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Time-dependent current–density-functional theory (TDCDFT) provides an, in principle, exact
scheme to calculate efficiently response functions for a very broad range of applications. However,
the lack of approximations valid for a range of parameters met in experimental conditions has so far
delayed its extensive use in inhomogeneous systems. On the other side, in many-body perturbation
theory accurate approximations are available, but at a price of a higher computational cost. In the
present work, the possibility of combining the advantages of both approaches is exploited. In this
way, an exact equation for the exchange-correlation kernel of TDCDFT is obtained, which opens the
way for a systematic improvement of the approximations adopted in practical applications. Finally, an
approximate kernel for an efficient calculation of spectra of solids and molecular conductances is sug-
gested and its validity is discussed. © 2011 American Institute of Physics. [doi:10.1063/1.3558738]

The theoretical description of the response of an elec-
tronic system to a time-dependent perturbation is a key prob-
lem for many areas of physics and chemistry. Most spectro-
scopic experiments probe the elementary excitations of an
electronic system through its linear response to an external
electromagnetic field. Their theoretical interpretation is of
primary interest for technological applications in condensed-
matter physics, nanosciences, photochemistry, or biophysics.
Similarly, response functions are essential, among many pos-
sible applications, also for the determination of the electrical
conductivity or other transport coefficients in molecular elec-
tronic devices.

Therefore, one would like to devise a reduced theoreti-
cal framework, that is, at the same time, reliable and efficient,
by calculating only the information needed to interpret and
predict specific experimental measurements. Two prominent
examples of such reduced approaches are many-body pertur-
bation theory (MBPT) and density-functional-based theories.
Key variables of the former are one- and two-particle Green’s
functions, G(1, 2) and G2(1, 2, 3, 4) (1 is a shorthand notation
for space, time, and spin indices r1, t1, σ1). Methods based on
the Green’s-function formalism reduce the complexity of the
many-body wavefunction into the propagation and the inter-
action of renormalized quasiparticles. Their intuitive, direct
contact with the initial problem of real interacting electrons
makes it rather easy to introduce working approximations. A
remarkably successful example is the solution of the Bethe–
Salpeter equation (BSE) for the two-particle correlation func-
tion L(1, 2, 3, 4) = −G2(1, 2, 3, 4) + G(1, 3)G(2, 4) which
has led to an important breakthrough by permitting, for in-
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stance, an accurate calculation of electronic spectra of solids
and nanosystems.1 On the other hand, practical calcula-
tions at this level remain very demanding, even for nowa-
days’ computers. An alternative pathway is instead based
on the extension of the density-functional theory (DFT) to
scalar time-dependent external potentials, Vext(r, t), as in the
time-dependent density-functional theory (TDDFT),2 or to
time-dependent vector potentials, Aext(r, t), as in the time-
dependent current-density-functional theory (TDCDFT).3, 4

When one needs only charge or current densities, ρ(r, t)
and j(r, t), these density-based methods identify the mini-
mum content of information that one has to calculate in or-
der to provide the searched answers. In the Kohn–Sham (KS)
scheme,5 the many-body problem is reformulated very effi-
ciently into a set of self-consistent noninteracting one-particle
equations. For this reason, in the KS scheme the solution of
the full many-body problem is made simple and its computa-
tional cost is very convenient. The main drawback is that it
is generally very difficult to improve upon the simplest local-
density approximations5 for the exact density functionals of
the formal theory. In fact, after the first promising results,6 the
development of TDCDFT in this field has been delayed by the
lack of adequate approximations to the exchange-correlation
(xc) vector potential Axc, beyond the local functional in the
current density of Vignale and Kohn (VK),4, 7 which is unfor-
tunately valid only in a range of parameters that is often not
met in experiments performed on inhomogeneous systems.8, 9

The present work aims at overcoming the limitations of
the VK functional, by applying to TDCDFT the emerging
successful strategy of combination of MBPT and density-
functional approaches, in order to profit from the complemen-
tary advantages of both.10–14 In particular, we will derive an
exact relation linking the unknown exchange-correlation ten-
sor kernel f̂xc to quantities that can be, in principle, accurately
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calculated in MBPT. Moreover, we will show how it is pos-
sible to introduce suitable approximations to this exact rela-
tion opening the way to a broad class of applications and to
a systematic way to improve the approximations adopted in
TDCDFT calculations.

The Bethe–Salpeter equation for the irreducible polar-
ization function L̃(1, 2, 3, 4) reads15 (throughout the paper,
integrals and sums are always done on repeated indices and
atomic units are adopted)

L̃(1, 2, 3, 4) = L0(1, 2, 3, 4)

+ L0(1, 2, 5, 6)�̃(5, 6, 7, 8)L̃(7, 8, 3, 4). (1)

Here, L0(1, 2, 3, 4) = −iG(1, 3)G(4, 2) is the two-
particle correlation function for independent particles
and �̃(5, 6, 7, 8) = iδ�(5, 6)/δG(7, 8) is the BSE kernel,
which, e.g., accounts for excitonic effects in optical spectra.
In standard BSE implementations the GW approximation16

for the self-energy � is adopted, where � is evaluated as
a product of the one-electron Green’s function G and the
screened Coulomb interaction W . �̃ is usually approximated
as �̃(5, 6, 7, 8) = −W (5, 6)δ(5, 7)δ(6, 8). This amounts to
neglecting the term iGδW/δG, which contains information
about the change of the screening in the excitation and is
considered to be small. Moreover, for W , one generally
considers only a static screening of the Coulomb interaction
v and L0 is built with GW quasiparticle (QP) energies and KS
wavefunctions. L̃ is then linked to the correlation function L
by a Dyson equation: L = L̃ + L̃v L . Whereas the quantities
of spectroscopic interest are, for instance, the two-point
density–density and current–current response functions,
χρρ(1, 2) = δρ(1)/δVext(2) and χ̂ (1, 2) = δj(1)/δAext(2), the
BSE is an intrinsically four-point equation. In fact, in the BSE
scheme, these two-point response functions can be obtained
only as contractions of the four-point correlation function L ,
which has to be calculated in a first step. In many situations,
as the ones we are interested herein, this clearly reveals to be
a computational waste that one would like to avoid.

In TDCDFT the linear response of the current j to an ex-
ternal vector potential Aext is4

δ jα(1) = 1

c
χ̂s,αβ (1, 2)δAs,β (2), (2)

where the Kohn–Sham vector potential As is the sum of
the external, Hartree, and exchange-correlation potentials:
As(1) = Aext(1) + AH(1) + Axc(1), and χ̂s is the Kohn–Sham
current–current response function. Similarly, the linear varia-
tion of the current can be calculated through the knowledge
of the irreducible current–current response function ˆ̃χ :

δ jα(1) = 1

c
ˆ̃χαβ(1, 2)[δAext,β(2) + δAH,β(2)]. (3)

Combining these two definitions, one immediately gets to a
Dyson equation linking χ̂s with ˆ̃χ :

ˆ̃χαβ(1, 2) = χ̂s,αβ (1, 2)

+ χ̂s,αλ(1, 3) f̂xc,λκ (3, 4) ˆ̃χκβ (4, 2), (4)

where the exchange-correlation tensor kernel

f̂xc,αβ(1, 2) = δAxc,α(1)

δ jβ(2)
(5)

has been introduced. Once, thanks to Eq. (4), the irreducible
ˆ̃χ has been calculated, the (reducible) response function χ̂

(hence, the spectra) can be obtained through

χ̂αβ(r1, r2, ω) = ˆ̃χαβ(r1, r2, ω) − ˆ̃χαλ(r1, r3, ω)

× 1

ω2
∇3λ

1

|r3 − r4|∇4κ
χ̂κβ(r4, r2, ω). (6)

The quality of the approximation adopted for the xc kernel
Eq. (5) is, hence, fundamental for the accuracy of the final
results.

As in TDDFT, also in TDCDFT, the effect of the xc
kernel on the spectra calculated from the independent KS-
particle response is twofold. The Kohn–Sham eigenvalues are
known to underestimate the quasiparticle band gap of insulat-
ing systems due to the derivative discontinuity of the DFT xc
potential.17 Hence, the xc kernel first has to provide a con-
sistent band gap opening. And, second, as the BSE kernel
�̃, it has to describe electron–hole interactions. So, following
Refs. 12 and 13, in order to make explicit these two aspects
here we set f̂xc,αβ = f̂ (1)

xc,αβ + f̂ (2)
xc,αβ , where f̂ (1)

xc,αβ has the task

of overcoming the KS band gap problem, while f̂ (2)
xc,αβ , for

instance, accounts for excitonic effects in optical spectra, or
dynamical corrections to the Landauer formula for the elec-
tronic conductance in quantum transport.18 Formally, we will
now introduce a contraction operator �αβ :

�αβ L0(1, 1′, 2, 2′) = 1

2i

1

2i

[
(∇1α

− ∇1′
α
)(∇2β

−∇2′
β
)L0(1, 1′, 2, 2′)

]
1′=1+,2′=2+ , (7)

in such a way that χ̂0 is15

χ̂0,αβ(1, 2) = ρ(1)δ(1, 2)δαβ + �αβ L0(1, 1′, 2, 2′). (8)

χ̂0 is built with QP ingredients instead of KS ones. In this way
one has

[χ̂−1
s ]αβ(1, 2) − [χ̂−1

0 ]αβ(1, 2) = f̂ (1)
xc,αβ(1, 2), (9)

and then

[χ̂−1
0 ]αβ(1, 2) − [ ˆ̃χ−1]αβ(1, 2) = f̂ (2)

xc,αβ(1, 2). (10)

In many semiconductors, the difference between KS and QP
can be accounted for by using a scissor operator that shifts
rigidly upward the eigenvalues of the conduction with respect
to valence bands. The use of a scissor operator is also a com-
mon practice in TDCDFT.9, 19 The main point of interest in
our discussion here is, hence, about f (2)

xc,αβ .
Equation (10) leads to

ˆ̃χαβ(1, 2) = χ̂0,αβ (1, 2)

+ χ̂0,αλ(1, 3) f̂ (2)
xc,λκ (3, 4) ˆ̃χκβ(4, 2). (11)

By definition, both TDCDFT and BSE yield the ex-
act two-point response function ˆ̃χαβ(1, 2) = ρ(1)δ(1, 2)δαβ

+ �αβ L̃(1, 1′, 2, 2′). Therefore, applying the contraction �αβ
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to Eq. (1) and comparing the result with Eq. (11), one obtains

χ̂0,αλ(1, 3) f̂ (2)
xc,λκ (3, 4) ˆ̃χκβ (4, 2)

= �αβ{L0(1, 1′, 3, 4)�̃(3, 4, 5, 6)L̃(5, 6, 2, 2′)}, (12)

which can be solved for the TDCDFT kernel f̂ (2)
xc,αβ giving

f̂ (2)
xc,αβ (1, 2) = [

χ̂−1
0

]
αλ

(1, 3) �λκ [L0(3, 3′, 4, 5)

× �̃(4, 5, 6, 7)L̃(6, 7, 8, 8′)]
[

ˆ̃χ−1]
κβ

(8, 2). (13)

Equation (12) is a generalized Sham–Schlüter equation,17, 20

which relates in an exact manner TDCDFT quantities with
MBPT ones, opening the way to possible systematic improve-
ments in the design of new approximations for the xc kernel of
TDCDFT. The design of operative approximations is, in fact,
easier in the context of MBPT, as proved by the accurate re-
sults obtained from the solution of the BSE.1 Then, thanks to
Eq. (13), working approximations of MBPT can be mapped
into the more efficient TDCDFT scheme, where one would
prefer to solve the equations. In particular, when approximat-
ing Eq. (13), no assumptions of locality in the current density
for functional dependence of the vector potential Axc are ex-
plicitly needed, leading to approximate kernels that can be
employed also in the range of parameters where the VK func-

tional is formally not valid, namely, for ground-state densities
and induced current densities not slowly varying in space, and
in the region below the particle–hole continuum of the homo-
geneous electron gas.

Within the TDDFT framework, such a mapping strategy
has already demonstrated to be a successful approach and has
led to the introduction of an xc kernel, known as Nanoquanta
kernel,10–14, 20 which has shown to provide the same level of
accuracy as the BSE in a wide range of spectroscopy appli-
cations, from solids to finite molecular chains.21, 22 Therefore,
by discussing a first practical application of the exact Eq. (13),
here we will show that a similar approach for the design of
new approximations to the tensor xc kernel of TDCDFT is
also possible. In fact, one expects to find a similar level of ac-
curacy also for current–current response functions. By a first-
order linearization of Eq. (13), where for the various response
functions one uses the independent-particle versions, and tak-
ing for �̃ the statically screened W , as usually done in BSE,
one obtains

f̂ (2)
xc,αβ (1, 2) = −[

χ̂−1
0

]
αλ

(1, 3) �λκ

[
L0(3, 3′, 4, 5)

×W (4, 5)L0(4, 5, 6, 6′)
][

χ̂−1
0

]
κβ

(6, 2). (14)

More explicitly,

f̂ (2)
xc,αβ (1, 2) = −[

χ̂−1
0

]
αλ

(1, 3) lim
3′→3

6′→6

[
1

2i
(∇3λ

− ∇3′
λ
)L0(3, 3′, 4, 5)W (4, 5)

1

2i
(∇6κ

− ∇6′
κ
)L0(4, 5, 6, 6′)

] [
χ̂−1

0

]
κβ

(6, 2), (15)

where the presence of three-point current–density and
density–current response functions, χ3

jρ(3; 4, 5) and χ3
ρj

(4, 5; 6), becomes apparent. Hence, the kernel Eq. (15) can
be also be rewritten in a compact way as

f̂ (2)
xc = −χ̂−1

0 χ3
0,jρWχ3

0,ρjχ̂
−1
0 . (16)

This is a new approximation of the TDCDFT f̂xc kernel that
has to be understood as an orbital functional, hence an im-
plicit functional of the ground-state density. In this sense it
is more flexible than the VK approximation to the vector po-
tential Axc, which instead is an explicit functional of the in-
duced current and the ground-state density. In practical ap-
plications, the response functions appearing in Eq. (16) are
built using QP energies, calculated in the GW approximation
or using a scissor-operator correction to KS eigenvalues, and
KS wavefunctions (which in many situations are a good ap-
proximation to QP wavefunctions). The product χ̂0 f̂ (2)

xc χ̂0 is
then inserted in a symmetrized version of the Dyson equa-
tion (11): ˆ̃χ = χ̂0(χ̂0 − χ̂0 f̂ (2)

xc χ̂0)−1χ̂0, which can be solved
for ˆ̃χ .

The spatial derivatives that appear in Eq. (15) do not
modify the structure of the poles of the response functions in
the frequency domain. Therefore, this approximation of the
TDCDFT tensor xc kernel can benefit from the same can-
cellation of poles and zeroes of the response functions that

has been shown to be essential for the Nanoquanta kernel of
TDDFT (Ref. 23) [provided that the response functions en-
tering Eq. (15) are built with QP energies]. Since any scalar
potential with a gauge transformation can be represented by
a longitudinal vector potential, Eq. (15) can be thought as a
generalization of the Nanoquanta TDDFT fxc kernel to the
calculation of the response to any kind of time-dependent ex-
ternal vector potential.

In general, the relation between the tensor f̂ (2)
xc TDCDFT

kernel and the scalar f (2)
xc TDDFT kernel is rather involved.24

Its first-order linearization in f̂ (2)
xc reads25

f (2)
xc = − c

ω2
χ−1

0,ρρ∇χ̂0 f̂ (2)
xc χ̂0∇χ−1

0,ρρ . (17)

This approximation is consistent with the linearization of
Eq. (13) that leads to Eq. (16). Hence, by inserting the
TDCDFT kernel f̂ (2)

xc [Eq. (16)] in Eq. (17) and using
the density continuity equation,26 the TDDFT f (2)

xc kernel
becomes

f (2)
xc = −χ−1

0,ρρχ
3
0,ρρWχ3

0,ρρχ
−1
0,ρρ, (18)

which is, in a compact form, the Nanoquanta TDDFT
kernel.10–14, 20 This equivalence, to the first order in f̂ (2)

xc ,
between the tensor kernel Eq. (16) and the scalar kernel
Eq. (18) supports the validity of the new approximation for the
TDCDFT kernel (16), thanks to the excellent results found

Downloaded 09 Jan 2012 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



084102-4 Matteo Gatti J. Chem. Phys. 134, 084102 (2011)

using the Nanoquanta TDDFT kernel Eq. (18).21 Moreover,
this represents a further alternative derivation of the expres-
sion (18) of the Nanoquanta kernel that exploits the possibil-
ity of mapping approximations developed in the framework
of TDCDFT into scalar TDDFT kernels.24, 25, 27, 28

In situations where the screening of the Coulomb interac-
tion is ineffective, W can be approximated with v and the GW
approximation reduces to Hartree–Fock. In this case, Eq. (15)
reduces to an exact-exchange approximation for f̂ (2)

xc (which
has been already worked out for the homogeneous electron
gas in Ref. 14). On the other side, it has been demonstrated
within the TDDFT framework that the lack of screening of
the long-range contribution of the Coulomb interaction in the
kernel implicitly overestimates both QP band gaps and ex-
citonic effects, leading to pathologies in optical spectra of
semiconductors.29 These pathologies can be cured by tak-
ing into account the screening of the Coulomb interaction, as
done in Eq. (15).

For optical spectra of solids, relevant is the long-
wavelength limit q → 0 of the G = G′ = 0 element of the
xc kernel written in the reciprocal space: f̂ (2)

xc,αβ(q + G, q
+ G′, ω), where G and G′ are reciprocal lattice vectors. In this
limit the f̂ (2)

xc kernel Eq. (15) in insulators becomes30 α̂/ω2,
where α̂ is a tensorial constant. Moreover, the static W is
proportional to 1/ε∞, where ε∞ is the static dielectric con-
stant. This implies that for the q → 0 limit, also α̂ is propor-
tional to 1/ε∞, suggesting that in isotropic systems α could
be used as a fitting parameter for the calculation of optical
spectra in solids.10, 31 In this limit, the tensor kernel becomes
completely local, contrary to the scalar TDDFT kernel that
is ultranonlocal32 and has a 1/q2 asymptotic behavior in the
long-wavelength limit.10, 33

Here, it is interesting also to note that even though for
the BSE kernel a static approximation for W is adopted, the
resulting f̂ (2)

xc kernel in Eq. (15), in general, is naturally fre-
quency dependent.34 This is a consequence of the conversion
of the spatial nonlocality into a frequency dependence,20 as-
sociated to the reduction of the number of degrees of freedom,
when one passes from the four-point L̃ to the two-point χ̃ and
from the four-point �̃ to the two-point f̂xc.

Since the validity of the new f̂ (2)
xc kernel Eq. (15) is not

confined to the weakly inhomogeneous limit, it could be, for
instance, used also to study dynamical corrections in the weak
bias limit of the Landauer formula in molecular transport for
nanoscale junctions.18 In fact, so far the calculated corrections
have been based on the VK functional, which is strictly valid
only for slowly varying densities in a high-frequency regime.
Therefore, an accurate estimate of these effects is still under
debate.35 On the other side, the renormalization of molecu-
lar electronic KS levels at metal–molecule interfaces36 in the
present context is accounted for by the term f̂ (1)

xc .
In conclusion, in the present work we have derived an ex-

act equation for the xc kernel f̂xc of TDCDFT, which allows
one to map well established working approximation of MBPT
into the more efficient TDCDFT scheme. Due the lack of an
appropriate approximate xc kernel, so far, TDCDFT could not
be used for calculating optical spectra in good agreement with
experiments.8, 9, 19 So, in analogy with the successful results
obtained in the TDDFT case,21 we have suggested a practical

approximation for f̂xc and discussed its validity for the calcu-
lation of electronic spectra of solids and nanosystems and dc
conductances in molecular devices.
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