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Abstract

The classical disjoint shortest path problem has re-
cently recalled interests from researchers in the net-
work planning and optimization community. How-
ever, the requirement of the shortest paths being
completely vertex or edge disjoint might be too re-
strictive and demands much more resources in a
network. Partially disjoint shortest paths, in which
a bounded number of shared vertices or edges is
allowed, balance between degree of disjointness
and occupied network resources. In this paper, we
consider the problem of finding k shortest paths
which are edge disjoint but partially vertex disjoint.
For a pair of distinct vertices in a network graph,
the problem aims to optimally find k edge dis-
joint shortest paths among which at most a bounded
number of vertices are shared by at least two paths.
In particular, we present novel techniques for ex-
actly solving the problem with a runtime that sig-
nificantly improves the current best result. The
proposed algorithm is also validated by computer
experiments on both synthetic and real networks
which demonstrate its superior efficiency of up to
three orders of magnitude faster than the state of
the art.

1 Introduction
Several shortest path problems [Akiba et al., 2015; Hansen
and Abdoulahi, 2016; Imamichi et al., 2016] have recently
witnessed renewed interests in AI community. Solutions to
these problems are largely heuristic-based. In network plan-
ning and optimization, the classical disjoint shortest path
problem, especially the problem of finding partially disjoint
shortest paths, has also started with a heuristic method [Sey-
mour and Kar, 2013] and only recently seen guaranteed op-
timal solutions [Yallouz et al., 2016]. However, the state-of-
art optimal solutions are far from being efficient and scalable,
limiting their practicability. In this paper, we investigate a fast
solution to the following problem of finding k edge-disjoint
shortest paths with a bounded number of common vertices:

∗These two authors share equal contribution.

Definition 1. (The δ-vertex k edge-disjoint shortest path
problem, δV-kEDSP): For a directed graph or network G =
(V, E) with a source vertex s ∈ V and a destination t ∈ V ,
a weight function w : E → Z+, a given nonnegative inte-
ger δ ∈ Z, δV-kEDSP aims to compute k edge-disjoint paths
P1, P2, · · · , Pk in G, such that

∑
i=1, ··· , k w (Pi) attains

the minimum while among them there are at most δ vertices
(besides s and t) shared by at least two paths.

Intuitively, the above definition constrains edge-disjoint
shortest paths intersecting each other with the number of in-
tersection (node) points upper bounded by δ. Compared with
the other stricter vertex-disjoint shortest paths problem, δV-
kEDSP potentially finds a set of paths with a shorter average
length. For the problem when k = 2, we propose a fast op-
timal (or namely exact) algorithm to δV-2EDSP, as we can
already envision that the general δV-kEDSP requires much
more algorithmic machinery. Note that throughout the pa-
per we use terms “shortest” and “minimum weight”, and also
“exact algorithm” and “optimal algorithm”, interchangeably.

1.1 Related Work
To the best of our knowledge, the δV-kEDSP problem
was first studied in [Yallouz et al., 2016] for k = 2,
where it was optimally solved within a time complexity
O
(
mn2 + n3 log n

)
. Although the study over δV-kEDSP is

emerging, the case of δ = 0 has already attracted intensive re-
search from mathematicians and computer scientists starting
from early 70s. When δ = 0, δV-kEDSP becomes the com-
plete vertex-disjoint (edge-disjoint) shortest st-path problem,
namely the min-sum vertex-disjoint path problem, which can
be simply solved with a simple max flow. It was also shown
by Suurballe that the problem, for any fixed integer k > 0,
admits an optimal algorithm with a runtime O(n2 log n) [Su-
urballe, 1974]. Later in [Suurballe and Tarjan, 1984], this
runtime was improved to O

(
m log(1+m/n) n

)
.

Another important variant of δV-kEDSP is the Node-
Disjoint Path with Congestion (NDPwC) problem. The
problem is to maximize the number of paths to respectively
connect k given pairs of vertices s1t1, . . . , siti, . . . , sktk,
such that each vertex appears on at most γ paths for a given
positive integer γ that is known as congestion factor [Chekuri
et al., 2005; Chekuri and Ene, 2013]. The existing meth-
ods mostly modeled and relaxed the NDPwC problem as
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a natural multicommodity flow problem via linear program-
ming. Chekuri et al [Chekuri et al., 2005] used the multi-
commodity flow LP-relaxation to obtain an O

(
log2 k log n

)
approximation with congestion γ = 4 forNDPwC in planar
graph. Then, Chekuri and Ene [Chekuri and Ene, 2013] gave
a polynomial time algorithm which routes Ω( OPT

poly log k ) pairs
with O(1) congestion in undirected graphs, where OPT is
the value of an optimal fractional solution to a natural multi-
commodity flow relaxation. For the edge-disjoint case, the
edge-disjoint path with congestion (EDPwC) problem is
also to maximize the number of disjoint paths respectively
connecting the given pairs of vertices, such that each edge
appears on at most γ paths. For the first time addressing
EDPwC, Raghavan and Thompson [Raghavan and Tomp-
son, 1987] gave a constant factor approximation with conges-
tion γ relaxed to Ω(log n/ log log n) by using randomized
rounding technique. Later, Andrew presented a randomized
(O(log61 n), O((log log n)6))-approximation algorithm for
EDPwC in [Andrews, 2010]. Note that for inapproxima-
bility, Andrews et al. [Andrews et al., 2005] have also
shown that for any congestion γ = O( log log n

log log log n ), there is

no log
1−ϵ
γ+1 n-approximation algorithm for EDPwC unless

NP ⊆ ZPTIME(npoly log n), so their poly-logarithmic bi-
factor ratio is nearly the best possible. For better congestion
guarantee but fewer paths between pairs of vertices, Chuzhoy
in [Chuzhoy, 2016] recently gave an efficient randomized al-
gorithm, which routes Ω( OPT

log22.5 k log log k
) demand pairs with

congestion of at most 14.
Our techniques for solving δV-kEDSP involve at the last

step a transformation to the restricted shortest path (RSP)
problem that is known NP-complete in [Garey and John-
son, 2002]. To the best of our knowledge, Joksch [Joksch,
1966] was the first to formally solve RSP by presenting a
pseudo-polynomial time algorithm using dynamic program-
ming. Although we adopt this pseudo-polynomial algo-
rithm for RSP to form our polynomial time solution (this
works because in our case δ ≤ n), it is worthwhile to
mention other related approximations: Hassin gave another
pseudo-polynomial algorithm with runtime O (mOPT ) for
OPT being the weight of an optimal solution, and then con-
sequently gave an FPTAS with time O

(
m

(
n2

ϵ

)
log

(
n
ϵ

))
[Hassin, 1992]; While Lorena and Raz [Lorenz and Raz,
2001] proposed another FPTAS with a further improved run-
time O

(
mn

(
log log n+ 1

ϵ

))
, for any fixed real number ϵ >

0. Recently, the research interest is also on the k-edge (ver-
tex) disjoint restricted shortest path (kRSP) problem which
combines RSP and disjoint paths [Orda and Sprintson, 2004;
Guo et al., 2015].

1.2 Our Results
In this paper, we propose an exact algorithm for δV-2EDSP
with a runtimeO(δm+n log n), which significantly improves
the runtime O(mn2 + n3 log n) of the previous best solution
[Yallouz et al., 2016]. Our algorithm is based on the main
observation that, if δV-2EDSP is feasible then there must ex-
ist a special optimal solution, what we called a spiral optimal
solution. The algorithm progresses with the idea of path aug-

mentation. It first computes a shortest st-path, then this path
gets augmented to a pair of spiral st-paths via our specially
constructed residual graph with an extra cost function to cap-
ture the number of shared vertices. Moreover, we show that if
δV-2EDSP is feasible, then there must exist a spiral optimal
solution whose shared vertices are all on the shortest st-path.
With techniques from graph theory and network flow theory,
we prove that our algorithm produces an optimal solution to
δV-2EDSP. The proposed algorithm has the potential to ex-
tend to δV-kEDSP for general k, but we omit this discussion
here due to space limit. We also run experiments on both syn-
thetic and real networks to validate the practical performance
of our algorithm against other baselines. Experimental results
show an up to three orders of magnitude runtime reduction –
matching our theoretical runtime analysis.

2 Exact Algorithms for δV-2EDSP

In this section, we first focus on an important property of δV-
2EDSP: there must exist a special optimal solution called spi-
ral optimal solution if an instance of δV-2EDSP is feasible.
Then we give an algorithm to compute such a spiral optimal
solution, which equivalently solves δV-2EDSP.

2.1 Spiral Optimal Solutions to δV-2EDSP
We denote a network by a digraphG = (V, E), where V and
E are respectively the sets of vertices and edges. Assume that
n = |V | and m = |E|. Given an st-path P and two vertices
u, v ∈ P , we denote by P (u, v) the subpath of P from u to
v, and say u ≺

P
v if and only if v ̸= u appears on P (u, t),

i.e. v ∈ P (u, t). For two paths P1 and P2, we say P1(u, v) is
a maximal segment within P1∩P2 iff (1) P1(u, v) ⊆ P1∩P2

and (2) there exists in P1 ∩P2 no other segment that contains
P1(u, v), that is, there exists no Pi(x, y) ⊆ P1 ∩ P2, i ∈
{1, 2}, such that Pi(x, y) ⊃ P1(u, v) holds.
Our algorithm will actually compute a special optimal so-

lution called a spiral optimal solution, which is formally as
follows (An example comparing a spiral optimal solution vs
a non-spiral optimal solution is as depicted in Figure 1):

Definition 2. Let P ∗ be a shortest st-path in G. Then an
optimal solution to δV-2EDSP, sayP = {P ∗

1 , P
∗
2 }, is a spiral

optimal solution if the following two conditions both hold: (1)
For any u, v ∈ P ∗∩P ∗

i , i ∈ {1, 2}, u ≺
P∗ v iff u ≺

P∗
i
v; (2)

Let Si = P ∗∩P ∗
i , i ∈ {1, 2}, be the set of maximal segments

at which P ∗ intersects with P ∗
i . Then for any segj , segj′ ∈

Si, i ∈ {1, 2}, if segj ≺P∗
i
segj′ then there must exist seg ∈

S3−i, such that segj ≺P∗ seg ≺
P∗ segj′ holds on P ∗.

Note that P ∗
1 and P ∗

2 in the above definition must be edge-
disjoint and hence can only share common vertices.
We say vj , vj′ ∈ P ∗∩P ∗

i , i ∈ {1, 2} are properly ordered,
if vj , vj′ satisfy Condition 1; Otherwise, say vj ≺ vj′ on P ∗

while vj′ ≺ vj on P ∗
i , vj and vj′ is antiordered. Note that

there may exist P ∗
i ∈ P , i ∈ {1, 2}, such that P ∗ = P ∗

i .
The key idea of our algorithm is inspired by the Simplex

method of solving linear programs, in which a special op-
timal solution called basic optimal solution, rather than any
optimal solution, is computed. So similar to the correctness
proof of the Simplex method, we need first to show it suffices
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Figure 1: A spiral optimal solution vs a non-spiral optimal solution.
(a) An original graph with the shortest path P ∗ (red edges); (b) A
spiral optimal solution svywzt and surt; (c) A non-spiral optimal
solution surt and svygzt.

to compute a spiral optimal solution to solve δV-2EDSP, as
given in the following theorem:

Theorem 3. If an instance of δV-2EDSP is feasible, then it
must have spiral optimal solutions.

Proof. For Condition 1 of Definition 2, we show that if an in-
stance of δV-2EDSP is feasible, then an optimal solution can
be constructed satisfying the condition. Assume {P ∗

1 , P
∗
2 }

is an optimal solution of δV-2EDSP, for which there exist
vj , vj′ ∈ P ∗ ∩ P ∗

i , i ∈ {1, 2}, such that vj ≺ vj′ on P ∗

but vj′ ≺ vj on P ∗
i . Then we can construct a pair of disjoint

path P1 and P2 of which the number of antiordered vertex
pairs decreases at least one comparing to {P ∗

1 , P
∗
2 }. Conse-

quently, an optimal solution without any antiordered vertex
pair can be constructed by repeatedly decreasing the number
of antiordered vertex pairs.
It remains to give the construction of P1 and P2. Without

loss of generality, we assume that vj′ is the vertex closest
to t in all antiordered vertex pairs. Let u, which belongs to
Pi ∪ P3−i, be the first vertex after vj′ . We will construct P1

and P2 for both two cases that u ∈ P ∗
i or u ∈ P ∗

3−i:
(1) u ∈ P ∗

3−i: Let w ∈ P ∗
3−i ∩ P ∗ be the last ver-

tex before vj . We will show that there exists a solution
P1 and P2 whose weight is not larger than that of P ∗

1 and
P ∗
2 , but with fewer antiordered vertex pairs. We need only

to simply set P1 = P ∗
i (s, vj′) ∪ P ∗(vj′ , u) ∪ P ∗

3−i(u, t)
and P2 = P ∗

3−i(s, w) ∪ P ∗(w, vj) ∪ P ∗
i (vj , t). Appar-

ently, every properly ordered vertex pair in {P ∗
1 , P

∗
2 } re-

mains so while the antiordered vertex pair {vj , vj′} becomes
also properly ordered in P1 and P2. That is, the num-
ber of antiordered vertex pairs decreases at least one from
{P ∗

1 , P
∗
2 } to {P1, P2}. It remains only to show the weight

of {P1, P2} is not larger than {P ∗
1 , P

∗
2 }, which is to show

w(P ∗(vj′ , u)∪P ∗(w, vj)) ≤ w(P ∗
i (vj′ , vj)∪P ∗

3−i(w, u)).
Suppose otherwise, i.e., w(P ∗(vj′ , u) ∪ P ∗(w, vj)) >
w(P ∗

i (vj′ , vj), P
∗
3−i(w, u)) ≥ w(P ∗

3−i(w, u)). Then P =
P ∗(s, w)∪P ∗

3−j(w, u)∪P ∗(u, t) is an st-path with a smaller
weight than P ∗, contradicting with the optimality of P ∗.
Therefore, the two constructed paths P1 and P2 are with a
weight that is not larger than {P ∗

1 , P
∗
2 }.

(2) u ∈ P ∗
i : We will construct a new path Pi, which is

with a weight no larger than P ∗
i but at least one less an-

tiordered vertex pair. For the task, we need only to simply
set Pi = P ∗

i (s, vj′) ∪ P ∗(vj′ , u) ∪ P ∗
i (u, t). Apparently,

w(Pi) ≤ w(P ∗
i ), because w(P

∗(vj′ , u)) ≤ w(P ∗
i (vj′ , vj)∪

P ∗
i (vj , u)) holds from the optimality of P ∗. Besides, since

vj /∈ Pi, Pi is with at least one less antiordered vertex pair

than P ∗
i . Moreover, according to the construction of Pi, the

path pair {Pi, P
∗
3−i} shares only common vertices of the

original {P ∗
i , P

∗
3−i}, and hence {Pi, P

∗
3−i} shares at most

the same number of common vertices as {P ∗
i , P

∗
3−i} which

is bounded by δ.
For Condition 2, let {P ∗

1 , P
∗
2 } be an optimal solution to

δV-2EDSP that already satisfies Condition 1. Then we show
an optimal solution also satisfying Condition 2 can be con-
structed from {P ∗

1 , P
∗
2 }. Let segj and segj′ be two segments

in which all the interior vertices belong to S1 = {seg | seg ⊆
P ∗
1 ∩ P ∗}. Let u be the last vertex in segj and v be the first

vertex in segj′ . Assume that there exists no segment of S2 =
{seg | seg ⊆ P ∗

1 ∩P ∗} that appears on P ∗ between segj and
segj′ . Then let P1 = P ∗

1 (s, u)∪P ∗(u, v)∪P ∗
1 (v, t), which

is P ∗
1 excepting replacing P ∗

1 (u, v), the subpaths of P ∗
1 be-

tween segj and segj′ , by P ∗(u, v). Apparently, P ∗(u, v) is
with a weight no larger than P ∗

1 (u, v), so w(P1) ≤ w(P ∗
1 ).

Moreover, segj and segj′ are merged into one segment on
P1. Besides, P1 and P ∗

2 share only common vertices of P ∗
1

and P ∗
2 . Therefore, by repeating such operations, clearly such

a {P ∗
1 , P

∗
2 } can eventually become a solution to δV-2EDSP

satisfying both Condition 1 and Condition 2.

Note that, Condition 2 will not hold trivially without Con-
dition 1. Because in that case we could not simply use
P ∗(u, v) to connect segj and segj′ , as segj′ ≺P∗

1
segj′ may

hold. That is why we prove Condition 1 before Condition 2.
Moreover, because P ∗

1 and P ∗
2 , as a spiral optimal solution to

δV-2EDSP, are allowed to share δ common vertices, we have
further observation on the relationship between their common
vertices and P ∗ as below:

Lemma 4. If an instance of δV-2EDSP is feasible, there
must exist a spiral optimal solution P ∗

1 and P ∗
2 wrt P ∗, such

that the common vertices of P ∗
1 and P ∗

2 are all on P ∗, i.e.
(V (P ∗

1 ) ∩ V (P ∗
2 )) ⊆ P ∗.

Proof. Suppose otherwise, then there exists a common vertex
of P ∗

1 and P ∗
2 that does not belong to P ∗, say p ∈ P ∗

1 ∩ P ∗
2

that p /∈ P ∗ holds. We will show that there exists a solution
P1 and P2 whose weight is not larger than P ∗

1 and P ∗
2 but

shares one less common vertex. Let w, z ∈ P ∗ ∩ P ∗
1 and

u, v ∈ P ∗ ∩ P ∗
2 be the two pairs of vertices nearest to p

on P ∗
1 and P ∗

2 , respectively. W.l.o.g., we assume w ≺ z
on P ∗

1 and u ≺ v on P ∗
2 , then P ∗

1 and P ∗
2 are as follows:

P ∗
1 = s · · · → w · · · → p · · · → z · · · → t and P ∗

2 = s · · · →
u · · · → p · · · → v · · · → t.
Following Condition 1 of Definition 2, there are six dif-

ferent permutations of u, v, w and z appearing on P ∗: (1)
w ≺ u ≺ v ≺ z; (2) w ≺ u ≺ z ≺ v; (3) w ≺ z ≺ u ≺ v;
(4) u ≺ w ≺ v ≺ z; (5) u ≺ w ≺ z ≺ v; (6) u ≺ v ≺ w ≺ z.
We need only to consider Case (1)-(3), since Case (4)-(6) are
symmetrically similar. In the following, we will show in Case
(1), P ∗

1 and P ∗
2 can not be a spiral optimal solution; while in

Case (2) and (3), the number of common vertices decreases
at least one:
(1)w ≺ u ≺ v ≺ z onP ∗: By Condition 2 of the definition

of a spiral optimal solution, there must be at least a vertex x ∈
P ∗
1 appearing on P ∗ between u and v, i.e. x ∈ P ∗(u, v) \

{u, v}. Then becausew and z are two vertices ofP ∗∩P ∗
1 that
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Algorithm 1 Construction of a split-residual graph.
Input: A digraph G (V, E), specified vertices s and t, a

weight function w (e) and a shortest st-path P ∗;
Output: A split-residual graph Ĝ

(
V̂ , Ê

)
.

1: Set Ĝ := G \ (V (P ∗) \ {s, t}) where each edge e ∈ Ĝ
is with c(e) := 0 and a weight equal to its weight in G;
/*Add to Ĝ the edges of G that do not belong to P ∗.*/

2: For each interior vertex v ∈ P ∗ \ {s, t} do
3: Add two vertices v1, v2 to Ĝ;
4: Add two edges to Ĝ: edge e(v1, v2) with weight 0 and

cost 1 and edge e(v2, v1) with weight 0 and cost 0;
5: Endfor
6: For each edge e(u, v) in G do
7: If e(u, v) is on P ∗ then
8: Set Ĝ := Ĝ ∪ {e(v1, u2)}, c(e(v1, u2)) := 0

and w(e(v1, u2)) := −w(e(u, v));
9: Else
10: If u ∈ P ∗ \ {s, t} then
11: Set Ĝ := Ĝ ∪ {e(u2, v)}, c(e(u2, v)) := 0

and w(e(u2, v)) := w(e(u, v));
12: If v ∈ P ∗ \ {s, t} then
13: Set Ĝ := Ĝ ∪ {e(u, v1)}, c(e(u, v1)) := 0

and w(e(u, v1)) := w(e(u, v));
14: EndIf
15: EndFor
16: Return Ĝ.

are closest to p, x can only belong to P ∗
1 (s, w) or P

∗
1 (z, t).

However, there will be an antiordered vertex pair (w, x) for
x ∈ P ∗

1 (s, w) and (z, x) for x ∈ P ∗
1 (z, t). This contradicts

with the fact that (P ∗
1 , P

∗
2 ) is a spiral optimal solution.

(2) w ≺ u ≺ z ≺ v on P ∗: Let P1 = P ∗
1 (s, w, p) ∪

P ∗
2 (p, v, t) and P2 = P ∗

2 (s, u) ∪ P ∗(u, z) ∪ P ∗
1 (z, t). Ob-

viously, P1 and P2 are two edge disjoint st-paths with weight
no larger than P ∗

1 and P ∗
2 and at least one less common ver-

tex, i.e. no new common vertex emerges for {P1, P2} and p
is no longer a common vertex.
(3) w ≺ z ≺ u ≺ v on P ∗: By Condition 2 of the

definition of spiral optimal solution, there must be a ver-
tex x ∈ P ∗

1 appearing on P ∗(u, v) \ {u, v} while a ver-
tex y ∈ P ∗

2 appearing on P ∗(w, z) \ {w, z}. Then let
P1 = P ∗

1 (s, w, p) ∪ P ∗
2 (p, v, t) and P2 = P ∗

2 (s, y) ∪
P ∗(y, z, u , x) ∪ P ∗

1 (x, t). Because w(P ∗(y, z, u , x)) ≤
w(P ∗

2 (y, u, p)) + w(P ∗
1 (p, z, x)) from the optimality of

P ∗, we have w(P1) + w(P2) ≤ w(P ∗
1 ) + w(P ∗

2 ). More-
over, {P1, P2} has one less common vertex than {P ∗

1 , P
∗
2 },

since p /∈ P2 while no new common vertex is generated
therein.

2.2 The Exact Algorithm
The key idea of our algorithm is inspired by the augmenting
path algorithm for the max-flow problem [Ahuja et al., 1993].
Our algorithm will use a modified version of residual graph,
namely split-residual graph, instead of traditional residual
graph, but following the framework of the augmenting path
algorithm: First, compute a shortest path, say P ∗, and ac-
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Figure 2: An example of executing Algorithm 1: (a) A residual
graph with the reversed shortest path; (b) The split-residual graph.

cordingly construct a split-residual graph Ĝ; Then compute a
shortest st-path in Ĝ to augment P ∗, such that a spiral opti-
mal solution to δV-2EDSP can be eventually obtained.
The difficulty of the algorithm is mainly in the construction

of a split-residual graph Ĝwith respect toG and P ∗, such that
P ∗⊕Q is exactly an optimal solution to δV-2EDSP, whereQ
is a shortest st-path with cost at most δ in Ĝ, capturing the
corresponding edge-disjoint path pair in the original graph G
share at most δ common vertices. Here we use P ⊕ Q to
denote the set of edges P ∪ Q but with all opposite parallel
edge pairs removed, where an opposite parallel edge pair is a
pair of edges between an identical vertex pair but in opposite
direction. The construction of the split-residual graph is sim-
ilar to constructing a residual graph, except that every interior
vertex on P ∗ is split and the edges are modified accordingly.
Definition 5. (Residual graph) Given a graph G with a
weight function w : E → Z, P ∗ is a shortest st-path in
G, the residual graph G̃ is constructed as follows. For each
edge (u, v) ∈ G \ P ∗, we add to G̃ an edge of the same
weight as in G. For each edge (u, v) ∈ P ∗, we add to G̃ a
reversed edge (v, u) with a weight −w(e(u, v)).

The main steps are as below. Firstly, construct a traditional
residual graph G̃ := G∪P ∗\P ∗, where P

∗
is the set of edges

resulted from every edge on P ∗ with direction reversed and
weight set negative, i.e. for every edge e = (u, v) ∈ P ∗, add
e′ = (v, u) to P

∗
with a weight w(e′) = −w(e). Secondly,

split each interior vertex of P ∗, say v, into two vertices v1
and v2, with an edge (v1, v2) with weight 0 and cost 1 and
an edge (v2, v1) with weight 0 and cost 0, where Q going
through edge (v1, v2) indicates that in G the corresponding
paths resulting from P ∗ ⊕ Q will share the vertex v. Then
redirect the edges that containing v: (1) replace each edge
(v, u) in P

∗
by (v1, u2); (2) replace each edge (x, u) /∈ P

∗

with u ∈ P
∗
by (x, u1); (3) replace each edge (v, y) /∈ P

∗

with v ∈ P
∗
by (v2, y). Moreover, the redirected edges are

with cost 0 and the same weight as the original edges. Note
that the above splitting can also deal with edge (x, y) with
either x ∈ P

∗
or y ∈ P

∗
. For briefness, we denote by Es the

set of cost 1 edges.
The detailed construction is formally as in Algorithm 1 (An

example of splitting vertices is depicted as in Figure 2).
Proposition 6. Let {P ∗

1 , P
∗
2 } be a spiral optimal solution to

δV-2EDSP wrt G and P ∗. Let H = P ∗
1 ∪ P ∗

2 ∪ P ∗, Ĥ be
the split residual graph for H wrt P ∗. Assume that Es ⊆ Ĥ
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is the set of edges between the pairs of split vertices for each
v ∈ P ∗. Then there must exist in Ĥ an st-path Q, for which
c(Q) ≤ δ and w(P ∗) +w(Q) ≤ w(P ∗

1 ) +w(P ∗
2 ) both hold.

Proof. Following Lemma 4, the set of common interior
vertices of P ∗

1 and P ∗
2 , say V (P ∗

1 ∩ P ∗
2 ) \ {s, t} ={

v1, v2, · · · , vδ
}
, must be all on the shortest path P ∗. Then

P ∗
1 (v

h, vh+1) and P ∗
2 (v

h, vh+1), h = 0, . . . , δ, is a pair of
vertex disjoint paths between vh and vh+1 in H . We will
show that there exists a path Qh ⊆ Ĥ between vh2 and vh+1

1

in Ĥ with only edges of cost 0. Then there exists an st-path
Q = sQ0v11v

1
2Q

1v21 . . . v
h
1 v

h
2Q

hvh+1
1 . . . vδ1v

δ
2Q

δt, whose to-
tal cost is δ as edge (vh1 , v

h
2 ), h = 1, . . . , δ, is with cost 1

while every other edge on the path is with cost 0.
It remains only to construct Qh, ∀h. We denote the

set of maximal segments in P ∗ ∩ P ∗
i (i = 1, 2) by Si =

{P ∗(xi, j , yi, j) | j = 1, . . . , hi}. W.l.o.g. assume that
the first and the last maximal segments both belong to P ∗

2 ,
i.e. x2, j = vh2 and y2, h1

= vh+1
1 . Note that (x2, j , y2, j)

is exactly the previous maximal segment before (x1, j , y1, j).
Then we can construct Qh by using edges in Ĥ only:

Qh =

h1∪
j=1

[
P

∗
(x1, j , y2, j) ∪ P ∗

2 (y2, j , x2, j+1)

∪P ∗
(x2, j+1, y1, j) ∪ P ∗

1 (y1, j , x1, j+1)
]
∪ P ∗

1

(
vh2 , x1, j

)
where x1, h+1 = t. Because the constructed Qh contains
only segments of P ∗

1 ∪ P ∗
2 and P

∗
whose edges are of

cost 0, Q is an st-path in Ĥ of cost at most δ. Besides,
h1∪
j=1

[
P

∗
(x1, j , y2, j) ∪ P

∗
(x2, j+1, y1, j)

]
are exactly the set

of edges resulting from reversing edges of P ∗ \ (S1 ∪ S2).
Therefore, we have w(P ∗) + w(Q) = w(S1) + w(S2) +
w(P ∗

1 \ S1) + w(P ∗
2 \ S2) = w(P ∗

1 ) + w(P ∗
2 ). This com-

pletes the proof.

Lemma 7. Let Q be a shortest st-path with cost bounded by
δ in Ĝ wrt G and P ∗, where P ∗ is a shortest st-path in G.
Assume that Q′ is Q except contracting every edge between
each pair of split vertices. Then P ∗ ⊕Q′ is exactly the union
of two edge disjoint paths between s and t, which have a min-
imum total weight and share at most δ common vertices.

Proof. We will firstly show that P ∗⊕Q′ is exactly composed
by two edge disjoint st-paths of G, which shares at most δ
common vertices; secondly that w(P ∗ ⊕ Q′) ≤ w(OPT ),
where OPT is an optimal solution to δV-2EDSP.
For the first, let Q′ be Q except contracting every edge

between every pair of split vertices. We need only to show the
edges of P ∗⊕Q′ exactly compose two edge disjoint st-paths
inG. First, P ∗∪Q′ contains an st-flow of value 2, since s and
t are respectively with a degree 2 and −2 while every other
vertex of P ∗∪Q′\{s, t} is with degree 0. Then because P ∗⊕
Q′ is P ∗ ∪ Q′ but removing all parallel edge pairs, P ∗ ⊕ Q′

contains only edges in G. Moreover, each removed parallel
edge pair is actually a cycle where each vertex is of degree
0, so in P ∗ ⊕ Q′, s and t respectively remain degree 2 and

Algorithm 2 An exact algorithm for δV-2EDSP.
Input: A digraph G (V, E), source s and destination t, a

weight function w (e), and δ ∈ Z+
0 .

Output: A solution {P1, P2} to δV-2EDSP.
1: Compute a shortest path P ∗ by Dijkstra’s algorithm [Cor-
men, 2009];
2: Construct a split-residual graph Ĝ wrt G and P ∗ by
Algorithm 1;

3: Find a shortest path Q in Ĝ with c(Q) ≤ δ by employing
the algorithm for RSP as in [Joksch, 1966];

4: Decompose P ∗ ⊕Q into two paths P1 and P2;
5: Return P1 and P2.

−2, while every other vertex remains degree 0. Therefore,
P ∗ ⊕Q′ is an st-flow of value 2, and hence is a pair of edge
disjoint st-path inG because each edge in P ∗⊕Q′ is integral.
For the common vertices, let {P1, P2} = P ∗ ⊕ Q′ be the

pair of disjoint st-paths. Assume that v is an interior vertex
shared by P1 and P2, i.e. v ∈ P1∩P2\{s, t}. Then following
the construction of the auxiliary graph as in Algorithm 1, Q
has to go through the edge from v1 to v2 for the split vertex
v in Ĝ. Since (v1, v2) is with cost 1 and every other edge is
with cost 0, Q can at most go through δ such edges between
split vertex pair as it has a cost no larger than δ. Therefore,
P1 and P2 share at most δ common vertices.
For the second, from Theorem 3, there must exist a spiral

optimal solution to δV-2EDSP, say {P ∗
1 , P

∗
2 }. LetH = P ∗

1 ∪
P ∗
2 ∪ P ∗ and Ĥ be the accordingly residual graph wrt P ∗.

Then from Proposition 6, we can obtain an st-path Q′′ in Ĥ
with c(Q′′) ≤ δ and w(P ∗) + w(Q′′) ≤ w(P ∗

1 ) + w(P ∗
2 ).

Since Ĥ ⊆ Ĝ, Q′′ is also an st-path in Ĝ with both c(Q′′) ≤
δ andw(P ∗)+w(Q′′) ≤ w(P ∗

1 )+w(P ∗
2 ) = w(OPT ). Then

becauseQ is the shortest path in Ĝ, we havew(Q) ≤ w(Q′′),
and hence w(P ∗)+w(Q) ≤ w(OPT ) holds. This completes
the proof.

Following the above construction, we can obtain a split-
residual graph Ĝ = (V̂ , Ê), where the δV-2EDSP problem
is transformed to the problem of finding a minimum weight
st-path with cost bounded by δ, namely the Binary Restricted
Shortest Path (BRSP) problem, which is clearly a special case
of the restricted shortest path (RSP) problem. Following the
algorithm for RSP [Joksch, 1966], the BRSP problem can
be solved in time O(δ|E|) by employing the dynamic pro-
gramming method. Thus, Q can be computed within time
O(δ|E|). Then following Lemma 7, P ∗ ⊕ Q′ exactly com-
poses an optimal solution to δV-2EDSP, where Q′ is Q con-
tracting each pair of split vertices back to one vertex inG, say
contracting v1 and v2 to v. The formal layout of the whole al-
gorithm is as in Algorithm 2.

Lemma 8. Algorithm 2 runs in time O(δm+ n log n).

Proof. Let m = |E(G)| and n = |V (G)|. Then, the algo-
rithm takes O(m + n log n) time to run Dijkstra’s algorithm
against the original graph G in Step 1 [Cormen, 2009], and
O(m+n) time to construct a split- residual graph Ĝ in Step 2.
In Step 3, the algorithm for BRSP runs in O(mδ), where δ is
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the bound of the number of common vertices. Other steps ob-
viously takes trivial time comparing to the above ones. There-
fore, the total runtime of Algorithm 2 isO(δm+n log n).

Combining Lemma 7 and 8, we immediately have the fol-
lowing theorem:

Theorem 9. Algorithm 2 runs in time O(δm + n log n) and
outputs an optimal solution to δV-2EDSP.

3 Experimental Results
In this section, we shall first evaluate the practical perfor-
mance of Algorithm 2 (the exact algorithm, denoted as EA)
by comparing its runtime and solution quality with another
two algorithm baselines: the best previous algorithm (PA)
presented in [Yallouz et al., 2016], and an exact algorithm
via solving a flow integer linear program (ILP) formulation1
we designed for δV-2EDSP. Then we show EA is scalable
by running it against real-world network data including com-
munication networks and P2P networks from Stanford Large
Network Dataset Collection2 within Stanford Network Anal-
ysis Project (SNAP). These algorithms are implemented in
Python 2.7 (The code is available upon request), on a PC with
Intel Core i5 processor, and 8GB memory. Our implementa-
tion adopts the NetworkX library3 to construct and process
graphs, the GLPK library4 to solve the ILP.

3.1 Simulation Results
In this subsection, we evaluate the runtime of the algorithms
by simulation experiments, in which we generate a random
graph from NetworkX with n vertices, andm edges each with
a weight uniformly distributed in [1, 100]. The number of
allowed common vertices is the parameter δ.
Simulation results comparing runtimes of EA, PA and ILP

in seconds are depicted in Table 1. For each row of the ta-
ble, we first randomly generated 1000 different graphs of the
given size (n,m), then respectively ran the three algorithms
against each graph given a randomly chosen source and des-
tination node pair, and at last computed the average time over
the 1000 runs. Notice that during runs, the encountered in-
feasible graph instances do not contribute to our average time
calculations. In the experiments, when the problem size is
not larger than n = 100 and m = 1000, the runtime of EA
is close to that of ILP 5, but significantly faster than PA, say,
about a thousand times faster. This matches the theoretical
runtime difference between EA and PA, i.e. O(δm+n log n)
vs O(mn2 + n3 log n). When the problem size grows larger,
PA quickly becomes not scalable as it takes too long to pro-
duce a solution. So for larger graphs we only compared the
runtimes of EA and ILP. The simulation results show that EA

1The formulation is available upon request but was omitted here
due to space limit.

2https://snap.stanford.edu/data/
3https://networkx.github.io/
4https://www.gnu.org/software/glpk/
5Most likely because the random graph structure with a small n

becomes easier for the solution search of ILP solver that usually runs
in worst case exponential time in n.

Size (n, m, δ) EA (s) PA (s) ILP (s)

(50, 250, 5) 0.023 7.843 0.029

(55, 302, 6) 0.026 10.404 0.031

(60, 5360, 6) 0.03 14.515 0.032

(65, 422, 6) 0.033 20.381 0.034

(70, 490, 6) 0.035 26.468 0.035

(75, 562, 8) 0.041 34.255 0.047

(80, 640, 8) 0.044 43.820 0.051

(85, 722, 8) 0.053 54.767 0.061

(90, 810, 10) 0.075 68.818 0.074

(95, 902, 10) 0.080 85.434 0.084

(100, 1000, 10) 0.090 104.518 0.095

Size (n, m, δ) EA (s) ILP (s)

(500, 25000, 10) 0.720 1.067

(550, 30250, 10) 1.0923 1.476

(600, 36000, 10) 1.240 1.871

(650, 42250, 10) 1.344 2.552

(700, 49000, 10) 1.536 3.392

(750, 56250, 10) 1.603 3.554

(800, 64000, 12) 1.906 4.529

(850, 72250, 12) 2.200 5.688

(900, 81000, 12) 2.468 7.459

(950, 90250, 12) 2.805 8.492

(1000, 100000, 12) 3.041 10.039

Table 1: Runtime analysis on randomly generated graphs.

Networks #Nodes #Edges EA (s)

Email-Enron 36,692 183,831 20.76

Email-EuAll 265,214 420,045 35.04

p2p-Gnut.05 8,846 31,839 2.55

p2p-Gnut.06 8,717 31,525 2.94

p2p-Gnut.08 6,301 20,777 1.92

Networks #Nodes #Edges EA (s)

p2p-Gnut.09 8,114 26,013 2.40

p2p-Gnut.24 26,518 65,369 6.02

p2p-Gnut.25 22,687 54,705 5.13

p2p-Gnut.30 36,682 88,328 8.44

p2p-Gnut.31 62,586 147,892 13.40

Table 2: Runtime analysis against network datasets from SNAP.

still runs much faster than ILP and more importantly the gap
between these two grows with graph size.
It is also worth mentioning that, when testing against the

same graph, the min-sum weights of the solutions, produced
by all three algorithms, coincide in all experiments on the
generated thousands of graphs. It was known that ILP and PA
always output optimal solutions, so this observation can be re-
garded as an experimental evidence that our EA also produces
optimal solutions, complementing our optimality proof.

3.2 Real-world Evaluation

Besides simulation results, we also ran EA against some real-
world network datasets from the SNAP collections. In the ex-
periment, we ran EA for 200 times and each time we instead
randomly pick two vertices in the network as source and des-
tination. We again report the average runtime for EA.We also
reasonably set δ = 10, because in real networks, many proto-
cols (TCP/IP etc.) only allow a data package pass through at
most 16 routers from source to destination [Kurose and Ross,
2009]. Therefore a shortest path for transmitting data will
have at most 16 interior vertices in most cases.
The experimental results depicted in Table 2 show that,

roughly the runtime of EA is linearly dependent on the num-
ber of edges of the network. Moreover, EA takes up to 35 sec-
onds to process a network with 265k nodes and 420k edges
whereas PA and ILP in our experiments can not even com-
plete in many hours. Also noting that, although currently EA
takes tens of seconds to process median size networks, it can
be significantly accelerated with a more sophisticated C/C++
implementation and a higher end computing platform. These
together will allow EA to efficiently process much larger
graphs with hundreds of millions of nodes and edges. This
is also supported from the time complexity of EA that is al-
most linear in the network size.
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4 Conclusion
In this paper, we carried on studying the problem of find-
ing minimum-weight k edge-disjoint partially vertex-disjoint
paths, namely δV-kEDSP. We proposed an optimal algorithm
for δV-2EDSP that efficiently runs in O(δm + n log n) time
and in experiments demonstrates a significant runtime gain.
This greatly improves the previous best runtime bound of
O(mn2 + n3 log n) [Yallouz et al., 2016], where m, n and
δ are respectively the number of edges, vertices and allowed
shared vertices. Note that the time complexity of our algo-
rithm flexibly depends on δ, which is at most n (though a
fixed δ is more practical), so the worst-case complexity is
O(mn+n log n) – still a much better bound. We are currently
investigating solving δV-kEDSP by extending our technique
for δV-2EDSP. Also we are considering the counterpart prob-
lem δE-kEDSP, in which the number of edges shared by at
least two paths is bounded by δ instead.
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