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Zipf’s law is the most common statistical distribution displaying scaling behavior. Cities, populations or
firms are just examples of this seemingly universal law. Although many different models have been proposed,
no general theoretical explanation has been shown to exist for its universality. Here, we show that Zipf’s law
is, in fact, an inevitable outcome of a very general class of stochastic systems. Borrowing concepts from
Algorithmic Information Theory, our derivation is based on the properties of the symbolic sequence obtained
through successive observations over a system with an ubounded number of possible states. Specifically, we
assume that the complexity of the description of the system provided by the sequence of observations is the one
expected for a system evolving to a stable state between order and disorder. This result is obtained from a small
set of mild, physically relevant assumptions. The general nature of our derivation and its model-free basis
would explain the ubiquity of such a law in real systems.
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I. INTRODUCTION

Scaling laws are common in both natural and artificial
systems �1�. Their ubiquity and universality is one of the
fundamental issues in statistical physics �2–4�. One of the
most prominent examples of power-law behavior is the so
called Zipf’s law �5–7�. It was popularized by the linguist G.
K. Zipf, who observed that it accounts for the frequency of
words within written texts �5,8�. But this law is extremely
common �9�, and has been found in the distribution of popu-
lations in city sizes �5,10–14�, firm sizes in industrial coun-
tries �15�, market fluctuations �16�, money income �17,18�,
Internet file sizes �19�, or family names �20�. For instance, if
we rank all the cities in a country from the largest �in popu-
lation size� to the smallest, Zipf’s law states that the prob-
ability p�si� that a given individual lives in the ith most
populated city �i=1, . . . ,n� falls off as

p�si� =
1

Z
i−�, �1�

with the exponent, ��1, and being Z the normalization con-
stant, i.e.,

Z = ��
i�n

i−�� . �2�

Although systems exhibiting Zipf’s-like statistics are clearly
different in their constituent units, the nature of their inter-
actions and intrinsic structure, most of them share a few
essential commonalities. One is that they are stochastic, far
from equilibrium systems changing in time, under mecha-
nisms that prevent them to become homogeneous. Within the
context of economic change, for example, wider varieties of
goods and attraction for people are fueled by large developed
areas. Increasing returns drive further growth and feedback
between economy and city sizes �21–23�. Moreover, the
presence of a scaling law seems fairly robust through time:
in spite of widespread political and social changes, the sta-

tistical behavior of words in written texts, cities or firms has
remained the same over decades or even centuries
�5,7,15,23,24�. Such robustness is remarkable, given that it
indicates a large insensitivity to multiple sources of external
perturbation. In spite of their disparate nature, all seem to
rapidly achieve the Zipf’s law regime and remain there.

To account for the emergence and robustness of Zipf’s
law, several mechanisms have been proposed, including au-
tocatalytic processes �25–27�, extinction dynamics �28,29�,
intermittency �30,31�, coherent noise �32�, coagulation-
fragmentation processes �33,34�, self-organized criticality
�35�, communicative conflicts �36,37�, random typewriting
�38,46�, multiplicative dynamics �39,40�, or stochastic pro-
cesses in systems with interacting units with complex inter-
nal structure �41�. The diverse character of such mechanisms
sharing a common scaling exponent strongly points toward
the hypothesis that some fundamental property �beyond a
given specific dynamical mechanism� is at work. Such a uni-
versal trend asks for a generic explanation, which should
avoid the use of a particular set of rules.

We address the problem from a very general, mechanism-
free viewpoint; by studying the statistical properties of the
sequence of successive observations over the system. More
precisely, our observations can be understood as a sequence
of symbols of a given alphabet �depending on the nature of
the system� following some probability distribution. The el-
ements of this alphabet can be coded in some way, for ex-
ample, bits. From this conceptual starting point, we borrow
concepts from algorithmic information theory �AIT� and pro-
pose a characterization of a wide family of stochastic sys-
tems, to which those systems displaying Zipf’s law would
belong. Such a characterization imposes special features on
the behavior of the entropy, whose study leads us to conclude
that, under generic mathematical assumptions, Zipf’s law is
the only solution.

The paper is organized as follows: In Sec. II, we briefly
introduce the concept of stochastic object as defined within
the context of AIT and how it helps to understand our prob-
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lem. In Sec. III, we find the asymptotic solutions of the equa-
tions derived from the characterization provided in Sec. II.
Section IV discusses the relevance of the obtained results.

II. ALGORITHMIC COMPLEXITY
OF STOCHASTIC SYSTEMS

The cornerstone of our argument is an abstract character-
ization of the sequence of observations made on a given
system in terms of AIT �42–45,47,48�—see also �49�. The
key quantity of such theory is the so-called Kolmogorov
complexity, which is a conceptual precursor of statistical en-
tropy, and an indicator of the complexity �and predictability�
of a dynamical system �50–52�. In a nutshell, let x be a
symbolic string generated by the successive observations of
the system S. Its Kolmogorov complexity, K�x� is defined as
the length l����—in bits—of the shortest program �� ex-
ecuted in a universal computer in order to reproduce x. This
measure has been often used in statistical physics �53–55�
particularly in the context of symbolic dynamics �51�. In this
context, K is known to be maximal for completely disordered
systems, whereas it takes intermediate values when some
asymmetry on the probabilities of appearance of symbols
emerges.

Within the framework of statistical physics, a sequence of
observations performed over a given system can be inter-
preted as a sequence of independent, identically distributed
random variables, where the specific outcomes of the obser-
vations are obtained according to a given probability distri-
bution. In mathematical terms, such a sequence of observa-
tions defines a stochastic object. By definition, the
Kolmogorov Complexity of a stochastic object, described by
a binary string x=x1 , . . . ,xm of length m, satisfies �56�:

lim
m→�

K�x�
m

= � � �0,1� . �3�

In other words, the binary representation of a stochastic ob-
ject is linearly compressible. The case where �=1 refers to a
completely random object, and the string is called incom-
pressible.

We can generalize the concept for non binary strings,
whose elements belong to a given set �= 	s1 , . . . ,sn
, being
���=n. This is the case of a dice, for example, whose set of
outcomes is �dice= 	1,2 ,3 ,4 ,5 ,6
. If the behavior of the sys-
tem is governed by the random variable X�n�, accordingly,
the successive observations of our stochastic system define a
sequence of independent, identically pn-distributed random
variables X1�n� , . . . ,Xm�n� taking values over the set �. The
so-called noiseless Coding theorem �47,57,58�, establishes
that the minimum length, �in bits� of the string needed to
code the event si, l��si�, satisfies

l��si� = − log�pn�si�� + O�1� . �4�

Throughout the paper, log� log2, unless the contrary is indi-
cated. The average minimum length will correspond to the
minimum length of the code, which is, by definition, the
Kolmogorov complexity. Thus, we obtain �47,59�:

lim
m→�

K„X1�n�, . . . ,Xm�n�…
m

= �
i�n

pn�si�l��si� = H„X�n�… + O�1� ,

�5�

being H(X�n�) the Shannon or statistical entropy �57,58,47�,
namely:

H„X�n�… = − �
i�n

pn�si�log pn�si� .

The complete random case is obtained when, ∀si��pn�si�
=1 /n leading to l��si�=log n+O�1�. This indicates that we
need �log n bits to code any element from �. Therefore, the
length in bits of the sequence of m successive observations
will be approximately m log n. the average minimum length
of the code will be lower than log n. Using our previous
result Eq. �3� for the binary case, it is not difficult to see that:

lim
m→�

K„X1�n�, . . . ,Xm�n�…
m log n

= �; � � �0,1� . �6�

By defining h�n� as the normalized entropy as:

h�n� �
H„X�n�…

log n
, �7�

and from Eq. �5�, we observe that Eq. �6� can be rewritten as
h�n��� ;�� �0,1�.

So far we have been concerned with the algorithmic char-
acterization of stochastic systems for which the size of the
configuration space is static. However, we must differentiate
the properties of the systems we want to characterize from a
standard stochastic object such as the ones obtained by toss-
ing a dice or a coin. They both generate a bounded number
of possible outcomes—namely, 6 and 2—with an associated
probability, whereas those systems exhibiting power-laws
lack an a priori constraint on the potential number of avail-
able outcomes. These systems are open concerning the
size—or dimensionality—of the configuration space. Let
X�n� be a random variable taking values on �, where ���
=n and with associated probability distribution pn, where
�without any loss of generality� an ordering

pn�s1� 	 pn�s2� 	 . . . 	 pn�sn� �8�

is assumed. At a given time, the system satisfies Eq. �6�,
since it is a stochastic object with a given number of avail-
able states. However, we assume that the system changes
�generally growing� maintaining its basic statistical proper-
ties stable �5,7,15,24�. Using Eq. �5�, condition Eq. �6� is
replaced by:

lim
n→�

h�n� = � . �9�

We can replace Eq. �9� alternatively by the following state-
ment: For any 
�0 there exists n�N such that, for any n�
�n:

�h�n�� − �� � 
 . �10�

The main objective of the paper is to find the expected dis-
tribution pn�si� consistent with Eq. �10�. The case �=0
would correspond to systems where, although growing in
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size, its complexity �and thus, its statistical entropy� is
bounded or grows sublinearily with log n, a case studied in
�51�. Here, we are interested in the intermediate case, where
�� �0,1�. This characterization would depict systems with
some balance among ordering and disordering forces, and
thereby displaying a dissipation of statistical entropy propor-
tional to the maximum entropy achievable for the system in
equilibrium. Therefore, we will refer to the problem of find-
ing solutions for Eq. �9� as the entropy restriction problem. A
computational test for this result can be illustrated by the
model results shown in Fig. 1. The picture shows a spatial
snapshot of the local population densities of a model of ur-
ban growth displaying Zipf’s law �23�. The normalized en-
tropy evolves toward a stationary value ��0.65 consistently
with our discussion. This is true in spite that this model
exhibits wide fluctuations due to its intermittent stochastic
dynamics.

III. EMERGENCE OF ZIPF’S LAW
IN STOCHASTIC SYSTEMS

As pointed out in �36�, the main difficulty we face in this
kind of equations is that we are not dealing with an extremal
problem, since our value of entropy is previously fixed and it
is neither minimum nor maximum, in Jaynes’ sense �60�.
Thus, classical variational methods, which have been widely
used with great success in statistical mechanics �60–63�, do

not apply to our problem-although recently it has been
shown that variational approaches using Fisher information
and physically relevant constraints lead to Power laws whose
exponent can be close to 1 �64�. We also must take into
account that the particular properties of Zipf’s law create an
additional difficulty if the studied systems display, a priori,
an unbounded number of possible states. Specifically, we re-
fer to the nonexistence of finite moments and normalization
constant in the thermodynamical limit. However, as we shall
see, these apparently undesirable properties will be the key
to our derivation.

A. Properties of the entropies of a power law

Let us briefly summarize the properties of the entropies of
power-law distributed systems, which will be used to derive
the main results of this work �For details, see Appendix�.
Such properties are intimately linked with the behavior of the
Riemann Zeta function, ��� �65�:

��� = �
k=1

�
1

k� . �11�

In the real line, this function is defined in the interval �
� �1,��, displaying a singularity for �→1+.

Now, let us suppose that the system contains n states and
the probability to find the ith most likely states decay as a
power law, i.e., pn�si�� i−�. For the sake of simplicity, we
will refer to its associated entropy as H�n ,�� and to its nor-
malized counterpart as h�n ,��, i.e.,:

h�n,�� =
1

log n
��

Z
�
i=1

n
log i

i� + log Z� . �12�

The most basic properties concern the global behavior of
H�n ,��. It is straightforward to check that H�n ,�� is �i� a
monotonous increasing function on nt and �ii� a monotonous
decreasing function on �. Moreover, the normalized entropy
of Zipf’s law of a system with n states converges to 1/2 �66�,
i.e.,

lim
n→�

h�n,1� =
1

2
. �13�

We also note that the entropy of a power law with exponent
higher than one is bounded i.e., if ��1 is the exponent of
our power law, there exists a finite constant ���� such that:

lim
n→�

H�n,�� � ���� . �14�

A key consequence of this result is that, if our �unknown�
probability distribution is dominated �67� from some k by
some power law with exponent ��1+� �for any ��0�, our
entropy will be bounded.

Furthermore, it can be shown that the normalized entropy
of a power-law distribution in a system with n different
states, with exponent ��1, converges to 1, i.e.,

lim
n→�

h�n,�� = 1. �15�

Consistently, we can conclude that, if an �unknown� prob-
ability distribution is not dominated from any m by a power
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FIG. 1. �Color online� An example of the behavior of the nor-
malized entropy for a multiplicative stochastic process exhibiting
Zipf’s law. Here, we use the model described in �23� using a 80
�80 lattice where each node is described by a density of population
��i , j�. The rules of the model are very simple: i� At every time step,
each node loses a fraction � of its contents, which is distributed
among its four nearest neighbors. ii� At time t+1 the local popula-
tion is multiplied, with probability p, by a factor p−1. Furthermore,
with probability 1− p, the population of a node is set to zero. Ad-
ditionally, at each step a random number � is added to every node.
In this way, we avoid falling into an absorbing state �=0. Here we
use 0���0.01, �=1 /4, and p=3 /4. This is an extremely simpli-
fied �and yet successful� model of urban population dynamics. A
snapshot �for t=500� is shown in �a� where we can appreciate the
wide range of local densities, following Zipf’s law �b�. If we plot
the evolution of the normalized entropy � over time �averaged over
102 replicas� we observe a convergence toward a stationary value
��0.65.
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law with exponent lower than 1−� �for any ��0�, the nor-
malized entropy of our system will converge to 1.

Using these properties, in the following sections we pro-
ceed to derive Zipf’s using two complementary approaches,
namely, �1� proposing a power law as the asymptotic solution
of Eq. �9�—Sec. III B—and �2� Assuming that the entropy
behaves in a scale—invariant way—Sec. III C.

B. Power-law ansatz: Convergence of exponents to �=1

In this section we make use of the power-law ansatz as a
solution of our problem, i.e., we assume that the solution is a
power law with an arbitrary exponent, i.e., pn�si�� i−�. The
objective of this section is to demonstrate that, being h�n ,��
as defined in Eq. �12�, then the following limit holds:

lim
n→�

h�n,�� = ���� , �16�

being ���� the step function, i.e., ����=1 if ��1 and
����=0 if ��1. It implies that, for large values of n, the
whole range of normalized entropies between 0 and 1 is ob-
tained from exponents � arbitrarily close to �=1—see Fig. 2.

Let us rewrite the convergence assumptions provided in
Eqs. �9� and �10� assuming that our probability distribution is
a power law: For any 
�0 we can find an n such that, for
any n��n we have an exponent, ��n�� such that,

�h�n�,��n��� − �� � 
 , �17�

i.e., the sequence of normalized entropies H, associated to
system’s growth, namely,

H = h„1,��1�…,h„2,��2�…, . . . ,h„k,��k�…, . . . , �18�

converges to �. Below we split the problem in two different
scenarios.

1. First case: ��
1
2

We begin by exploring the following scenario:

lim
n→�

h�n,��n�� = � � �0,
1

2
� . �19�

From Eq. �13� we can ensure that, for large values of n,
��n��1. Since we assumed that the sequence H converges
to �, we can state that, for a given 
�0, there is an arbitrary
n1 such that:

� − 
 � h�n1,��n1�� � � + 
 . �20�

We know, from the properties of the entropies of power-law
distributed systems, that H�n1 ,��n1�������n1��, where
����n1�� is some positive, finite constant �see Eq. �14� and
Appendix�. Then, since log x is an unbounded, increasing
function of x, we can find n2�n1 such that

����n1�� � �� + 
�log n2. �21�

Thus, since h�n ,�� is a decreasing function on �, we need to
find ��n2����n1� such that

� − 
� � h�n2,��n2�� � � + 
�, �22�

with 
��
, in order to satisfy the entropy restriction. Fur-
thermore, since H�n ,1�= 1

2 log n+O(log�log n�), we conclude
that 1���n2����n1�. Let us expand this process recursively,
thus generating an infinite decreasing sequence of exponents,

	��nk�
k=1
� = ��n1�, . . . ,��ni�, . . . , �23�

such that, for any ��ni�� 	��nk�
k=1
� , ��ni��1. We notice

that, for any ��0, we can find a nk such that, if nj �nk,

���nj� − 1� � � , �24�

since, for every ��nk�, we always find a nj �nk such that

����nk�� � �� + 
�log nj . �25�

2. Second case: ��
1
2

Let us now consider the following entropy restriction
problem:

lim
n→�

h„n,��n�… = � � �1

2
,1� . �26�

From Eq. �13�, we can ensure that, for any n, ��n��1. Fur-
thermore, from Eq. �15�, we again find a problem close to the
one solved above, since for n1 large enough and ��1, we
have:

H�n1 + 1,�� − H�n1,�� � ��log�n1 + 1� − log n1� . �27�

Now, since we assumed that the sequence H converges, we
can state that given an arbitrary step n1,
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FIG. 2. Normalized entropies of five power-law distributed sys-
tems of different size as functions of the exponent. The curves
display 5 different sizes. n=500 000 black circles, n=10 000 white
circles, n=10 000 up triangles, n=1000 squares and n=100 down
triangles, respectively. The most interesting feature of the numerical
computations is the sharp decay of the normalized entropy when the
values of the exponent are close to 1, which implies that a wide
range of normalized entropies are obtained by tuning the exponent
of the power-law distribution around unity. Furthermore, we ob-
serve that the decay is sharper as the size of the system grows,
concentrating an increasing range of relative entropies near the ex-
ponent 1 �gray area�.
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� − 
 � h�n1,��n1�� � � + 
 . �28�

Since H�n ,�� is a decreasing function on �, we need to find
��n2����n1� such that:

� − 
� � h�n2,��n2�� � � + 
�, �29�

with 
��
, to satisfy the entropy restriction. However, from
Eq. �13�, we know that 1���n2����n1�. Proceeding as
above, we expand this process, thus generating an infinite
increasing sequence of exponents 	��nk�
k=1

� . By virtue of Eq.
�13� and Eq. �15�, and taking into account the decreasing
behavior of h as a function of the exponent, we observe that,
for any ��0, we can find a nk such that, if nj �nk,

���nj� − 1� � � . �30�

In summary, under the power law ansatz, the only solution
for Eq. �9�, in the limit of large systems, is �=1, i.e., Zipf’s
law.

C. Scale invariance Condition

The above power-law ansatz is purely mathematical, and
can be replaced by a more physically realistic assumption.
This leads us to the second strategy to solve our problem,
which is based on the assumption that the mechanisms re-
sponsible for the growth and stabilization of the system do
not depend on the size of the configuration space, and, thus,
a partial observation of the system will satisfy also condition
Eq. �9�. We will refer to this assumption as the scale invari-
ance condition, and it is formulated as follows. Let ��k���
be the set of the first k elements of �, observing a labeling
consistent with the ordering of probabilities provided in Eq.
�8�—roughly speaking, the k most probable elements of �.
The random variable which accounts for the observations of
such k elements is notated X�k�n�. We observe that, if X�n�
follows the probability distribution pn, the random variable
X�k�n� obeys the following probability distribution, to be
notated pn

k:

pn
k�i� � P�si�i � k� = ��

j�k

pn�sj��−1
pn�si� . �31�

Thus, if H(X�k�n�) is the entropy of X�k�n�, its normal-
ized counterpart is defined as h�k�n�:

h�k � n� �
H„X�k � n�…

log k
. �32�

We remark that these derivations are valid at the limit of
large systems, thereby considering that, at every step, n is
arbitrarily greater than k. Furthermore, let us define 
� as:


� � �h�k � n� − �� + � , �33�

being � arbitrarily small. Then, the scale invariance assump-
tion for the entropy states that, for any n	k�	k,

�h�k� � n� − �� � 
�. �34�

In summary, condition Eq. �34�, is grounded on the assump-
tion that the entropy restriction works at all levels of obser-
vation. Thus, the partial probability distributions of states we

obtain must reflect the effect of the entropy restriction, intro-
ducing a scale invariance of the normalized entropy of the
partial samples of the system.

As we saw in the above sections, the decay of this tail is
strongly constrained by the entropy restriction, since only
special cases avoid the normalized entropy to fall to 0 or 1.
To study in detail how it constrains the tail of the distribution
we will work with the coefficients fn�k ,k+1�, defined as:

fn�i,i + 1� =
pn�si�

pn�si+1�
,

instead of the raw probability distribution, to avoid multiply-
ing factors due to normalization. Now we observe that, for a
given, very large n, our probability distributions pn

k must be
able, as k increases, to unboundedly increase the entropy of
the whole system to reach the global value H(X�n�), which
lies in the interval (��−
�log n , ��+
�log n). Furthermore,
scale invariance condition depicted in Eq. �34� forces that, as
k increases, contributions to the entropy never go neither to 0
nor to log�k+1 / log k�, but lie within this interval. In other
words, the sum defined by the entropies must diverge as k
increases over a system where n is arbitrary large, whereas
the sequence of its normalized versions must converge to �.
The above derivations concerning the convergence properties
of the entropy—see also Appendix—clearly state that those
properties hold if pn satisfies, on one hand, for large i’s,

fn�i,i + 1� � � i + 1

i
��1−��

, �35�

to avoid that h�n�→1. On the other hand, if we want to
avoid that h�n�→0, the following inequality must hold:

fn�i,i + 1� � � i + 1

i
��1+��

. �36�

Therefore, the solution of our problem lies in the range de-
fined by:

� i + 1

i
��1−��

� fn�i,i + 1� � � i + 1

i
��1+��

. �37�

From the study of the entropies of a power law performed in
the previous section, we know that � can be arbitrarily small
if the size of the system is large enough. Thus,

fn�i,i + 1� =
pn�si�

pn�si+1�
�

i + 1

i
�38�

which leads us to Zipf’s law as the unique asymptotic solu-
tion:

pn�si� � i−1. �39�

IV. DISCUSSION

Complex, far from equilibrium systems involve a tension
between amplifying mechanisms and negative feedbacks
able to buffer the impact of fluctuations. In this paper we
have considered the consequences of such tension in terms of
one of its most well known outcomes: the presence of an
inverse scaling law connecting the size of observed events
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and its rank. The commonality of Zipf’s law in both natural
and man-made systems has been a puzzle that attracted for
years the attention of scientists, sociologists and economists
alike. The fact that such a plethora of apparently unrelated
systems display the same statistical pattern points toward
some fundamental, unifying principle.

In this paper, we treat complex systems as stochastic sys-
tems describable in terms of algorithmic complexity and thus
statistical entropy. A general result from the algorithmic
complexity theory is that Eq. �3� holds for stochastic sys-
tems. Taking this general result as the starting point, we de-
fine a characterization of a wide class of complex systems,
which grasps the open nature of many complex systems,
summarized in Eq. �9�. The main achievement of this equa-
tion is that it encodes the concepts of growing and, even
most important, the stabilization of complexity properties in
an intermediate point between order and disorder, a feature
observed in many systems displaying Zipf’s-like statistics.
From this equation we derived Zipf’s law as the natural out-
come of systems belonging to this class of stochastic sys-
tems.

Our development avoids the classical procedures based on
maximization �minimization� of some functional in order to
find the most probable configuration of states, since in far
from equilibrium the ensemble formalism, together with
Jaynes’ maximum entropy principle �60� can fail due to the
open, nonreversible behavior of the systems considered here.
Thus, we do not introduce moment constraints, as it is usual
in equilibrium statistical mechanics �63�, but instead a con-
straint on the value achieved by the normalized entropy, no
matter the scale we observe the system. Both a scaling ansatz
and a more general scale invariance assumption lead to
Zipf’s law as the unique solution for this problem. We ob-
serve that the finite size effects define an interval of expo-
nents around 1, namely, �1−� ,1+��, which could partly ex-
plain the variation observed in finite, natural systems.
However, it is true that a system satisfying Eq. �9� does not
necessarily exhibit Zipf’s law. Further work should explore
in depth the physically relevant conditions leading the evo-
lution of Zipf’s like systems to remove the mathematical
assumptions made in this paper, thereby obtaining a com-
plete description of them from a completely general, theoret-
ical viewpoint.
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APPENDIX: ENTROPIC PROPERTIES OF POWER-LAW
DISTRIBUTED SYSTEMS

Consider a system whose behavior is described
by the random variable X�n� taking values on the set
�= 	s1 , . . . ,sn
 , ���=n, according to the probability distribu-

tion pn�si�. The labeling ’i’ of the state is chosen in such a
way that pn�s1�	 pn�s2�	 . . . 	 pn�si�	 . . . 	 pn�sn�.

The Shannon entropy of our system of n states, to be
noted H(X�n�), is defined as �58�:

H„X�n�… = − �
k�n

pn�sk�log pn�sk� . �A1�

The normalized entropy of the system, to be written, h�n�, is
defined as:

h�n� �
H„X�n�…

log n
. �A2�

We will work with power-law distributions, by which
pn�si�= 1

Z i−� where n is the number of available states, and Z
the normalization constant, which depends on the size of the
system, n. Let us rewrite the function H(X�n�) as a function
of the exponent and the size of �, H�n ,��. Consistently,

h�n,�� �
H�n,��
log n

. �A3�

This appendix is devoted to derive five properties of the
entropy of power-law distributed systems.

�1� H�n ,�� is a continuous, monotonous decreasing func-
tion with respect to � in the range �0,��.

Indeed, the dominant term of its derivative is:

�H�n,��
��

 − �
i�n

�log i�2

i� � 0. �A4�

�2� The entropy of a power-law is a monotonous, increas-
ing function on the size of the system �68�.

We want to show that H�n ,�� is a monotonous increasing
function on n. In order to prove it, we must compute the
difference H�n+1,��−H�n ,��. For simplicity, let us define:

Sn � �
k�n

1

k� . �A5�

Using the trivial inequality:

log�Sn +
1

�1 + n��� � log�Sn� , �A6�

we can state that:

H�n + 1,�� − H�n,��

=
�

Sn + 1
�1+n��

�
k�n+1

log k

k� + log�Sn +
1

�1 + n���
−

�

Sn
�
k�n

log k

k� + log�Sn�

� ��
k�n

log k

k� � 1

Sn + 1
�n+1��

−
1

Sn
� + �

log�n + 1�
Sn + 1

�n+1��

=
�

Sn
2�n + 1�� + Sn

�Sn�n + 1��log�n + 1� − �
k�n

log k

k� �
� 0.
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Finally, it is easy to check that the following properties also
hold:

lim
�→�

H�n,�� = 0, �A7�

lim
�→0

H�n,�� = log n . �A8�

�3� The normalized entropy of Zipf’s law of a system with
n states �pn�si�� i−1� converges to 1/2:

We want to show that the sequence

H = 	h�k,1�
k=1
� = h�1,1�,h�2,1�, . . . ,h�k,1�, . . . �A9�

converges to 1
2 . Let us suppose that H is a sequence satisfy-

ing the above requirements. Then, the entropy for a given n
can be approached by �66�:

H�n,1� =
1

2
log n + O„log�log n�… . �A10�

Thus, if h�n ,1�=H�n ,1� / log n, let us define 
�n� like:


�n� � �h�n,1� −
1

2
� = �O„log�log n�…

log n
� . �A11�

Clearly, 
�n� is strictly decreasing on n, and, furthermore,

lim
n→�


�n� = 0. �A12�

�4� The Entropy of a power law with exponent higher than
1 is bounded.

Here we demonstrate that the entropy of a power law with
exponent higher than 1 is bounded �69�. Specifically, we as-
sume there exists a pair of positive constants Z ,�, such that:

pn�i� =
1

Z
i−�1+��. �A13�

Then, the sequence of H= 	h�k ,1+��
k=1
� converges to 0. In-

deed, let us first note that:

lim
n→�

pn�si� =
1

�1 + ��
i−�1+��, �A14�

where

�1 + �� � �
k

�
1

k1+� �A15�

is the Riemann zeta function �65�. The function is defined by
an infinite sum which converges, in the real line, if ��0,
i.e.,:

�
k

�
1

k1+� � � . �A16�

otherwise, the sum diverges. Furthermore, it is also true that
the above condition also holds for the following series:

�
k

�
log k

k1+� . �A17�

Indeed, note that, given an arbitrary ��0 there exists a finite
number i� such that:

i� � min�i:�� −
log�log i�

log i
� � 0� �A18�

and, if we define the following exponent, ��i��:

��i�� � 1 + � −
log�log i��

log i�
, �A19�

there exists a finite constant, ����, defined as:

���� � �
i�i�

� log i

i1+� −
1

i��i��� + ���i��� , �A20�

such that:

�
k

�
log k

k1+� � ���� . �A21�

With the above properties, it is clear that, if there exists a
constant ��1+���� such that:

lim
n→�

H�n,1 + �� � ��1 + �� , �A22�

then, the entropy of a power law with exponent higher than 1
is bounded. As we shall see, it is straightforward by checking
directly the behavior of H�n ,1+��:

lim
n→�

H�n,1 + �� =
1 + �

�1 + ���i=1

�
log i

i1+� + log��1 + ��� .

Since H�n ,�� is an increasing function on n, and

1 + �

�1 + ���i=1

�
log i

i1+� + log„�1 + ��… � � , �A23�

we can define a constant ��1+��,

��1 + �� � lim
n→�

H�n,1 + �� + 
 �A24�

�where 
 is any positive, finite constant�. Clearly,

H�n,1 + �� � ��1 + �� . �A25�

Thus,

lim
n→�

h�n,1 + �� = lim
n→�

H�n,1 + ��
log n

� lim
n→�

��1 + ��
log n

= 0.

Consequence, if an unknown probability distribution is
dominated from some k by some power-law with exponent
higher than 1+�, our entropy will be bounded.

Consequence, if an unknown probability distribution is
dominated from some k by some power-law with exponent
higher than 1+�, our normalized entropy will tend to 0.

�5� The normalized entropy of a power-law distribution in
a system with n different states, pn with exponent lower than
1 converges to 1.
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Let us suppose that we have the following probability
distribution, with 0���1:

pn�si� =
1

Z
i−�1−��. �A26�

Note that �66�:

�
k�n

1

k1−� = �
1

n 1

x1−� + O�1� �
n�

�
. �A27�

Applying directly the definition of entropy,

H�n,1 − �� =
��1 − ��

n� �
k�n

log k

k1−� + � log n − log � .

�A28�

If we compute the limit of h�n ,1−��:

lim
n→�

h�n,1 − �� = lim
n→�

� ��1 − ��
log n · n� �

k�n

log k

k1−� + ��
= lim

n→�

1 − �

log n
�log n −

1

�
� + � = 1 − � + � = 1.

Consequence, if our �unknown� probability distribution is
not dominated from some k by a power law with exponent
higher than 1−�, our normalized entropy will converge to 1.
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