
Parallel Job Support in the Spanish NGI

Enol Fernández del Castillo

Instituto de F́ısica de Cantabria, CSIC-UC, Spain
enolfc@ifca.unican.es

Abstract. Execution of parallel applications on a Grid environment is a
challenging problem that requires the cooperation of several middleware
tools and services. Although current grid middleware stacks have a basic
level of support for such applications, this support is very limited. Users
face a very heterogeneous environment lacking any standards for managing
their jobs. We present a complete framework for the execution of parallel
applications in grid environments that hides the underlying complexity
with a simple interface to run the applications. The framework is composed
of a unified interface layer for starting parallel applications and a grid
scheduler that provides transparent and reliable support for such types of
applications. The framework is focused on MPI applications, but extensible
to other types of parallel applications.
Keywords: Grid, MPI, parallel jobs.

1 Introduction

Execution of parallel applications in clusters and HPC systems is commonplace.
The Message Passing Interface (MPI) [18] programming paradigm is a widely
used standard for parallel application in scientific and industrial domains, such as
meteorology, neuroscience, industrial engineering, etc. MPI support at individual
resource centers, ranging from large HPC centers to smaller cluster sites, is at a
mature level, and is consequently well understood. Typically, multiple MPI work
environments may be installed to provide advanced features accommodating the
local users needs.

Grid infrastructures are mainly used for the execution of collections of sequen-
tial jobs [11] although most infrastructures are composed of clusters where execu-
tion of parallel applications is possible. Executing such applications is a challeng-
ing problem that requires the cooperation of several middleware tools and services.
Most grid middleware implementations have some support for such applications,
but this support is usually limited to the possibility of allocating a set of nodes.
Starting an MPI application requires dealing with low level details of a set of
elements:

– Local Resource Management System (LRMS). Clusters are normally managed
by a scheduling system that allocates the compute nodes to users in a fair way.
Popular LRMS are SGE [8], PBS [2], LSF [22] and Condor [14]. Each system
has particular ways to manage and interact with the nodes of the cluster.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36051527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– File distribution. The execution of a parallel application requires the distribu-
tion of binaries and input files into the different nodes involved in the execution.
Collecting the output is a similar problem. There are multiple approaches, like
using network file-systems or copying the files to each node.

– Application execution. Each parallel library or framework has different ways of
starting the application. Moreover, for a given framework there may be differ-
ences depending on the LRMS or file distribution method used in the execution
environment. In the case of MPI, the MPI Forum [17] gives recommendations
on the mechanism for running the applications in the MPI-2 specification [18]:
mpirun should be a portable and standardized script, while mpiexec is im-
plementation specific. However, the different MPI vendors already were using
mpirun in a non-portable and non-standardized way. In some implementations
both mpiexec and mpirun are identical, while other implementations do not
support one of them.

Users face this complexity, aggravated by the heterogeneity of grid environ-
ments, with little or no support from middleware. In this paper we present a
framework that shows to the user a unique and simple interface for the execution
of parallel applications. The framework is composed by two elements: MPI-Start
– a unified layer for starting the applications – and the CrossBroker [6] – a Grid
Resource Management System (GRMS) that provides scheduling services for par-
allel and interactive applications. The services were originally developed as part
of the CrossGrid [3] and int.eu.grid [15] projects and now are actively maintained
and further developed in the Spanish NGI.

In Section 2, a description of the unified layer for parallel applications is given.
Section 3 gives an overview of the CrossBroker and presents the newer features for
executing jobs. In Section 4, we give some conclusions and an outlook of future
work.

2 Unified layer for starting parallel applications

In order to provide a uniform interface for running MPI applications in grid envi-
ronments, MPI-Start project was started in the frame of int.eu.grid [15]. MPI-Start
is a unique layer that hides the details of the resources and application frameworks
(such as a MPI implementation) to the user and upper layers of the middleware
as shown in Figure 1. The use of such layer removes any dependencies in the
middleware related to starting parallel applications.

One of the main advantages of MPI-Start is the ability to detect and use
site-specific configuration features without user intervention – such as the batch
scheduler and the file system at the site. Users just need to specify their executable
and arguments to run their application, while at the same time, advanced users
can easily customize the behavior and have a tighter control on the application
execution. Support of simple file distribution and compilers is also included in this
tool.



Grid Middleware 

MPI-START 

Resources MPI 

Fig. 1. Unified layer for parallel applications

2.1 MPI-Start Architecture

MPI-Start is a set of scripts that ease the execution of MPI programs by using a
unique and stable interface to the middleware. The scripts are written in a modular
way: there is a core and around it there are different plug-ins as shown in Figure
2. Three main frameworks are defined in the MPI-Start architecture:

CORE 

Execution 

O
pe

n 
M

P
I 

M
P

IC
H

2 

LA
M

 

P
A

C
X

 

Scheduler 

P
B

S
/T

or
qu

e 

S
G

E
 

LS
F 

Hooks 

Lo
ca

l 

U
se

r 

C
om

pi
le

r 

Fi
le

 D
is

t. 

Fig. 2. MPI-Start architecture

– Scheduler framework. Every plug-in for this framework provides support for
different Local Resource Management Systems (LRMS). They must detect the
availability of a given scheduler and generate a list of machines that will be
used for executing the application. The supported LRMSs are SGE, PBS and
LSF.

– Execution framework. These plug-ins set the special parameters that are used
to start the MPI implementation. It is not automatically detected, hence the
user or CrossBroker must explicitly specify which MPI flavor will be used to
execute the application. There are plug-ins implemented for Open MPI [7],
MPICH [10] (including MPICH-G2 [12]), MPICH2 [9], LAM-MPI [20] and
PACX-MPI [13].

– Hooks framework. In this framework any additional features that may be
needed for the job execution is included. It is customizable by the end-user
without the need of any special privileges. File distribution and compiler sup-
port is included in the hooks framework.



The hooks framework opens the possibility of customizing the behavior of MPI-
Start. There are four classes of hooks: local-site, compiler, end-user, and file distri-
bution. Local-site hooks allow the system administrator to set any configuration
specific to the site that are not set automatically by MPI-Start. In order to obtain
good performance and to assure that the binaries will fit the available resources,
MPI jobs should be compiled with the local MPI implementation at each site.
MPI-Start compiler support in the hooks framework detects the system architec-
ture and sets the adequate compiler flags to build the binaries. Users can compile
their application using the end-user hook, this is a shell script where the exact
command line for building the application can be specified. Any input data prepa-
ration can be also done in that script.

One of the most important features in MPI-Start is the file distribution hook.
Most MPI implementations need application binaries to exist in all the machines
involved in the execution. This hook is executed once all the previous hooks have
finished correctly and assures that all the needed files are available for the job at
the different hosts. Prior to file distribution, a test detects the availability of a
network file system. If this kind of file system is not found, MPI-Start will copy
the files using the most appropriate method according to the site configuration. In
the current implementation, the following methods are supported: OSC Mpiexec
[21], ssh, mpi-mt (a MPI tool for copying files with MPI-IO) and copying the files
to a shared area defined by the administrator.

Figure 3 shows the flow of execution of MPI-Start. The first step is the detection
of the scheduler plug-in and the creation of a machinefile with the list of hosts in a
default format. This is done automatically by checking the execution environment
of the job.

Do we have a scheduler plugin for the current environment? 

Trigger pre-run hooks 

Ask Scheduler plugin for a machinefile in default format 

Activate MPI Plugin 

Start mpirun 

Do we have a plugin for the selected MPI? 

Prepare mpirun 

Trigger post-run hooks 

START 

EXIT Dump Env 

NO 

NO 

Scheduler Plugin 

Execution Plugin 

Fig. 3. MPI-Start execution flow



The next step is the selection of the execution plug-in according to the value
specified by the user. The plug-in will activate the MPI implementation and pre-
pare the correct command line to start the job. MPI-Start is able to detect any
special tools available in the site, such as OSC Mpiexec, that may be used for a
better startup of the application. If any of the two first steps fail, the program will
exit and dump the execution environment to aid in debugging the problem.

Once the environment is ready to execute the MPI type selected, the hooks
framework is executed in the following order: compiler, local-site, end-user and
file distribution. If any of the hooks is not found it will be skipped. The following
step is the actual execution of the application using the appropriate command line
created by the execution plug-in and potentially modified by the hooks. The last
step is the post-run hooks that allow fetching results or output processing. The
post-run hooks executed are local-site, end-user and file distribution.

MPI-Start is implemented in a way that is easy to use even if it is not installed
with special privileges. It can be included with the input files of the job and
be executed from any location of the file system. The use of shell scripts for its
implementation gives to MPI-Start good portability across systems. It also includes
exhaustive debugging features. With different levels of debugging verbosity, MPI-
Start can give from a totally silent output to a complete trace of all the steps
performed during its execution.

The interface between the user and MPI-Start is a set of environment variables
listed in Table 1. The simplest job just needs to specify the I2G MPI APPLICATION,
I2G MPI APPLICATION ARGS and I2G MPI TYPE, with the location of the applica-
tion, its arguments and the MPI implementation that will be used. The rest of
variables allow further customization of the job execution. I2G MPI PRE RUN HOOK
and I2G MPI POST RUN HOOK variables let the user specify the hooks. Interactive
applications may use the I2G MPI PRECOMMAND to specify a program that creates
a channel of communcation between the user and the application. PACX-MPI ap-
plications that are executed across several clusters specify with I2G MPI FLAVOUR,
I2G MPI JOB NUMBER, I2G MPI STARTUP INFO and I2G MPI RELAY, the details for
establishing the communication between the different resources.

2.2 Extending MPI-Start for other parallel jobs.

Although MPI-Start was designed to start MPI applications in grid resources,
other parallel application paradigms and libraries may be supported with the cur-
rent architecture. New libraries or applications can be supported by creating new
modules in the Execution framework as shown by the following examples:

Kepler Workflows. We have created a MPI-Start plug-in for the execution of
workflows within a cluster using Kepler [16]. Kepler is a workflow engine where a
set of actors are executed following rules defined by the user. The engine includes
several of these actors for the most common actions, but it can also be extended
by user provided ones. Two new actors were created: a first one that executes
simultaneously the same application in a set of nodes, and a second one that



Variable Meaning

I2G MPI APPLICATION The application binary to execute.

I2G MPI APPLICATION ARGS The command line parameters for the applica-
tion.

I2G MPI TYPE The name of the MPI implementation to use.

I2G MPI PRECOMMAND Allows running the MPI application “inside” an-
other command.

I2G MPI FLAVOUR Specifies which “sub-mpi” to use. In the case of
a PACX-MPI job, this variable specifies the local
MPI implementation to use.

I2G MPI PRE RUN HOOK This variable can be set to a script which that de-
fines the pre run hook function executed before
the application starts.

I2G MPI POST RUN HOOK This variable can be set to a script which that
defines the post run hook function executed af-
ter the application finishes.

I2G MPI JOB NUMBER If a MPI job runs across multiple clusters this
variable specifies which sub-job should be started
on this cluster. The values are 0, 1, 2,. . . In the
case of an MPI job that runs only inside the local
cluster this variable is always 0.

I2G MPI STARTUP INFO This variable provides additional information for
the MPI program. In the case of PACX-MPI, this
variable specifies the connection information to
the startup server.

I2G MPI RELAY This variable specifies an FQDN of a host that
can be used as relay/proxy host. In the case of
PACX-MPI on this host the additional 2 proxy
processes will be started. It’s required that this
host has out-bound connectivity and is access-
able via ssh.

Table 1. MPI-Start environment variables.



selects only one of the available nodes for executing an application, while the rest
of nodes can be used by different instances of the same actor for other applications.

Both actors make use the new plug-in. This plug-in takes profit of the automatic
detection of the available nodes and file transfers provided by MPI-Start. Moreover,
they make use of the batch system detection to select the most suitable way of
starting the applications remotely. Whenever possible, native tools of the batch
system are used (e.g. qrsh in SGE) and ssh is used as a fall-back method when no
other tool is available. Once the application has ended the transfer of files from the
executing nodes is also handled by MPI-Start file distribution hooks. The plug-in
does not include any Kepler dependency and thus can be used by any other tool
application that needs to start parallel jobs without communication in a set of
nodes.

Hybrid MPI/OpenMP applications. Parallel applications using the shared
memory paradigm are becoming more popular with the advent of multi-core ar-
chitectures. MPI-Start default behavior is to start a process for each of the slots
allocated for an execution. However, this is not suitable for applications using
a hybrid architecture where several threads access to a common shared memory
area in each of the nodes. For these cases, the MPI-Start execution framework
was extended to start only one process per node. Before the exection of the user
process, the number of slots allocated is exported to the environment variable
I2G MPI NODE SLOTS at each of the nodes. The value of this variable should be
used by the user process as the maximun number of threads to spawn. In order to
ease the use of OpenMP applications, the OMP NUM THREADS variable is also set to
the same value.

3 Scheduling for parallel applications

In large-scale grids, grid scheduler services are essential to free the users from
the cumbersome work of job handling. The CrossBroker is a GRMS focused on
the execution of parallel and interactive jobs. It provides support for co-allocation
of resources across different administrative domains, opening the possibility of
running parallel applications which can efficiently use many processors, taking
advantage of the different resources composing a grid. A complete description of
the CrossBroker features for the execution of parallel and interactive jobs can be
found in [6].

The CrossBroker simplifies the submission of applications using some of the
most common MPI implementations; both for execution within a single cluster
with Open MPI, MPICH or MPICH2 and using several clusters with PACX-MPI
and MPICH-G2. The JDL [19] is augmented with a new type of jobs – Parallel –
and a new attribute, – SubJobType – that allows the user to specify the MPI imple-
mentation to use. The scheduler automatically selects only sites that support the
MPI flavor and assures that there are enough slots to run the job at the resources.
Parallel jobs are executed using MPI-Start, which is transparently configured on
behalf of the users to run their applications. All the environment variables that



serve as interface to MPI-Start are set to the appropriate values. Figure 4 shows
an example of a parallel job that uses 12 processes with Open MPI.

Executable = "fusion_app";

Arguments = "-n";

JobType = "Parallel";

SubJobType = "openmpi";

NodeNumber = 12;

InputSandBox = {"fusion_app"};

Fig. 4. JDL job description

The execution of large bunch of jobs and parameter sweep applications is com-
mon in grid environments. We have included in the CrossBroker the support of such
applications with two new kind of jobs: collection and parametric. Collections are
sets of independent jobs sharing similar requirements that can be matched in clus-
ters according to some significant attributes and then tracked with a single handle.
Using collections reduces significantly the time for submission to the CrossBroker
(only one submission for several jobs) and simplifies the management of the jobs
to the users. Parametric jobs allow the execution of applications using the pa-
rameter sweep technique. Each of the individual jobs that compose a collection
or a parametric job can be parallel jobs and use the interactivity features of the
CrossBroker.

The implementation of those jobs is compatible with the JDL specification
as implemented by the gLite WMS [1]. However, in order to give a more power
to the end-user, we have extended the parametric job definition. The original
JDL specification only permits the definition of a single parameter per job. Three
different attributes determine the parameter values: Parameters, ParameterStart
and ParameterStep. For each of these jobs, the PARAM keyword is substituted
in the user description with the value of the parameter. The list of parameters
can also be specified using only the Parameters attribute. In the case of numeric
parameters, N different jobs would be generated, where

N = (Parameters− ParameterStart)/ParameterStep (1)

In the CrossBroker, we have extended the specification to allow using more than
a single parameter in each job. Each new parameter must have an identifier that
is appended at the JDL attributes in the following form: Parameters id, Parame-
terStart id, ParameterStep id, with id being the parameter identifier, similarly the
keyword PARAM id is substituted for generating the individual jobs. The complete
parameter space is explored, generating as many jobs as possible combinations of
parameters.

Figure 5 shows an example of a parametric job with two different parameters.
The first parameter is called A and takes the values alpha and beta, while the second
one is called B and is defined by a range: 2 different values, starting from 0 and with



a step of 1. All the combinations of parameters are evaluated, resulting in a total of
four different jobs. The jobs would have the following values for StdInput: input-
alpha-0.txt, input-beta-0.txt, input-alpha-1.txt and input-beta-1.txt. Similar values
would be generated for StdOutput, StdError and InputSandBox attributes.

JobType = "Parametric";

Executable = "myexec";

StdInput = "input-_PARAM_A_-_PARAM_B_.txt";

StdOutput = "output-_PARAM_A_-_PARAM_B_.txt";

StdError = "error-_PARAM_A_-_PARAM_B_.txt";

Parameters_A = {alpha, beta};

Parameters_B = 2;

ParameterStart_B = 0;

ParameterStep_B = 1;

InputSandbox = {"input-_PARAM_A_-_PARAM_B_.txt"}

Fig. 5. Parametric job with two parameters

4 Conclusions and Future Work

MPI-Start and the CrossBroker provide a complete framework for the execution
of parallel applications on the Grid. The unique interface of MPI-Start simplifies
the task of starting the jobs by handling transparently the low level details of the
different Local Resource Management Systems, execution frameworks and file dis-
tribution methods. The most common batch systems and MPI implementations
are supported by MPI-Start and its modular architecture allows the easy exten-
sion of the tool to support new kind of parallel jobs, such as Kepler Workflows
and hybrid MPI/OpenMP applications. MPI-Start has become the official way
of starting the jobs in EGEE, one of the biggest grid infrastructures worldwide.
This software will be further developed in EMI [5], providers of middleware for
the European Grid Initiative [4].

The CrossBroker is a Grid Resource Management System focused on parallel
and interactive applications. Its tight integration with MPI-Start provides users
with an easy way of running their applications on the infrastructure. We have ex-
tended the CrossBroker with new kind of jobs: collections and parametric. These
are suited for the execution of embarrassingly parallel applications with no com-
munication between the tasks and parameter sweep applications. The parametric
jobs support is enhanced from the standard JDL specification and gives the user
the possibility to submit complex jobs where more than one parameter is explored.

The availability of multi-core architectures opens the possibilities of new types
of parallel jobs and will change the interaction of applications with the batch
systems. Future work will investigate how this changes could affect MPI-Start and
the integration of new types of applications in the tool. Currently the middleware is



only capable of allocating a given number of cores, but no details of the distribution
of those cores can be specified. Better ways of requesting the adequate mapping for
the user applications will be explored in the CrossBroker and rest of the middleware
involved in the execution.

Acknowledgements

The authors acknoledge support of the European Comission FP7 program, un-
der contract number 211804 through the project EUFORIA (http://www.euforia-
project.eu).

References

1. P. Andreetto et al. ”The gLite workload management system”, Journal of Physics:
Conference Series, volume 119(6), (2007).

2. A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten.
”Portable batch system: External reference specification”, Technical report, MRJ
Technology Solutions, (1999).

3. CrossGrid Project http://www.eu-crossgrid.org/

4. European Grid Initiative (EGI) http://www.egi.eu/

5. European Middleware Initiative (EMI) https://twiki.cern.ch/twiki/bin/view/EMI

6. E. Fernández, A. Cencerrado, E. Heymann, and M. A. Senar. ”CrossBroker: A
Grid Metascheduler for Interactive and Parallel Jobs”, Computing and Informatics,
volume 27, pp. 187–197, (2008).

7. E. Gabriel et al. ”Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation”. Lecture Notes in Computer Science, volume 3241, pp. 97–104,
(2004).

8. W. Gentzsch. ”Sun Grid Engine: towards creating a compute power grid”, Proceed-
ings of the first IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp. 35–36, (2001).

9. W. Gropp. ”MPICH2: A new start for MPI implementations”, Proceedings of the 9th
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pp. 7, (2002).

10. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. ”A high-performance, portable im-
plementation of the MPI message passing interface standard”, Parallel Computing,
volume 22(6), pp. 789–828, (1996).

11. A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H.J. Epema.
”The Grid Workloads Archive”, Future Generation Computer Systems, volume
24(7), pp. 672–686, (2008).

12. N. T. Karonis et al. ”MPICH-G2: A grid-enabled implementation of the message
passing interface”, J. Parallel Distrib. Comput., volume 63(5), pp. 551–563, (2003).

13. R. Keller, E. Gabriel, B. Krammer, M. S. Müller, and M. M. Resch. ”Towards
efficient execution of MPI applications on the grid: Porting and optimization issues”,
Journal of Grid Computing, volume 1(2), pp. 133–149, (2003).

14. M. Litzkow, M. Livny, and M. Mutka. ”Condor - a hunter of idle workstations”,
Proceedings of the 8th International Conference of Distributed Computing Systems,
(1988).



15. J. Marco et al. ”The Interactive European Grid: Project Objectives and Achieve-
ments” Computing and Informatics, volume 27, pp. 161–173, (2008).

16. T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. ”Scientific workflow design
for mere mortals”, Future Generation Computer Systems, volume 25, pp. 541–551,
(2009).

17. MPI Forum. http://www.mpi-forum.org/.
18. Message Passing Interface Forum. ”MPI: A Message Passing Interface standard”,

(1995).
19. F. Pacini and A. Maraschini. ”Job Description Language (JDL) attributes specifica-

tion”, Technical Report 590869, EGEE Consortium, (2006).
20. J. M. Squyres. ”A component architecture for LAM/MPI”, Proceedings of the ninth

ACM SIGPLAN symposium on Principles and practice of parallel programming, pp.
379–387, (2003).

21. P. Wyckoff. OSC Mpiexec. http://www.osc.edu/ djohnson/mpiexec.
22. S. Zhou. ”Lsf: Load sharing in large-scale heterogeneous distributed systems”, Proc-

cedings of the Workshop on Cluster Computing, (2002).


