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Abstract

We propose an effective action for the eleven-dimensional (bosonic)
Kaluza-Klein monopole solution. The construction of the action re-
quires that the background fields admit an Abelian isometry group.
The corresponding sigma-model is gauged with respect to this isom-
etry. The gauged sigma-model is the source for the monopole so-
lution. A direct (double) dimensional reduction of the action leads
to the effective action of a 10-dimensional D-6-brane (IIA Kaluza-
Klein monopole). We also show that the effective action of the 10-
dimensional heterotic Kaluza-Klein monopole (which is a truncation
of the IIA monopole action) is T-dual to the effective action of the
solitonic 5-brane. We briefly discuss the kappa-symmetric extension
of our proposal and the possible role of gauged sigma-models in con-
nection with the conjectured M-theory 9-brane.
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Introduction

Eleven-dimensional supergravity [1] is believed to describe the low-energy
behaviour of (uncompactified) M-theory [2], which may be a theory of super-
membranes [3]. To gain a better understanding of M-theory it is therefore of
interest to study the different kinds of solutions to the supergravity equations
of motion. Of particular interest are those solutions that, upon reduction to
ten dimensions, lead to the D-p-brane solutions of IIA supergravity [4]. By
now, the 11-dimensional origin of the D-p-brane solutions (with p even) are
well understood with the exception of the D-8-brane whose 11-dimensional
interpretation is still a mystery (see, however, the discussion).

It turns out that 11-dimensional supergravity admits two “brane” solu-
tions, the M-2-brane and M-5-brane. Their reduction leads to the D-2-brane
and D-4-brane solution, respectively. There is no such brane interpretation
for the D-0-brane and D-6-brane. These solutions are related to a purely
gravitational Brinkmann wave (W11) and a Kaluza-Klein monopole (KK11)
in eleven dimensions [5]. The metric corresponding to these solutions does not
split up into isotropic worldvolume and transverse directions and therefore
does not describe a standard brane. Nevertheless, due to their 10-dimensional
D-brane interpretation, these solutions are expected to play an important role
in M-theory. It is therefore of interest to get a better understanding of these
solutions and the role they play in M-theory.

A natural question to ask is, what is the effective action corresponding
to the Brinkmann wave and Kaluza-Klein monopole? Such effective actions
occur as source terms in the supergravity equations of motion. The effective
action of the Brinkmann wave is a massless particle (or any other kind of
massless p-brane [6]) moving at the speed of light. The zero modes of the
11-dimensional Kaluza-Klein monopole have been recently discussed in [7].
In this letter we will make a concrete proposal for the KK11 effective action
that involves those zero modes. To motivate our proposal we first show
that the purely gravitational part5 of the action is the source of the KK11
solution. Next, we show that, up to the yet undetermined Wess-Zumino term,
a direct dimensional reduction of the KK11 action leads to the effective action
of a 10-dimensional D-6-brane, while a double dimensional reduction leads
to the effective action for a IIA Kaluza-Klein monopole (KK10A). In the
latter reduction we only consider the purely gravitational part of the action.
Finally, we will show that the effective action of the 10-dimensional heterotic
Kaluza-Klein monopole (KKh), which is a truncation of the KK10A action,
is T-dual to the effective action of the heterotic solitonic 5-brane (P5h), again

5A precise definition will be given in the next section.
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up to the WZ term [6].

1 The KK11 Effective Action

Our starting point is the 11-dimensional KK11 solution [8]6

ds2 = ηijdy
idyj −H−1 (dz + Amdx

m)2 −H(dxm)2 , (1.1)

where i, j = 0, . . . , 6, m,n = 7, 8, 9, and z = x10 and where

Fmn = 2∂[mAn] = εmnp∂pH , ∂m∂mH = 0 . (1.2)

The solution (1.1) has 8 isometries and therefore it represents an ex-
tended object. At first sight one might think that the solution represents
a 7-brane (with non-isotropic worldvolume directions) but it turns out that
the isometry in the direction z is special and cannot be interpreted as a
worldvolume direction [7]. We are therefore dealing with a 6-brane, with a
7-dimensional worldvolume, that has an additional isometry in one of the 4
transverse directions.

The KK11 solution preserves half of the supersymmetry and must cor-
respond, after gauge fixing, to a 7-dimensional supersymmetric field theory.
The natural candidate for such a field theory involves a vector multiplet with
3 scalars and one vector [7]. We are now faced with a dilemma. Since the
KK11-monopole moves in 11 dimensions, we have 11 embedding coordinates.
Fixing the diffeomorphisms of the 7-dimensional worldvolume we are left with
4 instead of 3 scalars. At this point one might argue that, to eliminate the
extra scalar d.o.f., we need an extra diffeomorphism, i.e. an 8-dimensional
worldvolume, but this would upset the counting of the worldvolume vector
components. We therefore need a new mechanism to eliminate the unphys-
ical scalar degree of freedom. As we will see below, this can be done by
gauging an Abelian isometry in the effective sigma-model, i.e. we propose to
work with a gauged sigma-model.

A second characteristic feature of our proposal is that the “KK11-brane”
couples to a scalar k constructed from the Killing vector kµ that generates
the isometry we are gauging. The coupling manifests itself as a factor k2 in
front of the kinetic term in the effective action. Since, in coordinates adapted
to the isometry, gzz = −k2 and the length of the z-dimension is

2πRz =
∫
dz|gzz|1/2 =

∫
dzk , (1.3)

6The discussion below can easily be extended to arbitrary dimensions d. For simplicity
we restrict ourselves to d=11.
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the tension of the KK11-brane (and of the KK brane in any dimension) is
proportional to R2

z.
To be concrete, we propose the following expression for the kinetic term

of the KK11 effective action (a proper WZ term needs to be added [6]):

SKK11 = −TKK11

∫
d7ξ k2

√
|det (∂iXµ∂jXνΠµν + k−1Fij)| , (1.4)

where kµ is the Killing vector associated to the isometry direction z and

k2 = −kµkνgµν . (1.5)

Furthermore,
Πµν = gµν + k−2kµkν ,

Fij = ∂iVj − ∂jVi − kµ∂iXν∂jX
ρC(3)

µνρ .
(1.6)

The field C(3) is the 3-form potential of 11-dimensional supergravity.
Observe that the components of the “metric” Πµν in the directions of kµ

vanish:

kµΠµν = 0 . (1.7)

Πµν is effectively a 10-dimensional metric and, in coordinates adapted to the
isometry generated by kµ, the coordinate z and the corresponding field Z(ξ)
associated to this isometry simply do not occur in the action.

Sometimes, we will consider in our discussion only the purely gravitational
part of the KK11 action, i.e. we will set the worldvolume vector field strength
Fij equal to zero and we will ignore the WZ term:

Sgrav.
KK11 = −TKK11

∫
d7ξ k2

√
|det (∂iXµ∂jXνΠµν)| . (1.8)

This part of the action can be written using an auxiliary worldvolume
metric γij in the Howe-Tucker form

Sgrav.
KK11 = −TKK11

2

∫
d7ξ

√
|γ|
[
k4/7γij∂iX

µ∂jX
νΠµν − 5

]
. (1.9)

Eliminating γij from (1.9) leads to the expression given in (1.8). An alter-
native form of (1.9), which makes the relation with a gauged sigma-model
clear, is obtained using an auxiliary worldvolume vector field Ci:

Sgrav.
KK11 = −TKK11

2

∫
d7ξ

√
|γ|
[
k4/7γijDiX

µDjX
νgµν − 5

]
, (1.10)
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with the covariant derivative defined as

DiX
µ = ∂iX

µ + Cik
µ . (1.11)

In the remaining part of this letter we will collect evidence in favour
of our proposal. We first show that the KK11 action is the source for the
KK11 solution. Next, we compare the KK11 action with the kinetic terms of
other known actions via dimensional reduction and T-duality. The relations
between the KK11 action of M-theory and the different actions of the IIA/IIB
theories are given in Figure 1. The worldvolume fields of the corresponding
actions are given in Table 1.

Figure 1: Relation between solutions and effective actions of KK monopoles and other extended objects

in M theory and type II string theories. Vertical arrows indicate direct dimensional reduction. Vertical

dashed lines indicate direct dimensional reduction in the special direction z. Oblique arrows indicate

double dimensional reduction. Double arrows indicate T duality relations and wiggly lines indicate that

the supergravity solutions are identical, although the effective actions are not.
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Object Worldvolume Fields # of d.o.f. Total

Xµ 11− 7 “−1”= 3
KK11 6+1 8

Vi 7− 2 = 5

Xµ 10− 7 = 3
D6 6+1 8

Vi 7− 2 = 5

Xµ 10− 6 “−1”= 3
KK10A 5+1 Vi 6− 2 = 4 8

S 1

Xµ 10− 6 = 4
P5B 5+1 8

Wijk 4

Xµ 11− 6 = 5
M5 5+1 8

V +
ij 3

Xµ 10− 6 = 4
P5A 5+1 V +

ij 3 8

S 1

Xµ 10− 6 “−1”= 3
V +
ij 3

KK10B 5+1 8
S 1
T 1

Table 1: The table gives the worldvolume fields and number of degrees of freedom of the different

objects that appear in Figure 1. The “-1” in the fourth column indicates that a scalar degree of freedom

is eliminated by gauging an Abelian isometry.
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2 The KK11 Action as Source Term

We first demonstrate that the KK11 action is the source of the 11-dimensional
KK monopole7. For simplicity, we only consider the purely gravitational part.
This leads to the following bulk plus source term:

S = 1
κ

∫
d11x

√
|g|[R]

−TKK11

2

∫
d7ξ

√
|γ|
[
k4/7γij∂iX

µ∂jX
νΠµν − 5

]
,

(2.1)

where κ = 16πG
(11)
N .

To determine the Einstein equations we have to take into account the
metric factors hidden in factors like k2. The rule is that kµ is independent
of the metric. The metrics that have to be varied in k2 and Π are shown
explicitly below:

k2 = −kµkνgµν ,

Πµν = gµν +
(
kαkβgαβ

)−1
kρgρµk

σgσβ .

(2.2)

The equations of motion for gµν and Xν are

Gαβ + TKK11κ

2
√
|g|

∫
d7ξ

√
|γ|k4/7γij

{
−2

3
k−2kαkβΠij + ∂iX

α∂jX
β

−2k−3kαkβkikj − 2k−2k(α∂iX
β)kj

}
δ(10)(x−X) = 0 ,

∇̃2Xρ + Γ̃µν
ρ∂kX

µ∂kXν = 0 ,
(2.3)

where Γ̃ are the Christoffel symbols of the “metric”

g̃µν = k2Πµν , (2.4)

and ∇̃2 is the Laplacian with respect to the worldvolume metric

7Results concerning singular sources in General Relativity are known to be highly
coordinate-dependent. In particular, in isotropic coordinates the sources of extremal black
holes and branes seem to be placed at the horizon, which is non-singular but looks like
a point in this coordinate system. The reason for this is that the coordinates chosen do
not cover the region where the physical singularity is and the flux lines of the different
fields seem to come out of the point that represents the horizon. Our results have to be
understood in the same sense. We thank G.W. Gibbons and P.K. Townsend for discussions
on this point.
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γ̃ij = k−4/7γij , (2.5)

while the equation of motion for γij simply implies

γij = k4/7Πij , γ̃ij = Πij . (2.6)

Observe that in the source term for the Einstein equation, instead of
the usual 11-dimensional Dirac delta function δ(11) we have written a 10-
dimensional Dirac delta function δ(10). The reason is that the KK monopole
effective action does not depend on all the coordinates, as we have seen. In
adapted coordinates, it will not depend on Z, and, therefore, a factor of
δ(z − Z) is absent.

We find that the only non-vanishing components of the Einstein tensor
with upper indices for the KK monopole metric (1.1) are

Gzz = −H−1∂2H ,

Gij = 1
2
ηijH−2∂2H .

(2.7)

For the embedding coordinates we make the following ansatz:

X i = ξi , Z = Xm = 0 , (2.8)

which justifies that the indices i, j can be used both as worldvolume indices
as well as the first 7 target-space indices. The above ansatz tells us that the
extended object worldvolume lies in the position xm = z = 0. With this
ansatz γ̃ij = ηij and the equation of motion for the scalars Xµ is satisfied.

Taking into account the form of the metric given in Eq. (1.1) we find

kµ = δµz , ki = 0 , Πij = gij = ηij . (2.9)

At this stage we find that most of the components of the Einstein equa-
tion are automatically satisfied. The only non-trivial ones are the zz− and
ij−components. Using Eqs. (2.7) we find that both lead to the same equa-
tion:

∂2H = −TKK11 κδ
(3)(~x) , (2.10)

which is solved by

H = 1 +
TKK11κ

4π

1

|~x|
. (2.11)

We thus conclude that the KK11 action is indeed the source of the 11-
dimensional Kaluza-Klein monopole.
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3 Dimensional Reduction

In this section we will first show that the direct dimensional reduction of
the KK11 action leads to the D-6-brane action and next that the double
dimensional reduction of the (purely gravitational part of the) same action
leads to the KK10A effective action. In this section we will indicate 11-
dimensional (10-dimensional) fields by double (single) hats.

3.1 Direct Dimensional Reduction

To perform the direct dimensional reduction it is convenient to use coor-
dinates adapted to the gauged isometry. In such a coordinate system we
have

ˆ̂
k

ˆ̂µ

= δ
ˆ̂µz , (3.1)

and the only non-vanishing components of
ˆ̂
Πˆ̂µˆ̂ν are

ˆ̂
Πµ̂ν̂ =

ˆ̂
k
−1

ĝµ̂ν̂ . (3.2)

Furthermore

ˆ̂gzz = −ˆ̂
k

2

= −e
4
3
φ̂ . (3.3)

Substituting the latter two equations into the KK11 action gives

SD6 = −TKK11

∫
d7ξ̂e−φ̂

√
|det (ĝı̂̂ + F̂ı̂̂)|+ WZ , (3.4)

which is precisely the action for the D-6-brane. Our results suggest the
identification

TKK11 = TD6 . (3.5)

3.2 Double Dimensional Reduction

We next perform a double dimensional reduction of the KK11 action. We
only give the reduction for the purely gravitational part. Thus, our starting
point is

Sgrav. = −TKK11

2

∫
d7ξ̂

√
|γ̂|

[
ˆ̂
k

4/7

γ̂ ı̂̂D̂ı̂
ˆ̂
X

ˆ̂µ

D̂̂
ˆ̂
X

ˆ̂ν
ˆ̂g ˆ̂µˆ̂ν − 5

]
, (3.6)

where the covariant derivative is defined as
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D̂ı̂
ˆ̂
X

ˆ̂µ

= ∂̂ı̂
ˆ̂
X

ˆ̂µ

+ Ĉı̂
ˆ̂
k

ˆ̂µ

. (3.7)

Usually, in a double dimensional reduction a worldvolume coordinate σ
and a target-space coordinate y associated to an isometry are simultaneously
eliminated using an ansatz of the form

Y (x̂î) = σ , (3.8)

while the other coordinates X̂ µ̂ are independent of σ so

∂σ
ˆ̂
X

ˆ̂µ

= δ
ˆ̂µy . (3.9)

In the present case it is natural to make an ansatz that respects the gauge
symmetry of the gauged sigma-model. We therefore take

D̂σ
ˆ̂
X

ˆ̂µ

= δ
ˆ̂µy . (3.10)

However, this would eliminate the component Ĉσ and for consistency we
have to make sure that this is consistent with its algebraic equation of motion

ˆ̂
k ˆ̂µD̂σ

ˆ̂
X

ˆ̂µ

= 0 . (3.11)

This implies that we must take

ˆ̂
ky = 0 . (3.12)

For simplicity, we furthermore take

Ĉσ = 0 . (3.13)

We now split the (6 + 1)-dimensional worldvolume metric as follows8:



γ̂ij = `−1/2γij − `2aiaj ,

γ̂iσ = −`2ai ,

γ̂σσ = −`2 ,



γ̂ij = `1/2γij ,

γ̂iσ = −`1/2ai ,

γ̂σσ = −`−2 + l1/2a2 .

(3.14)

Substituting our ansatz for the coordinate Y and for the worldvolume metric
into the action we get

8The worldvolume indices are ı̂ = (i, σ) so ξ̂6 = σ
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Sgrav. = −TKK11

2

∫
d6ξdσ

√
|γ|

{
ˆ̂
k

4/7 [
γijDiX̂

µ̂DjX̂
ν̂ ˆ̂gµ̂ν̂

−2aiDiX̂
µ̂ˆ̂gµ̂y − (`−2 − `1/2a2)ˆ̂gyy

]
− 5

}
,

(3.15)

where we have used

ˆ̂
k
µ̂

= k̂µ̂ , Ĉi = Ci ,⇒ D̂iX̂
µ̂ = DiX̂

µ̂ . (3.16)

We next eliminate the σ-components of the worldvolume metric (`, ai) by
using their algebraic equations of motion and obtain

Sgrav. = −TKK11

2
l11

∫
d6ξ

√
|γ|

[
k̂2/3e−

2
3
φ̂γijDiX̂

µ̂DjX̂
ν̂ ĝµ̂ν̂ − 4

]
, (3.17)

where we have used the relation between the 11-dimensional metric and the
10-dimensional metric and dilaton

e
4
3
φ̂ = −ˆ̂gyy ,

ĝµ̂ν̂ = e
2
3
φ̂
[
ˆ̂gµ̂ν̂ − ˆ̂gµ̂yˆ̂gν̂y/ˆ̂gyy

]
,

(3.18)

and the following relation between the 11- and 10-dimensional Killing vec-
tors9

ˆ̂
k

2

= e−
2
3
φ̂k̂2 . (3.19)

Furthermore, we define

l11 =
∫
dσ . (3.20)

The action (3.17) is the purely gravitational part of the KK10A monopole
action and, thus, we find

TKK11l11 = TKK10A . (3.21)

Eliminating from the action the worldvolume metric γij by using its equa-
tion of motion, we get

9It is in this identity (and only in this identity) where the condition
ˆ̂
ky = 0 plays a

role.
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S = −TKK10A

∫
d6ξe−2φ̂k̂2

√
det |DiX̂ µ̂DjX̂ ν̂ ĝµ̂ν̂ | , (3.22)

which shows that both the factor e−2φ̂ characteristic of a solitonic object and
the factor k̂2 characteristic of a KK monopole are present in front of the
kinetic term.

4 T -duality

As a final piece of evidence in favour of the KK11 action we consider T -
duality. More explicitly, we will show that the heterotic Kaluza-Klein mono-
pole (KKh) is T -dual to the solitonic five-brane (P5h)10. Before doing this
we first wish to comment on the Buscher’s T -duality rules [11]. The standard
derivation of the Buscher’s rules goes via a worldsheet duality transformation
on the isometry scalar in the string effective action. A disadvantage of this
derivation that it only applies to strings but not to five-branes since the dual
of a scalar is a scalar only in two dimensions. However, it turns out that there
is an alternative way of deriving the Buscher’s rules which is more suitable
for our purposes. Combining the fact that a wave is T -dual to a string and
that the corresponding source terms are given by a massless particle and a
string, respectively, one can show that the massless particle is T -dual to the
string via reduction to d=9 dimensions [6]. This way of formulating Buscher’s
T -duality is identical to the way the type II T duality between the R ⊗ R
fields is treated [12]11. It is in this sense that we show below that the KKh
and P5h actions are T -dual to each other.

Our starting point is the 10-dimensional heterotic five-brane (P5h) action
given by

SP5h = −TP5h

∫
d6ξe−2φ̂

√
|det (∂iX̂ µ̂∂jX̂ ν̂ ĝµ̂ν̂)| + WZ , (4.1)

A direct dimensional reduction of the P5h action leads to an action in-
volving an extra worldsheet scalar S:

SP5h = −TP5h

∫
d6ξ e−2φk−1

√
|det (∂iXµ∂jXνgµν − k2FiFj)|+ WZ , (4.2)

10The T -duality between KK monopole and five–brane solutions corresponding to the
effective action has been considered in the context of the magnetic ciral null model [9] and
p-brane bound states [10].

11An interesting feature of this alternative derivation of Buscher’s rules is that the
duality rule of the dilaton is needed already at the classical level.
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with

Fi = ∂iS − Ai . (4.3)

On the other hand, the heterotic KK monopole action KKh is given by

SKKh = −TKKh

∫
d6ξ e−2φ̂k̂2

√
|det( ∂iX̂ µ̂∂jX̂ ν̂Π̂µ̂ν̂ − k̂−2F̂iF̂j)|+ WZ , (4.4)

with

F̂i = ∂iŜ − ∂iX̂ µ̂k̂ν̂B̂µ̂ν̂ . (4.5)

A reduction of the KKh action over the z-direction gives

SKKh = −TKKh

∫
d6ξ e−2φk

√
|det( ∂iXµ∂jXνgµν − k−2F ′iF

′
j)|+ WZ . (4.6)

Furthermore, we have

F ′i = ∂iS −Bi . (4.7)

Combining the above reductions we see that the P5h and KKh actions
reduce to two actions in nine dimensions that differ by the following inter-
changes:

k ↔ k−1 , A↔ B , (4.8)

which are exactly Buscher’s rules in nine-dimensional language [13]. This
proves the T -duality between the P5h and KKh actions.

5 Discussion

We have proposed an effective action for the 11-dimensional Kaluza-Klein
monopole that is given by a gauged sigma-model. We collected the following
pieces of evidence in favour of this proposal:

1. The KK11 action is the source of the KK11 solution.

2. The action reduces to the D-6-brane action via direct dimensional re-
duction and gives the KK10A action via double dimensional reduction.

3. The truncated 10-dimensional KKh action is T-dual to the P5h action.
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It should be not too difficult to derive the Wess-Zumino term and to include
it in the calculations performed in this letter [6].

It is natural to consider the kappa-symmetric extension of the KK11 ac-
tion. In fact a natural ansatz for the relevant projection operator is (omitting
the double hats)

Γ =
1

7!
√
|γ|
εi1···i7Di1X

µ1 · · ·Di7X
µ7Γµ1···µ7 . (5.1)

This form of the projection operator leads to the following Killing spinor
condition for unbroken supersymmetry [14]:

(1− Γ01···6)ε = 0 . (5.2)

This result for the Killing spinor can be used as another argument for a
6-brane interpretation of the 11-dimensional Kaluza-Klein monopole [15].

One might also wonder whether our results shed new light on the evasive
11-dimensional 9-brane (see also [7]). A standard argument against the 9-
brane is that the corresponding 10-dimensional worldvolume field theory does
not allow multiplets containing a single scalar to indicate the position of the
9-brane. A way out of this is to assume that the 9-brane is really a 8-
brane with an extra isometry in one of the 2 transverse directions, leading
to a gauged sigma-model. Now, we are dealing with a nine-dimensional field
theory which naturally contains a vector multiplet with a single scalar. In
this context we note that the 11-dimensional origin of the D-2-brane requires
a worldvolume duality transformation of the Born-Infeld (BI) vector into a
scalar [16]. This only works for massless backgrounds, i.e. m = 0, due to
the presence of a topological mass term for m 6= 0. However, for m 6= 0 it is
still possible to dualize on-shell leading to the following line element for the
eleventh scalar:

∂iX
11 −mVi . (5.3)

In other words, the general line element is given by

∂iX
µ − Vikµ , (5.4)

with kµ = mδµ11. We thus end up with something which is similar to the
line element of the gauged sigma-model we considered in this letter:

∂iX
µ − Cikµ . (5.5)
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It would be interesting to pursue this line of thought further and see
whether it leads to a proper formulation of the long sought for 11-dimensional
9-brane.

Finally, we believe that gauged sigma-models will play a relevant role as
source terms for many purely gravitational solutions of 11-dimensional super-
gravity. The gauging procedure generically seems to allow for new potentially
supersymmetric effective actions without the need for higher dimensions.

Acknowledgments
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