.0002 ± 0.0001

24 (1) 25 (5) 20 (9) 21 (2)
0 0.363 ± 0.147 0.747 ± 0.098 0.095 ± 0.081
0 0.0007 ± 0.0003 0.0033 ± 0.0007 0.0002 ± 0.0001

13 (3) 23 (5) 24 (6) 4 (1)
0.294 ± 0.135 0.324 ± 0.124 0.739 ± 0.070 0
0.0005 ± 0.0002 0.0006 ± 0.0002 0.0026 ± 0.0004 0

21 (4) 20 (4) 22 (9) 16 (1)
0.2714 ± 0.138 0.363 ± 0.131 0.762 ± 0.080 0
0.0005 ± 0.0003 0.0006 ± 0.0002 0.0034 ± 0.0006 0

101 (11) 115 (10) 113 (24) 93 (4)
0.189 ± 0.054 0.420 ± 0.059 0.765 ± 0.034 0.063 ± 0.038
0.0003 ± 0.0001 0.0009 ± 0.0001 0.0031 ± 0.0002 0.0002±0.0001

haplotype diversity, p: nucleotide diversity. Standard errors were computed from 100
hic patterns of decapod crustaceans at the Atlantic–Mediterranean transition.
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258 ANOVA tests were carried out considering genetic diversity and
259 GammaST values as dependent variables and life history traits as fac-
260 tors. Depth was initially classified in three levels: continental shelf
261 (<200 m), upper (200–500 m) and lower (>500 m) slope. Northern-
262 most latitude was classified in two levels: high (P65�N) and low
263 (650�N). Number of larval stages was grouped in two levels: low
264 (66) and high (P11). Main reproductive period in the study area
265 was summarized in two levels: winter and summer. ANOVA tests
266 were also used to evaluate the effect of depth within the families
267 Paguridae (P. excavatus and Pagurus alatus) and Portunidae (L. depu-
268 rator and M. tuberculatus). Before carrying out the ANOVA analyses,
269 dependent variables were tested for normality using the Shapiro–
270 Wilk test. Haplotype diversity followed a normal distribution.
271 Nucleotide diversity did not fit a normal distribution after transfor-
272 mation and was not used. GammaST values were Ln-transformed
273 and fit normality. ANOVA tests were performed with STATISTICA
274 v8.0. The homogeneity of variances was evaluated with both the
275 Figner–Killeen test and the Bartlett test as implemented in R
276 (R Development Core Team, 2008). None of the test gave significant
277 results and thus variances could be considered homogeneous.
278 In order to test for patterns of isolation by distance, compari-
279 sons between pairwise genetic and geographical distances were
280 carried out through a Mantel test using the GenAlEx package
281 v6.4 (Peakall and Smouse, 2006). The geographical distances were
282 measured along the 200 m isobath using the software Karto v5.2
283 (Cadiou, 1994).

284 2.4. Neutrality tests, demographic inferences and coalescence time

285 To test for patterns that deviate from neutrality Fu’s Fs (1997)
286 was computed using DnaSP v5 (Librado and Rozas, 2009). The
287 McDonald and Kreitman (MK) test (McDonald and Kreitman,
288 1991), that compares the ratio of polymorphism to divergence at
289 non-synonymous and synonymous sites, was carried out to detect
290 selection acting directly on the COI gene. Outgroup selection was
291 based on sequence similarity assessed through blast searches in
292 GenBank. Liocarcinus maculatus (FJ174949) was used as outgroup
293 fo
294 ca
295 P.
296 Mu
297 po
298 di
299 ‘‘s
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318573 bp in L. depurator (Table 1). Genetic diversity levels varied
319across species, with total number of haplotypes ranging between
3204 and 29 (Table 1; see Appendix A for details), haplotype diversity
321(h) from 0.063 to 0.765, and nucleotide diversity (p) ranging from
3220.0002 to 0.0039 (Table 1). When comparing haplotype diversity
323levels between species, three groups were observed when consid-
324ering non-overlapping 95% confidence intervals (1) a high diversity
325group: L. depurator and M. intermedia; (2) an intermediate diversity
326group: P. heterocarpus and M. tuberculatus; (3) and a low diversity
327group: P. excavatus, P. longirostris and P. alatus) (Fig. 2 and Table 1).
328In all cases, haplotype networks showed one or two widely dis-
329tributed haplotypes and several derived haplotypes found in one
330population only (Fig. 3). Most of those private haplotypes were sin-
331gletons (present in one individual only) and separated from the
332co
333ha
334dant haplotypes showing opposite geographic frequency clines.
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r L. depurator, Neosarmatium fourmanoiri (FN392165) for P. hetero-
rpus, Alpheus cristulifrons (FJ013896) for P. longirostris, P. alatus for
excavatus and vice versa, L. depurator for M. tuberculatus, and
nida delicata (EU418001) for M. intermedia. Time elapsed since

pulation expansion was inferred from pairwise nucleotide site
fferences (Mismatch distribution) for each species assuming the
udden expansion’’ model and the equation: t = s/2lk, where s
au) is the date estimate measured in units of mutational time, k
the sequence length and l is the mutation rate per nucleotide
ogers and Harpending, 1992). Following Rogers (1995), we
sumed theta final (theta after the population growth) to be infi-
te in order to estimate theta initial and s from the data. The
bstitution rate (lS) per nucleotide for the COI region was esti-
ated from sister decapod species separated by the Isthmus of
nama (lS = 0.9–1.1% divergence/My) as reviewed in Ketmaier
al. (2003). Since substitution rate (lS) represents a lower bound-
y for the mutation rate within species, we followed a conservative
proach after Emerson (2007). Thus, an intraspecific mutation rate
1) three times faster than the substitution rate (Howell et al.,
03) was also used for dating haplotype coalescence time in all
ecies.

Results

. Genetic variability

A total of 769 samples were analyzed in seven decapod crusta-
ans, with final fragment sizes ranging from 512 bp in P. alatus to
ease cite this article in press as: García-Merchán, V.H., et al. Phylogeographic pa
ol. Phylogenet. Evol. (2011), doi:10.1016/j.ympev.2011.11.009
mmon haplotypes by one or two mutational steps. L. depurator
d a particularly structured haplotype network, with two abun-
ep02 was present in all Mediterranean areas but not in Cadiz,
d Ldep03 was predominantly present in Cadiz, Malaga and
icante (i.e. the Atlantic area and Mediterranean areas under
ong Atlantic influence) (Appendix A). No haplotype frequency
nes were observed in any of the other six species.
The ANOVA test was only significant for haplotype diversity

th depth (F = 6.50, P = 0.004). Furthermore, Fig. 2 suggests that
thin a family, haplotype diversity is higher in the shallower
ecies than in the deeper (e.g. L. depurator vs. M. tuberculatus
d P. excavatus vs. P. alatus). However when evaluating the effect
depth within families, a significant relationship between h and
pth was observed only for portunid crabs (F = 7.12, P = 0.03).

. Neutrality tests, demographic inferences and coalescent time

In agreement with the star-like shape of most species haplotype
tworks, Fu’s Fs test yielded negative and significant values in all
ecies, which is indicative of deviations of neutral expectation
at can be due to recent expansions or selection (Table 3). When
e test was independently computed for each significantly differ-
tiated unit of M. tuberculatus (see below) no significant values
re obtained for Cadiz (Fs = �0.925, P > 0.05) but significant for

e grouping of the remaining populations (Fs = �8.746, P < 0.01).
r L. depurator Fu’s Fs values were also independently estimated
r the three genetically differentiated units (see below) and signif-
nt values were obtained for Cadiz (Fs = �5.087, P < 0.05) and the
pulations north of the IC (Fs = �7.049, P < 0.05) and not signifi-
nt for the group constituted by the two populations separated
the AOF (Fs = �3.589, P > 0.05). The MK test was only significant
P. excavatus and M. tuberculatus due to the larger frequency of
ecies (Table 3, Appendix B). Pseudogene amplification can be ru-
out in these species since the sequences we obtained were good

d no double peaks were observed.
When haplotype coalescent times within each species were

timated from Tau using the substitution rate (lS), an older
alescence time of approximately 100–138 kya was found for L.
purator and M. intermedia, an intermediate coalescent time of
–68 kya for P. heterocarpus and M. tuberculatus, and a younger
alescent time of 6–20 kya for P. longirostris and P. alatus (Table
. For P. excavatus it was not possible to estimate its haplotype
alescence time given that the observed variance was larger than
e mean haplotype diversity (Rogers, 1995). When we used an
traspecific mutation rate (l1) three times faster than the substi-
tion rate, the estimates were placed before the Last Glacial Max-
um (LGM), with 34–46 kya for L. depurator and M. intermedia,
ring the LGM (15–23 kya) for P. heterocarpus and M. tuberculatus
d more recently (2–7 kya) for P. longirostris and P. alatus (see
ble 3).
tterns of decapod crustaceans at the Atlantic–Mediterranean transition.
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382 3.3. Genetic differentiation and oceanographic processes

383 Global genetic differentiation within species was only signifi-
384 cant for L. depurator (GammaST = 0.228, P < 0.001) and M. tubercul-
385 atus (GammaST = 0.084, P < 0.05) (Fig. 4). Pairwise comparisons
386 between Cadiz and Malaga populations showed that the Gibraltar
387 Strait had a significant effect in these two species (Fig. 4 and
388 Appendix C). This front had no significant effect for M. intermedia,
389 despite the GammaST value between populations at both sides of
390 the front was highest (Fig. 4). Almeria–Oran front did not cause
391 significant genetic differentiation between populations located at
392 both sides for none of the seven studied species. However, for
393 P. heterocarpus the populations separated by this front presented
394 the largest GammaST value. Finally, Ibiza Channel showed a signif-
395 icant effect only on L. depurator. The correlation between geo-
396 l
397 r
398 d
399 ,
400 d
401

402 e
403 i-
404 g
405 -
406 ,
407 -
408 n

409both families (F = 6.62, P = 0.02, for Portunidae and F = 6.60,
410P = 0.02, for Paguridae).

4114. Discussion

412In the present study, we have analyzed the effects of the three
413main oceanographic discontinuities occurring in the Western Med-
414iterranean on the phylogeography and genetic structure of seven
415crustacean species using mitochondrial genes which integrate
416information of present and past processes (Avise, 2000). We used
417haplotype networks and coalescence times to enquire about histor-
418ical events that could be related to glaciations during the Pleisto-
419cene. Our results showed that shallow water species present
420higher genetic differentiation than deep water species as also
421shown by Etter et al. (2005). Furthermore, species living at lower
422latitudes were less likely to present population genetic structure.
423Other life history traits such as the number of larval stages (as a
424proxy of planktonic larval duration) and main reproductive period
425did not influence the genetic diversity or structure patterns, as
426observed by Galarza et al. (2009a). However, the relatively low
427number of species considered in the present study recommends
428that further studies would strengthen the validity of these relation-
429ships. In the evaluation of oceanographic discontinuities, only the
430Strait of Gibraltar (for the crabs L. depurator and M. tuberculatus)
431and the Ibiza Channel (for L. depurator) seemed to act as barriers
432to gene flow. Surprisingly, the Almeria–Oran front, previously
433defined as a barrier in numerous marine organisms (e.g. Patarnello
434et al., 2007; Galarza et al., 2009a), showed no effect on the genetic
435structure on any of the studied species. This result could be due
436to sampling limitations or could be related to the characteristics
437of the molecular marker used (e.g. low diversity found in Parapena-
438eus and the pagurid crabs).

4394.1. Genetic variability, population history and haplotype coalescence
440time

441The signature of historical demographic or selection processes
442can be inferred from the observed genetic variability levels in nat-
443n
444-
445

446-
447o
448i-
449i,
450s
451-
452r
453

454o
455e

Table 2
Main distribution and life history traits of the seven species of decapod crustaceans analyzed. Species are ordered according to mean depth of occurrence.

Sea habitat Species Family Mean depth of occurrence Latitudinal range Main reproductive period Number of larval stages

Continental shelf Pagurus excavatus Paguridae 92 10 N–44 N Winter 5
Liocarcinus depurator Portunidae 159 20 N–68 N Winter 6
Plesionika heterocarpus Pandalidae 220 17S–45 N Summer 11

Upper slope Parapenaeus longirostris Penaeidae 250 17S–44 N Summer 15
Macropipus tuberculatus Portunidae 277 27 N–65 N Winter 6
Munida intermedia Munididae 379 15 N–50 N Winter 5

Lower slope Pagurus alatus Paguridae 574 20 N–65 N Winter 5

Note: Mean depth of occurrence from Abelló et al. (2002). Latitudinal range and mean reproductive period from d’Udekem d’Acoz (1999) and references therein. Number of
larval stages from González-Gordillo et al. (2001).

Fig. 2. Boxplot for the haplotype diversity values in the seven species. Those pairs
of species belonging to the same family are highlighted in color (blue: Paguridae;
red: Portunidae). (PE: Pagurus excavatus, LD: Liocarcinus depurator, PH: Plesionika
heterocarpus, PL: Parapenaeus longirostris, MT: Macropipus tuberculatus, MI: Munida
intermedia and PA: Pagurus alatus). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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graphic and GammaST genetic distances assessed by the Mante
test revealed isolation by distance patterns for L. depurato
(r = 0.779, P < 0.05) and M. tuberculatus (r = 0.695, P < 0.05) an
yielded a marginally significant value for P. excavatus (r = 0.513
P = 0.054). No significant correlations between genetic an
geographic distances were obtained for the other species.

The ANOVA tests comparing GammaST values in relation to th
northernmost latitude showed that species reaching higher lat
tudes have significantly greater population genetic structurin
(F = 8.45, P = 0.005). Furthermore, a positive significant relation
ship was observed between GammaST and depth (F = 7.37
P < 0.001). The higher genetic differentiation in shallow water spe
cies was also observed when evaluating the effect of depth withi
Please cite this article in press as: García-Merchán, V.H., et al. Phylogeograp
Mol. Phylogenet. Evol. (2011), doi:10.1016/j.ympev.2011.11.009
ural populations. Three groups of species were identified based o
mean haplotype diversity values (Fig. 2): high diversity in L. depu
rator and M. intermedia, intermediate levels in P. heterocarpus and
M. tuberculatus and low diversity in P. excavatus, P. alatus and P. lon
girostris. The high and intermediate diversity values are similar t
those reported for other crustacean species of the Atlantic-Med
terranean area such as Carcinus maenas (Roman and Palumb
2004), Palinurus elephas (Palero et al., 2008), or Aristeus antennatu
(Roldan et al., 2009). Low diversity values are characteristic of pop
ulations having experienced strong bottlenecks due to founde
effects (Roman, 2006), although they could also result from low
lineage-specific mutation rates or natural selection. For the tw
studied hermit crabs (P. excavatus and P. alatus), low lineag
hic patterns of decapod crustaceans at the Atlantic–Mediterranean transition.
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ecific mutation rate may be ruled out given that high nucleotide
versity values in COI gene have been found in other pagurid spe-
s (Kelly and Palumbi, 2010). Consequently, the low diversity val-
s could be due to recent colonization of the studied area and/or
lection. The low number of non-synonymous changes observed
th the MK test (Appendix B) could be caused by purifying selec-
n, as recently unveiled in other crustacean species (Palero et al.,
10). In particular, different selective pressures acting on mtDNA
nes have been suggested to cause low genetic diversity esti-
ates in species with shallow bathymetric distributions in con-
st to species from the same group with a deeper distribution

tter et al., 2005; Palero et al., 2010). On the contrary, the present

. 3. Median–Joining haplotype networks of mtDNA COI sequences for each of the sev
d (g) is a lower slope species. Empty circles represent missing haplotypes. The haploty
or coded: Cadiz (green), Malaga (black), Alicante (red), Valencia (blue) and Tarragon
ease cite this article in press as: García-Merchán, V.H., et al. Phylogeographic pa
ol. Phylogenet. Evol. (2011), doi:10.1016/j.ympev.2011.11.009
dy found higher genetic diversity levels in shallower water spe-
s compared to those with a deeper bathymetric distribution.
wever, this differentiation was only significant in portunid crabs
d thus it could be species specific.
The significant Fu’s Fs values and star-shaped haplotype net-
rks (observed in all species included in the present work), are

aracteristic of species that have undergone a recent process of
pansion or selection (Wares, 2010). Assuming Rogers and
rpending (1992) ‘‘sudden expansion’’ model allowed us to date
plotype coalescent times and therefore relate genetic diversity
els and historical processes. The time estimates found could
associated to abrupt climatic changes occurring during the late

ecies, where (a and b) are continental shelf species, (c–f) are upper slope species
ie sizes within each network are proportional to their frequency. Populations are
ellow).
tterns of decapod crustaceans at the Atlantic–Mediterranean transition.
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Pleistocene and Holocene (Cacho et al., 2002; Frigola et al., 2007
During the last glacial maximum (30–20 kya) the sea leve
decreased up to 120 m (Lambeck and Chappell, 2001) althoug
did not significantly change the oceanographic processes occurrin
in the area (Cacho et al., 1999). For both L. depurator and M. inte
media haplotypes, coalescence times may be related to an abrup
descent of sea temperatures in north Atlantic waters driving a
intensive cooling of the Alboran Sea (westernmost portion of th
Mediterranean Sea) at 38–40 kya (Cacho et al., 2002). For P. hetero
carpus and M. tuberculatus, the haplotypes described within eac
species coalesced approximately at 20 kya coinciding with the Las
Glacial Maximum (LGM). Sea level and sea surface temperature
are known to have increased in the studied area after the LGM
(Cacho et al., 2002) so that higher temperatures could then hav
favoured the range expansion of species with a tropical distribu
tion and summer reproduction such as P. heterocarpus and P. long
rostris (Table 1). These species could postglacially colonize an
further expand its distribution area towards the Mediterranea
Sea as indicated in Melicertus kerathurus, which presents a simila
distribution range (Pellerito et al., 2009). Finally, P. alatus present
the most recent haplotype coalescent time and could be related t
a cold event detected in the North Atlantic 2.5 kya (Frigola et a
2007). Despite this close agreement between coalescent time

Table 3
Neutrality tests and coalescence times for seven decapod crustaceans distributed i

Species Fu’s Fs MK t

Pagurus excavatus �6.088** 0.00
Liocarcinus depurator �21.340*** 1.0
Plesionika heterocarpus �29.727*** 1.0
Parapenaeus longirostris �17.845*** 1.0
Macropipus tuberculatus �7.512*** 0.01
Munida intermedia �17.065*** 1.0
Pagurus alatus �5.562* 1.0

Coalescence times estimated from Tau using lS (substitution rate for the COI gen
(assuming the mutation rate is three times the substitution rate, according to Eme
(see main text for details).
* P < 0.05.
** P < 0.01.
*** P < 0.001.

Fig. 4. Standardized pairwise GammaST values for the different decapod crustacea
species across putative oceanographic discontinuities. The values in the right side
each species bar correspond to their global GammaST. (GS: Gibraltar Strait (Cadiz v
Malaga), AOF: Almeria–Oran Front (Malaga vs. Alicante), IC: Ibiza Channel (Alican
vs. Valencia), NF: No front (Valencia vs. Tarragona). ⁄P < 0.05. Pairwise Gamma
values for the seven species across all populations in the Atlantic–Mediterranea
transition in Appendix C).
Please cite this article in press as: García-Merchán, V.H., et al. Phylogeograp
Mol. Phylogenet. Evol. (2011), doi:10.1016/j.ympev.2011.11.009
and past climatic events, it should be stressed that not only demo
graphic but also other processes, such as selection linked to cl
matic events, may have influenced the observed COI diversit
patterns.

4.2. Genetic differentiation and oceanographic discontinuities

The effect of the Strait of Gibraltar on genetic differentiatio
was only significant for the two portunid crabs, L. depurator and
M. tuberculatus. Significant differences at both sides of the Stra
of Gibraltar have been previously observed in a few crustacea
and fish species (Papetti et al., 2005; Galarza et al., 2009b
Sala-Bozano et al., 2009; Fernández et al., 2011). The circulatio
pattern at the Strait of Gibraltar may affect species differentiall
according to the distribution of their larval phases along the wate
column. The Atlantic water flowing inwards could transport L. dep
urator epipelagic larvae (Abelló and Guerao, 1999) but prevent th
outwards transport of larvae from the Mediterranean. This proces
is clearly observed in the distribution of the two most frequent
depurator haplotypes, presenting opposite clinal patterns and wit
the most frequent Mediterranean haplotype being absent in th
Atlantic area (see Appendix A). For M. tuberculatus the presenc
of an Atlantic private haplotype (Mtub03, Appendix A) seems t
be the cause of the population differentiation between the tw
basins and suggests that Atlantic larvae have restricted movemen
towards the Mediterranean Sea and could be located in the deepe
layers (Gómez et al., 2000). However, given that a single marke
was used to assess genetic differentiation, the possibility of loca
adaptation cannot be ruled out in either L. depurator or M. tubercu
atus. The fact that both species belong to the Portunidae and coul
be under similar selective pressures indicates that this point merit
further consideration and that an independent set of nuclear neu
tral markers should be tested on these samples. As for the absenc
of genetic differentiation in the other species, it would seem t
indicate that the depth distribution of their larval stages coul
encompass the whole water column (see Queiroga and Blanton
2005; Dos Santos et al., 2008) and therefore facilitate genet
homogenization between populations. In any case, the lack of rel
able data on larval behavior for these species recommends furthe
studies to confirm the relationship between gene flow and wate
dynamics.

The Almeria–Oran Front (AOF) is a semi-permanent dynam
oceanographic structure (Tintoré et al., 1988) that has bee
described as the main barrier causing genetic discontinuities alon
the Atlantic–Mediterranean transition area (e.g. Patarnello et a
2007; Galarza et al., 2009a; Reuschel et al., 2010). The AOF woul
affect larval dispersion mainly in those species having epipelag

e Western Mediterranean and adjacent Atlantic Ocean.

Tau Coalescence time (kya)

lS l1

0.000 na na
1.426 113–138 38–46
0.672 56–68 19–23
0.202 16–20 5.3–6.5
0.549 44–53 15–18
1.269 102–125 34–42
0.065 6.2–7.6 2.1–2.5

tablished in several Crustacea: 0.9–1.1% divergence/My; Ketmaier et al., 2003) and l
(2007)). The symbol ‘‘na’’ indicates that haplotype coalescence could not be estimate
hic patterns of decapod crustaceans at the Atlantic–Mediterranean transition.
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M

vae are distributed throughout the water column. Despite the fact
at our sampling strategy was specifically designed to include pop-
ations at both sides of the front, we did not detect its effect in any of
e seven decapod studied species. This is in agreement with a re-
nt phylogeography study on the red shrimp A. antennatus (Ferná-
ez et al., 2011). The absence of effect of this front in L. depurator, a
ecies with coastal epipelagic larvae, could be related to the winter
laxation of the AOF (Tintoré et al., 1988) coinciding with the main
anktonic larval development season of this species (Abelló, 1989).

Finally, the Ibiza Channel only showed a significant effect on the
netic structure in the case of L. depurator populations. The water
asses transported by the northern current often block the circula-
n across the Ibiza Channel in the upper epipelagic layers, divert-

g large volumes of water to the northeastward Balearic Current
pez-Jurado et al., 2008; Monserrat et al., 2008). The intensities
the oceanographic processes occurring in this area are stronger
winter (Pinot et al., 2002), coinciding with the main reproductive
riod of L. depurator, and can restrict the genetic connectivity
tween its populations at both sides of the Channel as observed
the red gorgonian and the comber fish (Mokhtar-Jamaï et al.,
11; Schunter et al., 2011). However, no significant association
s found between genetic differentiation and main reproductive

riod for all species. Nevertheless, the significant isolation by dis-
nce patterns observed in L. depurator and M. tuberculatus suggest
at their genetic population structure may not only be influenced

the oceanographic discontinuities and that active and passive
spersal, along with historical colonization and local adaptation
ocesses, could be responsible for the observed patterns.

Conclusions

Overall, our results indicate that species living along the conti-
ntal slope have a low genetic structure, being less affected by
eanographic processes occurring in the upper layers. The Alme-
–Oran Front, despite being considered as the main oceano-

aphic discontinuity separating Atlantic and Mediterranean
pulations, showed no effect in the species analyzed in this study.
is result indicates that the effect of this front cannot be general-
d and that other discontinuities, such as the Gibraltar Strait, can

duce the gene flow between the two basins. The Ibiza Channel
o appears as a significant barrier influencing connectivity
tween populations. Finally, the present study showed that both
rrent and historical processes have to be considered together
en analyzing genetic variability and population differentiation
marine species.
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