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Abstract 

The water retention curve (θ(ψ)), which defines the relationship between soil volumetric 

water content (θ) and matric potential (ψ), is of paramount importance in characterizing the 

hydraulic behaviour of soils. However, few methods are so far available for estimating θ(ψ) in 

undisturbed soil samples. We present a new design of TDR-pressure cell (TDR-Cell) for 

estimating θ(ψ) in undisturbed soil samples. The TDR-Cell consists of a 50-mm-long and 50-

mm internal diameter stainless steel cylinder (which constitutes the outer frame of a coaxial 

line) attached to a porous ceramic disc and closed at the ends with two aluminium lids. A 49-

mm-long and 3-mm-diameter stainless steel rod, which runs longitudinally through the centre 

of the cylinder, constitutes the inner rod of a coaxial TDR probe. The TDR-Cell was used to 

determine the θ(ψ) curves of a packed sand and seven undisturbed soil samples from three 

profiles of agricultural soils. These θ(ψ) curves were subsequently compared to those obtained 

from the corresponding 2-mm sieved soils using the pressure plate method. Measurements of 

bulk electrical conductivity, σa, as a function of the water content, σa(θ), of the undisturbed 

soil samples were also performed. An excellent correlation (R2 = 0.988) was found between 

the θ values measured by TDR on the different undisturbed soils and the corresponding θ 

obtained from the soil gravimetric water content. A typical bimodal θ(ψ) function was found 

for most of the undisturbed soil samples. Comparison between the θ(ψ) curves measured with 

the TDR-Cell and those obtained from the 2-mm sieved soils showed that the pressure plate 

method overestimates θ at low ψ values. The σa(θ) relationship was well described by a 
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simple power expression (R2 > 0.95), in which the power factor, defined as tortuosity, ranged 

between 1.18 and 3.75.  
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The relationship between the soil volumetric water content (θ) [m3m-3] and the matric 

potential (ψ) [kPa], i.e. the water retention function, θ(ψ), has become crucial for 

characterizing the soil hydraulic properties, the key feature for planning and managing new 

irrigation schemes. The water retention curve is very dependent upon the particle-size 

distribution, which determines the soil texture, and the arrangement of the solid particles, 

which refers to the soil structure. The shape of the water retention curve is also dependent on 

the soil organic matter and the soil water composition (Dane and Hopmans, 2002).  

Common approaches for estimating θ(ψ) require paired ψ and θ measurements. The water 

retention information is commonly obtained by bringing the soil sample to equilibrium by 

applying a constant pressure gradient across the soil, driving water movement while 

preventing air entering into a pressurized chamber (Dane and Hopmans, 2002). The θ is 

generally calculated from the gravimetric water content and the dry bulk density of the soil 

sample, or in cases where the sample is an undisturbed soil contained in a cylinder, by using 

the cylinder volume directly. The most common laboratory technique for estimating θ(ψ) is 

the pressure plate extractor. A pressure plate extractor referred to as a “Temple cell” is 

commonly used for suctions up to -100 kPa. For higher matric suctions (typically -1500 kPa) 

more robust pressure cells are used (Wand and Benson, 2004). Depending on the dimensions 

of the pressure plate extractor, disturbed or intact soil samples can be used. Measurements of 

θ(ψ) in undisturbed soil samples are highly desirable because changes in pore-size distribution 

caused by sieving soil samples produce substantial changes in θ(ψ) with respect to its original 

shape.  

Time Domain Reflectometry (TDR) is a non-destructive technique that allows simultaneous 

estimations of the volumetric water content and the bulk electrical conductivity (σa). TDR 
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employs a fast-rise signal propagating through a porous medium in order to determine 

permittivity from travel time, and electrical conductivity from signal attenuation. Water 

content is inferred from the dielectric measurements due to the large contrast in the 

permittivity of water compared to the soil and air (Topp and Ferré, 2002). The characteristics 

of the TDR technique provide a flexible means of measuring θ at multiple locations without 

requiring soil-specific calibration in many cases. These properties make it possible to combine 

this technique with a classical pressure plate extractor to estimate θ(ψ). For instance, Wraith 

and Or (2001) measured θ(ψ) of different soils using a combination of a 15-bar pressure plate 

and a 20-cm-long TDR probe. Jones et al. (2005) designed a 19.6-cm-long TDR coaxial cell to 

measure water content at adjustable pressure heads without repacking or disturbing the soil 

sample. More recently, Moret-Fernández et al. (2008) developed a type of pressure cell 

associated with a zigzag-shaped TDR probe for determining the soil water retention curve in 

disturbed thin soil samples. However, although this last design reduces the length of the soil 

cores and, consequently, reduces the risk of soil compression (Grossman and Reinsch, 2002), 

the zigzag-shaped wires limit the TDR application to disturbed soil samples. 

The bulk electrical conductivity of soil depends mainly on three variables: (a) the effective 

θ, (b) the electrical conductivity of the soil solution, and (c) a geometric factor, which 

accounts for the complex geometry of the soil matrix (Mualem and Friedman, 1991). For 

unsaturated soils, Rhoades et al. (1976) found that the σa(θ) relationship could be satisfactorily 

described with a polynomial function. However, as subsequently observed by Rhoades et al. 

(1989), this equation was only valid for σa values close to 0.1 S m-1. On the basis of the 

hypothesis that the tortuosity factor affecting the bulk electrical conductivity is identical to that 

defined for predicting the soil hydraulic conductivity, Mualem and Friedman (1991) showed 
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that σa(θ) could be satisfactorily described using a simple power expression, in which the 

calibration coefficient was, for most soils, equal to 2.5. 
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The objective of this paper is to present a new design of TDR-pressure cell (TDR-Cell) for 

estimating θ(ψ) and σa(θ) curves in thin undisturbed soil samples (5-cm high). The TDR-Cell 

was calibrated in water and soils with different water content and tested in packed sand and in 

seven different soil samples. The undisturbed θ(ψ) curves were subsequently compared to 

those obtained in the corresponding 2-mm sieved soils using a conventional pressure plate 

method. This comparison will make possible to value the strengths of the TDR-Cell regarding 

to the pressure plate extractor with disturbed soil samples, which is incorrectly used in many 

research laboratories to estimate, for instance, the soil water retention curve or the plant 

available soil water content.  

 

2. Theory 

Description of TDR 

A TDR system launches an electromagnetic pulse along a transmission line and records a 

signal or TDR waveform, which is expressed by the voltage (V) or reflection coefficient (ρ) as 

a function of time (t). The transit time of the TDR pulse propagating one return trip in a 

transmission line of length L (m) tL, is represented by 

 
c

L
t a

L

ε2
=  (1) 19 
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22 

where c is the velocity of light in free space (3x108 m s-1) and εa is the apparent permittivity of 

the medium (Topp and Férre, 2002). Estimations of θ from εa values are calculated by the 

Topp and Reynolds (1998) linear calibration form  

761161 .
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where ts and tair are the travel time in soil and air, respectively 1 
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The voltage reflection coefficient of the TDR waveform, ρ, as a function of time, t, is 

typically defined as  
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where V(t) is the measured voltage at time t, V0 is the voltage in the cable just prior to entering 

the probe (standard impedance value of 50 Ω), and Vi is the incident voltage of the cable tester 

prior to the pulse rise. The Vi has a constant value over time and, for our case, it will be 

assumed to be equal to zero.  

As an electromagnetic signal propagating in conductive media, the TDR waveform 

undergoes attenuation. On the basis of the Giese and Tiemann (1975) thin-layer model, Lin et 

al., (2008) showed that the sample electrical conductivity, σ (S m-1), recorded with an 

uncoated twin-rod TDR probe, can be related to the long-time attenuation of the TDR signal 

according to  
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where ρ∞,Scale, is the scaled steady-state reflection coefficient corresponding to the ideal 

condition in which there is no instrument error o cable resistance. Zr is the output impedance 

of the TDR cable tester (50 Ω), and KP (m−1) is the probe-geometry-dependent cell constant 

value, which can be determined from the probe geometries characteristics or by immersing the 

probe in different electrolyte solutions of known conductivity (Wraith, 2002). The ρ∞,SC to be 

used in the usual Giese–Tiemann equation is calculate according to 
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where ρ,  ρ∞,air and ρ∞,SC are the steady-state reflection coefficient of the sample under 

measurement, open in air and short-circuited, respectively 
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Soil water retention curves  

The most common function used to describe the soil water retention curve is the unimodal 

van Genuchten (1980) equation 
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where n is the pore-size distribution parameter, m = 1-(1/n), α [kPa] is the scale factor, and θsat 

and θr are the saturated and residual volumetric water contents, respectively. Water retention 

curves for soil with multiple porosity are better approached using the model proposed by 

Durner (1994), which involves the linear superposition of van Genuchten (1980) subcurves 

and is expressed as 
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0 < wi < 1 

∑wi = 1 

αi > 0, mi > 0, ni > 1 

where k is the total number of  i “subsystems” that form the total pore-size distribution, and wi 

is a weighting factor for the subcurves.  
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Water content vs. bulk electrical conductivity curves 1 
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The σa of a soil can be considered to consist of two components: (i) the contribution of ions 

in soil particles, and (ii) the contribution of ions in the soil solution (Nadler and Frenkel, 

1979). The σa(θ) relationship was first described by Rhoades et al. (1976) as 
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where σw and σs are the electrical conductivity of the soil solution and the solid phase 

conductivity, respectively, and T = aθ + b, with a and b being empirical coefficients. 

Alternatively, on the basis of the hypothesis that the tortuosity factor accounting for the 

reduction in hydraulic conductivity is identical to the tortuosity factor reducing the soil 

solution electrical conductivity, Mualem and Friedman (1991) found that σa(θ) could be 

described with a simple power function (neglecting σs) as 

β
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where σa-sat is the soil bulk electrical conductivity at saturation and β is a tortuosity factor that, 

dependent on the soil’s water transmission porosity, defines the rate of decrease between σa 

and θ.  

 

3. Material and methods 

Description of the TDR-Cell 

The pressure head TDR-Cell consists of a commercially available stainless steel cylinder 

(50-mm long and 50-mm in internal diameter), commonly used to estimate soil bulk density, 

joined through the base to a commercially available porous ceramic disc (7-mm thick and 50-

mm in diameter) and hermetically closed at the ends with two aluminium single-hole drilled 

lids (Fig. 1). A 49-mm-long and 3-mm-diameter stainless steel rod, which was vertically 
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inserted in the upper lid of the TDR-Cell, runs longitudinally along the axis at the centre of the 

stainless steel cylinder. This rod is connected to the inner wire of a female BNC connector, 

which is glued onto the upper lid of the TDR pressure cell. The two elements, the stainless 

steel rod and the cylinder, form a cylindrical coaxial line of 49-mm length and 50-mm internal 

diameter. Two aluminium rings attached to several rubber joints hermetically close the lids of 

the TDR-Cell against the stainless steel cylinder (Fig. 1). The TDR-Cell is connected to a TDR 

cable tester (Campbell TDR100) by a 1.2-m-long RG 58 coaxial cable of 50 Ω nominal 

impedance, and the TDR signals are transferred to a computer that records and analyses the 

TDR waveforms using the software TDR-Lab V.1.0 (Moret-Fernández et al., 2010). The TDR 

volumetric water content (θTDR) and the bulk electrical conductivity (σa) are estimated using 

the Topp and Reynolds (1998) (Eq. 2) and Lin et al. (2008) (Eq. 4) models, respectively. 

 

TDR-Cell testing and experimental design 

A first laboratory experiment was performed to calibrate the effective length and the cell 

constant (Kp) (Eq. 4) of the TDR coaxial probe. The effective length was calculated with the 

TDR-Lab software by immersing the coaxial probe in distilled water, and the Kp was 

determined by immersing the probe in different electrolyte solutions of known conductivity 

(Moret-Fernández et al., 2010). Additionally, the theoretical Kp value was also calculated. 

Although the probe constant for a purely coaxial cell can be calculated analytically, the 

specific geometry of the TDR-Cell, in which the effect of the top and bottom metallic flanges  

are not negligible, makes necessary to calculate Kp by means of numerical methods. To this 

end a commercial finite elements modelling software (COMSOL Multiphysics 

http://www.comsol.com/) was used. In a two-dimensional axisymmetric mode, the cell 

nominal geometry was finely meshed to approximately 40000 nodes and the subsequent DC 

conductivity problem was solved. The viability of the TDR-Cell for estimating water retention 

23 

24 

25 
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curves (θ(ψ)) was tested in sand (average grain size of 80-160 μm) and in seven different 

undisturbed soil samples. The gypsum of the soil samples was titrated by the loss of crystal 

water from the gypsum, in accordance with Artieda et al. (2006). The undisturbed soil samples 

were taken, using the core method (Grossman and Reinsch, 2002), from the genetic horizons 

of three different pits (Table 1) opened for soil profile study. Two replications were performed 

per soil horizon. The preparation of the soil samples required the following phases. In a first 

step, the surfaces of the undisturbed soil core were carefully levelled with a scraper. The 

bottom of the core was covered with a nylon base (20-μm mesh) which, glued to a stainless 

steel open ring, was inserted at the bottom of the cylinder. Using a power drill, a 3-mm-

diameter and 45-mm-long hole was drilled longitudinally through the top and down the centre 

of the undisturbed soil sample. The stainless steel rod of the TDR-Cell was inserted in the 

drilled hole, and the top of the TDR-Cell was hermetically closed by screwing the upper 

aluminium ring to the upper TDR-Cell lid (Fig. 1). A dry ceramic disc was placed on the 

bottom lid of the TDR-Cell, and the stainless steel core plus the upper TDR-Cell lid were 

attached to the ceramic disc. The system was finally hermetically closed by screwing the lower 

aluminium ring to the bottom lid of the TDR-Cell. A first measurement of θTDR was performed 

in air-dry soil conditions, which have been calculated to correspond to a soil pressure head of 

about 166 MPa (Munkholm and Kay, 2002). Next, the soil sample was saturated by injecting 

distilled water through the base of the TDR-Cell, and the soil was considered saturated when 

the water started to leave via the top of the pressure cell. Once the soil was saturated, pressure 

steps were sequentially applied at 1.7, 3, 5, 10, 50, 100, 500, and 1500 kPa. Ceramic plates 

(Soil Moisture Inc. UK) with bubbling pressures of -0.5, -3 and -5 bar (Soil Moisture Inc. UK) 

were used to regulate the outlet water flow for pressure heads up to 50, 100 and 500 kPa, 

respectively. The outlet water flow at a pressure head of 1500 kPa was regulated using a 

cellophane membrane plus a -0.5 bar ceramic plate system. Values of θTDR and σa were 
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recorded at soil saturation, and 24, 48 and 72 hours after starting each pressure head step for ψ 

values up to -100, -500 and -1500 kPa, respectively. Preliminary measurements of θTDR 

performed in the BU7-Ap and BU7-R1 soil cores at 500 and 1500 kPa of pressure heads and 

24 h of time intervals during 4 days showed that 48 and 72 h were enough to reach the soil the 

respective water equilibrium. 
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6 The θ(ψ) curves were fitted to the unimodal (van Genuchten, 1980) or bimodal functions 

(Durner, 1994) using SWRC Fit Version 1.2 software (http://seki.webmasters.gr.jp/swrc/) 

(Seki, 2007). The gravimetric water content (W) of the different undisturbed soil samples was 

measured in air-dry conditions and at pressure heads up to -50 kPa, and the corresponding 

volumetric water contents (θW) were calculated from W and the undisturbed soil dry bulk 

density (ρb). The dry bulk density of the undisturbed soil samples was calculated as the soil 

weight dried at 50 ºC for 72 hours divided by the soil volume. Since gypsum content was 

relevant in the studied soils, the 50ºC temperature was used to avoid the constitutional water 

release by the gypsum crystal because of the transformation of gypsum into bassanite or 

anhydrite at temperatures > 50ºC (Nelson et al., 1978; Artieda et al., 2006; Lebron et al., 2009; 

Herrero et al., 2009). Accounting these water molecules as moisture would be erroneous; 

moreover the “dry” weight of the “cooked” soil at 105ºC would also differ from the true 

weight of the naturally dry gypsum, flawing further determinations related to weight. 
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The different undisturbed soil θ(ψ) curves estimated with the TDR-Cell were compared to 

the corresponding curves measured for disturbed soil samples using a conventional pressure 

plate method (Table 1). The air-dry soil samples were ground, sieved at 2-mm diameter, and 

poured into 5-cm internal diameter and 0.4-cm thick rubber rings, which were placed on the 

ceramic plate of the pressure plate apparatus. The soil samples were wetted to saturation and 

pressure steps were sequentially applied at 1.7, 3, 5, 10, 50, 100, 500, and 1500 kPa. A new 
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disturbed soil sample was used for each pressure head, and W was measured 24 hours after 

starting each pressure head step. The volumetric water content of the disturbed soil samples 

was calculated as the gravimetric water content (W) multiplied by the ρb of the sieved soil 

samples (Table 1). Two replications of the water content measurements were performed per 

pressure head and sampling point. 

 

4. Results and discussion 

The effective length and theoretical and experimental KP values calculated for the coaxial 

probe used in the TDR-Cell were 5.14 cm, and 7.29 and 6.38 m-1, respectively. The 12% 

discrepancy between the experimental and theoretical KP values can be considered as a good 

approximation for a calculation derived from nominal simplified geometry parameters. The 

good correlation (R2 = 0.988) and the low RMSE (RMSE = 0.017) found between the θTDR 

values measured for the packed sand and for the different undisturbed soil samples and 

pressure heads (in air-dry soil conditions and with ψ ranging between 0 and -0.5 bar) and the 

corresponding θW indicate that the coaxial TDR probe used in this experiment is accurate 

enough to estimate the volumetric water content (Fig. 2). 

The ρb measured in the sand sample was 1.47 g cm-3 and the θ(ψ) obtained with the TDR 

pressure cell showed a typical van Genuchten (1980) unimodal function (Fig. 3), with an 

excellent fit between the measured and modelled θ(ψ) (Table 2). The undisturbed soil samples 

used in the experiment had loam to silty clay loam textures, and ρb ranged from 1.21 g cm-3 

for the upper soil horizons to 1.70 g cm-3 for the deeper ones (Table 1). Assuming a θr = 0, the 

θ(ψ) estimated with the TDR-Cell shows a double hump for all the undisturbed samples, 

which indicates that the soils presented a relevant double pore-size distribution. In these cases, 

a significant w1 value (Eq. 7) was observed (Table 2). Figure 3 shows an example of the 
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unimodal and bimodal θ(ψ) functions obtained for the sand and the second replication of the 

BU 7-R2 soil, respectively. 
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Significant differences were observed between the θ(ψ) functions estimated with the TDR-

Cell for undisturbed soil samples, θ(ψ)TDR, and the corresponding curves obtained with the 

pressure plate method, θ(ψ)PPM (Fig. 4). Overall, θ(ψ)PPM presented a significantly higher 

volumetric water content for the soil macropore range (ψ > -10 kPa) (Kay and 

VandenBygaart, 2002), which should be attributed to the different structural characteristics 

between the undisturbed and the 2-mm sieved soil samples. As noted by Ahuja et al. (1998), 

the larger porosity in loose soil, which is related to a lower ρb (Rab, 2004; Moret and Arrúe, 

2007), is generally associated with an increase in soil water retention at the wet end of the 

θ(ψ) curve (i.e. pores corresponding to ψ > - 6 kPa). In contrast, for pressure heads higher than 

100 kPa, a significantly higher volume of mesopores (-10 > ψ > - 1400 kPa) was observed in 

the compacted undisturbed soil samples. As compared to the sieved soils, the extremely high 

ρb observed in some undisturbed soil samples (Table 1) (i.e. the “BU9 Cy” soil which came 

from a lutitic horizon) should increase the fraction of micropores (ψ > -1400 kPa), and 

consequently enhance the water content at permanent wilting point (-1500 kPa) (Fig. 4). The 

similar average and standard deviation values found between the gravimetric water content 

measured with the pressure plates (WPPM) at low pressure heads (from 100 to 1500 kPa) and 

the corresponding values estimated for the undisturbed soils with the TDR-Cell (WTDR) 

(calculated as the quotient between θTDR and the undisturbed ρb) (Table 3) indicate that the 

TDR-Cell satisfactorily approaches the θ(ψ) section corresponding to the soil’s textural 

properties. 

As described in the literature (Rhoades et al., 1976; Mualem   and Friedman, 1991), the bulk 

electrical conductivity increased with the volumetric water content (Fig. 5). The high electrical 
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conductivity around saturation found in the BU 7-R2, BU 9-Cy, and BU 10-Ap and By soil 

samples can be related to the high gypsum content measured in these soil horizons (Table 1). 

The electrical conductivity of the air-dry soils, which would correspond to the apparent 

electrical conductivity of the solid phase of the soil (σs) (Eq. 8) (Rhoades et al., 1976), was in 

all cases negligible. Preliminary analysis of the σa(θ) relationship showed that the polynomial 

function proposed by Rhoades et al. (1976) (Eq. 8), which presented incongruent negative b 

coefficients in some cases (i.e. BU 9-Cy, BU 10-Ap, and BU 10-By), was not appropriate for 

describing the relationship between the bulk electrical conductivity and the volumetric water 

content. These results agree with Rhoades et al. (1989), who concluded that the simplified 

polynomial model (Eq. 8) was valid for σa values above approximately 0.1 S m-1. However, an 

excellent fit was found between the experimental and the modelled Mualem and Friedman 

(1991) σa(θ) curves (Eq. 9) (neglecting σs) (Table 4). However, unlike Mualem and Friedman 

(1991), who found a β value close to 2.5 for both consolidated and unconsolidated coarse 

soils, the β parameter obtained in this study ranged between 1.18 and 3.75. Since all 

measurements have been performed on undisturbed soil samples, with bulk densities ranging 

from 1.24 to 1.70 g cm-3, these results indicate that the β factor was largely affected by the 

structural characteristics of the soils. No clear correlation (R2 = 0.17) between the β factor and 

the soil bulk density was found. 

 

5. Conclusions 

This paper presents a new design of TDR-pressure cell (TDR-Cell) for estimating θ(ψ) and 

σa(θ) curves on 5-cm-high undisturbed soil samples. The TDR-Cell was tested with different 

soils, and the θ(ψ) curves were compared with the corresponding curves obtained with 2-mm 

sieved soils using the conventional pressure plate method. The results show that the TDR-Cell 
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measures θ satisfactorily. Thus, these results indicate that the proposed TDR-Cell is, in 

comparison to the pressure plate extractor, a significant advance in estimating the θ(ψ) and 

σa(θ) functions in undisturbed soil samples. However, some caution is due for the time 

selected to achieve the water equilibrium in the soil bulk at the largest pressure heads, since 

the 48 and 72 h used at 500 and 1500 kPa of pressure head may be insufficient for fixed clayey 

soils. On the other hand, further efforts should be made to improve the TDR-Cell design, using 

a single ceramic plate for all ranges of pressure heads. This could be achieved by replacing the 

different ceramic plates that regulate the outlet water flow by a single -0.5 bar ceramic disc 

plus an adjustable valve running up to a pressure head of -15 bar. In addition, these results 

open the door to further research studying the relationship between the β factor and the 

tortuosity parameter of the hydraulic conductivity curves. 
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Figure captions 

 

 

Figure 1. Schematic diagram of the proposed TDR pressure cell. 

 

Figure 2. Correlation between the volumetric water content measured with the TDR-Cell 

(θTDR) in sand samples and in different undisturbed soil samples and the corresponding values 

calculated from the soil gravimetric water content and the dry bulk density of the undisturbed 

soil (θW).  

 

Figure 3. Water retention curves measured with the TDR-Cell (points) in sand and in the 

second replication of the BU 7-R2 soil and the corresponding modelled unimodal and bimodal 

functions (lines). 

 

Figure 4. Comparison between the water retention curves measured with the TDR-Cell in the 

two replications of undisturbed soil samples, and the corresponding average curves measured 

in the 2-mm sieved soil samples using the pressure plate method (PPM). 

 

Figure 5. Comparison between the measured (points) and modelled (lines) (Eq. 8) soil 

volumetric water content vs. bulk electrical conductivity relationships obtained for different 

undisturbed soil samples (Table 1). 
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Table 1. Characteristics of the 2-mm sieved and undisturbed soil samples used to test the pressure head TDR-Cell 
 
Trench  Genetic 

horizon 
Depth 2-mm sieved soil 

bulk density 
Undisturbed soil 

bulk density 

 Gypsum 
content 

Sand Silt Clay Texture 

           
        

 cm  g cm-3     %  

 

           

BU-7 AP 0-30 1.07 1.23  5.0 6.6 30.1 63.3 Silty clay loam 
 R1 40-60 1.22 1.59  10.5 35.8 23.3 40.9 Loam 
 R2 60-160 1.15 1.70  20.0 1.7 28.2 70.1 Silty clay loam 
           
BU-9 AP 0-30 1.03 1.21  6.1 7.4 35.8 56.9 Silty clay loam 
 Cy 30-160 1.11 1.68  22.2 1.7 34.4 63.9 Silty clay loam 
           
BU-10 AP 0-30 1.00 1.24  17.3 7.4 35.7 56.9 Silty clay loam 
 By 30-100 1.00 1.52  26.8 3.1 36.7 60.3 Silty clay loam 

5 
6 
7 
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Table 2. Parameters defining the unimodal (Eq. 5) and bimodal (Eq. 6) water retention curves estimated in packed sand and in different 

undisturbed soil samples (Table 1), and the coefficient of determination (R2) for the best fit between the measured and modelled volumetric 

water content vs. soil pressure head. 

1 

2 

3 

             

Soil sample Soil horizon Replication Model θS 
 θr

  w1
 α1

 n1 
 α2  n2 R2 

             
              

       m3 m-3 
   kPa  kPa   

Sand  1 Unimodal 0.39 0.09  - 0.41 5.48   0.99 
             
BU 7 AP 1 Bimodal 0.43 ≈ 0  0.47 0.31 1.90 6.7 10-4 1.32 0.99 
  2 Bimodal 0.48 ≈ 0  0.42 0.25 1.88 6.0 10-4 1.33 0.99 
 R1 1 Bimodal 0.46 ≈ 0  0.20 3.36 1.27 0.012 1.19 0.97 
  2 Bimodal 0.44 ≈ 0  0.45 0.41 1.19 1.4 10-5 3.14 0.99 
 R2 1 Bimodal 0.47 ≈ 0  0.33 0.10 1.27 2.4 10-4 1.56 0.99 
  2 Bimodal 0.39 ≈ 0  0.26 0.34 1.91 9.8 10-4 1.31 0.99 
             
BU 9 AP 1 Bimodal 0.51 ≈ 0  0.66 1.44 1.24 6.8 10-4 1.29 0.99 
  2 Bimodal 0.49 ≈ 0  0.38 0.33 2.92 9.4 10-3 1.21 0.99 
 C

B

y 1 Bimodal 0.43 ≈ 0  0.04 27.87 38.97 1.4 10-3 1.22 0.99 
  2 Bimodal 0.44 ≈ 0  0.20 0.03 1.23 1.4 10-4 1.32 0.99 
             
BU 10 AP 1 Bimodal 0.49 ≈ 0  0.30 0.15 3.07 8.9 10-4 1.35 0.99 
  2 Unimodal 0.48 ≈ 0  0.19 0.086 3.03 1.0 10-4 1.52 0.99 
 y 1 Bimodal 0.51 ≈ 0  0.25 0.085 3.21 7.4 10-5 1.74 0.99 
  2 Bimodal 0.49 ≈ 0  0.59 0.63 1.15 2.4 10-4 3.17 0.99 

4  
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Table 3. Average and standard deviation (SD) values of the gravimetric 

water content measured in all soil samples with the pressure plate method 

(WPPM) and corresponding values calculated with the TDR-Cell (WTDR). 

 
     

Pressure head  WPPM  WTDR 
       
       

  Average 
 

SD 
 

 Average 
 

SD 
 

     

  kPa   m3 m-3 
 

       

0.01  0.615 0.067 0.358 0.088
1.7  0.498 0.063 0.331 0.084
3  0.488 0.048 0.329 0.088
5  0.447 0.044 0.308 0.082
10  0.416 0.050 0.291 0.076
50  0.332 0.056 0.257 0.059
100  0.268 0.057 0.240 0.062
500  0.217 0.048 0.234 0.061
1500  0.192 0.057 0.214 0.079

6  
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Table 4. Parameters defining the simple power equation (Eq. 7) relating the volumetric water content with the bulk electrical conductivity for 

the first (R1) and the second (R2) soil replications of the different undisturbed soil samples (Table 1). R2 and RMSE: coefficient of 

determination and root mean square error for the best fit between the measured and modelled volumetric water content vs. bulk electrical 

conductivity. 

1 

2 

3 

4 

Trench Genetic horizon   σsat  β θsat R2 RMSE 
        

R R
   

  1 R2  1 R2 R1 R2 R1 R2 R1 R2 
                  

       S m-1 
     m3 m-3 

        
                

BU 7 Ap 0.045 0.055  1.180 1.381 0.45 0.47 0.99 0.98 0.005 0.001 
 R1 0.110 0.099  1.609 1.615 0.45 0.45 0.98 0.98 0.002 0.001 
 R2 0.220 0.073  3.267 1.900 0.46 0.39 0.91 0.94 0.015 0.002 
             
BU 9 Ap 0.053 0.039  1.350 1.397 0.51 0.49 0.96 0.98 0.001 0.001 
 Cy 0.133 0.190  2.770 3.753 0.43 0.44 0.99 0.98 0.002 0.031 
             
BU 10 Ap 0.400 0.649  2.133 2.322 0.50 0.49 0.96 0.97 0.008 0.017 
 By 0.472 0.699  2.421 3.594 0.52 0.49 0.95 0.96 0.013 0.017 

5 
6 
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