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In this paper we explore the concept of hierarchy as a quantifiable descriptor of ordered struc-
tures, departing from the definition of three conditions to be satisfied for a hierarchical structure:
order, predictability and pyramidal structure. According to these principles we define a hierarchical
index taking concepts from graph and information theory. This estimator allows to quantify the
hierarchical character of any system susceptible to be abstracted in a feedforward causal graph, i.e.,
a directed acyclic graph defined in a single connected structure. Our hierarchical index is a balance
between this predictability and pyramidal condition by the definition of two entropies: one attending
the onward flow and other for the backward reversion. We show how this index allows to identify
hierarchical, anti-hierarchical and non hierarchical structures. Our formalism reveals that departing
from the defined conditions for a hierarchical structure, feedforward trees and the inverted tree
graphs emerge as the only causal structures of maximal hierarchical and anti-hierarchical systems,
respectively. Conversely, null values of the hierarchical index are attributed to a number of different
configuration networks; from linear chains, due to their lack of pyramid structure, to full-connected
feedforward graphs where the diversity of onward pathways is canceled by the uncertainty (lack of
predictability) when going backwards. Some illustrative examples are provided for the distinction
among these three types of hierarchical causal graphs.
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The idea of hierarchy has been largely at-
tributed to a disparate number of systems and, al-
though easily perceived, its quantification is not a
trivial issue. In this work we quantify the hierar-
chy of a given causal structure with a feedforward
structure. Starting with the representation of a
system of causal relations as a graph, we define a
non heuristic measure of hierarchy having strong
grounds on the principles of information theory.
We depart from the definition of the conditions
for a system to be considered perfectly hierar-
chical: a pyramidal structure with a completely
predictable reversion of the causal flow. In this
context, a hierarchy index is defined by weight-
ing how far is a given feedforward structure from
these conditions. As we shall see, structures that
fully satisfy this property belong to a special class
of trees. Our estimator allows to establish a quan-
titative criterion for the definition of hierarchic,
non-hierarchic and anti-hierarchic networks.

I. INTRODUCTION

The existence of some sort of hierarchical order is an
apparently widespread feature of many complex systems,
including gene [33] and human brain [2, 19] networks,
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ecosystems [12, 20], social and urban structures [15], the
Internet [31] or open-source communities [30]. The pres-
ence of such underlying order in the multiscale organiza-
tion of complex systems is a long standing hypothesis [32]
giving rise to the idea of hierarchy as a central concept -
see also [13]. Although usually treated only in qualitative
terms, some formal approaches to the problem have been
proposed. The efforts towards a well-defined quantifica-
tion of hierarchical order have been improving by means
of complex networks theory. As a key part of their or-
ganization, dedicated efforts have been made towards a
proper identification of hierarchical trends. One outcome
of these efforts has been a number of powerful, heuristic
measures [3, 17, 23, 25, 29, 31].

Often, a nested organization -formally identical to or-
der, in set-theoretical terms [16]- can be identified as the
basis of hierarchical order. If we think in hierarchy in
these terms, we might agree with Herbert Simon that ”it
is a commonplace that nature loves hierarchies” -cited in
[21]. Many examples belong to this picture. Within the
context of matter organization, molecules are made of
atoms, which result from the combination of elementary
particles, some of which having also internal subunits (as
quarks). Similarly, the relation of characteristic scales of
organization by inclusion of one in another, like Chinese
boxes or Matryoshka dolls, has been seen as a sort of hi-
erarchical organization. Another relevant example is the
case of fractal structures which naturally define a hier-
archy of self-similar objects. Finally, within the context
of taxonomy, spin glasses or optimization theory, the use
of ultrametricity has also allowed to define hierarchical
order [22].

Biological hierarchies have also evolved through time
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FIG. 1: Order and hierarchy. a) Total or complete order either defined by inclusion displaying nested ensembles, v1 ⊂ v2 ⊂
v3 ⊂ v4 or in terms of the order relation v1 > v2 > v3 > v4 (left). The direct or immediate relation depicted by its causal graph
(right). b) The ideal hierarchy structure assumed in this work represented by its nested organization (left) and its causal graph
(right). c) An example of a partial ordered defined by inclusion (left) and its respective causal graph (right).

as part of a process that generates high-level entities out
of nesting lower-level ones [8, 18]. However, taxonomic
classification trees are probably the most obvious repre-
sentation of a hierarchy based on inclusion. In biology,
living beings are individuals grouped in taxa according
their characteristics. Starting from species, a nested hi-
erarchy is defined where species belong to genera, which
are included within families forming orders and so forth.
Here, every organism is, in principle, unambiguously clas-
sified and therefore no uncertainty can be associated to
the process of classification.

Alternatively to the view of nestedness, a hierarchical
organization can be defined in a structure of causal re-
lations. Paradigmatic examples are the flowchart of a
company or the chain of command in the army, where
the authority concept defines a particular case of causal
relation. Causality induces an asymmetrical link between
two elements, and this asymmetry, either by inclusion or
through any kind of causal relation, defines an order. We
observe that any circular or symmetrical relation between
two elements violates the concept of order, thereby intu-
itively loosing its hierarchical nature. From this perspec-
tive, any feedforward relation is potentially hierarchical.
Such feedforward structures pervade a diverse range of
phenomena and structures, from phylogenetic trees to
river basins.

A common feature of most of the approaches men-
tioned above is that the notion of hierarchy is basically
identified with the concept of order. Order is a well de-
fined concept in mathematics [16, 28] but, is order enough
to grasp the intuitive idea of hierarchy? Can we actually
define what is hierarchy? Quoting Herbert Simon, [27].

(...) a hierarchical system -or hierarchy- can
be defined in principle as a system that is
composed of interrelated subsystems, each of
the latter being also hierarchic in structure
until the lowest scale is reached[34].

This definition does not provide a clear formalization of
hierarchy as a measurable feature, although it certainly

grasps the intuitive idea of hierarchy. How can such a
general measure be defined? It is reasonable to assume
that we have a hierarchy if there is no ambiguity (or
uncertainty) in the chain of command followed for any
individual to the chief in the flowchart. We shall call
this feature the definiteness condition. This is also valid
for nested structures. One might think that this con-
dition is justified by a single chain of command or in
the case of matryoshka dolls. However, such structures
are already defined within order theory as totally ordered
(see fig. 1a). Order and hierarchy are closely related
but they are not essentially the same. In this paper we
reserve the word hierarchy to designate a concept that
goes beyond the definition of order. We argue that the
difference stems from the fact that a hierarchical struc-
ture must also satisfy a pyramidal organization constraint
-see fig. (1b). In other words, the lower the layer of or-
ganization, the larger the number of entities it contains.
But, what happens when this pyramid structure is in-
verted? Intuitively, they would not be hierarchical but
anti-hierarchical[35]. In this work we show how informa-
tion theory naturally provides the suitable framework to
characterize hierarchy in causal structures. Within this
theoretical apparatus we provide the rigorous definition
of the hierarchy index for causal structures and how it is
applied in some illustrative examples establishing a dis-
tinction among hierarchical, non-hierarchical and anti-
hierarchical.

II. DIRECTED GRAPHS, ORDERED GRAPHS
AND CAUSAL GRAPHS

In this section we will present the basic theoretical
background used in this paper, grounded both in order
and graph theories. At the end of this section we will
formally define the causal graph, the key concept of this
theoretical framework where the proposed hierarchy mea-
sures are applied.
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A. Basic concepts of order

Hierarchy is undoubtedly tied to order. This is why
we make a brief review of order theory highlighting some
features that have been commonly attributed to hierar-
chy. The first task is to define an ordered pair between
two elements ak, aj of a given set A, to be written as
ak > aj , 〈ak, aj〉 or, in a formally equivalent way:

〈ak, aj〉 = {{ak}, {ak, aj}}.

This latter formalization explicitly defines order from an
inclusion relation [16]. This immediately connects to
standard views of hierarchical systems, as we already
mentioned, in which inclusion relations are considered
essential. Having defined an ordered pair, we define an
order relation. Let A = {a1, ..., an, ...} be a countable,
finite set and R ∈ A×A a relation. Such a relation is an
order relation -rigorously speaking, a strict partial order-
if the following condition holds:

i) 〈ak, ak〉 /∈ R,
ii) (〈ai, ak〉 ∈ R)⇒ (〈ak, ai〉 /∈ R),

iii) (〈ai, ak〉 ∈ R ∧ 〈ak, aj〉 ∈ R)⇒ (〈ai, aj〉 ∈ R).

We finally define two subsets of A from the definition
of order relation which will be useful to characterize the
kind of structures studied in this paper. The set of max-
imal elements of A, to be written as M ⊂ A, is defined
as:

M = {ak ∈ A : @aj ∈ A : 〈aj , ak〉 ∈ R}.

Similarly, the set of minimal elements, to be written as
µ ⊂ A is defined as:

µ = {ak ∈ A : @aj ∈ A : 〈ak, aj〉 ∈ R}.

B. Basic concepts of Directed Acyclic Graphs

Let G(V,E) be a directed graph, being V =
{v1, ..., vn}, |V | = n, the set of nodes, and E =
{〈vk, vi〉, ..., 〈vj , vl〉} the set of arcs -where the order,
〈vk, vi〉 implies that there is an arc in the following di-
rection: vk → vi. Given a node vi ∈ V , the number
of outgoing links, to be written as kout(vi), is called the
out-degree of vi and the number of ingoing links of vi is
called the in-degree of vi, written as kin(vi). The ad-
jacency matrix of a given graph G, A(G) is defined as
Aij(G) = 1 ↔ 〈vi, vj〉 ∈ E; and Aij(G) = 0 otherwise.
Through the adjacency matrix, kin and kout are com-
puted as

kin(vi) =
∑
j≤n

Aji(G); kout(vi) =
∑
j≤n

Aij(G). (1)

Furthermore, we will use the known relation between the
k-th power of the adjacency matrix and the number of

paths of length k going from a given node vi to a given
node vj Specifically,

(Ak(G))ij = (

k times︷ ︸︸ ︷
A(G)× ...×A(G))ij (2)

is the number of paths of length k going from node vi to
node vj [11].

It is said that vi dominates vk if 〈vi, vk〉 ∈ E. A feed-
forward or directed acyclic graph (DAG) is a directed
graph characterized by the absence of cycles: If there
is a directed path from vi to vk (i.e., there is a finite
sequence 〈vi, vj〉, 〈vj , vl〉, 〈vl, vs〉, ..., 〈vm, vk〉 ∈ E) then,
there is no directed path from vk to vi. Conversely, the
matrix AT (G) depicts a DAG with the same underlying
structure but having all the arrows (and thus, the causal
flow) inverted. The underlying graph of a given DAG G,
to be written as Gu, is the undirected graph Gu(V,Eu) ob-
tained by substituting all arcs of E, 〈vi, vk〉, 〈vj , vs〉, ....
by edges giving the set Eu = {vi, vk}, {vj , vs}, ..... A
DAG G is said to be connected if for any pair of nodes
combination vi, vl ∈ V there is a finite sequence of pairs
having the following structure

{vi, vk}, {vk, vj}, ..., {vm, vs}, {vs, vl},

being {vi, vk}, {vk, vj}, ..., {vm, vs}, {vs, vl} ∈ Eu.
Given the acyclic nature of a DAG, one can find a finite

value L(G) as follows:

L(G) = max{k : (∃vi, vj ∈ V : (Ak(G))ij 6= 0)}. (3)

It is easy to see that L(G) is the length of the longest
path of the graph.

Borrowing concepts from order theory [28], we define
the following set:

M = {vi ∈ V : kin(vi) = 0}, (4)

to be named the set of maximal nodes of G, by which
|M | = m. Additionally, one can define the set of nodes
µ as

µ = {vi ∈ V : kout(vi) = 0} (5)

to be referred as the set of minimal nodes of G.
The set of all paths π1, ..., πs, s ≥ |E|, from M to a

given node vi ∈ µ is indicated as ΠMµ(G). Given a node
vi ∈ µ, the set of all paths from M to vi is written as

ΠMµ(vi) ⊆ ΠMµ(G).

Furthermore, we will define the set v(πk) as the set of all
nodes participating in this path, except the maximal one.
Conversely, the set ṽ(πk) is the set of all nodes partici-
pating on this path, except the minimal one. Attending
to the node relations depicted by the arrows, and due to
the acyclic property, at least one node ordering can be
defined, establishing a natural link between order theory
and DAGs. This order is achieved by labeling all the
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nodes with sequential natural numbers and obtaining a
configuration such that:

(∀〈vi, vj〉 ∈ E)(i < j). (6)

The existence of this labeling connects order relations
with directed acyclic graphs.

Finally, throughout this paper we reserve the word tree
to refer to those graphs where all nodes excluding the
maximal one have kin = 1 and all nodes except the min-
imal ones display kout > 1. Therefore, we distinguish
between chains (all nodes with kout = 1 excluding the
minimal one) and trees.

C. Causal Graphs

In a causal graph we only consider immediate relations
between elements i.e. two elements are causally related
if there exists just one cause-effect event relating them.
We explicitly neglect those relations between nodes which
can only be derived by transitivity. A causal relation can
be illustrated by genetic inheritance in a genealogy. Off-
spring’s characters come from its parents and indirectly
from its grandparents. Therefore, no direct causal rela-
tion can be defined between grandparents and grandsons.
However, it is true that grandparents indirectly deter-
mine the characters of grandsons, due to the transitive
nature of the genetic relations.

In this work we will restrict the use of the term causal
relation to refer to direct relations such as direct parent-
sons relations, as described in the above example. A
causal graph G(V,E) is a directed graph where V are the
elements of a set (the members of a family, in the above
described example) and E are the causal relations that
can be defined between the members of V . In this work,
we restrict the term causal graphs to graphs being acyclic
(i.e., DAGs) and connected. The former property avoids
conflicts in the definition of the causal flow. The latter
property assumes that two non-connected causal struc-
tures have no relation among them, and therefore must
be considered as two independent systems. Hereafter, we
will refer to the set of paths ΠMµ(G) as the set of causal
paths.

III. THE CONCEPTUAL BACKGROUND OF
HIERARCHY

In this section we propose the basis for a rigorous eval-
uation of hierarchy. We begin by defining the features of
what we consider as the perfect hierarchical structure. As
will be shown below, our proposed definition of hierarchy
matches with an ordered structure with special features,
thereby making an explicit difference between order and
hierarchy. Therefore, we reserve the term hierarchy to
refer to a special class of order. Within the framework
of graph theory, the required conditions naturally match
those displayed by a tree-like feedforward graph. Then,

as we shall see, the estimator we propose identifies the
feed-forward tree topology as perfectly hierarchical. The
main point of the section is devoted to the definition of a
quantitative estimator of hierarchy based on two entropy
measures that captures the intuitive ideas described in
the introductory section: the definiteness and pyramidal
organization condition. We stress that the forthcoming
formalism applies only to the class of causal graphs.

A. The starting point: Defining the perfect
Hierarchy

We are going to refer to a system as perfectly hierarchi-
cal if it satisfies the following conditions. Let us consider
a system depicted by a causal graph G(V,E). We say that
this graph G will be perfectly hierarchical if the following
two conditions hold:

1. Definiteness condition.- For every element vk ∈ V \
M there is only one element vi ∈ V , vi 6= vk such
that 〈vi, vk〉 ∈ E. A straightforward consequence
of this condition is that

m = 1.

2. Pyramidal condition.- There is a partition W =
{ω1, ..., ωm} of the set V , i.e.,

V =
⋃
W

ωi; ∀ωi, ωk ∈W,ωi
⋂
ωk = ∅

by which:

(∀〈vi, v`〉 ∈ E)(vi ∈ ωj)⇒ (kout(vi) > 1) ∧ (v` ∈ ωj+1).

A direct consequence of the above is that

|ω1| < |ω2| < ... < |ω|W ||,

which reflects the pyramidal structure of the graph.

A measure of hierarchy must properly weight the devia-
tions of the studied graph from the above requirements.
One could add another condition, by imposing that ev-
ery node in a given layer dominates the same number of
nodes contained in the next downstream layer. In for-
mal terms, this implies that, in addition to the above
conditions, we can add a third one, namely:

3. Symmetry condition. It is established by means of

(∀vi, v` ∈ ωj)(kout(vi) = k)⇒ (kout(v`) = k).

Which actually corresponds to a so-called complete k-ary
tree (Gross and Yellen, 1999). Therefore, in those cases
where symmetry is considered as an inherent feature of
ideal hierarchy, deviations from symmetrical configura-
tions must also be taken into account in our quantitative
approximation.
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FIG. 2: Causal graphs intuitively capturing different degrees
of hierarchy. a) A symmetrical tree-like causal graph showing
the ideal hierarchical structure assumed in this work b) An
asymmetrical tree-like hierarchical graph. c) A causal graph,
with a pseudo-pyramidal condition violated by the presence
of more than one maximal node, short-cuts between layers.
Intuitively non hierarchical and anti-hierarchical structures
illustrated by d) an anti-hierarchical star graph with |V − 1|
maximals exhibiting and inverted pyramidal condition (note
that inverting the arrows we would have a tree-like graph) e)
an ordered but no hierarchical linear chain violating the pyra-
midal condition and f) an inverted tree-like structure where no
definiteness and pyramicity conditions are satisfied onwards
but completely satisfied backwards.

Let us summarize the above statements 1), 2) and 3)
and their consequences. The so-called definiteness condi-
tion implies that there is no uncertainty in identifying the
premise of a given causal relation, i.e., the node that im-
mediately governs a given node. Taking into account the
definition of causal graph, (essentially, a connected DAG)
this first statement restrict to tree structures the number
of candidates for perfectly hierarchical structures. Note
that these trees -including linear chains- have a single
root node, i.e., m = 1. The pyramidal condition rules
out from the set of perfectly hierarchical structures those
DAGs having linear chains in their structure. In other
words, nodes displaying kin = kout = 1 are not allowed.

We observe that, according to the pyramidal condition,

|ωi| ≤
|ωi+1|

2
.

Therefore, it is straightforward to conclude that the most
simple representation of an ideal hierarchical structure is
a binary tree -see fig (2a)-, in which the above inequal-
ity becomes equality for all successive layers. This is
consistent with standard graph theory and the definition
of perfect binary tree. Finally, the symmetry condition,
optional for our definition of hierarchy, rules out those
trees which are not perfectly symmetrical. Whereas trees
shown in figs. (2a) and (2b) can be considered hierarchi-
cal by virtue of conditions 1) and 2), condition 3) makes
a distinction between them, being only perfectly hierar-
chical the first one.

As a final remark, let us note that one can build non-
hierarchical and anti-hierarchical structures, by simply
violating some of the conditions we stated above, namely
the pyramidal condition alone -fig. (2e)- or both the def-
initeness and the pyramidal condition, -see fig. (2d and
2f). It is easy to see that a quantitative estimator of
hierarchy should account for limit cases and place as in-
termediate point structures such as the one depicted in
fig. (2c).

B. Topological Richness and Reversibility

The above features describe the perfect hierarchical
structure. In this section we go further and we provide
the basis for a definition of a hierarchical index of a causal
graph grounded in the framework of information theory.
This index provides a quantitative estimation of how far
is a given causal graph from the conditions of a perfect
hierarchy.

In the following subsections we will define two en-
tropies for a causal graph, attending to the top-down and
bottom-up observations of the causal graph according to
the onward and backward flows in the graph. The aim
of this mathematical formalism is to quantify the impact
of the number of pathways in the causal graph. Specifi-
cally, we will consider the balance between the richness
of causal paths (a top-down view) versus the uncertainty
when going back reversing the causal flow (i.e., a bottom-
up perspective). Then, attending to the direction of the
flow we interpret the top-down view as a richness whilst
the bottom-up as an uncertainty in terms of topologi-
cal reversibility as recently introduced in [5]. Arguably,
the larger is the number of decisions going down, the
higher is the richness of causal paths. Similarly, the
larger the number of alternative pathways to climb up,
the larger will be the uncertainty in recovering the causal
flow. In the following subsections, we will explore, within
the framework of information theory, the relationship be-
tween diversity and uncertainty and the their impact in
the fulfillment of the hierarchy conditions. We begin this
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section with a brief revision of the core concepts of infor-
mation theory, to be used as our theoretical framework.

According to classical information theory [1, 7, 14, 26],
let us consider a system S with n possible states, whose
occurrences are governed by a random variable X with an
associated probability mass function formed by p1, ..., pn.
According to the standard formalization, the uncertainty
or entropy associated to X, to be written as H(X), is:

H(X) = −
∑
i≤n

pi log pi, (7)

which is actually an average of log(1/p(X)) among all
events of S, namely, H(X) = 〈log(1/p(X))〉, where 〈...〉
is the expectation or average of the random quantity be-
tween parentheses. Analogously, we can define the con-
ditional entropy. Given another system S′ containing
n′ values or choices, whose behavior is governed by a
random variable Y , let P(s′i|sj) be the conditional prob-
ability of obtaining Y = s′i ∈ S′ if we already know
X = sj ∈ S. Then, the conditional entropy of Y from
X, to be written as H(Y |X), is defined as:

H(Y |X) = −
∑
j≤n

pj
∑
i≤n′

P(s′i|sj) logP(s′i|sj). (8)

1. Topological reversibility: Definiteness condition

The first task is to study the degree of reversibility of
causal paths, thereby considering the role of the definite-

ness condition. This will be evaluated by computing the
uncertainty in reversing the process starting from a given
node in µ. The formalism used in this section is close to
the one developed in [5].

We first proceed to define the probability distribution
from which the entropy will be evaluated. Accordingly,
the probability to chose a path πk ∈ ΠMµ from node
vi ∈ µ by making a random decision at every crossing
when reverting the causal flow is:

P(πk|vi) =
∏

vi∈v(πk)

1

kin(vj)
. (9)

The conditional entropy obtained when reverting the flow
from vi ∈ µ will be:

H(G|vi) = −
∑

πk∈Π(vi)

P(πk|vi) logP(πk|vi) (10)

The overall uncertainty of G, written as H(G|µ), is com-
puted by averaging H over all minimal nodes, i.e:

H(G|µ) =
∑
vi∈µ

q(vi)H(G|vi)

= −
∑
vi∈µ

q(vi)
∑

πk∈Π(vi)

P(πk|vi) logP(πk|vi)

=
∑
vi∈µ

q(vi)
∑

πk∈Π(vi)

 ∑
vj∈v(πk)

P(πk|vi) log(kin(vj))


=
∑
vi∈µ

q(vi)
∑

vj∈V (Π(vi)

log(kin(vj))

 ∑
πk:vj∈v(πk)

P(πk|vi)


=
∑
vi∈µ

q(vi)
∑

vk∈V \M

φik(G) log kin(vk). (11)

where we assume, unless indicated:

(∀vi ∈ µ) q(vi) =
1

|µ|

Instead of a vector, now we construct a (n−m)×(n−m)
matrix, Φ(G) accounting for the combinatorics of paths

and how they contribute to the computation of entropy.

[Φ(G)]ij ≡ φij(G) =
∑

πk:vj∈v(πk)

P(πk|vi).

This represents the probability to reach vj starting from
vi. Now we derive the general expression for Φ. To com-
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pute the probability to reach a given node, we have to
take into account the probability to follow a given path
containing such a node, defined in (9). To rigorously
connect it to the adjacency matrix, we first define an
auxiliary, (n−m)× (n−m) matrix B(G), namely:

B(G)ij =
Aij(G)

kin(vi)
, (12)

where vi, vj ∈ V \M . From this definition, we obtain
the explicit dependency of Φ from the adjacency matrix,
namely,

φij(G) =
∑

k≤L(G)

([
BT
]k

(G)
)
ij
. (13)

and accordingly, we have

φii(G) =
([

BT
]0

(G)
)
ii

= 1. (14)

Therefore, we already obtained the explicit form of such
a conditional entropy, namely:

H(G|µ) =
∑
vi∈µ

q(vi)
∑

vk∈V \M

φik(G) · log kin(vk). (15)

Assuming equiprobability, the above expression leads to:

H(G|µ) =
1

|µ|
∑
vi∈µ

∑
vk∈V \M

φik(G) · log kin(vk). (16)

2. Topological richness: Pyramidal condition

Let us now estimate the topological richness of a causal
graph, i.e., the average amount of information needed to
describe a given top-down path within the structure. Let
us observe that the kind of question we are trying to an-
swer is the same than the one explored above, but consid-
ering the top-down approach. Therefore, the mathemat-
ical form of this quantity, to be referred as H(G|M), will
be formally analogous to the previous one, but consid-
ering that we are going onwards according to the causal
flow. Thus:

H(G|M) =
1

m

∑
vi∈M

∑
vk∈V \µ

ψik(G) · log kout(vk), (17)

where m is the cardinality of M -the set of maximal
nodes. ψik is analogous to φik of equation (16). In this
case, elements ik of matrix Ψ represent the probability
to cross node vk departing from vi ∈M according to the
causal flow. The explicit expression of Ψ is defined from
matrix B′(G):

B′(G)ij =
Aij(G)

kout(vi)
,

Then,

ψij(G) =
∑

k≤L(G)

(
[B′]

k
(G)
)
ij
. (18)

and as above, we have

ψii(G) =
(

[B′]
0

(G)
)
ii

= 1. (19)

C. Hierarchy

As we shall see, the above definition of information will
bring us the ingredients to define a hierarchy index ac-
cording to the list detailed in section III. Roughly speak-
ing, what we propose in the following lines is to evalu-
ate the balance between the pyramidal structure of the
graph against the degree of reversibility of the paths it
generates, i.e, the balance between H(G|M) and H(G|µ).
However, in order to rigorously characterize hierarchy, we
need to properly treat the studied graph attending to the
different layers of its feedforward structure. The analysis
of the graph structure allows us to identify and quantify
deviations from the perfect structure at any level of the
graph. The starting point will involve the characteriza-
tion of a layered structure within the graph defining a
partition W of the set of nodes.

1. Dissecting the layer structure

Given the DAG G(V,E), let us define two partitions

of V , W = {ω1, ..., ωm} and W̃ = {ω̃1, ..., ω̃m}. The
members of such partitions are the layers of the DAG by
either performing a top down or bottom up leaf removal
algorithm [6, 24]. Specifically, the first members of such
partitions are defined as:

ω1 = {vi ∈ V : kout(vi) = 0}

and

ω̃1 = {vi ∈ V : kin(vi) = 0}.

We observe that ω1 = µ and that ω̃1 = M . With the
above subsets of V we can define the graphs G1(V1, E1),

and G̃1(Ṽ1, Ẽ1) in the following way:

V1 = V \ ω1; E1 = E \ {〈vi, vk〉 : vk ∈ ω1}.

and

Ṽ1 = V \ ω̃1; Ẽ1 = E \ {〈vi, vk〉 : vk ∈ ω̃1}.

respectively. Similarly, we build ω2, ..., ω|W | as:

ω2 = {vi ∈ V1 : kout(vi) = 0}
ω|W |−2 = {vi ∈ V|W |−1 : kout(vi) = 0}
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G

G1 G2

G̃2G̃1

FIG. 3: How to obtain the different subgraphs G,G1,G2, G̃1, G̃2
involved in the evaluation of hierarchy. G1 and G2 are ob-
tained through successive application of bottom-up leaf re-
moval algorithm, which implies that we remove all nodes hav-
ing kout = 0. G̃1 and G̃2 are obtained by the successive appli-
cation of a top-down leaf removal algorithm, thereby removing
the nodes having kin = 0. We observe that the generation of
G̃1 and G̃2 implies the breaking of the net -see text.

and

ω̃2 = {vi ∈ Ṽ1 : kin(vi) = 0}
ω̃|W | = {vi ∈ Ṽ|W |−2 : kin(vi) = 0},

respectively. We therefore defined two sequences of sub-
graphs of G ordered by inclusion, namely:

G|W |−1 ⊆ ... ⊆ G1 ⊆ G.

and

G̃|W |−1 ⊆ ... ⊆ G̃1 ⊆ G.

where it is easy to observe that:

G|W |−1 = M and G̃|W |−1 = µ.

In fig. (3) we describe the generation of these subsets of
graphs for a given toy model of DAG. In summary, we
constructed two collections of subsets by finding the lay-
ered structure using a bottom-up leaf removal algorithm

(pruning the elements having kout = 0 successively) and
a top-down leaf removal algorithm (i.e., pruning the ele-
ments having kin = 0). Notice that, even if

|W | = |W̃ |,
one cannot assume

wi = w̃|W |−i,

except in symmetrical cases.

2. The hierarchy index

In order to generate a normalized estimator f(G) (be-
tween −1 and 1) accounting for the balance between
H(G|M) and H(G|µ) we will define it as:

f(G) ≡ H(G|M)−H(G|µ)

max{H(G|M), H(G|µ)} .

Since both the layered structure and its pyramidal com-
position must be taken into account, the hierarchical in-
dex of the graph must be weighted taking into account
the successive layers of the system. This avoids to iden-
tify as completely hierarchical those structures not per-
fectly satisfying the pyramidal condition. Therefore, the
hierarchical index of a feed-forward net, to be indicated
as ν(G) will be the average among the |W |−2 subgraphs

G1, ...,Gk, ..., the |W | − 2 subgraphs G̃1, ..., G̃k, ... and G
itself -note that we average between 2|W | − 3 objects,
i.e.:

ν(G) =
1

2|W | − 3

f(G) +
∑

i<|W |−1

f(Gi) + f(G̃i)

 .(20)

It is strictly necessary to take into account all these
subgraphs in order to identify any violation of the hier-
archy conditions at any level of the structure. We can go
a step further by imposing symmetry in the pyramidal
structure as suggested above, to distinguish among dif-
ferent topologies such as those displayed in figure (2a).
Let us indicate by ΠMµ(Gk) the set of paths from M to µ
present in the graph Gk. The so-called Jensen’s inequality
[7] provides an upper bound of the information content
which, in our case reads:

a) H(Gk|M) ≤ log |ΠMµ(Gk)|,
b) H(Gk|µ) ≤ log |ΠMµ(Gk)|.

We observe that a) is only achieved when all |ΠMµ| from
M to µ are equiprobable, being this equiprobability an
indicator of symmetry. The same applies to b), but now
we consider the bottom-up estimator, when paths are
considered from µ to M . In this case, attending to the
symmetric condition we can define and estimator analo-
gous to f , namely,

g(G) =
H(Gk|M)−H(Gk|µ)

log |ΠMµ(G)|
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ν(G) = 1

νs(G) = 1

ν(G) = 0

νs(G) = 0

ν(G) = 0

νs(G) = 0

ν(G) = −1

νs(G) = −1

ν(G) = −1

νs(G) = −1

ν(G) = 1

νs(G) = 0.989

ν(G) = 0.917

νs(G) = 0.862

ν(G) = 0.430

νs(G) = 0.305

FIG. 4: Different values of the hierarchy index corresponding to some toy DAGs. ν(G) refers to the hierarchical index where
the symmetry is not considered and νs(G) refers to the hierarchical index where symmetry is taken into account -see text.

Accordingly, the symmetrized version of the hierarchy
index, νs(G), would be:

νs(G) =
1

2|W | − 3

g(G) +
∑

i<|W |−1

g(Gi) + g(Gi)

 .(21)

To ensure the consistency of ν and νs we must over-
come the last conceptual problems. When perform-
ing the leaf removal operation one can break the graph
in many connected components having no connections
among them. Let us indicate as C1(i), ..., Ck(i) the set of
components of our graph Gi, each of them obtained from
the set Vk(i) ⊆ Vi of nodes and their. In this case, the
natural way to proceed is to average the individual con-
tributions of the different connected components of Gi or
G̃i according to the number of nodes they have against
|Vi| or Ṽi, leading to:

f(Gi) ≡
1

|Vi|
∑
Ck(i)

|Vk(i)|f(Ck(i)).

The same applies for g(Gi) for the computation of νs. Fi-
nally, we impose, for both mathematical and conceptual
consistency that:

(max{H(G|M), H(G|µ)} = 0)⇒ (ν(G) ≡ 0).

Furthermore, if E = ∅, (i.e., the case where the graph
consists of a single node):

ν(G) ≡ 0.

According to this formulation some scenarios would lead
to ν(G) = 0. The simplest one is the just mentioned by
definition, consisting of a single node. Another one is the
linear feed-forward chain having 2 or more linked nodes.
It is clear that in these cases, H(G|M) = H(G|µ) = 0. It
is worth to stress that this particular situation matches
with the causal graph of a total order relation, and there-
fore, we have the way to differentiate this particular
graph from other structures having null hierarchy. Fi-
nally, a third class of structures belongs to the family

of non-hierarchical graphs. They give ν(G) = 0 since
H(G|M) = H(G|µ). This is the case of Erdös Rényi
DAGs or DAG cliques. In these cases, the causal graph
is not hierarchical because all the diversity of paths gen-
erated when crossing the causal flow downwards is neu-
tralized by the uncertainty in recovering any causal path
backwards.

D. Numerical Exploration

In this section we evaluated the hierarchy of several toy
models in order to intuitively grasp the scope of the mea-
sure. In fig. (4) we evaluated the hierarchy index (both
the raw one and the symmetrical one) for several struc-
tures leading to hierarchical, anti-hierarchical and non-
hierarchical structures. The figure illustrates the impact
of number of maximals and minimals and the multiplicity
of pathways in relation to the existence of a pyramidal
and predictable structure. We observe that deviations
from tree and inverted tree configurations lead to a non
binary interpretation of hierarchy.

Furthermore, we measured (fig. (5) the impact in
terms of hierarchy of arc addition preserving the acyclic
character. Staring from two extreme tree graphs (the
feedforward and the inverted ones, respectively) we add
arcs at random until we reach a fully connected feed-
forward structure in both situations. We consider the
starting point of our numerical experiment a binary tree,
T (V,E) containing n = 15 nodes. We construct an in-
verted binary tree T ′(V,E) by the transposition of the
adjacency matrix of T (V,E). In both graphs we say that,
consistently with the ordering property of DAGs, given
an arc (〈vi, vj〉 ∈ E) then (i < j). In an iterative pro-
cess we construct two new DAGs Gi(V,Ei) where i labels
the number of additions of new arcs to the underlying
T (V,E) and T ′(V,E). The process ends when graphs
achieve the directed acyclic clique condition, i.e., the lin-
early ordered graph G∗ = (V,E∗) containing 15 nodes:

(∀vi, vj ∈ V ) : (i > j)(〈vj , vi〉 ∈ E∗)
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FIG. 5: The evolution of the hierarchy index. We start with
a binary tree and a binary inverted tree with n = 15 and
|E| = 14. For both graphs we add, in an iterative way, arcs at
random until we reach the feed forward clique configuration.
Note that the link addition to the two initial tree-like struc-
tures converge in the same full connected configuration which
contains

(
15
2

)
links. For both experiments squares represent

ν values, and triangles νs. As expected, |ν| > |νs|, except in
limit cases. The small graphs provide a visual clue for type
of structures we are obtaining through the arc enrichment
process. For every point in the chart, mean and standard
deviation were calculated from 250 replicas. Entropies were
computed considering log2.

For statistical significance, we performed 250 replicas of
the numerical experiment. Then 〈ν〉 and 〈νs〉 and their
respective standard deviations were calculated for each
set of iterations. Fig. (5) shows that starting from
an initial value of ν = 1 for T (V,E) and ν = −1 for
T ′(V,E), the addition of feed-forward arcs causes a de-
crease in absolute value of the hierarchical indexes until
ν = νs = 0 corresponding to a total linear ordered struc-
ture where every possible feed-forward path is included in
the graph. As expected, |ν| > |νs| except in the extreme
full-connected cases.

We finally test the case of a directed acyclic Erdös
Rényi (ER) graph R(V,E). This is an interesting ex-
ample of a topologically homogeneous DAG with non-
correlation in terms of kin and kout [10]. Graphs were
obtained by the construction of an undirected ER graph
GER(V,Eu) where Eu is the set of edges (undirected
links). Directed acyclic condition was obtained by a pro-
cess of random numbering of nodes [10]. The direction
of the arrows was defined attending

〈vi, vj〉 ∈ E : ({vi, vj} ∈ Eu ∧ i < j)

(i.e., condition depicted in eq. (6)) Fig. 6 shows a rep-
resentative behavior of the null hierarchical character of
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FIG. 6: Distribution of ν and νs for an ensemble of 1, 000 repli-
cas of directed acyclic ER graphs of |V | = 500 and 〈k〉 = 4
caption. Numerical results show Gaussian-like distributions
centered at zero. Notice that νs distribution displays a nar-
rower variation than the ν one in agreement to the |ν| ≥ |νs|
inequality.

R(V,E) ensembles. Notice that the normal distribution
is centered for ν and νs at zero values, indicating that
such random structures have not any hierarchical orga-
nization.

IV. DISCUSSION

Hierarchical patterns are known to pervade multiple
aspects of complexity. In spite of their relevance, it is
not obvious in general how to formalize them in terms of
a quantitative theory. This paper presents a definition
of hierarchy to be applied to the so-called causal graphs,
i.e., connected, directed acyclic graphs where arcs depict
some direct causal relation between the elements defin-
ing the nodes. It is therefore a measure of hierarchy over
the structure of the causal flow. The conceptual basis
of this measure is rooted in two fundamental features
defining hierarchy: the absence of ambiguity in recov-
ering the causal flow and the presence of a pyramidal
structure. The hierarchy index presented here weights
the deviations from such general properties. The specific
expression for this index is derived using techniques and
concepts from information theory. It is shown, thus, that
the requirements of hierarchy naturally fit the tension be-
tween richness in causal paths against the uncertainty in
recovering them depicted by a balance between two con-
ditional entropies.

Under our previous assumptions, we have shown that
the feed-forward tree is the structure that fully satisfies
the conditions for a perfect hierarchical system. Inter-
estingly, trees as perfect representations of hierarchies is
a long-standing idea [32]. In this way, our mathematical
formalization establishes a bridge between the qualitative
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idea of hierarchy and its quantification. Our approach
allows to measure the hierarchy of any system provided
that it can be represented in a feedforward causal graph.

Throughout the paper we emphasized that although
hierarchy is deeply tied to order, there are strong reasons
to go beyond it. The most obvious one is that order
is a well established concept and therefore, there is no
need for the use of a different word, if we identify it with
hierarchy. But another important issue must be taken
into account tied to the intuitive notion of hierarchy we
propose. We propose that hierarchy must feature the
pyramidal nature of the connective patterns and that this
pyramidal structure must be in agreement with the top-
down nature of the feed-forward flow of causality.

Information theory reveals extremely suitable to de-
fine a hallmark to study hierarchy in the terms described
in this paper: the richer the structure (but at the same
time, reversible, in topological terms), the more hierar-
chical it is. In this way, since the conditions we defined
for a system to be perfectly hierarchical lead us to con-
clude that a feed forward tree is the perfect hierarchi-
cal structure since maximizes the richness without loss
of predictability. It is worth to note that precisely, the
pyramidal condition is the key point to guarantee the
the predictability. The extreme case is the feedforward
clique - see fig. 4). Although richness can be increased
through pathway redundancy, this effect cancels out due
to decreased predictability, leading to a non hierarchical
structure. A particular case is the linear chain. This
representation of a total order relation has null values of
both entropies. In other words, a perfect predictable sys-
tem but without richness. It is worth to note that both

cases are not pyramidal structures. By contrast, anti-
hierarchical ones exhibit an inverted pyramidal structure
leading to a different effect. From the perspective of our
formalism, the anti-hierarchical organization occurs by
minimizing richness and predictability. In consequence,
other structure different than an inverted tree will be less
anti-hierarchical. Therefore it is easy to see that the hier-
archical index in absolute value measures the closeness of
an (anti)-hierarchical tree structure capturing somehow
the path complexity of the structure.

Further work should explore the relation of this the-
oretical achievement within the framework of a formal
measure of complexity. Additionally, this research could
be expanded to a more general class of directed graphs
containing cycles. This latter point would be achieved by
properly defining a measure of how well ordered is a net,
for it is clear that the presence of cycles will generate
conceptual problems in the identification of the causal
flow.
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