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1. Introduction

[1] Dai [2011] (henceforth D11) reported that the Palmer
Drought Severity Index (PDSI) is superior to other statisti-
cally based drought indices including the Standardized
Precipitation Index (SPI) and the Standardized Precipitation
Evapotranspiration Index (SPEI). D11 argued that given the
physical character of the PDSI water balance model, the
index provides robust estimates of drought severity because
it takes the preceding conditions into account, in contrast to
other drought indices that are based purely on past statistics
of particular climate variable(s). However, D11 has over-
estimated the ability of the PDSI to realistically simulate the
distributed soil water balance at large spatial scales, and
ignored the inherent complexity and multiscalar character of
drought phenomena, which are related to more than the
moisture conditions of the soil. In this comment we discuss
the complex characteristics of droughts and the limitations
of the PDSI to quantify drought conditions in a variety of
hydrological systems. We describe the advantages of statis-
tically based drought indices including the SPI and the SPEI.
The fact that the SPI and the SPEI are not (and do not intend to
be) physically based indices is more liberating than con-
straining, especially when the physical basis of PDSI can be
seriously questioned.
[2] Drought is a complex phenomenon that involves both

human and natural factors. In contrast to other extreme
events such as floods, which are typically restricted to small
regions and well defined temporal intervals, droughts are
difficult to pinpoint in time and space, and affect large areas
over long periods of time. It is very difficult to identify the
moment when a drought starts and finishes, and to quantify its
duration, magnitude and spatial extent [Burton et al., 1978;
Wilhite, 2000]. For these reasons substantial efforts have been
devoted to developing methods to quantify drought severity.
The main efforts have been directed at developing drought

indices that enable earlier identification of droughts, and
quantification of their severity and spatial extent. Several
drought indices were developed during the 20th Century,
based on a range of variables and parameters (see reviews by
Heim [2002], Keyantash and Dracup [2002], Mishra and
Singh [2010], and Sivakumar et al. [2010]). Thus, drought
indices have become very important for monitoring drought
continuously in time and space, and drought early warning
systems are based primarily on the information that drought
indices provide [Svoboda et al., 2002].
[3] D11 analyzed the spatial and temporal patterns of

drought variability and drought trends at a global scale using
the Palmer Drought Severity Index (PDSI) under different
modalities (original and self‐calibrated; sc) and using two
different models to calculate the potential evapotranspiration
as input to the Penmann‐Montheith and Thornthwaite model.
Global studies including D11 are central to obtaining a deep
understanding of changes in drought severity, the associated
atmospheric mechanisms, and the possible impacts on surface
hydrology, water resources, agriculture and ecology.
[4] D11 noted that the PDSI is a physically based water

balance model and stated that it is superior to other statistically
based drought indices because it accounts for the basic effect
of global warming through Palmer’s water balance model of
droughts and wet periods. D11 questioned the applicability of
drought indices that are based on the statistical characteristics
of particular climate variables. He specifically drew attention
to the Standardized Precipitation Evapotranspiration Index
(SPEI) [Vicente‐Serrano et al., 2010a], critically noting that it
is based on potential evapotranspiration (PE) and not on actual
evapotranspiration (E). The rationale was that it is E and not
PE that determines the surface water balance and the drought
conditions. It was argued that because PE and E are often
decoupled (or even anti‐correlated) over many water limited
land areas where drought studies are most relevant, a physical
model is necessary to calculate the moisture condition near the
surface, from which a drought index should be derived.
[5] We discuss here shortcomings of the PDSI in ade-

quately modeling the soil water balance, and its limited
ability to quantify and monitor droughts of different types.
Conversely, we describe the advantages of statistically
based drought indices in analyzing the spatial and temporal
variability of drought, identifying drought impacts in a
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variety of systems, and monitoring drought conditions in
real time.

2. Limitations of the PDSI as a Soil Water
Balance Model

[6] It is widely recognized that the PDSI has numerous
deficiencies [e.g., Alley, 1984]. Karl [1986] showed that the
PDSI is highly affected by the selected calibration period. In
addition, the parameters necessary to calculate the PDSI were
determined empirically and mainly tested in the U.S.A.,
which restricts its use in other regions [see Akinremi et al.,
1996]. It has been shown that the PDSI is not spatially
comparable because the weighted factors were obtained from
data for nine climatic divisions in the U.S.A., which were
aggregated at an annual level [Heim, 2002]. Guttman et al.
[1992] illustrated that severe or extreme drought events
recorded by the PDSI are not spatially comparable, as the
cumulative frequencies of the index vary spatially [Karl et al.,
1987; Nkemdirim and Weber, 1999]. Redmond [2002] noted
that the creator of the PDSI, W.C. Palmer, did not intend or
foresee significant use of the index beyond the Great Plains,
in the central U.S.A. Other problems with the PDSI have
been reported. Karl [1983] analyzed the sensitivity of the
PDSI to the water field capacity parameter, and reported that
areas of greater capacity are more likely to be affected by
drought, in agreement with the findings of Weber and
Nkemdirim [1998]. Alley [1984] also noted subjectivity of
the PDSI in terms of assigning real drought conditions to the
values of the index.
[7] Despite problems with the PDSI, its creation in 1965

was a major landmark in the development of drought indi-
ces, and it has been very useful in monitoring and analyzing
drought variability and impacts worldwide. Improvements
to the PDSI by Wells et al. [2004], who developed the self‐
calibrated PDSI (sc‐PDSI), solved most of the problems of
calibration of the PDSI, making the index more suitable for
drought quantification and monitoring.
[8] Although the PDSI is commonly cited as a physically

based soil water balance, as it considers the soil water
capacity, precipitation and outputs in the form of evapo-
transpiration, infiltration and/or runoff, the procedure for its
calculation is based on several assumptions and simplifica-
tions. Claims, such as those of D11, that the PDSI is a
physically based soil water balance have been questioned by
many drought researchers [e.g., Sheffield et al., 2004].
[9] Many believe that the soil water balance cannot be

accurately simulated using only climatic data and the soil
water capacity, while completely neglecting other soil prop-
erties and the complex role of vegetation in the calculation of
E. In practice, the PDSI cannot be considered a robust water
balance model as it oversimplifies soil surface hydrological
processes. The best way of obtaining accurate soil water
balance calculations is by using highly complex physically
based hydrological models such as TOPMODEL [Beven,
1997], TOPKAPI [Ciarapica and Todini, 2002], or RHES-
Sys [Tague and Band, 2004]. Moreover, soil‐moisture esti-
mations are very complex and model dependent [Mo, 2008],
which makes the multimodel soil moisture estimates more
confident than using just a single model [Wang et al., 2009].
State‐of‐the‐art models including the above typically require
a high degree of parameterization to provide accurate esti-

mates of the soil water balance, and its horizontal and vertical
distribution over a catchment. The parameters include the soil
saturated hydraulic conductivity and porosity, factors that
influence the water balance (including topography, surface
roughness), and the physiological and phenological char-
acteristics of the vegetation. In contrast, the PDSI only
requires the water field capacity.
[10] Despite the parsimony of the PDSI, available infor-

mation on soil water capacity is very poor; this has led to the
use of inaccurate values when applying the PDSI in most
regions of the world. Therefore, the PDSI is affected by both
model uncertainty and the propagation of input data errors.
Because of over‐simplification of soil water processes in the
PDSI, it has been reported that climatic components (pre-
cipitation and potential evapotranspiration) explain most of
the spatial and temporal variability of the index. This explains
why numerous reports have been made of strong correlations
of the PDSI with the SPI and SPEI at various time‐scales
[e.g., Guttman, 1998; Redmond, 2002; Ntale and Gan, 2003;
Ceglar and Kajfež‐Bogataj, 2008; Vicente‐Serrano et al.,
2010b], which show that the PDSI behaves more as a cli-
matic drought index than a measure of soil water balance.
[11] It is important to appreciate that E, which is a very

difficult variable to measure, cannot be accurately computed
using a simplisticwater balancemodel like the PDSI.Although
specific instrumentation (e.g., lysimeters and eddy‐covariance
towers) is available, the measurements are usually highly
dependent on very specific characteristics of the plant cover (e.g.,
type of vegetation, root depth, sap flow, stomatal conductance),
and the strategies and efficiency of vegetation physiological
mechanisms to cope with water stress [McDowell et al., 2008].
Therefore, the reliability of estimates of E at regional scales,
only using climate data, is quite low. The calculation of dis-
tributed E values is commonly based on remote sensing data
because it accounts for the vegetation cover and type, which are
the main variables involved in the determination of E [e.g.,
Bastiaanssen et al., 1998; Jacob et al., 2002;Zhang et al., 2010].
Although some models combining climatic, hydrological and
plant physiology information have been proposed to provide
estimates of E, their use is limited because of the high degree
of uncertainty in the simulation of water consumption by
vegetation [e.g., Choudhury and DiGirolamo, 1998; Morales
et al., 2005; Alton et al., 2009]. In addition, even with appli-
cation of the most complex procedures the models typically
consider vegetation cover to be static, and do not incorporate
vegetation cover changes, which are common and can occur
abruptly (deforestation, forest fires, reforestation, desertifica-
tion, irrigation), markedly affecting the magnitude of E.
[12] Given the difficulties in accurately estimating E, an

operative way to incorporate the effect of evaporative demand
on drought indices is to use an estimate of the potential
evapotranspiration (PET) from empirical or physical models.
Suchmethods have been widely accepted by the International
Commission for Irrigation (ICID), the Food and Agriculture
Organization of the United Nations (FAO), and the American
Society of Civil Engineers (ASCE). This is the approach
commonly used when drought indices are calculated [Heim,
2002; Sivakumar et al., 2010], and the one we followed in
developing the SPEI. We consider that using PE instead E is a
reliable way of quantifying the influence of evapotranspiration
processes on the availability of water resources in a variety of
systems (and not only in the soil, as is the case with the PDSI).
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[13] It has been argued that unrealistic water balances are
obtained when PE is used instead of E. This is especially the
case when PE exceeds the water available in the soil, which
limits the evapotranspiration rate. This would be a major
shortcoming of the SPEI if the index was aimed at estimating
the soil water balance, but this is not its purpose. On the con-
trary, the SPEI is defined in a relative way (in standardized
units), and consequently the magnitude of PE is not relevant
even if the difference between precipitation and potential
evapotranspiration (P–PE) is negative. In other words, the SPEI
measures deviations with respect to normal conditions of P‐PE,
and therefore the magnitude of this balance is of less impor-
tance. We see this as an advantage rather than a shortcoming.
In fact, in using the PDSI it is assumed that when the soil
water content is close to zero the magnitude of PE does not
have an effect on the magnitude of drought. It could be
argued, however, that increasing evapotranspiration demand
when the soil water reserve is already minimal could have a
very negative impact on plants. In other drought‐vulnerable
systems including surface water resources (rivers, lakes and
reservoirs), it is known that increasing PE affects water loss
by direct evaporation [Hostetler and Bartlein, 1990; Elsawwaf
et al., 2010]. The widely analyzed 2003 and 2010 summer
droughts in Europe are excellent examples of how, indepen-
dently of the available soil moisture, increased PE rates as a
consequence of extremely high temperatures have a marked
impact on vegetation activity, and in this case led to tree mor-
tality andwild fires [Ciais et al., 2005;Lobo andMaisongrande,
2006;Granier et al., 2007;Barriopedro et al., 2011]. Therefore,
we consider that the use of PE estimates in the calculation of a
drought index is very useful, has a theoretical justification, and it
is an efficient and easy way to include the effect of evapo-
transpiration demand on a variety of systems.
[14] In contrast to the PDSI, which aims to model the water

balance at the soil level, indices including the Standardized
Precipitation Index (SPI) and the SPEI are purely statistical,
and are not intended to reproduce the water balance of any
particular system. The advantages of such indices are that:
i) their calculation only requires climatological information,
which is often available and of reasonable quality; ii) they do
not require any assumptions about the system being modeled;
and iii) they compute the climatological anomalies for periods
of exact length (termed the ‘time scale’ of the index). In our
opinion the fact that they are not physically based is more
liberating than constraining. The ability to calculate these
indices at various time scales allows choice of the scale most
appropriate to the system under study, and can be achieved
using simple statistics such as correlation analysis.

3. The Inability of the PDSI to Quantify Droughts
on Different Time Scales

[15] One reason one cannot say that the PDSI is superior to
the SPI and the SPEI is mainly because it lacks flexibility to
adapt to the intrinsic multiscalar nature of drought. In recent
years the concept of time scales has been widely used by
drought scientists, and it is explained in several reports (e.g.,
the pioneer studies by McKee et al. [1993, 1995] or Hayes
et al. [1999]). When the SPEI was enunciated the need for
monitoring and analysis of droughts at different time scales

had been broadly accepted by the scientific community, as
highlighted by Vicente‐Serrano et al. [2010a, p. 1697]:

It is commonly accepted that drought is a multi‐scalar phenomenon.
McKee et al. (1993) clearly illustrated this essential characteristic of
droughts through consideration of usable water resources including soil
moisture, ground water, snowpack, river discharges, and reservoir
storages. The time period from the arrival of water inputs to availability
of a given usable resource differs considerably. Thus, the time scale
over which water deficits accumulate becomes extremely important,
and functionally separates hydrological, environmental, agricultural
and other droughts. For example, the response of hydrological systems
to precipitation can vary markedly as a function of time… This is deter-
mined by the different frequencies of hydrologic/climatic variables…
For this reason, drought indices must be associated with a specific time-
scale to be useful for monitoring and management of different usable
water resources.

[16] Thus, it is common to find drought conditions in a
hydrological system, whereas other systems in the same
region may have normal or even humid conditions. As a
simple and illustrative example, three months without pre-
cipitation will commonly produce drought conditions with
respect to the soil moisture. Nevertheless, this lack of pre-
cipitation probably will not have an effect on the discharge
of large river systems, or in the level of water stored in the
reservoirs of a region. The contrary pattern also commonly
occurs. For example, four years of low precipitation will
probably produce a severe hydrological drought in terms of
river discharge and reservoir storages, but during the
drought period high precipitation events may produce high
levels of soil moisture. Thus, it is common for drought
conditions to occur in only a part of the hydrological cycle.
The problem is even more complex when the various sys-
tems affected by droughts are considered (hydrological,
agricultural, environmental, socioeconomic), as the response
times to water deficits and the resistance of each system to
drought can vary substantially. The complexity of drought
makes more suitable the use of drought indices, such as the
SPI or the SPEI, that can be calculated on different time
scales.
[17] Numerous scientific studies have shown that particular

systems and regions can respond to drought conditions at
very different time scales. In terms of water resources,
Vicente‐Serrano and López‐Moreno [2005] used the SPI to
show that the response of river discharges and reservoir
storages to different drought time scales in mountainous
catchments can be diverse (1–2 months for river discharges
and 8–10 for reservoir storages). Szalai et al. [2000] also
showed that water stored in reservoirs in Hungary responded
to longer time scales (5 to 24 months) than streamflows (2 to
6 months). The same is observed using groundwater data
[e.g., Fiorillo and Guadagno, 2010; Vidal et al., 2010].
Nevertheless, the spatial diversity is very high, and the
hydrological system of one region may respond very differ-
ently to that in another region, as a consequence of lithology,
topography or the water management regime. This has been
observed for soil moisture data [Mo, 2008; Mishra et al.,
2010; Mishra and Cherkauer, 2010] but also for stream-
flows and reservoir storages. For example, in a study in the
headwaters of the Tagus basin (central Spain) using the SPEI,
Lorenzo‐Lacruz et al. [2010] showed that the 8‐month SPEI
most accurately reflected the streamflow but reservoir stora-
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ges showed a response to 33‐month SPEI; these time scales
are much longer than those observed in other regions. Szalai
et al. [2000] also reported large spatial differences in the time
scales that occur for reservoir storages in Hungary. Similarly,
Khan et al. [2008] analyzed fluctuations in the level of the
water table in different basins in Australia, and related these to
varying time scales of droughts. Large spatial diversity in
response was found, with some basins showing a clear
response at the 6‐month time scale, but for others the highest
correlation was found at time scales of 12–24 months. The
problem is even more complex because the relationships can
change over time and may exhibit large seasonal variability
[Vicente‐Serrano and López‐Moreno, 2005; Lorenzo‐Lacruz
et al., 2010].
[18] As an example of the diversity that commonly occurs

in the response of water resources to drought time scales, we
showed the evolution of a hydrological drought index (the
Standardized Streamflow Index, SSI [Vicente‐Serrano et al.,
2011]) at two gauging stations of the Ebro basin (northeast
Spain), and its relationship to different time scales of the
SPEI (Figure 1). The Gallego River, which is located in a
granitic mountainous area, is strongly correlated at short
time scales (maximum correlation at 4 months). In contrast,
the Jiloca River, which is located in a karst area, shows a
very low inertia in the streamflows and strong correlation to
long time scales (maximum at 48 months). Therefore, if the
PDSI were used to monitor droughts in these basins the
sensitivity of streamflow would be low, as the time scales
represented by the PDSI (9–18 months [Vicente‐Serrano
et al., 2010b]) would show weak correlations for the two
rivers analyzed.
[19] Despite the above discussion it could be argued that

the PDSI is useful for the analysis of hydrological droughts
because it is significantly correlated to streamflow. For
example, D11 records a correlation between the annual PDSI
and annual streamflow in 230 basins worldwide. Neverthe-
less, drought indices including the PDSI and the SPEI were
not designed to monitor streamflow droughts at an annual
scale. For this purpose raw climate variables, such as annual
precipitation, should provide similar results considering
annual averages. Using the same analysis as D11 we assessed
the relationship of total water‐year streamflow in 151 basins
from the global data set of Dai et al. [2009] to total annual

precipitation, average annual PDSI and the 12‐month SPEI.
The 151 basins were selected based on the percentage of
complete records in the original data set (maximum of 15% of
filled monthly records). The monthly average precipitation
and temperature of each basin, obtained from the Climate
Research Unit (CRU) TS 3.1 Data set [Mitchell and Jones,
2005] was used to determine the sc‐PDSI and the SPEI.
The PE values necessary to derive both indices were calcu-
lated by the Thornthwaite method [Thornthwaite, 1948],
which is the simplest procedure for PE estimation. Figure 2
shows the results of the water‐year correlations (as a func-
tion of the river area in each of the 151 basins) with annual
precipitation, the sc‐PDSI and the SPEI. The results were very
similar among the indices, with no differences as a function of
the river area. Thus, the spatial distribution and the magnitude
of correlationsworldwidewere quite similar with respect to the
three variables analyzed (Figure 3). Therefore, data aggrega-
tion at an annual scale smoothes the hydrological differences
that can occur at shorter temporal resolutions (e.g., monthly),
which drought indices need to reproduce to be useful for
drought monitoring. Therefore, the results presented by D11
do not provide evidence of the better performance of the
PDSI for monitoring hydrological droughts on an annual basis.
[20] While drought indices are designed to enable real‐time

drought monitoring at bi‐weekly or monthly time resolutions
(e.g., the U.S. Drought Monitor, http://droughtmonitor.unl.
edu/monitor.html), strong correlations on an annual basis do
not necessarily reflect reliability at these resolutions. This is
clearly illustrated by the example of annual streamflow of the
Mississippi River (North America), which shows similar
strong correlations with annual precipitation, annual sc‐PDSI
and the 12‐month SPEI (0.72, 0.74 and 0.74, respectively).
Nevertheless, differences are evident when monthly values
are analyzed, and limitations of the PDSI in reproducing
hydrological drought conditions become clear. Figure 4
shows the time series of streamflow drought (quantified
using the SSI) together with the series of the basin averages of
the PDSI and the 4‐ and 17‐month SPEI. The PDSI does not
provide a reliable approach to monitoring of the streamflow
drought, as it shows temporal variations of higher frequency
than the SSI, and the correlation between the sc‐PDSI and the
SSI is r = 0.57. For this area the sc‐PDSI correlates best with
the SPEI at a time scale of 17 months (r = 0.85), which is

Figure 1. (left) Correlation between the Standardized Streamflow Index (SSI) and the SPEI at different
time scales; blue: Gallego River, red: Jiloca River. (right) Evolution of the SSI (blue and red lines) and
(top) the 4‐month SPEI (gray) and (bottom) the 48‐month SPEI (gray).
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clearly inadequate for monitoring this particular river flow
series. In contrast, because of the multitemporal character of
the SPEI it is possible to select the most suitable time scale
to reproduce the frequency of the target series. In this case
the 4‐month SPEI has the greatest correlation with the SSI

(r = 0.72), enabling reproduction of the observed streamflow
of the Mississippi River with reasonable accuracy.
[21] This is also observed in basins that respond to longer

time scales. A multiscalar drought index such as the SPEI
is adaptable to the specific response time of a particular

Figure 3. Maps of correlation coefficients between the observed water‐year streamflows and (top left)
water‐year precipitation, (top right) average sc‐PDSI and (bottom) the 12‐month SPEI in 151 basins
worldwide during the period 1948–2004.

Figure 2. Scatterplot of the correlation coefficient between water‐year streamflows in 151 basins world-
wide (see Figure 3) and (top left) water‐year precipitation, (top right) average sc‐PDSI and (bottom) the
12‐month SPEI between 1948 and 2004. Crosses indicate statistically significant correlations at the 5%
level, while the open circles indicate no significant correlations.
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catchment. For example, the strongest correlation of the SSI
series from the St. Lawrence River between USA and
Canada (Figure 5) was with the SPEI at the time scale of
31 months (r = 0.69), while the correlation with the sc‐PDSI
was weaker (r = 0.59). The strongest correlation between
the sc‐PDSI and the SPEI was found at the time scale of
14 months (r = 0.85). It could be argued that the PDSI time
series can be used as a low‐pass filtered to better capture
long‐term drought effects such as those observed for the St.
Lawrence River. However, this would imply double filtering
(as the index already has a time scale, or a memory, implicit
in its calculation). This makes characterizing the time scale
at which the system responds to drought very difficult.
However, this is straightforward with use of the SPI or the
SPEI, as these indices are conceptually and formally linked
to an exact time lag (m) used to compute each index. This is
not the same as low‐pass filtering, as the accumulation is
done on the original variable prior to standardization. The
SPI and the SPEI maintain units with a robust statistical
meaning, and the series of the various time scales are com-
parable between them. Thus, when making a water balance
the PDSI considers the antecedent conditions (a fundamental
characteristic of a drought index to determine the duration,
magnitude, onset and end of a drought), but multiscalar
indices including the SPI and the SPEI also do this. However,
these indices have the advantage of determining exactly the

period (time scale) in which the antecedent conditions are
affecting the value of the index. In addition, the SPI and SPEI
are not obtained using smoothing approaches, but by
cumulative antecedent climate conditions. Thus, calculation
of the time series of a drought index obtained at a given time
scale is completely independent of the time series of the
index obtained at a different time scale. In addition, the
magnitude of the index has a clear statistical meaning, as it is
expressed as a standardized anomaly, whereas the units of the
PDSI are not so easily interpreted.
[22] An additional problem with smoothing in the PDSI

concerns the shortest time scales of drought, which cannot be
reproduced by this index. The PDSI represents a fixed time
scale that typically varies between 9 and 18 months, with
spatial differences among regions depending on local char-
acteristics [Guttman, 1998; Vicente‐Serrano et al., 2010b].
We agree with D11 that the PDSI was designed to be strongly
auto‐correlated to account for the impact of land memory on
drought conditions, and for this reason it is not able to depict
drought on time scales shorter than 12months. However, time
scales ranging from 2 to 9 months are very useful for cap-
turing the drought response in several hydrological, agricul-
tural and environmental systems (such as the SSI of the
Mississippi River, described above), and can be used for
drought monitoring purposes. Although D11 indicates that
other Palmer‐related indices, such as the Z‐index, can be used

Figure 4. Evolution of the (top left) SSI, (top right) sc‐PDSI, and the (bottom left) 4‐month and (bottom
right) 17‐month SPEI in the Mississippi River basin (1948–2004).

Figure 5. Evolution of the (top left) SSI, (top right) sc‐PDSI, and (bottom left) 31‐month and (bottom
right) 14‐month SPEI in the St. Lawrence River basin (1948–2004).
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to track short time scale droughts, these share the same pro-
blems of the PDSI in that they may not adapt to the optimum
time scale at which a system is responding to the drought.
[23] We note that the SPEI and the SPI are not unique

measures of drought. Indeed, no drought index is able to
fully reflect actual conditions. The best measures of drought
are those related to drought impacts in terms of factors such
as reduced water resources, economic losses, environmental
damage and crop failures. However, climatic drought indi-
ces attempt to reproduce drought conditions in a variety of
systems, and can be useful for monitoring and early warn-
ing. For these purposes the flexibility of multiscalar drought
indices is preferable. This is the central basis of our rea-
soning, and the main raison d’être of the SPI and the SPEI.

4. The Problems of Spatial Comparability
of the PDSI

[24] The problems of monitoring drought on different time
scales are linked to deficiencies in the ability of the PDSI to
make spatial comparisons. The problems of spatial compa-
rability in the PDSI were clearly illustrated by Vicente‐
Serrano et al. [2010b], who investigated correlations of the
PDSI at a global scale with different time scales of the SPEI.
This showed large spatial variability because the PDSI
represents water deficits at different time scales depending on
the region under consideration. This was initially investigated
by Guttman [1998], who showed that the spectral character-
istics of the PDSI vary from site to site. In other words, the
time scales of the PDSI and the sc‐PDSI are not fixed because
they depend on the characteristics of the sites and vary spa-
tially, making it difficult to assess what kind of deficit the
index is representing and making spatial comparisons
between sites. This was clearly expressed by Wells et al.
[2004, p. 2350]: “It is important to note that, while the SC‐
PDSI is more spatially comparable than either the NCDC or
CPC versions, it is not as comparable as an index computed
using nonlinear methods (e.g., the Standardized Precipitation
Index;McKee et al. 1993).”This characteristic of the sc‐PDSI
does not diminish the considerable effort by Well and colla-
borators to develop the index, and their considerable advan-
ces regarding the PDSI. Nevertheless, in terms of spatial
comparability the PDSI retains the problem of being an index
that represents different drought frequencies among sites.

5. Conclusions

[25] Several studies have compared the performance of
drought indices and their ability to reproduce drought con-
ditions, and these have shown that the SPI is superior to the
PDSI [Guttman, 1998; Steinemann, 2003;Paulo and Pereira,
2006]. For example,Keyantash and Dracup [2002] tested the
efficacy of 18 drought indices and concluded that the SPI was
best at quantifying, in spatial and temporal terms, the severity
of droughts. Thus, given its substantial advantages in quan-
tifying and monitoring droughts, the SPI has been accepted
by the World Meteorological Organization as the reference
drought index. In the “Lincoln Declaration on Drought
Indices,” 54 experts from all regions of the world agreed on
the use of a universal meteorological drought index for more
effective drought monitoring and climate risk management.
They made the significant consensus agreement that the

Standardized Precipitation Index (SPI) should be used by
national meteorological and hydrological services worldwide
to characterize meteorological droughts [Hayes et al., 2011].
[26] Drought scientists are aware of the superiority of

multiscalar drought indices including the SPI. With the
development of the SPEI we sought to resolve the main
criticism of the SPI, namely that it is based on precipitation
data alone. The SPI does not consider other variables that
can influence droughts, particularly the evapotranspiration
demand. Nevertheless, in developing the SPEI we followed
the same conceptual approach that McKee and collaborators
devised to develop the SPI. Vicente‐Serrano et al. [2010a]
clearly demonstrated that the SPEI has advantages over pre-
vious indicators because it combines the sensitivity of the
PDSI to changes in evaporation demand (caused by temper-
ature fluctuations and trends), simplicity of calculation, and
the multitemporal nature of the SPI.
[27] In summary, we disagree with the criticisms of D11 in

relation to drought indices other than the PDSI, and specifically
with respect to the SPEI. Our intention in developing the SPEI
was not to substitute other drought indices such as the PDSI.
As all drought indices are models, access to several is desirable
and better than basing studies on a single index. This is clearly
illustrated by the U.S. DroughtMonitor [Svoboda et al., 2002],
which is a system that uses various drought indices and para-
meters to assess the severity of droughts and their potential
impacts. We conclude by stressing that the development and
improvement of drought indices is an incomplete task, and
numerous challenges remain for the future. Land surface
variables including vegetation cover, height and albedo have
impacts on water consumption, and consequently on drought
severity, but are not incorporated into current drought indices.
In addition, with very few exceptions [e.g., Byun and Wilhite,
1999] current drought indices do not consider the intensity of
precipitation, measured at daily or sub‐daily scales, even
though intense precipitation (such as convective summer rain)
is known to trigger surface runoff, with direct implications for
streamflow, soil moisture and the drought condition in general.
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