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Service de Physique Théorique, ULB, 1050 Brussels, Belgium

Olga Mena
IFIC, Universidad de Valencia-CSIC, E-46071, Valencia, Spain

Grigoris Panotopoulos
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We study a coupled quintessence model in which the interaction with the dark matter sector is
a function of the quintessence potential. Such a coupling can arise from a field dependent mass
term for the dark matter field. The dynamical analysis of a standard quintessence potential coupled
with the interaction explored here shows that the system possesses a late time accelerated attractor.
In light of these results, we perform a fit to the most recent Supernovae Ia, Cosmic Microwave
Background and Baryon Acoustic Oscillation data sets. Constraints arising from weak equivalence
principle violation arguments are also discussed.

I. INTRODUCTION

Cosmological probes indicate that the universe we observe today possesses a flat geometry and a mass energy
density made of ∼ 30% baryonic plus cold dark matter and 70% dark energy, responsible for the late-time accelerated
expansion. Unveiling the origin and the nature of dark energy is one of the great challenges in theoretical cosmology.
The simplest candidate for dark energy is the cosmological constant, which corresponds to a perfect fluid with an
equation of state w = p/ρ = −1. The ΛCDM model, i.e. a flat universe with a cosmological constant, is in very good
agreement with current observational data. However, from the quantum field approach, the bare prediction for the
current vacuum energy density is ∼ 120 orders of magnitude larger than the measured value. This situation is the
so-called cosmological constant problem. In addition, there is no proposal which explains naturally why the matter
and the vacuum energy densities give similar contributions to the universe’s energy budget at this moment in the
cosmic history. This is the so-called why now problem. A possible way to alleviate this problem is to assume a time
varying, dynamical fluid. The quintessence option consists on a cosmic scalar field φ that changes with time and varies
across space, and is slowly approaching its ground state. In principle, the quintessence field may couple to the other
fields, see Refs. [1–14]. In practice, observations strongly constrain the couplings to ordinary matter [15]. However,
interactions within the dark sector, i.e. between dark matter and dark energy, are still allowed. The presence of these
interactions could significantly change the universe and the density perturbations evolution, the latter being the seeds
for structure formation. We explore a scalar field dependent dark matter-dark energy coupling and confront the model
predictions with current cosmological data. For models similar to the one studied here, see e.g. Refs. [1–11, 13, 14].
The structure of the paper is as follows. Section II presents the lagrangian theory responsible for the dark sector’s
coupling explored here. Section III describes the cosmological data sets used in the analysis. The dynamical stability
of the coupled model and the fits to several cosmological observables are presented in Sec. IV. Weak Equivalence
Principle violation constraints are explored in Sec. V. We draw our conclusions in Sec. VI.

II. COUPLED QUINTESSENCE

Let us consider an interaction between the dark energy scalar field φ and a cold dark matter field Ψ through the
dark matter mass term mdm(φ)Ψ̄Ψ. This form of interaction is inspired by the universal coupling to all species present
in scalar-tensor theories in the Einstein frame [1]. Given that, observationally, interactions between the dark energy
field and ordinary matter are strongly constrained [15], we will assume that the dark energy field φ does not couple
to baryons. At the level of the stress-energy tensor conservation equations, a dark energy-dark matter interaction
mdm(φ)Ψ̄Ψ implies

∇µT
µ
(dm)ν = β(φ)T µ(dm)µφ,ν = −∇µT

µ
(de)ν with β(φ) =

∂ lnmdm(φ)

∂φ
. (1)
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The background evolution equations read

φ̈+ 3Hφ̇+ V,φ = −β(φ)ρdm ; (2)

ρ̇dm + 3Hρdm = β(φ)ρdmφ̇ , (3)

where we have used a spatially-flat Friedmann Robertson Walker metric (ds2 = −dt2 + a2dx2) and the dot refers to
time derivative d/dt.
Mostly all of the previous studies on coupled quintessence models have assumed that the coupling β(φ) is a constant,

see e.g. Ref. [3, 16]. In this paper, we consider a coupling varying with time (see also Ref. [17, 18]), given by some
power of the potential of the dark energy field, i.e. β(φ) ∝ V (φ)n. For a slow-rolling quintessence field, the former
assumption is equivalent to assume a coupling proportional to some power of the dark energy density β(φ) ∝ ρnde.
Therefore, our choice of interaction will naturally provide a dark sector interaction ∝ ρdeρdm if n = 1. The model
presented here should be understood as a lagrangian basis for more phenomenological approaches as, for instance, the
one presented in Ref. [14]. We illustrate the case of a (coupled) quintessence model, characterized by an exponential
potential

V (φ) = M4 exp[−αφ/Mpl] with mdm = m0 exp
[

(

V (φ)/ρ0cr
)n

]

, (4)

where ρ0cr is the current critical mass-energy density today, H2
0 = 8πG/3ρ0cr = κ2/3ρ0cr, with G = 1/M2

pl. The scalar

field dependence on the dark matter mass ensures that β(φ) ∝ V (φ)n.
For the stability analysis of our coupled dark matter-dark energy model with the potential of Eq. (4), we shall

focus either on the matter-dominated era or on the late time dark energy domination period, neglecting the radiation
contribution. Therefore,

Ωdm +Ωφ = 1 with Ω =
κ2ρ

3H2
. (5)

The baryons have been also neglected 1. We introduce the dimensionless variables x, y, as in the uncoupled case [19]

x2 =
κ2ϕ̇2

6H2
, y2 =

κ2V

3H2
. (6)

The positivity of the potential energy implies that y ≥ 0. In the new variables x and y, the equations of state are

wφ =
pφ
ρφ

=
x2 − y2

x2 + y2
, wtot =

ptot
ρtot

= wφΩφ = x2 − y2 . (7)

The condition for a late time accelerated expansion period is still wtot < −1/3, as in the uncoupled case. The Hubble
evolution equation can be written as

Ḣ

H2
= −3

2
(1 + x2 − y2) . (8)

The resulting evolution equations do not allow for a two-dimensional representation of this model since H can not be
uniquely determined from the evolution Eqs. (2) and (3) using exclusively the variables x and y. Following Ref [20],
we define a third dynamical variable z

z =
H0

H +H0
. (9)

The condition 0 ≤ z ≤ 1 ensures the compactness of the phase space.

III. COSMOLOGICAL DATA USED IN THE ANALYSIS

In this section we describe the cosmological data used in our numerical analysis. Three different geometrical probes
(Supernovae Ia (SNIa), Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) data sets)
are exploited to derive the cosmological bounds on the coupled quintessence model.

1 We neglect the presence of radiation and baryons in the stability analysis. For numerical purposes and fits to observational probes, we
include both the radiation and the baryon contributions to the total mass-energy density.
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A. The Supernova Union Compilation

The Union Compilation 2 [21] consists of an update of the original Union compilation [22] with 557 SNIa after
selection cuts. It includes the recent large samples of SNIa from the Supernova Legacy Survey and ESSENCE Survey,
and the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST). In total
the Union Compilation presents 557 values of distance moduli (µ) ranging from a redshift z of 0.015 up to z = 1.4.
The distance moduli, i.e. the difference between apparent and absolute magnitude of the objects, is given by

µ = 5 log
( dL
Mpc

)

+ 25 , (10)

where dL(z) is the luminosity distance, dL(z) = c(1 + z)
∫ z

0 H(z)−1dz. The χ2 function used in the analysis reads

χ2
SNIa(ci) =

∑

z,z′

(µ(ci, z)− µobs(z))C
−1
z:z′ (µ(ci, z

′)− µobs(z
′)) , (11)

where, ci refer to the free parameters of the coupled model and C is the covariance matrix with systematics included,
see [21] for details.

B. CMB first acoustic peak

We exploit the CMB shift parameter R, since it is the least model dependent quantity extracted from the CMB
power spectrum [23], i.e. it does not depend on the present value of the Hubble parameter H0. The reduced distance
R is written as

R = (ΩmH2
0 )

1/2

∫ 1089

0

dz/H(z) . (12)

We use the CMB shift parameter value R = 1.7 ± 0.03, as derived in Ref. [23], where it has been explicitly shown
that the value of the shift parameter R is mostly independent of the assumptions made about dark energy. The χ2

is defined as χ2
CMB(ci) = [(R(ci)−R0)/σR0

]2.

C. BAOs

Independent geometrical probes are BAO measurements. Acoustic oscillations in the photon-baryon plasma are
imprinted in the matter distribution. These BAOs have been detected in the spatial distribution of galaxies by the
SDSS [24] at a redshift z = 0.35 and the 2dF Galaxy Redshift Survey [25] (2dFGRS) at a redshift z = 0.2. The
oscillation pattern is characterized by a standard ruler, s, whose length is the distance that the sound can travel
between the Big Bang and recombination and at which the correlation function of dark matter (and that of galaxies,
clusters) should show a peak. While future BAO data is expected to provide independent measurements of the Hubble
rate H(z) and of the angular diameter distance DA(z) = dL(z)/(1 + z) at different redshifts, current BAO data does
not allow to measure them separately, so they use the spherically correlated function

DV (z) =

(

D2
A(z)

cz

H(z)

)1/3

. (13)

In the following, we shall focus on the SDSS BAO measurement. The SDSS team reports its BAO measurement in
terms of the A parameter,

A(z = 0.35) ≡ DV (z = 0.35)

√

ΩmH2
0

0.35c
, (14)

where ASDSS(z = 0.35) = 0.469± 0.017. The χ2 function is defined as

χ2
BAO(ci) = [(A(ci, z = 0.35)−ASDSS(z = 0.35))/σA(z=0.35)]

2.
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IV. DYNAMICAL ANALYSIS AND COSMOLOGICAL CONSTRAINTS

The coupling β(φ) of Eq. (1), for the dark matter field dependence of Eq. (4), gives a dynamical coupling which
reads

β(φ) = − nα

Mpl

(

V

ρ0cr

)n

. (15)

In the next sections, we will study the impact of such a coupling in the dynamical behavior of the system as well as
in the numerical analysis performed to the cosmological data sets considered here.

A. Stability analysis

We study the dynamical behavior of the dark matter-dark energy dynamical system in the matter dominated period.
In terms of the x, y and z variables defined in Sec. II, Eqs. (2), (3) and (8) read:

x′ = −3x+
3

4

α√
3π

y2 +
3

4

α√
3π

y2n
(1 − z)2n

z2n
(1 − x2 − y2) +

3

2
x(1 + x2 − y2) , (16)

y′ = −α

√
3

4
√
π
xy +

3

2
y(1 + x2 − y2) , (17)

z′ =
3

2
z(1− z)(1 + x2 − y2) . (18)

The associated critical points are presented in Table I. They are independent of the value of n, assumed to be n ≥ 1.

x∗ y∗ z∗ Eigenvalues Ωφ wT Acceleration? Existence?

0 0 0 3
2
,
3
2
,− 3

2
0 0 No ∀α

±1 0 0 3 , 3 , 3∓
√

3
π

α

4
1 1 No ∀α

α

4
√

3π

1
4

√

16− α2

3π
0 α2

16π
,

α2

16π
− 3 , sgn(−(−α

2 + 48π)n)∞ 1 −1 + α2

24π
α
2
< 16π α

2
< 48π

0 0 1 − 3
2
, − 3

2
,

3
2

0 0 No ∀α

±1 0 1 −3, 3, 3∓ 1
4
α

√

3
π

1 1 No ∀α

2
√

3π
α

2
√

3π
α

1 − 3
2
, − 3(α+

√
−7α2+192π)

4α
,

3(−α+
√

−7α2+192π)

4α
24π
α2 0 No α

2
> 24π

α

4
√

3π

1
4

√

16− α2

3π
1 − α2

16π
, −3 + α2

16π
, −3 + α2

8π
1 −1 + α2

24π
α
2
< 16π α

2
< 48π

TABLE I: Critical points and associated eigenvalues for the exponential potential model of Eq. (4) and n ≥ 1.

Notice that our results are very similar to the ones obtained in model C of Ref. [14] 2. The main difference among the
results presented here and those presented in Ref. [14] lies in the eigenvalues for the z = 0 case. The critical points
for a matter dominated period followed by an accelerated expansion are however rather equivalent.
The exponential coupled model of Eq. (4) allows for a matter dominated era at early times, corresponding to our

first critical point, see Tab. I. This critical point is an unstable fixed point regardless of the value of the exponential
potential parameter α. The last critical point of Tab. I is an accelerated attractor for α2 < 16π. We show the phase
space trajectories pointing towards this attractor in Fig. 1 for z = 1 and α = 1.

2 In Ref. [14], the coupling was chosen to be proportional to the Hubble rate parameter H0.
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FIG. 1: Phase space trajectories for the exponential potential studied in this paper at z = 1. The plot illustrates the stable
node located at (x, y) = (0.16, 0.99) for α = 1. This stable node corresponds to an accelerated attractor and its existence is
independent of the value of the power n of the potential which appears in the dark sector interaction.

B. Cosmological constraints

We have already shown that the background dynamics of the exponential potential coupled model studied here offers
a suitable framework to describe the late time accelerated expansion of the Universe. We now present the constraints
which arise from the data sets described in Sec. III. Both baryon and radiation contributions to the expansion rate
have been included in the following analysis. In the discussion, we make use of the individual chi-square functions,
and the global chi-square is defined by

χ2
tot(ci) = χ2

SNIa(ci) + χ2
BAO(ci) + χ2

CMB(ci) , (19)

where ci refers to the free parameters of the coupled model under study. The coupled model analyzed here contains
three parameters α, n and M . Two parameters determine the scalar field exponential potential: its amplitude is set
by the mass scale M and α appears in the argument of the exponential. The parameter n fixes the power of the
scalar field potential appearing in the dark sector interaction. Notice that, in this interacting quintessence model, α
multiplied by n plays the role of a dimensionless coupling which sets the magnitude of the interaction in the evolution
equations, see Eq. (15).
Figure 2, left panel, shows the results of the χ2 analysis to SNIa data. In the right panel, the results for the global

fit analysis are depicted. From left to right, the curves show the 68.3 and 95.4% C.L. allowed regions for the n = 1,
n = 2, n = 4 and the uncoupled (β(φ) = 0) cases. For this particular analysis the initial conditions for the scalar

field are set to φin = Mpl and φ̇in = 0. We have checked the robustness of our results versus the scalar field initial
conditions. Our conclusions remained unchanged, in agreement with the results of Ref. [26].
In general, larger values of α imply a smaller scalar potential. To compensate this effect, larger values of the ampli-

tude of the potential M are needed. This explains the shape of the degeneracy between α and M in Fig. 2, being these
two parameters positively correlated. For small values of both M and α, for instance, (M,α) ∼ (1.8 10−31Mpl, 0.1),
the ratio V/ρ0cr appearing in the coupling term is smaller than one. When the value of n is increased from 1 to 4,
the uncoupled case behavior is recovered due the suppression of the coupling term (V/ρ0cr)

n. Indeed, notice that the
n = 4 curve is almost superimposed to the uncoupled quintessence curve in Fig. 2 in the low (M,α) region.
For larger values of α and M (within the allowed regions), the ratio V/ρ0cr increases. The dark sector interaction

becomes the dominant source term for the scalar field evolution in Eq. (2). In addition, the dark matter energy

density, proportional to exp
[(

V (φ)/ρ0cr
)n]

(see Eq. (4)), starts to dominate the total energy density. Such a large
contribution from the dark matter energy density is not compatible with SNIa data. This is precisely the reason for
the bending of the curves in the left panel of Fig. 2. Notice that the shape of the curves for the coupled cases differs
significantly from the uncoupled case for larger values of α and M (within the allowed regions). The turn-over of
the coupled model curves occurs at different values of the parameters M and α, depending on the value of the n
parameter. Namely, for n = 4 the turn over shows up at smaller values of M and α than those corresponding to the
n = 1 case. This is due to the fact that the β(φ) term given by Eq. (2) is proportional to n and therefore the strength
of the coupling term in this region of the M and α parameters grows with n.
Notice, from the global fit results of Fig. 2 (right panel), that the allowed regions for large values of n, α and M

become significantly smaller than those arising from a fit exclusively to SNIa data. This is due to the CMB constraint
which tends to favor smaller values of M in both uncoupled and coupled cases. Indeed, larger values of M are
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FIG. 2: (Left panel) Analysis of the coupled exponential potential model of Eq. (4). The contours denote the 68.3 and 95.4 %
C.L. allowed regions arising from a fit to SNIa data. The first three curves from left to right depict the results for n = 1, 2 and
n = 4. The last curve depicts the results arising from the fit to the uncoupled model. (Right panel) Same as in the left panel,
but using the global fit results, i.e. the combined analysis to SNIa, CMB and BAO data sets.

associated to very small values of the dark matter energy density, which directly influences the CMB shift parameter,
see Eq. (12).
The best fit point for the uncoupled case is located at (M,α) = (2 10−31Mpl, 0.25) and it corresponds to Ωde =

0.72 and Ωdm = 0.28, being Ωde and Ωdm the current values of the dark matter and dark energy energy-densities,
respectively. The equation of state of the dark energy field is wφ = −1. The associated global χ2 is 562 compared
to the 557 effective degrees of freedom in our analysis. While for the n = 1 coupled case the fit becomes weaker, it
improves for larger values of n. For the n = 4 coupled scenario, the best fit is associated to a χ2 = 542. However,
the best fit point for the n = 4 case corresponds to a cosmological constant scenario, since it is located at α = 0 and
M = 1.85 10−31Mpl, with the derived cosmological parameter values Ωde = 0.67,Ωdm = 0.33 and wφ = −1. Indeed,
for ΛCDM universe we obtain χ2 = 531.
In summary, the cosmological data sets considered in the current analysis favor the large n regime in a region of

the (M,α) plane where both the coupling term and the dynamics of scalar field potential are negligible. In the next
section we will explore the constraints from weak equivalence principle violation arguments.

V. WEAK EQUIVALENCE PRINCIPLE CONSTRAINTS

Let us consider an interaction between fermionic dark matter, Ψ, and a light pseudo scalar boson, φ, that interacts
with the dark matter through a Yukawa coupling with strength g, described by the lagrangian

L = iΨ̄γµ∇µΨ−mψΨ̄Ψ− 1

2
∇µφ∇µφ− V (φ) + gφΨ̄Ψ , (20)

where mψ is the dark matter mass (independent of the scalar field). For g 6= 0, on scales smaller than rs = m−1
φ , the

Yukawa interaction acts like a long-range ‘fifth’ force in addition to gravity. The effective potential felt between two
dark matter particles is

V (r) = −
Gm2

ψ

r

[

1 + αYuk exp

(

− r

rs

)]

, (21)

with

αYuk ≡ g2

4π

M2
pl

m2
ψ

. (22)
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The authors of Ref. [27] studied the impact of such a long-range interaction on both galaxy cluster masses and dark
matter growth, reporting an upper bound of αYuk ≤ 1.3 (for αYuk > 0).
Kesden and Kamionkowski (K&K in the following) [28, 29], analyzed the consequences of Weak Equivalence Princi-

ple (WEP) violation for dark-matter on galactic scales, focusing on dark-matter dominated satellite galaxies orbiting
much larger host galaxies. They concluded that models in which the difference among dark matter and baryonic accel-
erations is larger than 10% are severely disfavoured. The relevant parameter constrained in K&K analysis is

√
αYuk.

For reasonable models of the Sagittarius satellite galaxy tidal stream, K&K found an upper bound of αYuk < 0.04,
corresponding to

g/mψ < 4.2× 10−20 GeV−1. (23)

Since the K&K limit turns out to be the most stringent one, we exploit it here to set constraints on the exponential
coupled model explored along the paper. We expand the interaction term mdm(φ)Ψ̄Ψ, keeping only the linear terms
in the scalar field. The former approximation is possible due to the fact that αφ/Mpl ≪ 1 within the viable regions
determined in the previous section. Therefore the linear term will clearly dominate the dark matter-scalar field
interaction. We can write Eq. (4) as:

mdm(φ) = m0

∞
∑

k=0

1

k!

(

V (φ)

ρ0cr

)kn

, (24)

V (φ) ≃ M4

(

1− α
φ

Mpl

)

. (25)

It is straightforward to obtain an expression for both the fermion massmψ and the coupling g in the Yukawa interaction
term as defined in Eq. (20)

mψ = m0 exp

[(

M4

ρcr

)n]

, (26)

g = mψ
nα

Mpl

(

M4

ρcr

)n

. (27)

Therefore, if we express the amplitude of the potential as M = λ× 10−31Mpl, the limit of Eq. (23) becomes

α <
0.1

√
8π

n
(

8π
3
λ4

100

)n . (28)

For λ = 1.85, which lies in the range of the viable regions obtained in Fig. 2, the former bound translates into a
bound on the parameter α of the exponential coupled model of α < 0.51, 0.26 and 0.14 for n = 1, 2 and 4, respectively.
These bounds are stronger than those arising from cosmological observations and further restrict the allowed regions
shown in Fig. 2. In addition, WEP bounds are complementary to cosmological constraints, since they have opposite
trends: while cosmological bounds are rather loose when the amplitude of the potential increases, WEP limits get
much stronger. Notice however that WEP bounds have been obtained using the strongest fifth force constraint, i.e.
using the K&K limit. Mildest bounds on coupled quintessence models will arise if more conservative WEP bounds
are applied.

VI. CONCLUSIONS

We have studied a time varying-interaction among the dark matter and the dark energy sectors. The non-minimally
coupled dark energy component is identified to a dynamical quintessence field, and it is coupled to the dark matter
field via the dark matter mass term. The form of the interaction has been chosen to ensure an energy exchange
between dark matter and dark energy proportional to the product of the dark matter energy density and the nth
power of the scalar field potential. For a slowly rolling scalar field and n = 1, the model presented here provides
a possible effective lagrangian description of pure phenomenological quadratic interacting models such as the one
studied in Ref. [14].
The form for the scalar field self-interacting potential is assumed to be an exponential function of this field. The

model has then been shown to possess a late time stable accelerated attractor regardless of the value of the n parameter.
We have also explored the constraints on this interacting model arising from the most recent SNIa, CMB and BAO
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data. While the fit improves slightly when allowing for a dark matter-dark energy interaction, the best fit point lies
in a region in which both the coupling and the dynamics of the field are negligible. Therefore, current data does not
favor this coupled dynamical model, even if it involves more parameters than the simplest cosmological scenario, i.e.
a ΛCDM universe. A coupling between the two dark sectors can also be constrained by Weak Equivalence Principle
violation arguments. We have derived the constraints arising from fifth-force searches. For the exponential potential
coupled model studied in this paper, WEP constraints are very strong and much tighter than cosmological bounds.
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