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ABSTRACT 16 

The interactions between starch and proteins during processing influence pasting and 17 

rheological properties of starch and produce modifications on starch gel structure. Enzymatic 18 

modifications have been proposed for overcoming the limitations of using proteins as food 19 

ingredients. This work aimed to study the impact of native and enzymatically modified pea 20 

proteins on the properties of protein–starch (from cassava or corn) gels. Pea protein isolate 21 

(PPI) was incubated with endopeptidase (AL) or microbial transglutaminase (TG). Pasting 22 

profile, rheological behaviour and water retention capacity of protein–starch gels were 23 

analyzed. Protein (native and enzymatically modified) incorporation increased the viscosity of 24 

both corn and cassava starches during gel preparation. However, the hydrolyzed protein 25 

reduced drastically the increment of viscosity of protein-starch gels. The addition of PPI led 26 

to corn starch network that shifted from an elastic-like nature to a more viscous-like, whereas 27 

the opposite effect was observed in cassava gel network. TG- and AL-treated proteins led to a 28 

decreased of both G´ and G´´ moduli of protein-starch gels, and AL-treated proteins showed 29 

the highest decrease on these parameters. Hydrolyzed proteins also favoured the syneresis of 30 

the protein-corn starch gel, whereas crosslinked proteins tended to reduce it. Enzymatic 31 

modifications of pea proteins affected significantly pasting and rheological properties of 32 

protein-starch gels.  33 

 34 

35 
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1. INTRODUCTION 36 

The development of protein-enriched products has gained considerable attention in recent 37 

years. The increase on protein content and/or improve of protein quality of food could lead to 38 

formulations with better nutritional properties. In this sense, although vegetable proteins are 39 

major components in the diet of food-producing animals, they are increasingly important in 40 

human nutrition (Colombo, Ribotta & León, 2010).  41 

Peas (Pisum sativum L.) are commonly used in animal feed, being this seed most used for pig 42 

feeding in Europe. This legume is rich in protein and contains more lysine but less sulphur 43 

amino acids and tryptophan per unit of protein than soya bean meal (Gatel & Grosjean, 1990). 44 

Peas have become interesting as potential protein source in food formulation since, besides 45 

their nutritional characteristics, pea protein has good gelling properties (Nunes, Raymundo & 46 

Sousa, 2006). However, the application of pea protein in food products is limited because of 47 

its weak functionality as a food ingredient (Sun & Arntfield, 2010). 48 

Several modifications have been proposed for overcoming the limitations of using proteins as 49 

food ingredients. Among these, protein hydrolysis can improve nutritional and texture 50 

characteristics of food proteins (MacLeod & Ames, 1988; Periago et al., 1998). Protein 51 

hydrolysis is considered a mild transformation and does not destroy amino acids; it is also 52 

specific, which allows controlled processing. Enzymatic treatment of pea flour with acid 53 

protease reduced the molecular size of the proteins exposing ionisable amino and carboxyl 54 

groups that increase the hydrophilicity of the hydrolysed proteins, which significantly 55 

improved the protein solubility at acid pH, the oil absorption capacity and the emulsification 56 

capacity of pea flours (Periago et al., 1998). Humiski and Aluko (2007) confirmed that 57 

proteolytic enzymes played a major role in determining the functional, nutritional, and 58 

bitterness properties of pea protein hydrolysates. The most desirable hydrolysates were 59 
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produced by papain and α-chymotrypsin because of reduced bitterness intensity coupled with 60 

high levels of angiotensin converting enzyme inhibition and modest free radical scavenging 61 

activities. Ribotta and Rosell (2010) showed that the soy protein hydrolysates modified the 62 

rheological and pasting parameters of different starches. Molina Ortiz and Añón (2000) 63 

reported that the solubility and ability to form and stabilize foams of soybean hydrolysates 64 

obtained from five proteases correlated well with the structural properties. 65 

AnoOther alternative for modifying protein functionality is the crosslinking catalyzed by 66 

enzymes. Crosslinking of protein molecules can profoundly affect the textural and rheological 67 

properties of food. It has been considered as one of the most important mechanisms for 68 

engineering food structures with desirable mechanical properties (Dickinson, 1997; Gerrard & 69 

Brown, 2002). Transglutaminase (TG, proteinglutamine γ-glutamyltransferase, EC 2.3.2.13) 70 

catalyzes an acyl-transfer reaction between the γ-carboxyamide group of peptide-bound 71 

glutamine residues (acyl donors) and a variety of primary amines (acyl acceptors), including 72 

the ε-amino group of lysine residues, being the pH optimum range for activity between pH 5 73 

and 8 (Data Sheet provided by Ajinomoto Co., Inc.Tokyo, Japan; Marco & Rosell, 2008). 74 

Crosslinking by TG was broadly studied in food protein from various sources (Han & 75 

Damodaran, 1996; Babin & Dickinson, 2001; Ramírez-Suárez & Xiong, 2003; Ribotta et al., 76 

2010). Although pea protein isolate has limited ability to generate strong heat-induced gels 77 

(Shand, Ya, Pietrasik & Wanasundara, 2007), it was showed that TG treatment enhanced the 78 

strength and elasticity of pea protein isolated gels (Shand, Ya, Pietrasik & Wanasundara, 79 

2008; Sun & Arntfield, 2011). 80 

In recent years, extensive research has been carried out in order to analyze the properties of 81 

vegetable protein/starch systems (Lim and Narsimhan, 2006; Ribotta, Colombo, León & 82 

Añón, 2007; Marco et al., 2008; Ribotta et al., 2010; Colombo, León & Ribotta, 2011). 83 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4PPF6FG-1&_user=1675225&_coverDate=03%2F15%2F2008&_alid=1484416324&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5037&_sort=r&_st=13&_docanchor=&view=c&_ct=32203&_acct=C000054192&_version=1&_urlVersion=0&_userid=1675225&md5=1ba70e7a19026904cee044304cc7cdb4&searchtype=a#bib5�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4PPF6FG-1&_user=1675225&_coverDate=03%2F15%2F2008&_alid=1484416324&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5037&_sort=r&_st=13&_docanchor=&view=c&_ct=32203&_acct=C000054192&_version=1&_urlVersion=0&_userid=1675225&md5=1ba70e7a19026904cee044304cc7cdb4&searchtype=a#bib8�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4PPF6FG-1&_user=1675225&_coverDate=03%2F15%2F2008&_alid=1484416324&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5037&_sort=r&_st=13&_docanchor=&view=c&_ct=32203&_acct=C000054192&_version=1&_urlVersion=0&_userid=1675225&md5=1ba70e7a19026904cee044304cc7cdb4&searchtype=a#bib8�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4PPF6FG-1&_user=1675225&_coverDate=03%2F15%2F2008&_alid=1484416324&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5037&_sort=r&_st=13&_docanchor=&view=c&_ct=32203&_acct=C000054192&_version=1&_urlVersion=0&_userid=1675225&md5=1ba70e7a19026904cee044304cc7cdb4&searchtype=a#bib2�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-4PPF6FG-1&_user=1675225&_coverDate=03%2F15%2F2008&_alid=1484416324&_rdoc=10&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5037&_sort=r&_st=13&_docanchor=&view=c&_ct=32203&_acct=C000054192&_version=1&_urlVersion=0&_userid=1675225&md5=1ba70e7a19026904cee044304cc7cdb4&searchtype=a#bib19�
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Studies involving soy protein derivatives have been far more common than those concerning 84 

other vegetable protein sources. Although utilization of pea derivatives as food ingredients is 85 

poorly applied, they could play an important role (similar to what is done with soy protein) 86 

when using them as substitutes for meat proteins or as a nutritious and functional additive 87 

(Sun et al., 2010). Extensive research exploring the functional properties of enzymatically 88 

modified food proteins has been conducted. However, the relationship between modified 89 

protein characteristics and food texture modification has not been fully elucidated. This work 90 

aimed to study the effect of pea protein enzymatic modification by protease or 91 

transglutaminase and its application on the preparation of protein-starch gels. Cassava or corn 92 

starches were utilized for determining the impact of enzymatically modified pea proteins on 93 

two different sources of starch. 94 

 95 

2. MATERIALS AND METHODS 96 

2.1. Materials 97 

Native corn and cassava starches were purchased in the local market (Señor de Sipan, 98 

Argentina). Corn starch had 123 g/kg moisture, 4.1 g/kg protein, 0.2 g/kg lipid, 0.1 g/kg ash, 99 

176 g/kg amylose and 824 g/kg amylopectin, dry basis) and cassava had 156 g/kg moisture, 100 

4.2 g/kg protein, 0.1 g/kg lipid, 0.9 g/kg ash, 164 g/kg amylose and 836 g/kg amylopectin, dry 101 

basis). Commercial pea protein isolate (PPI) Trades SA, Barcelona, Spain) had moisture, 102 

protein, lipid, and ash contents of 67, 848, 9, and 45 g/kg (dry basis), respectively.  103 

Food grade powder microbial TG from Streptomyces spp. from Ajinomoto Co., Inc., (100 104 

U/g) was kindly supplied by Apliena, SA (Terrasa, Barcelona, Spain). The composition of TG 105 

was 1% enzyme and 99% maltodextrin (Safety Data Sheet). Protease from B. licheniformis 106 
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(AL) was kindly donated by Novozymes (Madrid, Spain). All reagents in this study were of 107 

analytical grade. The stabilizing agent for AL was glycerine and water (Safety Data Sheet).  108 

2.2. Alcalase and transglutaminase treatments of pea protein isolates 109 

Pea proteins (1.32 g) were dispersed into 20 mL of distilled water. The pH of the suspension 110 

was adjusted to ~ 6.5. Preliminary assays were conducted to optimize the incubation time and 111 

enzyme amount to produce extensive enzymatic reaction followed by protein solubility and 112 

electrophoresis studies. TG (0.83 TG units/gram PPI) or 30 μL of AL (49.1 mAU/gram SPI) 113 

was added to the protein suspensions. The suspensions were incubated for 5 h at 35 °C. The 114 

enzyme was inactivated by keeping the mixture in boiling water bath for 10 min and the 115 

slurry was cooled down to room temperature. Native or non-enzymatically treated PPI 116 

followed the same procedure (incubation for 5 h at 35 °C and heating for 10 min) than the 117 

enzyme treated samples except that no enzyme was added. 118 

2.3. Protein and peptide solubility 119 

The enzyme-treated  mixtures were centrifuged (4400 x g, for 15 min) to precipitate insoluble 120 

protein. The supernatants were analyzed for nitrogen content (micro-Kjeldahl method AACC 121 

46-13, AACC 2000). The reaction progress was estimated by measuring the nitrogen content 122 

of the supernatants, which was able to keep soluble in a solution of 10% trichloroacetic acid 123 

(TCA) as showed by Kong, Zhou and Qian (2007). Each determination was done in triplicate. 124 

2.4. Electrophoresis 125 

The enzyme-treated  mixtures were centrifuged (4400 x g, for 15 min) to precipitate insoluble 126 

protein. The supernatants were analyzed by SDS-PAGE. It was performed using gels of T = 127 

12% and C = 2.7%. The gels were 0.75-mm thick and consisted of a 2-cm stacking gel and an 128 

8-cm running gel. The electrophoresis was conducted at a constant voltage of 150 V until the 129 

front reached the end of the gel (in approximately 90 min). A Mini Protean II Slab Cell 130 
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(BioRad Laboratories, Richmond, CA) was used. MW standards were obtained from BioRad 131 

(Broad range, BioRad Laboratories, Hercules, USA). Equal volumes of each extract were 132 

applied to the electrophoresis gels for quantitative comparisons. The gels were stained with 133 

0.25% Coomassie Brilliant Blue R in methanol/water/acetic acid (4:5:1 v/v) and were 134 

distained in the same solvent.  135 

2.5. Viscosity profile during the thermo–mechanical process 136 

A rapid visco-analyzer (RVA) instrument (Newport Scientific, Australia) was utilized to 137 

prepare the samples and follow the apparent viscosity profile of the samples as a function of 138 

temperature and time. Corn or cassava starch (1.32 g) and the slurry from enzymatic treatment 139 

(1.32 g of PPI and 20 mL of water, pH 6.5) and 5 mL of water were placed inside the 140 

aluminium canister and the pH was again adjusted to 6.5. Mixtures of starches and protein 141 

had 4.8% w/w starch and 4.8% w/w PPI to keep a 50:50 concentration. Corn and cassava 142 

starches were also analyzed by dispersing 1.32 g of starch with 25 mL of distilled water (5.0% 143 

w/w starch). RVA corn starch Pasting Method was applied as follows: automatic stirring 144 

action was set at 960 rpm for 10 s and then slowed down to 160 rpm. The temperature of the 145 

sample was equilibrated at 50 °C, heated to 95 °C for 4 min 42 s, held at 95 °C for 3 min, 146 

cooled to 50 °C over 3 min 42 s, and then held at 50 °C for 2 min. Viscosity and temperature 147 

were recorded over time; data gathering and analysis were performed using Thermocline for 148 

Windows software, provided by the instrument manufacturer. Pasting temperature (PT), peak 149 

viscosity (PV), final viscosity (FV), breakdown (BD), and setback (SB) were obtained from 150 

the viscograms. 151 

After the measurement of viscosity profile, the suspension was poured while hot (50 °C) into 152 

polypropylene tubes, 30 mm diameter and then cooled to room temperature (25 °C) for 24 h. 153 
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The samples were analyzed for rheological properties or stored at 4 °C for further 154 

determination of syneresis properties. Each sample was done in duplicate. 155 

2.6. Rheological measurements  156 

After the thermo–mechanical preparation process, the samples were kept at 25 °C for 24 h. 157 

The viscoelastic behaviour of each sample was measured in duplicate. Measurements were 158 

carried out in a controlled stress rheometer RheoStress 1 (Thermo Haake, Germany), using 159 

serrated plate–plate geometry of 60 mm diameter and 0.5 mm gap, at a temperature of 25 °C. 160 

Samples were carefully poured into the lower plate to minimize the possible breakdown of the 161 

gel network. After descending the upper plate, samples were allowed to rest for 3 min. Fresh 162 

sample was loaded for each measurement. In order to determine the linear viscoelastic region, 163 

strain sweeps (0.01–100%) were run at 1 Hz. The frequency sweeps were then performed at 164 

0.04% over a frequency range of 0.01–10 Hz and the values of the storage modulus (G'), the 165 

loss modulus (G"), and the loss tangent (tan δ), as a function of frequency, were calculated 166 

using the Rheowin Pro Software (version 2.93, Thermo Haake). Two fresh samples of each 167 

gel lot were measured and gels were elaborated in duplicate to ensure reliable results. 168 

2.7. Syneresis 169 

Syneresis was measured by a centrifugation test (Ribotta et al., 2007) using a Beckman J2-MI 170 

centrifuge (Beckman Instruments, USA). Starch and starch–pea protein gels were stored 171 

seven days at 4 °C. After storage, the gels were tempered at 25 °C for 2 h and centrifuged at 172 

1500 x g for 15 min at 25 °C. After centrifugation the free water was separated, weighed, and 173 

expressed as percentage of the total water present in the gel. Measurements were the mean of 174 

three repetitions for each duplicated gel. 175 

2.8. Statistical analysis 176 
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The data obtained were statistically treated using analysis of variance while the means were 177 

compared by the LSD Fisher test at a significance level of 0.05 using Statgraphics Plus 178 

Software (v2.01). 179 

 180 

3. RESULTS AND DISCUSSION 181 

3.1. Alcalase and transglutaminase treatments   182 

Pea protein isolates were enzymatically modified for altering the protein functionality. With 183 

that purpose pea protein were crosslinked by transglutaminase or hydrolyzed with alcalase. 184 

The enzymatic modification was followed by quantifying the nitrogen released and the 185 

electrophoretic pattern of the enzymatically modified proteins. When treated with TG, 186 

nitrogen solubility of pea protein isolates decreased by 46%, from 3.17 ± 0.33 mg/mL (native 187 

proteins) to 1.70 ± 0.13 mg/mL (TG-treated proteins), revealing the decrease of protein 188 

solubility after crosslinking. SDS-PAGE protein patterns are shown in Fig. 1. TG-treated PPI 189 

(line 2, figure 1) showed an intense band which remained at the stacking gel and an evident 190 

increase in intensity at the top of the running gel. Ya (2004) informed the formation of large 191 

molecular weight compounds when studying treatment of pea proteins with TG, and those 192 

compounds were too large to enter the on SDS-PAGE gel. In addition, TG-treated proteins 193 

showed a reduction of some bands as compared with the non-treated protein profile (lane 1, 194 

figure 1). Sun et al. (2011) showed that most of the PPI subunits cross-linked by TG are in the 195 

molecular weight range of 35-74 kDa, which corresponded to pea vicilin and legumin acidic 196 

subunit (41 kDa). Also, these authors found that low molecular weight subunits (smaller than 197 

25 kDa) were unaffected by the enzyme. These results are in accordance with the ones 198 

obtained in the present work and confirm the formation of protein polymers of higher 199 

molecular weight with a concomitant disappearance of the lower molecular weight 200 
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polypeptides. Besides, the increase in molecular weight of PPI proteins explained the 201 

reduction of nitrogen solubility.  202 

Regarding the treatment of PPI with alcalase, the nitrogen content on 10%-TCA supernatants 203 

increased from 0.68 ± 0.06 mg/mL (native protein) to 6.53 ± 0.28 mg/mL (AL-treated 204 

protein). Moreover, it was noted great increase of low molecular weight peptides in SDS-205 

PAGE pattern of AL-treated PPI (line 3 figure 1), together with a disappearance of bands 206 

along the running gel (lane 3). Clearly, these results are related to the hydrolytic activity of 207 

the protease.   208 

3.2. Pasting profile of protein-starch blends 209 

The onset temperatures of corn and cassava starches were 64.9 ºC and 57.5 ºC (Colombo et al 210 

2010). Heating of starch granules above the gelatinization temperature in the presence of 211 

water increases the viscosity of the system due to water absorption and swelling of starch 212 

granules. Pasting temperature (PT) obtained in the RVA can be considered the temperature at 213 

the onset of this rise in the viscosity. Viscosity increases to the point where the number of 214 

swollen-intact starch granules reaches its maximum level; this point is named peak viscosity 215 

(PV). During the holding period at 95 °C in RVA analysis the sample is subjected to 216 

mechanical shear stress, causing loss of starch granule integrity and subsequent disruption 217 

which lead to a reduction of paste viscosity, which is measured by the breakdown (BD) in 218 

RVA viscograms. As the sample is subsequently cooled down to 50 °C, reordering of amylose 219 

chains results in an increase in viscosity (which is defined as setback -SB-) until a gel is 220 

formed. Viscosity at the end of the test is called final viscosity (FV).  221 

Cassava starch presented lower PT but higher PV and FV than corn starch (Table 1), which 222 

indicate that cassava starch has weaker granular structure and better water binding properties 223 

than corn starch. BD values of cassava starch samples were higher than those for corn 224 
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samples. Therefore, corn starch showed higher paste stability, which could be related to their 225 

low peak viscosities coupled with higher shear and temperature stability (Singh, Isono, 226 

Srichuwong, Noda & Katsuyoshi, 2008). The SB values showed higher retrogradation rate in 227 

cassava starch dispersion than in corn starch. Moreover, cassava starch showed superior 228 

thickening properties, as indicated the higher FV than corn starch.  229 

Addition of PPI decreased pasting temperature in corn starch samples. On the other hand, PT 230 

was slightly increased by the protein isolates in cassava samples, with the exception of AL-231 

treated samples. A similar result was recently found by Ribotta et al. (2010) when studying 232 

the addition of soy protein isolate to corn and cassava starches.  233 

The presence of PPI increased PV, FV and SB of both starch pastes during heating-cooling 234 

process (Table 1). The effect on setback could be attributed to the reorganization of the 235 

denatured proteins from the isolates and their effect on amylose crystallization during cooling 236 

(Motoki, Nio & Takinami, 1984). A gelatinized starch suspension can be considered as a 237 

composite material comprised of a dispersed phase, swelled starch granules, in a continuous 238 

phase formed by a suspension of amylose/amylopectin (Ribotta & Rosell, 2010). The 239 

rheological properties of such system depend on the properties and the ratio of the 240 

components of the continuous phase, the interaction between them and between the dispersed 241 

phase and the matrix (Eliasson & Gudmundsson, 1996).  In fact Ribotta and Rosell (2010) 242 

showed that corn gel displayed a continuous phase formed by swollen starch granules pressed 243 

against each other, while a completely disintegrated structure was identified on cassava gel. 244 

The higher paste viscosity observed in PPI-containing samples as compared to starch pastes 245 

could be due to crosslinks between hydrophilic groups of proteins and starch molecules (Goel, 246 

Singhal & Kulkarni, 1999; Ribotta et al., 2007). Although thermodynamic compatibility could 247 

also affect the pasting behaviour, viscosity results did not allow to assess that effect. In 248 
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addition, hydration and solubilisation of pea protein could affect the effective concentration of 249 

starch in the continuous phase, resulting in an increased paste viscosity (Ribotta et al., 2010). 250 

Enzyme-treated proteins produced an increase of PV and FV of the starches, but in lesser 251 

extent than non-enzyme-treated proteins. Some differences were detected between the pasting 252 

properties of starches blended with crosslinked proteins and the ones obtained with 253 

hydrolyzed proteins. AL-treated PPI led to a noticeably decrease in peak viscosity, final 254 

viscosity and setback in both starches, compared to the values obtained for the protein-starch 255 

gels. Regarding the breakdown, enzyme treated proteins reduced that parameter of protein-256 

cassava starch gels, but no significant effect was observed in the protein-corn starch gels. The 257 

effect promoted by the crosslinked proteins was less marked than the observed with the 258 

hydrolyzed proteins. It seems that crosslinked proteins caused minor alterations on the pasting 259 

of the protein-starch gels, whereas the hydrolysis strongly modified the resulting gels.  In fact, 260 

the effect on the setback was different depending on the enzymatic modification. Hydrolyzed 261 

proteins induced a dramatic decrease of the SB in both protein-starches gels, whereas the 262 

effect promoted by crosslinked proteins was barely noticeable. Therefore, hydrolyzed proteins 263 

affected in greater extent the amylose retrogradation, likely due to interactions between the 264 

low molecular weight polypeptides and the amylose chains. 265 

From the results, it is clear that enzymatic modifications affect protein properties and 266 

therefore their interactions with starch and water. Non-treated and enzyme-treated PPI could 267 

interact with gelatinized starch components in a different way. 268 

3.3. Rheological properties of the gels 269 

Storage modulus (G´) was higher than loss modulus (G´´) throughout the whole range of 270 

frequency for both starches with and without protein isolate addition, indicating that 271 

deformations were fundamentally elastic (figure 2). G´ values were almost independent of the 272 
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frequency in corn starch samples (Figure 2A), suggesting that the gel can be considered 273 

strong gel. Cassava starch gels showed a steady increase of G´ with frequency (Figure 2B), 274 

behaving like weak gels (Lopes da Silva and Rao, 1999). In addition, cassava gels showed 275 

higher relative viscous component and a lower consistency when compared to corn samples, 276 

as evidenced by higher tan δ and lower G´ and G´´ values of the cassava gels (figure 3 and 277 

table 2). Therefore, cassava gels led to weaker structures with less gel-like character than the 278 

corn starch. Corn gel shows a continuous phase formed by swollen starch granules pressed 279 

against each other, whereas cassava gels are formed by completely disintegrated granules that 280 

yielded continuous polymer dispersion where no starch granules can be envisaged (Ribotta 281 

and Rosell 2010). 282 

Pea protein isolate raised storage and loss moduli of both starches, affecting in greater extent 283 

the loss modulus in the case of corn starch but the storage modulus in the case of the cassava 284 

starch. The interaction between two different biopolymers can be either of segregative or 285 

associative nature, but generally in the case of proteins and polysaccharides there is a 286 

thermodynamic incompatibility (Grinberg and Tolstoguzov, 1997), thus under certain 287 

conditions, any protein-polysaccharide-water system is spontaneously demixed in two 288 

different phases. The overall effect of PPI in the starch gel would be the result of possible 289 

interactions among hydrophilic groups of proteins and starch molecules, starch and starch 290 

molecules,  the self-aggregation of pea proteins, or the mutual exclusion of pea proteins and 291 

carbohydrates, which increases the effective concentration of both. 292 

Nevertheless, results of tan δ indicated that the addition of PPI led to a corn starch network 293 

that shifted from an elastic-like nature to a more viscous-like with less gel-like character than 294 

the corn starch alone. Similar findings have been reported when rice starch gels were mixed 295 

with different hydrocolloids, indicating weaker structures where the starch network shifted 296 
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from an elastic-like nature to a more viscous-like (Rosell, Yokoyama & Shoemaker, 2011). 297 

Conversely, in the case of cassava gel the presence of PPI resulted in more structured and 298 

more solid like (lower tan δ) gel. Likely the lower pasting temperature observed for cassava 299 

gel favoured the interaction of starch and proteins chains, leading to better network. 300 

Therefore, the structure of the protein-starch gel must be dependent on the starch source 301 

yielding more structured network of the PPI with cassava starch than with corn starch, as 302 

suggests the rheological behaviour 303 

The addition of hydrolyzed proteins (AL-treated PPI) on both cassava and corn gels did not 304 

affect the shape of the moduli and loss tangent versus frequency curves compared to the gels 305 

obtained with non-treated proteins. In opposition, the presence of PPI or TG-treated proteins 306 

yielded gels that were more frequency dependent at high frequencies (figure 2 and 3). The 307 

absolute values of the moduli changed significantly when PPI were enzymatically treated 308 

(table 2). Both G´ and G´´ moduli were shifted to lower values when TG- and AL-treated 309 

proteins were added to corn and cassava starch gels compared to non-enzymatically treated 310 

proteins-starch gels. However, AL-treated proteins showed more pronounced decrease on 311 

these parameters. The same trend was observed with the pasting properties, which agrees with 312 

the positive relationship described for the viscoelastic moduli and the pasting properties, 313 

namely peak viscosity, breakdown, final viscosity and also with the parameter related to 314 

amylose retrogradation or setback (Rosell, Yokoyama & Shoemaker, 2011).  315 

Concerning the loss tangent, the effect of enzyme-treated proteins on protein-starch gels was 316 

only significant when they were prepared with cassava gels. Presumably, corn starch yields 317 

stronger or more structured gels, which were less susceptible to be modified with the PPI or 318 

enzyme treated PPI addition. Conversely, the enzyme treated proteins added to cassava starch 319 

produced marked changes in the loss tangent. The hydrolyzed protein added to cassava starch 320 
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led to gels with higher tan δ  gels. That effect could be partially related to its ability for 321 

reducing or preventing amylose retrogradation, as has been suggested for the interaction 322 

between hydrocolloids and starch (Techawipharat, Suphantharika & BeMiller, 2008). The 323 

TG-treated proteins led to protein-starch gels with similar tan δ than that of the untreated 324 

proteins-starch gel. Clearly, the effect of PPI on the viscoelastic behaviour of starch gels is 325 

completely dependent on the starch nature. 326 

3.4. Syneresis 327 

Water self-separation as consequence of gel network contraction is known as syneresis and is 328 

produced by the reorganization of starch molecules or retrogradation (Zheng & Sosulski, 329 

1998). The water separated from starch gels or starch-containing products is usually viewed 330 

unfavourably since it is associated to produce product deterioration.  331 

Cassava gels did not show water separation despite the addition of PPI during the storage 332 

period. However, syneresis was observed on corn starch gels. Only gels containing AL-333 

treated PPI showed a significant increase in water released (Figure 4), which could be 334 

attributed to the loss of water retention capacity and the negative effect of hydrolyzed proteins 335 

on gel structure, as was previously described for pasting and rheological properties. A 336 

tendency to decrease the syneresis, although not significant, was observed in the gels 337 

containing TG treated PPI. Water released of soy protein/corn gels was decreased when 338 

soybean proteins were treated with TG (Ribotta et al., 2010) and it was related to the high 339 

water retention capacity of these proteins. 340 

 341 

4. CONCLUSIONS 342 

Pea proteins affected significantly the pasting behaviour of both corn and cassava starches, 343 

increasing the viscosity through the heating-cooling cycle. Enzymatically modified pea 344 
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proteins by crosslinking or hydrolysis affected the pasting behaviour of starches, having the 345 

hydrolyzed pea protein higher impact on the pasting properties than the crosslinked ones. 346 

Viscoelastic properties of protein-starch gels revealed that hydrolyzed proteins led to weaker 347 

gels. The TG-treated proteins led to protein-starch gels with similar tan δ than that of the 348 

native proteins-starch gel. Hydrolyzed proteins also favoured the syneresis of the protein-corn 349 

starch gel, whereas crosslinked proteins tended to reduce it. Clearly, the effect of PPI on 350 

starch properties was completely dependent on the starch nature and the enzymatic treatment 351 

of protein. Enzymatic changes of pea proteins could be an important tool to increase the 352 

incorporation of pea proteins in the starch-based foods.  353 
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